WO2018003690A1 - エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 - Google Patents

エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 Download PDF

Info

Publication number
WO2018003690A1
WO2018003690A1 PCT/JP2017/023188 JP2017023188W WO2018003690A1 WO 2018003690 A1 WO2018003690 A1 WO 2018003690A1 JP 2017023188 W JP2017023188 W JP 2017023188W WO 2018003690 A1 WO2018003690 A1 WO 2018003690A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
component
mass
parts
Prior art date
Application number
PCT/JP2017/023188
Other languages
English (en)
French (fr)
Inventor
佐野健太郎
黒田泰樹
高岩玲生
平野啓之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to ES17820047T priority Critical patent/ES2820506T3/es
Priority to US16/310,852 priority patent/US11008419B2/en
Priority to KR1020187037197A priority patent/KR102224073B1/ko
Priority to JP2017534749A priority patent/JP6274364B1/ja
Priority to EP17820047.3A priority patent/EP3476880B1/en
Priority to CN201780039651.3A priority patent/CN109415492B/zh
Publication of WO2018003690A1 publication Critical patent/WO2018003690A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4021Ureas; Thioureas; Guanidines; Dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4223Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4284Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/55Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/06Triglycidylisocyanurates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/06Triglycidylisocyanurates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres

Definitions

  • the present invention relates to an epoxy resin composition preferably used as a matrix resin of a fiber reinforced composite material suitable for sports applications and general industrial applications, and a prepreg and a fiber reinforced composite material using the epoxy resin composition as a matrix resin.
  • Epoxy resins take advantage of their excellent mechanical properties and are widely used in various industrial fields such as paints, adhesives, electrical and electronic information materials, and advanced composite materials.
  • epoxy resins are frequently used in fiber-reinforced composite materials composed of matrix fibers and reinforcing fibers such as carbon fibers, glass fibers, and aramid fibers.
  • a prepreg in which a carbon fiber base material is impregnated with an epoxy resin in advance is generally used.
  • the prepreg is heated after being laminated or preformed to cure the epoxy resin, thereby giving a molded product.
  • the handleability decreases. Therefore, high storage stability is required for epoxy resins for prepreg use, and dicyandiamide, which is a curing agent with excellent latent curability, is widely used.
  • Carbon fiber composite materials are used in a wide range of fields, from sports and leisure applications to industrial applications such as automobiles and aircraft, taking advantage of their light weight, high strength, and high rigidity.
  • the epoxy resin used as the matrix resin has been given importance to the low colorability of the cured product and the appearance of the molded product, in addition to the excellent heat resistance and mechanical properties of the cured product.
  • dicyandiamide is used as a curing agent, there is a problem that a white precipitate is formed on the surface of the molded product and the appearance is impaired.
  • Patent Document 1 uses a masterbatch using dicyandiamide having a small particle size to dissolve or compatibilize dicyandiamide and an epoxy resin when impregnating the base material. Discloses a technique for suppressing white precipitates in a prepreg.
  • Patent Document 2 discloses a technique using a polythiol and a urea compound as a curing agent
  • Patent Document 3 discloses a technique using an acid anhydride as a curing agent. Yes.
  • Patent Document 2 since dicyandiamide is not used, white precipitates are not generated on the surface of the molded product, but the heat resistance and mechanical properties of the cured resin product may be insufficient.
  • the present invention improves the drawbacks of the prior art, and provides a cured epoxy resin product having both high heat resistance, elastic modulus and low colorability, and the surface of a molded article when used as a matrix resin for a fiber-reinforced composite material.
  • An epoxy resin composition having an excellent appearance without producing white precipitates, and a prepreg using the epoxy resin composition, and an excellent appearance without causing white precipitates on the surface formed by curing the prepreg It is providing the fiber reinforced composite material which has this.
  • the present inventors have found an epoxy resin composition having the following constitution, and have completed the present invention. That is, the epoxy resin composition of this invention consists of the following structures.
  • the prepreg of the present invention is a prepreg composed of the above epoxy resin composition and reinforcing fibers.
  • the fiber reinforced composite material of the present invention is a fiber reinforced composite material obtained by curing the prepreg.
  • a cured epoxy resin product having high heat resistance and excellent mechanical properties is obtained, and a white precipitate is formed on the surface of a molded product when used as a matrix resin of a fiber reinforced composite material.
  • An epoxy resin composition that does not occur and has an excellent appearance can be provided.
  • the epoxy resin composition of the present invention contains an epoxy resin as the component [A] and an imidazole compound as the essential component as the component [B].
  • Component [A] in the present invention is an epoxy resin.
  • an epoxy resin for example, bisphenol-type epoxy resin, biphenyl-type epoxy resin, naphthalene-type epoxy resin, novolak-type epoxy resin, epoxy resin having a fluorene skeleton, epoxy resin made from a copolymer of a phenol compound and dicyclopentadiene, diglycidyl resorcinol, Glycidyl ether type epoxy resin such as tetrakis (glycidyloxyphenyl) ethane, tris (glycidyloxyphenyl) methane, glycidyl ether type epoxy resin, tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, tetraglycidylxylenediamine Resin etc. are mentioned.
  • [A1] isocyanuric acid type epoxy resin is included as component [A].
  • [A1] the elastic modulus of the cured resin is increased and the heat resistance is also improved, so that a fiber-reinforced composite material having excellent mechanical properties and heat resistance can be obtained.
  • the lower limit is 15 parts by mass or more
  • the upper limit is 30 parts by mass or less. It is preferable that By containing [A1] within this range, the resin cured product is less colored and the balance between the elastic modulus and the heat resistance is improved.
  • [A1] Commercially available products of [A1] include “TEPIC (registered trademark)” -S, -L, -PAS B22 (manufactured by Nissan Chemical Industries, Ltd.), “Araldite (registered trademark)” PT9810 (Huntsman Advanced) Materials, Inc.) can be used.
  • the component [A] includes [A2] bisphenol type epoxy resin.
  • [A2] coloring of the resin cured product is reduced, and a fiber-reinforced composite material having an excellent appearance can be obtained.
  • [A2] includes bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, epoxy resin obtained by glycidyl etherification of bisphenol compounds including bisphenol S type epoxy resin.
  • bisphenol A type epoxy resins include “jER (registered trademark)” 825, 828, 834, 1001, 1002, 1003, 1003F, 1004, 1004AF, 1005F, 1006FS, 1007, 1009, 1010 (and above, Mitsubishi Chemical) Etc.).
  • bisphenol F type epoxy resins include “jER (registered trademark)” 806, 807, 4002P, 4004P, 4007P, 4009P, 4010P (above, manufactured by Mitsubishi Chemical Corporation), “Epototo (registered trademark)” YDF2001. YDF2004 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), “EPICRON (registered trademark)” 830, 830-S, 835 (manufactured by DIC Corporation), and the like.
  • Examples of commercially available bisphenol S-type epoxy resins include “EPICRON (registered trademark)” EXA-1514 (manufactured by DIC Corporation).
  • the average epoxy equivalent of [A2] of the epoxy resin composition needs to be 220 to 500 g / eq, and the lower limit is 300 g / eq. It is preferable that the upper limit is 400 g / eq or less.
  • the average epoxy equivalent of [A2] is less than 220 g / eq, the heat resistance of the cured resin is lowered and the coloring becomes strong, so that the appearance of the fiber-reinforced composite material is deteriorated.
  • the average epoxy equivalent of [A2] is larger than 500 g / eq, although there is little coloring, the heat resistance of resin cured material falls.
  • the average epoxy equivalent of [A2] of the epoxy resin composition is calculated by the following method.
  • Component [B] in the present invention is an imidazole compound.
  • the imidazole compound of component [B] serves as a curing agent that promotes self-polymerization of the epoxy resin of component [A].
  • an imidazole compound it is possible to obtain a cured epoxy resin that is less colored and has a good balance with heat resistance as compared with other self-polymerizing curing agents.
  • the content of component [B] is the ratio of the number of imidazoles to the number of epoxy groups in all epoxy resins (that is, to the epoxy groups in all epoxy resins). It is necessary that the molar ratio of imidazole is 0.01 to 0.06.
  • the lower limit is preferably 0.015 or more, and the upper limit is preferably 0.05 or less.
  • the content of the component [B] is small and the ratio of the number of imidazoles to the number of epoxy groups is less than 0.01, the heat resistance of the resin cured product is lowered.
  • the content of component [B] is large and the ratio of the number of imidazoles to the number of epoxy groups exceeds 0.06, coloring of the resin cured product becomes strong, so that the appearance of a fiber-reinforced composite material is deteriorated.
  • the ratio of the number of imidazoles to the number of epoxy groups is calculated by the following method.
  • imidazole compounds include 1-benzyl-2-methylimidazole, 1-benzyl-2-ethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2. -Phenylimidazole and the like.
  • An imidazole compound may be used independently or may be used in combination of multiple types. When a plurality of imidazole compounds are used in combination, the ratio of the number of imidazoles to the number of epoxy groups is calculated using the average imidazole equivalent calculated following the calculation of the average epoxy equivalent as the imidazole equivalent.
  • imidazole equivalent in the case of using an imidazole compound alone and the average imidazole equivalent in the case of using a plurality of imidazole compounds in combination are collectively referred to as the imidazole equivalent of the component [B].
  • the imidazole equivalent of component [B] is preferably 180 g / eq or more.
  • coloring of the epoxy resin cured product tends to be reduced and heat resistance tends to be improved, so that a fiber-reinforced composite material having a good appearance and high heat resistance. Is easy to obtain.
  • About the upper limit of an imidazole equivalent it is preferable that it is 1000 g / eq or less.
  • the component [B] includes [B1] a compound represented by the following general formula (I).
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms or a phenyl group, and X represents an alkylene group or an aromatic hydrocarbon group. Showing).
  • [B1] is an adduct obtained by the reaction of an imidazole compound and an isocyanate compound.
  • a commercially available product of such an adduct is G-8809L (Daiichi Kogyo Seiyaku Co., Ltd.).
  • the component [B] includes [B2] a compound represented by the following general formula (II).
  • R 5 , R 6 , R 7 and R 8 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms or a phenyl group, Y represents a single bond, an alkylene group or an alkylidene group) Represents an ether group or a sulfonyl group).
  • [B2] is an adduct obtained by the reaction of an imidazole compound and an epoxy compound.
  • Commercial products of such an adduct include “Cure Duct” (registered trademark) P-0505 (Shikoku Kasei Kogyo Co., Ltd.) and “JER Cure” (registered trademark) P200H50 (Mitsubishi Chemical Corporation).
  • the content of dicyandiamide is 0.5 mass relative to 100 mass parts of the total epoxy resin. It is preferably no greater than 0.2 parts, more preferably no greater than 0.2 parts by mass, and most preferably no dicyandiamide.
  • An acidic compound can also be added as component [C] to the epoxy resin composition of the present invention.
  • the acidic compound of component [C] serves as a stabilizer for the imidazole compound of component [B].
  • the addition of an acidic compound is preferable because the storage stability of the epoxy resin composition and the prepreg is improved.
  • the acidic compound a Bronsted acid or a Lewis acid can be used.
  • carboxylic acids can be preferably used as the Bronsted acid.
  • Carboxylic acids are classified into aliphatic monocarboxylic acids, aromatic monocarboxylic acids, aliphatic polycarboxylic acids, and aromatic polycarboxylic acids, and examples thereof include the following compounds.
  • Aliphatic monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, octylic acid, pelargonic acid, lauric acid, myristic acid, stearic acid, behenic acid, Examples include undecanoic acid, acrylic acid, methacrylic acid, crotonic acid and oleic acid, and derivatives thereof.
  • Aliphatic polycarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, speric acid, azelaic acid, sebacic acid, undencanic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid , Pentadecanedioic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include benzoic acid, cinnamic acid, naphthoic acid, toluic acid, and derivatives thereof.
  • aromatic polycarboxylic acid examples include phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid and pyromellitic acid, and derivatives thereof.
  • aromatic monocarboxylic acids are preferred as [C1], and benzoic acid is more preferred.
  • boric acid and / or a boric acid ester compound can be used as the Lewis acid.
  • boric acid and / or boric acid ester compounds include boric acid, trimethyl borate, triethyl borate, tributyl borate, tri-n-octyl borate, tri (triethylene glycol methyl ether) boric acid ester, tricyclohexyl borate, and trimentyl borate.
  • Aromatic boric acid esters such as tri-o-cresyl borate, tri-m-cresyl borate, tri-p-cresyl borate, triphenyl borate, tri (1,3-butanediol) biborate, tri ( 2-methyl-2,4-pentanediol) biborate, trioctylene glycol diborate and the like.
  • a cyclic borate compound having a cyclic structure in the molecule can also be used.
  • the cyclic borate compound include tris-o-phenylene bisborate, bis-o-phenylene pyroborate, bis-2,3-dimethylethylene pyroborate, bis-2,2-dimethyltrimethylene pyroborate, and the like. .
  • boric acid ester compounds examples include “Cure Duct” (registered trademark) L-01B and L-07N (above, Shikoku Kasei Kogyo Co., Ltd.).
  • the imidazole compound of component [B] and the acidic compound of component [C] have an appropriate combination from the viewpoints of the storage stability of the resin composition and the balance of heat resistance, mechanical properties, and coloring of the cured epoxy resin. To do.
  • a kneader, a planetary mixer, a three-roll extruder and a twin-screw extruder may be used for kneading. If uniform kneading is possible, a beaker and Use a spatula or the like and mix by hand.
  • Preferred methods for preparing include the following methods. That is, the component [A] is put into a container, and the temperature is raised to an arbitrary temperature of 130 ° C. to 180 ° C. while stirring to dissolve the epoxy resin uniformly. Thereafter, with stirring, the temperature is preferably lowered to 100 ° C.
  • a fiber reinforced composite material containing the cured product of the epoxy resin composition of the present invention as a matrix resin can be obtained by compositely integrating the epoxy resin composition of the present invention with reinforcing fibers and then curing.
  • the reinforcing fiber used in the present invention is not particularly limited, and glass fiber, carbon fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like are used. Two or more of these fibers may be mixed and used. Among these, it is preferable to use carbon fibers because a lightweight and high-rigidity fiber-reinforced composite material can be obtained, and a molded product having black luster and high design properties can be obtained.
  • a white precipitate generated on the surface of a molded article when dicyandiamide is used as a curing agent, which is a problem in the present invention, is that the dicyandiamide is smeared with fibers when impregnated with an epoxy resin composition, or a resin being molded It is thought that this occurs due to segregation of dicyandiamide in the vicinity of the fiber along with the flow of.
  • white precipitates are likely to occur in fibers having a small single fiber diameter, and therefore the effect of the present invention is significant when the single fiber diameter of the reinforcing fibers used in the fiber-reinforced composite material is small. Demonstrated. From this viewpoint, the single fiber diameter of the reinforcing fiber is preferably 3 to 20 ⁇ m, and more preferably 3 to 10 ⁇ m.
  • ⁇ Prepreg> In obtaining a fiber-reinforced composite material, it is preferable to prepare a prepreg composed of an epoxy resin composition and reinforcing fibers in advance because it is easy to store and has excellent handleability.
  • the prepreg can be obtained by impregnating the reinforcing fiber base material with the epoxy resin composition of the present invention. Examples of the impregnation method include a hot melt method (dry method).
  • the hot melt method is a method in which a reinforcing fiber is directly impregnated with an epoxy resin composition whose viscosity has been reduced by heating. Specifically, a film in which an epoxy resin composition is coated on a release paper or the like is prepared, and then the film is applied from both sides or one side of a reinforced fiber fabric (cloth). This is a method of impregnating a reinforcing fiber with a resin by repeatedly applying heat and pressure.
  • the form of the reinforcing fiber used for the prepreg is not particularly limited, it is preferably a woven fabric because it has a beautiful texture and a high design when formed into a molded product.
  • dicyandiamide is used as a curing agent
  • a prepreg using a woven fabric is molded, white precipitates are often generated in the vicinity of the intersection (eyes) of the fibers.
  • the effect of the present invention is particularly greatly exhibited.
  • the reinforcing fiber used for the prepreg is not particularly limited, and various fibers listed in the description of the fiber-reinforced composite material can be used. Among them, it is preferable to use carbon fiber because a lightweight and highly rigid fiber-reinforced composite material can be obtained, and a molded product having black gloss and high design properties can be obtained.
  • ⁇ Prepreg molding method> As a method for applying heat and pressure, a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, or the like can be used as appropriate.
  • the cured product of the epoxy resin composition of the present invention and a fiber-reinforced composite material containing reinforcing fibers are preferably used for sports applications, general industrial applications, and aerospace applications. More specifically, in sports applications, it is preferably used for golf shafts, fishing rods, tennis and badminton rackets, hockey sticks, ski poles, and the like. Furthermore, in general industrial applications, structural materials and interior materials for moving objects such as automobiles, motorcycles, bicycles, ships and railway vehicles, drive shafts, leaf springs, windmill blades, pressure vessels, flywheels, paper rollers, roofing materials, cables And preferably used for repair and reinforcement materials.
  • each epoxy resin composition The materials used for preparing each epoxy resin composition are as shown below.
  • Component [B]: Imidazole compound [B1] Compound [B1] -1 G-8809L represented by general formula (I) (imidazole equivalent: 195, in general formula (I), R 1 and R 2 are ethyl groups, R 3 and R 4 are methyl groups and X is a hexamethylene group, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
  • Component [C] Acidic compound [C1] Aromatic carboxylic acid [C1] -1 Benzoic acid (manufactured by Tokyo Chemical Industry Co., Ltd.).
  • woven CFRP ⁇ Method for producing woven carbon fiber composite material (hereinafter referred to as woven CFRP)>
  • the epoxy resin composition prepared according to the above ⁇ Preparation Method of Epoxy Resin Composition> was applied onto release paper using a film coater to prepare a resin film having a basis weight of 66 g / m 2 .
  • the resin content of the prepreg was 40% by mass.
  • ⁇ Physical property evaluation method> Storage stability of epoxy resin composition
  • the storage stability of an epoxy resin composition was evaluated by the amount of Tg change obtained by the following method. 2 g of the epoxy resin composition prepared in accordance with the above ⁇ Method for preparing epoxy resin composition> is placed in a container having a circular bottom surface with a diameter of 4 cm and kept in an environment of temperature 25 ° C. and relative humidity 50% RH. Stored for 7 days. Weigh 3 mg of each resin before and after storage in a sample pan and use a differential scanning calorimeter (Q-2000: manufactured by TA Instruments) to raise the temperature from -50 ° C to 100 ° C at a constant rate of 10 ° C / min.
  • Q-2000 differential scanning calorimeter
  • Tg glass transition temperature
  • Tg of cured epoxy resin A test piece having a width of 10 mm, a length of 40 mm, and a thickness of 2 mm was cut out from the cured epoxy resin prepared according to the above ⁇ Method for preparing cured epoxy resin>, and a dynamic viscoelasticity measuring apparatus (DMA-Q800: TA instrument) was obtained.
  • the deformation mode was cantilevered, the span was 18 mm, the strain was 20 ⁇ m, the frequency was 1 Hz, and the temperature was measured from 40 ° C. to 200 ° C. at a constant rate of temperature increase of 5 ° C./min.
  • the onset temperature of the storage elastic modulus in the obtained storage elastic modulus-temperature curve was defined as Tg.
  • Example 1 As an epoxy resin of component [A], “TEPIC (registered trademark)”-L 20 parts by mass, “jER (registered trademark)” 828 25 parts by mass, “Epototo (registered trademark)” YDF2001 55 parts by mass, component [B] An epoxy resin composition was prepared according to the above ⁇ Preparation method of epoxy resin composition> using 3 parts by mass of G-8809L as an imidazole compound and 1 part by mass of benzoic acid as an acidic compound of component [C].
  • the Tg variation of this epoxy resin composition was measured and found to be + 4 ° C., and the storage stability was good.
  • a cured epoxy resin was prepared according to ⁇ Method for preparing cured epoxy resin>.
  • the epoxy resin cured product was measured for Tg, flexural modulus, and yellowness.
  • the Tg was 135 ° C.
  • the flexural modulus was 3.5 GPa
  • the yellowness was 54.
  • the physical properties of the cured resin were good.
  • fabric CFRP was produced from the obtained epoxy resin composition and the external appearance was evaluated, the white deposit was not recognized.
  • Example 2 to 19 An epoxy resin composition, a cured epoxy resin, and a woven CFRP were produced in the same manner as in Example 1 except that the resin composition was changed as shown in Tables 1 and 2, respectively.
  • the storage stability of the epoxy resin composition, the Tg of the cured epoxy resin, the elastic modulus, the yellowness, and the appearance of the woven CFRP are as shown in Tables 1 and 2, and all were good.
  • Example 20 An epoxy resin composition, a cured epoxy resin, and a woven fabric CFRP were prepared in the same manner as in Example 1 except that the resin composition was changed to a composition not containing an acidic compound as shown in Table 2.
  • the storage stability of the epoxy resin composition was slightly inferior to Example 1, but the other physical property evaluation results were almost the same as those of Example 1 and were good.
  • Example 2 About the resin composition shown in Table 3, the epoxy resin composition, the epoxy resin hardened
  • FIG. The physical property evaluation results are also shown in Table 3.
  • the Tg, elastic modulus, and CFRP appearance of the cured epoxy resin were good, but the storage stability of the epoxy resin composition was slightly low.
  • content of [A2] in 100 mass parts of all the epoxy resins was less than 40 mass parts, and the yellowness of the cured epoxy resin was poor.
  • Example 3 About the resin composition shown in Table 3, the epoxy resin composition, the epoxy resin hardened
  • FIG. The physical property evaluation results are also shown in Table 3. Storage stability of the epoxy resin composition, Tg of the cured epoxy resin, yellowness, and appearance of the woven CFRP were good, but the content of [A1] in less than 10 parts by mass of the total epoxy resin was less than 10 parts by mass. The elastic modulus of the cured epoxy resin was low.
  • Example 4 About the resin composition shown in Table 3, the epoxy resin composition, the epoxy resin hardened
  • Example 5 About the resin composition shown in Table 3, the epoxy resin composition, the epoxy resin hardened
  • FIG. The physical property evaluation results are also shown in Table 3. Storage stability of the epoxy resin composition, Tg of the cured epoxy resin, yellowness, and appearance of the woven CFRP were good, but the content of [A1] in less than 10 parts by mass of the total epoxy resin was less than 10 parts by mass. The elastic modulus of the cured epoxy resin was low.
  • Example 7 About the resin composition shown in Table 3, the epoxy resin composition, the epoxy resin hardened
  • Example 10 About the resin composition shown in Table 4, the epoxy resin composition, the epoxy resin hardened
  • FIG. The physical property evaluation results are also shown in Table 4.
  • the epoxy resin cured product had good Tg, elastic modulus, and appearance of the woven CFRP, the content of the component [B] was large, and the ratio of the number of imidazoles to the number of epoxy groups exceeded 0.06.
  • the storage stability of the epoxy resin cured product was poor, and the yellowness of the cured epoxy resin was poor.
  • the epoxy resin composition of the present invention provides a cured epoxy resin that has both high heat resistance / elastic modulus and low colorability
  • the fiber reinforced composite material using this as a matrix resin has excellent heat resistance / mechanical properties. Has characteristics and low colorability.
  • a white precipitate is not produced on the surface of the molded article of the fiber reinforced composite material, it has excellent design properties in combination with its low colorability.
  • the epoxy resin composition, prepreg, and fiber reinforced composite material of the present invention are preferably used for sports applications and general industrial applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

高い耐熱性および弾性率と低着色性を両立するエポキシ樹脂硬化物が得られ、かつ繊維強化複合材料のマトリックス樹脂として用いたときに成形品表面に白色析出物を生じず、優れた外観を有するエポキシ樹脂組成物を提供する。 成分[A]としてエポキシ樹脂、成分[B]としてイミダゾール化合物を含み、下記条件(a)~(d)を満たすエポキシ樹脂組成物。 (a):成分[A]として[A1]イソシアヌル酸型エポキシ樹脂を、全エポキシ樹脂100質量部中10~40質量部含む。 (b):成分[A]として[A2]ビスフェノール型エポキシ樹脂を、全エポキシ樹脂100質量部中40~90質量部含む。 (c):[A2]の平均エポキシ当量が220~500g/eqである。 (d):成分[B]の含有量が、全エポキシ樹脂中のエポキシ基数に対するイミダゾール数の比が0.01~0.06となる量である。

Description

エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
 本発明は、スポーツ用途および一般産業用途に適した繊維強化複合材料のマトリックス樹脂として好ましく用いられるエポキシ樹脂組成物、ならびに、これをマトリックス樹脂としたプリプレグおよび繊維強化複合材料に関するものである。
 エポキシ樹脂はその優れた機械的特性を生かし、塗料、接着剤、電気電子情報材料、先端複合材料など、各種産業分野に広く使用されている。特に炭素繊維、ガラス繊維、アラミド繊維などの強化繊維とマトリックス樹脂からなる繊維強化複合材料ではエポキシ樹脂が多用されている。
 炭素繊維強化複合材料の製造には、炭素繊維の基材にあらかじめエポキシ樹脂を含浸させた、プリプレグが汎用される。プリプレグは、積層もしくはプリフォーム後、加熱してエポキシ樹脂を硬化させることで、成形品を与える。プリプレグは、積層までの過程で硬化反応が進むと取扱性が低下する。そのため、プリプレグ用途のエポキシ樹脂には高い保管安定性が必要とされ、潜在硬化性の優れた硬化剤であるジシアンジアミドが広く使われている。
 炭素繊維複合材料はその軽量かつ高強度、高剛性の特長を生かし、スポーツ・レジャー用途から自動車・航空機等の産業用途まで、幅広い分野において用いられている。特に近年では、その特徴を生かし構造部材として用いられるだけでなく、織物を表面に配置してクロス目を意匠として用いる場合も増えている。そのため、マトリックス樹脂として用いられるエポキシ樹脂には、硬化物が優れた耐熱性および機械特性を示すことに加え、硬化物の低着色性や成形品の外観も重要視されるようになってきた。しかしながら、硬化剤としてジシアンジアミドを用いると、成形品の表面に白色析出物が生じて外観を損ねるという課題があった。
 ジシアンジアミド由来の白色析出物を抑える方法として、特許文献1には、粒径の小さいジシアンジアミドを用いたマスターバッチを使用することで、ジシアンジアミドとエポキシ樹脂を基材への含浸時に溶解または相溶させることにより、プリプレグの白色析出物を抑制する技術が開示されている。また、ジシアンジアミドを使用しない方法として、特許文献2には、硬化剤としてポリチオールとウレア化合物を用いる技術が開示されており、特許文献3には、硬化剤として酸無水物を用いる技術が開示されている。
特開平11-209580号公報 特開2013-253194号公報 特開2013-133407号公報
 しかし、特許文献1に記載された方法では、プリプレグ作製時にジシアンジアミドを溶解または相溶させるため、繊維強化複合材料用のプリプレグとしては、保管安定性が不十分であった。また、プリプレグ作製時にジシアンジアミドを溶解させない場合は、成形品表面に白色析出物が生じる場合があった。
 また、特許文献2では、ジシアンジアミドを使用していないため成形品表面に白色析出物は生じないが、樹脂硬化物の耐熱性や機械特性が不足する場合があった。
 さらに、特許文献3において提案されている酸無水物硬化剤を用いた場合では、成形品表面に白色析出物は生じないが、硬化剤の酸無水物が空気中の水分により劣化し、樹脂硬化物の物性が低下する場合があり、一定の保管期間が想定される繊維強化複合材料用のプリプレグ用途には好ましくなかった。
 本発明は、かかる従来技術の欠点を改良し、高い耐熱性および弾性率と低着色性を両立するエポキシ樹脂硬化物が得られ、かつ繊維強化複合材料のマトリックス樹脂として用いたときに成形品表面に白色析出物を生じず、優れた外観を有するエポキシ樹脂組成物、および該エポキシ樹脂組成物を用いたプリプレグ、ならびに該プリプレグを硬化させてなる、表面に白色析出物が生じず、優れた外観を有する繊維強化複合材料を提供することにある。
 本発明者らは、前記課題を解決すべく鋭意検討した結果、下記構成からなるエポキシ樹脂組成物を見いだし、本発明を完成させるに至った。すなわち本発明のエポキシ樹脂組成物は、以下の構成からなる。
 成分[A]としてエポキシ樹脂、成分[B]としてイミダゾール化合物を含み、下記条件(a)~(d)を満たすエポキシ樹脂組成物。
(a):成分[A]として[A1]イソシアヌル酸型エポキシ樹脂を、全エポキシ樹脂100質量部中10~40質量部含む。
(b):成分[A]として[A2]ビスフェノール型エポキシ樹脂を、全エポキシ樹脂100質量部中40~90質量部含む。
(c):[A2]の平均エポキシ当量が220~500g/eqである。
(d):成分[B]の含有量が、全エポキシ樹脂中のエポキシ基数に対するイミダゾール数の比が0.01~0.06となる量である。
 また、本発明のプリプレグは、上記エポキシ樹脂組成物と強化繊維からなるプリプレグである。
 さらに、本発明の繊維強化複合材料は、上記プリプレグを硬化させてなる繊維強化複合材料である。
 本発明によれば、高い耐熱性と優れた機械特性を有し、着色が少ないエポキシ樹脂硬化物が得られ、かつ繊維強化複合材料のマトリックス樹脂として用いたときに成形品表面に白色析出物を生じず、優れた外観を有するエポキシ樹脂組成物を提供することができる。
 本発明のエポキシ樹脂組成物は、成分[A]としてエポキシ樹脂、成分[B]としてイミダゾール化合物を必須成分として含む。
 <成分[A]>
 本発明における成分[A]はエポキシ樹脂である。例えば、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂、フルオレン骨格を有するエポキシ樹脂、フェノール化合物とジシクロペンタジエンの共重合体を原料とするエポキシ樹脂、ジグリシジルレゾルシノール、テトラキス(グリシジルオキシフェニル)エタン、トリス(グリシジルオキシフェニル)メタンのようなグリシジルエーテル型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシレンジアミンのようなグリシジルアミン型エポキシ樹脂などが挙げられる。
 本発明では、成分[A]として[A1]イソシアヌル酸型エポキシ樹脂を含む。[A1]を含むことにより、樹脂硬化物の弾性率が高くなり、耐熱性も向上するため、優れた機械特性と耐熱性を有する繊維強化複合材料が得られる。
 エポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部中、[A1]を10~40質量部含むことが必要であり、下限については15質量部以上であることが、上限については30質量部以下であることが好ましい。[A1]をこの範囲で含むことにより、樹脂硬化物の着色が少なく、弾性率と耐熱性のバランスが良好となる。
 [A1]の市販品としては、“TEPIC(登録商標)”-S、-L、-PAS B22(以上、日産化学工業(株)製)、“アラルダイト(登録商標)”PT9810(ハンツマン・アドバンスト・マテリアルズ社製)等を使用することができる。
 本発明では、成分[A]として[A2]ビスフェノール型エポキシ樹脂を含む。[A2]を含むことにより、樹脂硬化物の着色が低減され、優れた外観を有する繊維強化複合材料が得られる。
 エポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部中、[A2]を40~90質量部含むことが必要であり、下限については70質量部以上であることが、上限については90質量部以下であることが好ましい。[A2]をこの範囲で含むことにより、樹脂硬化物の着色と弾性率のバランスが良好となる。
 [A2]としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂をはじめとするビスフェノール化合物をグリシジルエーテル化したエポキシ樹脂が挙げられる。
 ビスフェノールA型エポキシ樹脂の市販品としては、“jER(登録商標)”825、828、834、1001、1002、1003、1003F、1004、1004AF、1005F、1006FS、1007、1009、1010(以上、三菱化学(株)製)などが挙げられる。
 ビスフェノールF型エポキシ樹脂の市販品としては、“jER(登録商標)”806、807、4002P、4004P、4007P、4009P、4010P(以上、三菱化学(株)製)、“エポトート(登録商標)”YDF2001、YDF2004(以上、新日鉄住金化学(株)製)、“EPICRON(登録商標)”830、830-S、835(以上、DIC(株)製)などが挙げられる。
 ビスフェノールS型エポキシ樹脂の市販品としては、“EPICRON(登録商標)”EXA-1514(DIC(株)製)などが挙げられる。
 本発明では、エポキシ樹脂硬化物の耐熱性と着色のバランスの観点から、エポキシ樹脂組成物の[A2]の平均エポキシ当量は、220~500g/eqである必要があり、下限については300g/eq以上であることが、上限については400g/eq以下であることが好ましい。[A2]の平均エポキシ当量が220g/eq未満であると、樹脂硬化物の耐熱性が低下すると共に、着色が強くなるため、繊維強化複合材料とした場合の外観が悪くなる。また、[A2]の平均エポキシ当量が500g/eqよりも大きいと、着色は少ないものの、樹脂硬化物の耐熱性が低下する。
 上記、エポキシ樹脂組成物の[A2]の平均エポキシ当量は、以下の方法で算出される。
 (エポキシ樹脂組成物の[A2]の平均エポキシ当量の算出方法)
 n種類の[A2]のエポキシ樹脂を併用し、[A2]のエポキシ樹脂の総質量部がG’であり、エポキシ当量がEx(g/eq)の[A2]のエポキシ樹脂XがWx質量部含有されているエポキシ樹脂組成物の[A2]の平均エポキシ当量(g/eq)は、以下の数式(I)によって算出される(ここで、x=1、2、3、・・・、nである。)
Figure JPOXMLDOC01-appb-M000003
 <成分[B]>
 本発明における成分[B]はイミダゾール化合物である。本発明において成分[B]のイミダゾール化合物は成分[A]のエポキシ樹脂の自己重合を進める硬化剤として働く。イミダゾール化合物を用いることで、他の自己重合型硬化剤と比較して、着色が少なく耐熱性とのバランスが良いエポキシ樹脂硬化物を得ることができる。
 本願発明では、エポキシ樹脂硬化物の耐熱性と着色のバランスの観点から、成分[B]の含有量は、全エポキシ樹脂中のエポキシ基数に対するイミダゾール数の比(すなわち全エポキシ樹脂中のエポキシ基に対するイミダゾールのモル比)が0.01~0.06となる量であることが必要であり、下限については0.015以上であることが、上限については0.05以下であることが好ましい。成分[B]の含有量が少なく、エポキシ基数に対するイミダゾール数の比が0.01未満であると、樹脂硬化物の耐熱性が低下する。成分[B]の含有量が多く、エポキシ基数に対するイミダゾール数の比が0.06を超えると、樹脂硬化物の着色が強くなるため、繊維強化複合材料とした場合の外観が悪くなる。
 上記、エポキシ基数に対するイミダゾール数の比は、下記の方法で算出される。
 (エポキシ樹脂組成物のエポキシ基数に対するイミダゾール数の比の算出方法)
 (1)全エポキシ樹脂の平均エポキシ当量の算出
 n種類の成分[A]のエポキシ樹脂を併用し、全エポキシ樹脂の総質量部がGであり、エポキシ当量がEy(g/eq)のエポキシ樹脂YがWy質量部含有されているエポキシ樹脂組成物の全エポキシ樹脂の平均エポキシ当量(g/eq)は、以下の数式(II)によって算出される(ここで、y=1、2、3、・・・、nである。)
Figure JPOXMLDOC01-appb-M000004
 (2)エポキシ基数に対するイミダゾール数の比の算出
 全エポキシ樹脂の総質量部がGであり、エポキシ樹脂組成物中のイミダゾール化合物の質量部がW、そのイミダゾール当量がI(g/eq)であるエポキシ樹脂組成物において、エポキシ樹脂組成物のエポキシ基数に対するイミダゾール数の比は、上記(1)の値を用いて以下の数式(III)によって算出される。
Figure JPOXMLDOC01-appb-M000005
 イミダゾール化合物としては、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-エチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾールなどが挙げられる。イミダゾール化合物は単独で用いても、複数種類を組み合わせて用いても良い。イミダゾール化合物を複数種類組み合わせて用いる場合には、平均エポキシ当量の計算に倣って算出される平均イミダゾール当量を上記イミダゾール当量として用いて、エポキシ基数に対するイミダゾール数の比を算出する。なお、イミダゾール化合物を単独で用いる場合のイミダゾール当量と、イミダゾール化合物を複数種類を組み合わせて用いる場合の平均イミダゾール当量を総称して、成分[B]のイミダゾール当量と記す。
 成分[B]のイミダゾール当量は180g/eq以上であることが好ましい。成分[B]のイミダゾール当量を180g/eq以上とすることにより、エポキシ樹脂硬化物の着色が低減し、耐熱性が向上する傾向があるため、外観が良好で高い耐熱性を有する繊維強化複合材料が得られやすい。イミダゾール当量の上限については、1000g/eq以下であることが好ましい。
 また、イミダゾール当量を大きくする観点から、成分[B]として[B1]下記一般式(I)に示す化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000006
 (式中、R、R、RおよびRは各々独立に、水素原子、炭素数1~20の脂肪族炭化水素基又はフェニル基を示し、Xはアルキレン基又は芳香族炭化水素基を示す)。
 [B1]はイミダゾール化合物とイソシアネ-ト化合物の反応により得られる付加物である。かかる付加物の市販品としては、G-8009L(第一工業製薬(株))が挙げられる。
 さらに、同じくイミダゾール当量を大きくする観点から、成分[B」として[B2]下記一般式(II)に示す化合物を含むこともまた好ましい。
Figure JPOXMLDOC01-appb-C000007
 (式中、R、R、RおよびRは各々独立に、水素原子、炭素数1~20の脂肪族炭化水素基又はフェニル基を示し、Yは単結合、アルキレン基、アルキリデン基、エーテル基又はスルホニル基を示す)。
 [B2]はイミダゾール化合物とエポキシ化合物の反応により得られる付加物である。かかる付加物の市販品としては、“キュアダクト”(登録商標)P-0505(四国化成工業(株))や、“JERキュア”(登録商標)P200H50(三菱化学(株))が挙げられる。
 また、本発明では、硬化剤としてジシアンジアミドを含有する場合、成形品表面に白色析出物が生じて外観を損ねることがあるため、ジシアンジアミドの含有量は全エポキシ樹脂100質量部に対し0.5質量部以下であることが好ましく、0.2質量部以下であることがより好ましく、ジシアンジアミドを含まないことが最も好ましい。
 <成分[C]>
 本発明のエポキシ樹脂組成物には、成分[C]として酸性化合物を添加することもできる。本発明において成分[C]の酸性化合物は成分[B]のイミダゾール化合物の安定化剤としてはたらく。酸性化合物の添加は、エポキシ樹脂組成物およびプリプレグの保管安定性を向上させるため好ましい。
 酸性化合物は、ブレンステッド酸、またはルイス酸を利用することができる。
 ブレンステッド酸としては、カルボン酸類を好ましく用いることができる。カルボン酸類とは、脂肪族モノカルボン酸、芳香族モノカルボン酸、脂肪族ポリカルボン酸、および芳香族ポリカルボン酸に分類され、例えば以下の化合物が挙げられる。
 脂肪族モノカルボン酸としては、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、オクチル酸、ペラルゴン酸、ラウリル酸、ミリスチン酸、ステアリン酸、ベヘン酸、ウンデカン酸、アクリル酸、メタクリル酸、クロトン酸およびオレイン酸、およびこれらの誘導体などが挙げられる。
 脂肪族ポリカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバチン酸、ウンデンカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、およびこれらの誘導体が挙げられる。
 芳香族モノカルボン酸としては、安息香酸、ケイ皮酸、ナフトエ酸、トルイル酸、およびこれらの誘導体が挙げられる。
 芳香族ポリカルボン酸としては、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸およびピロメリット酸、およびこれらの誘導体などが挙げられる。
 これらのブレンステッド酸の中でも、[C1]として芳香族モノカルボン酸が好ましく、中でも安息香酸を用いることがさらに好ましい。
 ルイス酸としては、ホウ酸および/またはホウ酸エステル化合物などを用いることができる。
 ホウ酸および/またはホウ酸エステル化合物としては、ホウ酸、トリメチルボレート、トリエチルボレート、トリブチルボレート、トリn-オクチルボレート、トリ(トリエチレングリコールメチルエーテル)ホウ酸エステル、トリシクロヘキシルボレート、トリメンチルボレートなどのアルキルホウ酸エステル、トリo-クレジルボレート、トリm-クレジルボレート、トリp-クレジルボレート、トリフェニルボレートなどの芳香族ホウ酸エステル、トリ(1,3-ブタンジオール)ビボレート、トリ(2-メチル-2,4-ペンタンジオール)ビボレート、トリオクチレングリコールジボレートなどが挙げられる。
 また、ホウ酸エステル化合物として、分子内に環状構造を有する環状ホウ酸エステル化合物を用いることもできる。環状ホウ酸エステル化合物としては、トリス-o-フェニレンビスボレート、ビス-o-フェニレンピロボレート、ビス-2,3-ジメチルエチレンピロボレート、ビス-2,2-ジメチルトリメチレンピロボレートなどが挙げられる。
 これらのルイス酸の中でも、[C2]としてホウ酸エステル化合物を用いることが好ましい。かかるホウ酸エステル化合物を含む製品としては、たとえば、“キュアダクト”(登録商標)L-01B、L-07N(以上、四国化成工業(株))がある。
 成分[B]のイミダゾール化合物と成分[C]の酸性化合物には、樹脂組成物の保管安定性と、エポキシ樹脂硬化物の耐熱性、機械特性、着色のバランスの観点から、適切な組み合わせが存在する。特に[B1]に対しては[C1]安息香酸を、[B2]に対しては[C2]ホウ酸エステル化合物を用いることが好ましい。
 <エポキシ樹脂組成物の調製方法>
 本発明のエポキシ樹脂組成物の調製には、例えばニーダー、プラネタリーミキサー、3本ロールおよび2軸押出機といった機械を用いて混練しても良いし、均一な混練が可能であれば、ビーカーとスパチュラなどを用い、手で混ぜても良い。好ましい調製方法としては、以下の方法があげられる。すなわち、容器に成分[A]を投入し、攪拌しながら温度を130℃~180℃の任意の温度まで上昇させ、エポキシ樹脂を均一に溶解させる。その後、攪拌しながら、好ましくは100℃以下、より好ましくは80℃以下、さらに好ましくは60℃以下の温度まで下げ、成分[B]ならびに成分[C]を投入し、混練する。このとき、成分[B]ならびに成分[C]を均一に混合するために、あらかじめ成分[A]の一部を用い、硬化剤マスターを作製しておくことがより好ましい。
 <繊維強化複合材料>
 次に、繊維強化複合材料について説明する。本発明のエポキシ樹脂組成物を、強化繊維と複合一体化した後、硬化させることにより、本発明のエポキシ樹脂組成物の硬化物をマトリックス樹脂として含む繊維強化複合材料を得ることができる。
 本発明に用いられる強化繊維は特に限定されるものではなく、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが用いられる。これらの繊維を2種以上混合して用いても構わない。この中で、軽量かつ高剛性な繊維強化複合材料が得られ、かつ繊維が黒い光沢を持ち高い意匠性を有する成形品が得られる点から、炭素繊維を用いることが好ましい。
 本発明における課題である、ジシアンジアミドを硬化剤として用いた場合に成形品表面に発生する白色析出物は、エポキシ樹脂組成物を含浸する際にジシアンジアミドが繊維で漉しとられるか、もしくは成形中の樹脂の流動に伴い繊維近傍にジシアンジアミドが偏析することにより発生すると考えられる。硬化剤としてジシアンジアミドを用いた場合、単繊維径が小さい繊維において白色析出物が発生しやすいことから、繊維強化複合材料に用いられる強化繊維の単繊維径が小さい場合において、本発明の効果は大きく発揮される。この観点から、強化繊維の単繊維径は3~20μmが好ましく、3~10μmがさらに好ましい。
 <プリプレグ>
 繊維強化複合材料を得るにあたり、あらかじめエポキシ樹脂組成物と強化繊維からなるプリプレグとしておくことは、保管が容易となる上、取り扱い性に優れるため好ましいものである。プリプレグは、本発明のエポキシ樹脂組成物を強化繊維基材に含浸させて得ることができる。含浸させる方法としては、ホットメルト法(ドライ法)などを挙げることができる。
 ホットメルト法は、加熱により低粘度化したエポキシ樹脂組成物を直接強化繊維に含浸させる方法である。具体的には、離型紙などの上にエポキシ樹脂組成物をコーティングしたフィルムを作製しておき、次いで強化繊維を引き揃えたシート、もしくは強化繊維の織物(クロス)の両側または片側から前記フィルムを重ね、加熱加圧することにより強化繊維に樹脂を含浸させる方法である。
 プリプレグに用いる強化繊維の形態は特に限定されないが、成形品とした場合に織目が美しく、高い意匠性を有することから、織物であることが好ましい。硬化剤としてジシアンジアミドを用いた場合、織物を用いたプリプレグを成形すると、繊維の交点(目)近傍に白色析出物が発生することが多い。プリプレグの強化繊維として織物を用いることにより、本発明の効果が特に大きく発揮される。
 また、プリプレグに用いる強化繊維は特に限定されるものではなく、繊維強化複合材料の記載に挙げた各種繊維を用いることができる。中でも、軽量かつ高剛性な繊維強化複合材料が得られ、かつ繊維が黒い光沢を持ち高い意匠性を有する成形品が得られる点から、炭素繊維を用いることが好ましい。
 <プリプレグの成形法>
 プリプレグ積層成形法において、熱および圧力を付与する方法としては、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法などを適宜使用することができる。
 本発明のエポキシ樹脂組成物の硬化物と、強化繊維を含む繊維強化複合材料は、スポーツ用途、一般産業用途および航空宇宙用途に好ましく用いられる。より具体的には、スポーツ用途では、ゴルフシャフト、釣り竿、テニスやバドミントンのラケット、ホッケーなどのスティック、およびスキーポールなどに好ましく用いられる。さらに一般産業用途では、自動車、二輪車、自転車、船舶および鉄道車両などの移動体の構造材や内装材、ドライブシャフト、板バネ、風車ブレード、圧力容器、フライホイール、製紙用ローラ、屋根材、ケーブル、および補修補強材料などに好ましく用いられる。
 以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。
 特に断りのない限り、各種物性の測定は温度23℃・相対湿度50%の環境下で行った。
 各エポキシ樹脂組成物を調製するために用いた材料は以下に示す通りである。
 <使用した材料>
 成分[A]:エポキシ樹脂
 ・[A1]イソシアヌル酸型エポキシ樹脂
[A1]-1 “TEPIC(登録商標)”-S(エポキシ当量:100、日産化学工業(株)製)
[A1]-2 “TEPIC(登録商標)”-L(エポキシ当量:101、日産化学工業(株)製)
[A1]-3 “TEPIC(登録商標)”-PAS B22(エポキシ当量:190、日産化学工業(株)製)。
 ・[A2]ビスフェノール型エポキシ樹脂
[A2]-1 “EPICLON(商標登録)”830(ビスフェノールF型エポキシ樹脂、エポキシ当量:172、大日本インキ化学工業(株)製)
[A2]-2 “jER(商標登録)”828(ビスフェノールA型エポキシ樹脂、エポキシ当量:189、三菱化学(株)製)
[A2]-3 “エポトート(登録商標)”YDF-2001(ビスフェノールF型エポキシ樹脂、エポキシ当量:475、東都化成(株)製)
[A2]-4 “jER(商標登録)”1001(ビスフェノールA型エポキシ樹脂、エポキシ当量:470、三菱化学(株)製)
[A2]-5 “jER(商標登録)”4004P(ビスフェノールF型エポキシ樹脂、エポキシ当量:910、三菱化学(株)製)
[A2]-6 “jER(商標登録)”1007(ビスフェノールA型エポキシ樹脂、エポキシ当量:910、三菱化学(株)製)。
 ・[A3]その他のエポキシ樹脂
[A3]-1 “スミエポキシ(登録商標)”ELM434(ジアミノジフェニルメタン型エポキシ樹脂、エポキシ当量:120、住友化学工業(株)製)
[A3]-2 “jER(商標登録)”154(フェノールノボラック型エポキシ樹脂、エポキシ当量:175、三菱化学(株)製)。
 成分[B]:イミダゾール化合物
 ・[B1]一般式(I)に示す化合物
[B1]-1 G-8009L(イミダゾール当量:195、一般式(I)において、R1およびR2がエチル基、R3およびR4がメチル基、Xがヘキサメチレン基である化合物、第一工業製薬(株)製)。
 ・[B2]一般式(II)に示す化合物
[B2]-1 “キュアダクト(登録商標)”P-0505(イミダゾール当量:280、一般式(II)において、R5およびR6がエチル基、R7およびR8がメチル基、Yがイソプロピリデン基である化合物、四国化成工業(株)製)。
 ・[B3]その他のイミダゾール化合物
[B3]-1 “キュアゾール(登録商標)”2MZ-H(イミダゾール当量:82、2-メチルイミダゾール、四国化成工業(株)製)
[B3]-2 “キュアゾール(登録商標)”2PZ(イミダゾール当量:144、2-フェニルイミダゾール、四国化成工業(株)製)。
 ・[B’]イミダゾール化合物以外の硬化剤
[B’]-1 “jERキュア(登録商標)”DICY7(ジシアンジアミド、三菱化学(株)製)
[B’]-2 DCMU99(3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、保土ヶ谷化学工業(株)製)。
 成分[C]:酸性化合物
 ・[C1]芳香族カルボン酸
[C1]-1 安息香酸(東京化成工業(株)製)。
 ・[C2]ホウ酸エステル化合物 を含む混合物
[C2]-1 “キュアゾール(登録商標)”L-01B(酸性化合物としてホウ酸エステル化合物を5質量部含む混合物、四国化成工業(株)製)
[C2]-2 “キュアゾール(登録商標)”L-07N(酸性化合物としてホウ酸エステル化合物を5質量部含む混合物、四国化成工業(株)製)。
 <樹脂組成パラメータの算出方法>
 (1)エポキシ樹脂組成物の[A2]の平均エポキシ当量の算出方法
 n種類の[A2]のエポキシ樹脂を併用し、[A2]のエポキシ樹脂の総質量部がG’であり、エポキシ当量がEx(g/eq)の[A2]のエポキシ樹脂XがWx質量部含有されているエポキシ樹脂組成物の[A2]の平均エポキシ当量(g/eq)を、以下の数式(I)によって算出した(ここで、x=1、2、3、・・・、nである。)
Figure JPOXMLDOC01-appb-M000008
 (2)エポキシ樹脂組成物の全エポキシ樹脂の平均エポキシ当量の算出方法
 n種類の成分[A]のエポキシ樹脂を併用し、全エポキシ樹脂の総質量部がGであり、エポキシ当量がEy(g/eq)のエポキシ樹脂YがWy質量部含有されているエポキシ樹脂組成物の全エポキシ樹脂の平均エポキシ当量(g/eq)を、以下の数式(II)によって算出した(ここで、y=1、2、3、・・・、nである。)
Figure JPOXMLDOC01-appb-M000009
 (3)エポキシ樹脂組成物のエポキシ基数に対するイミダゾール数の比の算出方法
 全エポキシ樹脂の総質量部がGであり、エポキシ樹脂組成物中のイミダゾール化合物の質量部がW、そのイミダゾール当量がI(g/eq)であるエポキシ樹脂組成物において、エポキシ樹脂組成物のエポキシ基数に対するイミダゾール数の比を、上記(2)の値を用いて以下の数式(III)によって算出した。
Figure JPOXMLDOC01-appb-M000010
 <エポキシ樹脂組成物の調製方法>
 (1)硬化剤マスターの調製
 液状の[A2]ビスフェノール型エポキシ樹脂([A2]-1または[A2]-2のうち、樹脂組成に含まれるもの)を10質量部(全ての成分[A]のエポキシ樹脂100質量部に対して10質量部)用意した。ここに成分[B]のイミダゾール化合物、[B’] イミダゾール化合物以外の硬化剤、成分[C]の酸性化合物のうち、樹脂組成に含まれるものを添加し、ニーダーを用いて室温で混練した。混合物を三本ロールに2回通すことで、硬化剤マスターを調製した。
 (2)エポキシ樹脂組成物の調製
 ニーダー中に、前記(1)で使用した液状の[A2]ビスフェノール型エポキシ樹脂10質量部を除いた成分[A]のエポキシ樹脂90質量部を投入した。混練しながら、150℃まで昇温した後、同温度で1時間保持することで、透明な粘調液を得た。混練を続けながら60℃まで降温した後、前記(1)で調製した硬化剤マスターを投入し、同温度で30分間混練することで、エポキシ樹脂組成物を得た。表1~4に各実施例および比較例のエポキシ樹脂組成物の組成を示した。
 <エポキシ樹脂硬化物の作製方法>
 上記<エポキシ樹脂組成物の調製方法>に従い調製したエポキシ樹脂組成物を真空中で脱泡した後、2mm厚の“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールド中で、130℃の温度で90分間硬化させ、厚さ2mmの板状のエポキシ樹脂硬化物を得た。
 <織物炭素繊維複合材料(以下、織物CFRP)の作製方法>
 上記<エポキシ樹脂組成物の調製方法>に従い調製したエポキシ樹脂組成物を、フィルムコーターを用いて離型紙上に塗布し、目付66g/mの樹脂フィルムを作製した。炭素繊維“トレカ(登録商標)”T300(東レ(株)製)を用いた二方向クロス(2/2綾織、目付198g/m)を用意し、これに2枚の樹脂フィルムを両面に貼り合わせた後、これをプリプレグ化装置で両面から加熱加圧含浸し織物プリプレグを得た。プリプレグの樹脂含有率は40質量%であった。
 この織物プリプレグの繊維方向を揃えて10プライ積層した後、ナイロンフィルムで隙間の無いように覆い、これをオートクレーブ中で130℃、内圧0.3MPaで2時間かけて加熱加圧成形して硬化し、織物CFRPを作製した。
 <物性評価方法>
 (1)エポキシ樹脂組成物の保管安定性
 エポキシ樹脂組成物の保管安定性は、以下の方法で得られたTg変化量によって評価した。直径4cmの円形の底面を持つ容器に、上記<エポキシ樹脂組成物の調製方法>に従い調製したエポキシ樹脂組成物を2g取り分け、温度25℃・相対湿度50%RHの環境に保った恒温恒湿槽内で7日間保管した。保管前後の樹脂それぞれ3mgをサンプルパンに量り取り、示差走査熱量分析計(Q-2000:TAインスツルメント社製)を用い、-50℃から100℃まで10℃/分の等速昇温条件で測定した。得られた熱量-温度曲線における変曲点の中点をガラス転移温度(以下、Tgと記す)とした。保管後のTgから保管前のTgを差し引いたものをTg変化量とした。Tg変化量が小さいほど、保管安定性は良好と判断される。
 (2)エポキシ樹脂硬化物のTg
 上記<エポキシ樹脂硬化物の作製方法>に従い作製したエポキシ樹脂硬化物から、幅10mm、長さ40mm、厚さ2mmの試験片を切り出し、動的粘弾性測定装置(DMA-Q800:TAインスツルメント社製)を用い、変形モードを片持ち曲げ、スパン間を18mm、歪みを20μm、周波数を1Hzとし、40℃から200℃まで5℃/分の等速昇温条件で測定した。得られた貯蔵弾性率-温度曲線における貯蔵弾性率のオンセット温度をTgとした。
 (3)エポキシ樹脂硬化物の弾性率
 上記<エポキシ樹脂硬化物の作製方法>に従い作製したエポキシ樹脂硬化物から、幅10mm、長さ60mmの試験片を切り出し、インストロン万能試験機(インストロン社製)を用い、スパンを32mm、クロスヘッドスピードを100mm/分とし、JIS K7171(1994)に従って3点曲げを実施し、弾性率を測定した。試験片数n=6で測定した値の平均値を弾性率とした。
 (4)エポキシ樹脂硬化物の黄色度
 上記<エポキシ樹脂硬化物の作製方法>に従い作製したエポキシ樹脂硬化物から3cm角、厚さ2mmの試験片を切り出した。この試験片について、分光測色計MSC-P(スガ試験機(株)製)を用い、JIS Z8722(2009)に従って透過物体色を測定し、三刺激値を求めた。イルミナントはD65、幾何条件e、測定方法は分光測色方法、有効波長幅は5nm、波長間隔は5nmとし、表色系はXYZ表色系とした。得られた三刺激値を基に、JIS K7373(2006)に従って黄色度を計算した。
 (5)織物CFRPの外観
 上記<織物CFRPの作製方法>に従い作製した織物CFRPを40℃の水に7日間浸漬した。浸漬後の織物CFRPについて、織目部分の外観を目視で確認した。結果は、白色析出物が認められない場合をgood、認められる場合をpoorと表記した。
 (実施例1)
 成分[A]のエポキシ樹脂として“TEPIC(登録商標)”-L 20質量部、“jER(商標登録)”828 25質量部、“エポトート(商標登録)”YDF2001 55質量部、成分[B]のイミダゾール化合物としてG-8009L 3質量部、成分[C]の酸性化合物として安息香酸 1質量部を用い、上記<エポキシ樹脂組成物の調製方法>に従ってエポキシ樹脂組成物を調製した。
 このエポキシ樹脂組成物についてTg変化量を測定したところ、+4℃であり、保管安定性は良好であった。
 得られたエポキシ樹脂組成物から、<エポキシ樹脂硬化物の作製方法>に従って、エポキシ樹脂硬化物を作製した。このエポキシ樹脂硬化物についてTg、曲げ弾性率、黄色度を測定したところ、Tgは135℃、曲げ弾性率は3.5GPa、黄色度は54であり、樹脂硬化物の物性は良好であった。また、得られたエポキシ樹脂組成物から織物CFRPを作製して外観を評価したところ、白色析出物は認められなかった。
 (実施例2~19)
 樹脂組成をそれぞれ表1および2に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、織物CFRPを作製した。
 各実施例について、エポキシ樹脂組成物の保管安定性、エポキシ樹脂硬化物のTg、弾性率、黄色度、織物CFRPの外観は表1および2に記載の通りであり、いずれも良好であった。
 (実施例20)
 樹脂組成を表2に示したような酸性化合物を含まない組成に変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、織物CFRPを作製した。エポキシ樹脂組成物の保管安定性は実施例1に対して若干劣るが、それ以外の物性評価結果は、実施例1とほぼ同程度で良好であった。
 (比較例1)
 表3に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、織物CFRPを作製した。物性評価結果は表3に併せて示した。エポキシ樹脂組成物の保管安定性、エポキシ樹脂硬化物のTg、弾性率、織物CFRPの外観は良好であったが、全エポキシ樹脂100質量部中[A2]の含有量が40質量部に満たず、エポキシ樹脂硬化物の黄色度が不良であった。
 (比較例2)
 表3に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、織物CFRPを作製した。物性評価結果は表3に併せて示した。エポキシ樹脂硬化物のTg、弾性率、CFRPの外観は良好であったが、エポキシ樹脂組成物の保管安定性は若干低かった。また、全エポキシ樹脂100質量部中[A2]の含有量が40質量部に満たず、エポキシ樹脂硬化物の黄色度が不良であった。
 (比較例3)
 表3に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、織物CFRPを作製した。物性評価結果は表3に併せて示した。エポキシ樹脂組成物の保管安定性、エポキシ樹脂硬化物のTg、黄色度、織物CFRPの外観は良好であったが、全エポキシ樹脂100質量部中[A1]の含有量が10質量部に満たず、エポキシ樹脂硬化物の弾性率が低かった。
 (比較例4)
 表3に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、織物CFRPを作製した。物性評価結果は表3に併せて示した。エポキシ樹脂組成物の保管安定性、エポキシ樹脂硬化物のTg、黄色度、織物CFRPの外観は良好であったが、全エポキシ樹脂100質量部中[A1]の含有量が10質量部に満たず、エポキシ樹脂硬化物の弾性率が低かった。
 (比較例5)
 表3に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、織物CFRPを作製した。物性評価結果は表3に併せて示した。エポキシ樹脂組成物の保管安定性、エポキシ樹脂硬化物のTg、黄色度、織物CFRPの外観は良好であったが、全エポキシ樹脂100質量部中[A1]の含有量が10質量部に満たず、エポキシ樹脂硬化物の弾性率が低かった。
 (比較例6)
 表3に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、織物CFRPを作製した。物性評価結果は表3に併せて示した。エポキシ樹脂組成物の保管安定性、エポキシ樹脂硬化物のTg、弾性率、織物CFRPの外観は良好であったが、全エポキシ樹脂100質量部中[A1]の含有量が40質量部を超え、エポキシ樹脂硬化物の黄色度が不良であった。
 (比較例7)
 表3に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、織物CFRPを作製した。物性評価結果は表3に併せて示した。エポキシ樹脂組成物の保管安定性、エポキシ樹脂硬化物の弾性率、黄色度、織物CFRPの外観は良好であったが、[A2]の平均エポキシ当量が220g/eqに満たず、エポキシ樹脂硬化物のTgが低かった。
 (比較例8)
 表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、織物CFRPを作製した。物性評価結果は表4に併せて示した。エポキシ樹脂組成物の保管安定性、エポキシ樹脂硬化物の弾性率、黄色度、織物CFRPの外観は良好であったが、[A2]の平均エポキシ当量が500g/eqを超え、エポキシ樹脂硬化物のTgが低かった。
 (比較例9)
 表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、織物CFRPを作製した。物性評価結果は表4に併せて示した。エポキシ樹脂組成物の保管安定性、エポキシ樹脂硬化物の弾性率、黄色度、織物CFRPの外観は良好であったが、成分[B]の含有量が少なく、エポキシ基数に対するイミダゾール数の比が0.01に満たなかったため、エポキシ樹脂硬化物のTgが低かった。
 (比較例10)
 表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、織物CFRPを作製した。物性評価結果は表4に併せて示した。エポキシ樹脂硬化物のTg、弾性率、織物CFRPの外観は良好であったが、成分[B]の含有量が多く、エポキシ基数に対するイミダゾール数の比が0.06を超えたため、エポキシ樹脂組成物の保管安定性が低く、エポキシ樹脂硬化物の黄色度が不良であった。
 (比較例11)
 表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、織物CFRPを作製した。物性評価結果は表4に併せて示した。エポキシ樹脂組成物の保管安定性、エポキシ樹脂硬化物の弾性率、黄色度、織物CFRPの外観は良好であったが、成分[B]を含んでおらず、エポキシ樹脂硬化物のTgが低かった。
 (比較例12)
 表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、織物CFRPを作製した。物性評価結果は表4に併せて示した。エポキシ樹脂組成物の保管安定性、エポキシ樹脂硬化物のTg、弾性率、黄色度は良好であったが、成分[B]を含んでおらず、ジシアンジアミドを含んでいたため、織物CFRPに白色析出物が認められた。
 (比較例13)
 表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、エポキシ樹脂硬化物、織物CFRPを作製した。物性評価結果は表4に併せて示した。エポキシ樹脂硬化物のTg、織物CFRPの外観は良好であったが、[A1]を含んでおらず、エポキシ樹脂硬化物の弾性率が低かった。また、成分[B]の含有量が多く、エポキシ基数に対するイミダゾール数の比が0.06を超えたため、エポキシ樹脂組成物の保管安定性とエポキシ樹脂硬化物の黄色度が不良であった。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 本発明のエポキシ樹脂組成物は、高い耐熱性・弾性率と低着色性を両立するエポキシ樹脂硬化物が得られるため、これをマトリックス樹脂として用いた繊維強化複合材料は、優れた耐熱性・機械特性と低着色性を有する。また、繊維強化複合材料の成形品表面に白色析出物を生じないため、その低着色性と併せて優れた意匠性を有する。本発明のエポキシ樹脂組成物、プリプレグ、繊維強化複合材料は、スポーツ用途および一般産業用途に好ましく用いられる。

Claims (12)

  1. 成分[A]としてエポキシ樹脂、成分[B]としてイミダゾール化合物を含み、下記条件(a)~(d)を満たすエポキシ樹脂組成物。
    (a):成分[A]として[A1]イソシアヌル酸型エポキシ樹脂を、全エポキシ樹脂100質量部中10~40質量部含む。
    (b):成分[A]として[A2]ビスフェノール型エポキシ樹脂を、全エポキシ樹脂100質量部中40~90質量部含む。
    (c):[A2]の平均エポキシ当量が220~500g/eqである。
    (d):成分[B]の含有量が、全エポキシ樹脂中のエポキシ基数に対するイミダゾール数の比が0.01~0.06となる量である。
  2. 成分[B]のイミダゾール当量が180g/eq以上である、請求項1に記載のエポキシ樹脂組成物。
  3. 成分[B]として[B1]一般式(I)に示す化合物を含む、請求項1または2に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、R、RおよびRは各々独立に、水素原子、炭素数1~20の脂肪族炭化水素基又はフェニル基を示し、Xはアルキレン基又は芳香族炭化水素基を示す。)
  4. 成分[B]として[B2]一般式(II)に示す化合物を含む、請求項1~3のいずれかに記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、R、RおよびRは各々独立に、水素原子、炭素数1~20の脂肪族炭化水素基又はフェニル基を示し、Yは単結合、アルキレン基、アルキリデン基、エーテル基又はスルホニル基を示す。)
  5. さらに成分[C]として酸性化合物を含む、請求項1~4のいずれかに記載のエポキシ樹脂組成物。
  6. 成分[C]として[C1]芳香族カルボン酸を含む、請求項5に記載のエポキシ樹脂組成物。
  7. 成分[C]として[C2]ホウ酸エステル化合物を含む、請求項5または6に記載のエポキシ樹脂組成物。
  8. ジシアンジアミドの含有量が全エポキシ樹脂100質量部に対し0.5質量部以下である、請求項1~7のいずれかに記載のエポキシ樹脂組成物。
  9. 請求項1~8のいずれかに記載のエポキシ樹脂組成物と強化繊維からなるプリプレグ。
  10. 強化繊維が織物の形態である、請求項9に記載のプリプレグ。
  11. 強化繊維が炭素繊維である、請求項9または10に記載のプリプレグ。
  12. 請求項11に記載のプリプレグを硬化させてなる繊維強化複合材料。
PCT/JP2017/023188 2016-06-28 2017-06-23 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 WO2018003690A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES17820047T ES2820506T3 (es) 2016-06-28 2017-06-23 Composición de resina epoxídica, material compuesto preimpregnado y reforzado con fibra
US16/310,852 US11008419B2 (en) 2016-06-28 2017-06-23 Epoxy resin composition, prepreg, and fiber-reinforced composite material
KR1020187037197A KR102224073B1 (ko) 2016-06-28 2017-06-23 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료
JP2017534749A JP6274364B1 (ja) 2016-06-28 2017-06-23 プリプレグおよび繊維強化複合材料
EP17820047.3A EP3476880B1 (en) 2016-06-28 2017-06-23 Epoxy resin composition, prepreg, and fiber-reinforced composite material
CN201780039651.3A CN109415492B (zh) 2016-06-28 2017-06-23 环氧树脂组合物、预浸料坯及纤维增强复合材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016127268 2016-06-28
JP2016-127268 2016-06-28

Publications (1)

Publication Number Publication Date
WO2018003690A1 true WO2018003690A1 (ja) 2018-01-04

Family

ID=60786370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023188 WO2018003690A1 (ja) 2016-06-28 2017-06-23 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Country Status (7)

Country Link
US (1) US11008419B2 (ja)
EP (1) EP3476880B1 (ja)
JP (1) JP6274364B1 (ja)
KR (1) KR102224073B1 (ja)
CN (1) CN109415492B (ja)
ES (1) ES2820506T3 (ja)
WO (1) WO2018003690A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021201060A1 (ja) * 2020-03-31 2021-10-07

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111741A (ja) * 1997-10-08 1999-04-23 Hitachi Chem Co Ltd 光半導体素子封止用エポキシ樹脂タブレット及び該タブレットを用いて封止された光半導体装置
JPH11209580A (ja) 1998-01-27 1999-08-03 Matsushita Electric Works Ltd エポキシ樹脂組成物及びその製造方法及びプリプレグの製造方法
JP2010265415A (ja) * 2009-05-15 2010-11-25 Sekisui Chem Co Ltd エポキシ樹脂組成物及び積層体
JP2013133407A (ja) 2011-12-27 2013-07-08 Nippon Kayaku Co Ltd 透明回路基板用エポキシ樹脂組成物及びその硬化物
JP2013253194A (ja) 2012-06-08 2013-12-19 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物
JP2016023250A (ja) * 2014-07-22 2016-02-08 信越化学工業株式会社 光半導体素子封止用熱硬化性エポキシ樹脂組成物及びそれを用いた光半導体装置
JP2017020004A (ja) * 2015-07-09 2017-01-26 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW215927B (ja) * 1992-02-28 1993-11-11 Ciba Geigy
ES2281412T3 (es) * 2000-04-21 2007-10-01 Mitsubishi Rayon Co., Ltd. Composicion de resina epoxi y prepreg fabricado con la composicion de resina epoxi.
JP3891554B2 (ja) * 2001-01-30 2007-03-14 住友ベークライト株式会社 光半導体封止用エポキシ樹脂組成物及び光半導体装置
JP2002234990A (ja) * 2001-02-08 2002-08-23 Sumitomo Bakelite Co Ltd 光半導体封止用エポキシ樹脂組成物及び光半導体装置
CN1247651C (zh) * 2001-09-14 2006-03-29 住友化学工业株式会社 光电半导体密封用树脂组合物
MY143387A (en) * 2004-10-01 2011-05-13 Nippon Kayaku Kk Epoxy resin composition for sealing optical semiconductor
ATE431371T1 (de) * 2004-10-27 2009-05-15 Nagase Chemtex Corp Wärmebeständiger verbundwerkstoff
JP5280681B2 (ja) * 2005-05-18 2013-09-04 ナガセケムテックス株式会社 繊維強化熱溶融エポキシ樹脂の製造方法
CN103232682B (zh) * 2008-07-31 2016-03-02 积水化学工业株式会社 环氧树脂组合物、预浸料、固化物、片状成形体、叠层板及多层叠层板
KR101134635B1 (ko) * 2009-10-12 2012-04-09 금호석유화학 주식회사 액정 표시 소자용 실란트 조성물
US9738782B2 (en) * 2010-09-28 2017-08-22 Toray Industries, Inc. EPOXY resin composition, prepreg and fiber-reinforced composite materials
JP5832740B2 (ja) * 2010-11-30 2015-12-16 株式会社ダイセル 硬化性エポキシ樹脂組成物
US8735733B2 (en) * 2011-01-18 2014-05-27 Hitachi Chemical Company, Ltd. Resin composition, prepreg laminate obtained with the same and printed-wiring board
JP4897932B1 (ja) * 2011-05-25 2012-03-14 ハリマ化成株式会社 はんだペースト用フラックスおよびはんだペースト
KR101394946B1 (ko) 2012-05-29 2014-05-14 인하대학교 산학협력단 Gis 기반의 해양경계획정을 위한 면적 자동연산시스템 및 그 방법
PL2880071T3 (pl) * 2012-08-02 2017-03-31 Alzchem Ag Ciekłe utwardzacze do utwardzania żywic epoksydowych (i)
KR20150128755A (ko) * 2013-03-11 2015-11-18 도레이 카부시키가이샤 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료
US20160024294A1 (en) * 2014-07-22 2016-01-28 Shin-Etsu Chemical Co., Ltd. Heat-curable epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using same
KR102341968B1 (ko) * 2014-09-02 2021-12-23 도레이 카부시키가이샤 섬유 강화 복합 재료용 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료
CN105542394B (zh) * 2015-12-23 2017-10-24 陕西生益科技有限公司 一种无卤树脂组合物及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111741A (ja) * 1997-10-08 1999-04-23 Hitachi Chem Co Ltd 光半導体素子封止用エポキシ樹脂タブレット及び該タブレットを用いて封止された光半導体装置
JPH11209580A (ja) 1998-01-27 1999-08-03 Matsushita Electric Works Ltd エポキシ樹脂組成物及びその製造方法及びプリプレグの製造方法
JP2010265415A (ja) * 2009-05-15 2010-11-25 Sekisui Chem Co Ltd エポキシ樹脂組成物及び積層体
JP2013133407A (ja) 2011-12-27 2013-07-08 Nippon Kayaku Co Ltd 透明回路基板用エポキシ樹脂組成物及びその硬化物
JP2013253194A (ja) 2012-06-08 2013-12-19 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物
JP2016023250A (ja) * 2014-07-22 2016-02-08 信越化学工業株式会社 光半導体素子封止用熱硬化性エポキシ樹脂組成物及びそれを用いた光半導体装置
JP2017020004A (ja) * 2015-07-09 2017-01-26 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Also Published As

Publication number Publication date
EP3476880A1 (en) 2019-05-01
EP3476880B1 (en) 2020-08-05
KR102224073B1 (ko) 2021-03-08
US11008419B2 (en) 2021-05-18
EP3476880A4 (en) 2019-12-04
JP6274364B1 (ja) 2018-02-07
JPWO2018003690A1 (ja) 2018-07-12
CN109415492B (zh) 2020-05-05
ES2820506T3 (es) 2021-04-21
CN109415492A (zh) 2019-03-01
KR20190022552A (ko) 2019-03-06
US20190177470A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
KR102294515B1 (ko) 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료
JP6623757B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2016148022A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP6274364B1 (ja) プリプレグおよび繊維強化複合材料
TWI780182B (zh) 環氧樹脂組成物、預浸體及纖維強化複合材料
JP6547478B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP7423891B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP7159875B2 (ja) プリプレグおよび繊維強化複合材料
JP2019023281A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP7215001B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2019023283A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
CN110520458A (zh) 环氧树脂组合物、预浸料、纤维增强复合材料及其制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017534749

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037197

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017820047

Country of ref document: EP

Effective date: 20190128