WO2018000386A1 - 控制车辆编队行驶的方法、集中控制设备和车辆 - Google Patents

控制车辆编队行驶的方法、集中控制设备和车辆 Download PDF

Info

Publication number
WO2018000386A1
WO2018000386A1 PCT/CN2016/088023 CN2016088023W WO2018000386A1 WO 2018000386 A1 WO2018000386 A1 WO 2018000386A1 CN 2016088023 W CN2016088023 W CN 2016088023W WO 2018000386 A1 WO2018000386 A1 WO 2018000386A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control device
information
centralized control
fleet
Prior art date
Application number
PCT/CN2016/088023
Other languages
English (en)
French (fr)
Inventor
张慧敏
黄康敏
刘祖齐
廖衡
傅佳莉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/088023 priority Critical patent/WO2018000386A1/zh
Priority to CN201680001921.7A priority patent/CN108352110A/zh
Publication of WO2018000386A1 publication Critical patent/WO2018000386A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled

Definitions

  • the present invention relates to the field of automatic driving, and more particularly to a method of controlling vehicle formation travel, a centralized control device, and a vehicle.
  • the prior art provides a distributed control method, that is, communication between vehicles in the fleet, the following vehicle can be combined with the surrounding driving environment data or route planning information sent by the head vehicle, and the vehicle. Self-controlled driving such as path planning itself.
  • the embodiment of the invention provides a method for controlling vehicle formation travel, a centralized control device and a vehicle, and centralized control of the vehicle driving in the fleet through centralized control equipment can reduce the driver's mistake, misjudgment and untimely response.
  • the frequency of traffic accidents increases the safety of fleet formation.
  • a method of controlling vehicle formation travel comprising: a centralized control device determining a first travel parameter of a first vehicle in an autonomous fleet of vehicles, the plurality of self-driving fleets being in an automatic driving mode a vehicle composition, the first vehicle being one of the plurality of vehicles; the centralized control device transmitting first control information to the first vehicle, the first control information being used to control the first vehicle according to the first Drive with a driving parameter.
  • a method for controlling vehicle formation travel the centralized control device can reduce the driver's mistake, misjudgment, and time delay by determining the driving parameter of the first vehicle and centrally controlling the first vehicle to travel according to the first driving parameter. In response, the frequency of traffic accidents may occur, and the safety of vehicle formation travel is improved.
  • the first travel parameter can include a target speed, wherein the first control information is used to control the first vehicle shift to the target speed.
  • the first driving parameter may further include a starting time and an ending time, or a time interval.
  • the first control information is used to control the first vehicle to start shifting from the starting time, and shift to the target speed at the end time or before the end time, or the first control information is used to control the first vehicle at the time interval Internal shifting to the target speed.
  • the first vehicle may be any one of the self-driving fleets, so the centralized control device can control the shifting of each vehicle in the control fleet in the above manner to ensure safe driving between the vehicles.
  • the centralized control device determines a second driving parameter of the second vehicle, the second driving parameter including the target speed,
  • the second vehicle is one of the plurality of vehicles, the first vehicle and the second vehicle are adjacent to each other in the autonomous driving fleet, and the first vehicle is a front of the second vehicle a vehicle; the centralized control device transmits second control information to the second vehicle, the second control information being used to control the second vehicle to shift to the target speed.
  • the method may further include: Receiving, by the centralized control device, a first shift completion message sent when the second vehicle decelerates to the target speed; wherein the centralized control device sends first control information to the first vehicle, including: the centralized control device Transmitting the first control message to the first vehicle according to the first shift completion message.
  • the centralized control device can control the first vehicle in the autonomous driving fleet.
  • the vehicle is asynchronously decelerated to achieve safe driving of the fleet.
  • the method may further include: receiving, by the centralized control device, a second shift completion message sent when the first vehicle accelerates to the target speed; wherein the medium control device sends the second control information to the second vehicle, including: the centralized control device according to the second shift completion message Sending the second control to the second vehicle Information.
  • the central control device sends the first control information to the first vehicle and the centralized control device sends the second control to the second vehicle
  • the method may further include: the centralized control device transmitting a synchronization signal to the first vehicle and the second vehicle, so that the first vehicle and the second vehicle start shifting and shifting to when the synchronization signal is received The target speed; the centralized control device respectively receives a third shift completion message and a fourth shift completion message that are transmitted when the first vehicle and the second vehicle shift to the target speed according to the synchronization signal.
  • the synchronous shift (acceleration or deceleration) of the self-driving fleet can be realized by the above manner.
  • the first driving parameter further includes at least one of the following parameters: a vehicle distance, an indicator light parameter, a shift parameter, and Brake parameters.
  • Centralized control equipment can better control the vehicle by obtaining more information of the vehicle to ensure safe driving of the vehicle.
  • the method may further include, before the centralized control device determines the first driving parameter of the first vehicle in the autonomous driving fleet The centralized control device receives the shift request of the first vehicle; wherein the centralized control device determines the first travel parameter of the first vehicle in the autopilot fleet, including: the centralized control device determines the first travel parameter according to the shift request.
  • the centralized control device receives the shifting request of the first vehicle, including: the centralized control device receiving the first vehicle is detected The shift request sent by the first vehicle when the vehicle adjacent to the first vehicle is greater than a preset distance.
  • the method may further include The centralized control device transmits the fleet information of the self-driving fleet to the first vehicle, the fleet information includes path planning information of the autonomous driving team; the centralized control device receives the first vehicle and determines to join the autonomous driving team according to the fleet information and the vehicle information of the first vehicle.
  • the vehicle information includes path planning information of the first vehicle; when the centralized control device accepts the request to join the fleet, an acknowledgement message is sent to the first vehicle; the centralized control device receives the first vehicle The control delivery information sent after receiving the confirmation message; the centralized control device controls the first vehicle according to the control delivery information.
  • the fleet information may also include the driving speed of the self-driving fleet, and the vehicle information may also include the traveling speed of the vehicle.
  • the method may further include: the centralized control device receiving the first vehicle according to the Adding a fleet request of the vehicle information of the first vehicle, the vehicle information including path planning information of the first vehicle; and the centralized control device accepting the station according to the vehicle information and the fleet information of the autonomous driving team Sending a confirmation message to the first vehicle when the joining team request is made, wherein the fleet information includes path planning information of the autonomous driving fleet; and the centralized control device receives the confirmation that the first vehicle receives the first vehicle The control sent after the message delivers the information and controls the first vehicle.
  • the method before the centralized control device receives the control delivery information sent by the first vehicle after receiving the confirmation message, the method It may also include that the centralized control device transmits location information to the first vehicle, the location information indicating that the first vehicle is driving into the location of the first vehicle in the autonomous vehicle fleet.
  • the method further includes: the centralized control device separately transmitting an acquisition travel information request to each of the plurality of vehicles; and the centralized control device receiving, respectively, each of the plurality of vehicles transmitting the request to obtain the travel information a first feedback information; the centralized control device acquires driving information of each vehicle in the plurality of vehicles according to the first feedback information; the centralized control device separately according to driving information of each vehicle in the plurality of vehicles Each of the plurality of vehicles transmits a network request; the centralized control device receives second feedback information respectively sent by each of the plurality of vehicles when accepting the networking request; the centralized control device according to the The second feedback information adds each of the plurality of vehicles to the same network.
  • the method further includes: determining, by the centralized control device, a shared path according to the travel information, where the shared path is a travel path of one of the plurality of vehicles, wherein the travel information includes a travel path; the centralized control device transmits the shared path to the plurality of vehicles to facilitate the plurality of vehicles to follow The shared path travels.
  • Centralized control equipment can reduce the overhead and complexity of planning paths by controlling each vehicle to travel according to a shared path.
  • the driving information may include at least one of the following information: a departure time of the vehicle, a time when the vehicle arrives at the destination, a vehicle type of the vehicle, and power information of the vehicle.
  • the road vehicle density can be increased and the road capacity can be increased. It can effectively alleviate traffic congestion and enhance the smoothness and safety of traffic.
  • the frequency of the traffic accident may be reduced due to the driver's mistake, misjudgment and untimely response, and the safety of the formation travel of the fleet is improved.
  • a method of controlling vehicle formation travel comprising: receiving, by a vehicle, control information transmitted by a centralized control device, the control information indicating that the vehicle is traveling according to a driving parameter, the vehicle being one of the self-driving fleets
  • the autonomous driving fleet is composed of a plurality of vehicles in an automatic driving mode; the vehicle travels according to driving parameters.
  • the centralized control device can reduce the driving fault according to the driver's mistakes, misjudgment and unresponsiveness by determining the driving parameters of the vehicle and centrally controlling the driving of the vehicle according to the driving parameters.
  • the frequency of occurrence increases the safety of vehicle formation travel.
  • the driving parameter may include a target speed, wherein the vehicle is traveling according to the driving parameter, including: the vehicle shifting to the target speed.
  • the driving parameter further includes a start time and an end time, or a time interval
  • the vehicle shifting to the target speed includes: The vehicle shifts from the starting moment and shifts to the target speed either at the end time or before the end time, or the vehicle shifts to the target speed during the time interval.
  • the self-driving vehicle can reduce or avoid the traffic accident caused by human misjudgment by shifting (accelerating or decelerating) according to the driving parameters transmitted by the centralized control device.
  • the method may further include: when the vehicle shifts to the target speed, the vehicle transmits a shift completion message to the centralized control device.
  • the method may further include: receiving centralized control of the vehicle The synchronization signal sent by the device; wherein the vehicle shifts to the target speed, including: when the vehicle receives the synchronization signal, starts the shifting and shifts to the target speed.
  • the driving parameter may further include at least one of the following parameters: a vehicle distance, an indicator light parameter, a shift parameter, and a brake parameter.
  • the method may further include: the vehicle sends the shifting speed to the centralized control device The request, wherein the vehicle receives the control information sent by the centralized control device, comprising: the control information that the vehicle receives when the centralized control device receives the shift request.
  • the vehicle transmitting the shifting request to the centralized control device includes: when the vehicle detects that the vehicle is adjacent to the vehicle When the vehicle distance of the vehicle is greater than the preset distance, the shift request is sent to the centralized control device.
  • the method may further include: the vehicle receiving the centralized control device
  • the fleet information of the self-driving fleet, the fleet information includes path planning information of the autonomous driving team; the vehicle determines that the information of joining the autonomous driving vehicle information includes the route planning information of the vehicle according to the information of the fleet information and the vehicle information of the vehicle; the vehicle sends the joining fleet to the centralized control device a request; the vehicle receives the confirmation message sent by the centralized control device when accepting the request to join the fleet; the vehicle transmits control delivery information to the centralized control device, so that the centralized control device controls the vehicle according to the control delivery information.
  • the method before the vehicle receives the control information sent by the centralized control device, the method further includes: the vehicle sending a join fleet request to the centralized control device; the vehicle receiving the centralized control An acknowledgement message sent by the device, the confirmation message instructing the centralized control device to accept the join fleet request; the vehicle transmitting control right delivery information to the centralized control device according to the confirmation message, to facilitate the centralized control device The vehicle is controlled based on the control delivery information.
  • the method may further include: the vehicle receiving the centralized control device sends Location information indicating the location of the vehicle in the autonomous fleet; the vehicle entering the position of the vehicle in the autonomous fleet.
  • the method before the vehicle receives the control information sent by the centralized control device, the method further includes: the vehicle receiving the acquisition travel information request sent by the centralized control device; The centralized control device transmits first feedback information indicating that the vehicle accepts the acquisition travel information request; the vehicle transmits travel information of the vehicle to the base station control device; the vehicle receives the a networking request sent by the control device according to the driving information of the vehicle; the vehicle transmitting second feedback information to the centralized control device according to the networking request, the second feedback information indicating that the vehicle accepts the group Web request.
  • the control information includes a shared path, where the shared path is a centralized control device according to driving information of one of the vehicles in the self-driving fleet Determining that the shared path is a driving path of one of the self-driving fleets, the driving information includes a driving route; wherein the driving of the vehicle according to the driving parameter comprises: the vehicle traveling according to the shared path.
  • the road vehicle density can be increased and the road capacity can be increased. It can effectively alleviate traffic congestion and enhance the smoothness and safety of traffic.
  • the frequency of the traffic accident may be reduced due to the driver's mistake, misjudgment and untimely response, and the safety of the formation travel of the fleet is improved.
  • a centralized control device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the centralized control device comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a vehicle for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • the vehicle comprises means for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a centralized control device comprising: a receiver, a transmitter, a memory, a processor, and a bus system.
  • the receiver, the transmitter, the memory and the processor are connected by the bus system, the memory is for storing instructions for executing the instructions stored by the memory to control the receiver to receive signals and control the sending
  • the transmitter transmits a signal, and when the processor executes the memory stored instructions, the execution causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a vehicle in a sixth aspect, includes a receiver, a transmitter, a memory, a processor, and a bus system. Wherein the receiver, the transmitter, the memory, and the processor pass Connected to the bus system, the memory for storing instructions for executing instructions stored in the memory to control the receiver to receive signals and to control the transmitter to transmit signals, and when the processor executes the instructions stored by the memory, The execution causes the processor to perform the method of the second aspect or any possible implementation of the second aspect.
  • a seventh aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of the second aspect or any of the possible implementations of the second aspect.
  • FIG. 1 is a schematic diagram of vehicle formation travel in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a controller in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a controlled vehicle in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the physical structure of a master vehicle according to an embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of a method of controlling vehicle formation travel according to an embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of a method of controlling vehicle formation travel according to another embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a method of controlling vehicle formation travel in accordance with one embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of a method of controlling vehicle formation travel according to an embodiment of the present invention.
  • FIG. 9 is a schematic flow chart of another method of controlling vehicle formation travel according to an embodiment of the present invention.
  • FIG. 10 is a schematic flow chart of another method of controlling vehicle formation travel according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of a centralized control device in accordance with an embodiment of the present invention.
  • Figure 12 is a schematic block diagram of a vehicle in accordance with an embodiment of the present invention.
  • FIG. 13 is a schematic block diagram of a centralized control device according to another embodiment of the present invention.
  • Figure 14 is a schematic block diagram of a vehicle in accordance with another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UPD Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional Node B
  • FIG. 1 is a schematic diagram of vehicle formation travel in accordance with an embodiment of the present invention.
  • a vehicle having a communication module and supporting automatic driving can be self-organized into a fleet. All of the vehicles in the autonomous fleet deliver the driving rights to the head vehicle or controller 30, and the head vehicle or control unit 30 controls the entire autonomous fleet to travel.
  • the self-driving fleet 10 and the self-driving fleet 20 travel on a lane that allows the vehicle to travel in formation.
  • the self-driving fleet 10 can be centrally controlled by the head vehicle 11, or can be centrally controlled by the controller 30.
  • the self-driving fleet 20 can be centrally controlled by the head vehicle 21 or centrally controlled by the controller 30.
  • the head vehicle or controller 30 controls the self-driving fleet to maintain the formation and control the autonomous fleet.
  • Driving speed the distance between the vehicles in the self-driving fleet, the distance between the head vehicle and the preceding vehicle (the vehicle not the self-driving team), and the tail vehicle (the vehicle at the end of the self-driving team) and the rear vehicle ( The distance between vehicles that are not the team's vehicles.
  • the vehicle in the autonomous vehicle fleet and the communication module in the controller 30 have characteristics such as low transmission delay and high synchronization accuracy.
  • the controller 30 can be deployed in the cloud and communicate with the autonomous vehicle fleet through an infrastructure, such as the deployed base station 12 or base station 22, to enable driving control of the autonomous fleet.
  • the self-driving vehicle is a vehicle in an automatic driving mode, that is, an unmanned smart car is realized by a computer system.
  • Automated vehicles can rely on artificial intelligence, visual computing, radar, surveillance devices and global positioning systems to work together, allowing computers to operate motor vehicles automatically and safely without any human active operation.
  • communication when communicating between vehicles in an autonomous fleet, communication may be performed through base stations on both sides of the road, or may be based on machines and machines (Machine to Machine) formed between vehicles. "M2M”) Self-organizing network direct communication.
  • the communication module 31 is configured to perform networking and communication. For example, information on a controlled vehicle (a vehicle to be handed over to the controller 30) in an autonomous driving fleet (hereinafter referred to as "the team") is transmitted and received, and the controlled vehicle is controlled based on the information.
  • a controlled vehicle a vehicle to be handed over to the controller 30
  • the team an autonomous driving fleet
  • the fleet data collection processing module 32 collects various data of the controlled vehicle in the fleet during driving, including speed, distance, number of vehicles, brand, etc., in order to make driving control decisions for the fleet.
  • the fleet automatic driving instruction analysis processing module 33 is configured to perform parsing processing on the received information of the controlled vehicle, for example, acquiring vehicle state information and the like, and converting the driving control decision into a control command and transmitting the information to the controlled vehicle.
  • the driving environment collecting module 34 collects surrounding driving environment data for the entire fleet when the controlled vehicle is in the automatic driving mode (hereinafter referred to as "automatic mode"), that is, after the controlled vehicle driver gives the driving right to the controller 30, for example, Road conditions, surrounding vehicles, signal lights, traffic signs, etc., in order to control the driving of the team.
  • automated mode the automatic driving mode
  • the fleet control decision processing module 35 forms various control data for the fleet based on various data of the controlled vehicle collected during the driving process collected by the fleet data collection processing module 32, and the driving environment information collected by the driving environment collecting module 34, for example, the fleet The speed is determined, and the distance between the teams is maintained.
  • the fleet travel route planning module 36 analyzes and selects the optimal fleet route planning route according to the vehicle trajectory of the vehicle in the fleet collected by the fleet data collection processing module 32.
  • the fleet travel path collection module 37 collects the possible travel trajectory data of the controlled vehicle to facilitate the concentrator 30 to select an appropriate route trajectory.
  • controlled vehicle 40 is a vehicle that does not have a function of performing centralized control of a plurality of vehicles, for example, does not have the function of the fleet control decision processing module 35 in the controller 30 described above.
  • the communication module 41 is configured to perform networking and communication. After the vehicle enters the automatic mode state, the driving control of the centralized control device is received.
  • the fleet detection discovery module 42 is configured to detect nearby fleets and collect fleet information for surrounding fleets in order to provide information to the fleet joining/departure decision module 43 for fleet entry or departure selection.
  • the fleet joins the ⁇ departure decision module 43 and selects the appropriate fleet based on the fleet information detected by the fleet detection discovery module 42 and its own itinerary plan.
  • the data acquisition module 44 during the running of the controlled vehicle, needs to monitor the driving parameters of the own vehicle, such as speed, distance, etc., in order to transmit the driving parameters to the centralized control device as needed, by the centralized control device, such as the controller 30. Control the team.
  • the automatic/manual driving mode switching module 45 can control the vehicle to transfer the driving control right to the centralized control device after joining the vehicle, and switch from the manual mode, that is, the manual driving to the automatic mode. And when the vehicle leaves the fleet, it can be switched to manual mode.
  • the driving track data sharing module 46 in order to facilitate the centralized control device to select an appropriate route trajectory, the controlled vehicle can send its own driving trajectory data to the centralized control device for route planning of the entire fleet.
  • the driving trajectory can also be a historical driving trajectory, so that the centralized control device can select the trajectory of the appropriate vehicle as a path planning reference.
  • the automatic driving control command analysis processing module 47 receives the driving control command of the centralized control device in the automatic mode and parses it into a vehicle control system command to implement control of the vehicle.
  • the human-computer interaction module 48 can present the driving state of the vehicle to the user, such as the current driving path. Wait.
  • the user can also input commands through the human-computer interaction module 48, such as modifying the itinerary, destination, and the like.
  • the role switching decision module 49 some vehicles having the function of centrally controlling a plurality of vehicles can perform role determination when joining/building a fleet, for example, can be selected as a centralized control device or as a controlled vehicle.
  • a vehicle having a centralized control function may be constructed, which may be referred to as a master vehicle 50.
  • a vehicle having a centralized control function may be constructed, which may be referred to as a master vehicle 50.
  • the head vehicle 11 or the head vehicle 21 shown in FIG. 1 may be referred to as a master vehicle 50.
  • the specific internal structure of the main control vehicle 50 can be referred to FIG. 2 and FIG. 3, and the related functions of the internal modules can be referred to the above description. For brevity, details are not described herein again.
  • FIG. 4 is a schematic diagram showing the physical structure of a master vehicle that can be applied to an embodiment of the present invention.
  • the physical structure of the master vehicle will be briefly described below with reference to FIG. It should be understood that the master vehicle shown in FIG. 4 may be the master vehicle 50 described above.
  • a central processing unit (“CPU”) 51 is used to control various parts of the entire vehicle, running operating system software and required application software.
  • the storage device 52 is configured to complete storage of various software programs of the vehicle, storage of data, operation of software, and the like.
  • the storage device 52 may be a random access memory (Random Access Memory, abbreviated as "RAM”), an Erasable Programmable Read-Only Memory (EPROM), or a solid state hard disk (Solid State Drive). , referred to as "SSD", one or more of a Secure Digital Memory Card (“SD” card).
  • SD Secure Digital Memory Card
  • the power supply device 53 supplies power to the vehicle.
  • the sensor 54 including various sensors, such as infrared, radar, camera, etc., is used for sensing and data acquisition of the road traffic environment.
  • the communication module 55 provides a network communication function for the vehicle.
  • the communication module 55 can be a 5G communication module for communicating with a base station, a head vehicle, or a controller. In the automatic mode, the communication module 55 can receive the driving instructions of the head vehicle or the controller.
  • I/O control 56 is used in the vehicle to control data interaction between various input and output devices.
  • the I/O interface 57 is an external interface provided by the vehicle, including a Universal Serial Bus (“USB”) interface, an SD card interface, a Compact Disc (CD), or a digital versatile disc. (Digital Versatile Disc, referred to as "DVD”) interface, button interface, etc. One or more of them.
  • USB Universal Serial Bus
  • CD Compact Disc
  • DVD Digital Versatile Disc
  • a display/graphical user interface (GUI) 58 is a GUI display/operation panel provided by the vehicle for displaying the running state of the vehicle, the state of the device, the environment in which the vehicle is driven, and the user operation. Interface and operation results.
  • the panel can also be a touch screen for receiving user touch operations and converting to user operation instructions.
  • FIGS. 2 through 4 The main internal structure and corresponding functions of the controller, the controlled vehicle, and the host vehicle that can be applied to the embodiments of the present invention are described above with reference to FIGS. 2 through 4.
  • a method of controlling vehicle formation travel according to an embodiment of the present invention will be specifically described below. It should be understood that the corresponding steps of the method in the following may be performed by the related modules of the corresponding devices described above. For the sake of simplicity and convenience of description, the method for controlling the formation of the vehicle according to the embodiment of the present invention will be explained below from the corresponding device as a whole.
  • FIG. 5 is a schematic flow chart of a method of controlling vehicle formation travel according to an embodiment of the present invention. A method of controlling vehicle formation travel according to an embodiment of the present invention will be described in detail below with reference to FIG.
  • the centralized control device determines driving parameters of the vehicle in the fleet.
  • the centralized control device in the embodiment of the present invention may be the above-mentioned controller, or may be the above-mentioned master vehicle.
  • the master vehicle is generally the head of the team that is in formation.
  • the vehicle may be any one of the fleets except the centralized control device.
  • the first vehicle the driving parameters of the first vehicle may be referred to as first driving parameters.
  • the centralized control device may determine the first travel parameter of the first vehicle in the fleet, ie, the fleet, based on surrounding driving environment data, such as road conditions, surrounding vehicles, traffic lights, traffic signs, and the like.
  • the first driving parameter may be a direction and an angle when the first vehicle turns, or may be a target speed at which the first vehicle needs to accelerate or decelerate.
  • the centralized control device may reduce other vehicles in the fleet according to the distance between the vehicles and the speed of the vehicle.
  • the speed or speed of the part is reduced by the speed of the vehicle.
  • the method may further include: 104, the centralized control device receiving the shift request of the first vehicle. At this time, the centralized control device determines the first travel parameter based on the shift request.
  • the deceleration request may be sent to the centralized control device.
  • the centralized control device receives the deceleration request, the first line may be determined according to the deceleration request. Drive parameters and control the team to drive.
  • the centralized control device may receive a shift request sent by the first vehicle when detecting that the vehicle distance of the first vehicle adjacent to the first vehicle is greater than the preset distance.
  • the shift request may be sent to the centralized control device, and the shift request may be The acceleration is requested to cause the first vehicle to adjust the distance between the vehicle and the other vehicle to the preset distance.
  • the preset distance may be a uniform distance between vehicles in the fleet set by the centralized control device.
  • the centralized control device sends first control information to the first vehicle, where the first control information indicates that the first vehicle travels according to the first travel parameter.
  • the centralized control device may generate first control information according to the first driving parameter of the first vehicle. That is, the first control information may include the first travel parameter of the first vehicle.
  • the first vehicle travels according to the first driving parameter.
  • the first vehicle may travel according to the first driving parameter of the first vehicle determined by the centralized control device. For example, turning according to the direction and angle determined by the centralized control device, or accelerating or decelerating according to the speed determined by the centralized control device.
  • a method for controlling vehicle formation travel the centralized control device can reduce the driver's mistake, misjudgment, and time delay by determining the driving parameter of the first vehicle and centrally controlling the first vehicle to travel according to the first driving parameter. In response, the frequency of traffic accidents may occur, and the safety of vehicle formation travel is improved.
  • the first driving parameter may include a target speed.
  • the centralized control device may determine a target speed and control the first vehicle to shift (accelerate or decelerate) to the target speed.
  • the first driving parameter may further include a starting time and an ending time, or a time interval.
  • the centralized control device may control the timing at which the first vehicle starts shifting, the acceleration of the shift, the time required to complete the shift, and the like, thereby controlling the first vehicle to shift to the target speed at the above-described acceleration or within the above-described time interval.
  • the method may further include: 105: the centralized control device determines a second driving parameter of the second vehicle, the second driving parameter includes a target speed, the second vehicle is one of the plurality of vehicles, the first vehicle and the second vehicle Adjacent to the position in the autonomous driving fleet, the first vehicle is a preceding vehicle of the second vehicle; 106, the centralized control device transmits second control information to the second vehicle, and the second control information is used for control The second vehicle shifts to the target speed.
  • the second vehicle is another vehicle in the fleet.
  • the second control information may control the second vehicle to shift to the target speed.
  • the centralized control device can control the shifting of other vehicles in the fleet to the target speed.
  • the centralized control device may also notify the first vehicle and the second vehicle of the target speed by broadcasting control information.
  • the centralized control device informs another vehicle that the shift can be initiated in a point-to-point manner to control the shift of the other vehicle to the target speed.
  • any vehicle shifts to the target speed it can travel at a constant speed at the target speed.
  • the second driving parameter may also include a starting time and an ending time, or a time interval.
  • the start time and the end time, or the time interval may be the same as or different from the corresponding parameters in the first travel parameter.
  • the centralized control device may control the timing at which the second vehicle starts shifting, the acceleration of the shift, the time required to complete the shift, and the like, thereby controlling the second vehicle to shift to the target speed at the above-described acceleration or in the above-described time interval.
  • the method may further include: 107, the centralized control device receives a first shift completion message sent when the second vehicle decelerates to the target speed; In 102, the centralized control device transmits the first control message to the first vehicle according to a first shift completion message.
  • the centralized control device may first control the second vehicle to decelerate to the target speed, and when the second vehicle decelerates to the target speed, send a first shift completion message to the centralized control device.
  • the centralized control device may transmit the first control information to the first vehicle to control the first vehicle to decelerate to the target speed.
  • the method may further include: 108, the centralized control device receives a second shift completion message sent when the first vehicle accelerates to the target speed; 107, the centralized control device may send the second control information to the second vehicle according to the second shift completion message.
  • the centralized control device may first control the first vehicle to accelerate to the target speed, and when the first vehicle accelerates to the target speed, send a second shift completion message to the centralized control device.
  • the centralized control device may transmit second control information to the second vehicle to control the second vehicle to accelerate to the target speed.
  • first vehicle and the second vehicle may be any two adjacent vehicles in the fleet.
  • the vehicle can be driven at a constant speed at the target speed.
  • the first driving parameter may further include a vehicle distance, that is, a distance between the front vehicle and the rear vehicle that needs to be maintained during the first vehicle shifting.
  • the distance between the vehicles can be uniformly determined according to parameters such as the performance of each vehicle, that is, the distance between any two vehicles in the fleet is the same.
  • the team's head car also needs to maintain a certain distance from the front car in the non-own team
  • the tail car also needs to maintain a certain distance from the rear car in the non-own team to ensure driving safety.
  • the driving parameters may further include an indicator light parameter, a shifting parameter, a braking parameter, and the like.
  • the centralized control device can control the first vehicle turn-on indicator by the indicator light parameter, for example, turning the left turn signal when turning left.
  • the centralized control device can also control shifting of the first vehicle through shifting parameters, such as switching from the current D range to the R range.
  • the centralized control device can also control the brakes of the vehicle through the brake parameters.
  • the method may further include: 109, the centralized control device sends the synchronization to the first vehicle and the second vehicle. a signal, so that the first vehicle and the second vehicle start shifting and shift to a target speed when receiving the synchronization signal; and the centralized control device receives the third shift that is transmitted when the first vehicle and the second vehicle shift to the target speed according to the synchronization signal, respectively.
  • Complete message and fourth shift completion message may be included in the centralized control device.
  • the centralized control device can control the first vehicle and the second vehicle to synchronize shifting.
  • the shift to the target speed is started.
  • the third shift completion message and the fourth shift completion message are respectively transmitted to the centralized control device.
  • the centralized control device may also carry the timing of the synchronous shifting in the first control information and the second control information, and the first vehicle and the second vehicle may simultaneously start shifting at the timing.
  • the centralized control device may further send an information reporting request to the first vehicle, where the request may carry an identification of the automatic acceleration fleet (ID) and an ID of the first vehicle, indicating that the first vehicle reports Information such as current vehicle speed and distance between front and rear vehicles.
  • ID automatic acceleration fleet
  • the first vehicle sends an information reporting response to the centralized control device, where the information reporting response may carry information such as a current vehicle speed of the first vehicle requested by the centralized control device, and a vehicle distance between the preceding and following vehicles.
  • the vehicle may be higher Travel at a rate and maintain a very close distance between the car and the car.
  • Dbrake max (Dbrake car1, Dbrake car 2, Dbrake car 3, ..., Dbrake car n), wherein Dbrake car n is the team's number
  • Dbrake car n is the team's number
  • the braking distance of n cars. Dbrake mainly depends on the emergency braking curve at different speeds such as 100-0Km/h. Generally, this data is available in the factory manual of each vehicle.
  • the maximum braking distance of 35m-50m is based on the maximum distance that the vehicle can travel forward when the vehicle speed drops to zero after the emergency braking is started under the precondition of the vehicle at 100Km/h. That is, if the vehicle is traveling at a speed lower than 100Km/h or higher than 100Km/h, when the speed is reduced to zero after starting the braking, the distance traveled by the vehicle is less than 35m-50m or greater than 35m-50m.
  • the actual braking distance is 13.42m and 37.23m respectively.
  • the safety distance depends on the target speed of the vehicle. Different target speeds have different safety distance values. For example, if all the vehicles of a certain fleet are the above-mentioned brand vehicles, then when the target speed of the fleet is 60Km/h, the safe driving distance of any two vehicles inside the fleet is at least 13.42m. If the target speed of the team is 100Km/h, the safe driving distance of any two cars inside the team is at least 37.72m.
  • the vehicle brands vary widely and the braking distance is different.
  • different brands of vehicles can provide braking distances at different speeds to the centralized control equipment.
  • the centralized control device can assume that all vehicles have a braking distance of Dbrake at the target speed.
  • the driver's reaction time depends on the sensitivity of the driver's response, the proficiency of the operating technique, and the driver's age, mood, physical condition, speed of the vehicle, and the state of the target. In most cases, the driver's judgment time is between 0.30s and 1.00s, plus the time factor of the brake system, the total reaction time is between 1.30s and 1.98s. It can be seen from the above analysis that, at high speed, taking the team at a constant speed of 100Km/h, for example, on the basis of ensuring driving safety, the distance between the fleet and the manual driving can be close to 36m to 55m.
  • the centralized control device centrally controls the vehicle formation travel, the vehicles in the fleet can be driven at a higher speed, and the driving distance between the vehicles can be kept very close, which greatly improves the road utilization rate and the traffic safety driving environment.
  • the centralized control device can adjust the Dsaety according to the current speed of the fleet.
  • the vehicles in the entire fleet, between the front and rear vehicles, the centralized control equipment and the vehicles that are not in front of the team, the tail car is the last car of the team and the rear is not the car the mutual The distance between them can be greater than or equal to Dsafety, where the safety distance Dsafety has different values under different target speed conditions, and the smaller the target speed, the smaller the safety distance value.
  • FIG. 6, FIG. 7 and FIG. 8 the control device according to the embodiment of the present invention is illustrated by taking the centralized control device Car1, the second vehicle Car2, and the third vehicle Car3 in the order of the vehicles in the fleet.
  • the method of vehicle formation travel. It should be understood that, in the embodiment of the present invention, other vehicles may be included in the fleet, and the number of vehicles in the fleet of the present invention is not limited.
  • the Car 2 may be the first vehicle in the above embodiment, and the Car 3 may be the second vehicle in the above embodiment.
  • the driving parameters may include a vehicle target speed.
  • the driving parameters may also include a safe distance Dsafety, a first time period required to decelerate from the current speed of the vehicle to the target speed, and the like.
  • the centralized control device detects that the speed of some vehicles in the fleet is decreased or the distance between the vehicles is greater than the preset distance, part of the vehicles in the entire fleet or the fleet may be controlled to accelerate.
  • the centralized control device detects that the speed of some of the vehicles in the fleet is decreased or the distance from other vehicles is less than the preset distance, it is possible to control the entire fleet or some of the vehicles in the fleet to decelerate.
  • the driving parameters of the vehicle can be determined first so that all vehicles or parts of the fleet travel according to the driving parameters.
  • the safe distance Dsafety can refer to the above description, and for brevity, it will not be repeated here.
  • the method may further include 202, the Car 1 receiving a vehicle deceleration request sent by at least one of the Car 2 and the Car 3.
  • the Car 1 may determine the driving parameter of the vehicle according to the vehicle deceleration request after accepting the vehicle deceleration request.
  • the vehicle deceleration request sent by Car 1 to receive Car 2 in FIG. 6 is taken as an example for description.
  • the vehicle deceleration request may be sent to the Car 1.
  • the vehicle's driving parameters can be determined according to the current vehicle speed of the Car 2 or Car 3, that is, the initial speed, and the vehicle fleet is controlled.
  • Car 1 broadcasts control information.
  • the Car 1 generates control information based on the driving parameters and broadcasts the control information to control the Car 2 and Car 3 to travel according to the driving parameters.
  • the Car 3 After receiving the control information, the Car 3 first decelerates.
  • the Car 3 decelerates from the initial speed to the target speed in the first period of time, and maintains a uniform speed in accordance with the target speed after decelerating to the target speed.
  • Car 1 and Car 2 can continue to drive at a constant speed according to the initial speed during the deceleration of Car 3.
  • the speed completion message indicates that Car 3 has completed the deceleration process and is traveling at the target speed.
  • the Car 1 After receiving the Car 3 deceleration completion message, the Car 1 sends a vehicle deceleration message to the Car 2, instructing the Car 2 to start the deceleration process.
  • the Car 2 After receiving the vehicle deceleration message, the Car 2 reduces the power and starts to decelerate.
  • the Car 2 can use the speed measuring range radar to maintain a safe distance from the rear car Car 3, that is, to maintain the safe distance D Car from the Car 3. And Car 2 can maintain a uniform deceleration while decelerating. In this way, the Car 2 and Car 3 vehicles are in a similar cruise mode, and the safe driving distance Dsafety is guaranteed between the Car 2 and the Car 3. Similarly, in order to ensure the safety, comfort and avoiding repeated deceleration of the driving, during the deceleration of the Car 2, the Car 1 continues to drive at a constant speed according to the initial speed.
  • the method further includes 210, the Car 1 broadcasting the first message.
  • the first message may include information such as a safe distance Dsafety, a target speed, an exit deceleration state, and a uniform safe driving state.
  • the method for controlling the formation of a vehicle in the embodiment of the present invention when the brake is triggered, that is, the emergency brake, the control device can control to reduce the number of vehicles in the entire fleet or the fleet between the front and rear vehicles, the centralized control device, and the front non-owner fleet.
  • the vehicle, the last car of the team and the rear are not the possibility of the car colliding with the car, which can improve the driving safety of the vehicle formation.
  • FIG. 7 is a schematic flow chart of a method of controlling vehicle formation travel in accordance with one embodiment of the present invention.
  • Car 1 determines the driving parameters of the vehicle.
  • the driving parameters may include the target speed of the vehicle, and may also include a safe distance, a first time period required to decelerate from the current speed of the vehicle to the target speed, and the like.
  • the method may further include 302, the Car 1 receiving a vehicle deceleration request sent by at least one of the Car 2 and the Car 3.
  • the Car 1 may determine the driving parameter of the vehicle according to the vehicle deceleration request after accepting the vehicle deceleration request.
  • the vehicle deceleration request may be sent to the Car 1.
  • the vehicle's driving parameters can be determined according to the current vehicle speed of the Car 2 or Car 3, that is, the initial speed, and the vehicle fleet is controlled.
  • Car 1 broadcasts control information.
  • the Car 1 generates control information based on the driving parameters and broadcasts the control information to control the Car 2 and Car 3 to travel according to the driving parameters.
  • Car 1 broadcasts a synchronization signal to initiate a synchronous deceleration process.
  • the method may further include: 305.
  • the Car2 After receiving the control information of the broadcast of the centralized control device Car1, the Car2 sends an acknowledgement message to the Car1 indicating that the control information has been received.
  • the Car 3 After receiving the control information of the broadcast of the centralized control device Car1, the Car 3 sends an acknowledgement message to the Car1 indicating that the control information has been received.
  • Car 1 After receiving the confirmation message sent by Car 2 and Car 3, Car 1 broadcasts a synchronization signal to Car 2 and Car 3.
  • the sync signal can be in the order of milliseconds (ms) or even smaller.
  • 305 and 306 may be performed simultaneously or at different times, which is not limited by the present invention.
  • the Car 1 may carry a specific moment specifying the synchronous deceleration while broadcasting the control information. This starts the synchronous deceleration process immediately after Car 1 receives the confirmation message of Car 2 and Car 3.
  • Car 1, Car 2 and Car 3 simultaneously start deceleration and decelerate from the initial speed to the target speed during the first time period.
  • Car 1, Car 2 and Car 3 can maintain a constant speed deceleration. Moreover, during the deceleration process, the distance between the vehicles maintains the safe distance Dsafety. When decelerating to the target speed, Car 1, Car 2 and Car 3 travel at a constant speed at the target speed.
  • safe distance Dsafety can be referred to the above description, and the safety distance Dsafety can be greater than or equal to the first safety distance.
  • the method may further include 308, after the Car 2 decelerates to the target speed, sending a deceleration completion message to the Car 1.
  • 308 and 309 may be performed simultaneously or at different times, which is not limited by the present invention.
  • the method may further include 310, the Car 1 broadcasting the second message to the Car 2 and the Car 3.
  • Car 1 broadcasts the second message.
  • the second message may include information such as a safe distance Dsafety, a target speed, an exit deceleration state, and a uniform safe driving state.
  • a method for controlling vehicle formation travel the control device can control a part of the entire fleet or a fleet of vehicles to complete deceleration in a short time, and can control between the front and rear vehicles and the centralized control device in the process of deceleration. It is possible to maintain a safe driving distance with vehicles that are not in front of the team, the last vehicle of the team, and the rear of the team, so that the driving safety of the vehicle formation can be improved.
  • Car 1 determines the driving parameters of the vehicle.
  • the driving parameters may include the target speed of the vehicle, and may also include a safe vehicle distance, a second time period required to decelerate from the current speed of the vehicle to the target speed, and the like.
  • Car 1 can control part of the vehicle in the fleet due to traffic lights such as traffic lights or the distance between other vehicles exceeds the preset distance. Speed up.
  • the driving parameters of the vehicle may be determined first so that the vehicles in the fleet travel according to the driving parameters.
  • the method may further include 502, the Car 1 receiving a vehicle acceleration request sent by at least one of the Car 2 and the Car 3. At this time, in 501, the Car 1 may determine the driving parameter of the vehicle according to the vehicle acceleration request after receiving the vehicle acceleration request.
  • the vehicle acceleration request that Car 1 receives from Car 2 is taken as an example in FIG.
  • the Car 1 generates control information based on the driving parameters and broadcasts the control information to control the Car 2 and Car 3 to travel according to the driving parameters.
  • the Car 1 accelerates from the initial speed to the target speed during the second time period.
  • Car 1 accelerates from the initial speed to the target speed in the second period of time, it travels at a constant speed according to the target speed.
  • Car 2 In order to ensure the safety and comfort of driving, and avoid repeated acceleration, Car 2, Car 3, ..., Car n continue to drive at a constant speed according to the initial speed during the acceleration of Car 1.
  • a vehicle acceleration message is sent to the Car 2 to inform the Car 2 that the acceleration process can be started.
  • Car 2 After receiving the vehicle acceleration message sent by Car 1, Car 2 starts to accelerate. When Car 2 accelerates to the target speed, keep driving at a constant speed.
  • the Car2 can use the speed-measuring radar to maintain a safe distance from the car Car1, that is, to maintain the Dsafety with the Car1. Moreover, Car2 can maintain uniform speed increase when speeding up. In this way, the Car 1 and Car 2 vehicles are in a similar cruise mode, and the safe driving distance Dsafety is guaranteed between the Car 2 and the Car 1. Similarly, in order to ensure the safety, comfort and avoiding repeated acceleration of the driving, during the acceleration of the Car 2, the Car 3 continues to drive at a constant speed according to the initial speed.
  • an acceleration completion message is sent to the Car 1, indicating that the Car 2 acceleration is completed.
  • Car 1 sends a vehicle acceleration message to Car 3.
  • Car 1 when Car 1 receives the acceleration completion message sent by Car 2, it sends a vehicle acceleration message to Car 3 indicating that Car 3 starts to accelerate.
  • Car 3 when Car 3 receives the vehicle acceleration message sent by Car 1, it starts to accelerate to the target speed.
  • Car 3 sends an acceleration completion message to Car 1.
  • the method may further include 511, the Car1 broadcasting the third message.
  • the third message may include information such as a safe distance Dsafety, a target speed, an exit acceleration state, and a uniform safe driving state.
  • the method for controlling the formation of the vehicle in the embodiment of the present invention can avoid part of the vehicle in the entire fleet or the fleet during the acceleration process, between the front and rear vehicles, the centralized control equipment, the vehicle in front of the non-owner, the last vehicle and the rear of the fleet.
  • Non-owners come to the car to collide and improve the safety of vehicle formation.
  • the centralized control device controls the synchronous acceleration of the vehicle in the fleet.
  • the corresponding steps of the synchronous deceleration of the vehicle in the vehicle fleet can be controlled by referring to the centralized control device shown in FIG. 7.
  • the centralized control device shown in FIG. 7. For brevity, no further details are provided herein.
  • the method may further include steps 601-607.
  • the centralized control device sends the fleet information of the self-driving fleet to the first vehicle.
  • the fleet information may include path planning information for the autonomous fleet, and may also include the fleet ID of the autonomous fleet.
  • the first vehicle can detect the traveling section using the camera and the sensor of the vehicle configuration during normal driving, that is, before joining the fleet, to obtain the section information.
  • the camera captures and performs image recognition to determine whether the road segment is a high-speed road segment, or combines the navigation software to sense the current vehicle travel position in real time, and further identifies the road segment attribute, such as a high-speed road segment, or a road segment marked for automatic driving. If you find a road that can be driven automatically, you can detect it and find out if there is an autonomous vehicle nearby. If the accessory has an autonomous fleet, you can receive fleet information for the autonomous fleet.
  • the fleet information may include route planning information for the fleet, such as a route from A to B.
  • the route planning information may also include only the destination of the fleet travel.
  • the fleet information may also include the fleet ID, the control mode of the fleet (centralized control device control or controlled vehicle control), and the travel rate.
  • the first vehicle may be any vehicle that wishes to join an autonomous fleet.
  • the first vehicle determines to join the autonomous driving fleet according to the fleet information and the vehicle information of the first vehicle.
  • the first vehicle determines whether to join the self-driving fleet based on its own driving plan, such as the destination of arrival. For example, when the driving route of the autonomous driving team overlaps with the driving route of the first vehicle in whole or in part, it is determined to join the autonomous driving team. Or when the driving route of the autonomous driving team does not overlap with the driving route of the first vehicle, select another suitable self-driving vehicle. The team joined.
  • the centralized control device receives a joining fleet request sent by the first vehicle when determining to join the autonomous driving fleet according to the fleet information and the vehicle information of the first vehicle, where the vehicle information includes path planning information of the first vehicle.
  • a request to join the fleet is sent to the centralized control device to apply to join the autonomous driving fleet.
  • the centralized control device When the centralized control device accepts the request to join the fleet, the centralized control device sends an acknowledgement message to the first vehicle.
  • the first vehicle sends control delivery information to the centralized control device.
  • the first vehicle When the first vehicle receives the determination message sent by the centralized control device, it can be known that the centralized control device agrees that the first vehicle joins the fleet. At this time, the first vehicle may transmit control delivery information to the centralized control device, and control the driving right of the vehicle to be controlled by the centralized control device.
  • the method may further include: 606, the centralized control device sends location information to the first vehicle, the location information includes a location of the first vehicle in the autonomous driving fleet, and the location information indicates that the first vehicle is entering The position in the autopilot team. 607. The first vehicle enters its position in the self-driving fleet according to the location information.
  • the route planning information of the first vehicle may be used to determine the length of the road segment or distance that the vehicle can follow, and the location information is distributed and the vehicle is informed by the auto-driving fleet. position.
  • the centralized control device may inform the first vehicle in the fleet by numbering, or inform the first vehicle in the fleet by telling the license plate information, or may require the first vehicle to be in the fleet by default. Tail.
  • the centralized control device can also guide the first vehicle to the position of the autonomous driving team by way of navigation so as to join the first vehicle to the autonomous driving team.
  • the first vehicle can be ready to drive to the corresponding location based on the assigned location, or navigational information. If driving into the rear of the fleet, the first vehicle can join directly and remain in sync with the current speed of the fleet. If it is inserted into the intermediate position, when the centralized control device confirms that the new car is ready to join, the centralized control device needs to inform the other vehicles of the fleet that there is a new car to join, and control the vehicle vacant position of the fleet so that the first vehicle can join. For example, the centralized control device controls all vehicles behind the newly added position to synchronously decelerate, leaving more safety distance with the preceding vehicle for the first vehicle to join.
  • determining, by the centralized control device, the first driving parameter of the first vehicle in the autonomous driving fleet The method further includes: the centralized control device receiving the joining vehicle request sent by the first vehicle according to the vehicle information of the first vehicle, the vehicle information including path planning information of the first vehicle; and the centralized control device according to the vehicle information and the autonomous driving fleet
  • the fleet information is sent to the first vehicle to send a confirmation message to the first vehicle, wherein the fleet information includes path planning information of the self-driving fleet; the centralized control device receives the control delivery information sent by the first vehicle after receiving the confirmation message, And control the first vehicle.
  • the centralized control device may input the fleet request sent by the first vehicle, and determine whether to accept the first vehicle to join the fleet according to the route planning information of the first vehicle and the fleet information of the fleet.
  • a confirmation message is sent to the first vehicle.
  • the first vehicle may transmit control delivery information to the centralized control device upon receiving the confirmation message. After the centralized control device receives the control delivery information, the first vehicle can be controlled.
  • the method before the centralized control device determines the first driving parameter of the first vehicle in the autonomous driving fleet, the method further includes:
  • the centralized control device separately sends a request for obtaining a travel information to each of the plurality of vehicles.
  • the acquisition travel information request is used to acquire travel information of the vehicle.
  • the driving information may include one or more of the following: a starting position of driving, a destination position; time: a time of departure, or a time expected to arrive at the destination; a route: a path planned to travel from the departure place to the destination; use: tourism , wedding car, spring travel home, etc.; driving environment: weather, temperature, time, etc.; vehicle information: model, power, age, etc.
  • the centralized control device receives first feedback information that is sent by each of the plurality of vehicles when receiving the request for acquiring the driving information.
  • the first feedback information may be sent to the centralized control device.
  • the rejection information may be sent to the centralized control device or no response may be made.
  • the centralized control device acquires driving information of each vehicle in the plurality of vehicles according to the first feedback information.
  • the centralized control device sends a networking request to each of the plurality of vehicles according to the driving information of each vehicle in the plurality of vehicles.
  • the centralized control device can network the vehicles of the same or similar parameters according to the travel information of each vehicle. For example: select the same starting position or nearby; select the driving route to overlap or partially overlap; select the same purpose; the driving environment/vehicle information is similar.
  • a networking request can be sent to each of the plurality of vehicles to network the vehicles.
  • the centralized control device receives second feedback information that is sent by each of the plurality of vehicles when receiving the network request.
  • the second feedback information may be sent to the centralized control device.
  • the rejection information may be sent to the centralized control device or no response may be made.
  • the 706 centralized control device adds each vehicle of the plurality of vehicles to the same network according to the second feedback information.
  • the centralized control device organizes the vehicles, that is, each vehicle is added to the same network.
  • the method may further include the following steps:
  • the centralized control device determines a shared path according to the travel information, where the shared path is a travel path of one of the plurality of vehicles, wherein the travel information includes the travel path.
  • the centralized control device selects the route of the best vehicle in a fleet to share the route in the fleet.
  • Each vehicle in the Internet of Vehicles will have one or more of the following information, but is not limited to this: security level: excellent, good, medium, poor, etc.; relationship with the user: friends, strangers, etc.; parameters of each section: speed, Number of times, accidents, etc.
  • the centralized control equipment When selecting the best vehicle or fleet, the centralized control equipment needs to judge whether other vehicles in the vehicle network meet the requirements.
  • the priority of each information is: security level > relationship with the user > parameters are implemented for each road segment.
  • the centralized control device selects the optimal in the vehicle network according to the driving information of the other vehicles, for example:
  • User C friend, excellent security level, the number of times from location A to location B is 10,000 times;
  • User D friend, excellent security level, the number of times from location A to location B is 1,000;
  • the preferred vehicle priority is C>D>A>B.
  • the centralized control device sends a shared path to the plurality of vehicles so that the plurality of vehicles travel according to the shared path.
  • the centralized control device can centrally control all vehicles in the fleet to travel on a shared path.
  • the centralized device may also acquire driving parameters of the vehicle not in the fleet, And the shared path can be determined according to the driving parameters of the vehicle in the fleet and the driving parameters of the vehicle in the non-own team. And, the centralized control device can control the vehicles in the fleet and the vehicles in the non-own fleet to follow the shared path.
  • the operations associated with the centralized control device in the above embodiments may also be performed by any of the host vehicles that wish to assemble the car network.
  • the master vehicle may be a vehicle in the fleet or may not be a vehicle in the fleet.
  • the master vehicle can obtain the driving parameters of the plurality of vehicles from the controller, and can also obtain the driving parameters corresponding to each vehicle one-to-one.
  • the comparison of the present invention is not limited.
  • vehicle in the Internet of Vehicles can be either manual driving or automatic driving.
  • the road vehicle density can be increased and the road capacity can be increased. It can effectively alleviate traffic congestion and enhance the smoothness and safety of traffic.
  • the frequency of the traffic accident may be reduced due to the driver's mistake, misjudgment and untimely response, and the safety of the formation travel of the fleet is improved.
  • FIGS. 11 through 14 A method of controlling vehicle formation travel according to an embodiment of the present invention has been described in detail above with reference to FIGS. 1 through 10. Hereinafter, a centralized control apparatus and a vehicle according to an embodiment of the present invention will be described with reference to FIGS. 11 through 14.
  • FIG. 11 is a schematic block diagram of a centralized control device 800 in accordance with an embodiment of the present invention.
  • the centralized control device 800 includes a first determining unit 810 and a first transmitting unit 820.
  • the centralized control device 800 may be the controller 30 shown in FIG. 2 or may be the master vehicle 50.
  • the first determining unit 810 is configured to determine a first driving parameter of the first vehicle in the autonomous driving fleet, and the autonomous driving team is composed of a plurality of vehicles in an automatic driving mode, and the first vehicle is one of the plurality of vehicles.
  • the first sending unit 820 is configured to send first control information to the first vehicle, where the first control information is used to control the first vehicle to travel according to the first driving parameter determined by the first determining unit.
  • first determining unit 810 may correspond to the fleet control decision processing module 35 in the controller 30 shown in FIG. 2.
  • the first determining unit 810 may be corresponding to the central control device 800 and the controller 30 a unit of the fleet data collection processing module 32, and/or the driving environment collection module 34, and/or the fleet travel path planning module 36, and/or the fleet travel path collection module 37, etc., determines a first travel parameter, and generates a first control information.
  • the unit corresponding to the fleet automatic driving instruction analysis processing module 33 in the centralized control device 800 may convert the first control information into a control command and transmit it to the first vehicle by the first transmitting unit 820.
  • first transmitting unit 820 may correspond to the communication module 31 in the controller 30 shown in FIG. 2 for communication with the vehicle.
  • the centralized control device of the embodiment of the present invention can reduce the driving parameter of the first vehicle and centrally control the driving of the first vehicle according to the first driving parameter, thereby reducing the traffic accident that may be caused by the driver's mistake, misjudgment and untimely response.
  • the frequency of occurrence increases the safety of vehicle formation travel.
  • the first driving parameter includes a target speed, wherein the first control information is used to control the first vehicle to shift to the target speed.
  • the first driving parameter further includes a starting time and an ending time, or a time interval, wherein the first control information is used to control the first vehicle to start shifting from the starting time, and before the ending time or before the ending time The shift to the target speed, or the first control information is used to control the first vehicle to shift to the target speed during the time interval.
  • the centralized control device 800 further includes: a second determining unit, configured to determine a second driving parameter of the second vehicle, the second driving parameter includes a target speed, the second vehicle is one of the plurality of vehicles, the first vehicle and a second vehicle is adjacent to the position in the autonomous driving fleet, the first vehicle is a preceding vehicle of the second vehicle; and a second transmitting unit is configured to send second control information to the second vehicle, the second control The information is used to control the second vehicle shift to the target speed.
  • a second determining unit configured to determine a second driving parameter of the second vehicle, the second driving parameter includes a target speed
  • the second vehicle is one of the plurality of vehicles
  • the first vehicle and a second vehicle is adjacent to the position in the autonomous driving fleet
  • the first vehicle is a preceding vehicle of the second vehicle
  • a second transmitting unit is configured to send second control information to the second vehicle, the second control The information is used to control the second vehicle shift to the target speed.
  • the second determining unit may correspond to the fleet control decision processing module 35 in the controller 30 shown in FIG. 2.
  • the first transmitting unit may correspond to the communication module 31 in the controller 30 shown in FIG. 2 for communication with the vehicle.
  • the second vehicle is another vehicle in the fleet.
  • the second control information may control the second vehicle to shift to the target speed.
  • the centralized control device can control the shifting of other vehicles in the fleet to the target speed.
  • the centralized control device may also notify the first vehicle and the second vehicle of the target speed by broadcasting control information.
  • the centralized control device informs another vehicle that the shift can be initiated in a point-to-point manner to control the shift of the other vehicle to the target speed.
  • any vehicle shifts to the target speed To drive at a constant speed at this target speed.
  • the second driving parameter may also include a starting time and an ending time, or a time interval.
  • the start time and the end time, or the time interval may be the same as or different from the corresponding parameters in the first travel parameter.
  • the centralized control device may control the timing at which the second vehicle starts shifting, the acceleration of the shift, the time required to complete the shift, and the like, thereby controlling the second vehicle to shift to the target speed at the above-described acceleration or in the above-described time interval.
  • the centralized control device 800 further includes: a first receiving unit, configured to receive a first shift completion message sent when the second vehicle decelerates to a target speed; wherein the first sending unit 810 is specifically configured to: The first shift completion message received by the first receiving unit transmits the first control information to the first vehicle.
  • the first receiving unit may correspond to the communication module 31 in the controller 30 shown in FIG. 2 for communication with the vehicle.
  • the centralized control device may first control the second vehicle to decelerate to the target speed, and when the second vehicle decelerates to the target speed, send a first shift completion message to the centralized control device.
  • the first receiving unit receives the first shift completion message, it can be known that the second vehicle has decelerated to the target speed.
  • the first transmitting unit 820 may transmit the first control information to the first vehicle to control the first vehicle to decelerate to the target speed.
  • the centralized control device 800 further includes: a second receiving unit, configured to receive a second shift completion message sent when the first vehicle accelerates to the target speed; wherein the second sending unit is specifically configured to: according to the The second shift completion message received by the second receiving unit transmits the second control information to the second vehicle.
  • a second receiving unit configured to receive a second shift completion message sent when the first vehicle accelerates to the target speed
  • the second sending unit is specifically configured to: according to the The second shift completion message received by the second receiving unit transmits the second control information to the second vehicle.
  • the second receiving unit may correspond to the communication module 31 in the controller 30 shown in FIG. 2 for communication with the vehicle.
  • the centralized control device may first control the first vehicle to accelerate to the target speed, and when the first vehicle accelerates to the target speed, send a second shift completion message to the centralized control device.
  • the centralized control device receives the second shift completion message, it can be known that the first vehicle has accelerated to the target speed.
  • the first transmitting unit 820 may transmit second control information to the second vehicle to control the second vehicle to accelerate to the target speed.
  • first vehicle and the second vehicle may be any two adjacent vehicles in the fleet.
  • the vehicle can be driven at a constant speed at the target speed.
  • the first driving parameter may further include a vehicle distance, that is, during the shifting of the first vehicle, The distance between the front and rear vehicles that needs to be maintained.
  • the distance between the vehicles can be uniformly determined according to parameters such as the performance of each vehicle, that is, the distance between any two vehicles in the fleet is the same.
  • the team's head car also needs to maintain a certain distance from the front car in the non-own team
  • the tail car also needs to maintain a certain distance from the rear car in the non-own team to ensure driving safety.
  • the first sending unit 820 is further configured to send a synchronization signal to the first vehicle and the second vehicle, where the first receiving unit is specifically configured to: receive, by the second vehicle, a synchronization signal, to facilitate the a vehicle and the second vehicle start shifting and shifting to the target speed when receiving the synchronization signal; wherein the centralized control device further includes: a third receiving unit, configured to respectively receive the first vehicle And a third shift completion message and a fourth shift completion message transmitted when the second vehicle shifts to the target speed according to the synchronization signal.
  • the third receiving unit may correspond to the communication module 31 in the controller 30 shown in FIG. 2 for communication with the vehicle.
  • the centralized control device can control the first vehicle and the second vehicle to synchronize shifting.
  • the shift to the target speed is started.
  • the second shift completion message and the first shift completion message are respectively transmitted to the centralized control device.
  • the centralized control device may also carry the timing of the synchronous shifting in the first control information and the second control information, and the first vehicle and the second vehicle may simultaneously start shifting at the timing.
  • the first sending unit 820 is further configured to send an information reporting request to the first vehicle, where the request may carry the ID of the automatic acceleration fleet and the ID of the first vehicle, and instruct the first vehicle to report the current vehicle speed, Information such as the distance between the vehicles before and after.
  • the first vehicle sends an information reporting response to the centralized control device, where the information reporting response may carry information such as a current vehicle speed of the first vehicle requested by the centralized control device, and a vehicle distance between the preceding and following vehicles.
  • the first driving parameter further includes at least one of the following parameters: a vehicle distance, an indicator light parameter, a shifting parameter, and a braking parameter.
  • the centralized control device can control the first vehicle turn-on indicator by the indicator light parameter, for example, turning the left turn signal when turning left.
  • the centralized control device can also control shifting of the first vehicle through shifting parameters, such as switching from the current D range to the R range.
  • the centralized control device can also control the brakes of the vehicle through the brake parameters.
  • the centralized control device further includes: a fourth receiving unit, configured to receive a shift request of the first vehicle; wherein the first determining unit 810 is specifically configured to: determine the first driving parameter according to the shift request number.
  • the fourth receiving unit may correspond to the communication module 31 in the controller 30 shown in FIG. 2 for communication with the vehicle.
  • the third receiving unit is specifically configured to: receive a shift request sent by the first vehicle when detecting that a vehicle distance of the first vehicle adjacent to the first vehicle is greater than a preset distance.
  • the first sending unit 820 is further configured to: send the fleet information of the autonomous driving fleet to the first vehicle, the fleet information includes path planning information of the autonomous driving fleet;
  • the centralized control device 800 may further include: a fifth receiving unit, Receiving the joining vehicle request sent by the first vehicle when joining the autonomous driving fleet according to the fleet information and the vehicle information of the first vehicle, the vehicle information includes path planning information of the first vehicle;
  • the first transmitting unit 820 is further configured to The control device sends an acknowledgement message to the first vehicle when accepting the request to join the fleet;
  • the fifth receiving unit is further configured to receive the control delivery information sent by the first vehicle after receiving the confirmation message; and the control unit is configured to deliver the information according to the control right Control the first vehicle.
  • the fifth receiving unit may correspond to the communication module 31 in the controller 30 shown in FIG. 2 for communication with the vehicle.
  • the centralized control device 800 may further include: a sixth receiving unit, configured to receive an incoming fleet request sent by the first vehicle according to the vehicle information of the first vehicle, where the vehicle information includes the Path planning information of the first vehicle; wherein the first sending unit 820 is further configured to: send, to the first vehicle, the centralized control device according to the vehicle information and the fleet information of the self-driving fleet a confirmation message, wherein the fleet information includes path planning information of the autonomous driving fleet; the sixth receiving unit is further configured to receive control delivery information sent by the first vehicle after receiving the confirmation message And controlling the first vehicle.
  • a sixth receiving unit configured to receive an incoming fleet request sent by the first vehicle according to the vehicle information of the first vehicle, where the vehicle information includes the Path planning information of the first vehicle
  • the first sending unit 820 is further configured to: send, to the first vehicle, the centralized control device according to the vehicle information and the fleet information of the self-driving fleet a confirmation message, wherein the fleet information includes path planning information of the autonomous driving fleet
  • the sixth receiving unit is
  • the sixth receiving unit may correspond to the communication module 31 in the controller 30 shown in FIG. 2 for communication with the vehicle.
  • the first sending unit 820 is further configured to: send the location information to the first vehicle, where the location information indicates that the first vehicle enters the location of the first vehicle in the autonomous driving fleet.
  • the first sending unit 820 is further configured to: separately send a get travel information request to each of the plurality of vehicles; wherein the centralized control device 800 further includes: a seventh receiving unit, configured to receive The first feedback information that is sent by each of the plurality of vehicles when receiving the request for acquiring the travel information; and the acquiring unit, configured to acquire the travel information of each of the plurality of vehicles according to the first feedback information;
  • the first sending unit 820 is further configured to: according to the multiple vehicles The driving information of each of the vehicles is respectively sent to the respective vehicles of the plurality of vehicles, and the seventh receiving unit is further configured to receive, when the vehicles in the plurality of vehicles receive the networking request, respectively And a networking unit, configured to add each of the plurality of vehicles to the same network according to the second feedback information.
  • the first determining unit 810 is further configured to: determine, according to the travel information, a shared path, where the shared path is a travel path of one of the plurality of vehicles, wherein the travel information
  • the driving path is further included;
  • the first sending unit 820 is further configured to send the shared path to the plurality of vehicles, so that the plurality of vehicles travel according to the shared path.
  • the road vehicle density can be increased and the road capacity can be increased. It can effectively alleviate traffic congestion and enhance the smoothness and safety of traffic.
  • the frequency of the traffic accident may be reduced due to the driver's mistake, misjudgment and untimely response, and the safety of the formation travel of the fleet is improved.
  • the centralized control device 800 herein is embodied in the form of a functional unit.
  • the term "unit” herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a proprietary processor, or a group). Processors, etc.) and memory, merge logic, and/or other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • the centralized control device 800 may be specifically the centralized control device in the foregoing embodiment, and the centralized control device 800 may be used to execute each of the foregoing method embodiments corresponding to the centralized control device. Processes and/or steps, to avoid repetition, will not be repeated here.
  • FIG 12 is a schematic block diagram of a vehicle 900 in accordance with an embodiment of the present invention.
  • the vehicle 900 may be one of the self-driving fleets, which consists of a plurality of vehicles in an automatic driving mode.
  • the vehicle 900 includes a receiving unit 910 and a traveling unit 920.
  • the receiving unit 910 is configured to receive control information sent by the centralized control device, where the control information indicates that the vehicle travels according to the driving parameter.
  • the driving unit 920 is configured to travel according to driving parameters.
  • vehicle 900 may be the controlled vehicle 40 shown in FIG.
  • the receiving unit 910 may correspond to the communication module 41 in the controlled vehicle 40 shown in FIG. 3 for communication with the centralized control device.
  • the traveling unit 920 corresponds to the automatic driving control command analysis processing module 47 in the controlled vehicle 40 shown in FIG. 3, and the receiving unit 910 can be
  • the received control information is parsed into vehicle control system commands to achieve control of the vehicle.
  • the centralized control device can reduce the frequency of the traffic accident caused by the driver's mistake, misjudgment and untimely response by determining the driving parameter of the vehicle and centrally controlling the vehicle to travel according to the driving parameter, and improving the vehicle.
  • the safety of formation driving can reduce the frequency of the traffic accident caused by the driver's mistake, misjudgment and untimely response by determining the driving parameter of the vehicle and centrally controlling the vehicle to travel according to the driving parameter, and improving the vehicle.
  • the driving parameter includes a target speed
  • the driving unit 920 is specifically configured to: shift to a target speed.
  • the driving parameter further includes a starting time and an ending time, or a time interval
  • the driving unit 920 is specifically configured to: start the shifting from the starting time, and shift to the target speed before the ending time or before the ending time, or Shift to the target speed within the time interval.
  • the vehicle further includes: a first transmitting unit, configured to send a shift completion message to the centralized control device when the vehicle shifts to the target speed.
  • a first transmitting unit configured to send a shift completion message to the centralized control device when the vehicle shifts to the target speed.
  • the first transmitting unit may correspond to the communication module 41 in the controlled vehicle 40 shown in FIG. 3 for communication with the centralized control device.
  • the receiving unit 910 is further configured to receive the synchronization signal sent by the centralized control device, where the driving unit 920 is specifically configured to: start the shifting and shift to the target speed when the synchronization signal is received.
  • the driving parameter further includes at least one of the following parameters: a vehicle distance, an indicator light parameter, a shifting parameter, and a braking parameter.
  • the vehicle 900 further includes: a second sending unit, configured to send a shift request to the centralized control device; wherein the receiving unit 910 is specifically configured to: receive the control information that is sent by the centralized control device when accepting the shift request.
  • a second sending unit configured to send a shift request to the centralized control device
  • the receiving unit 910 is specifically configured to: receive the control information that is sent by the centralized control device when accepting the shift request.
  • the second transmitting unit may correspond to the communication module 41 in the controlled vehicle 40 shown in FIG. 3 for communication with the centralized control device.
  • the second sending unit is specifically configured to: when the vehicle 900 detects that the vehicle distance of the vehicle adjacent to the vehicle is greater than the preset distance, send the shift request to the centralized control device.
  • the receiving unit 910 is further configured to receive fleet information of the autonomous driving fleet sent by the centralized control device, the fleet information includes path planning information of the autonomous driving fleet;
  • the vehicle 900 further includes: a determining unit, configured to use the fleet information and the vehicle The vehicle information is determined to be added to the autonomous driving vehicle, the vehicle information includes path planning information of the vehicle;
  • the third transmitting unit is configured to send the joining fleet request to the centralized control device;
  • the receiving unit 910 is further configured to receive the centralized control device to accept the joining the team request The acknowledgement message sent;
  • the third sending unit is further configured to send the control delivery to the centralized control device Information for the centralized control device to control the vehicle based on the control delivery information.
  • the determining unit may correspond to the fleet joining/departure decision module 43 in the controlled vehicle 40 shown in FIG. 3 for selecting to join the fleet based on, for example, the fleet information detected by the fleet detection discovery module 42 and its own itinerary plan.
  • the third transmitting unit corresponds to the communication module 41 in the controlled vehicle 40 shown in FIG. 3 for communication with the centralized control device.
  • the vehicle further includes: a fourth sending unit, configured to send a join fleet request to the centralized control device; the receiving unit 910 is further configured to receive an acknowledgement message sent by the centralized control device, where The confirmation message indicates that the centralized control device accepts the join fleet request; the fourth sending unit is further configured to send control delivery information to the centralized control device according to the confirmation message, so that the centralized control device is configured according to the The control delivery information controls the vehicle.
  • a fourth sending unit configured to send a join fleet request to the centralized control device
  • the receiving unit 910 is further configured to receive an acknowledgement message sent by the centralized control device, where The confirmation message indicates that the centralized control device accepts the join fleet request
  • the fourth sending unit is further configured to send control delivery information to the centralized control device according to the confirmation message, so that the centralized control device is configured according to the The control delivery information controls the vehicle.
  • the receiving unit 910 is further configured to: receive location information sent by the centralized control device, where the location information indicates a location of the vehicle in the autonomous driving fleet; wherein the driving unit 920 is specifically configured to: enter the vehicle in the autonomous driving fleet position.
  • control information includes a shared path determined by the centralized control device according to driving parameters of at least one vehicle in the autonomous driving fleet, and the shared path is one of the at least one of the autonomous driving fleets
  • the driving path includes a driving path; wherein the driving unit 920 is specifically configured to: the vehicle travels according to the shared path.
  • the receiving unit 910 is further configured to: receive the acquisition travel information request sent by the centralized control device, where the vehicle further includes: a fifth sending unit, configured to send the first to the centralized control device Feedback information, the first feedback information indicates that the vehicle accepts the acquisition travel information request; the fifth sending unit is further configured to send travel information of the vehicle to the base station control device; the receiving unit 910 The fifth sending unit is further configured to: send, according to the networking request, the second feedback information to the centralized control device, according to the networking request that is sent by the control device according to the travel information of the vehicle, where The second feedback information indicates that the vehicle accepts the networking request.
  • the road vehicle density can be increased and the road capacity can be increased. It can effectively alleviate traffic congestion and enhance the smoothness and safety of traffic.
  • the centralized control device can centrally control the running of the vehicle in the fleet, which can be reduced. Due to the driver's mistakes, misjudgment and untimely response, the frequency of traffic accidents may be caused, and the safety of the formation of the team is improved.
  • the vehicle 900 herein is embodied in the form of a functional unit.
  • the term "unit” herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a proprietary processor, or a group). Processors, etc.) and memory, merge logic, and/or other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • the vehicle 900 may be specifically the first vehicle in the above embodiment, and the vehicle 900 may be used to perform various processes and/or corresponding to the first vehicle in the foregoing method embodiments. Steps, to avoid repetition, will not be repeated here.
  • FIG. 13 shows a schematic block diagram of a centralized control device 1000 of an embodiment of the present invention.
  • the centralized control device 1000 includes a transmitter 1010, a receiver 1020, a processor 1030, a memory 1040, and a bus system 1050.
  • the transmitter 1010, the receiver 1020, the processor 1030, and the memory 1040 are connected by a bus system 1050.
  • the memory 1040 is for storing instructions.
  • the processor 1030 is configured to execute an instruction stored by the memory 1040. When the instruction is executed, the processor 1030 may determine a first driving parameter of the first vehicle in the self-driving fleet, and the autonomous driving fleet is more in the automatic driving mode.
  • a vehicle consisting of: the first vehicle is one of a plurality of vehicles; the transmitter 1010 is configured to send first control information to the first vehicle, where the first control information is used to control the first driving determined by the first vehicle according to the first determining module Parameter driving.
  • the centralized control device of the embodiment of the present invention can reduce the driving parameter of the first vehicle and centrally control the driving of the first vehicle according to the first driving parameter, thereby reducing the traffic accident that may be caused by the driver's mistake, misjudgment and untimely response.
  • the frequency of occurrence increases the safety of vehicle formation travel.
  • the first driving parameter includes a target speed, wherein the first control information is used to control the first vehicle to shift to the target speed.
  • the first driving parameter further includes a starting time and an ending time, or a time interval, wherein the first control information is used to control the first vehicle to start shifting from the starting time, and before the ending time or before the ending time The shift to the target speed, or the first control information is used to control the first vehicle to shift to the target speed during the time interval.
  • the processor 1030 may be further configured to determine a second driving parameter of the second vehicle, the second driving parameter includes a target speed, the second vehicle is one of the plurality of vehicles, and the first vehicle and the second vehicle are in the automatic Adjacent to a position in the driving fleet, the first vehicle is a preceding vehicle of the second vehicle;
  • the transmitter 1010 is configured to send second control information to the second vehicle, and the second control information is used to control the second vehicle to shift to the target speed.
  • the receiver 1020 is configured to receive a first shift completion message sent when the second vehicle decelerates to the target speed, where the transmitter 1010 is specifically configured to: according to the first shift received by the transmitter 1010 A completion message transmits the first control information to the first vehicle.
  • the receiver 1020 is further configured to receive a second shift completion message sent when the first vehicle accelerates to the target speed, where the transmitter 1010 is specifically configured to: complete according to the second shift received by the receiver 1020.
  • the message transmits the second control information to the second vehicle.
  • the transmitter 1010 is further configured to send a synchronization signal to the first vehicle and the second vehicle, so that the first vehicle and the second vehicle start to shift and shift to the location when receiving the synchronization signal.
  • a target speed wherein the receiver 1020 is further configured to respectively receive a third shift completion message and a fourth sent when the first vehicle and the second vehicle shift to the target speed according to the synchronization signal Shift completion message.
  • the first driving parameter further includes at least one of the following parameters: a vehicle distance, an indicator light parameter, a shifting parameter, and a braking parameter.
  • the receiver 1020 is configured to receive a shift request of the first vehicle; wherein the processor 1030 is specifically configured to: determine the first travel parameter according to the shift request.
  • the receiver 1020 is specifically configured to: receive a shift request sent by the first vehicle when detecting that a vehicle distance of the first vehicle adjacent to the first vehicle is greater than a preset distance.
  • the transmitter 1010 is further configured to: send the fleet information of the autopilot fleet to the first vehicle, the fleet information includes path planning information of the autopilot fleet; the receiver 1020 is configured to receive the first vehicle according to the fleet information and the first The vehicle information of the vehicle determines an incoming fleet request sent when joining the autonomous vehicle fleet, the vehicle information includes path planning information of the first vehicle; the transmitter 1010 is further configured to: send a confirmation message to the first vehicle when the centralized control device accepts the joining the team request The receiver 1020 is further configured to receive control delivery information sent by the first vehicle after receiving the confirmation message, and the processor 1030 is configured to control the first vehicle according to the control delivery information.
  • the receiver 1020 is further configured to receive a join fleet request sent by the first vehicle according to the vehicle information of the first vehicle, where the vehicle information includes path planning information of the first vehicle;
  • the transmitter 1010 is further configured to: when the centralized control device sends a confirmation message to the first vehicle according to the vehicle information and the fleet information of the self-driving fleet, wherein the fleet information includes the automatic Driving the team's path planning information; the receiver 1020
  • the method is further configured to receive control delivery information sent by the first vehicle after receiving the confirmation message, and control the first vehicle.
  • the transmitter 1010 is further configured to: send the location information to the first vehicle, where the location information indicates that the first vehicle enters the location of the first vehicle in the autonomous driving fleet.
  • the transmitter 1010 is further configured to: separately send an acquisition travel information request to each of the plurality of vehicles; wherein the receiver 1020 is further configured to receive each of the plurality of vehicles at the receiving station The first feedback information is sent separately when the travel information request is obtained; the processor 1030 is configured to acquire travel information of each vehicle in the plurality of vehicles according to the first feedback information; the transmitter 1010 is further configured to The driving information of each vehicle in the plurality of vehicles respectively sends a networking request to each of the plurality of vehicles; the receiver 1020 is further configured to receive, when the vehicles in the plurality of vehicles receive the networking request The second feedback information is sent separately; the processor 1030 is further configured to add each of the plurality of vehicles to the same network according to the second feedback information.
  • the processor 1030 is further configured to: determine, according to the travel information, a shared path, where the shared path is a travel path of one of the plurality of vehicles, wherein the travel information includes driving
  • the transmitter 1010 is further configured to transmit the shared path to the plurality of vehicles to facilitate the plurality of vehicles to travel according to the shared path.
  • road vehicle density can be increased and road capacity can be increased. It can effectively alleviate traffic congestion and enhance the smoothness and safety of traffic.
  • the frequency of the traffic accident may be reduced due to the driver's mistake, misjudgment and untimely response, and the safety of the formation travel of the fleet is improved.
  • the centralized control device 1000 may be specifically the centralized control device in the foregoing embodiment, and may be used to perform various steps and/or processes corresponding to the centralized control device in the foregoing method embodiments.
  • the memory 1040 can include read only memory and random access memory and provide instructions and data to the processor 1030. A portion of the memory 1040 may also include a non-volatile random access memory.
  • the memory 1040 can also store information of the device type.
  • the processor 1030 can be configured to execute instructions stored in the memory 1040, and when the processor 1030 executes instructions stored in the memory 1040, the processor 1030 is configured to perform various steps corresponding to the centralized control device in the above method embodiments. And/or the process, for the sake of brevity, will not be repeated here.
  • FIG. 14 shows a schematic block diagram of a vehicle 1100 of an embodiment of the present invention.
  • the vehicle 1100 may be one of the self-driving fleets that are in the automatic driving mode The composition of multiple vehicles.
  • the vehicle 1100 includes a transmitter 1110, a receiver 1120, a processor 1130, a memory 1140, and a bus system 1150.
  • the transmitter 1110, the receiver 1120, the processor 1130, and the memory 1140 are connected by a bus system 1150.
  • Memory 1140 is used to store instructions.
  • the processor 1130 is configured to execute an instruction stored by the memory 1140.
  • the receiver 1120 is configured to receive control information sent by the centralized control device, the control information instructs the vehicle to travel according to the driving parameter, and the processor 1130 is configured to control The vehicle travels according to the driving parameters.
  • the vehicle of the embodiment of the invention centrally controls the vehicle to travel according to the driving parameter through the centralized control device, which can reduce the frequency of traffic accidents that may be caused by the driver's mistakes, misjudgment and untimely response, and improve the safety of the vehicle formation travel. .
  • the driving parameter includes a target speed
  • the processor 1130 is specifically configured to: control the vehicle to shift to the target speed.
  • the driving parameter further includes a starting time and an ending time, or a time interval,
  • the processor 1130 is specifically configured to: control the vehicle to start shifting from the starting time, and shift to the target speed at the end time or before the end time, or shift to the target speed during the time interval.
  • the transmitter 1110 is configured to send a second shift completion message to the centralized control device when the vehicle shifts to the target speed.
  • the receiver 1120 is further configured to receive the synchronization signal sent by the centralized control device.
  • the processor 1130 is specifically configured to: when the receiver 1120 receives the synchronization signal, control the vehicle to start shifting and shift to the target speed.
  • the driving parameter further includes at least one of the following parameters: a vehicle distance, an indicator light parameter, a shifting parameter, and a braking parameter.
  • the transmitter 1110 is configured to send a shift request to the centralized control device.
  • the receiver 1120 is specifically configured to: receive control information sent by the centralized control device when accepting the shift request.
  • the transmitter 1110 is specifically configured to: when the vehicle 1100 detects that the vehicle distance of the vehicle adjacent thereto is greater than the preset vehicle distance, send the shift request to the centralized control device.
  • the receiver 1120 is further configured to receive fleet information of the autopilot fleet sent by the centralized control device, the fleet information includes path planning information of the autopilot fleet; the processor 1130 is further configured to: according to the fleet information and the vehicle information of the vehicle Determining to join the autonomous driving fleet, the vehicle information includes path planning information of the vehicle; the transmitter 1110 is configured to send the joining fleet request to the centralized control device; and the receiver 1120 is further configured to receive the receiving of the centralized control device when accepting the request to join the fleet The transmitter 1110 is further configured to send control delivery information to the centralized control device, so that the centralized control device controls the vehicle according to the control delivery information.
  • the transmitter 1110 is further configured to send the join fleet request to the centralized control device, where the receiver 1120 is further configured to receive an acknowledgement message sent by the centralized control device, where the acknowledgement message indicates the centralized
  • the control device accepts the joining the team request; the transmitter 1110 is further configured to send the control delivery information to the centralized control device according to the confirmation message, so that the centralized control device sends the information according to the control delivery information.
  • the vehicle is controlled.
  • the receiver 1120 is further configured to: receive location information sent by the centralized control device, where the location information indicates a location of the vehicle in the autonomous driving fleet; wherein the processor 1130 is specifically configured to: control the vehicle to enter the vehicle in the autonomous driving fleet The location in .
  • control information includes a shared path determined by the centralized control device according to driving parameters of at least one vehicle in the autonomous driving fleet, and the shared path is one of the at least one of the autonomous driving fleets
  • the driving path includes a driving path.
  • the processor 1130 is specifically configured to: control the vehicle to travel according to the shared path.
  • the receiver 1120 is further configured to: receive the acquisition travel information request sent by the centralized control device; the transmitter 1110 is further configured to send the first feedback information to the centralized control device, where the first feedback is The information indicates that the vehicle accepts the acquisition travel information request; transmits the travel information of the vehicle to the base station control device; the receiver 1120 is further configured to receive the control device according to the travel information of the vehicle.
  • the network device 1110 is further configured to: send, according to the networking request, second feedback information to the centralized control device, where the second feedback information indicates that the vehicle accepts the networking request.
  • road vehicle density can be increased and road capacity can be increased. It can effectively alleviate traffic congestion and enhance the smoothness and safety of traffic.
  • the frequency of the traffic accident may be reduced due to the driver's mistake, misjudgment and untimely response, and the safety of the formation travel of the fleet is improved.
  • the vehicle 1100 may be specifically the first vehicle in the above embodiment, and may be used to perform various steps and/or processes corresponding to the first vehicle in the above method embodiments.
  • the memory 1140 can include read only memory and random access memory and provides instructions and data to the processor 1130.
  • a portion of the memory 1140 can also include a non-volatile random access memory.
  • the memory 1140 can also store information of the device type.
  • the processor 1130 can be used to perform The instructions stored in the line memory 1140, and when the processor 1130 executes the instructions stored in the memory 1140, the processor 1130 is configured to perform various steps and/or processes corresponding to the first vehicle in the above method embodiment, for the sake of brevity , will not repeat them here.
  • the processor may be a central processing unit (CPU), and the processor may also be other general purpose processors, digital signal processors (DSPs), and application specific integrated circuits (ASICs). ), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in a memory, and the processor executes instructions in the memory, in combination with hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

一种控制车辆编队行驶的方法、集中控制设备和车辆。该方法包括:集中控制设备确定自动驾驶车队中的第一车辆的第一行驶参数,所述自动驾驶车队由处于自动驾驶模式的多辆车辆组成,所述第一车辆为所述多辆车辆之一;集中控制设备向所述第一车辆发送第一控制信息,所述第一控制信息用于控制所述第一车辆按照所述第一行驶参数行驶。通过集中控制设备集中控制车队中车辆的行驶,能够降低由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车队编队行驶的安全性。

Description

控制车辆编队行驶的方法、集中控制设备和车辆 技术领域
本发明涉及自动驾驶领域,并且更具体地,涉及一种控制车辆编队行驶的方法、集中控制设备和车辆。
背景技术
随着汽车等车辆的普及,道路上的车辆越来越密集,行车安全也越来越重要。对多辆车辆进行编队,控制车辆编队行驶,可以提高道路车辆密度,增加道路容量。并且,能够有效缓解交通拥堵,增强交通的畅通性和安全性。通常车队中包括一辆领队车辆即头车和依次跟随头车车辆行驶的跟随车辆。为了对车队进行管理,现有技术提供的方案主要采用分布式的控制方式,即车队中的各车辆之间进行通信,跟随车辆可以结合头车发送的周围行驶环境数据或路径规划信息,以及车辆本身的路径规划等自主控制驾驶。
但是,上述这种分布式的控制方式可能由于驾驶员的失误、误判和不及时响应而造成交通事故。
发明内容
本发明实施例提供了一种控制车辆编队行驶的方法、集中控制设备和车辆,通过集中控制设备集中控制车队中车辆的行驶,能够降低由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车队编队行驶的安全性。
第一方面,提供了一种控制车辆编队行驶的方法,该方法包括:集中控制设备确定自动驾驶车队中的第一车辆的第一行驶参数,所述自动驾驶车队由处于自动驾驶模式的多辆车辆组成,所述第一车辆为所述多辆车辆之一;集中控制设备向所述第一车辆发送第一控制信息,所述第一控制信息用于控制所述第一车辆按照所述第一行驶参数行驶。
本发明实施例的控制车辆编队行驶的方法,集中控制设备通过确定第一车辆的行驶参数,并集中控制第一车辆按照第一行驶参数行驶,能够降低由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车辆编队行驶的安全性。
结合第一方面,在第一方面的第一种可能的实现方式中,第一行驶参数可以包括目标速度,其中,第一控制信息用于控制第一车辆变速至目标速度。
结合第一方面的上述可能的实现方式,在第一方面的第二种可能的实现方式中,第一行驶参数还可以包括起始时刻和结束时刻,或时间间隔。其中,第一控制信息用于控制第一车辆从起始时刻开始变速,并在结束时刻时或在结束时刻之前变速至目标速度,或第一控制信息用于控制第一车辆在所述时间间隔内变速至所述目标速度。
第一车辆可以为自动驾驶车队中的任意一辆车辆,所以,集中控制设备可以通过上述方式对控制车队中的各车辆的变速进行控制,以确保各车辆之间的安全行驶。
结合第一方面的上述可能的实现方式,在第一方面的第三种可能的实现方式中,集中控制设备确定第二车辆的第二行驶参数,所述第二行驶参数包括所述目标速度,所述第二车辆为所述多辆车辆之一,所述第一车辆和所述第二车辆在所述自动驾驶车队中的位置相邻,所述第一车辆为所述第二车辆的前车;集中控制设备向第二车辆发送第二控制信息,所述第二控制信息用于控制第二车辆变速至目标速度。
结合第一方面的上述可能的实现方式,在第一方面的第四种可能的实现方式中,在所述集中控制设备向所述第一车辆发送第一控制信息之前,该方法还可以包括:集中控制设备接收所述第二车辆减速至所述目标速度时发送的第一变速完成消息;其中,所述集中控制设备向所述第一车辆发送第一控制信息,包括:所述集中控制设备根据所述第一变速完成消息向所述第一车辆发送所述第一控制消息。
在车辆编队行驶过程中,当集中控制设备获知第一车辆检测自身存在车速下降趋势,如车辆滋生可能爆胎、汽油不足时,通过上述方式,集中控制设备可以控制自动驾驶车队中第一车辆后的车辆进行异步减速,以实现车队的安全驾驶。
结合第一方面的上述可能的实现方式,在第一方面的第五种可能的实现方式中,在集中控制设备向第二车辆发送第二控制信息之前,该方法还可以包括:集中控制设备接收第一车辆加速至目标速度时发送的第二变速完成消息;其中,所述中控制设备向所述第二车辆发送第二控制信息,包括:所述集中控制设备根据所述第二变速完成消息向所述第二车辆发送所述第二控 制信息。
结合第一方面的上述可能的实现方式,在第一方面的第六种可能的实现方式中,在集中控制设备向第一车辆发送第一控制信息和集中控制设备向第二车辆发送第二控制信息之前,该方法还可以包括:集中控制设备向第一车辆和第二车辆发送同步信号,以便于所述第一车辆和所述第二车辆在接收到所述同步信号时开始变速并变速至所述目标速度;所述集中控制设备分别接收所述第一车辆和所述第二车辆根据所述同步信号变速至所述目标速度时发送的第三变速完成消息和第四变速完成消息。
本发明实施例中,通过上述方式,可以实现自动驾驶车队的同步变速(加速或减速)。
结合第一方面的上述可能的实现方式,在第一方面的第七种可能的实现方式中,第一行驶参数还包括以下参数中的至少一种:车距、指示灯参数、换档参数和刹车参数。
集中控制设备通过获取车辆的更多的信息,可以更好的对车辆进行控制,以保证车辆的安全行驶。
结合第一方面的上述可能的实现方式,在第一方面的第八种可能的实现方式中,在集中控制设备确定自动驾驶车队中的第一车辆的第一行驶参数之前,该方法还可以包括:集中控制设备接收第一车辆的变速请求;其中,集中控制设备确定自动驾驶车队中的第一车辆的第一行驶参数,包括:集中控制设备根据变速请求确定第一行驶参数。
结合第一方面的上述可能的实现方式,在第一方面的第九种可能的实现方式中,集中控制设备接收第一车辆的变速请求,包括:集中控制设备接收所述第一车辆在检测到所述第一车辆与所述第一车辆相邻的车辆的车距大于预设车距时发送的所述变速请求。
结合第一方面的上述可能的实现方式,在第一方面的第十种可能的实现方式中,在集中控制设备确定自动驾驶车队中的第一车辆的第一行驶参数之前,该方法还可以包括:集中控制设备向第一车辆发送自动驾驶车队的车队信息,车队信息包括自动驾驶车队的路径规划信息;集中控制设备接收第一车辆在根据车队信息和第一车辆的车辆信息确定加入自动驾驶车队时发送的加入车队请求,车辆信息包括第一车辆的路径规划信息;当集中控制设备接受加入车队请求时向第一车辆发送确认消息;集中控制设备接收第一车辆 在接收到确认消息后发送的控制权交付信息;集中控制设备根据控制权交付信息对第一车辆进行控制。
在一种可能的实现方式中,车队信息还可以包括自动驾驶车队的行驶速度,车辆信息还可以包括该车辆的行驶速度。
在一种可能的实现方式中,在所述集中控制设备确定自动驾驶车队中的第一车辆的第一行驶参数之前,该方法还可以包括:所述集中控制设备接收所述第一车辆根据所述第一车辆的车辆信息发送的加入车队请求,所述车辆信息包括所述第一车辆的路径规划信息;在所述集中控制设备根据所述车辆信息和所述自动驾驶车队的车队信息接受所述加入车队请求时,向所述第一车辆发送确认消息,其中,所述车队信息包括所述自动驾驶车队的路径规划信息;所述集中控制设备接收所述第一车辆在接收到所述确认消息后发送的控制权交付信息,并对所述第一车辆进行控制。
结合第一方面的上述可能的实现方式,在第一方面的第十一种可能的实现方式中,在集中控制设备接收第一车辆在接收到确认消息后发送的控制权交付信息之前,该方法还可以包括:集中控制设备向第一车辆发送位置信息,位置信息指示第一车辆驶入第一车辆在自动驾驶车队中的位置。
结合第一方面的上述可能的实现方式,在第一方面的第十二种可能的实现方式中,在所述集中控制设备确定自动驾驶车队中的第一车辆的第一行驶参数之前,该方法还包括:所述集中控制设备向所述多辆车辆中各车辆分别发送获取行驶信息请求;所述集中控制设备接收所述多辆车辆中各车辆在接受所述获取行驶信息请求时分别发送的第一反馈信息;所述集中控制设备根据所述第一反馈信息获取所述多辆车辆中各车辆的行驶信息;所述集中控制设备根据所述多辆车辆中各车辆的行驶信息分别向所述多辆车辆中各车辆发送组网请求;所述集中控制设备接收所述多辆车辆中各车辆在接受所述组网请求时分别发送的第二反馈信息;所述集中控制设备根据所述第二反馈信息将所述多辆车辆中各车辆加入同一网络中。
结合第一方面的上述可能的实现方式,在第一方面的第十三种可能的实现方式中,该方法还包括:所述集中控制设备根据所述行驶信息确定共享路径,所述共享路径为所述多辆车辆中的其中一辆车辆的行驶路径,其中,所述行驶信息包括行驶路径;所述集中控制设备向所述多辆车辆发送所述共享路径,以便于所述多辆车辆按照所述共享路径行驶。
集中控制设备通过控制各车辆按照共享路径行驶,可以减少规划路径带来的额外开销和复杂度。
在一种可能的实现方式中,行驶信息可以包括以下信息中的至少一种信息:车辆的出发时间、车辆到达目的地的时间、车辆的车型、车辆的动力信息。
本发明实施例中,通过控制多辆车辆编队行驶,可以提高道路车辆密度,增加道路容量。能够有效缓解交通拥堵,增强交通的畅通性和安全性。并且,本发明实施例中,通过集中控制设备集中控制车队中车辆的行驶,能够降低由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车队编队行驶的安全性。
第二方面,提供了一种控制车辆编队行驶的方法,该方法包括:车辆接收集中控制设备发送的控制信息,控制信息指示车辆按照行驶参数行驶,所述车辆为自动驾驶车队中的其中一辆车辆,自动驾驶车队由处于自动驾驶模式的多辆车辆组成;车辆按照行驶参数行驶。
本发明实施例的控制车辆编队行驶的方法,集中控制设备通过确定车辆的行驶参数,并集中控制车辆按照行驶参数行驶,能够降低由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车辆编队行驶的安全性。
结合第二方面,在第二方面的第一种可能的实现方式中,行驶参数可以包括目标速度,其中,车辆按照行驶参数行驶,包括:车辆变速至目标速度。
结合第二方面的上述可能的实现方式,在第二方面的第二种可能的实现方式中,行驶参数还包括起始时刻和结束时刻,或时间间隔,其中,车辆变速至目标速度,包括:车辆从起始时刻开始变速,并在结束时刻时或在结束时刻之前变速至目标速度,或车辆在时间间隔内变速至目标速度。
自动驾驶的车辆通过根据集中控制设备发送的行驶参数进行变速(加速或减速),可以减少或者避免人为误判而带来的行车事故。
结合第二方面的上述可能的实现方式,在第二方面的第三种可能的实现方式中,该方法还可以包括:当车辆变速至目标速度时,车辆向集中控制设备发送变速完成消息。
结合第二方面的上述可能的实现方式,在第二方面的第四种可能的实现方式中,在车辆变速至目标速度之前,该方法还可以包括:车辆接收集中控 制设备发送的同步信号;其中,车辆变速至目标速度,包括:车辆在接收到同步信号时,开始变速并变速至目标速度。
结合第二方面的上述可能的实现方式,在第二方面的第五种可能的实现方式中,行驶参数还可以包括以下参数中的至少一种:车距、指示灯参数、换档参数和刹车参数。
结合第二方面的上述可能的实现方式,在第二方面的第六种可能的实现方式中,在车辆接收集中控制设备发送的控制信息之前,该方法还可以包括:车辆向集中控制设备发送变速请求;其中,车辆接收集中控制设备发送的控制信息,包括:车辆接收集中控制设备在接受变速请求时发送的控制信息。
结合第二方面的上述可能的实现方式,在第二方面的第七种可能的实现方式中,车辆向所述集中控制设备发送变速请求,包括:当所述车辆在检测到车辆与车辆相邻的车辆的车距大于预设车距时,向集中控制设备发送所述变速请求。
结合第二方面的上述可能的实现方式,在第二方面的第八种可能的实现方式中,在车辆接收集中控制设备发送的控制信息之前,该方法还可以包括:车辆接收集中控制设备发送的自动驾驶车队的车队信息,车队信息包括自动驾驶车队的路径规划信息;车辆在根据车队信息和车辆的车辆信息确定加入自动驾驶车队车辆信息包括车辆的路径规划信息;车辆向集中控制设备发送加入车队请求;车辆接收集中控制设备接受加入车队请求时发送的确认消息;车辆向集中控制设备发送控制权交付信息,以便于所述集中控制设备根据所述控制权交付信息对所述车辆进行控制。
在一种可能的实现方式中,在所述车辆接收集中控制设备发送的控制信息之前,该方法还包括:所述车辆向所述集中控制设备发送加入车队请求;所述车辆接收所述集中控制设备发送的确认消息,所述确认消息指示所述集中控制设备接受所述加入车队请求;所述车辆根据所述确认消息向所述集中控制设备发送控制权交付信息,以便于所述集中控制设备根据所述控制权交付信息对所述车辆进行控制。
结合第二方面的上述可能的实现方式,在第二方面的第九种可能的实现方式中,在车辆向集中控制设备发送控制权交付信息之前,该方法还可以包括:车辆接收集中控制设备发送的位置信息,位置信息指示车辆在自动驾驶车队中的位置;车辆驶入车辆在自动驾驶车队中的位置。
在一种可能的实现方式中,在所述车辆接收集中控制设备发送的控制信息之前,该方法还包括:所述车辆接收所述集中控制设备发送的获取行驶信息请求;所述车辆向所述集中控制设备发送第一反馈信息,所述第一反馈信息指示所述车辆接受所述获取行驶信息请求;所述车辆向所述基站控制设备发送所述车辆的行驶信息;所述车辆接收所述控制设备根据所述车辆的行驶信息发送的组网请求;所述车辆根据所述组网请求向所述集中控制设备发送第二反馈信息,所述第二反馈信息指示所述车辆接受所述组网请求。
结合第二方面的上述可能的实现方式,在第二方面的第十种可能的实现方式中,控制信息包括共享路径,共享路径为集中控制设备根据自动驾驶车队中的其中一辆车辆的行驶信息确定的,共享路径为自动驾驶车队中的其中一辆车辆的行驶路径,所述行驶信息包括行驶路径;其中,车辆按照行驶参数行驶,包括:车辆按照共享路径行驶。
本发明实施例中,通过控制多辆车辆编队行驶,可以提高道路车辆密度,增加道路容量。能够有效缓解交通拥堵,增强交通的畅通性和安全性。并且,本发明实施例中,通过集中控制设备集中控制车队中车辆的行驶,能够降低由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车队编队行驶的安全性。
第三方面,提供了一种集中控制设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该集中控制设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种车辆,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该车辆包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种集中控制设备,该集中控制设备包括:接收器、发送器、存储器、处理器和总线系统。其中,该接收器、该发送器、该存储器和该处理器通过该总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种车辆,该车辆包括:接收器、发送器、存储器、处理器和总线系统。其中,该接收器、该发送器、该存储器和该处理器通过 该总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的车辆编队行驶的示意图。
图2是根据本发明实施例的控制器的示意性框图。
图3是根据本发明实施例的被控车辆的示意性框图。
图4是根据本发明实施例的主控车辆的物理结构示意图。
图5是根据本发明实施例的控制车辆编队行驶的方法的示意性流程图。
图6是根据本发明另一实施例的控制车辆编队行驶的方法的示意性流程图。
图7是根据本发明一个实施例的控制车辆编队行驶的方法的示意性流程图。
图8是根据本发明实施例的控制车辆编队行驶的方法的示意性流程图。
图9是根据本发明实施例的另一控制车辆编队行驶的方法的示意性流程图。
图10是根据本发明实施例的另一控制车辆编队行驶的方法的示意性流程图。
图11是根据本发明实施例的集中控制设备的示意性框图。
图12是根据本发明实施例的车辆的示意性框图。
图13是根据本发明另一实施例的集中控制设备的示意性框图。
图14是根据本发明另一实施例的车辆的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统或未来的5G系统等。
基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),本发明并不限定。
图1是根据本发明实施例的车辆编队行驶的示意图。如图1所示,具有通信模块,并且支持自动驾驶的车辆可以自组织成车队。自动驾驶车队中的所有车辆将驾驶权交付给头车或者控制器30,由头车或者控制设器30控制整个自动驾驶车队行驶。
例如,如图1所示,自动驾驶车队10和自动驾驶车队20行驶在可使车辆进行编队行驶的车道上。自动驾驶车队10可以由头车11进行集中控制,也可以由控制器30进行集中控制。自动驾驶车队20可以由头车21进行集中控制,也可以由控制器30进行集中控制。在自动驾驶车队行驶的过程中,头车或者控制器30控制自动驾驶车队保持队形,并控制自动驾驶车队的行 驶速度,自动驾驶车队中各车辆间的车距、头车与前车(非本自动驾驶车队的车辆)的车距以及尾车(本自动驾驶车队中位于队尾的车辆)与后车(非本车队的车辆)的车距。
自动驾驶车队中的车辆和控制器30中的通信模块具有传输时延低,同步精度高等特性。控制器30可以部署在云端,并且通过基础设施,例如部署的基站12或者基站22与自动驾驶车队进行通信,以实现对自动驾驶车队的驾驶控制。
自动驾驶车队可以有多个,并且可以使用专用规划车道进行驾驶。这样,有利于与其他手动驾驶车辆进行隔离,提升安全性。也便于当自动驾驶车队的车辆由于行程变化或者到达目的地时离开自动驾驶车队时,变成手动驾驶进行行驶。
应理解,自动驾驶车辆是处于自动驾驶模式的车辆,即通过电脑系统实现无人驾驶的智能汽车。自动驾驶车辆能够依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。
还应理解,在本发明实施例中,自动驾驶车队中的车辆之间进行通信时,可以通过道路两旁的基站进行通信,也可以根据车辆之间组建的机器与机器(Machine to Machine,简称为“M2M”)自组网络直接通信。
图2是可应用于本发明实施例的控制器30的主要内部结构的示意性框图。通信模块31,用于进行组网和通信。例如,发送和接收自动驾驶车队(以下简称“车队”)中的被控车辆(即将驾驶权交给控制器30的车辆)的相关信息,以及根据这些信息控制被控车辆。
车队数据收集处理模块32,收集车队中被控车辆在行驶过程中的各种数据,包括速度、车距、车辆数量、品牌等,以便于对车队进行驾驶控制决策。
车队自动驾驶指令解析处理模块33,用于对接收到的被控车辆的相关信息进行解析处理,例如获取车辆状态信息等,以及将驾驶控制决策转化成控制指令发送给被控制车辆。
行驶环境收集模块34,在被控车辆处于自动驾驶模式(以下简称“自动模式”)时,即被控车辆驾将驾驶权交给控制器30后,为整个车队收集周围行驶环境数据,例如,道路状态,周围车辆,信号灯,交通标识等,以便于控制车队的行驶。
车队控制决策处理模块35,根据车队数据收集处理模块32收集的被控车辆在行驶过程中的各种数据,和行驶环境收集模块34的收集的行驶环境信息,形成对车队的控制结果,例如车队速度确定,车队中车距保持等。
车队行驶路径规划模块36,根据车队数据收集处理模块32收集到的车队中车辆的行车轨迹,分析选择最佳的车队路径规划线路。
车队行驶路径收集模块37,收集被控制车辆可能的行车轨迹数据,以便于集中器30选择合适的路线轨迹。
图3是可应用于本发明实施例的自动驾驶车队中的被控车辆40的主要内部结构的示意性框图。应理解,被控车辆为不具备对多辆车辆进行集中控制的功能的车辆,例如,不具备上述控制器30中的车队控制决策处理模块35的功能等。
通信模块41,用于进行组网和通信。在车辆进入自动模式状态后,接收集中控制设备的驾驶控制。
车队探测发现模块42,用于探测发现附近的车队,收集周围车队的车队信息,以便于向车队加入\离开决策模块43提供信息,进行车队加入或离开选择。
车队加入\离开决策模块43,根据车队探测发现模块42探测到的车队信息,以及自己的行程规划,选择加入合适的车队。
数据采集模块44,被控车辆在行驶过程中,需要监控自身车辆的行驶参数,例如速度、车距等,以便根据需要将这些行驶参数发送给集中控制设备,由集中控制设备,例如控制器30对车队进行控制。
自动/手动驾驶模式切换模块45,可以控制车辆在加入车队后,将驾驶控制权交给集中控制设备,同时由手动模式即人工驾驶切换为自动模式。并且在车辆离开车队时,可以再切换为手动模式。
行车轨迹数据分享模块46,为了方便集中控制设备选择合适的路线轨迹,被控车辆可以将自身的行车轨迹数据发给集中控制设备来进行整个车队的路线规划。行车轨迹还可以是历史的行驶轨迹,这样集中控制设备可以选择合适的车辆的行驶轨迹作为路径规划参考。
自动驾驶控制指令解析处理模块47,在自动模式下,接收集中控制设备的驾驶控制指令,并解析为车辆控制系统指令,以便实现对本车的控制。
人机交互模块48,可以向用户呈现车辆的行驶状态,例如当前行驶路径 等。用户也可以通过人机交互模块48输入指令,例如修改行程、目的地等。
角色切换决策模块49,一些具备对多辆车辆进行集中控制的功能的车辆在加入\组建车队时,可以进行角色确定,例如可以选择作为集中控制设备,也可以选择作为被控车辆。
在本发明实施例中,当上述被控车辆40集成上述控制器30的主要内部结构时,可以构成具备集中控制功能的车辆,可称为主控车辆50。例如,图1所示的头车11或头车21可以称为主控车辆50。主控车辆50的具体内部结构可以参照图2和图3,内部各模块的相关功能可以参照上述描述,为了简洁,在此不再赘述。
图4是可应用于本发明实施例的主控车辆的物理结构示意图。下面结合图4简要介绍主控车辆的物理结构。应理解,图4所示的主控车辆可以是上述主控车辆50。
中央处理器(Central Processing Unit,简称为“CPU”)51,用于控制整个车辆的各部分硬件设备,运行操作系统软件以及需要的应用程序软件。
存储设备52,用于完成车辆的各种软件程序的存储、数据的存储、软件的运行等。存储设备52可以是随机存取存储器(Random Access Memory,简称为“RAM”)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,简称为“EPROM”)、固态硬盘(Solid State Drive,简称为“SSD”),安全数码存储卡(Secure Digital Memory Card,简称为“SD”卡)中的一种或者多种。
供电设备53,为车辆供电。
传感器54,包括多种传感器,如红外、雷达、摄像头等,用于进行道路交通环境的感知和数据采集。
通信模块55,为车辆提供网络通信功能。通信模块55可以是5G通信模块,用于与基站、头车或者控制器进行通信。在自动模式下,通信模块55可以接收头车或者控制器的驾驶指令。
输入/输出(Input/Output,简称为“I/O”)控制56,车辆中用于控制各种输入输出设备之间的数据交互。
I/O接口57,是车辆提供的对外接口,包括通用串行总线(Universal Serial Bus,简称为“USB”)接口、SD卡接口、光盘(Compact Disc,简称为“CD”)/数字通用光盘(Digital Versatile Disc,简称为“DVD”)接口、按键接口等 中的一种或者多种。
显示屏/图形用户接口(Graphical User Interface,简称为“GUI”)58,是车辆提供的GUI显示/操作面板,用于显示该车辆的运行状态、设备状态、自动驾驶汽车所处环境、用户操作界面和操作结果。该面板也可以是触摸屏,用于接收用户触摸操作并转换成用户操作指令。
上文结合图2至图4介绍了可应用于本发明实施例的控制器、被控车辆和主控车辆的主要内部结构和相应功能。下面将具体描述根据本发明实施例的控制车辆编队行驶的方法。应理解,下述中的方法的相应步骤可以由上述对应设备的相关模块执行,为例描述简洁和方便,以下将从相应设备整体出发阐述根据本发明实施例的控制车辆编队行驶的方法。
图5是根据本发明实施例的控制车辆编队行驶的方法的示意性流程图。下面结合图5,对根据本发明实施例的控制车辆编队行驶的方法进行详细描述。
101,集中控制设备确定车队中的车辆的行驶参数。
应理解,本发明实施例中的集中控制设备可以是上述的控制器,也可以是上述主控车辆。主控车辆一般是编队行驶的车队的头车。所述车辆可以是车队中除集中控制设备外的任意一辆被控车辆,为描述方便,以下统称为第一车辆。相应地,第一车辆的行驶参数可以称为第一行驶参数。
作为示例而非限定,集中控制设备可以根据周围行驶环境数据,例如道路状态,周围车辆,信号灯,交通标识等,确定车队即车队中的第一车辆的第一行驶参数。第一行驶参数可以是第一车辆转弯时的方向和角度,也可以是第一车辆需要加速或减速的目标速度等。
作为示例而非限定,若集中控制设备检测到第一车辆速度下降或者第一车辆与其余车辆的距离超过预设范围时,集中控制设备可以根据车辆之间距离和车辆的速度降低车队中其他车辆的速度或者提高部分速度下降车辆的速度。
可选地,在101之前,该方法还可以包括:104,集中控制设备接收第一车辆的变速请求。此时,集中控制设备根据变速请求确定第一行驶参数。
例如,在车辆编队行驶过程中,当第一车辆检测到自身存在车速下降趋势,如检测到车辆滋生可能爆胎、汽油不足时,可以向集中控制设备发送减速请求。当集中控制设备接收到减速请求时,可以根据减速请求确定第一行 驶参数,控制车队行驶。
可选地,集中控制设备可以接收第一车辆在检测到第一车辆与第一车辆相邻的车辆的车距大于预设车距时发送的变速请求。
在实际的车队驾驶过程中,若第一车辆监测到由于车辆自身因素或者红绿灯等外界因素造成的与其他车辆的车距大于预设车距时,可以向集中控制设备发送变速请求,变速请求可以是请求加速,以使第一车辆调整与其他车辆之间的车距至预设车距。预设车距可以是集中控制设备设置的车队中各车辆之间的统一车距。
102,集中控制设备向第一车辆发送第一控制信息,所述第一控制信息指示所述第一车辆按照所述第一行驶参数行驶。
集中控制设备根据第一车辆的第一行驶参数,可以生成第一控制信息。也就是说,第一控制信息可以包括第一车辆的第一行驶参数。
103,第一车辆按照第一行驶参数行驶。
第一车辆接收到第一控制信息时,可以按照集中控制设备确定的第一车辆的第一行驶参数行驶。例如,根据集中控制设备确定的方向和角度进行转弯,或者根据集中控制设备确定的速度进行加速或减速。
本发明实施例的控制车辆编队行驶的方法,集中控制设备通过确定第一车辆的行驶参数,并集中控制第一车辆按照第一行驶参数行驶,能够降低由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车辆编队行驶的安全性。
可选地,第一行驶参数可以包括目标速度。具体地,集中控制设备可以确定一个目标速度,并控制第一车辆变速(加速或减速)至该目标速度。
进一步地,第一行驶参数还可以包括起始时刻和结束时刻,或时间间隔。例如,集中控制设备可以控制第一车辆开始变速的时刻、变速的加速度、完成变速所需的时间等,进而控制第一车辆以上述加速度或者在上述时间间隔内等变速至目标速度。
可选地,该方法还可以包括:105,集中控制设备确定第二车辆的第二行驶参数,第二行驶参数包括目标速度,第二车辆为多辆车辆之一,第一车辆和第二车辆为在所述自动驾驶车队中的位置相邻,所述第一车辆为所述第二车辆的前车;106,集中控制设备向第二车辆发送第二控制信息,第二控制信息用于控制第二车辆变速至目标速度。
第二车辆为车队中的另一车辆。第二控制信息可以控制第二车辆变速至目标速度。同样地,集中控制设备可以控制车队中的其它车辆变速至目标速度。
在本发明实施例中,集中控制设备也可以通过广播控制信息的方式,告知第一车辆和第二车辆该目标速度。当第一车辆和第二车辆中的其中一辆变速至目标速度时,集中控制设备通过点对点的方式,告知另一车辆可以启动变速,以控制另一车辆变速至目标速度。当任一车辆变速至目标速度时,可以以该目标速度匀速行驶。
进一步地,第二行驶参数也可以包括起始时刻和结束时刻,或时间间隔。起始时刻和结束时刻,或时间间隔可以与第一行驶参数中对应的参数相同,也可以不同。例如,集中控制设备可以控制第二车辆开始变速的时刻、变速的加速度、完成变速所需的时间等,进而控制第二车辆以上述加速度或者在上述时间间隔内等变速至目标速度。
可选地,在集中控制设备向第一车辆发送第一控制信息之前,该方法还可以包括:107,集中控制设备接收第二车辆减速至目标速度时发送的第一变速完成消息;其中,在102中,集中控制设备根据第一变速完成消息向所述第一车辆发送所述第一控制消息。
具体地,在车队行驶过程中,集中控制设备可以先控制第二车辆减速至目标速度,并且当第二车辆减速至目标速度时,向集中控制设备发送第一变速完成消息。当集中控制设备接收到第一变速完成消息时,可以知道第二车辆已将减速至目标速度。此时,集中控制设备可以向第一车辆发送第一控制信息,控制第一车辆减速至目标速度。
可选地,在集中控制设备向第二车辆发送第二控制信息之前,该方法还可以包括:108,集中控制设备接收第一车辆加速至目标速度时发送的第二变速完成消息;其中,在107中,集中控制设备可以根据所述第二变速完成消息向所述第二车辆发送所述第二控制信息。
具体地,在车队行驶过程中,集中控制设备可以先控制第一车辆加速至目标速度,并且当第一车辆加速至目标速度时,向集中控制设备发送第二变速完成消息。当集中控制设备接收到第二变速完成消息时,可以知道第一车辆已将加速至目标速度。此时,集中控制设备可以向第二车辆发送第二控制信息,控制第二车辆加速至目标速度。
应理解,第一车辆和第二车辆可以是车队中任意相邻的两辆车。当第一车辆和第二车辆变速至目标速度时,可以以该目标速度匀速行驶。
可选地,第一行驶参数还可以包括车距,即在第一车辆变速的过程中,需要保持的与前车和后车的车距。该车距可以是集中控制设备根据各个车辆的性能等参数统一规定的,即车队中的任意两辆车之间的车距都是相同的。另外,本车队的头车还需要和非本车队中的前车保持一定车距,尾车也需要和非本车队中的后车保持一定车距,以确保行车安全。
进一步地,行驶参数还可以包括指示灯参数、换档参数、刹车参数等。例如,集中控制设备可以通过指示灯参数控制第一车辆开启指示灯,例如左转时开启左转转向灯。集中控制设备还可以通过换档参数控制第一车辆的换档,例如从当前的D档切换至R档。再比如,集中控制设备还可以通过刹车参数控制车辆的刹车。
可选地,在集中控制设备向第一车辆发生第一控制信息和向第二车辆发送第二控制信息之前,该方法还可以包括:109,集中控制设备向第一车辆和第二车辆发送同步信号,以便于第一车辆和第二车辆在接收到同步信号时开始变速并变速至目标速度;集中控制设备分别接收第一车辆和第二车辆根据同步信号变速至目标速度时发送的第三变速完成消息和第四变速完成消息。
具体地,集中控制设备可以控制第一车辆和第二车辆同步变速。第一车辆和第二车辆接收到同步信号时,开始变速至目标速度。并且,当第一车辆和第二车辆变速至目标速度时,分别向集中控制设备发送第三变速完成消息和第四变速完成消息。
另外,集中控制设备也可以在第一控制信息和第二控制信息中携带同步变速的时刻,第一车辆和第二车辆可以在该时刻同步开始变速。
在本发明实施例中,集中控制设备还可以向第一车辆发送信息上报请求,该请求中可以携带该自动加速车队的身份标识(Identification,ID)和第一车辆的ID,指示第一车辆上报当前车速、与前后车辆的车距等信息。第一车辆接收到该信息上报请求时,向集中控制设备发送信息上报响应,该信息上报响应可以携带集中控制设备请求的第一车辆的当前车速、与前后车辆的车距等信息。
为说明根据本发明实施例的控制车辆编队行驶的方法可使车辆在较高 速率下行驶,并且车与车之间可以保持极近的行驶距离。现定义本发明实施例的车队中所有车辆的制动距离为Dbrake,Dbrake=max(Dbrake car1,Dbrake car 2,Dbrake car 3,……,Dbrake car n),其中,Dbrake car n为车队的第n辆车的制动距离。Dbrake主要取决于100-0Km/h等不同速度时紧急制动曲线,一般每辆车的出厂说明书中都有此数据。
35m-50m的制动距离最大值是基于车辆在100Km/h时速前提条件下,启动紧急制动后车辆速度降到零时,车辆向前行驶的最大距离。也就是如果车辆以低于100Km/h时速或者高于100Km/h时速行驶时,启动制动后,速度降到零时,车辆向前行驶的距离小于35m-50m或者大于35m-50m。
已知某品牌汽车实际测试的在速度60Km/h和100Km/h条件下紧急制动后,实际的制动距离分别为13.42m和37.23m。换句话说,当车辆编队行驶时,在设置安全行车距离时,其安全距离取决于车辆的目标速度。不同的目标速度,其安全距离值是不同的。举例来说,如果某车队的所有车辆是上述某品牌车辆的话,那么当车队的目标速度是60Km/h,则车队内部任意两辆车的安全行车距离至少是13.42m。如果车队的目标速度是100Km/h,则车队内部任意两辆车的安全行车距离至少是37.72m。
实际自动驾驶车队中,车辆品牌千差万别,制动距离也不同。在自动驾驶车队组建时,不同品牌车辆可以向集中控制设备提供在各自在不同速度下的制动距离会。为确保整个自动驾驶车队的行车安全,集中控制设备可以假设所有车辆在目标速度条件下的制动距离为Dbrake。
另外,集中控制设备也可以确定安全行车余量ΔD,其中ΔD为大于或等于零的自然数。由于本发明实施例采用集中控制方式对车队进行自动控制,因此在计算安全行车距离,即安全车距Dsafety时,可以忽略车队中每位驾驶员的反应时延因素,只考虑制动距离。因此,安全行车距离可以定义为:Dsafety=Dbrake+ΔD。Dsafety可以是本发明实施例中的车距。
驾驶员的反应时间取决于驾驶员反应的灵敏度、操作技术的熟练程度、以及驾驶员的年龄、情绪、身体状况、车速及目标的状态等因素。大多情况下,驾驶员的判断时间在0.30s~1.00s之间,再加上刹车系统发生作用等时间因素,则总的反应时间在1.30s~1.98s之间。通过上述分析可以看出,在高速行驶时,以车队以时速100Km/h匀速行驶为例,在确保行车安全的基础上,车队的车距与手动驾驶相比,可以拉近36m~55m左右。
因此,集中控制设备集中控制车辆编队行驶时,使得车队中的车辆可以在较高速率下行驶,并且车车之间可以保持极近的行驶距离,极大提升道路利用率和交通安全驾驶环境。
在本发明实施例中,在减速完成后,集中控制设备可以根据车队的当前速度,调整Dsaety。同时,在任何条件下,为确保行车安全,整个车队中前后车辆之间、集中控制设备和前方非本车队的车辆、尾车也就是车队最后一辆车和后方非本车队来车,相互之间的距离可以大于或等于Dsafety,其中安全车距Dsafety在不同的目标速度条件时其值不同,目标速度越小,其安全距离值越小。
下面结合图6、图7和图8,详细描述根据本发明另一实施例的控制车辆编队行驶的方法的示意性流程图。为了描述方便,图6、图7和图8中以车队中的车辆排列的顺序为集中控制设备Car 1、第二车辆Car 2、第三辆车Car 3为例阐述根据本发明实施例的控制车辆编队行驶的方法。应理解,本发明实施例中,车队中还可以包括其他的车辆,本发明车队中车辆的数量不作限定。
需要说明的是,Car 2可以是上述实施例中的第一车辆,Car 3可以是上述实施例中的第二车辆。
201,确定车辆的行驶参数。行驶参数可以包括车辆目标速度。行驶参数还可以包括安全车距Dsafety、从车辆当前速度减速至目标速度所需的第一时间段等。
例如,在车队行驶的过程中,集中控制设备检测到车队中部分车辆速度下降或者与其他车辆之间的距离大于预设距离时,可以控制整个车队或者车队中的部分车辆进行加速行驶。或者集中控制设备检测到车队中部分车辆速度下降或者与其他车辆之间的距离小于预设距离时,可以控制整个车队或者车队中的部分车辆进行减速行驶。这时,可以先确定车辆的行驶参数,以使车队中所有车辆或者部分根据该行驶参数行驶。
这里,安全车距Dsafety可以参照上文中的描述,为了简洁,此处不再赘述。
可选地,在201之前,该方法还可以包括202,Car 1接收Car 2和Car 3中的至少一辆车辆发送的车辆减速请求。此时,在201中,Car 1可以在接受车辆减速请求后,根据车辆减速请求确定车辆的行驶参数。
为方便描述,图6中以Car 1接收Car 2发送的车辆减速请求为例进行说明。
例如,在车辆编队行驶过程中,当Car 2或Car 3检测到自身存在车速下降趋势,如检测到车辆滋生可能爆胎、汽油不足时,可以向Car 1发送车辆减速请求。当Car 1接收到车辆减速请求,可以根据Car 2或Car 3的当前车速即初始速度确定车辆的行驶参数,控制车队行驶。
203,Car 1广播控制信息。
Car 1根据行驶参数生成控制信息,并广播该控制信息,以控制Car 2和Car 3根据该行驶参数行驶。
204,Car 3接收到该控制信息后,首先进行减速。
具体地,Car 3在第一时间段内从初始速度减速到目标速度,并且在减速到目标速度后,按照目标速度保持匀速前进。
为保障行车的安全性、舒适性、避免反复减速,在Car 3减速的过程中,Car 1和Car 2可以继续按照初始速度匀速行驶。
205,Car 3减速完成的同时,向Car 1发送减速完成消息。
该速完成消息表示Car 3已经完成减速过程,并按照目标速度行驶。
206,Car 1接收到Car 3减速完成消息后,向Car 2发送车辆减速消息,指示Car 2启动减速过程。
207,Car 2接收到车辆减速消息后,减少动力开始减速。
为了保证安全行车,Car 2可使用测速测距雷达保持与后车Car 3的安全距离,即保持与Car 3的安全车距Dsafety。并且Car 2在减速时可以保持均匀减速。这样,Car 2和Car 3车辆均处于类似定速巡航模式,Car 2和Car 3两车之间就保障了安全的行车距离Dsafety。同样地,为保障行车的安全性、舒适性、避免反复减速,在Car 2减速过程中,Car 1继续按照初始速度匀速行车。
208,Car 2减速完成后,向在Car 1减速完成消息,表示Car 2已完成减速。
209,Car 1接收到Car 2发送的减速完成消息后,开始进行减速。
可选地,该方法还包括210,Car 1广播第一消息。该第一消息可以包括安全车距Dsafety、目标速度、退出减速状态、进入匀速安全行驶状态等信息。
本发明实施例的控制车辆编队行驶的方法,当触发制动时,也就是紧急刹车,控制设备可以控制减少整个车队或车队中的部分车辆中前后车辆之间、集中控制设备和前方非本车队的车辆、车队最后一辆车和后方非本车队来车相撞的可能性,从而可以提高车辆编队的行驶安全性。
图7是根据本发明一个实施例的控制车辆编队行驶的方法的示意性流程图。
301,Car 1确定车辆的行驶参数。
作为示例而非限定,行驶参数可以包括车辆的目标速度,还可以包括安全车距、从车辆当前速度减速至目标速度所需的第一时间段等。
可选地,在301之前,该方法还可以包括302,Car 1接收Car 2和Car 3中的至少一辆车辆发送的车辆减速请求。此时,在301中,Car 1可以在接受车辆减速请求后,根据车辆减速请求确定车辆的行驶参数。
例如,在车辆编队行驶过程中,当Car 2或Car 3检测到自身存在车速下降趋势,如检测到车辆滋生可能爆胎、汽油不足时,可以向Car 1发送车辆减速请求。当Car 1接收到车辆减速请求,可以根据Car 2或Car 3的当前车速即初始速度确定车辆的行驶参数,控制车队行驶。
303,Car 1广播控制信息。
Car 1根据行驶参数生成控制信息,并广播该控制信息,以控制Car 2和Car 3根据该行驶参数行驶。
304,Car 1广播同步信号,启动同步减速过程。
可选地,在304之前,该方法还可以包括305,Car 2接收到集中控制设备Car 1的广播的控制信息后,发送确认消息给Car 1,表示已经收到该控制信息。306,Car 3接收到集中控制设备Car 1的广播的控制信息后,发送确认消息给Car 1,表示已经收到该控制信息。Car 1接收到Car 2和Car 3发送的确认消息后,向Car 2和Car 3广播同步信号。同步信号可以是毫秒(ms)级,甚至更小。
应理解,305和306可以同时进行,也可以不同时进行,本发明对此不作限定。
可选地,Car 1可以在广播控制信息时,同时携带指定同步减速的具体时刻。这样在Car 1接收到Car 2和Car 3的确认消息后,立即启动同步减速过程。
307,Car 1、Car 2和Car 3同时启动减速,并在第一时间段内从初始速度减速至目标速度。
在减速的过程中,Car 1、Car 2和Car 3可以保持匀速减速。并且,在减速的过程中,各车辆之间的车距保持安全车距Dsafety。当减速至目标速度后,Car 1、Car 2和Car 3以目标速度匀速行驶。
应理解,安全车距Dsafety可以参照上文中的描述,并且安全车距Dsafety可以大于或等于第一安全距离。
可选地,该方法还可以包括308,Car 2减速至目标速度后,向Car 1发送减速完成消息。
309,Car 3减速至目标速度后,向Car 1发送减速完成消息。
应理解,308和309可以同时进行,也可以不同时进行,本发明对此不作限定。
可选地,该方法还可以包括310,Car 1向Car 2和Car 3广播第二消息。
具体地,Car 1接收到Car 2和Car 3发送的减速完成消息后,广播该第二消息。第二消息可以包括安全车距Dsafety、目标速度、退出减速状态、进入匀速安全行驶状态等信息。
本发明实施例的控制车辆编队行驶的方法,控制设备可以控制整个车队或车队中的部分车辆在较短时间内完成减速,并且在减速的过程中可以控制车队中前后车辆之间、集中控制设备和前方非本车队的车辆、车队最后一辆车和后方非本车队来车可以保持安全行车距离,从而可以提高车辆编队的行驶安全性。
图8是根据本发明实施例的控制车辆编队行驶的方法的流程图。501,Car 1确定车辆的行驶参数。行驶参数可以包括车辆的、目标速度,还可以包括安全车距、从车辆当前速度减速至目标速度所需的第二时间段等。
例如,在车队行驶的过程中,Car 1检测到车队中部分车由于红绿灯等原因致使车辆速度下降或者与其他车辆之间的距离超过预设距离时,可以控制整个车队或者车队中的部分车辆进行加速行驶。这时,可以先确定车辆的行驶参数,以使车队中的车辆根据该行驶参数行驶。
可选地,在501之前,该方法还可以包括502,Car 1接收Car 2和Car 3中的至少一辆车辆发送的车辆加速请求。此时,在501中,Car 1可以在接受车辆加速请求后,根据车辆加速请求确定车辆的行驶参数。
为方便描述,图8中以Car 1接收Car 2发送的车辆加速请求为例进行说明。
503,Car 1广播控制信息。
Car 1根据行驶参数生成控制信息,并广播该控制信息,以控制Car 2和Car 3根据该行驶参数行驶。
504,Car 1在第二时间段内从初始速度加速到目标速度。
当Car 1在第二时间段内从初始速度加速到目标速度后,按照目标速度匀速行驶。
为保障行车的安全性、舒适性、避免反复加速,在Car 1加速的过程中,Car 2、Car 3、……、Car n继续按照初始速度匀速行驶。
505,Car 1加速完成的同时,向Car 2发送车辆加速消息,告知Car 2可以启动加速过程。
506,Car 2在接收到Car 1发送的车辆加速消息后,Car 2开始加速。当Car 2加速至目标速度后,保持匀速行车。
为了保证安全行车,Car2可使用测速测距雷达保持与前车Car1的安全距离,即保持与Car1的安全车距Dsafety。并且,Car2在提速时可以保持均匀提速。这样,Car 1和Car 2车辆均处于类似定速巡航模式,Car 2和Car 1两车之间就保障了安全的行车距离Dsafety。同样地,为保障行车的安全性、舒适性、避免反复加速,在Car 2加速过程中,Car 3继续按照初始速度匀速行车。
507,Car 2加速完成后,向Car 1发送加速完成消息,表明Car 2加速完成。
508,Car 1向Car 3发送车辆加速消息。
具体地,当Car 1接收到Car 2发送的加速完成消息后,向Car 3发送车辆加速消息,指示Car 3开始进行加速。
509,Car 3加速行驶。
具体地,当Car 3接收到Car 1发送的车辆加速消息后,开始进行加速至目标速度。
510,Car 3向Car 1发送加速完成消息。
具体地,当Car 3加速至目标速度后,向Car 1发送加速完成消息。同时以目标速度匀速行驶。
可选地,该方法还可以包括511,Car1广播第三消息。该第三消息可以包括安全车距Dsafety、目标速度、退出加速状态、进入匀速安全行驶状态等信息。
本发明实施例的控制车辆编队行驶的方法,可以避免整个车队或车队中的部分车辆在加速过程中,前后车辆之间、集中控制设备和前方非本车队的车辆、车队最后一辆车和后方非本车队来车相撞,提高车辆编队的行车安全性。
在本发明实施例中,集中控制设备控制车队中车辆的同步加速可以参照图7所示的集中控制设备控制车队中车辆的同步减速的相应步骤,为了简洁,在此不再赘述。
可选地,如图9所示,在101之前,该方法还可以包括步骤601~607。
601,集中控制设备向第一车辆发送自动驾驶车队的车队信息。车队信息可以包括自动驾驶车队的路径规划信息,还可以包括自动驾驶车队的车队ID。
具体地,第一车辆在正常行驶时,即没有加入车队之前,可以使用车辆配置的摄像头和传感器对行驶的路段进行检测,获得路段信息。例如摄像头拍摄并进行图像识别感知路段是否为高速路段,或者结合导航软件实时感知当前车辆行驶的位置,并进而识别路段属性,例如是高速路段,或者是标记可以进行自动驾驶的路段。如果发现了可以自动驾驶的路段,则可以进行探测,发现附近是否有自动驾驶车辆。如果附件有自动驾驶车队,可以接收自动驾驶车队的车队信息。车队信息可以包括车队的路径规划信息,例如从A地至B地的行驶路径。路径规划信息也可以只包括车队行驶的目的地。车队信息还可以包括车队ID、车队的控制模式(集中控制设备控制或者是被控车辆控制)和行驶速率等。
应理解,第一车辆可以是任一希望加入自动驾驶车队的车辆。
602,第一车辆根据车队信息和第一车辆的车辆信息确定加入自动驾驶车队。
第一车辆根据自身的行车规划,例如到达的目的地,判断是否加入该自动驾驶车队。例如,当该自动驾驶车队的行车路线与第一车辆的行车路线有全部或部分交叠时,确定加入该自动驾驶车队。或者当该自动驾驶车队的行车路线与第一车辆的行车路线完全没有重叠时,选择其他合适的自动驾驶车 队加入。
603,集中控制设备接收第一车辆在根据车队信息和第一车辆的车辆信息确定加入自动驾驶车队时发送的加入车队请求,车辆信息包括第一车辆的路径规划信息。
当第一车辆确定加入该自动驾驶车队时,向该集中控制设备发送加入车队请求,申请加入该自动驾驶车队。
604,当集中控制设备接受加入车队请求时,集中控制设备向第一车辆发送确认消息。
605,第一车辆向集中控制设备发送控制权交付信息。
第一车辆接收到集中控制设备发送的确定消息时,可以知道集中控制设备同意第一车辆加入车队。此时,第一车辆可以向集中控制设备发送控制权交付信息,将车辆的驾驶权交由集中控制设备控制。
可选地,在605之前,该方法还可以包括:606,集中控制设备向第一车辆发送位置信息,位置信息包括第一车辆在自动驾驶车队中的位置,位置信息指示第一车辆驶入在自动驾驶车队中的位置。607,第一车辆根据位置信息驶入其在自动驾驶车队中的位置。
具体地,当集中控制设备同意第一车辆加入车队时,可以根据第一车辆的路径规划信息,判断车辆可以跟车的路段或者距离长度,通过发送位置信息分配并告知此车在自动驾驶车队的位置。例如,集中控制设备可以通过编号的方式告知第一车辆在车队中的位置,也可以通过告知车牌信息的方式告知第一车辆在车队中的位置,也可以缺省要求第一车辆排在车队的尾部。另外,集中控制设备还可以通过导航的方式,指引第一车辆行进到自动驾驶车队的位置,以便使第一车辆加入到自动驾驶车队。
第一车辆可以根据分配的位置,或者导航信息指示,准备驶入到对应的位置。如果是驶入到车队尾部,则第一车辆可直接加入,并且保持与车队的当前速度同步。如果是插入到中间位置,则集中控制设备在确认新车准备好要加入时,集中控制设备需要告知车队的其他车辆有新车加入,并且控制车队的车辆空出位置,以便第一车辆加入。例如,集中控制设备控制新加入位置后面的所有车辆同步减速,与前面的车辆预留更多的安全距离,以便第一车辆加入。
可选地,在集中控制设备确定自动驾驶车队中的第一车辆的第一行驶参 数之前,该方法还包括:集中控制设备接收第一车辆根据第一车辆的车辆信息发送的加入车队请求,车辆信息包括第一车辆的路径规划信息;在集中控制设备根据车辆信息和自动驾驶车队的车队信息接受加入车队请求时,向第一车辆发送确认消息,其中,车队信息包括自动驾驶车队的路径规划信息;集中控制设备接收第一车辆在接收到确认消息后发送的控制权交付信息,并对第一车辆进行控制。
具体地,集中控制设备可以第一车辆发送的加入车队请求,并根据第一车辆的路径规划信息还车队的车队信息确定是否接受第一车辆加入车队。当集中控制设备接受第一车辆加入车队时,向第一车辆发送确认消息。第一车辆在接收到该确认消息时,可以向集中控制设备发送控制权交付信息。集中控制设备接收到控制权交付信息后,可以对第一车辆进行控制。
可选地,如图10所示,在集中控制设备确定自动驾驶车队中的第一车辆的第一行驶参数之前,该方法还包括:
701,集中控制设备向多辆车辆中各车辆分别发送获取行驶信息请求。获取行驶信息请求用于获取车辆的行驶信息。
行驶信息可以包括以下一种或多种:行驶的起始位置,目的位置;时间:出发的时间,或预计到达目的地的时间;路线:从出发地到目的地计划行驶的路径;用途:旅游,婚车,春运回家等;行车环境:天气、温度、时间等;车辆信息:车型、动力、年限等。
702,集中控制设备接收多辆车辆中各车辆在接受获取行驶信息请求时分别发送的第一反馈信息。
当车辆同意集中控制设备获取车辆的行驶信息时,可以向集中控制设备发送第一反馈信息。另外,当车辆不同意集中控制设备获取车辆的行驶信息时,可以向集中控制设备发送拒绝信息或不作任何回应。
703,集中控制设备根据第一反馈信息获取多辆车辆中各车辆的行驶信息。
704,集中控制设备根据多辆车辆中各车辆的行驶信息分别向述多辆车辆中各车辆发送组网请求。
集中控制设备可以根据各车辆的行驶信息对相同或类似参数的车辆进行组网。例如:选择起始位置相同或附近的;选择行驶路线有交叠或者部分交叠的;选择用途相同的;行车环境/车辆信息类似的。
例如,当所述各车辆的有交叠或者部分交叠时,可以向多辆车辆中各车辆发送组网请求,以对这些车辆进行组网。
705,集中控制设备接收多辆车辆中各车辆在接受组网请求时分别发送的第二反馈信息。
当车辆同意加入网络时,可以向集中控制设备发送第二反馈信息。同样地,当车辆不同意加入网络时,可以向集中控制设备发送拒绝信息或不作任何回应。
706集中控制设备根据第二反馈信息将多辆车辆中各车辆加入同一网络中。
集中控制设备对车辆进行组网,即将各车辆加入同一网络中。
可选地,该方法还可以包括以下步骤:
707,集中控制设备根据行驶信息确定共享路径,共享路径为多辆车辆中的其中一辆车辆的行驶路径,其中,行驶信息包括行驶路径。
在每个联网车队中,集中控制设备选择一个车队中最佳的车辆的行驶路径在本车队中共享行驶路径。车联网中的各车辆会具有以下一个或者多个信息,但不限于此:安全等级:优,良,中,差等;与用户的关系:好友,陌生人等;各路段实行参数:速度,次数,事故等。
集中控制设备在选择最佳车辆或者车队时,需要判断车联网中的其他车辆是否满足要求,可考虑以上一种信息或者多种信息的组合。当是多种信息的组合时,各信息的优先级为:安全等级>与用户的关系>各路段实行参数。
当用户输入当前行驶需求为从地点A行驶到地点B,则集中控制设备在车联网中根据其他车辆的行驶信息筛选出最优的,例如:
用户A:陌生人,安全等级优,地点A至地点B的次数为1万次;
用户B:陌生人,安全等级良,地点A至地点B的次数为1千次;
用户C:好友,安全等级优,地点A至地点B的次数为1万次;
用户D:好友,安全等级优,地点A至地点B的次数为1千次;
则最佳车辆的优先选择C>D>A>B。
708,集中控制设备向多辆车辆发送共享路径,以便于多辆车辆按照共享路径行驶。集中控制设备可以集中控制车队中的所有车辆可以按照共享路径行驶。
本发明实施例中,集中设备还可以获取非本车队中的车辆的行驶参数, 并可以根据车队中的车辆的行驶参数和所述非本车队中的车辆的行驶参数,确定共享路径。并且,集中控制设备可以控制车队中的车辆和所述非本车队中的车辆按照共享路径行驶。
上述实施例中的与集中控制设备相关的操作也可以由任一希望组建车联网的主控车辆执行。该主控车辆可以是车队中的车辆,也可以不是车队中的车辆。主控车辆可以从控制器中获取多辆车辆的行驶参数,也可以一对一从各个车辆获取与之对应的行驶参数,本发明对比不作限定。
需要说明的是,车联网中的车辆可以是手动驾驶,也可以是自动驾驶。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本发明实施例中,通过控制多辆车辆编队行驶,可以提高道路车辆密度,增加道路容量。能够有效缓解交通拥堵,增强交通的畅通性和安全性。并且,本发明实施例中,通过集中控制设备集中控制车队中车辆的行驶,能够降低由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车队编队行驶的安全性。
上文中结合图1至图10详细描述了根据本发明实施例的控制车辆编队行驶的方法,下面将结合图11至图14描述根据本发明实施例的集中控制设备和车辆。
图11是本发明实施例的集中控制设备800的示意性框图。集中控制设备800包括第一确定单元810和第一发送单元820。
应理解,集中控制设备800可以是图2所示的控制器30,也可以是主控车辆50。
第一确定单元810,用于确定自动驾驶车队中的第一车辆的第一行驶参数,自动驾驶车队由处于自动驾驶模式的多辆车辆组成,第一车辆为多辆车辆之一。
第一发送单元820,用于向第一车辆发送第一控制信息,第一控制信息用于控制第一车辆按照第一确定单元确定的第一行驶参数行驶。
应理解,第一确定单元810可以对应图2所示的控制器30中的车队控制决策处理模块35。
第一确定单元810可以根据集中控制设备800中对应与控制器30中的 车队数据收集处理模块32,和/或行驶环境收集模块34,和/或车队行驶路径规划模块36,和/或车队行驶路径收集模块37等的单元,确定第一行驶参数,并生成第一控制信息。集中控制设备800中对应与车队自动驾驶指令解析处理模块33的单元可以将该第一控制信息转化成控制指令,并由第一发送单元820发送给第一车辆。
应理解,第一发送单元820可以对应图2所示的控制器30中的通信模块31,用于与车辆之间的通信。
本发明实施例的集中控制设备,通过确定第一车辆的行驶参数,并集中控制第一车辆按照第一行驶参数行驶,能够降低由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车辆编队行驶的安全性。
可选地,第一行驶参数包括目标速度,其中,第一控制信息用于控制第一车辆变速至目标速度。
可选地,第一行驶参数还包括起始时刻和结束时刻,或时间间隔,其中,第一控制信息用于控制第一车辆从起始时刻开始变速,并在结束时刻时或在结束时刻之前变速至目标速度,或第一控制信息用于控制第一车辆在时间间隔内变速至目标速度。
可选地,集中控制设备800还包括:第二确定单元,用于确定第二车辆的第二行驶参数,第二行驶参数包括目标速度,第二车辆为多辆车辆之一,第一车辆和第二车辆在所述自动驾驶车队中的位置相邻,所述第一车辆为所述第二车辆的前车;第二发送单元,用于向第二车辆发送第二控制信息,第二控制信息用于控制第二车辆变速至目标速度。
第二确定单元可以对应图2所示的控制器30中的车队控制决策处理模块35。第一发送单元可对应图2所示的控制器30中的通信模块31,用于与车辆之间的通信。
第二车辆为车队中的另一车辆。第二控制信息可以控制第二车辆变速至目标速度。同样地,集中控制设备可以控制车队中的其它车辆变速至目标速度。
在本发明实施例中,集中控制设备也可以通过广播控制信息的方式,告知第一车辆和第二车辆该目标速度。当第一车辆和第二车辆中的其中一辆变速至目标速度时,集中控制设备通过点对点的方式,告知另一车辆可以启动变速,以控制另一车辆变速至目标速度。当任一车辆变速至目标速度时,可 以以该目标速度匀速行驶。
进一步地,第二行驶参数也可以包括起始时刻和结束时刻,或时间间隔。起始时刻和结束时刻,或时间间隔可以与第一行驶参数中对应的参数相同,也可以不同。例如,集中控制设备可以控制第二车辆开始变速的时刻、变速的加速度、完成变速所需的时间等,进而控制第二车辆以上述加速度或者在上述时间间隔内等变速至目标速度。
可选地,集中控制设备800还包括:第一接收单元,用于接收第二车辆减速至目标速度时发送的第一变速完成消息;其中,所述第一发送单元810具体用于:根据所述第一接收单元接收的所述第一变速完成消息向所述第一车辆发送所述第一控制信息。
第一接收单元可对应图2所示的控制器30中的通信模块31,用于与车辆之间的通信。
具体地,在车队行驶过程中,集中控制设备可以先控制第二车辆减速至目标速度,并且当第二车辆减速至目标速度时,向集中控制设备发送第一变速完成消息。当第一接收单元接收到第一变速完成消息时,可以知道第二车辆已将减速至目标速度。此时,第一发送单元820可以向第一车辆发送第一控制信息,控制第一车辆减速至目标速度。
可选地,集中控制设备800还包括:第二接收单元,用于接收第一车辆加速至目标速度时发送的第二变速完成消息;其中,所述第二发送单元具体用于:根据所述第二接收单元接收的所述第二变速完成消息向所述第二车辆发送所述第二控制信息。
第二接收单元可对应图2所示的控制器30中的通信模块31,用于与车辆之间的通信。
具体地,在车队行驶过程中,集中控制设备可以先控制第一车辆加速至目标速度,并且当第一车辆加速至目标速度时,向集中控制设备发送第二变速完成消息。当集中控制设备接收到第二变速完成消息时,可以知道第一车辆已将加速至目标速度。此时,第一发送单元820可以向第二车辆发送第二控制信息,控制第二车辆加速至目标速度。
应理解,第一车辆和第二车辆可以是车队中任意相邻的两辆车。当第一车辆和第二车辆变速至目标速度时,可以以该目标速度匀速行驶。
可选地,第一行驶参数还可以包括车距,即在第一车辆变速的过程中, 需要保持的与前车和后车的车距。该车距可以是集中控制设备根据各个车辆的性能等参数统一规定的,即车队中的任意两辆车之间的车距都是相同的。另外,本车队的头车还需要和非本车队中的前车保持一定车距,尾车也需要和非本车队中的后车保持一定车距,以确保行车安全。
可选地,第一发送单元820还用于,向第一车辆和第二车辆发送同步信号;其中,第一接收单元具体用于:接收第二车辆在接收到同步信号,以便于所述第一车辆和所述第二车辆在接收到所述同步信号时开始变速并变速至所述目标速度;其中,所述集中控制设备还包括:第三接收单元,用于分别接收所述第一车辆和所述第二车辆根据所述同步信号变速至所述目标速度时发送的第三变速完成消息和第四变速完成消息。
第三接收单元可对应图2所示的控制器30中的通信模块31,用于与车辆之间的通信。
具体地,集中控制设备可以控制第一车辆和第二车辆同步变速。第一车辆和第二车辆接收到同步信号时,开始变速至目标速度。并且,当第一车辆和第二车辆变速至目标速度时,分别向集中控制设备发送第二变速完成消息和第一变速完成消息。
另外,集中控制设备也可以在第一控制信息和第二控制信息中携带同步变速的时刻,第一车辆和第二车辆可以在该时刻同步开始变速。
在本发明实施例中,第一发送单元820还用于向第一车辆发送信息上报请求,该请求中可以携带该自动加速车队的ID和第一车辆的ID,指示第一车辆上报当前车速、与前后车辆的车距等信息。第一车辆接收到该信息上报请求时,向集中控制设备发送信息上报响应,该信息上报响应可以携带集中控制设备请求的第一车辆的当前车速、与前后车辆的车距等信息。
可选地,第一行驶参数还包括以下参数中的至少一种:车距、指示灯参数、换档参数和刹车参数。
例如,集中控制设备可以通过指示灯参数控制第一车辆开启指示灯,例如左转时开启左转转向灯。集中控制设备还可以通过换档参数控制第一车辆的换档,例如从当前的D档切换至R档。再比如,集中控制设备还可以通过刹车参数控制车辆的刹车。
可选地,集中控制设备还包括:第四接收单元,用于接收第一车辆的变速请求;其中,第一确定单元810具体用于:根据变速请求确定第一行驶参 数。
第四接收单元可对应图2所示的控制器30中的通信模块31,用于与车辆之间的通信。
可选地,第三接收单元具体用于:接收第一车辆在检测到第一车辆与第一车辆相邻的车辆的车距大于预设车距时发送的变速请求。
可选地,第一发送单元820还用于:向第一车辆发送自动驾驶车队的车队信息,车队信息包括自动驾驶车队的路径规划信息;集中控制设备800还可以包括:第五接收单元,用于接收第一车辆在根据车队信息和第一车辆的车辆信息确定加入自动驾驶车队时发送的加入车队请求,车辆信息包括第一车辆的路径规划信息;第一发送单元820还用于,当集中控制设备接受加入车队请求时向第一车辆发送确认消息;第五接收单元还用于,接收第一车辆在接收到确认消息后发送的控制权交付信息;控制单元,用于根据控制权交付信息对第一车辆进行控制。
第五接收单元可对应图2所示的控制器30中的通信模块31,用于与车辆之间的通信。
可选地,所述集中控制设800还可以包括:第六接收单元,用于备接收所述第一车辆根据所述第一车辆的车辆信息发送的加入车队请求,所述车辆信息包括所述第一车辆的路径规划信息;其中,所述第一发送单元820还用于:在所述集中控制设备根据所述车辆信息和所述自动驾驶车队的车队信息时,向所述第一车辆发送确认消息,其中,所述车队信息包括所述自动驾驶车队的路径规划信息;所述第六接收单元还用于,接收所述第一车辆在接收到所述确认消息后发送的控制权交付信息,并对所述第一车辆进行控制。
第六接收单元可对应图2所示的控制器30中的通信模块31,用于与车辆之间的通信。
可选地,第一发送单元820还用于:向第一车辆发送位置信息,位置信息指示第一车辆驶入第一车辆在自动驾驶车队中的位置。
可选地,所述第一发送单元820还用于:向所述多辆车辆中各车辆分别发送获取行驶信息请求;其中,所述集中控制设备800还包括:第七接收单元,用于接收所述多辆车辆中各车辆在接受所述获取行驶信息请求时分别发送的第一反馈信息;获取单元,用于根据所述第一反馈信息获取所述多辆车辆中各车辆的行驶信息;所述第一发送单元820还用于,根据所述多辆车辆 中各车辆的行驶信息分别向多辆车辆中各车辆发送组网请求;所述第七接收单元还用于,接收所述多辆车辆中各车辆在接受所述组网请求时分别发送的第二反馈信息;组网单元,用于根据所述第二反馈信息将所述多辆车辆中各车辆加入同一网络中。
可选地,所述第一确定单元810还用于:根据所述行驶信息确定共享路径,所述共享路径为所述多辆车辆中的其中一辆车辆的行驶路径,其中,所述行驶信息包括行驶路径;所述第一发送单元820还用于,向所述多辆车辆发送所述共享路径,以便于所述多辆车辆按照所述共享路径行驶。
本发明实施例中,通过控制多辆车辆编队行驶,可以提高道路车辆密度,增加道路容量。能够有效缓解交通拥堵,增强交通的畅通性和安全性。并且,本发明实施例中,通过集中控制设备集中控制车队中车辆的行驶,能够降低由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车队编队行驶的安全性。
应理解,这里的集中控制设备800以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(Application Specific Integrated Circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,集中控制设备800可以具体为上述实施例中的集中控制设备,集中控制设备800可以用于执行上述方法实施例中与集中控制设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图12是本发明实施例的车辆900的示意性框图。车辆900可以是自动驾驶车队中的其中一辆车辆,所述自动驾驶车队由处于自动驾驶模式的多辆车辆组成。车辆900包括接收单元910和行驶单元920。
接收单元910,用于接收集中控制设备发送的控制信息,控制信息指示车辆按照行驶参数行驶。
行驶单元920,用于按照行驶参数行驶。
应理解,车辆900可以是图3所示的被控车辆40。
本发明实施例中,接收单元910可以对应图3所示的被控车辆40中的通信模块41,用于与集中控制设备之间的通信。行驶单元920对应图3所示的被控车辆40中的自动驾驶控制指令解析处理模块47,可以将接收单元910 接收到的控制信息解析为车辆控制系统指令,以便实现对本车的控制。
本发明实施例中,集中控制设备通过确定车辆的行驶参数,并集中控制车辆按照行驶参数行驶,能够降低由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车辆编队行驶的安全性。
可选地,行驶参数包括目标速度,其中,行驶单元920具体用于:变速至目标速度。
可选地,行驶参数还包括起始时刻和结束时刻,或时间间隔,行驶单元920具体用于:从起始时刻开始变速,并在结束时刻时或在结束时刻之前变速至目标速度,或在时间间隔内变速至目标速度。
可选地,车辆还包括:第一发送单元,用于当所述车辆变速至所述目标速度时,向集中控制设备发送变速完成消息。
第一发送单元可以对应图3所示的被控车辆40中的通信模块41,用于与集中控制设备之间的通信。
可选地,接收单元910还用于,接收集中控制设备发送的同步信号;其中,行驶单元920具体用于:在接收到同步信号时,开始变速并变速至目标速度。
可选地,行驶参数还包括以下参数中的至少一种:车距、指示灯参数、换档参数和刹车参数。
可选地,车辆900还包括:第二发送单元,用于向集中控制设备发送变速请求;其中,接收单元910具体用于:接收集中控制设备在接受变速请求时发送的控制信息。
第二发送单元可以对应图3所示的被控车辆40中的通信模块41,用于与集中控制设备之间的通信。
可选地,第二发送单元具体用于:当车辆900在检测车辆与车辆相邻的车辆的车距大于预设车距时,向集中控制设备发送变速请求。
可选地,接收单元910还用于,接收集中控制设备发送的自动驾驶车队的车队信息,车队信息包括自动驾驶车队的路径规划信息;车辆900还包括:确定单元,用于根据车队信息和车辆的车辆信息确定加入自动驾驶车队,车辆信息包括车辆的路径规划信息;第三发送单元,用于向集中控制设备发送加入车队请求;接收单元910还用于,接收集中控制设备接受加入车队请求时发送的确认消息;第三发送单元还用于,向集中控制设备发送控制权交付 信息,以便于所述集中控制设备根据所述控制权交付信息对所述车辆进行控制。
确定单元可以对应图3所示的被控车辆40中的车队加入\离开决策模块43,用于根据例如车队探测发现模块42探测到的车队信息,以及自己的行程规划,选择加入车队。第三发送单元对应图3所示的被控车辆40中的通信模块41,用于与集中控制设备之间的通信。
可选地,所述车辆还包括:第四发送单元,用于向所述集中控制设备发送加入车队请求;所述接收单元910还用于,接收所述集中控制设备发送的确认消息,所述确认消息指示所述集中控制设备接受所述加入车队请求;第四发送单元还用于,根据所述确认消息向所述集中控制设备发送控制权交付信息,以便于所述集中控制设备根据所述控制权交付信息对所述车辆进行控制。
可选地,接收单元910还用于:接收集中控制设备发送的位置信息,位置信息指示车辆在自动驾驶车队中的位置;其中,行驶单元920具体用于:驶入车辆在自动驾驶车队中的位置。
可选地,控制信息包括共享路径,共享路径为集中控制设备根据自动驾驶车队中的至少一辆车辆的行驶参数确定的,共享路径为自动驾驶车队中的至少一辆车辆中的其中一辆车辆的行驶路径,行驶参数包括行驶路径;其中,行驶单元920具体用于:车辆按照共享路径行驶。
可选地,所述接收单元910还用于:接收所述集中控制设备发送的获取行驶信息请求;其中,所述车辆还包括:第五发送单元,用于向所述集中控制设备发送第一反馈信息,所述第一反馈信息指示所述车辆接受所述获取行驶信息请求;所述第五发送单元还用于,向所述基站控制设备发送所述车辆的行驶信息;所述接收单元910还用于,接收所述控制设备根据所述车辆的行驶信息发送的组网请求;所述第五发送单元还用于,根据所述组网请求向所述集中控制设备发送第二反馈信息,所述第二反馈信息指示所述车辆接受所述组网请求。
本发明实施例中,通过控制多辆车辆编队行驶,可以提高道路车辆密度,增加道路容量。能够有效缓解交通拥堵,增强交通的畅通性和安全性。并且,本发明实施例中,通过集中控制设备集中控制车队中车辆的行驶,能够降低 由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车队编队行驶的安全性。
应理解,这里的车辆900以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(Application Specific Integrated Circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,车辆900可以具体为上述实施例中的第一车辆,车辆900可以用于执行上述方法实施例中与第一车辆对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图13示出了本发明实施例的集中控制设备1000的示意性框图。该集中控制设备1000包括发送器1010、接收器1020、处理器1030、存储器1040和总线系统1050。其中,发送器1010、接收器1020、处理器1030和存储器1040通过总线系统1050相连。
存储器1040用于存储指令。
处理器1030用于执行该存储器1040存储的指令,当所述指令被执行时,处理器1030可以确定自动驾驶车队中的第一车辆的第一行驶参数,自动驾驶车队由处于自动驾驶模式的多辆车辆组成,第一车辆为多辆车辆之一;发送器1010,用于向第一车辆发送第一控制信息,第一控制信息用于控制第一车辆按照第一确定模块确定的第一行驶参数行驶。
本发明实施例的集中控制设备,通过确定第一车辆的行驶参数,并集中控制第一车辆按照第一行驶参数行驶,能够降低由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车辆编队行驶的安全性。
可选地,第一行驶参数包括目标速度,其中,第一控制信息用于控制第一车辆变速至目标速度。
可选地,第一行驶参数还包括起始时刻和结束时刻,或时间间隔,其中,第一控制信息用于控制第一车辆从起始时刻开始变速,并在结束时刻时或在结束时刻之前变速至目标速度,或第一控制信息用于控制第一车辆在时间间隔内变速至目标速度。
可选地,处理器1030还可以用于确定第二车辆的第二行驶参数,第二行驶参数包括目标速度,第二车辆为多辆车辆之一,第一车辆和第二车辆在所述自动驾驶车队中的位置相邻,所述第一车辆为所述第二车辆的前车;发 送器1010用于向第二车辆发送第二控制信息,第二控制信息用于控制第二车辆变速至目标速度。
可选地,接收器1020用于接收第二车辆减速至目标速度时发送的第一变速完成消息;其中,所述发送器1010具体用于:根据所述发送器1010接收的所述第一变速完成消息向所述第一车辆发送所述第一控制信息。
可选地,接收器1020还用于接收第一车辆加速至目标速度时发送的第二变速完成消息;其中,发送器1010具体用于:根据所述接收器1020接收的所述第二变速完成消息向所述第二车辆发送所述第二控制信息。
可选地,发送器1010还用于,向第一车辆和第二车辆发送同步信号,以便于所述第一车辆和所述第二车辆在接收到所述同步信号时开始变速并变速至所述目标速度;其中,所述接收器1020还用于,分别接收所述第一车辆和所述第二车辆根据所述同步信号变速至所述目标速度时发送的第三变速完成消息和第四变速完成消息。
可选地,第一行驶参数还包括以下参数中的至少一种:车距、指示灯参数、换档参数和刹车参数。
可选地,接收器1020用于接收第一车辆的变速请求;其中,处理器1030具体用于:根据变速请求确定第一行驶参数。
可选地,接收器1020具体用于:接收第一车辆在检测到第一车辆与第一车辆相邻的车辆的车距大于预设车距时发送的变速请求。
可选地,发送器1010还用于:向第一车辆发送自动驾驶车队的车队信息,车队信息包括自动驾驶车队的路径规划信息;接收器1020用于接收第一车辆在根据车队信息和第一车辆的车辆信息确定加入自动驾驶车队时发送的加入车队请求,车辆信息包括第一车辆的路径规划信息;发送器1010还用于:当集中控制设备接受加入车队请求时向第一车辆发送确认消息;接收器1020还用于,接收第一车辆在接收到确认消息后发送的控制权交付信息;处理器1030,用于根据控制权交付信息对第一车辆进行控制。
可选地,接收器1020还用于,接收所述第一车辆根据所述第一车辆的车辆信息发送的加入车队请求,所述车辆信息包括所述第一车辆的路径规划信息;其中,所述发送器1010还用于:在所述集中控制设备根据所述车辆信息和所述自动驾驶车队的车队信息时,向所述第一车辆发送确认消息,其中,所述车队信息包括所述自动驾驶车队的路径规划信息;所述接收器1020 还用于,接收所述第一车辆在接收到所述确认消息后发送的控制权交付信息,并对所述第一车辆进行控制。
可选地,发送器1010还用于:向第一车辆发送位置信息,位置信息指示第一车辆驶入第一车辆在自动驾驶车队中的位置。
可选地,所述发送器1010还用于:向所述多辆车辆中各车辆分别发送获取行驶信息请求;其中,接收器1020还用于,接收所述多辆车辆中各车辆在接受所述获取行驶信息请求时分别发送的第一反馈信息;处理器1030,用于根据所述第一反馈信息获取所述多辆车辆中各车辆的行驶信息;所述发送器1010还用于,根据所述多辆车辆中各车辆的行驶信息分别向多辆车辆中各车辆发送组网请求;所述接收器1020还用于,接收所述多辆车辆中各车辆在接受所述组网请求时分别发送的第二反馈信息;处理器1030还用于,根据所述第二反馈信息将所述多辆车辆中各车辆加入同一网络中。
可选地,所述处理器1030还用于:根据所述行驶信息确定共享路径,所述共享路径为所述多辆车辆中的其中一辆车辆的行驶路径,其中,所述行驶信息包括行驶路径;所述发送器1010还用于,向所述多辆车辆发送所述共享路径,以便于所述多辆车辆按照所述共享路径行驶。
本发明实施例中,通过集中控制设备控制多辆车辆编队行驶,可以提高道路车辆密度,增加道路容量。能够有效缓解交通拥堵,增强交通的畅通性和安全性。并且,本发明实施例中,通过集中控制设备集中控制车队中车辆的行驶,能够降低由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车队编队行驶的安全性。
应理解,集中控制设备1000可以具体为上述实施例中的集中控制设备,并且可以用于执行上述方法实施例中与集中控制设备对应的各个步骤和/或流程。可选地,该存储器1040可以包括只读存储器和随机存取存储器,并向处理器1030提供指令和数据。存储器1040的一部分还可以包括非易失性随机存取存储器。例如,存储器1040还可以存储设备类型的信息。该处理器1030可以用于执行存储器1040中存储的指令,并且当该处理器1030执行存储器1040中存储的指令时,该处理器1030用于执行上述方法实施例中与集中控制设备对应的各个步骤和/或流程,为了简洁,在此不再赘述。
图14示出了本发明实施例的车辆1100的示意性框图。车辆1100可以是自动驾驶车队中的其中一辆车辆,所述自动驾驶车队由处于自动驾驶模式 的多辆车辆组成。该车辆1100包括发送器1110、接收器1120、处理器1130、存储器1140和总线系统1150。其中,发送器1110、接收器1120、处理器1130和存储器1140通过总线系统1150相连。
存储器1140用于存储指令。
处理器1130用于执行该存储器1140存储的指令,当所述指令被执行时,接收器1120用于接收集中控制设备发送的控制信息,控制信息指示车辆按照行驶参数行驶;处理器1130用于控制车辆按照行驶参数行驶。
本发明实施例的车辆,通过集中控制设备集中控制该车辆按照行驶参数行驶,能够降低由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车辆编队行驶的安全性。
可选地,行驶参数包括目标速度,其中,处理器1130具体用于:控制车辆变速至目标速度。
可选地,行驶参数还包括起始时刻和结束时刻,或时间间隔,
处理器1130具体用于:控制车辆从起始时刻开始变速,并在结束时刻时或在结束时刻之前变速至目标速度,或在时间间隔内变速至目标速度。
可选地,发送器1110,用于当所述车辆变速至所述目标速度时,向集中控制设备发送第二变速完成消息。
可选地,接收器1120还用于,接收集中控制设备发送的同步信号;其中,处理器1130具体用于:在接收器1120接收到同步信号时,控制车辆开始变速并变速至目标速度。
可选地,行驶参数还包括以下参数中的至少一种:车距、指示灯参数、换档参数和刹车参数。
可选地,发送器1110,用于向集中控制设备发送变速请求;其中,接收器1120具体用于:接收集中控制设备在接受变速请求时发送的控制信息。
可选地,发送器1110具体用于:当车辆1100在检测到与其相邻的车辆的车距大于预设车距时,向集中控制设备发送变速请求。
可选地,接收器1120还用于,接收集中控制设备发送的自动驾驶车队的车队信息,车队信息包括自动驾驶车队的路径规划信息;处理器1130还用于,根据车队信息和车辆的车辆信息确定加入自动驾驶车队,车辆信息包括车辆的路径规划信息;发送器1110,用于向集中控制设备发送加入车队请求;接收器1120还用于,接收集中控制设备接受加入车队请求时发送的确 认消息;发送器1110还用于,向集中控制设备发送控制权交付信息,以便于所述集中控制设备根据所述控制权交付信息对所述车辆进行控制。
可选地,发送器1110还用于,向所述集中控制设备发送加入车队请求;所述接收器1120还用于,接收所述集中控制设备发送的确认消息,所述确认消息指示所述集中控制设备接受所述加入车队请求;发送器1110还用于,根据所述确认消息向所述集中控制设备发送控制权交付信息,以便于所述集中控制设备根据所述控制权交付信息对所述车辆进行控制。
可选地,接收器1120还用于:接收集中控制设备发送的位置信息,位置信息指示车辆在自动驾驶车队中的位置;其中,处理器1130具体用于:控制车辆驶入车辆在自动驾驶车队中的位置。
可选地,控制信息包括共享路径,共享路径为集中控制设备根据自动驾驶车队中的至少一辆车辆的行驶参数确定的,共享路径为自动驾驶车队中的至少一辆车辆中的其中一辆车辆的行驶路径,行驶参数包括行驶路径;其中,处理器1130具体用于:控制车辆按照共享路径行驶。
可选地,所述接收器1120还用于:接收所述集中控制设备发送的获取行驶信息请求;发送器1110还用于,向所述集中控制设备发送第一反馈信息,所述第一反馈信息指示所述车辆接受所述获取行驶信息请求;向所述基站控制设备发送所述车辆的行驶信息;所述接收器1120还用于,接收所述控制设备根据所述车辆的行驶信息发送的组网请求;发送器1110还用于,根据所述组网请求向所述集中控制设备发送第二反馈信息,所述第二反馈信息指示所述车辆接受所述组网请求。
本发明实施例中,通过集中控制设备控制多辆车辆编队行驶,可以提高道路车辆密度,增加道路容量。能够有效缓解交通拥堵,增强交通的畅通性和安全性。并且,本发明实施例中,通过集中控制设备集中控制车队中车辆的行驶,能够降低由于驾驶员的失误、误判和不及时响应而可能造成交通事故发生的频率,提高车队编队行驶的安全性。
应理解,车辆1100可以具体为上述实施例中的第一车辆,并且可以用于执行上述方法实施例中与第一车辆对应的各个步骤和/或流程。可选地,该存储器1140可以包括只读存储器和随机存取存储器,并向处理器1130提供指令和数据。存储器1140的一部分还可以包括非易失性随机存取存储器。例如,存储器1140还可以存储设备类型的信息。该处理器1130可以用于执 行存储器1140中存储的指令,并且当该处理器1130执行存储器1140中存储的指令时,该处理器1130用于执行上述方法实施例中与第一车辆对应的各个步骤和/或流程,为了简洁,在此不再赘述。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对 应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (52)

  1. 一种控制车辆编队行驶的方法,其特征在于,包括:
    集中控制设备确定自动驾驶车队中的第一车辆的第一行驶参数,所述自动驾驶车队由处于自动驾驶模式的多辆车辆组成,所述第一车辆为所述多辆车辆之一;
    所述集中控制设备向所述第一车辆发送第一控制信息,所述第一控制信息用于控制所述第一车辆按照所述第一行驶参数行驶。
  2. 如权利要求1所述的方法,其特征在于,所述第一行驶参数包括目标速度,其中,所述第一控制信息用于控制所述第一车辆变速至所述目标速度。
  3. 如权利要求2所述的方法,其特征在于,所述第一行驶参数还包括起始时刻和结束时刻,或时间间隔,其中,所述第一控制信息用于控制所述第一车辆从所述起始时刻开始变速,并在所述结束时刻时或在所述结束时刻之前变速至所述目标速度,或所述第一控制信息用于控制所述第一车辆在所述时间间隔内变速至所述目标速度。
  4. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    所述集中控制设备确定第二车辆的第二行驶参数,所述第二行驶参数包括所述目标速度,所述第二车辆为所述多辆车辆之一,所述第一车辆和所述第二车辆在所述自动驾驶车队中的位置相邻,所述第一车辆为所述第二车辆的前车;
    所述集中控制设备向所述第二车辆发送第二控制信息,所述第二控制信息用于控制所述第二车辆变速至所述目标速度。
  5. 如权利要求4所述的方法,其特征在于,在所述集中控制设备向所述第一车辆发送第一控制信息之前,所述方法还包括:
    所述集中控制设备接收所述第二车辆减速至所述目标速度时发送的第一变速完成消息;
    其中,所述集中控制设备向所述第一车辆发送第一控制信息,包括:
    所述集中控制设备根据所述第一变速完成消息向所述第一车辆发送所述第一控制消息。
  6. 如权利要求4所述的方法,其特征在于,在所述集中控制设备向所 述第二车辆发送第二控制信息之前,所述方法还包括:
    所述集中控制设备接收所述第一车辆加速至所述目标速度时发送的第二变速完成消息;
    其中,所述中控制设备向所述第二车辆发送第二控制信息,包括:
    所述集中控制设备根据所述第二变速完成消息向所述第二车辆发送所述第二控制信息。
  7. 如权利要求4所述的方法,其特征在于,在所述集中控制设备向所述第一车辆发送第一控制信息和所述集中控制设备向所述第二车辆发送第二控制信息之前,所述方法还包括:
    所述集中控制设备向所述第一车辆和所述第二车辆发送同步信号,以便于所述第一车辆和所述第二车辆在接收到所述同步信号时开始变速并变速至所述目标速度;
    所述集中控制设备分别接收所述第一车辆和所述第二车辆根据所述同步信号变速至所述目标速度时发送的第三变速完成消息和第四变速完成消息。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述第一行驶参数还包括以下参数中的至少一种:车距、指示灯参数、换档参数和刹车参数。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,在所述集中控制设备确定自动驾驶车队中的第一车辆的第一行驶参数之前,所述方法还包括:
    所述集中控制设备接收所述第一车辆的变速请求;
    其中,所述集中控制设备确定自动驾驶车队中的第一车辆的第一行驶参数,包括:
    所述集中控制设备根据所述变速请求确定所述第一行驶参数。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,在所述集中控制设备确定自动驾驶车队中的第一车辆的第一行驶参数之前,所述方法还包括:
    所述集中控制设备向所述第一车辆发送所述自动驾驶车队的车队信息,所述车队信息包括所述自动驾驶车队的路径规划信息;
    所述集中控制设备接收所述第一车辆在根据所述车队信息和所述第一 车辆的车辆信息确定加入所述自动驾驶车队时发送的加入车队请求,所述车辆信息包括所述第一车辆的路径规划信息;
    当所述集中控制设备接受所述加入车队请求时向所述第一车辆发送确认消息;
    所述集中控制设备接收所述第一车辆在接收到所述确认消息后发送的控制权交付信息;
    所述集中控制设备根据所述控制权交付信息对所述第一车辆进行控制。
  11. 如权利要求1至9中任一项所述的方法,其特征在于,在所述集中控制设备确定自动驾驶车队中的第一车辆的第一行驶参数之前,所述方法还包括:
    所述集中控制设备接收所述第一车辆根据所述第一车辆的车辆信息发送的加入车队请求,所述车辆信息包括所述第一车辆的路径规划信息;
    在所述集中控制设备根据所述车辆信息和所述自动驾驶车队的车队信息接受所述加入车队请求时,向所述第一车辆发送确认消息,其中,所述车队信息包括所述自动驾驶车队的路径规划信息;
    所述集中控制设备接收所述第一车辆在接收到所述确认消息后发送的控制权交付信息,并对所述第一车辆进行控制。
  12. 如权利要求10或11所述的方法,其特征在于,在所述集中控制设备接收所述第一车辆在接收到所述确认消息后发送的控制权交付信息之前,所述方法还包括:
    所述集中控制设备向所述第一车辆发送位置信息,所述位置信息指示所述第一车辆驶入所述第一车辆在所述自动驾驶车队中的位置。
  13. 如权利要求1至12中任一项所述的方法,其特征在于,在所述集中控制设备确定自动驾驶车队中的第一车辆的第一行驶参数之前,所述方法还包括:
    所述集中控制设备向所述多辆车辆中各车辆分别发送获取行驶信息请求;
    所述集中控制设备接收所述多辆车辆中各车辆在接受所述获取行驶信息请求时分别发送的第一反馈信息;
    所述集中控制设备根据所述第一反馈信息获取所述多辆车辆中各车辆的行驶信息;
    所述集中控制设备根据所述多辆车辆中各车辆的行驶信息分别向所述多辆车辆中各车辆发送组网请求;
    所述集中控制设备接收所述多辆车辆中各车辆在接受所述组网请求时分别发送的第二反馈信息;
    所述集中控制设备根据所述第二反馈信息将所述多辆车辆中各车辆加入同一网络中。
  14. 如权利要求13所述的方法,其特征在于,所述方法还包括:
    所述集中控制设备根据所述行驶信息确定共享路径,所述共享路径为所述多辆车辆中的其中一辆车辆的行驶路径,其中,所述行驶信息包括行驶路径;
    所述集中控制设备向所述多辆车辆发送所述共享路径,以便于所述多辆车辆按照所述共享路径行驶。
  15. 一种控制车辆编队行驶的方法,其特征在于,包括:
    车辆接收集中控制设备发送的控制信息,所述控制信息指示所述车辆按照行驶参数行驶,所述车辆为自动驾驶车队中的其中一辆车辆,所述自动驾驶车队由处于自动驾驶模式的多辆车辆组成;
    所述车辆按照所述行驶参数行驶。
  16. 如权利要求15所述的方法,其特征在于,所述行驶参数包括目标速度,
    其中,所述车辆按照所述行驶参数行驶,包括:
    所述车辆变速至所述目标速度。
  17. 如权利要求16所述的方法,其特征在于,所述行驶参数还包括起始时刻和结束时刻,或时间间隔,
    其中,所述车辆变速至所述目标速度,包括:
    所述车辆从所述起始时刻开始变速,并在所述结束时刻时或在所述结束时刻之前变速至所述目标速度,或
    所述车辆在所述时间间隔内变速至所述目标速度。
  18. 如权利要求16或17所述的方法,其特征在于,所述方法还包括:
    当所述车辆变速至所述目标速度时,所述车辆向所述集中控制设备发送变速完成消息。
  19. 如权利要求16至18中任一项所述的方法,其特征在于,在所述车 辆变速至所述目标速度之前,所述方法还包括:
    所述车辆接收所述集中控制设备发送的同步信号;
    其中,所述车辆变速至所述目标速度,包括:
    所述车辆在接收到所述同步信号时,开始变速并变速至所述目标速度。
  20. 如权利要求15至19中任一项所述的方法,其特征在于,所述行驶参数还包括以下参数中的至少一种:车距、指示灯参数、换档参数和刹车参数。
  21. 如权利要求15至20中任一项所述的方法,其特征在于,在所述车辆接收集中控制设备发送的控制信息之前,所述方法还包括:
    所述车辆向所述集中控制设备发送变速请求;
    其中,所述车辆接收集中控制设备发送的控制信息,包括:
    所述车辆接收所述集中控制设备在接受所述变速请求时发送的所述控制信息。
  22. 如权利要求21所述的方法,其特征在于,所述车辆向所述集中控制设备发送变速请求,包括:
    当所述车辆检测到所述车辆与所述车辆相邻的车辆的车距大于预设车距时,向所述集中控制设备发送所述变速请求。
  23. 如权利要求15至22中任一项所述的方法,其特征在于,在所述车辆接收集中控制设备发送的控制信息之前,所述方法还包括:
    所述车辆接收所述集中控制设备发送的所述自动驾驶车队的车队信息,所述车队信息包括所述自动驾驶车队的路径规划信息;
    所述车辆在根据所述车队信息和所述车辆的车辆信息确定加入所述自动驾驶车队,所述车辆信息包括所述车辆的路径规划信息;
    所述车辆向所述集中控制设备发送加入车队请求;
    所述车辆接收所述集中控制设备接受所述加入车队请求时发送的确认消息;
    所述车辆向所述集中控制设备发送控制权交付信息,以便于所述集中控制设备根据所述控制权交付信息对所述车辆进行控制。
  24. 如权利要求15至22中任一项所述的方法,其特征在于,在所述车辆接收集中控制设备发送的控制信息之前,所述方法还包括:
    所述车辆向所述集中控制设备发送加入车队请求;
    所述车辆接收所述集中控制设备发送的确认消息,所述确认消息指示所述集中控制设备接受所述加入车队请求;
    所述车辆根据所述确认消息向所述集中控制设备发送控制权交付信息,以便于所述集中控制设备根据所述控制权交付信息对所述车辆进行控制。
  25. 如权利要求23或24所述的方法,其特征在于,在所述车辆向所述集中控制设备发送控制权交付信息之前,所述方法还包括:
    所述车辆接收所述集中控制设备发送的位置信息,所述位置信息指示所述车辆在所述自动驾驶车队中的位置;
    所述车辆驶入所述车辆在所述自动驾驶车队中的位置。
  26. 如权利要求15至25中任一项所述的方法,其特征在于,在所述车辆接收集中控制设备发送的控制信息之前,所述方法还包括:
    所述车辆接收所述集中控制设备发送的获取行驶信息请求;
    所述车辆向所述集中控制设备发送第一反馈信息,所述第一反馈信息指示所述车辆接受所述获取行驶信息请求;
    所述车辆向所述基站控制设备发送所述车辆的行驶信息;
    所述车辆接收所述控制设备根据所述车辆的行驶信息发送的组网请求;
    所述车辆根据所述组网请求向所述集中控制设备发送第二反馈信息,所述第二反馈信息指示所述车辆接受所述组网请求。
  27. 一种集中控制设备,其特征在于,包括:
    第一确定单元,用于确定自动驾驶车队中的第一车辆的第一行驶参数,所述自动驾驶车队由处于自动驾驶模式的多辆车辆组成,所述第一车辆为所述多辆车辆之一;
    第一发送单元,用于向所述第一车辆发送第一控制信息,所述第一控制信息用于控制所述第一车辆按照第一确定单元确定的所述第一行驶参数行驶。
  28. 如权利要求27所述的集中控制设备,其特征在于,所述第一行驶参数包括目标速度,其中,所述第一控制信息用于控制所述第一车辆变速至所述目标速度。
  29. 如权利要求28所述的集中控制设备,其特征在于,所述第一行驶参数还包括起始时刻和结束时刻,或时间间隔,其中,所述第一控制信息用于控制所述第一车辆从所述起始时刻开始变速,并在所述结束时刻时或在所 述结束时刻之前变速至所述目标速度,或所述第一控制信息用于控制所述第一车辆在所述时间间隔内变速至所述目标速度。
  30. 如权利要求28所述的集中控制设备,其特征在于,所述集中控制设备还包括:
    第二确定单元,用于确定第二车辆的第二行驶参数,所述第二行驶参数包括所述目标速度,所述第二车辆为所述多辆车辆之一,所述第一车辆和所述第二车辆在所述自动驾驶车队中的位置相邻,所述第一车辆为所述第二车辆的前车;
    第二发送单元,用于向所述第二车辆发送第二控制信息,所述第二控制信息用于控制所述第二车辆变速至所述目标速度。
  31. 如权利要求30所述的集中控制设备,所述集中控制设备还包括:
    第一接收单元,用于接收所述第二车辆减速至所述目标速度时发送的第一变速完成消息;
    其中,所述第一发送单元具体用于:
    根据所述第一接收单元接收的所述第一变速完成消息向所述第一车辆发送所述第一控制信息。
  32. 如权利要求30所述的集中控制设备,其特征在于,所述集中控制设备还包括:
    第二接收单元,用于接收所述第一车辆加速至所述目标速度时发送的第二变速完成消息;
    其中,所述第二发送单元具体用于:
    根据所述第二接收单元接收的所述第二变速完成消息向所述第二车辆发送所述第二控制信息。
  33. 如权利要求30所述的集中控制设备,其特征在于,所述第一发送单元还用于:
    向所述第一车辆和所述第二车辆发送同步信号,以便于所述第一车辆和所述第二车辆在接收到所述同步信号时开始变速并变速至所述目标速度;
    其中,所述集中控制设备还包括:
    第三接收单元,用于分别接收所述第一车辆和所述第二车辆根据所述同步信号变速至所述目标速度时发送的第三变速完成消息和第四变速完成消息。
  34. 如权利要求27至33中任一项所述的集中控制设备,其特征在于,所述第一行驶参数还包括以下参数中的至少一种:车距、指示灯参数、换档参数和刹车参数。
  35. 如权利要求27至34中任一项所述的集中控制设备,其特征在于,所述集中控制设备还包括:
    第四接收单元,用于接收所述第一车辆的变速请求;
    其中,所述第一确定单元具体用于:
    根据所述变速请求确定所述第一行驶参数。
  36. 如权利要求27至35中任一项所述的集中控制设备,其特征在于,所述第一发送单元还用于:
    向所述第一车辆发送所述自动驾驶车队的车队信息,所述车队信息包括所述自动驾驶车队的路径规划信息;
    其中,所述集中控制设备还包括:
    第五接收单元,用于接收所述第一车辆在根据所述车队信息和所述第一车辆的车辆信息确定加入所述自动驾驶车队时发送的加入车队请求,所述车辆信息包括所述第一车辆的路径规划信息;
    所述第一发送单元还用于,当所述集中控制设备接受所述加入车队请求时向所述第一车辆发送确认消息;
    所述第五接收单元还用于,接收所述第一车辆在接收到所述确认消息后发送的控制权交付信息;
    控制单元,用于根据所述控制权交付信息对所述第一车辆进行控制。
  37. 如权利要求27至35中任一项所述的集中控制设备,其特征在于,所述集中控制设备还包括:
    第六接收单元,用于接收所述第一车辆根据所述第一车辆的车辆信息发送的加入车队请求,所述车辆信息包括所述第一车辆的路径规划信息;
    其中,所述第一发送单元还用于:
    在所述集中控制设备根据所述车辆信息和所述自动驾驶车队的车队信息时,向所述第一车辆发送确认消息,其中,所述车队信息包括所述自动驾驶车队的路径规划信息;
    所述第六接收单元还用于,接收所述第一车辆在接收到所述确认消息后发送的控制权交付信息,并对所述第一车辆进行控制。
  38. 如权利要求36或37所述的集中控制设备,其特征在于,所述第一发送单元还用于:
    向所述第一车辆发送位置信息,所述位置信息指示所述第一车辆驶入所述第一车辆在所述自动驾驶车队中的位置。
  39. 如权利要求27至38中任一项所述的集中控制设备,其特征在于,所述第一发送单元还用于:
    向所述多辆车辆中各车辆分别发送获取行驶信息请求;
    其中,所述集中控制设备还包括:
    第七接收单元,用于接收所述多辆车辆中各车辆在接受所述获取行驶信息请求时分别发送的第一反馈信息;
    获取单元,用于根据所述第一反馈信息获取所述多辆车辆中各车辆的行驶信息;
    所述第一发送单元还用于,根据所述多辆车辆中各车辆的行驶信息分别向所述多辆车辆中各车辆发送组网请求;
    所述第七接收单元还用于,接收所述多辆车辆中各车辆在接受所述组网请求时分别发送的第二反馈信息;
    组网单元,用于根据所述第二反馈信息将所述多辆车辆中各车辆加入同一网络中。
  40. 如权利要求39所述的集中控制设备,其特征在于,所述第一确定单元还用于:
    根据所述行驶信息确定共享路径,所述共享路径为所述多辆车辆中的其中一辆车辆的行驶路径,其中,所述行驶信息包括行驶路径;
    所述第一发送单元还用于,向所述多辆车辆发送所述共享路径,以便于所述多辆车辆按照所述共享路径行驶。
  41. 一种车辆,其特征在于,所述车辆为自动驾驶车队中的其中一辆车辆,所述自动驾驶车队由处于自动驾驶模式的多辆车辆组成,包括:
    接收单元,用于接收集中控制设备发送的控制信息,所述控制信息指示所述车辆按照行驶参数行驶;
    行驶单元,用于按照所述行驶参数行驶。
  42. 如权利要求41所述的车辆,其特征在于,所述行驶参数包括目标速度,
    其中,所述行驶单元具体用于:
    变速至所述目标速度。
  43. 如权利要求42所述的车辆,其特征在于,所述行驶参数还包括起始时刻和结束时刻,或时间间隔,
    其中,所述行驶单元具体用于:
    从所述起始时刻开始变速,并在所述结束时刻时或在所述结束时刻之前变速至所述目标速度,或
    在所述时间间隔内变速至所述目标速度。
  44. 如权利要求42或43所述的车辆,其特征在于,所述车辆还包括:
    第一发送单元,用于当所述车辆变速至所述目标速度时,向所述集中控制设备发送变速完成消息。
  45. 如权利要求42至44中任一项所述的车辆,其特征在于,所述接收单元还用于,接收所述集中控制设备发送的同步信号;
    其中,所述行驶单元具体用于:
    在接收到所述同步信号时,开始变速并变速至所述目标速度。
  46. 如权利要求41至45中任一项所述的车辆,其特征在于,所述行驶参数还包括以下参数中的至少一种:车距、指示灯参数、换档参数和刹车参数。
  47. 如权利要求41至46中任一项所述的车辆,其特征在于,所述车辆还包括:
    第二发送单元,用于向所述集中控制设备发送变速请求;
    其中,所述接收单元具体用于:
    接收所述集中控制设备在接受所述变速请求时发送的所述控制信息。
  48. 如权利要求47所述的车辆,其特征在于,所述第二发送单元具体用于:
    当所述第一车辆检测到所述第一车辆与所述第一车辆相邻的车辆的车距大于预设车距时,向所述集中控制设备发送所述变速请求。
  49. 如权利要求41至48中任一项所述的车辆,其特征在于,所述接收单元还用于:
    接收所述集中控制设备发送的所述自动驾驶车队的车队信息,所述车队信息包括所述自动驾驶车队的路径规划信息;
    所述车辆还包括:
    确定单元,用于根据所述车队信息和所述车辆的车辆信息确定加入所述自动驾驶车队,所述车辆信息包括所述车辆的路径规划信息;
    第三发送单元,用于向所述集中控制设备发送加入车队请求;
    所述接收单元还用于,接收所述集中控制设备接受所述加入车队请求时发送的确认消息;
    所述第三发送单元还用于,向所述集中控制设备发送控制权交付信息,以便于所述集中控制设备根据所述控制权交付信息对所述车辆进行控制。
  50. 如权利要求41至48中任一项所述的方法,其特征在于,所述车辆还包括:
    第四发送单元,用于向所述集中控制设备发送加入车队请求;
    所述接收单元还用于,接收所述集中控制设备发送的确认消息,所述确认消息指示所述集中控制设备接受所述加入车队请求;
    第四发送单元还用于,根据所述确认消息向所述集中控制设备发送控制权交付信息,以便于所述集中控制设备根据所述控制权交付信息对所述车辆进行控制。
  51. 如权利要求49或50所述的车辆,其特征在于,所述接收单元还用于:
    接收所述集中控制设备发送的位置信息,所述位置信息指示所述车辆在所述自动驾驶车队中的位置;
    其中,所述行驶单元具体用于:
    驶入所述车辆在所述自动驾驶车队中的位置。
  52. 如权利要求41至51中任一项所述的车辆,其特征在于,所述接收单元还用于:
    接收所述集中控制设备发送的获取行驶信息请求;
    其中,所述车辆还包括:
    第五发送单元,用于向所述集中控制设备发送第一反馈信息,所述第一反馈信息指示所述车辆接受所述获取行驶信息请求;
    所述第五发送单元还用于,向所述基站控制设备发送所述车辆的行驶信息;
    所述接收单元还用于,接收所述控制设备根据所述车辆的行驶信息发送 的组网请求;
    所述第五发送单元还用于,根据所述组网请求向所述集中控制设备发送第二反馈信息,所述第二反馈信息指示所述车辆接受所述组网请求。
PCT/CN2016/088023 2016-06-30 2016-06-30 控制车辆编队行驶的方法、集中控制设备和车辆 WO2018000386A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/088023 WO2018000386A1 (zh) 2016-06-30 2016-06-30 控制车辆编队行驶的方法、集中控制设备和车辆
CN201680001921.7A CN108352110A (zh) 2016-06-30 2016-06-30 控制车辆编队行驶的方法、集中控制设备和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/088023 WO2018000386A1 (zh) 2016-06-30 2016-06-30 控制车辆编队行驶的方法、集中控制设备和车辆

Publications (1)

Publication Number Publication Date
WO2018000386A1 true WO2018000386A1 (zh) 2018-01-04

Family

ID=60785629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088023 WO2018000386A1 (zh) 2016-06-30 2016-06-30 控制车辆编队行驶的方法、集中控制设备和车辆

Country Status (2)

Country Link
CN (1) CN108352110A (zh)
WO (1) WO2018000386A1 (zh)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10216195B2 (en) 2011-07-06 2019-02-26 Peloton Technology, Inc. Applications for using mass estimations for vehicles
US10254764B2 (en) 2016-05-31 2019-04-09 Peloton Technology, Inc. Platoon controller state machine
CN109799827A (zh) * 2019-02-20 2019-05-24 百度在线网络技术(北京)有限公司 车辆群体规划方法、装置、设备及计算机可读介质
US10369998B2 (en) 2016-08-22 2019-08-06 Peloton Technology, Inc. Dynamic gap control for automated driving
GB2572210A (en) * 2018-03-23 2019-09-25 Jaguar Land Rover Ltd Controlling vehicle platooning
US10474166B2 (en) 2011-07-06 2019-11-12 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US10514706B2 (en) 2011-07-06 2019-12-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US10520952B1 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
GB2576318A (en) * 2018-08-13 2020-02-19 British Telecomm Vehicle platooning
GB2576317A (en) * 2018-08-13 2020-02-19 British Telecomm Vehicle platooning
CN111327652A (zh) * 2018-12-14 2020-06-23 上海博泰悦臻电子设备制造有限公司 车队行驶的管理方法、系统、计算机存储介质及服务平台
US10732645B2 (en) 2011-07-06 2020-08-04 Peloton Technology, Inc. Methods and systems for semi-autonomous vehicular convoys
US10762791B2 (en) 2018-10-29 2020-09-01 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
CN111640324A (zh) * 2019-03-01 2020-09-08 丰田自动车株式会社 运行控制装置以及车辆
CN111880527A (zh) * 2020-06-19 2020-11-03 中国煤炭科工集团太原研究院有限公司 井下无人驾驶运输车机器人控制方法
CN111897321A (zh) * 2020-06-19 2020-11-06 中国煤炭科工集团太原研究院有限公司 一种井下特种车辆的无人驾驶系统
US10899323B2 (en) 2018-07-08 2021-01-26 Peloton Technology, Inc. Devices, systems, and methods for vehicle braking
CN112348620A (zh) * 2019-08-09 2021-02-09 本田技研工业株式会社 车辆租赁系统和车辆租赁方法
US10926760B2 (en) * 2018-03-20 2021-02-23 Kabushiki Kaisha Toshiba Information processing device, information processing method, and computer program product
WO2021103536A1 (zh) * 2019-11-25 2021-06-03 华为技术有限公司 一种车辆调控方法、装置及电子设备
US20210303001A1 (en) * 2020-03-24 2021-09-30 Beijing Tusen Zhitu Technology Co., Ltd. Method, apparatus, medium, and device for vehicle automatic navigation control
CN113525405A (zh) * 2020-04-22 2021-10-22 北京图森智途科技有限公司 自动驾驶车辆的辅助控制方法、车载装置及系统
WO2021213955A1 (en) 2020-04-21 2021-10-28 Teknoweb Materials S.R.L. Applying highly viscous curable binder systems to fibrous webs comprising natural fibers
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US11334092B2 (en) 2011-07-06 2022-05-17 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US11427196B2 (en) 2019-04-15 2022-08-30 Peloton Technology, Inc. Systems and methods for managing tractor-trailers
CN116257069A (zh) * 2023-05-16 2023-06-13 睿羿科技(长沙)有限公司 一种无人车辆编队决策与速度规划的方法
US11900816B2 (en) 2021-11-30 2024-02-13 Automotive Research & Testing Center Vehicle platoon following deciding system based on cloud computing and deciding method thereof

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109318898A (zh) * 2018-11-06 2019-02-12 山东派蒙机电技术有限公司 一种智能驾驶汽车车队协同控制系统
US11011063B2 (en) * 2018-11-16 2021-05-18 Toyota Motor North America, Inc. Distributed data collection and processing among vehicle convoy members
CN111223321A (zh) * 2018-11-26 2020-06-02 华为技术有限公司 自动驾驶规划的方法、设备及系统
US11046313B2 (en) * 2018-12-11 2021-06-29 Beijing Voyager Technology Co., Ltd. Autonomous vehicle train
CN109828561B (zh) * 2019-01-15 2022-03-01 北京百度网讯科技有限公司 自动驾驶方法、装置、电子设备及可读存储介质
CN109901587A (zh) * 2019-03-27 2019-06-18 广州大学 车辆的远程协同控制方法、装置、系统、服务器和介质
DE102019109133A1 (de) * 2019-04-08 2020-10-08 Man Truck & Bus Se Technik zum Abgleich von Fahrten von Kraftfahrzeugen
CN111833628B (zh) * 2019-04-18 2022-11-08 华为技术有限公司 无人驾驶车辆的控制方法及相关装置
CN110225486B (zh) * 2019-06-12 2022-09-16 京东方科技集团股份有限公司 搬运车、自组网络搬运系统及控制方法
CN110262493A (zh) * 2019-06-25 2019-09-20 北京智行者科技有限公司 无人车车队队形变换的方法及装置
CN111696340A (zh) * 2020-05-15 2020-09-22 深圳市元征科技股份有限公司 一种车辆控制的方法、装置及设备
CN111641933B (zh) * 2020-05-28 2023-09-15 阿波罗智联(北京)科技有限公司 车队管理方法、装置及相关设备
CN113763742B (zh) * 2020-06-01 2022-09-30 大唐移动通信设备有限公司 一种基于mec的车队辅助行驶的方法、装置及存储介质
KR20210152222A (ko) * 2020-06-08 2021-12-15 현대자동차주식회사 서버, 서버와 통신하는 퍼스널 모빌리티 및 차량
CN111959506A (zh) * 2020-08-11 2020-11-20 北京汽车研究总院有限公司 车辆及车辆编队行驶的控制方法、装置
CN112164217B (zh) * 2020-09-14 2021-09-17 南京航空航天大学 一种自动驾驶车辆队列行驶管理系统及其控制方法
CN111984019A (zh) * 2020-09-28 2020-11-24 四川紫荆花开智能网联汽车科技有限公司 一种基于v2x通信的混合车队控制系统和方法
CN113788030B (zh) * 2021-10-11 2023-05-23 北京九星智元科技有限公司 一种车队的控制方法、加入方法、控制装置及加入装置
CN114132315B (zh) * 2021-11-17 2023-09-22 苏州挚途科技有限公司 自动驾驶车辆的控制方法、装置及电子设备
CN114613180A (zh) * 2022-02-22 2022-06-10 恒大新能源汽车投资控股集团有限公司 自主泊车方法、设备、车辆及停车场端服务器
CN114822083B (zh) * 2022-04-15 2023-08-18 湖南大学 智慧车辆编队辅助控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101702A (zh) * 2007-07-16 2008-01-09 陈拙夫 汽车车际间信息共享型自动驾驶系统及其控制方法
CN101859494A (zh) * 2009-04-06 2010-10-13 通用汽车环球科技运作公司 车队车辆管理
US20150054957A1 (en) * 2013-08-23 2015-02-26 Xerox Corporation System and method for automated sequencing of vehicle under low speed conditions from video
CN105160865A (zh) * 2015-08-05 2015-12-16 深圳市航盛电子股份有限公司 一种车辆编队行驶控制系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1975802A (zh) * 2006-11-28 2007-06-06 中国电子科技集团公司第三十八研究所 机动车辆编队行驶系统的控制方法
CN202394091U (zh) * 2011-11-15 2012-08-22 上海航天汽车机电股份有限公司 一种车辆的自动编队行驶系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101702A (zh) * 2007-07-16 2008-01-09 陈拙夫 汽车车际间信息共享型自动驾驶系统及其控制方法
CN101859494A (zh) * 2009-04-06 2010-10-13 通用汽车环球科技运作公司 车队车辆管理
US20150054957A1 (en) * 2013-08-23 2015-02-26 Xerox Corporation System and method for automated sequencing of vehicle under low speed conditions from video
CN105160865A (zh) * 2015-08-05 2015-12-16 深圳市航盛电子股份有限公司 一种车辆编队行驶控制系统及方法

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
US10234871B2 (en) 2011-07-06 2019-03-19 Peloton Technology, Inc. Distributed safety monitors for automated vehicles
US10732645B2 (en) 2011-07-06 2020-08-04 Peloton Technology, Inc. Methods and systems for semi-autonomous vehicular convoys
US11360485B2 (en) 2011-07-06 2022-06-14 Peloton Technology, Inc. Gap measurement for vehicle convoying
US11334092B2 (en) 2011-07-06 2022-05-17 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US10216195B2 (en) 2011-07-06 2019-02-26 Peloton Technology, Inc. Applications for using mass estimations for vehicles
US10474166B2 (en) 2011-07-06 2019-11-12 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US10514706B2 (en) 2011-07-06 2019-12-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US10520952B1 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US10254764B2 (en) 2016-05-31 2019-04-09 Peloton Technology, Inc. Platoon controller state machine
US10369998B2 (en) 2016-08-22 2019-08-06 Peloton Technology, Inc. Dynamic gap control for automated driving
US10921822B2 (en) 2016-08-22 2021-02-16 Peloton Technology, Inc. Automated vehicle control system architecture
US10906544B2 (en) 2016-08-22 2021-02-02 Peloton Technology, Inc. Dynamic gap control for automated driving
US10926760B2 (en) * 2018-03-20 2021-02-23 Kabushiki Kaisha Toshiba Information processing device, information processing method, and computer program product
GB2572210A (en) * 2018-03-23 2019-09-25 Jaguar Land Rover Ltd Controlling vehicle platooning
GB2572210B (en) * 2018-03-23 2020-09-16 Jaguar Land Rover Ltd Controlling vehicle platooning
US10899323B2 (en) 2018-07-08 2021-01-26 Peloton Technology, Inc. Devices, systems, and methods for vehicle braking
GB2576318A (en) * 2018-08-13 2020-02-19 British Telecomm Vehicle platooning
GB2576318B (en) * 2018-08-13 2023-04-05 British Telecomm Vehicle platooning
GB2576317B (en) * 2018-08-13 2023-04-05 British Telecomm Vehicle platooning
GB2576317A (en) * 2018-08-13 2020-02-19 British Telecomm Vehicle platooning
US10762791B2 (en) 2018-10-29 2020-09-01 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
US11341856B2 (en) 2018-10-29 2022-05-24 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
CN111327652A (zh) * 2018-12-14 2020-06-23 上海博泰悦臻电子设备制造有限公司 车队行驶的管理方法、系统、计算机存储介质及服务平台
CN109799827A (zh) * 2019-02-20 2019-05-24 百度在线网络技术(北京)有限公司 车辆群体规划方法、装置、设备及计算机可读介质
CN111640324A (zh) * 2019-03-01 2020-09-08 丰田自动车株式会社 运行控制装置以及车辆
US11427196B2 (en) 2019-04-15 2022-08-30 Peloton Technology, Inc. Systems and methods for managing tractor-trailers
CN112348620A (zh) * 2019-08-09 2021-02-09 本田技研工业株式会社 车辆租赁系统和车辆租赁方法
WO2021103536A1 (zh) * 2019-11-25 2021-06-03 华为技术有限公司 一种车辆调控方法、装置及电子设备
US11815910B2 (en) * 2020-03-24 2023-11-14 Beijing Tusen Zhitu Technology Co., Ltd. Method, apparatus, medium, and device for vehicle automatic navigation control
US20210303001A1 (en) * 2020-03-24 2021-09-30 Beijing Tusen Zhitu Technology Co., Ltd. Method, apparatus, medium, and device for vehicle automatic navigation control
WO2021213955A1 (en) 2020-04-21 2021-10-28 Teknoweb Materials S.R.L. Applying highly viscous curable binder systems to fibrous webs comprising natural fibers
CN113525405A (zh) * 2020-04-22 2021-10-22 北京图森智途科技有限公司 自动驾驶车辆的辅助控制方法、车载装置及系统
CN111897321A (zh) * 2020-06-19 2020-11-06 中国煤炭科工集团太原研究院有限公司 一种井下特种车辆的无人驾驶系统
CN111880527A (zh) * 2020-06-19 2020-11-03 中国煤炭科工集团太原研究院有限公司 井下无人驾驶运输车机器人控制方法
CN111897321B (zh) * 2020-06-19 2023-08-11 中国煤炭科工集团太原研究院有限公司 一种井下特种车辆的无人驾驶系统
CN111880527B (zh) * 2020-06-19 2022-12-27 中国煤炭科工集团太原研究院有限公司 井下无人驾驶运输车机器人控制方法
US11900816B2 (en) 2021-11-30 2024-02-13 Automotive Research & Testing Center Vehicle platoon following deciding system based on cloud computing and deciding method thereof
CN116257069A (zh) * 2023-05-16 2023-06-13 睿羿科技(长沙)有限公司 一种无人车辆编队决策与速度规划的方法
CN116257069B (zh) * 2023-05-16 2023-08-08 睿羿科技(长沙)有限公司 一种无人车辆编队决策与速度规划的方法

Also Published As

Publication number Publication date
CN108352110A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2018000386A1 (zh) 控制车辆编队行驶的方法、集中控制设备和车辆
KR102226067B1 (ko) 자율주행시스템에서 가상 신호등 서비스 제공방법 및 이를 위한 장치
KR102241296B1 (ko) 자율주행시스템에서 mec 서버를 통한 데이터 공유 방법 및 이를 위한 장치
JP6682629B2 (ja) 車両の車線変更のために2車両間の交通空隙を特定する方法および制御システム
US10827399B2 (en) Method for switching roadside navigation unit in navigation system, and device
US20200033845A1 (en) Method and apparatus for controlling by emergency step in autonomous driving system
US20200033147A1 (en) Driving mode and path determination method and system of autonomous vehicle
US10363961B2 (en) Method and device for operating a plurality of vehicles
WO2016098361A1 (ja) 路側制御装置、コンピュータプログラム及び情報処理方法
JP2019519039A (ja) 隊列走行コントローラの状態マシン
US10832580B2 (en) Cooperative driving control device and method therefor
US20200094827A1 (en) Apparatus for controlling autonomous vehicle and control method thereof
WO2019069868A1 (ja) 判定装置及び判定方法並びに判定用プログラム
KR101406194B1 (ko) 대열주행(fleet driving) 서비스 방법 및 대열주행 서비스 서버, 그리고 대열주행 방법 및 장치
WO2019091288A1 (zh) 车联网中的交通流控制方法及其装置
JP5163666B2 (ja) 車群走行制御装置
WO2020038427A1 (zh) 车辆之间建立通信连接方法、装置及系统
JP2013534655A (ja) 車列での移動のための制御システム
KR102606258B1 (ko) 협력 주행 제어 장치 및 방법
CN109298713B (zh) 指令发送方法、装置及系统、自动驾驶车辆
JP2016177638A (ja) 路側制御装置、コンピュータプログラム及び情報処理方法
US20210118293A1 (en) Method for controlling a vehicle in an autonoumous drving system
US20200029191A1 (en) Method and apparatus for setting a server bridge in an autonomous driving system
JP2020050109A (ja) 車両制御装置、車両制御方法、及びプログラム
US20200005632A1 (en) Traffic light adaptive learning and mapping method and system for improving vehicle energy efficiency and driving comfort

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906786

Country of ref document: EP

Kind code of ref document: A1