WO2017221972A1 - 芳香族ポリスルホンおよび芳香族ポリスルホン組成物 - Google Patents

芳香族ポリスルホンおよび芳香族ポリスルホン組成物 Download PDF

Info

Publication number
WO2017221972A1
WO2017221972A1 PCT/JP2017/022822 JP2017022822W WO2017221972A1 WO 2017221972 A1 WO2017221972 A1 WO 2017221972A1 JP 2017022822 W JP2017022822 W JP 2017022822W WO 2017221972 A1 WO2017221972 A1 WO 2017221972A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic polysulfone
aromatic
group
functional group
polar functional
Prior art date
Application number
PCT/JP2017/022822
Other languages
English (en)
French (fr)
Inventor
伊藤 和幸
佳生 庄田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201780039616.1A priority Critical patent/CN109328207B/zh
Priority to EP17815440.7A priority patent/EP3476884B1/en
Priority to KR1020187036533A priority patent/KR102343693B1/ko
Priority to ES17815440T priority patent/ES2971279T3/es
Priority to JP2018524134A priority patent/JP6967511B2/ja
Priority to US16/311,220 priority patent/US10899889B2/en
Publication of WO2017221972A1 publication Critical patent/WO2017221972A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/46Post-polymerisation treatment, e.g. recovery, purification, drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8631Peaks
    • G01N30/8634Peak quality criteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to aromatic polysulfones and aromatic polysulfone compositions.
  • This application claims priority based on Japanese Patent Application No. 2016-125965 filed in Japan on June 24, 2016, the contents of which are incorporated herein by reference.
  • Aromatic polysulfone is an amorphous thermoplastic resin that has excellent heat resistance, mechanical properties, and transparency. Therefore, aromatic polysulfone is used as a molding material and film forming material in various applications such as electronic device parts. ing. Aromatic polysulfone is usually produced by subjecting an aromatic dihalogenosulfone compound and an aromatic dihydroxy compound to a polycondensation reaction in the presence of a base and a reaction solvent (see, for example, Patent Document 1).
  • One method for producing a film using aromatic polysulfone as a forming material is a solution casting method.
  • the solution casting method is widely known because it can obtain a film with less foreign matter and excellent thickness accuracy and surface smoothness.
  • a solution in which aromatic polysulfone is dissolved hereinafter sometimes referred to as “aromatic polysulfone solution”
  • aromatic polysulfone solution a solution in which aromatic polysulfone is dissolved
  • a coating film is prepared with.
  • a film is obtained by peeling this coating film from the metal substrate.
  • the coating film is peeled from the metal substrate, if the adhesion between the coating film and the metal substrate is too strong, the film may be stretched or broken.
  • an aromatic polysulfone having excellent peelability and an aromatic polysulfone composition containing this aromatic polysulfone are desired.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an aromatic polysulfone having excellent peelability. Another object of the present invention is to provide an aromatic polysulfone composition containing this aromatic polysulfone.
  • one embodiment of the present invention includes an aromatic polysulfone having at least one highly polar functional group at a terminal (hereinafter sometimes referred to as an aromatic polysulfone having a highly polar functional group),
  • the ratio of the aromatic polysulfone having a highly polar functional group in the whole group polysulfone is 0.1% by mass or more and 11% by mass or less.
  • an area of a signal attributed to an aromatic polysulfone having a highly polar functional group is calculated as follows: An aromatic polysulfone having a ratio obtained by dividing the total area of all signals attributed to the aromatic polysulfone by 0.1 to 11% by mass is provided.
  • Ph 1 and Ph 2 each independently represent a phenylene group, and one or more hydrogen atoms of the phenylene group are each independently substituted with an alkyl group, an aryl group, or a halogen atom. May be. ]
  • One embodiment of the present invention provides an aromatic polysulfone composition containing the above aromatic polysulfone.
  • a filler is further included.
  • an aromatic polysulfone having excellent peelability is provided.
  • An aromatic polysulfone composition containing the aromatic polysulfone is also provided.
  • an aromatic polysulfone comprising an aromatic polysulfone having at least one highly polar functional group at a terminal, The aromatic polysulfone has a signal area attributed to the aromatic polysulfone having a highly polar functional group in the chromatogram obtained by measurement by gel permeation chromatography under the following conditions.
  • Aromatic polysulfone which is 0.1% or more and 11% or less with respect to the total area of all assigned signals.
  • Ph 1 and Ph 2 each independently represent a phenylene group, and one or more hydrogen atoms of the phenylene group are each independently substituted with an alkyl group, an aryl group, or a halogen atom. It may be.
  • Ph 3 The aromatic polysulfone according to [2], having 0.5 to 10 phenolic hydroxyl groups per 100 repeating units represented by the formula (1).
  • An aromatic polysulfone composition comprising the aromatic polysulfone according to any one of [1] to [3].
  • the aromatic polysulfone of the present embodiment typically has a divalent aromatic group (residue obtained by removing two hydrogen atoms bonded to the aromatic ring from the aromatic compound) and a sulfonyl group (—SO 2). 2- ) and a resin having a repeating unit containing an oxygen atom.
  • the aromatic polysulfone preferably has a repeating unit represented by the formula (1) (hereinafter sometimes referred to as “repeating unit (1)”).
  • a repeating unit represented by the formula (1) hereinafter sometimes referred to as “repeating unit (1)”.
  • an aromatic polysulfone having a repeating unit (1) is referred to as an aromatic polyether sulfone.
  • the repeating unit represented by the formula (2) hereinafter sometimes referred to as “repeating unit (2)”
  • the repeating unit represented by the formula (3) hereinafter referred to as “repeating unit (3)”. May have at least one other repeating unit.
  • Ph 1 and Ph 2 each independently represent a phenylene group; one or more hydrogen atoms of the phenylene group are each independently substituted with an alkyl group, an aryl group, or a halogen atom. It may be. ]
  • Ph 3 and Ph 4 each independently represent a phenylene group; one or more hydrogen atoms of the phenylene group are each independently substituted with an alkyl group, an aryl group, or a halogen atom.
  • R may be an alkylidene group, an oxygen atom or a sulfur atom.
  • Ph 5 represents a phenylene group; one or more hydrogen atoms of the phenylene group may each independently be substituted with an alkyl group, an aryl group, or a halogen atom; n Is an integer of 1 to 3, and when n is 2 or more, a plurality of Ph 5 may be the same or different from each other. ]
  • the phenylene group represented by any of Ph 1 to Ph 5 may independently be a p-phenylene group, an m-phenylene group, or an o-phenylene group. However, it is preferably a p-phenylene group.
  • the alkyl group that may substitute a hydrogen atom of the phenylene group is preferably an alkyl group having 1 to 10 carbon atoms.
  • Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n Examples include -hexyl group, n-heptyl group, 2-ethylhexyl group, n-octyl group and n-decyl group.
  • the aryl group that may substitute a hydrogen atom of the phenylene group is preferably an aryl group having 6 to 20 carbon atoms.
  • Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 1-naphthyl group and 2-naphthyl group.
  • the number thereof is preferably 2 or less and more preferably 1 for each phenylene group.
  • the alkylidene group represented by R is preferably an alkylidene group having 1 to 5 carbon atoms.
  • Examples of the alkylidene group having 1 to 5 carbon atoms include a methylene group, an ethylidene group, an isopropylidene group, and a 1-butylidene group.
  • the aromatic polysulfone of the present embodiment preferably has 50 mol% or more, more preferably 80 mol% or more of the repeating unit (1) with respect to the total amount of all repeating units constituting the repeating unit. It is more preferable to have substantially only the repeating unit (1), and it is particularly preferable to have only the repeating unit (1). That is, the aromatic polysulfone of this embodiment preferably has 50 to 100 mol% of the repeating unit (1) with respect to the total amount of all repeating units constituting the aromatic polysulfone, and is 80 to 100 mol%. % Or less, more preferably 100 mol%.
  • the aromatic polysulfone may have two or more repeating units (1) to (3) independently of each other.
  • the aromatic polysulfone includes an aromatic polysulfone having at least one highly polar functional group at the terminal.
  • aromatic polysulfone having at least one highly polar functional group at a terminal may be simply referred to as “aromatic polysulfone having a highly polar functional group”.
  • the aromatic polysulfone of the present embodiment may be a mixture of an aromatic polysulfone having a highly polar functional group and an aromatic polysulfone not having a highly polar functional group, and having a highly polar functional group. You may be comprised only from aromatic polysulfone.
  • the “highly polar functional group” specifically means a polar functional group having an acid separation constant smaller than that of a carboxy group.
  • the highly polar functional group include a sulfonic acid group (—SO 2 OH), a sulfinic acid group (—SO 2 H), or a salt thereof.
  • An aromatic polysulfone containing a sulfonic acid group, a sulfinic acid group or a salt thereof is produced by the decomposition of the repeating unit (1) in the aromatic polysulfone and reacting with moisture in the air or resin. Moreover, it can obtain by substituting the functional group (hydroxyl group or halogen atom) of the terminal of a polymer with the compound which has a highly polar functional group after the polymerization reaction mentioned later.
  • the type of the highly polar functional group is specified by a matrix-assisted laser desorption / ionization (may be abbreviated as MALDI) method after fractionating an aromatic polysulfone having a highly polar functional group in GPC measurement described later. be able to.
  • MALDI matrix-assisted laser desorption / ionization
  • the highly polar functional group interacts with the surface of the adhesive or pressure-sensitive adhesive or with the reactive functional group present on the surface to chemically or electrically bond the aromatic polysulfone to the surface. For this reason, if the aromatic polysulfone contains too many highly polar functional groups, the peelability of the aromatic polysulfone may be lowered.
  • the ratio of the aromatic polysulfone having a highly polar functional group to the whole aromatic polysulfone that is, the content ratio of the aromatic polysulfone having a highly polar functional group to the total mass of the aromatic polysulfone. Is 0.1 mass% or more and 11 mass% or less. The ratio may be 8% by mass or more and 11% by mass or less. When the ratio of the aromatic polysulfone having a highly polar functional group is within the above range, the peelability of the aromatic polysulfone can be improved.
  • the content ratio of the aromatic polysulfone having a highly polar functional group is measured by a gel permeation chromatography (GPC) method. Specifically, in the chromatogram obtained when measured by the GPC method under the following conditions (measurement conditions and analysis conditions), a signal (hereinafter referred to as “component A”) attributed to the aromatic polysulfone having a highly polar functional group. Is divided by the total area of all signals attributed to the aromatic polysulfone.
  • FIG. 1 is a chromatogram obtained when measured by the GPC method under the above conditions.
  • “Shodex KF-803” manufactured by Showa Denko Co., Ltd. is a column for gel permeation chromatography filled with a styrene vinyl benzene copolymer resin and having an inner diameter ⁇ height of 8.0 mm ⁇ 300 mm. The particle size of the coalesced resin is 6 ⁇ m.
  • Component A shown in FIG. 1 is attributed to an aromatic polysulfone having a highly polar functional group.
  • the ratio obtained by dividing the area of component A by the total area of all signals attributed to aromatic polysulfone is the mass of aromatic polysulfone having a highly polar functional group corresponding to component A. This corresponds to the ratio of the total mass of aromatic polysulfone (total mass of aromatic polysulfone).
  • the aromatic polysulfone having at least one highly polar functional group at the terminal and the aromatic polysulfone not having the highly polar functional group at the terminal have the same main chain skeleton, so that the detection light (UV: 277 nm) ) Is substantially the same. Therefore, the area of the detected signal corresponds to the mass.
  • the aromatic polysulfone of the present embodiment contains an aromatic polysulfone having at least one highly polar functional group at the terminal, and is obtained by measurement using a gel permeation chromatography method under the above conditions.
  • the ratio of the signal area attributed to the aromatic polysulfone having a highly polar functional group divided by the total area of all signals attributed to the aromatic polysulfone is 0.1% or more and 11% or less. It is an aromatic polysulfone. The ratio may be 8% or more and 11% or less.
  • the aromatic polysulfone of the present embodiment contains an aromatic polysulfone having at least one highly polar functional group at the terminal, and in a chromatogram obtained when measured by gel permeation chromatography under the above conditions.
  • the area of the signal attributed to the aromatic polysulfone having a highly polar functional group is 0.1% or more and 11% or less with respect to the total area of all signals attributed to the aromatic polysulfone, or It is an aromatic polysulfone which may be 8% or more and 11% or less.
  • component A is not confirmed when lithium bromide is added to the eluent.
  • component A is confirmed when lithium bromide is not added to the eluent.
  • component A can be confirmed as a signal having a retention time earlier than the signal attributed to the aromatic polysulfone having no high-polar functional group at the terminal due to the ion exclusion effect. .
  • the signal of the aromatic polysulfone having no highly polar functional group at the terminal is compared with the retention time of the aromatic polysulfone when N, N-dimethylformamide with 10 mM lithium bromide added to the eluent is used. This can be confirmed. That is, when N, N-dimethylformamide with 10 mM lithium bromide added to the eluent is used, aromatic polysulfone (aromatic polysulfone having at least one highly polar functional group at the terminal + highly polar functional group at the terminal).
  • a signal having a retention time earlier than that of an aromatic polysulfone having no high-polar functional group at the terminal is assigned as a signal (component A) of the aromatic polysulfone having at least one high-polar functional group at the terminal. .
  • the aromatic polysulfone of this embodiment it is preferable to have 0.5 to 10 phenolic hydroxyl groups per 100 repeating units represented by the formula (1).
  • the number of reactive phenolic hydroxyl groups per 100 repeating units represented by the formula (1) is 0.5 or more and 10 or less, so that thermoplastic resins and thermosetting resins and aromatic polysulfones are alloyed.
  • the aromatic polysulfone can be finely dispersed.
  • the phenolic hydroxyl group may be 1 or more and 100 or less per 100 repeating units represented by the formula (1), or 1 or more and 1.82 or less.
  • the number (A) of phenolic hydroxyl groups per 100 repeating units represented by the formula (1) is measured by NMR method. Specifically, in 1 H NMR measurement, the area (x) of signals attributed to four hydrogen atoms bonded to the phenol group in the repeating unit (1), and the carbon atom adjacent to the phenolic hydroxyl group, It can be calculated based on the following formula (S1) using the area (y) of the signal attributed to the two hydrogen atoms bonded to each other.
  • A (y ⁇ 100 / x) ⁇ 2 (S1)
  • 1 H NMR measurements are possible, but not particularly limited as long as the solvent can dissolve the aromatic polysulfone, and the like are preferable heavy dimethyl sulfoxide.
  • the reduced viscosity (unit: dL / g) of the aromatic polysulfone of this embodiment is preferably 0.18 or more, and more preferably 0.22 or more and 0.80 or less.
  • Aromatic polysulfone tends to improve heat resistance and strength / rigidity when formed into a molded product as the reduced viscosity is higher. However, if the aromatic polysulfone is too high, melting temperature and melt viscosity are likely to be high, and fluidity is likely to be low.
  • the reduced viscosity is a value measured using an Ostwald type viscosity tube at 25 ° C. with a resin concentration in the N, N-dimethylformamide solution of 1.0 g / 100 ml.
  • the number average molecular weight (Mn) of the aromatic polysulfone of this embodiment is preferably 6000 or more and 40000 or less, for example.
  • the weight average molecular weight (Mw) of the aromatic polysulfone of this embodiment is preferably 9000 or more and 90000 or less, for example.
  • the Mw / Mn value (polydispersity) of the aromatic polysulfone of the present embodiment is preferably 1.5 or more and 3.0 or less.
  • the values of Mn, Mw, and Mw / Mn can be obtained by the method described in ⁇ Measurement of Mn and Mw of aromatic polysulfone described below, calculation of Mw / Mn>.
  • the aromatic polysulfone of this embodiment can be produced by using an aromatic dihalogenosulfone compound and an aromatic dihydroxy compound as monomers and subjecting these monomers to a polycondensation reaction in the presence of a base in an organic solvent.
  • the aromatic dihalogenosulfone compound and the aromatic dihydroxy compound correspond to the repeating unit constituting the aromatic polysulfone.
  • the aromatic dihalogenosulfone compound may be a compound having an aromatic ring, a sulfonyl group, and two halogeno groups in one molecule.
  • the aromatic dihydroxy compound should just be a compound which has an aromatic ring and two hydroxy groups in 1 molecule.
  • the aromatic polysulfone having the repeating unit (1) uses a compound represented by the formula (4) (hereinafter sometimes referred to as “compound (4)”) as the aromatic dihalogenosulfone compound.
  • compound (4) a compound represented by the formula (4)
  • As an aromatic dihydroxy compound it can manufacture by using the compound (henceforth "compound (5)") represented by Formula (5).
  • the aromatic polysulfone having the repeating unit (1) and the repeating unit (2) is represented by the formula (6) as the aromatic dihydroxy compound using the compound (4) as the aromatic dihalogenosulfone compound. It can be produced by using a compound (hereinafter sometimes referred to as “compound (6)”).
  • the aromatic polysulfone having the repeating unit (1) and the repeating unit (3) is represented by the formula (7) as the aromatic dihydroxy compound using the compound (4) as the aromatic dihalogenosulfone compound. It can be produced by using a compound (hereinafter sometimes referred to as “compound (7)”).
  • X 1 -Ph 1 -SO 2 -Ph 2 -X 2 (4)
  • X 1 and X 2 each independently represent a halogen atom. Ph 1 and Ph 2 are as defined above.
  • halogen atom represented by X 1 and X 2 examples include the same halogen atoms that may be substituted for the hydrogen atom of the phenylene group.
  • Examples of the compound (4) include bis (4-chlorophenyl) sulfone and 4-chlorophenyl-3 ', 4'-dichlorophenylsulfone.
  • Examples of the compound (5) include bis (4-hydroxyphenyl) sulfone, bis (4-hydroxy-3,5-dimethylphenyl) sulfone and bis (4-hydroxy-3-phenylphenyl) sulfone.
  • Examples of the compound (6) include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, bis (4-hydroxyphenyl) sulfide, bis (4- Hydroxy-3-methylphenyl) sulfide and bis (4-hydroxyphenyl) ether.
  • Examples of the compound (7) include hydroquinone, resorcin, catechol, phenylhydroquinone, 4,4′-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 3,5,3 ′, 5′-tetramethyl-4,4 Examples include '-dihydroxybiphenyl, 2,2'-diphenyl-4,4'-dihydroxybiphenyl and 4,4'-dihydroxy-p-quarterphenyl.
  • aromatic dihalogenosulfone compounds other than the compound (4) examples include 4,4'-bis (4-chlorophenylsulfonyl) biphenyl.
  • a halogeno group and a hydroxy group in the molecule such as 4-hydroxy-4 ′-(4-chlorophenylsulfonyl) biphenyl, are used.
  • a compound having a group can also be used.
  • each of the aromatic dihalogenosulfone compound and the aromatic dihydroxy compound may be used alone or in combination of two or more. May be.
  • the polycondensation of the aromatic dihalogenosulfone compound and the aromatic dihydroxy compound is preferably performed using an alkali metal salt of carbonic acid as a base. Moreover, it is preferable to carry out in an organic solvent as a polycondensation solvent, and it is more preferable to use the alkali metal carbonate of a carbonate as a base, and to carry out in an organic solvent.
  • the alkali metal salt of carbonic acid may be an alkali carbonate that is a normal salt (ie, alkali metal carbonate), or an alkali bicarbonate that is an acidic salt (ie, alkali hydrogen carbonate, alkali metal bicarbonate). It may be a mixture of these (alkali carbonate and alkali bicarbonate).
  • alkali carbonate for example, sodium carbonate and potassium carbonate are preferable.
  • sodium bicarbonate also referred to as sodium bicarbonate
  • potassium bicarbonate also referred to as potassium bicarbonate
  • the type of organic solvent is not particularly limited, but is preferably an aprotic polar solvent.
  • the boiling point of the organic solvent is not particularly limited, but is preferably 100 ° C. or higher and 400 ° C. or lower, and more preferably 100 ° C. or higher and 350 ° C. or lower.
  • organic solvents examples include sulfoxides such as dimethyl sulfoxide; amides such as dimethylformamide, dimethylacetamide, and N-methyl-2-pyrrolidone; sulfolane (also referred to as 1,1-dioxothyrane), dimethyl sulfone, diethyl sulfone, and diisopropyl.
  • Sulfones such as sulfone and diphenylsulfone; hydrogen atoms bonded to nitrogen atoms such as 1,3-dimethyl-2-imidazolidinone and 1,3-diethyl-2-imidazolidinone may be substituted. Examples thereof include compounds having a urea skeleton.
  • dimethyl sulfoxide dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, sulfolane, diphenyl sulfone or 1,3-dimethyl-2-imidazolidinone
  • dimethyl sulfoxide, dimethylformamide More preferred is dimethylacetamide, N-methyl-2-pyrrolidone, sulfolane or 1,3-dimethyl-2-imidazolidinone.
  • organic solvents may be used alone or in combination of two or more.
  • the melting temperature in the first stage is preferably 40 ° C. or higher and 180 ° C. or lower.
  • the reaction temperature of the second stage polycondensation is preferably 180 ° C. or higher and 400 ° C. or lower. If no side reaction occurs, the higher the polycondensation temperature, the faster the target polycondensation proceeds, and the higher the degree of polymerization of the resulting aromatic polysulfone. As a result, aromatic polysulfone tends to have a high reduced viscosity. However, in fact, the higher the polycondensation temperature, the easier side reactions similar to the above occur, and the degree of polymerization of the resulting aromatic polysulfone decreases. Therefore, in consideration of the degree of this side reaction, it is necessary to adjust the polycondensation temperature so that an aromatic polysulfone having a predetermined reduced viscosity can be obtained.
  • the blending ratio of the aromatic dihalogenosulfone compound to the aromatic dihydroxy compound is preferably 80 mol% or more and 120 mol% or less, and more preferably 90 mol% or more and 110 mol% or less.
  • the use ratio of the alkali metal carbonate of carbonic acid relative to the aromatic dihydroxy compound is preferably 90 mol% or more and 130 mol% or less, more preferably 95 mol% or more and 120 mol% or less as an alkali metal.
  • aromatic polysulfone tends to have a high reduced viscosity.
  • the temperature is gradually raised to the reflux temperature of the organic solvent while reducing by-product water. After reaching the reflux temperature of the organic solvent, it is preferable to keep the temperature for a predetermined time.
  • the predetermined time is preferably 1 hour or more and 50 hours or less, and more preferably 2 hours or more and 30 hours or less. If no side reaction occurs, the longer the polycondensation time, the more the target polycondensation proceeds, and the higher the degree of polymerization of the aromatic polysulfone obtained. As a result, aromatic polysulfone tends to have a high reduced viscosity.
  • the terminal functional group of the polymer may be substituted with a compound having a highly polar functional group after the polymerization reaction.
  • a compound having a functional group that reacts with the X 1 , X 2 or phenolic hydroxyl group at the terminal of the polymer and a highly polar functional group hereinafter sometimes referred to as an end cap agent
  • an end cap agent By reacting with the obtained polymer, an aromatic polysulfone having at least one highly polar functional group at the terminal can be obtained.
  • This reaction can be easily performed by adding an end cap agent when the polymerization reaction is completed.
  • the end cap agent include 4-hydroxybenzenesulfonic acid, 3-hydroxybenzenesulfonic acid, (4-hydroxyphenyl) phosphonic acid, and alkali metal salts thereof.
  • the alkali metal salt of unreacted carbonic acid and the by-produced alkali halide are reduced from the reaction mixture obtained in the second stage by filtration, extraction, centrifugation, etc.
  • a solution obtained by dissolving polysulfone in an organic solvent (hereinafter sometimes referred to as “aromatic polysulfone solution”) is obtained.
  • aromatic polysulfone solution is obtained from the aromatic polysulfone solution by reducing the organic solvent.
  • Examples of the method of reducing the organic solvent from the aromatic polysulfone solution include a method of reducing the organic solvent directly from the aromatic polysulfone solution under reduced pressure or pressure.
  • a method of reducing the organic solvent directly from the aromatic polysulfone solution under reduced pressure or pressure there is a method in which an aromatic polysulfone solution and an aromatic polysulfone poor solvent are mixed to precipitate the aromatic polysulfone, and the organic solvent is reduced by filtration or centrifugation.
  • the precipitated aromatic polysulfone may be repeatedly washed with a poor solvent for aromatic polysulfone as necessary.
  • the aromatic polysulfone thus obtained is a mixture in which an aromatic polysulfone having a highly polar functional group and an aromatic polysulfone not having a highly polar functional group are mixed at a predetermined ratio.
  • the ratio of the aromatic polysulfone having a high polar functional group to the whole aromatic polysulfone that is, the high polar functional group relative to the total mass of the aromatic polysulfone is changed).
  • the content ratio of the aromatic polysulfone possessed can be adjusted.
  • an example of a method for adjusting the content ratio of the aromatic polysulfone having a highly polar functional group will be described in detail.
  • a mixture of aromatic polysulfone and a predetermined solvent are mixed.
  • a solvent that dissolves the aromatic polysulfone having no higher polar functional group more easily than the aromatic polysulfone having the higher polar functional group is used.
  • examples of such a solvent include dichloromethane and chloroform. Of these, dichloromethane is preferred because of the large difference in solubility in these aromatic polysulfones.
  • the aromatic polysulfone having no highly polar functional group is eluted from the aromatic polysulfone mixture toward the predetermined solvent existing around the aromatic polysulfone mixture. To do. At this time, aromatic polysulfone having a highly polar functional group is also eluted, but the amount of elution is smaller than that of aromatic polysulfone having no highly polar functional group. In the solvent), the ratio of the aromatic polysulfone having a highly polar functional group is lowered.
  • the ratio of the aromatic polysulfone that does not have the high polar functional group decreases, and as a result, the high polar functional group is reduced.
  • the ratio of the aromatic polysulfone is increased.
  • this mixture (mixture of aromatic polysulfone + predetermined solvent) is separated into a solid and a solution using filtration, centrifugation, or the like.
  • the predetermined solvent By reducing the predetermined solvent from the solid and the solution, it is possible to separate into a component containing a large amount of aromatic polysulfone having a highly polar functional group and a component containing a small amount of aromatic polysulfone having a highly polar functional group.
  • Examples of the method for reducing the predetermined solvent include the methods exemplified in the method for reducing the organic solvent in the third stage.
  • Such an operation may be repeated until the aromatic polysulfone having a highly polar functional group has a desired ratio. Also, two or more types of aromatic polysulfones having different ratios of aromatic polysulfone having a highly polar functional group are prepared, and appropriately blended depending on the ratio of the desired aromatic polysulfone having a highly polar functional group. Good.
  • the ratio of the aromatic polysulfone having a highly polar functional group contained in the aromatic polysulfone of the present embodiment can be adjusted in this way.
  • the aromatic polysulfone composition of the present embodiment preferably contains the aromatic polysulfone described above and further contains a filler. Moreover, you may further contain resin other than aromatic polysulfone.
  • the content of the aromatic polysulfone is preferably 20 to 95% by mass with respect to the total mass of the aromatic polysulfone composition.
  • filler examples include fibrous fillers, plate-like fillers, spherical fillers, powdery fillers, irregularly shaped fillers, and whiskers.
  • fibrous filler examples include glass fiber, PAN-based carbon fiber, pitch-based carbon fiber, silica-alumina fiber, silica fiber, alumina fiber, other ceramic fiber, liquid crystal polymer (sometimes abbreviated as LCP) fiber, and aramid fiber. And polyethylene fibers. Moreover, whiskers, such as a wollastonite and a potassium titanate fiber, are also mentioned.
  • Examples of the plate filler include talc, mica, graphite, and wollastonite.
  • Examples of the spherical filler include glass beads and glass balloons.
  • powder filler examples include calcium carbonate, dolomite, barium clay sulfate, titanium oxide, carbon black, conductive carbon, and fine silica.
  • irregularly shaped fillers examples include glass flakes and irregularly shaped glass fibers.
  • the filler content is preferably 0 to 250 parts by weight, more preferably 0 to 70 parts by weight, still more preferably 0 to 50 parts by weight, and particularly preferably 0 to 25 parts by weight with respect to 100 parts by weight of the aromatic polysulfone. .
  • resins other than aromatic polysulfone include polyamide, polyester, polyphenylene sulfide, polycarbonate, polyphenylene ether, aromatic polyketone, polyetherimide, phenol resin, epoxy resin, polyimide resin, and modified products thereof.
  • the content of the resin other than aromatic polysulfone is preferably 5 to 2000 parts by mass, more preferably 10 to 1000 parts by mass, and further preferably 20 to 500 parts by mass with respect to 100 parts by mass of aromatic polysulfone.
  • the aromatic polysulfone composition of the present embodiment may further contain an organic solvent.
  • the organic solvent may be added later when preparing the aromatic polysulfone composition, or may be included in advance in the aromatic polysulfone.
  • an organic solvent the same organic solvent as exemplified in the production method of the present embodiment can be used.
  • the content of the organic solvent is preferably 0 to 1 part by mass with respect to 100 parts by mass of the aromatic polysulfone.
  • the aromatic polysulfone composition of this embodiment can contain various materials as needed as long as the effects of the present invention are not impaired.
  • materials include coloring components, lubricants, various surfactants, antioxidants, thermal stabilizers, other various stabilizers, ultraviolet absorbers, and antistatic agents.
  • the content of other components is preferably 0 to 1 part by mass with respect to 100 parts by mass of the aromatic polysulfone.
  • the aromatic polysulfone composition of the present embodiment is The aromatic polysulfone described above; And at least one component selected from the group consisting of a filler, a resin other than aromatic polysulfone, an organic solvent, and other components.
  • an aromatic polysulfone excellent in peelability and an aromatic polysulfone composition containing the aromatic polysulfone are provided.
  • aromatic polysulfone of this embodiment is An aromatic polysulfone comprising an aromatic polysulfone having at least one highly polar functional group at its end,
  • the aromatic polysulfone is Having a repeating unit represented by the above formula (1), preferably a repeating unit obtained by polycondensation reaction of bis (4-chlorophenyl) sulfone and bis (4-hydroxyphenyl) sulfone;
  • the area of the signal attributed to the aromatic polysulfone having a highly polar functional group in the chromatogram obtained by the gel permeation chromatography method under the following conditions is the total signal attributed to the aromatic polysulfone.
  • Aromatic polysulfone which may be from 0.1% to 11%, or from 8% to 11%, based on the total area.
  • Sample injection volume 5 ⁇ L
  • Column temperature 40 ° C
  • Eluent N, N-dimethylformamide
  • Eluent flow rate 0.5 mL / min
  • Detector UV-visible spectrophotometer (UV) Detection wavelength: 277 nm
  • UV-visible spectrophotometer (UV) Detection wavelength 277 nm
  • Mw / Mn The weight average molecular weight (Mw), number average molecular weight (Mn) and polydispersity (Mw / Mn) of the aromatic polysulfone were determined by GPC measurement. Note that Mn and Mw were measured twice, and the average values thereof were determined to be Mn and Mw, respectively, and the average value of Mw / Mn was determined.
  • reaction mixed solution was diluted with NMP and cooled to room temperature, so that unreacted potassium carbonate and by-produced potassium chloride were precipitated.
  • an aromatic polysulfone solution obtained by dissolving aromatic polysulfone in NMP was obtained.
  • this solution was dropped into water to precipitate aromatic polysulfone, and unnecessary NMP was reduced by filtration to obtain a precipitate.
  • the obtained precipitate was repeatedly washed with water and heated and dried at 150 ° C. to obtain aromatic polysulfone.
  • FIG. 2 is a chromatogram of Production Example 1 obtained by the above content measurement.
  • the aromatic polysulfone having a highly polar functional group (component A) in the chromatogram shown in FIG. 2 was fractionated and analyzed by the MALDI method. As a result, it was found that the highly polar functional group was sulfonic acid or sulfinic acid. It was.
  • Example 1 1 part by mass of the aromatic polysulfone obtained in Production Example 1 and about 10 parts by mass of dichloromethane were mixed, shaken at room temperature, and allowed to stand for 1 hour. After standing, the upper layer dissolved in dichloromethane was extracted to obtain a solution in which aromatic polysulfone was dissolved. Dichloromethane was distilled off from this solution and dried to obtain the aromatic polysulfone of Example 1.
  • Table 1 shows Mw, Mw / Mn, and the number (A) of phenolic hydroxyl groups per 100 repeating units represented by the formula (1) of the aromatic polysulfones of Examples and Comparative Examples.
  • Example 2 The aromatic polysulfone of Example 2 was obtained by mixing 100 parts by mass of the aromatic polysulfone of Example 1 and 100 parts by mass of the aromatic polysulfone of Production Example 1. The ratio of aromatic polysulfone having a highly polar functional group calculated from the mixing ratio of Example 1 and Production Example 1 is shown in Table 2.
  • Example 3 The aromatic polysulfone of Example 3 was obtained by mixing 30 parts by weight of the aromatic polysulfone of Example 1 and 70 parts by weight of the aromatic polysulfone of Production Example 1. The ratio of aromatic polysulfone having a highly polar functional group calculated from the mixing ratio of Example 1 and Production Example 1 is shown in Table 2.
  • Table 2 shows the results of evaluation of the peelability of the aromatic polysulfones of Examples and Comparative Examples.
  • the aromatic polysulfone of Examples 1 to 3 has a ratio of aromatic polysulfone having a high polar functional group to the whole aromatic polysulfone (that is, high polar functional group relative to the total mass of the aromatic polysulfone). Since the content ratio of the aromatic polysulfone possessed was 11 mass% or less, the peel strength at 260 ° C. and 280 ° C. was relatively low, and the peelability was excellent.
  • the aromatic polysulfone of Comparative Example 1 is a ratio of the aromatic polysulfone having a high polar functional group to the whole aromatic polysulfone (that is, the content ratio of the aromatic polysulfone having a high polar functional group to the total mass of the aromatic polysulfone). ) Is greater than 11% by mass, the peel strength at 260 ° C. and 280 ° C. is relatively high and the peelability is poor.
  • an aromatic polysulfone excellent in peelability and an aromatic polysulfone composition containing the aromatic polysulfone can be provided, which is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Polyethers (AREA)

Abstract

末端に少なくとも一つの高極性官能基を有する芳香族ポリスルホンを含む芳香族ポリスルホンであって、この芳香族ポリスルホンは、下記条件下で、ゲル浸透クロマトグラフィー法により測定したとき得られるクロマトグラムにおける、この高極性官能基を有する芳香族ポリスルホンに帰属されるシグナルの面積が、この芳香族ポリスルホンに帰属される全シグナルの合計の面積に対して、0.1%以上11%以下である、芳香族ポリスルホン。 [条件] 試料注入量:5μL カラム:昭和電工株式会社製「Shodex KF-803」 カラム温度:40℃ 溶離液:N,N-ジメチルホルムアミド 溶離液流量:0.5mL/分 検出器:紫外可視分光光度計(UV) 検出波長:277nm

Description

芳香族ポリスルホンおよび芳香族ポリスルホン組成物
 本発明は、芳香族ポリスルホンおよび芳香族ポリスルホン組成物に関するものである。
 本願は、2016年6月24日に、日本に出願された特願2016-125965号に基づき優先権を主張し、その内容をここに援用する。
 芳香族ポリスルホンは、非晶性の熱可塑性樹脂の一つであり、耐熱性や機械特性、透明性に優れることから、成形体やフィルムの形成材料として、電子機器の部品など各種用途に用いられている。芳香族ポリスルホンは、通常、塩基および反応溶媒の共存下で、芳香族ジハロゲノスルホン化合物と芳香族ジヒドロキシ化合物とを重縮合反応させることで製造される(例えば、特許文献1参照)。
 芳香族ポリスルホンを形成材料とするフィルムを製造する方法の一つとして、溶液キャスト法が挙げられる。溶液キャスト法は、異物が少なく、厚み精度や表面平滑性に優れたフィルムを得ることができることから、広く知られている。溶液キャスト法では、まず、芳香族ポリスルホンが溶解してなる溶液(以下、「芳香族ポリスルホン溶液」と言うことがある。)を、ダイにより押し出して金属基材上に流延し、乾燥させることで塗膜を作製する。次いで、この塗膜を、金属基材から剥離することで、フィルムが得られる。しかしながら、塗膜を金属基材から剥離する際に、塗膜と金属基材との接着力が強すぎると、フィルムが伸びたり、破断したりすることがある。
 この問題に対し、例えば、芳香族ポリスルホン溶液を乾燥させる際に、溶剤を所定量残した状態にし、剥離後のフィルムを再度乾燥させる方法が知られている。しかしながら、溶剤が所定量残ったフィルムは、機械的強度に劣るうえに、剥離時のフィルムの伸びを十分に抑制できず、フィルムの厚みにムラが生じたり、配向が乱れたりすることがある。
また、フィルムの伸びを避けるために、剥離工程に時間を要すると、生産性が低下することがある。
 さらに、別の方法としては、芳香族ポリスルホン溶液に界面活性剤を添加する方法が知られている。しかしながら、フィルムの伸びや破断は低減できるものの、剥離後のフィルムにおいて界面活性剤がブリードアウトし、フィルムの性能に影響することがある(特許文献2参照)。
 そこで、剥離性に優れた芳香族ポリスルホンおよび、この芳香族ポリスルホンを含む芳香族ポリスルホン組成物が望まれている。
特表2012-509375号公報 特開平9-216241号公報
 本発明はこのような事情に鑑みてなされたものであって、剥離性に優れた芳香族ポリスルホンを提供することを目的とする。また、この芳香族ポリスルホンを含む芳香族ポリスルホン組成物を提供することを合わせて目的とする。
 上記の課題を解決するため、本発明の一態様は、末端に少なくとも一つの高極性官能基を有する芳香族ポリスルホン(以下、高極性官能基を有する芳香族ポリスルホンということがある)を含み、芳香族ポリスルホン全体に占める高極性官能基を有する芳香族ポリスルホンの割合は、0.1質量%以上11質量%以下である、芳香族ポリスルホンを提供する。
 すなわち、本発明の一態様は、下記条件下で、ゲル浸透クロマトグラフィー(GPC)法により測定したとき得られるクロマトグラムにおいて、高極性官能基を有する芳香族ポリスルホンに帰属されるシグナルの面積を、芳香族ポリスルホンに帰属される全シグナルの合計の面積で除した割合が、0.1質量%以上11質量%以下である、芳香族ポリスルホンを提供する。
 [条件]
  試料注入量:5μL
  カラム:昭和電工株式会社製「Shodex KF-803」
  カラム温度:40℃
  溶離液:N,N-ジメチルホルムアミド
  溶離液流量:0.5mL/分
  検出器:紫外可視分光光度計(UV)
  検出波長:277nm
 本発明の一態様においては、式(1)で表される繰返し単位を有することが好ましい。
  -Ph-SO-Ph-O- (1)
[式(1)中、PhおよびPhは、それぞれ独立に、フェニレン基を表し、フェニレン基の1個以上の水素原子は、それぞれ独立に、アルキル基、アリール基またはハロゲン原子で置換されていてもよい。]
 本発明の一態様においては、フェノール性水酸基を、式(1)で表される繰返し単位100個あたり0.5個以上10個以下有することが好ましい。
 本発明の一態様は、上記の芳香族ポリスルホンを含む、芳香族ポリスルホン組成物を提供する。
 本発明の一態様においては、さらに、フィラーを含むことが好ましい。
 本発明の一態様によれば、剥離性に優れた芳香族ポリスルホンが提供される。また、この芳香族ポリスルホンを含む芳香族ポリスルホン組成物が合わせて提供される。
 即ち、本発明は以下に関する。
[1]末端に少なくとも一つの高極性官能基を有する芳香族ポリスルホンを含む芳香族ポリスルホンであって、
 前記芳香族ポリスルホンは、下記条件下で、ゲル浸透クロマトグラフィー法により測定したとき得られるクロマトグラムにおける、前記高極性官能基を有する芳香族ポリスルホンに帰属されるシグナルの面積が、前記芳香族ポリスルホンに帰属される全シグナルの合計の面積に対して、0.1%以上11%以下である、芳香族ポリスルホン。
 [条件]
  試料注入量:5μL
  カラム:昭和電工株式会社製「Shodex KF-803」
  カラム温度:40℃
  溶離液:N,N-ジメチルホルムアミド
  溶離液流量:0.5mL/分
  検出器:紫外可視分光光度計(UV)
  検出波長:277nm
[2]式(1)で表される繰返し単位を有する、[1]に記載の芳香族ポリスルホン。
  -Ph-SO-Ph-O- (1)
[式(1)中、PhおよびPhは、それぞれ独立に、フェニレン基を表し、前記フェニレン基の1個以上の水素原子は、それぞれ独立に、アルキル基、アリール基またはハロゲン原子で置換されていてもよい。]
[3]フェノール性水酸基を、前記式(1)で表される繰返し単位100個あたり0.5個以上10個以下有する、[2]に記載の芳香族ポリスルホン。
[4][1]~[3]のいずれかに1つに記載の芳香族ポリスルホンを含む、芳香族ポリスルホン組成物。
[5]さらに、フィラーを含む、[4]に記載の芳香族ポリスルホン組成物。
GPC法により測定したとき得られるクロマトグラムである。 GPC法(含量測定)により得られた製造例1のクロマトグラムである。
<芳香族ポリスルホン>
 本実施形態の芳香族ポリスルホンは、典型的には、2価の芳香族基(芳香族化合物から、その芳香環に結合した水素原子を2個除いてなる残基)と、スルホニル基(-SO-)と、酸素原子とを含む繰返し単位を有する樹脂である。
 また、芳香族ポリスルホンは、式(1)で表される繰返し単位(以下、「繰返し単位(1)」と言うことがある。)を有することが好ましい。特に、繰返し単位(1)を有する芳香族ポリスルホンを芳香族ポリエーテルスルホンと言う。さらに、式(2)で表される繰返し単位(以下、「繰返し単位(2)」と言うことがある。)や、式(3)で表される繰返し単位(以下、「繰返し単位(3)」と言うことがある。)などの他の繰返し単位を少なくとも1種有していてもよい。
  -Ph-SO-Ph-O- (1)
[式(1)中、PhおよびPhは、それぞれ独立に、フェニレン基を表し;前記フェニレン基の1個以上の水素原子は、それぞれ独立に、アルキル基、アリール基またはハロゲン原子で置換されていてもよい。]
  -Ph-R-Ph-O- (2)
[式(2)中、PhおよびPhは、それぞれ独立に、フェニレン基を表し;前記フェニレン基の1個以上の水素原子は、それぞれ独立に、アルキル基、アリール基またはハロゲン原子で置換されていてもよく:Rは、アルキリデン基、酸素原子または硫黄原子である。]
  -(Ph)n-O- (3)
[式(3)中、Phは、フェニレン基を表し;前記フェニレン基の1個以上の水素原子は、それぞれに独立に、アルキル基、アリール基またはハロゲン原子で置換されていてもよく;nは、1~3の整数であり、nが2以上である場合、複数存在するPhは、互いに同一でも異なっていてもよい。]
 Ph~Phのいずれかで表されるフェニレン基は、それぞれに独立に、p-フェニレン基であってもよいし、m-フェニレン基であってもよいし、o-フェニレン基であってもよいが、p-フェニレン基であることが好ましい。
 前記フェニレン基の水素原子を置換していてもよいアルキル基としては、炭素数1~10のアルキル基であることが好ましい。炭素数1~10のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、2-エチルヘキシル基、n-オクチル基およびn-デシル基が挙げられる。
 前記フェニレン基の水素原子を置換していてもよいアリール基としては、炭素数6~20のアリール基であることが好ましい。炭素数6~20のアリール基としては、例えばフェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基および2-ナフチル基が挙げられる。
 前記フェニレン基の水素原子を置換していてもよいハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。
 前記フェニレン基の水素原子がこれらの官能基で置換されている場合、その数は、前記フェニレン基ごとに、それぞれに独立に、2個以下であることが好ましく、1個であることがより好ましい。
 Rで表されるアルキリデン基としては、炭素数1~5のアルキリデン基であることが好ましい。炭素数1~5のアルキリデン基としては、例えばメチレン基、エチリデン基、イソプロピリデン基および1-ブチリデン基が挙げられる。
 本実施形態の芳香族ポリスルホンは、これを構成する全繰返し単位の合計量に対して、繰返し単位(1)を50モル%以上有することが好ましく、80モル%以上有することがより好ましく、繰返し単位として、実質的に繰返し単位(1)のみを有することがさらに好ましく、繰返し単位(1)のみを有することが特に好ましい。
すなわち、本実施形態の芳香族ポリスルホンは、これを構成する全繰返し単位の合計量に対して、繰返し単位(1)を50モル%以上100モル%以下有することが好ましく、80モル%以上100モル%以下有することがより好ましく、100モル%有することが特に好ましい。
なお、芳香族ポリスルホンは、繰返し単位(1)~(3)を、互いに独立に、2種以上有していてもよい。
 また、芳香族ポリスルホンは、末端に少なくとも一つの高極性官能基を有する芳香族ポリスルホンを含む。本明細書では、「末端に少なくとも一つの高極性官能基を有する芳香族ポリスルホン」を、単に「高極性官能基を有する芳香族ポリスルホン」と言うことがある。
 本実施形態の芳香族ポリスルホンは、1つの側面として、高極性官能基を有する芳香族ポリスルホンと高極性官能基を有さない芳香族ポリスルホンとの混合物であってもよく、高極性官能基を有する芳香族ポリスルホンのみから構成されていてもよい。
 「高極性官能基」とは、具体的にはカルボキシ基よりも小さい酸かい離定数を有する極性の官能基を意味する。高極性官能基としては、例えばスルホン酸基(-SOOH)、スルフィン酸基(-SOH)またはそれらの塩などが挙げられる。スルホン酸基、スルフィン酸基またはそれらの塩を含む芳香族ポリスルホンは、芳香族ポリスルホン中の繰返し単位(1)が分解し、空気中または樹脂中の水分と反応することにより生成する。また、後述する重合反応の後に、重合物の末端の官能基(水酸基またはハロゲン原子)を、高極性官能基を有する化合物によって置換することで得ることができる。
 ここで、高極性官能基の種類は、後述するGPC測定において高極性官能基を有する芳香族ポリスルホンを分画した後、マトリックス支援レーザー脱離イオン化(MALDIと略することがある)法により特定することができる。
 高極性官能基は、接着剤または粘着剤の表面、またはその表面に存在する反応性官能基と相互作用して、芳香族ポリスルホンをその表面に化学的または電気的に結合させる。そのため、芳香族ポリスルホンに高極性官能基があまり多く含まれていると、芳香族ポリスルホンの剥離性が低下することがある。
 本実施形態の芳香族ポリスルホンにおいて、芳香族ポリスルホン全体に占める高極性官能基を有する芳香族ポリスルホンの割合(すなわち、芳香族ポリスルホンの総質量に対する、高極性官能基を有する芳香族ポリスルホンの含有割合)は、0.1質量%以上11質量%以下である。また、前記割合は、8質量%以上11質量%以下であってもよい。高極性官能基を有する芳香族ポリスルホンの割合が上述の範囲内であることにより、芳香族ポリスルホンの剥離性を向上させることができる。
 ここで、高極性官能基を有する芳香族ポリスルホンの含有割合は、ゲル浸透クロマトグラフィー(GPC)法により測定される。具体的には、下記条件(測定条件および解析条件)下で、GPC法により測定したとき得られるクロマトグラムにおいて、高極性官能基を有する芳香族ポリスルホンに帰属されるシグナル(以下、「成分A」と称することがある。)の面積を、芳香族ポリスルホンに帰属される全シグナルの合計の面積で除することにより求められる。
 [測定条件]
  試料注入量:5μL
  カラム:昭和電工株式会社製「Shodex KF-803」
  カラム温度:40℃
  溶離液:N,N-ジメチルホルムアミド
  溶離液流量:0.5mL/分
  検出器:紫外可視分光光度計(UV)
  検出波長:277nm
 [解析条件]
  ソフトウエア:株式会社島津製作所製、「LabSolutions」
  Width:70秒
    Slope:1000uV/分
    Drift:0uV/分
    最小面積/高さ:1000カウント
  解析開始時間:0分
    解析終了時間:22分
 図1は、上記条件下で、GPC法により測定したとき得られるクロマトグラムである。
 上記昭和電工株式会社製「Shodex KF-803」は、スチレンビニルベンゼン共重合体樹脂を充填した内径×高さが8.0mm×300mmのゲル浸透クロマトグラフィー用カラムであり、前記スチレンビニルベンゼン共重合体樹脂の粒径は6μmである。
図1に示す成分Aは、高極性官能基を有する芳香族ポリスルホンに帰属される。本実施形態において、成分Aの面積を芳香族ポリスルホンに帰属される全シグナルの合計の面積で除することで得られる割合は、成分Aに相当する高極性官能基を有する芳香族ポリスルホンの質量が、芳香族ポリスルホン全体の質量(芳香族ポリスルホンの総質量)に占める割合に対応する。なお、末端に少なくとも一つの高極性官能基を有する芳香族ポリスルホンと、末端に高極性官能基を有さない芳香族ポリスルホンとは、その主鎖骨格が同一であるため、検出光(UV:277nm)に対するモル吸光係数が略同一である。したがって、検出されたシグナルの面積と、質量とは対応する。
すなわち、1つの側面として、本実施形態の芳香族ポリスルホンは、末端に少なくとも一つの高極性官能基を有する芳香族ポリスルホンを含み、上記条件下で、ゲル浸透クロマトグラフィー法により測定したとき得られるクロマトグラムにおいて、前記高極性官能基を有する芳香族ポリスルホンに帰属されるシグナルの面積を、前記芳香族ポリスルホンに帰属される全シグナルの合計の面積で除した割合が0.1%以上11%以下である、芳香族ポリスルホンである。前記割合は、8%以上11%以下であってもよい。
別の側面として、本実施形態の芳香族ポリスルホンは、末端に少なくとも一つの高極性官能基を有する芳香族ポリスルホンを含み、上記条件下で、ゲル浸透クロマトグラフィー法により測定したとき得られるクロマトグラムにおける、前記高極性官能基を有する芳香族ポリスルホンに帰属されるシグナルの面積が、前記芳香族ポリスルホンに帰属される全シグナルの合計の面積に対して、0.1%以上11%以下であり、または8%以上11%以下であってもよい、芳香族ポリスルホンである。
 通常、極性基を有するポリマーのGPC測定では溶離液に10mM(1mM=1×10-3mol/L)の濃度で臭化リチウムなどの塩を添加した溶媒を使用するが、本発明における測定条件ではそのような塩を含まない溶離液を使用する。塩を含まない溶離液を用いることで、高極性官能基を有する芳香族ポリスルホンと固定相とが電気的に反発するため、高極性官能基を有する芳香族ポリスルホンは、高極性官能基を有さない芳香族ポリスルホンと比べて保持時間を早くすることができる。これにより、高極性官能基を有する芳香族ポリスルホンに由来するピークと高極性官能基を有さない芳香族ポリスルホンに由来するピークとを分離することができ、再現性の高い測定が可能となる。
 溶離液に臭化リチウムを添加する場合には、成分Aは確認されない。換言すると、溶離液に臭化リチウムを添加しない場合には、成分Aは確認される。溶離液に臭化リチウムを添加しないことで、イオン排斥効果によって末端に高極性官能基を有さない芳香族ポリスルホンに帰属されるシグナルよりも保持時間が早いシグナルとして成分Aを確認することができる。
 ここで、末端に高極性官能基を有さない芳香族ポリスルホンのシグナルは、溶離液に10mM臭化リチウムを添加したN,N-ジメチルホルムアミドを使用したときの芳香族ポリスルホンの保持時間と比較することで確認することができる。すなわち、溶離液に10mM臭化リチウムを添加したN,N-ジメチルホルムアミドを使用したときの芳香族ポリスルホン(末端に少なくとも一つの高極性官能基を有する芳香族ポリスルホン+末端に高極性官能基を有さない芳香族ポリスルホン)の保持時間と、溶離液に10mM臭化リチウムを添加しないN,N-ジメチルホルムアミドを使用したときの末端に高極性官能基を有さない芳香族ポリスルホンの保持時間とは略同一である。そして、末端に高極性官能基を有さない芳香族ポリスルホンのシグナルよりも保持時間が早いシグナルが、末端に少なくとも一つの高極性官能基を有する芳香族ポリスルホンのシグナル(成分A)として帰属される。
 さらに、本実施形態の芳香族ポリスルホンにおいては、フェノール性水酸基を、式(1)で表される繰返し単位100個あたり0.5個以上10個以下有することが好ましい。式(1)で表される繰返し単位100個あたりの反応性のフェノール性水酸基の数が0.5個以上10以下であることにより、熱可塑性樹脂や熱硬化性樹脂と芳香族ポリスルホンをアロイ化する際に、芳香族ポリスルホンを微分散させることができる。
 別の側面として、フェノール性水酸基は、式(1)で表される繰返し単位100個あたり1個以上2個以下であってもよく、1個以上1.82個以下であってもよい。
 ここで、式(1)で表される繰返し単位100個あたりのフェノール性水酸基の数(A)は、NMR法により測定される。具体的には、H NMR測定において、繰返し単位(1)中のフェノール基に結合した4つの水素原子に帰属されるシグナルの面積(x)と、フェノール性水酸基の2つ隣の炭素原子とそれぞれ結合した2つの水素原子に帰属されるシグナルの面積(y)とを用いて、下記式(S1)に基づいて算出することができる。
  A=(y×100/x)×2 (S1)
 H NMR測定における測定溶媒としては、H NMR測定が可能であり、芳香族ポリスルホンを溶解し得る溶媒であれば特に限定されないが、重ジメチルスルホキシドなどが好ましい。
 本実施形態の芳香族ポリスルホンの還元粘度(単位:dL/g)は、0.18以上であることが好ましく、0.22以上0.80以下であることがより好ましい。芳香族ポリスルホンは、還元粘度が高いほど、耐熱性や成形品としたときの強度・剛性が向上しやすいが、あまり高いと、溶融温度や溶融粘度が高くなりやすく、流動性が低くなりやすい。
ここで、還元粘度は、オストワルド型粘度管を使用して、25℃で、N,N-ジメチルホルムアミド溶液中の樹脂濃度が1.0g/100mlで測定した値である。
 本実施形態の芳香族ポリスルホンの数平均分子量(Mn)は、例えば、6000以上、40000以下であることが好ましい。
本実施形態の芳香族ポリスルホンの重量平均分子量(Mw)は、例えば、9000以上、90000以下であることが好ましい。
本実施形態の芳香族ポリスルホンのMw/Mnの値(多分散度)は1.5以上、3.0以下であることが好ましい。
Mn、MwおよびMw/Mnの値は、<後述する芳香族ポリスルホンのMnおよびMwの測定、Mw/Mnの算出>に記載の方法により得ることができる。
<芳香族ポリスルホンの製造方法>
 本実施形態の芳香族ポリスルホンは、芳香族ジハロゲノスルホン化合物および芳香族ジヒドロキシ化合物をモノマーとして、これらのモノマーを、有機溶媒中、塩基存在下で重縮合反応させることにより製造することができる。
[モノマー]
 芳香族ジハロゲノスルホン化合物および芳香族ジヒドロキシ化合物は、芳香族ポリスルホンを構成する繰返し単位に対応するものである。そして、芳香族ジハロゲノスルホン化合物は、一分子中に芳香環と、スルホニル基と、2個のハロゲノ基とを有する化合物であればよい。また、芳香族ジヒドロキシ化合物は、一分子中に芳香環と、2個のヒドロキシ基とを有する化合物であればよい。
 例えば、繰返し単位(1)を有する芳香族ポリスルホンは、芳香族ジハロゲノスルホン化合物として、式(4)で表される化合物(以下、「化合物(4)」と言うことがある。)を用い、芳香族ジヒドロキシ化合物として、式(5)で表される化合物(以下、「化合物(5)」と言うことがある。)を用いることにより、製造することができる。
 また、繰返し単位(1)と繰返し単位(2)とを有する芳香族ポリスルホンは、芳香族ジハロゲノスルホン化合物として、化合物(4)を用い、芳香族ジヒドロキシ化合物として、式(6)で表される化合物(以下、「化合物(6)」と言うことがある。)を用いることにより、製造することができる。
 また、繰返し単位(1)と繰返し単位(3)とを有する芳香族ポリスルホンは、芳香族ジハロゲノスルホン化合物として、化合物(4)を用い、芳香族ジヒドロキシ化合物として、式(7)で表される化合物(以下、「化合物(7)」と言うことがある。)を用いることにより、製造することができる。
  X-Ph-SO-Ph-X (4)
[式(4)中、XおよびXは、それぞれ独立に、ハロゲン原子を表す。PhおよびPhは、前記と同義である。]
  HO-Ph-SO-Ph-OH (5)
[式(5)中、PhおよびPhは、前記と同義である。]
  HO-Ph-R-Ph-OH (6)
[式(6)中、Ph、PhおよびRは、前記と同義である。]
  HO-(Ph-OH (7)
[式(7)中、Phおよびnは、前記と同義である。]
 XおよびXで表されるハロゲン原子としては、前記フェニレン基の水素原子を置換していてもよいハロゲン原子と同じものが挙げられる。
 化合物(4)の例としては、ビス(4-クロロフェニル)スルホンおよび4-クロロフェニル-3’,4’-ジクロロフェニルスルホンが挙げられる。
 化合物(5)の例としては、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)スルホンおよびビス(4-ヒドロキシ-3-フェニルフェニル)スルホンが挙げられる。
 化合物(6)の例としては、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシ-3-メチルフェニル)スルフィドおよびビス(4-ヒドロキシフェニル)エーテルが挙げられる。
 化合物(7)の例としては、ヒドロキノン、レゾルシン、カテコール、フェニルヒドロキノン、4,4’-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、3,5,3’,5’-テトラメチル-4,4’-ジヒドロキシビフェニル、2,2’-ジフェニル-4,4’-ジヒドロキシビフェニルおよび4,4’-ジヒドロキシ-p-クオターフェニルが挙げられる。
 化合物(4)以外の芳香族ジハロゲノスルホン化合物の例としては、4,4’-ビス(4-クロロフェニルスルホニル)ビフェニルが挙げられる。
 本実施形態においては、芳香族ジハロゲノスルホン化合物および芳香族ジヒドロキシ化合物の全部または一部に代えて、4-ヒドロキシ-4’-(4-クロロフェニルスルホニル)ビフェニルなどの、分子中にハロゲノ基およびヒドロキシ基を有する化合物を用いることもできる。
 本実施形態においては、目的とする芳香族ポリスルホンの種類に応じて、芳香族ジハロゲノスルホン化合物および芳香族ジヒドロキシ化合物は、いずれも、1種を単独で用いてもよいし、2種以上を併用してもよい。
[塩基、有機溶媒]
 芳香族ジハロゲノスルホン化合物と芳香族ジヒドロキシ化合物との重縮合は、塩基として炭酸のアルカリ金属塩を用いて行われることが好ましい。また、重縮合溶媒として有機溶媒中で行われることが好ましく、塩基として炭酸のアルカリ金属塩を用い、かつ、有機溶媒中で行われることがより好ましい。
 炭酸のアルカリ金属塩は、正塩である炭酸アルカリ(すなわち、アルカリ金属の炭酸塩)であってもよいし、酸性塩である重炭酸アルカリ(すなわち、炭酸水素アルカリ、アルカリ金属の炭酸水素塩)であってもよいし、これら(炭酸アルカリおよび重炭酸アルカリ)の混合物であってもよい。炭酸アルカリとしては、例えば炭酸ナトリウム、炭酸カリウムなどが好ましい。重炭酸アルカリとしては、例えば重炭酸ナトリウム(炭酸水素ナトリウムともいう)、重炭酸カリウム(炭酸水素カリウムともいう)などが好ましい。
 有機溶媒の種類は、特に限定されるものではないが、非プロトン性極性溶媒であることが好ましい。また、有機溶媒の沸点は、特に限定されるものではないが、例えば100℃以上400℃以下であることが好ましく、100℃以上350℃以下であることがより好ましい。
 このような有機溶媒としては、例えばジメチルスルホキシドなどのスルホキシド;ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドンなどのアミド;スルホラン(1,1-ジオキソチランともいう)、ジメチルスルホン、ジエチルスルホン、ジイソプロピルスルホン、ジフェニルスルホンなどのスルホン;1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノンなどの、窒素原子に結合している水素原子が置換されていてもよい尿素骨格を有する化合物が挙げられる。
 なかでも、有機溶媒としては、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、スルホラン、ジフェニルスルホンまたは1,3-ジメチル-2-イミダゾリジノンが好ましく、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、スルホランまたは1,3-ジメチル-2-イミダゾリジノンがより好ましい。
 これらの有機溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよい。
[重合]
 芳香族ポリスルホンの製造方法では、第1段階として、芳香族ジハロゲノスルホン化合物と、芳香族ジヒドロキシ化合物とを、有機溶媒に溶解させる。第2段階として、第1段階で得られた溶液に、炭酸のアルカリ金属塩を加えて、芳香族ジハロゲノスルホン化合物と芳香族ジヒドロキシ化合物とを重縮合反応させる。第3段階として、第2段階で得られた反応混合物から、未反応の塩基、副生成物(塩基としてアルカリ金属塩を用いた場合には、ハロゲン化アルカリ)、および有機溶媒を低減して、芳香族ポリスルホンを得る。
 第1段階の溶解温度は、40℃以上180℃以下であることが好ましい。また、第2段階の重縮合の反応温度は、180℃以上400℃以下であることが好ましい。仮に副反応が生じなければ、重縮合温度が高いほど、目的とする重縮合が速やかに進行するので、得られる芳香族ポリスルホンの重合度が高くなる。その結果、芳香族ポリスルホンは還元粘度が高くなる傾向にある。しかし、実際は、重縮合温度が高いほど、上記と同様の副反応が生じ易くなり、得られる芳香族ポリスルホンの重合度が低下する。そのため、この副反応の度合いも考慮して、所定の還元粘度を有する芳香族ポリスルホンが得られるように、重縮合温度を調整する必要がある。
 芳香族ジヒドロキシ化合物に対する、芳香族ジハロゲノスルホン化合物の配合比率は、80モル%以上120モル%以下であることが好ましく、90モル%以上110モル%以下であることがより好ましい。
 芳香族ジヒドロキシ化合物に対する、炭酸のアルカリ金属塩の使用比率は、アルカリ金属として、90モル%以上130モル%以下であることが好ましく、95モル%以上120モル%以下であることがより好ましい。
 仮に副反応が生じなければ、炭酸のアルカリ金属塩の使用比率が多いほど、目的とする重縮合が速やかに進行するので、得られる芳香族ポリスルホンの重合度が高くなる。その結果、芳香族ポリスルホンは還元粘度が高くなる傾向にある。
 しかし、実際は、炭酸のアルカリ金属塩の使用比率が多いほど、上記と同様の副反応が生じ易くなり、得られる芳香族ポリスルホンの重合度が低下する。そのため、この副反応の度合いも考慮して、所定の還元粘度を有する芳香族ポリスルホンが得られるように、炭酸のアルカリ金属塩の使用比率を調整する必要がある。
 第2段階の重縮合は、通常、副生する水を低減しながら、有機溶媒の還流温度まで徐々に昇温する。有機溶媒の還流温度に達した後は、さらに所定の時間保温することが好ましい。所定の時間としては、1時間以上50時間以下が好ましく、2時間以上30時間以下であることがより好ましい。仮に副反応が生じなければ、重縮合時間が長いほど、目的とする重縮合が進むので、得られる芳香族ポリスルホンの重合度が高くなる。その結果、芳香族ポリスルホンは還元粘度が高くなる傾向にある。しかし、実際は、重縮合時間が長いほど、上記と同様の副反応が進行し、得られる芳香族ポリスルホンの重合度が低下する。
そのため、この副反応の度合いも考慮して、所定の還元粘度を有する芳香族ポリスルホンが得られるように、重縮合時間を調整する必要がある。
 末端に少なくとも一つの高極性官能基を有する芳香族ポリスルホンを得るために、重合反応の後に、重合物の末端の官能基を、高極性官能基を有する化合物によって置換してもよい。具体的には、重合物の末端における前記X、Xまたはフェノール性水酸基と反応する官能基と高極性官能基とを有する化合物(以下、末端キャップ剤ということがある)を用いて、得られた重合物と反応させることで末端に少なくとも一つの高極性官能基を有する芳香族ポリスルホンを得ることができる。
 この反応は、重合反応が終了した時点で、末端キャップ剤を添加することで容易に行うことができる。末端キャップ剤としては、具体的には、4-ヒドロキシベンゼンスルホン酸、3-ヒドロキシベンゼンスルホン酸、(4-ヒドロキシフェニル)ホスホン酸およびそのアルカリ金属塩などが挙げられる。
 第3段階では、まず、第2段階で得られた反応混合物から、未反応の炭酸のアルカリ金属塩および副生したハロゲン化アルカリを、ろ過、抽出、遠心分離などで低減することにより、芳香族ポリスルホンが有機溶媒に溶解してなる溶液(以下、「芳香族ポリスルホン溶液」と言うことがある。)を得る。次いで、芳香族ポリスルホン溶液から、有機溶媒を低減することにより、芳香族ポリスルホンが得られる。
 芳香族ポリスルホン溶液から有機溶媒を低減する方法としては、例えば、芳香族ポリスルホン溶液から直接、減圧もしくは加圧下で有機溶媒を低減する方法が挙げられる。また、別の方法としては、芳香族ポリスルホン溶液と芳香族ポリスルホンの貧溶媒とを混合して、芳香族ポリスルホンを析出させ、ろ過や遠心分離などで有機溶媒を低減する方法が挙げられる。本実施形態においては、必要に応じて、析出した芳香族ポリスルホンを、芳香族ポリスルホンの貧溶媒で繰返し洗浄してもよい。
 こうして得られた芳香族ポリスルホンは、高極性官能基を有する芳香族ポリスルホンと、高極性官能基を有さない芳香族ポリスルホンとが所定の比率で混合した混合物である。
本実施形態では、この混合物に対して所定の操作を行うことにより、芳香族ポリスルホン全体に占める高極性官能基を有する芳香族ポリスルホンの割合(すなわち、芳香族ポリスルホンの総質量に対する高極性官能基を有する芳香族ポリスルホンの含有割合)を調整することができる。
以下、高極性官能基を有する芳香族ポリスルホンの含有割合を調整する方法の一例について詳述する。
 まず、芳香族ポリスルホンの混合物と所定の溶媒とを混合する。所定の溶媒としては、高極性官能基を有する芳香族ポリスルホンよりも高極性官能基を有さない芳香族ポリスルホンを溶解しやすい溶媒を用いる。このような溶媒としては、ジクロロメタンやクロロホルムなどが挙げられる。なかでも、これらの芳香族ポリスルホンに対する溶解度の差が大きいことから、ジクロロメタンを用いることが好ましい。
 芳香族ポリスルホンの混合物と所定の溶媒とを混合すると、芳香族ポリスルホンの混合物の周囲に存在する所定の溶媒に向けて、芳香族ポリスルホンの混合物から高極性官能基を有さない芳香族ポリスルホンが溶出する。このとき、高極性官能基を有する芳香族ポリスルホンも溶出するが、その溶出量は、高極性官能基を有さない芳香族ポリスルホンと比べて少ないため、溶液(芳香族ポリスルホンの一部+所定の溶媒)では、高極性官能基を有する芳香族ポリスルホンの割合が低くなる。一方、溶出せずに残った固体(芳香族ポリスルホンの残部+少量の所定の溶媒)では、高極性官能基を有さない芳香族ポリスルホンの割合が少なくなるので、結果として、高極性官能基を有する芳香族ポリスルホンの割合が高くなる。
 次いで、この混合物(芳香族ポリスルホンの混合物+所定の溶媒)をろ過や遠心分離などを用いて、固体と溶液に分離する。固体および溶液からそれぞれ所定の溶媒を低減することにより、高極性官能基を有する芳香族ポリスルホンを多く含む成分と高極性官能基を有する芳香族ポリスルホンを少なく含む成分とに分離することができる。所定の溶媒を低減する方法としては、第3段階において有機溶媒を低減する方法で例示した方法が挙げられる。
 このような操作を、高極性官能基を有する芳香族ポリスルホンが所望の割合になるまで繰り返してもよい。また、高極性官能基を有する芳香族ポリスルホンの割合が異なる2種類以上の芳香族ポリスルホンを用意して、目的とする高極性官能基を有する芳香族ポリスルホンの割合に応じて、適宜配合してもよい。
 本実施形態の芳香族ポリスルホンに含まれる高極性官能基を有する芳香族ポリスルホンの割合は、このようにして調整することができる。
<芳香族ポリスルホン組成物>
 本実施形態の芳香族ポリスルホン組成物は、上述した芳香族ポリスルホンを含み、さらにフィラーも含むことが好ましい。また、芳香族ポリスルホン以外の樹脂をさらに含んでもよい。
 本実施形態の芳香族ポリスルホン組成物中、前記芳香族ポリスルホンの含有量は、前記芳香族ポリスルホン組成物の総質量に対して、20~95質量%が好ましい。
[フィラー]
 本実施形態におけるフィラーとしては、例えば繊維状フィラー、板状フィラー、球状フィラー、粉状フィラー、異形フィラー、ウイスカーなどが挙げられる。
 繊維状フィラーとしては、例えば、ガラス繊維、PAN系炭素繊維、ピッチ系炭素繊維、シリカアルミナ繊維、シリカ繊維、アルミナ繊維、その他セラミック繊維、液晶高分子(LCPと略すことがある)繊維、アラミド繊維、ポリエチレン繊維が挙げられる。また、ウォラストナイト、チタン酸カリウム繊維などのウイスカーも挙げられる。
 板状フィラーとしては、例えば、タルク、マイカ、グラファイト、ウォラストナイトが挙げられる。
 球状フィラーとしては、例えば、ガラスビース、ガラスバルーンが挙げられる。
 粉状フィラーとしては、例えば、炭酸カルシウム、ドロマイト、クレイ硫酸バリウム、酸化チタン、カーボンブラック、導電カーボン、微粒シリカが挙げられる。
 異形フィラーとしては、例えば、ガラスフレーク、異形断面ガラス繊維が挙げられる。
 フィラーの含有量は、芳香族ポリスルホン100質量部に対して、0~250質量部が好ましく、0~70質量部がより好ましく、0~50質量部がさらに好ましく、0~25質量部が特に好ましい。
 芳香族ポリスルホン以外の樹脂としては、例えばポリアミド、ポリエステル、ポリフェニレンスルフィド、ポリカーボネート、ポリフェニレンエーテル、芳香族ポリケトン、ポリエーテルイミド、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂およびその変性物などが挙げられる。
 芳香族ポリスルホン以外の樹脂の含有量は、芳香族ポリスルホン100質量部に対して、5~2000質量部が好ましく、10~1000質量部がより好ましく、20~500質量部がさらに好ましい。
[有機溶媒]
 本実施形態の芳香族ポリスルホン組成物は、さらに有機溶媒を含んでいてもよい。なお、有機溶媒は芳香族ポリスルホン組成物を調製するときに後から添加してもよいし、芳香族ポリスルホンに予め含まれていてもよい。このような有機溶媒として、本実施形態の製造方法で例示した有機溶媒と同様のものを使用することができる。
 有機溶媒の含有量は、芳香族ポリスルホン100質量部に対して、0~1質量部が好ましい。
[その他の成分]
 本実施形態の芳香族ポリスルホン組成物は、本発明の効果を損なわない限り、必要に応じて、種々の材料を含むことができる。このような材料としては、例えば着色成分、潤滑剤、各種界面活性剤、酸化防止剤、熱安定剤、その他各種安定剤、紫外線吸収剤、帯電防止剤などが挙げられる。
 その他成分の含有量は、芳香族ポリスルホン100質量部に対して、0~1質量部が好ましい。
 1つの側面として、本実施形態の芳香族ポリスルホン組成物は、
上述した芳香族ポリスルホンと、
フィラー、芳香族ポリスルホン以外の樹脂、有機溶媒、及びその他の成分からなる群から選択される少なくとも1つの成分と、を含む。
 本実施形態によれば、剥離性に優れた芳香族ポリスルホンおよびその芳香族ポリスルホンを含む芳香族ポリスルホン組成物が提供される。
本実施形態の芳香族ポリスルホンの別の側面は、
 末端に少なくとも一つの高極性官能基を有する芳香族ポリスルホンを含む芳香族ポリスルホンであって、
 前記芳香族ポリスルホンは、
上記式(1)で表される繰返し単位、好ましくは、ビス(4-クロロフェニル)スルホンおよびビス(4-ヒドロキシフェニル)スルホンを縮重合反応させて得られる繰り返し単位を有し;
下記条件下で、ゲル浸透クロマトグラフィー法により測定したとき得られるクロマトグラムにおける、前記高極性官能基を有する芳香族ポリスルホンに帰属されるシグナルの面積が、前記芳香族ポリスルホンに帰属される全シグナルの合計の面積に対して、0.1%以上11%以下である、または8%以上11%以下であってもよい、芳香族ポリスルホン。
 [条件]
  試料注入量:5μL
  カラム:昭和電工株式会社製「Shodex KF-803」
  カラム温度:40℃
  溶離液:N,N-ジメチルホルムアミド
  溶離液流量:0.5mL/分
  検出器:紫外可視分光光度計(UV)
  検出波長:277nm
 前記芳香族ポリスルホンは、所定の条件で剥離強度を測定したとき、260℃での剥離強度が0.66N/cm以下であり、かつ280℃での剥離強度が1.51N/cm以下である芳香族ポリスルホンであることが好ましい。
 以下、実施例および比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 なお、本実施例では、芳香族ポリスルホンの測定および評価を、以下の条件により行った。
<芳香族ポリスルホンのMnおよびMwの測定、Mw/Mnの算出>
 芳香族ポリスルホンの重量平均分子量(Mw)、数平均分子量(Mn)および多分散度(Mw/Mn)は、GPC測定により求めた。なお、MnおよびMwはいずれも2回測定し、その平均値を求めて、それぞれMnおよびMwとし、Mw/Mnの平均値を求めた。
[測定条件]
 試料:10mM臭化リチウム含有N,N-ジメチルホルムアミド溶液1mLに対し、芳香族ポリスルホン0.002gを配合
 試料注入量:100μL
 カラム(固定相):東ソー株式会社製「TSKgel GMHHR-H」(7.8mmφ×300mm)を2本直列に連結
 カラム温度:40℃
 溶離液(移動相):10mM臭化リチウム含有N,N-ジメチルホルムアミド
 溶離液流量:0.8mL/分
 検出器:示差屈折率計(RI)+光散乱光度計(LS)
 標準試薬:ポリスチレン
 分子量算出法:光散乱光度計(LS)の測定結果から絶対分子量を算出
<高極性官能基を有する芳香族ポリスルホンの含有量の測定(含量測定)>
 芳香族ポリスルホン全体に占める高極性官能基を有する芳香族ポリスルホンの割合(すなわち、芳香族ポリスルホンの総質量に対する高極性官能基を有する芳香族ポリスルホンの含有割合)は、GPC測定において芳香族ポリスルホンに帰属されるシグナルの合計の面積で、高極性官能基を有する芳香族ポリスルホンに帰属されるシグナルの面積を除することにより求めた。
[測定条件]
 装置:株式会社島津製作所製、「Nexera X2」
 試料:N,N-ジメチルホルムアミド溶液1mLに対し、芳香族ポリスルホン0.001gを配合
 試料注入量:5μL
 カラム(固定相):昭和電工株式会社製「Shodex KF-803」(8.0mmφ×300mm)
 カラム温度:40℃
 溶離液(移動相):N,N-ジメチルホルムアミド
 溶離液流量:0.5mL/分
 検出器:紫外可視分光光度計(UV)
 検出波長:277nm
[解析条件]
 ソフトウエア:株式会社島津製作所製、「LabSolutions」
 Width(W):70秒
  Slope(S):1000uV/分
  Drift(D):0uV/分
  最小面積/高さ(M):1000カウント
 解析開始時間:0分
  解析終了時間:22分
<芳香族ポリスルホンにおけるフェノール性水酸基の数の測定>
 式(1)で表される繰返し単位100個あたりのフェノール性水酸基の数(A)は、H NMR測定により求めた。具体的には、H NMR測定において、繰返し単位(1)中のフェノール基に結合した4つの水素原子に帰属されるシグナルの面積(x)と、フェノール性水酸基の2つ隣の炭素原子とそれぞれ結合した2つの水素原子に帰属されるシグナルの面積(y)とを用いて、下記式(S1)に基づいて算出した。
  A=(y×100/x)×2 (S1)
 なお、下記条件で測定したときに得られたスペクトルにおいて、繰返し単位(1)中のフェノール基に結合した4つの水素原子に帰属されるシグナルは、6.5~6.95ppmに観測された。また、フェノール性水酸基の2つ隣の炭素原子とそれぞれ結合した2つの水素原子に帰属されるシグナルは、7.2~7.3ppmに観測された。
[測定条件]
 装置:Varian Inc.製、「Varian NMR System PS400WB」
 磁場強度:9.4T(400MHz)
 プローブ:Varian Inc.製、「Varian 400 DB AutoX WB Probe」(5mm)
 測定法:シングルパルス法
 測定温度:50℃
 測定溶媒:重ジメチルスルホキシド(TMS含有)
 待ち時間:10秒
 パルス照射時間:11.9μ秒(90°パルス)
 積算回数:64回
 外部標準:TMS(0ppm)
<芳香族ポリスルホンの製造>
[製造例1]
 撹拌機、窒素導入管、温度計、および先端に受器を付したコンデンサーを備えた重合槽内で、ビス(4-クロロフェニル)スルホン85.46質量部、ビス(4-ヒドロキシフェニル)スルホン75.08質量部、炭酸カリウム43.54質量部およびN-メチル-2-ピロリドン(以下、「NMP」と言うことがある。)165質量部を混合し、190℃で6時間反応させた。次いで、得られた反応混合溶液を、NMPで希釈し、室温まで冷却して、未反応の炭酸カリウムおよび副生した塩化カリウムを析出させた。これらの無機塩をろ過により低減することで、芳香族ポリスルホンがNMPに溶解してなる芳香族ポリスルホン溶液を得た。さらに、この溶液を水中に滴下し、芳香族ポリスルホンを析出させ、ろ過により不要なNMPを低減することで、析出物を得た。得られた析出物を、水で繰返し洗浄し、150℃で加熱乾燥させることで、芳香族ポリスルホンを得た。
 上記含量測定において、得られたクロマトグラムを図2に示す。すなわち、図2は、上記含量測定により得られた製造例1のクロマトグラムである。図2に示したクロマトグラム中の高極性官能基を有する芳香族ポリスルホン(成分A)を分画した後、MALDI法により分析した結果、高極性官能基はスルホン酸またはスルフィン酸であることがわかった。
[実施例1]
 製造例1で得られた芳香族ポリスルホン1質量部と、ジクロロメタン約10質量部とを混合し、室温で振とうした後、1時間静置した。静置後、ジクロロメタンに溶解した上層を抜き出し、芳香族ポリスルホンが溶解してなる溶液を得た。この溶液からジクロロメタンを留去し、乾燥させることで、実施例1の芳香族ポリスルホンを得た。
[比較例1]
 製造例1の芳香族ポリスルホンをそのまま用いた。
 実施例および比較例の芳香族ポリスルホンのMw、Mw/Mn、式(1)で表される繰返し単位100個あたりのフェノール性水酸基の数(A)を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例2]
 実施例1の芳香族ポリスルホン100質量部および製造例1の芳香族ポリスルホン100質量部を混合することで、実施例2の芳香族ポリスルホンを得た。実施例1および製造例1の混合比から算出した高極性官能基を有する芳香族ポリスルホンの割合を表2に示す。
[実施例3]
 実施例1の芳香族ポリスルホン30質量部および製造例1の芳香族ポリスルホン70質量部を混合することで、実施例3の芳香族ポリスルホンを得た。実施例1および製造例1の混合比から算出した高極性官能基を有する芳香族ポリスルホンの割合を表2に示す。
<芳香族ポリスルホンの剥離性の評価>
 加熱容器内で、実施例1~3および比較例の芳香族ポリスルホン15質量部およびNMP85質量部を混合し、60℃で2時間撹拌することで、淡黄色の芳香族ポリスルホン溶液を得た。これを、厚さ3mmのガラス板の一面にフィルムアプリケーターを用いて塗布した後、高温熱風乾燥器を用いて60℃で乾燥することで、芳香族ポリスルホンの塗膜を形成した。この塗膜を、窒素を流しながら、250℃で熱処理することで、ガラス板上に厚さ30μmの芳香族ポリスルホンフィルムを形成した。このフィルムをガラス板から剥離することにより、芳香族ポリスルホンフィルムを得た。
 次いで、芳香族ポリスルホンフィルムとポリイミドフィルム(東レ・デュポン株式会社製、「カプトン 300H」)とを3MPa、260℃または280℃で30分間圧着した。そして、オートグラフを用いて剥離強度を測定し、芳香族ポリスルホンの剥離性を評価した。なお、芳香族ポリスルホンの剥離強度は、3回測定し、その平均値とした。オートグラフを用いた剥離性の評価の条件は以下の通りであった。
 引張速度:5mm/分
 温度:23℃
 湿度:50%
 実施例および比較例の芳香族ポリスルホンの剥離性の評価の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1~3の芳香族ポリスルホンは、芳香族ポリスルホン全体に占める高極性官能基を有する芳香族ポリスルホンの割合(すなわち、芳香族ポリスルホンの総質量に対する高極性官能基を有する芳香族ポリスルホンの含有割合)が11質量%以下であるので、260℃および280℃における剥離強度が相対的に低く、剥離性に優れていた。
 一方、比較例1の芳香族ポリスルホンは、芳香族ポリスルホン全体に占める高極性官能基を有する芳香族ポリスルホンの割合(すなわち、芳香族ポリスルホンの総質量に対する高極性官能基を有する芳香族ポリスルホンの含有割合)が11質量%より大きいので、260℃および280℃における剥離強度が相対的に高く、剥離性に劣っていた。
 以上の結果より、本発明が有用であることが確かめられた。
 本発明によれば、剥離性に優れた芳香族ポリスルホン、および前記芳香族ポリスルホンを含む芳香族ポリスルホン組成物が提供できるので産業上有用である。

Claims (5)

  1.  末端に少なくとも一つの高極性官能基を有する芳香族ポリスルホンを含む芳香族ポリスルホンであって、
     前記芳香族ポリスルホンは、下記条件下で、ゲル浸透クロマトグラフィー法により測定したとき得られるクロマトグラムにおける、前記高極性官能基を有する芳香族ポリスルホンに帰属されるシグナルの面積が、前記芳香族ポリスルホンに帰属される全シグナルの合計の面積に対して、0.1%以上11%以下である、芳香族ポリスルホン。
     [条件]
      試料注入量:5μL
      カラム:昭和電工株式会社製「Shodex KF-803」
      カラム温度:40℃
      溶離液:N,N-ジメチルホルムアミド
      溶離液流量:0.5mL/分
      検出器:紫外可視分光光度計(UV)
      検出波長:277nm
  2.  式(1)で表される繰返し単位を有する、請求項1に記載の芳香族ポリスルホン。
      -Ph-SO-Ph-O- (1)
    [式(1)中、PhおよびPhは、それぞれ独立に、フェニレン基を表し、前記フェニレン基の1個以上の水素原子は、それぞれ独立に、アルキル基、アリール基またはハロゲン原子で置換されていてもよい。]
  3.  フェノール性水酸基を、前記式(1)で表される繰返し単位100個あたり0.5個以上10個以下有する、請求項2に記載の芳香族ポリスルホン。
  4.  請求項1~3のいずれかに1項に記載の芳香族ポリスルホンを含む、芳香族ポリスルホン組成物。
  5.  さらに、フィラーを含む、請求項4に記載の芳香族ポリスルホン組成物。
PCT/JP2017/022822 2016-06-24 2017-06-21 芳香族ポリスルホンおよび芳香族ポリスルホン組成物 WO2017221972A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780039616.1A CN109328207B (zh) 2016-06-24 2017-06-21 芳香族聚砜及芳香族聚砜组合物
EP17815440.7A EP3476884B1 (en) 2016-06-24 2017-06-21 Aromatic polysulfone and aromatic polysulfone composition
KR1020187036533A KR102343693B1 (ko) 2016-06-24 2017-06-21 방향족 폴리술폰 및 방향족 폴리술폰 조성물
ES17815440T ES2971279T3 (es) 2016-06-24 2017-06-21 Polisulfona aromática y composición de polisulfona aromática
JP2018524134A JP6967511B2 (ja) 2016-06-24 2017-06-21 芳香族ポリスルホンおよび芳香族ポリスルホン組成物
US16/311,220 US10899889B2 (en) 2016-06-24 2017-06-21 Aromatic polysulfone and aromatic polysulfone composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016125965 2016-06-24
JP2016-125965 2016-06-24

Publications (1)

Publication Number Publication Date
WO2017221972A1 true WO2017221972A1 (ja) 2017-12-28

Family

ID=60783441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022822 WO2017221972A1 (ja) 2016-06-24 2017-06-21 芳香族ポリスルホンおよび芳香族ポリスルホン組成物

Country Status (7)

Country Link
US (1) US10899889B2 (ja)
EP (1) EP3476884B1 (ja)
JP (1) JP6967511B2 (ja)
KR (1) KR102343693B1 (ja)
CN (1) CN109328207B (ja)
ES (1) ES2971279T3 (ja)
WO (1) WO2017221972A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110845905B (zh) * 2019-12-23 2022-08-05 嘉纳尔科技(北京)有限公司 一种脱漆剂及其生产方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104963A (en) * 1980-01-21 1981-08-21 Ici Ltd Manufacture of aromatic polyether sulfone aqueous dispersion
JPS62199621A (ja) * 1986-02-28 1987-09-03 Daicel Chem Ind Ltd 親水化された芳香族ポリスルホン樹脂
JPS62199622A (ja) * 1986-02-28 1987-09-03 Daicel Chem Ind Ltd 芳香族ポリスルホンポリマ−の親水化法
JPH01319530A (ja) * 1988-06-21 1989-12-25 Daicel Chem Ind Ltd 芳香族ポリエーテル重合体の精製単離方法
JPH0216122A (ja) * 1988-07-04 1990-01-19 Daicel Chem Ind Ltd 熱安定性の優れた芳香族ポリエーテル
JPH09216241A (ja) * 1996-02-15 1997-08-19 Sekisui Chem Co Ltd 光学用フィルムの製造方法
JP2006077193A (ja) * 2004-09-13 2006-03-23 Sumitomo Chemical Co Ltd ポリエーテルスルホン樹脂組成物およびそのフィルム
JP2012509375A (ja) * 2008-11-20 2012-04-19 ビーエーエスエフ ソシエタス・ヨーロピア 反応性ポリアリーレンエーテル、及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0016544B1 (en) 1979-03-23 1983-03-02 Imperial Chemical Industries Plc Method of making powder compositions of aromatic polyethersulphone and filler, compositions made by the method, and articles made from the compositions
GB8505682D0 (en) * 1985-03-05 1985-05-09 Ici Plc Polyarylether
JPH0829560B2 (ja) * 1987-02-13 1996-03-27 三菱化学株式会社 多層フイルムの成形方法
DE58904963D1 (en) * 1988-10-01 1993-08-26 Bayer Ag Aromatische polyethersulfone.
US4945154A (en) 1989-07-07 1990-07-31 Hexcel Corporation Densified polyethersulfone
EP0467826A3 (en) 1990-06-26 1992-10-07 Ciba-Geigy Ag Linear polymers
JP4161249B2 (ja) * 2001-04-24 2008-10-08 東洋紡績株式会社 イオン伝導性芳香族ポリエーテル
KR20030087946A (ko) * 2002-05-09 2003-11-15 스미또모 가가꾸 고오교오 가부시끼가이샤 방향족 폴리술폰 수지 및 이의 용도
JP2010001446A (ja) * 2007-08-10 2010-01-07 Toray Ind Inc ヒドロキシフェニル末端基を有する芳香族ポリエーテルスルホンとその製造方法
AU2008287961A1 (en) * 2007-08-10 2009-02-19 Toray Industries, Inc. Aromatic polyether sulfone having hydroxyphenyl end group and method for producing the same
JP6045836B2 (ja) 2011-07-28 2016-12-14 住友化学株式会社 ポリエーテルスルホンの製造方法
US8625422B1 (en) 2012-12-20 2014-01-07 Unbound Networks Parallel processing using multi-core processor
WO2014177643A1 (de) 2013-05-02 2014-11-06 Basf Se Polyarylethersulfoncopolymere
US9371431B2 (en) 2014-07-02 2016-06-21 International Business Machines Corporation Poly(ether sulfone)s and poly(ether amide sulfone)s and methods of their preparation
CA2954062C (en) 2014-07-03 2019-07-02 International Paper Company Thermoformed articles from polypropylene polymer compositions
JP6888921B2 (ja) 2016-06-24 2021-06-18 住友化学株式会社 芳香族ポリスルホンおよび芳香族ポリスルホン組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104963A (en) * 1980-01-21 1981-08-21 Ici Ltd Manufacture of aromatic polyether sulfone aqueous dispersion
JPS62199621A (ja) * 1986-02-28 1987-09-03 Daicel Chem Ind Ltd 親水化された芳香族ポリスルホン樹脂
JPS62199622A (ja) * 1986-02-28 1987-09-03 Daicel Chem Ind Ltd 芳香族ポリスルホンポリマ−の親水化法
JPH01319530A (ja) * 1988-06-21 1989-12-25 Daicel Chem Ind Ltd 芳香族ポリエーテル重合体の精製単離方法
JPH0216122A (ja) * 1988-07-04 1990-01-19 Daicel Chem Ind Ltd 熱安定性の優れた芳香族ポリエーテル
JPH09216241A (ja) * 1996-02-15 1997-08-19 Sekisui Chem Co Ltd 光学用フィルムの製造方法
JP2006077193A (ja) * 2004-09-13 2006-03-23 Sumitomo Chemical Co Ltd ポリエーテルスルホン樹脂組成物およびそのフィルム
JP2012509375A (ja) * 2008-11-20 2012-04-19 ビーエーエスエフ ソシエタス・ヨーロピア 反応性ポリアリーレンエーテル、及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3476884A4 *

Also Published As

Publication number Publication date
US10899889B2 (en) 2021-01-26
CN109328207B (zh) 2021-11-12
KR20190021240A (ko) 2019-03-05
CN109328207A (zh) 2019-02-12
US20190185625A1 (en) 2019-06-20
EP3476884B1 (en) 2024-01-10
EP3476884A4 (en) 2019-12-18
JP6967511B2 (ja) 2021-11-17
JPWO2017221972A1 (ja) 2019-04-18
KR102343693B1 (ko) 2021-12-27
EP3476884A1 (en) 2019-05-01
ES2971279T3 (es) 2024-06-04

Similar Documents

Publication Publication Date Title
TWI644968B (zh) Resin substrate for circuit board, resin composition for circuit board, and circuit board
TWI699388B (zh) 聚芳硫醚樹脂及其製造方法、以及聚(芳鋶鹽)及其製造方法
WO2012017915A1 (ja) 新規重合体、その製造方法およびフィルム
WO2016148133A1 (ja) 芳香族ポリスルホン
WO2011136098A1 (ja) フィルム、樹脂組成物および重合体
JP6321754B2 (ja) 芳香族ポリスルホンの製造方法
WO2017221966A1 (ja) 芳香族ポリスルホンおよび芳香族ポリスルホン組成物
JP2005272814A (ja) 熱伝導性組成物及び熱伝導性フィルム
WO2017221972A1 (ja) 芳香族ポリスルホンおよび芳香族ポリスルホン組成物
JP5708160B2 (ja) 高周波回路基板用樹脂基板および高周波回路基板
WO2020189401A1 (ja) 絶縁フィルム、接着フィルムおよびフラットケーブル
JP6894313B2 (ja) 芳香族ポリスルホン組成物
JP6865541B2 (ja) 樹脂フィルム、積層フィルム及びフレキシブルプリント配線板用基板
JP5879661B2 (ja) 絶縁被覆体及びその製造方法
JP2013206786A (ja) 絶縁被覆体
WO2017138599A1 (ja) 樹脂フィルム、積層フィルム及びフレキシブルプリント配線板用基板
KR20180107129A (ko) 방향족 폴리술폰 조성물 및 성형품

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018524134

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036533

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017815440

Country of ref document: EP

Effective date: 20190124