WO2017138599A1 - 樹脂フィルム、積層フィルム及びフレキシブルプリント配線板用基板 - Google Patents

樹脂フィルム、積層フィルム及びフレキシブルプリント配線板用基板 Download PDF

Info

Publication number
WO2017138599A1
WO2017138599A1 PCT/JP2017/004708 JP2017004708W WO2017138599A1 WO 2017138599 A1 WO2017138599 A1 WO 2017138599A1 JP 2017004708 W JP2017004708 W JP 2017004708W WO 2017138599 A1 WO2017138599 A1 WO 2017138599A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
aromatic polysulfone
compound
ppm
less
Prior art date
Application number
PCT/JP2017/004708
Other languages
English (en)
French (fr)
Inventor
雄作 小日向
伊藤 和幸
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016139739A external-priority patent/JP6865541B2/ja
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020187022784A priority Critical patent/KR20180107137A/ko
Priority to EP17750320.8A priority patent/EP3415554B1/en
Priority to US16/076,612 priority patent/US11104771B2/en
Priority to CN201780010261.3A priority patent/CN108699264B/zh
Publication of WO2017138599A1 publication Critical patent/WO2017138599A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a resin film, a laminated film, and a flexible printed wiring board substrate.
  • This application claims priority based on Japanese Patent Application No. 2016-23701 filed in Japan on February 10, 2016 and Japanese Patent Application No. 2016-139739 filed in Japan on July 14, 2016. The contents are incorporated here.
  • aromatic polysulfone Since aromatic polysulfone is excellent in heat resistance and chemical resistance, it is used as a material for molded articles in various applications.
  • the aromatic polysulfone is usually produced by subjecting an aromatic dihalogenosulfone compound and an aromatic dihydroxy compound to a polycondensation reaction in the presence of a base and a reaction solvent (see, for example, Patent Documents 1 and 2).
  • the reaction mixture obtained by the above polycondensation reaction contains an aromatic polysulfone, an unreacted base, a by-product (an alkali halide when an alkali metal salt is used as a base) and a reaction solvent.
  • aromatic polysulfone is isolated from this reaction mixture, and the remaining amount of unreacted base, by-products and reaction solvent is small.
  • Patent Document 3 after removing a by-product and a solvent from a polymer mixture using a non-solvent such as alcohol or water, the bulk density of the aromatic polyether polymer is adjusted in a mixed solvent of an aliphatic alcohol and a ketone. A method of raising is disclosed.
  • Patent Document 4 discloses a method in which a polymer mixture is pulverized in a non-solvent and then heated under reduced pressure at a temperature lower than the glass transition temperature or melting point of the polymer mixture and at or above the vapor pressure of the reaction solvent. .
  • Patent Document 5 a mixed solvent of a specific solvent such as 1,3-dimethyl-2-imidazolidinone and a non-solvent of an aromatic polyether polymer is added to the reaction crude liquid after removing the by-product salt, A method is disclosed in which an aromatic polyether polymer is precipitated in a non-solvent and then washed.
  • a specific solvent such as 1,3-dimethyl-2-imidazolidinone
  • a non-solvent of an aromatic polyether polymer is added to the reaction crude liquid after removing the by-product salt
  • the resin films made of conventional aromatic polysulfone as described in Patent Documents 1 to 5 do not necessarily have sufficient mechanical strength such as toughness. Therefore, it is desired to improve the mechanical strength of a resin film using aromatic polysulfone as a forming material.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a resin film having excellent mechanical strength such as toughness. Another object is to provide a laminated film including the resin film and having excellent mechanical strength such as toughness. It is another object of the present invention to provide a flexible printed wiring board including the laminated film and having excellent mechanical strength such as toughness.
  • one embodiment of the present invention is a resin film using an aromatic polysulfone as a forming material, the thickness of the resin film being less than 100 ⁇ m, and the resin film having a boiling point of 250 ° C. or higher.
  • the resin film further includes an organic compound having a temperature of 400 ° C. or less, and the organic compound is contained in an amount of 500 ppm to 4000 ppm with respect to the mass of the aromatic polysulfone.
  • the aromatic polysulfone has a repeating unit represented by the formula (1), and the total amount of all repeating units constituting the aromatic polysulfone is represented by the formula (1). It is preferable that the repeating unit represented is 80 to 100 mol%.
  • Ph 1 and Ph 2 represents a phenylene group, one or more hydrogen atoms bonded to the phenylene group, independently of one another, an alkyl group having 1 to 10 carbon atoms, having a carbon number of 6 to It may be substituted with 20 aryl groups or halogen atoms.
  • the organic compound is dispersed in claim [delta] D (unit: MPa 0.5) in Hansen solubility parameter 16.0 or 22.0 or less, polarity term [delta] P (unit: MPa 0.5) is It is preferable that 12.0 or more and 16.4 or less and the hydrogen bond term ⁇ H (unit: MPa 0.5 ) is 3.0 or more and 12.0 or less.
  • the organic compound is preferably an aprotic polar solvent.
  • the organic compound is preferably diphenyl sulfone.
  • One embodiment of the present invention provides a laminated film having a layer made of the above resin film and a layer made of a conductor.
  • One embodiment of the present invention provides a flexible printed wiring board substrate using the above laminated film.
  • a resin film having an aromatic polysulfone as a forming material The resin film has a thickness of less than 100 ⁇ m, The resin film further includes an organic compound having a boiling point of 250 ° C. or higher and 400 ° C. or lower, The said organic compound is a resin film contained 500 ppm or more and 4000 ppm or less with respect to the mass of the said aromatic polysulfone.
  • the aromatic polysulfone has a repeating unit represented by the formula (1), The resin film according to ⁇ 1>, wherein the repeating unit represented by the formula (1) is 80 to 100 mol% with respect to a total amount of all repeating units constituting the aromatic polysulfone.
  • Ph 1 and Ph 2 represent a phenylene group, and one or more hydrogen atoms bonded to the phenylene group are independently of each other an alkyl group having 1 to 10 carbon atoms, It may be substituted with 20 aryl groups or halogen atoms.
  • the organic compound has a dispersion term ⁇ D (unit: MPa 0.5 ) in the Hansen solubility parameter of 16.0 to 22.0 and a polar term ⁇ P (unit: MPa 0.5 ) of 12.0 to 16
  • ⁇ D unit: MPa 0.5
  • a hydrogen bond term ⁇ H unit: MPa 0.5
  • ⁇ 5> The resin film according to any one of ⁇ 1> to ⁇ 4>, wherein the organic compound is diphenylsulfone.
  • ⁇ 6> A laminated film comprising a layer made of the resin film according to any one of ⁇ 1> to ⁇ 5> and a layer made of a conductor.
  • ⁇ 7> A substrate for flexible printed wiring board comprising the laminated film according to ⁇ 6>.
  • a resin film excellent in mechanical strength such as toughness is provided. Moreover, the laminated film excellent in mechanical strength, such as toughness, containing this resin film is provided. Furthermore, the flexible printed wiring board excellent in mechanical strength, such as toughness, containing this laminated film is provided.
  • the resin film according to this embodiment is a film having an aromatic polysulfone as a forming material and a thickness of less than 100 ⁇ m.
  • the resin film further includes an organic compound having a boiling point of 250 ° C. or higher and 400 ° C. or lower (hereinafter sometimes referred to as “compound A”), and the compound A is 500 ppm or higher and 4000 ppm or lower, based on the mass of the aromatic polysulfone.
  • it is 600 ppm or more and 3500 ppm or less, More preferably, it is 700 ppm or more and 3200 ppm or less, More preferably, it is contained 800 ppm or more and 3000 ppm or less.
  • One aspect of the present invention is a resin film formed from an aromatic polysulfone composition containing an aromatic polysulfone and an organic compound having a boiling point of 250 ° C. or more and 400 ° C. or less, wherein the organic compound is the aromatic polysulfone.
  • the resin film contains 500 ppm or more and 4000 ppm or less with respect to the mass and has a thickness of less than 100 ⁇ m.
  • the aromatic polysulfone typically contains a divalent aromatic group (residue obtained by removing two hydrogen atoms bonded to the aromatic ring from the aromatic compound) and a sulfonyl group (- A resin having a repeating unit containing SO 2- ) and an oxygen atom.
  • a divalent aromatic group include a phenylene group and a naphthalenediyl group.
  • Preferred examples include a phenylene group, and these groups may have a substituent.
  • the aromatic polysulfone preferably has a repeating unit represented by the formula (1) (hereinafter sometimes referred to as “repeating unit (1)”) from the viewpoint of heat resistance and chemical resistance.
  • An aromatic polysulfone having the repeating unit (1) may be referred to as an aromatic polyethersulfone.
  • the aromatic polysulfone further includes a repeating unit represented by the formula (2) (hereinafter sometimes referred to as “repeating unit (2)”) or a repeating unit represented by the formula (3) (hereinafter referred to as “repeating unit”). Other repeating units such as “repeating unit (3)” may be included.
  • Ph 1 and Ph 2 represent a phenylene group, and one or more hydrogen atoms of the phenylene group are independently of each other an alkyl group having 1 to 10 carbon atoms, or a carbon atom having 6 to 20 carbon atoms. It may be substituted with an aryl group or a halogen atom. ]
  • Ph 3 and Ph 4 represent a phenylene group, and one or more hydrogen atoms of the phenylene group are independently of each other an alkyl group having 1 to 10 carbon atoms or a carbon atom having 6 to 20 carbon atoms. It may be substituted with an aryl group or a halogen atom.
  • R is an alkylidene group having 1 to 5 carbon atoms, an oxygen atom or a sulfur atom.
  • Ph 5 represents a phenylene group, and one or more hydrogen atoms of the phenylene group are independently of each other an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or It may be substituted with a halogen atom.
  • n is an integer of 1 to 3, and when n is 2 or more, a plurality of Ph 5 may be the same or different from each other.
  • the phenylene group represented by any of Ph 1 to Ph 5 is, independently of each other, a p-phenylene group, an m-phenylene group, or an o-phenylene group, and is preferably a p-phenylene group.
  • alkyl group having 1 to 10 carbon atoms which may be substituted with a hydrogen atom of the phenylene group
  • examples of the alkyl group having 1 to 10 carbon atoms which may be substituted with a hydrogen atom of the phenylene group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec- Examples include butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, 2-ethylhexyl group, n-octyl group and n-decyl group.
  • Examples of the aryl group having 6 to 20 carbon atoms that may be substituted for the hydrogen atom of the phenylene group include a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 1-naphthyl group and 2 A naphthyl group.
  • the number is preferably 2 or less, more preferably 1 for each phenylene group, independently of each other.
  • Examples of the alkylidene group having 1 to 5 carbon atoms represented by R include a methylene group, an ethylidene group, an isopropylidene group, and a 1-butylidene group.
  • the total amount of all the repeating units constituting the aromatic polysulfone, that is, the repeating unit (1) is preferably 50 to 100 mol%, more preferably 80 to 100 mol%, more preferably the repeating unit based on the total molar quantity. More preferably, it has substantially only the repeating unit (1).
  • the aromatic polysulfone may have two or more repeating units (1) to (3) independently of each other.
  • the reduced viscosity (unit: dL / g) of the aromatic polysulfone of the present embodiment is preferably 0.30 or more, more preferably 0.40 or more and 0.80 or less. That is, the reduced viscosity (unit: dL / g) of the aromatic polysulfone is preferably 0.30 or more and 0.80 or less, and more preferably 0.40 or more and 0.80 or less.
  • a reduced viscosity can be measured by the method as described in the below-mentioned Example.
  • Aromatic polysulfone tends to improve mechanical strength such as toughness when it is used as a resin film as the reduced viscosity is higher. However, if it is too high, the melting temperature and melt viscosity are likely to be high, and the fluidity is likely to be low.
  • the boiling point of the compound A according to this embodiment is 250 ° C. or higher and 400 ° C. or lower, and preferably 350 ° C. or higher and 400 ° C. or lower.
  • a known method can be applied to the boiling point measurement, and in the case of a simple substance, values described in documents such as a chemical handbook can also be referred to.
  • the boiling point in this specification is represented by the value measured at 1 atmosphere.
  • the dispersion term ⁇ D (unit: MPa 0.5 ) in the Hansen solubility parameter of compound A is preferably 16.0 or more and 22.0 or less, more preferably 16.0 or more and 20.0 or less. More preferably, it is 0 or more and 19.0 or less.
  • the dispersion term ⁇ D (unit: MPa 0.5 ) in the Hansen solubility parameter of the compound A is preferably 18.0 or more and 22.0 or less, and 19.0 or more and 22.0. The following is more preferable.
  • the polar term ⁇ P (unit: MPa 0.5 ) in the Hansen solubility parameter of compound A is preferably 12.0 or more and 16.4 or less, more preferably 12.0 or more and 15.0 or less.
  • the hydrogen bond term ⁇ H (unit: MPa 0.5 ) in the Hansen solubility parameter of compound A is preferably 3.0 or more and 12.0 or less, more preferably 3.0 or more and 8.0 or less. More preferably, it is 7.0 or more and 8.0 or less.
  • the hydrogen bond term ⁇ H (unit: MPa 0.5 ) in the Hansen solubility parameter of compound A is preferably 3.0 or more and 4.0 or less.
  • the dispersion term ⁇ D (unit: MPa 0.5 ) is 16.0 to 22.0
  • the polar term ⁇ P (unit: MPa 0.5 ) is 12.0 to 16.4
  • the hydrogen bond term It is more preferable that ⁇ H (unit: MPa 0.5 ) is 3.0 or more and 12.0 or less.
  • the dispersion term ⁇ D (unit: MPa 0.5 ) is 18.0 to 22.0
  • the polar term ⁇ P (unit: MPa 0.5 ) is 12.0 to 15.0
  • the hydrogen bond term ⁇ H (unit: MPa 0.5 ) is more preferably 3.0 or more and 8.0 or less.
  • the dispersion term ⁇ D (unit: MPa 0.5 ) in the Hansen solubility parameter is 19.0 or more and 22.0 or less
  • the polar term ⁇ P (unit: MPa 0.5 ) is 12.0 or more and 14.5 or less.
  • the hydrogen bond term ⁇ H (unit: MPa 0.5 ) is more preferably 3.0 or more and 4.0 or less.
  • the Hansen solubility parameter is useful for predicting the ability of a solvent material to dissolve a particular solute, where the dispersion term ⁇ D is derived from the intermolecular dispersion force and the polar term ⁇ P is derived from the intermolecular polar force.
  • the hydrogen bond term ⁇ H represents the energy derived from the hydrogen bond force.
  • the Hansen solubility parameter can be calculated from its chemical formula by using, for example, the computer software Hansen Solubility Parameters in Practice (HSPIP).
  • HSPIP ver For compounds registered in the database of 5.0.03, the value is used.
  • HSPiP ver For compounds not in the database, HSPiP ver. The value obtained by the calculation according to 5.0.03 can be used.
  • Compound A is preferably an aprotic polar solvent, and more preferably an aprotic polar solvent whose Hansen solubility parameter satisfies the above-mentioned conditions.
  • examples thereof include sulfones such as dimethyl sulfone, diethyl sulfone, diisopropyl sulfone, and diphenyl sulfone.
  • Compound A is more preferably an aprotic polar solvent whose Hansen solubility parameter satisfies the above-mentioned conditions, and an example thereof is diphenylsulfone.
  • Table 1 shows the values of the terms (dispersion term ⁇ D, polar term ⁇ P, and hydrogen bond term ⁇ H) in the Hansen solubility parameter of diphenylsulfone.
  • the boiling point of diphenyl sulfone is 378 ° C.
  • Compound A may be used alone or in combination of two or more.
  • the resin film according to this embodiment is formed from a composition containing aromatic polysulfone and compound A.
  • the method for producing the resin film include a solution casting method and a melt extrusion method which will be described later.
  • This composition contains 500 ppm or more and 4000 ppm or less, preferably 600 ppm or more and 3500 ppm or less, more preferably 700 ppm or more and 3200 ppm or less, and still more preferably 800 ppm or more and 3000 ppm or less with respect to the mass of the aromatic polysulfone.
  • the composition according to this embodiment is excellent in mechanical strength such as toughness when it is formed into a resin film by including Compound A in the above-described range.
  • the toughness can be measured by the method described in Examples described later.
  • composition (Composition)
  • the method for producing a composition according to the present embodiment comprises mixing an aromatic dihalogenosulfone compound, an aromatic dihydroxy compound, a base and an organic solvent, and subjecting the aromatic dihalogenosulfone compound and the aromatic dihydroxy compound to a polycondensation reaction. This is a method for producing a composition.
  • the aromatic dihalogenosulfone compound and the aromatic dihydroxy compound correspond to the repeating unit constituting the aromatic polysulfone.
  • the aromatic dihalogenosulfone compound may be a compound having an aromatic ring, a sulfonyl group (—SO 2 —), and two halogeno groups in one molecule.
  • the aromatic dihydroxy compound may be a compound having an aromatic ring and two hydroxy groups in one molecule.
  • the aromatic polysulfone having the repeating unit (1) includes a compound represented by the formula (4) (hereinafter sometimes referred to as “compound (4)”) and a compound represented by the formula (5) ( Hereinafter, it may be produced by polycondensation reaction with “compound (5)”.
  • the aromatic polysulfone having the repeating unit (1) and the repeating unit (2) includes the compound (4) and a compound represented by the formula (6) (hereinafter sometimes referred to as “compound (6)”). Can be produced by polycondensation reaction.
  • the aromatic polysulfone having the repeating unit (1) and the repeating unit (3) includes the compound (4) and a compound represented by the formula (7) (hereinafter sometimes referred to as “compound (7)”). Can be produced by polycondensation reaction.
  • X 1 -Ph 1 -SO 2 -Ph 2 -X 2 (4)
  • X 1 and X 2 each independently represent a halogen atom. Ph 1 and Ph 2 are as defined above.
  • X 1 and X 2 each independently represent a halogen atom, and examples thereof include the same halogen atoms as may be substituted for the hydrogen atom of the phenylene group.
  • Examples of the compound (4) include bis (4-chlorophenyl) sulfone and 4-chlorophenyl-3 ', 4'-dichlorophenylsulfone.
  • Examples of the compound (5) include bis (4-hydroxyphenyl) sulfone, bis (4-hydroxy-3,5-dimethylphenyl) sulfone and bis (4-hydroxy-3-phenylphenyl) sulfone.
  • Examples of the compound (6) include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, bis (4-hydroxyphenyl) sulfide, bis (4- Hydroxy-3-methylphenyl) sulfide and bis (4-hydroxyphenyl) ether.
  • Examples of the compound (7) include hydroquinone, resorcin, catechol, phenylhydroquinone, 4,4′-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 3,5,3 ′, 5′-tetramethyl-4,4 Examples include '-dihydroxybiphenyl, 2,2'-diphenyl-4,4'-dihydroxybiphenyl and 4,4'-dihydroxy-p-quarterphenyl.
  • hydroquinone, resorcin, catechol, phenylhydroquinone, 2,2′-dihydroxybiphenyl, 3,5,3 ′, 5′-tetramethyl-4,4′-dihydroxybiphenyl, 2,2′-diphenyl-4, 4'-dihydroxybiphenyl and 4,4'-dihydroxy-p-quarterphenyl are preferred.
  • aromatic dihalogenosulfone compounds other than the compound (4) examples include 4,4'-bis (4-chlorophenylsulfonyl) biphenyl.
  • a halogeno group and a hydroxy group in the molecule such as 4-hydroxy-4 ′-(4-chlorophenylsulfonyl) biphenyl, are used.
  • a compound having a group can also be used.
  • either the aromatic dihalogenosulfone compound or the aromatic dihydroxy compound may be used alone or in combination of two or more. May be.
  • the polycondensation of the aromatic dihalogenosulfone compound and the aromatic dihydroxy compound is preferably performed using an alkali metal salt of carbonic acid as a base.
  • the polycondensation solvent is preferably carried out in an organic solvent, more preferably an alkali metal carbonate is used as the base, and more preferably carried out in an organic solvent.
  • the alkali metal carbonate may be an alkali carbonate (alkali metal carbonate) which is a normal salt, or an alkali bicarbonate (alkali hydrogen carbonate, alkali metal hydrogen carbonate) which is an acidic salt. It may be a mixture of these (alkali carbonate and alkali bicarbonate).
  • alkali carbonates include sodium carbonate and potassium carbonate.
  • preferable alkali bicarbonate include sodium bicarbonate (sodium bicarbonate), potassium bicarbonate (potassium bicarbonate) and the like.
  • a base may be used individually by 1 type and may use 2 or more types together.
  • the polycondensation of the aromatic dihalogenosulfone compound and the aromatic dihydroxy compound is preferably performed using Compound A as the organic solvent.
  • an aromatic dihalogenosulfone compound and an aromatic dihydroxy compound are dissolved in Compound A.
  • an alkali metal salt of carbonic acid is added to the solution obtained in the first stage to cause a polycondensation reaction between the aromatic dihalogenosulfone compound and the aromatic dihydroxy compound.
  • unreacted base, by-product (an alkali halide when an alkali metal salt is used as a base) and excess compound A are removed from the reaction mixture obtained in the second stage.
  • the melting temperature in the first stage is preferably 40 ° C. or higher and 180 ° C. or lower.
  • the reaction temperature of the second stage polycondensation is preferably 180 ° C. or higher and 400 ° C. or lower. If no side reaction occurs, the higher the polycondensation temperature, the faster the target polycondensation proceeds, and the higher the degree of polymerization of the resulting aromatic polysulfone. As a result, the aromatic polysulfone has a high reduced viscosity. Tend to be. However, in fact, the higher the polycondensation temperature, the more likely the side reaction similar to the above occurs, and this side reaction reduces the degree of polymerization of the aromatic polysulfone obtained.
  • the polycondensation temperature It is necessary to adjust the polycondensation temperature so that an aromatic polysulfone having a predetermined reduced viscosity can be obtained.
  • the predetermined reduced viscosity include reduced viscosities falling within a range of 0.30 to 0.80, which is a preferable range of the reduced viscosity, and a range of 0.40 to 0.80, which is a more preferable range.
  • the blending ratio of the aromatic dihalogenosulfone compound to the aromatic dihydroxy compound is preferably 80 mol% or more and 120 mol% or less, and more preferably 90 mol% or more and 110 mol% or less.
  • the use ratio of the alkali metal carbonate of carbonic acid relative to the aromatic dihydroxy compound is preferably 90 mol% or more and 130 mol% or less, more preferably 95 mol% or more and 120 mol% or less as an alkali metal.
  • the temperature is gradually raised while removing by-product water, and after reaching the reflux temperature of Compound A, it is preferably 1 hour to 50 hours, more preferably 2 hours. It may be performed by keeping the temperature for 30 hours or less.
  • the side reaction does not occur, the longer the polycondensation time, the more the target polycondensation proceeds, so the degree of polymerization of the resulting aromatic polysulfone increases, and as a result, the aromatic polysulfone tends to have a reduced viscosity. is there.
  • the longer the polycondensation time the more the same side reaction proceeds as described above, and this side reaction reduces the degree of polymerization of the resulting aromatic polysulfone. It is necessary to adjust the polycondensation time so as to obtain an aromatic polysulfone having a reduced viscosity of 5%.
  • compound A may be reduced directly from an aromatic polysulfone solution under reduced pressure or pressure.
  • the above-mentioned solution is mixed with a poor solvent for aromatic polysulfone to precipitate aromatic polysulfone, and compound A is removed by filtration, centrifugation, or the like.
  • it is preferable to obtain an aromatic polysulfone composition by repeatedly washing the above-described precipitate with a poor solvent.
  • the aromatic polysulfone precipitated in the poor solvent exists as a mixed precipitate containing the aromatic polysulfone and the compound A in the poor solvent. Therefore, when the solution (aromatic polysulfone solution + poor solvent) in which aromatic polysulfone is precipitated is filtered or centrifuged, the mixed precipitate and the solvent (compound A + poor solvent) are separated, and a mixed precipitate is obtained. .
  • the compound A When the obtained mixed precipitate is dispersed in a poor solvent, the compound A is eluted from the mixed precipitate toward the poor solvent around the mixed precipitate. At the same time, the poor solvent around the mixed precipitate penetrates into the mixed precipitate. Such movement of the poor solvent and the compound A is performed until the concentration of the compound A is equal in the mixed precipitate and in the dispersion medium around the mixed precipitate in the dispersion system in which the mixed precipitate is dispersed in the poor solvent. That is, it continues until equilibrium is reached in the mixed precipitate and the dispersion medium around the mixed precipitate.
  • the movement of the solvent (compound A + poor solvent) in the dispersion is balanced based on these amounts.
  • the amount of Compound A remaining in the mixed precipitate can be estimated.
  • the amount of the compound A remaining in the mixed precipitate can be controlled by controlling the amount of the poor solvent used for the cleaning.
  • the mixture precipitates are separated from the surroundings when the movement of the solvent in the dispersion reaches equilibrium.
  • the amount of Compound A eluted toward the poor solvent can be suppressed, and a large amount of Compound A can remain in the mixed precipitate.
  • the amount of poor solvent used, the washing time, the washing temperature, the number of washings, and the stirring speed can be adjusted so that an aromatic polysulfone composition containing a predetermined amount of Compound A is obtained.
  • the content of Compound A is reduced by increasing the amount of the poor solvent used, increasing the cleaning time until the above equilibrium is reached, increasing the cleaning temperature, increasing the number of times of cleaning, or increasing the stirring speed. be able to. Two or more of the above operations may be combined.
  • the poor solvent for aromatic polysulfone examples include methanol, ethanol, isopropyl alcohol, hexane, heptane and water, and water and methanol are preferable because they are inexpensive.
  • the poor solvent of aromatic polysulfone may be used individually by 1 type, and may use 2 or more types together.
  • the thickness of the resin film according to the present embodiment is less than 100 ⁇ m, preferably 3 ⁇ m or more and less than 100 ⁇ m, more preferably 3 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the resin film can be obtained by measuring at any three points in the resin film with a micrometer and calculating the average value.
  • Examples of the method for producing a resin film according to this embodiment include a method for producing a resin film by the solution casting method or the melt extrusion method using the above-described composition.
  • One aspect of the present invention is a method for producing a resin film described below.
  • ⁇ 1> a step of applying an aromatic polysulfone and an aromatic polysulfone composition containing an organic compound having a boiling point of 250 ° C. or higher and 400 ° C. or lower to a substrate;
  • a process for drying and heat-treating the applied aromatic polysulfone composition, and a method for producing a resin film comprising: The manufacturing method of the resin film in which the said organic compound is contained 500 ppm or more and 4000 ppm or less with respect to the mass of the said aromatic polysulfone, and thickness is less than 100 micrometers.
  • the aromatic polysulfone composition is the aromatic polysulfone composition in which the organic compound is contained in an amount of 500 ppm to 5000 ppm with respect to the mass of the aromatic polysulfone.
  • the aromatic polysulfone composition containing 500 ppm or more and 5000 ppm or less of the organic compound with respect to the mass of the aromatic polysulfone refers to the aromatic polysulfone composition before the step of applying to the substrate.
  • a solution is prepared by dissolving the composition according to this embodiment in a solvent.
  • a solvent for example, an aprotic polar solvent is preferable.
  • the aprotic polar solvent include sulfoxides such as dimethyl sulfoxide; amides such as dimethylformamide, dimethylacetamide and N-methyl-2-pyrrolidone; sulfones such as dimethylsulfone, diethylsulfone and diisopropylsulfone; 1,3-dimethyl- Examples thereof include 2-imidazolidinone and 1,3-diethyl-2-imidazolidinone, which have a urea skeleton in which a hydrogen atom bonded to a nitrogen atom may be substituted. It does not specifically limit as a method of dissolving a composition in a solvent, A conventionally well-known method can be used.
  • the content of Compound A as a resin film can be prepared by adding Compound A to the above solution.
  • the desired amount of compound A is added to the solution used for the production, whereby the content of compound A Can be prepared.
  • the solution according to the present embodiment may contain a known filler or additive as long as the effects of the present invention are not impaired.
  • a known filler or additive as long as the effects of the present invention are not impaired.
  • an inorganic filler is preferable because the mechanical strength of the obtained resin film can be further improved.
  • the obtained solution may be filtered through a filter or the like as necessary to remove fine foreign matters contained in the solution.
  • the obtained solution is applied to a substrate to form a coating film.
  • the coating method include a roller coating method, a dip coater method, a spray coater method, a spin coating method, a curtain coating method, a slot coating method, and a screen printing method.
  • the solvent remaining on the coating film is removed by subjecting the coating film on the substrate to surface drying and heat treatment.
  • the heat treatment in two stages of surface drying and heat treatment.
  • the drying method include a method of drying by heating, decompression and ventilation. In these, since it is excellent in production efficiency and handleability, the method of drying by heating is preferable, and it is more preferable to dry by heating, ventilating.
  • the drying temperature of the coating film surface is preferably 60 to 160 ° C., more preferably 60 to 150 ° C., and further preferably 60 to 140 ° C. When the drying temperature is within the above range, defects are hardly generated on the coating film surface, and it is difficult to take time required for drying, so that productivity is hardly lowered.
  • the treatment temperature is preferably 200 to 350 ° C.
  • the lower limit of the treatment temperature is more preferably 250 ° C. or more, and further preferably 280 ° C. or more.
  • the upper limit of the treatment temperature is more preferably 340 ° C. or less, and further preferably 330 ° C. or less. That is, the temperature of the heat treatment is preferably 250 ° C. to 340 ° C., more preferably 280 ° C. to 330 ° C.
  • the treatment time is in the range of 10 minutes to 15 hours.
  • the lower limit of the treatment time is more preferably 20 minutes or more, and particularly preferably 40 minutes or more.
  • the upper limit of the treatment time is more preferably 12 hours or less, and particularly preferably 10 hours or less. That is, the treatment time is preferably in the range of 20 minutes to 12 hours, and more preferably in the range of 40 minutes to 10 hours.
  • the heat treatment according to this embodiment is preferably performed in a space filled with an inert gas such as nitrogen, argon, or neon, or performed in a vacuum.
  • an inert gas such as nitrogen, argon, or neon
  • a resin film is obtained by peeling the coating film thus produced on the substrate from the substrate.
  • the inspection process which measures content with respect to the mass of the aromatic polysulfone of the compound A in the obtained said resin film, and selects only the resin film containing predetermined content may be included.
  • content with respect to aromatic polysulfone of the compound A in a resin film can be measured by the method as described in the below-mentioned Example.
  • the predetermined content is 500 ppm to 4000 ppm, 600 ppm to 3500 ppm, more preferably 700 ppm to 3200 ppm, more preferably a content range of the compound A in the resin film with respect to the mass of the aromatic polysulfone.
  • a preferred range is 750 ppm to 3000 ppm.
  • One aspect of the present invention is a method for producing a resin film described below.
  • ⁇ 1> a step of melt-kneading an aromatic polysulfone and an aromatic polysulfone composition containing an organic compound having a boiling point of 250 ° C. or higher and 400 ° C. or lower; Extruding the molten aromatic polysulfone composition to form a precursor film; Stretching the precursor film, and a method for producing a resin film comprising: The manufacturing method of the resin film in which the said organic compound is contained 500 ppm or more and 4000 ppm or less with respect to the mass of the said aromatic polysulfone, and thickness is less than 100 micrometers.
  • the aromatic polysulfone composition is the aromatic polysulfone composition in which the organic compound is contained in an amount of 500 ppm to 5000 ppm with respect to the mass of the aromatic polysulfone.
  • the aromatic polysulfone composition containing 500 ppm or more and 5000 ppm or less of the organic compound with respect to the mass of the aromatic polysulfone refers to the aromatic polysulfone composition before the melt-kneading step.
  • FIG. 1 is a schematic diagram showing an arrangement example of apparatuses used when a resin film according to this embodiment is manufactured by a melt extrusion method.
  • the composition according to this embodiment is melt-kneaded by an extrusion experimental machine. As shown in FIG. 1, the composition melted by the coat hanger die 1 is extruded to form a precursor film 10.
  • the precursor film 10 is cooled by the first cooling roll 2 and the second cooling roll 3 to produce the resin film 11.
  • the temperature of the coat hanger die 1 is preferably 330 to 400 ° C., more preferably 350 to 380 ° C. If the temperature of the coat hanger die 1 is too low, the coat hanger die 1 may be stretched by pulling out after leaving the coat hanger die 1, and the optical main axis may be oriented in the flow direction. If the temperature of the coat hanger die 1 is too high, the temperature difference from the first cooling roll 2 becomes large, so that cooling wrinkles may occur on the first cooling roll 2 or optical characteristics may be uneven.
  • the temperature of the first cooling roll 2 and the second cooling roll 3 is uniformly controlled.
  • the temperature of the first cooling roll 2 is preferably lower than the temperature of the coat hanger die 1.
  • the temperature of the second cooling roll 3 is preferably lower than the temperature of the first cooling roll 2.
  • the speed of the 1st cooling roll 2 and the 2nd cooling roll 3 is constant, and is adjusted with the thickness of the precursor film 10, respectively.
  • the resin film according to the present embodiment is obtained.
  • the inspection step of measuring the content of the compound A in the obtained resin film with respect to the mass of the aromatic polysulfone and selecting only the resin film having a predetermined content may be included. .
  • a resin film excellent in mechanical strength such as toughness is provided.
  • the laminated film according to this embodiment has a layer made of the above-described resin film and a layer made of a conductor.
  • the laminated film has a structure in which a layer made of the resin film is laminated on at least one surface of the layer made of the conductor.
  • the resin film is preferably as thick as possible.
  • the laminated film only needs to have at least one layer composed of a conductor and one layer composed of a resin film. When two or more layers composed of the conductor or the resin film are provided, the conductor layer and the resin film layer are alternately laminated.
  • the thickness of the resin film is not particularly limited, but is preferably 3 ⁇ m or more and less than 100 ⁇ m, more preferably 3 ⁇ m or more and 10 ⁇ m or less.
  • examples of the layer made of a conductor include metal foil.
  • examples of the metal foil include a metal foil made of gold, silver, copper, aluminum, or nickel, and a copper foil is preferable.
  • the thickness of the metal foil is preferably 5 to 100 ⁇ m, more preferably 5 to 60 ⁇ m, and still more preferably 5 to 30 ⁇ m.
  • a manufacturing method of the laminated film which concerns on this embodiment the method of bonding the resin film and the layer which consists of a conductor is mentioned.
  • a method for producing a laminated film there is a method in which a solution containing the composition is directly applied to a layer made of a conductor to produce a resin film on the layer made of a conductor.
  • a laminated film can be easily formed by using the same method as the resin film manufacturing method by the solution casting method, except that a layer made of a conductor is used as the substrate and the coating film is not peeled off from the substrate. Can be produced.
  • the surface on the side opposite to the layer made of the conductor of the resin film is subjected to polishing treatment, treatment with a chemical solution such as an acid or an oxidizing agent, ultraviolet irradiation treatment, plasma as necessary. Treatment such as irradiation may be performed.
  • the substrate for a flexible printed wiring board includes the above-described laminated film. That is, the flexible printed wiring board substrate has the same structure as the laminated film in which the layer made of the resin film is laminated on one surface of the layer made of the conductor.
  • the flexible printed wiring board has a conductive pattern formed by etching or the like on a surface opposite to the surface on which the layer made of the resin film of the flexible printed wiring board substrate is laminated, and the resin is applied to the conductive pattern.
  • a cover lay which is an insulator made of a material is laminated.
  • a conductive pattern is a pattern formed by a conductive material, which is a flexible printed wiring board, and forms part of a circuit. Etching is a technique for chemically and electrically removing unnecessary portions of the conductor to form the conductive pattern.
  • a coverlay is a film coated to insulate and protect a conductor portion of a flexible printed wiring board. Examples of the resin material used as the coverlay include a polyimide resin film and the resin film of the present invention. When particularly high insulation is required for FPC applications, the thicker the resin film, the better.
  • a flexible printed wiring board including the above-described resin film and excellent in mechanical strength is provided.
  • the laminated film according to the present embodiment includes, in addition to the flexible printed wiring board substrate, a semiconductor package by a build-up method or the like, a multilayer printed circuit board film for a motherboard, a tape automated bondering film, a tag tape film, a microwave oven It can also be used for a packaging film for heating, an electromagnetic wave shielding film, a high-frequency printed wiring board, a high-frequency cable, a communication device circuit, a package substrate, and the like.
  • the specific viscosity (( ⁇ - ⁇ 0 ) / ⁇ 0 ) is determined, and this value is calculated as the value of the aromatic polysulfone solution.
  • the reduced viscosity (dL / g) of the aromatic polysulfone was determined by dividing by the concentration (about 1 g / dL). Usually, it can be said that it is so high molecular weight that the value of reduced viscosity is large.
  • a resin film is pulverized so that the short side is 0.5 mm or less, and a known amount of pulverized resin film and a mixture of a known amount of acetone and methanol in a volume ratio of 1: 1 are mixed at room temperature for 4 hours or more. did.
  • the concentration of Compound A in the mixture was calculated from the area ratio of gas chromatography.
  • the content of Compound A in the resin film was calculated from the amount of the resin film and the mixed solution.
  • the obtained reaction mixture solution is cooled to room temperature, solidified, and finely pulverized, and then washed with warm water and washed with a mixed solvent of acetone and methanol several times to thereby remove unreacted potassium carbonate and by-products.
  • the produced potassium chloride was washed.
  • the mixture was heated and dried at 150 ° C. to obtain a mixed precipitate (aromatic polysulfone + DPS) as a powder.
  • the reduced viscosity of the obtained aromatic polysulfone was 0.41 dL / g, and the ratio of DPS to the mass of the aromatic polysulfone was 300 ppm.
  • Example 1 In a 500 mL separable flask, 60 g of the mixed precipitate obtained in Production Example 1 and 240 g of N-methyl-2-pyrrolidone (hereinafter sometimes referred to as “NMP”) were placed, and stirred at 60 ° C. for 2 hours. A pale yellow aromatic polysulfone solution was obtained. By adding DPS to this solution, it was prepared so that 800 ppm of DPS was contained with respect to the mass of the aromatic polysulfone. The solution to which DPS was added was applied to a glass plate having a thickness of 3 mm using a film applicator and dried at 60 ° C. using a high-temperature hot air dryer to form a coating film.
  • NMP N-methyl-2-pyrrolidone
  • This coating film was heat-treated at 250 ° C. while flowing nitrogen to form a resin film having a thickness of 8 ⁇ m on the glass plate.
  • the resin film of Example 1 was obtained by peeling this resin film from the glass plate.
  • the thickness of the resin film was measured by “Micrometer PMU150-25MJ” (manufactured by Mitutoyo Corporation). Moreover, the measurement was performed for any three points of the resin film, and the average value was 8 ⁇ m.
  • Example 2 A resin film of Example 2 was obtained in the same manner as in Example 1 except that DPS was added to the aromatic polysulfone solution so as to contain 3000 ppm of DPS with respect to the mass of the aromatic polysulfone. .
  • Example 3 A 500 mL separable flask was charged with 75 g of the mixed precipitate obtained in Production Example 1 and 225 g of NMP, and stirred at 60 ° C. for 2 hours to obtain a pale yellow aromatic polysulfone solution. By adding DPS to this solution, it was prepared so that 800 ppm of DPS was contained with respect to the mass of the aromatic polysulfone. The solution to which DPS was added was applied to a glass plate having a thickness of 3 mm using a film applicator and dried at 60 ° C. using a high-temperature hot air dryer to form a coating film. This coating film was heat-treated at 250 ° C.
  • the resin film of Example 3 was obtained by peeling this resin film from the glass plate.
  • the thickness of the resin film was measured by “Micrometer PMU150-25MJ” (manufactured by Mitutoyo Corporation). Moreover, the measurement was performed for any three points on the resin film, and the average value was 8 ⁇ m.
  • Example 4 A resin film of Example 4 was obtained in the same manner as in Example 3 except that DPS was added to the aromatic polysulfone solution so that DPS was included at 3000 ppm with respect to the mass of the aromatic polysulfone. It was.
  • Comparative Example 1 A resin film of Comparative Example 1 was obtained in the same manner as in Example 1 except that DPS was not added to the aromatic polysulfone solution.
  • Comparative Example 2 A resin film of Comparative Example 2 was obtained in the same manner as in Example 1 except that DPS was added to the aromatic polysulfone solution so as to contain 5000 ppm of DPS with respect to the mass of the aromatic polysulfone. .
  • Comparative Example 3 A resin film of Comparative Example 3 was obtained in the same manner as in Example 3 except that DPS was not added to the aromatic polysulfone solution.
  • Comparative Example 4 A resin film of Comparative Example 4 was obtained in the same manner as in Example 3 except that DPS was added to the aromatic polysulfone solution so as to contain 5000 ppm of DPS with respect to the mass of the aromatic polysulfone. .
  • the DPS content with respect to the mass of the aromatic polysulfone in the compositions in the examples and comparative examples, the DPS content with respect to the mass of the aromatic polysulfone in the resin film, the thickness of the resin film, and the number of bendings of the resin film are shown. 2 and Table 3.
  • Example 3 and Example 4 shown in Table 3 since the ratio of DPS to the mass of the aromatic polysulfone was 500 ppm or more and 4000 ppm or less, the obtained resin film was excellent in toughness. Since all the resin films obtained in the above examples were less than 100 ⁇ m, they were excellent in toughness regardless of the thickness of the resin film.
  • the resin film using the aromatic polysulfone of the present invention as a molding material, the laminated film including the resin film, and the flexible printed wiring board have high toughness, excellent mechanical strength, and are useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

芳香族ポリスルホンを形成材料とする樹脂フィルムであって、樹脂フィルムの厚さは、100μm未満であり、樹脂フィルムは、沸点が250℃以上400℃以下である有機化合物をさらに含み、有機化合物は、芳香族ポリスルホンの質量に対して500ppm以上4000ppm以下含まれる樹脂フィルム。

Description

樹脂フィルム、積層フィルム及びフレキシブルプリント配線板用基板
 本発明は、樹脂フィルム、積層フィルム及びフレキシブルプリント配線板用基板に関する。
本願は2016年2月10日に、日本に出願された特願2016-23701号、及び2016年7月14日に、日本に出願された特願2016-139739号に基づき優先権を主張し、その内容をここに援用する。
 芳香族ポリスルホンは、耐熱性や耐薬品性に優れることから、成形体用の材料として各種用途に用いられている。芳香族ポリスルホンは、通常、塩基及び反応溶媒の共存下で、芳香族ジハロゲノスルホン化合物と芳香族ジヒドロキシ化合物とを重縮合反応させることで製造される(例えば、特許文献1、2参照)。
 上記の重縮合反応により得られる反応混合物は、芳香族ポリスルホン、未反応の塩基、副生成物(塩基としてアルカリ金属塩を用いた場合には、ハロゲン化アルカリ)及び反応溶媒を含んでいる。通常、この反応混合物から、芳香族ポリスルホンを単離し、未反応の塩基、副生成物及び反応溶媒の残存量が少ない状態とする手法がとられる。
 特許文献3では、アルコールや水などの非溶媒を用いて重合体混合物から副生成物及び溶媒を除去した後、脂肪族アルコール及びケトン類の混合溶媒中で芳香族ポリエーテル重合体の嵩密度を上げる方法が開示されている。
 特許文献4では、非溶媒中で重合体混合物を粉砕した後、重合体混合物のガラス転移温度又は融点未満の温度で、かつ反応溶媒の蒸気圧の温度以上で減圧加熱する方法が開示されている。
 特許文献5では、副生塩を除去後の反応粗液に、1,3-ジメチル-2-イミダゾリジノンなどの特定の溶媒及び芳香族ポリエーテル系重合体の非溶媒の混合溶媒を加え、芳香族ポリエーテル系重合体を非溶媒中で沈殿させた後、洗浄する方法が開示されている。
特表2012-509375号公報 特表2013-502476号公報 特開昭64-043524号公報 特開平1-263121号公報 特開昭63-095231号公報
 しかしながら、特許文献1~5に記載されたような従来の芳香族ポリスルホンを形成材料とする樹脂フィルムは、必ずしも靱性などの機械的強度が十分ではない。そこで、芳香族ポリスルホンを形成材料とする樹脂フィルムの機械的強度の向上が望まれている。
 本発明はこのような事情に鑑みてなされたものであって、靱性などの機械的強度に優れた樹脂フィルムを提供することを目的の一つとする。また、この樹脂フィルムを含む、靱性などの機械的強度に優れた積層フィルムを提供することを目的の一つとする。さらに、この積層フィルムを含む、靱性などの機械的強度に優れたフレキシブルプリント配線用基板を提供することを目的の一つとする。
 上記の課題を解決するため、本発明の一態様は、芳香族ポリスルホンを形成材料とする樹脂フィルムであって、樹脂フィルムの厚さは、100μm未満であり、樹脂フィルムは、沸点が250℃以上400℃以下である有機化合物をさらに含み、前記有機化合物は、前記芳香族ポリスルホンの質量に対して500ppm以上4000ppm以下含まれる樹脂フィルムを提供する。
 本発明の一態様においては、前記芳香族ポリスルホンが、式(1)で表される繰返し単位を有し、前記芳香族ポリスルホンを構成する全繰返し単位の合計量に対して、式(1)で表される繰返し単位を80~100モル%有することが好ましい。
  -Ph-SO-Ph-O- (1)
[式(1)中、Ph及びPhは、フェニレン基を表し、前記フェニレン基に結合する1個以上の水素原子が、互いに独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基又はハロゲン原子で置換されていてもよい。]
 本発明の一態様においては、前記有機化合物は、ハンセン溶解度パラメータにおける分散項δD(単位:MPa0.5)が16.0以上22.0以下、極性項δP(単位:MPa0.5)が12.0以上16.4以下、水素結合項δH(単位:MPa0.5)が3.0以上12.0以下であることが好ましい。
 本発明の一態様においては、前記有機化合物は、非プロトン性極性溶媒であることが好ましい。
 本発明の一態様においては、前記有機化合物は、ジフェニルスルホンであることが好ましい。
 本発明の一態様は、上記の樹脂フィルムからなる層と、導体からなる層と、を有する積層フィルムを提供する。
 本発明の一態様は、上記の積層フィルムを用いたフレキシブルプリント配線板用基板を提供する。
すなわち、本発明は以下の態様を有する。
<1>芳香族ポリスルホンを形成材料とする樹脂フィルムであって、
前記樹脂フィルムの厚さは、100μm未満であり、
前記樹脂フィルムは、沸点が250℃以上400℃以下である有機化合物をさらに含み、
前記有機化合物は、前記芳香族ポリスルホンの質量に対して500ppm以上4000ppm以下含まれる樹脂フィルム。
<2>前記芳香族ポリスルホンが、式(1)で表される繰返し単位を有し、
前記芳香族ポリスルホンを構成する全繰返し単位の合計量に対して、式(1)で表される繰返し単位を80~100モル%有する前記<1>に記載の樹脂フィルム。
  -Ph-SO-Ph-O- (1)
[式(1)中、Ph及びPhは、フェニレン基を表し、前記フェニレン基に結合する1個以上の水素原子が、互いに独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基又はハロゲン原子で置換されていてもよい。]
 <3>前記有機化合物は、ハンセン溶解度パラメータにおける分散項δD(単位:MPa0.5)が16.0以上22.0以下、極性項δP(単位:MPa0.5)が12.0以上16.4以下、水素結合項δH(単位:MPa0.5)が3.0以上12.0以下である前記<1>又は<2>に記載の樹脂フィルム。
 <4>前記有機化合物は、非プロトン性極性溶媒である前記<1>~<3>のいずれか1項に記載の樹脂フィルム。
 <5>前記有機化合物は、ジフェニルスルホンである前記<1>~<4>のいずれか1項に記載の樹脂フィルム。
 <6>前記<1>~<5>のいずれか1項に記載の樹脂フィルムからなる層と、導体からなる層と、を有する積層フィルム。
 <7>前記<6>に記載の積層フィルムを含むフレキシブルプリント配線板用基板。
 本発明の一態様によれば、靱性などの機械的強度に優れた樹脂フィルムが提供される。
また、この樹脂フィルムを含む、靱性などの機械的強度に優れた積層フィルムが提供される。さらに、この積層フィルムを含む、靱性などの機械的強度に優れたフレキシブルプリント配線用基板が提供される。
本実施形態に係る樹脂フィルムを溶融押出法により製造する際に用いる装置の配置例を示す模式図である。
<樹脂フィルム>
本実施形態に係る樹脂フィルムは、芳香族ポリスルホンを形成材料とする、厚さが100μm未満のフィルムである。樹脂フィルムは、沸点が250℃以上400℃以下である有機化合物(以下、「化合物A」ということがある。)をさらに含み、化合物Aは、芳香族ポリスルホンの質量に対して500ppm以上4000ppm以下、好ましくは600ppm以上3500ppm以下、より好ましくは700ppm以上3200ppm以下、さらに好ましくは800ppm以上3000ppm以下含まれる。
本発明の一つの側面は、芳香族ポリスルホン及び沸点が250℃以上400℃以下である有機化合物を含む芳香族ポリスルホン組成物から成形された樹脂フィルムであって、前記有機化合物が前記芳香族ポリスルホンの質量に対して500ppm以上4000ppm以下含まれ、厚さが100μm未満の樹脂フィルムである。
[芳香族ポリスルホン]
 本実施形態において、芳香族ポリスルホンは、典型的には、2価の芳香族基(芳香族化合物から、その芳香環に結合した水素原子を2個除いてなる残基)と、スルホニル基(-SO-)と、酸素原子とを含む繰返し単位を有する樹脂である。2価の芳香族基の例としては、フェニレン基、ナフタレンジイル基等が挙げられ、好ましい例としてはフェニレン基が挙げられ、これら基は置換基を有していてもよい。
 芳香族ポリスルホンは、耐熱性や耐薬品性の点から、式(1)で表される繰返し単位(以下、「繰返し単位(1)」と言うことがある。)を有することが好ましい。繰返し単位(1)を有する芳香族ポリスルホンを芳香族ポリエーテルスルホンと言う場合がある。前記芳香族ポリスルホンは、さらに、式(2)で表される繰返し単位(以下、「繰返し単位(2)」と言うことがある。)や、式(3)で表される繰返し単位(以下、「繰返し単位(3)」と言うことがある。)等の他の繰返し単位を1種以上有していてもよい。
 -Ph-SO-Ph-O- (1)
[式(1)中、Ph及びPhは、フェニレン基を表し、前記フェニレン基の1個以上の水素原子は、互いに独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基又はハロゲン原子で置換されていてもよい。]
 -Ph-R-Ph-O- (2)
[式(2)中、Ph及びPhは、フェニレン基を表し、前記フェニレン基の1個以上の水素原子は、互いに独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基又はハロゲン原子で置換されていてもよい。Rは、炭素数1~5のアルキリデン基、酸素原子又は硫黄原子である。]
 -(Ph-O- (3)
[式(3)中、Phは、フェニレン基を表し、前記フェニレン基の1個以上の水素原子は、互いに独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基又はハロゲン原子で置換されていてもよい。nは、1~3の整数であり、nが2以上である場合、複数存在するPhは、互いに同一でも異なっていてもよい。]
 Ph~Phのいずれかで表されるフェニレン基は、互いに独立に、p-フェニレン基、m-フェニレン基、又はo-フェニレン基であり、p-フェニレン基であることが好ましい。
 前記フェニレン基の水素原子を置換していてもよい炭素数1~10のアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、2-エチルヘキシル基、n-オクチル基及びn-デシル基が挙げられる。
 前記フェニレン基の水素原子を置換していてもよい炭素数6~20のアリール基の例としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基及び2-ナフチル基が挙げられる。
 前記フェニレン基の水素原子を置換していてもよいハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 前記フェニレン基の水素原子がこれらの基で置換されている場合、その数は、前記フェニレン基毎に、互いに独立に、好ましくは2個以下、より好ましくは1個である。 
 Rで表される炭素数1~5のアルキリデン基の例としては、メチレン基、エチリデン基、イソプロピリデン基及び1-ブチリデン基が挙げられる。
 芳香族ポリスルホンを構成する全繰返し単位の合計量、すなわち合計モル数量に対して、繰返し単位(1)を50~100モル%有することが好ましく、80~100モル%有することがより好ましく、繰返し単位として、実質的に繰返し単位(1)のみを有することがより好ましい。芳香族ポリスルホンは、繰返し単位(1)~(3)を、互いに独立に、2種以上有していてもよい。
 本実施形態の芳香族ポリスルホンの還元粘度(単位:dL/g)は、好ましくは0.30以上であり、より好ましくは0.40以上0.80以下である。すなわち、芳香族ポリスルホンの還元粘度(単位:dL/g)は、好ましくは0.30以上0.80以下であり、より好ましくは0.40以上0.80以下である。本明細書において還元粘度は後述の実施例に記載の方法により測定することができる。芳香族ポリスルホンは、還元粘度が高いほど、樹脂フィルムとしたときの靱性などの機械的強度が向上し易いが、あまり高いと、溶融温度や溶融粘度が高くなり易く、流動性が低くなり易い。
[化合物A]
 本実施形態に係る化合物Aの沸点は、250℃以上400℃以下であり、350℃以上400℃以下であることが好ましい。
本明細書において、沸点の測定は、公知の方法を適用できる他、単体の場合には、化学便覧等の文献中に記載の値も参照することができる。なお、本明細書における沸点は1気圧において測定した値で表される。
 化合物Aのハンセン溶解度パラメータにおける分散項δD(単位:MPa0.5)は16.0以上22.0以下であることが好ましく、16.0以上20.0以下であることがより好ましく、16.0以上19.0以下であることがさらに好ましい。
本発明の別の側面としては、化合物のAのハンセン溶解度パラメータにおける分散項δD(単位:MPa0.5)は18.0以上22.0以下であることが好ましく、19.0以上22.0以下であることがより好ましい。
 化合物Aのハンセン溶解度パラメータにおける極性項δP(単位:MPa0.5)は、12.0以上16.4以下であることが好ましく、12.0以上15.0以下であることがより好ましく、12.0以上14.5以下であることがさらに好ましい。
 化合物Aのハンセン溶解度パラメータにおける水素結合項δH(単位:MPa0.5)は、3.0以上12.0以下であることが好ましく、3.0以上8.0以下であることがより好ましく、7.0以上8.0以下であることがさらに好ましい。
 本発明の別の側面としては、化合物Aのハンセン溶解度パラメータにおける水素結合項δH(単位:MPa0.5)は、3.0以上4.0以下であることが好ましい。
 ハンセン溶解度パラメータにおける分散項δD(単位:MPa0.5)が16.0以上22.0以下、極性項δP(単位:MPa0.5)が12.0以上16.4以下、かつ水素結合項δH(単位:MPa0.5)が3.0以上12.0以下であることがより好ましい。ハンセン溶解度パラメータにおける分散項δD(単位:MPa0.5)が18.0以上22.0以下、極性項δP(単位:MPa0.5)が12.0以上15.0以下、かつ水素結合項δH(単位:MPa0.5)が3.0以上8.0以下であることがより好ましい。これらの中で、ハンセン溶解度パラメータにおける分散項δD(単位:MPa0.5)が19.0以上22.0以下、極性項δP(単位:MPa0.5)が12.0以上14.5以下、かつ水素結合項δH(単位:MPa0.5)が3.0以上4.0以下であることがより好ましい。
ハンセン溶解度パラメータは、溶媒材料が特定の溶質を溶解させる能力を予測するのに有用であり、分散項δDは分子間の分散力に由来するエネルギーを、極性項δPは分子間の極性力に由来するエネルギーを、そして水素結合項δHは水素結合力に由来するエネルギーを表している。
ハンセン溶解度パラメータは、例えば、コンピューターソフトウェアHansen Solubility Parameters in Practice(HSPiP)を用いることによって、その化学式から計算することができる。本発明においてはHSPiP ver.5.0.03のデータベースに登録されている化合物に関してはその値を使い、データベースに無い化合物についてはHSPiP ver.5.0.03による計算によって得られた値を使用することができる。
 化合物Aは、非プロトン性極性溶媒であることが好ましく、ハンセン溶解度パラメータが上述の条件を満たす非プロトン性極性溶媒であることがより好ましい。その例としては、ジメチルスルホン、ジエチルスルホン、ジイソプロピルスルホン、ジフェニルスルホン等のスルホンが挙げられる。化合物Aは、ハンセン溶解度パラメータが上述の条件を満たす非プロトン性極性溶媒であることがより好ましく、その例としてはジフェニルスルホンが挙げられる。表1に、ジフェニルスルホンのハンセン溶解度パラメータにおける各項の値(分散項δD、極性項δP及び水素結合項δH)を示す。
Figure JPOXMLDOC01-appb-T000001
また、ジフェニルスルホンの沸点は378℃である。
 本実施形態において、化合物Aは、1種を単独で用いてもよいし、2種以上を併用してもよい。
[樹脂フィルムの製造方法]
 本実施形態に係る樹脂フィルムは、芳香族ポリスルホンと化合物Aとを含む組成物から形成される。樹脂フィルムの製造方法としては、後述する溶液キャスト法、溶融押出法等が例として挙げられる。この組成物は、芳香族ポリスルホンの質量に対して化合物Aを500ppm以上4000ppm以下、好ましくは600ppm以上3500ppm以下、より好ましくは700ppm以上3200ppm以下、さらに好ましくは800ppm以上3000ppm以下含む。芳香族ポリスルホンの質量に対する、化合物Aの含有量が500ppm以上であると、化合物Aが可塑剤として十分に機能するため、樹脂フィルムとしたときに靱性などの機械的強度に優れる。一方、芳香族ポリスルホンの質量に対する、化合物Aの含有量が4000ppmを超えると、樹脂フィルムとしたときに靱性などの機械的強度に劣る。すなわち、芳香族ポリスルホンの質量に対する、化合物Aの含有量が4000ppm以下では、樹脂フィルムとしたときに靱性などの機械的強度に優れる。したがって、本実施形態に係る組成物は、化合物Aを上述の範囲で含むことにより、樹脂フィルムとしたときに靱性などの機械的強度に優れる。本明細書において靱性は後述の実施例に記載の方法により測定することができる。
(組成物)
 以下、本実施形態に係る組成物の製造方法の一例について詳述する。
 本実施形態に係る組成物の製造方法は、芳香族ジハロゲノスルホン化合物、芳香族ジヒドロキシ化合物、塩基及び有機溶媒を配合し、芳香族ジハロゲノスルホン化合物と芳香族ジヒドロキシ化合物を重縮合反応させることにより、組成物を製造する方法である。
 芳香族ジハロゲノスルホン化合物及び芳香族ジヒドロキシ化合物は、芳香族ポリスルホンを構成する繰返し単位に対応する。芳香族ジハロゲノスルホン化合物は、一分子中に芳香環と、スルホニル基(-SO-)と、2個のハロゲノ基とを有する化合物であればよい。芳香族ジヒドロキシ化合物は、一分子中に芳香環と、2個のヒドロキシ基とを有する化合物であればよい。
 例えば、繰返し単位(1)を有する芳香族ポリスルホンは、式(4)で表される化合物(以下、「化合物(4)」ということがある。)と、式(5)で表される化合物(以下、「化合物(5)」ということがある。)とを重縮合反応させることにより、製造することができる。
 繰返し単位(1)と繰返し単位(2)とを有する芳香族ポリスルホンは、化合物(4)と、式(6)で表される化合物(以下、「化合物(6)」ということがある。)とを重縮合反応させることにより、製造することができる。
 繰返し単位(1)と繰返し単位(3)とを有する芳香族ポリスルホンは、化合物(4)と、式(7)で表される化合物(以下、「化合物(7)」ということがある。)とを重縮合反応させることにより、製造することができる。
  X-Ph-SO-Ph-X (4)
[式(4)中、X及びXは、互いに独立に、ハロゲン原子を表す。Ph及びPhは、前記と同義である。]
  HO-Ph-SO-Ph-OH (5)
[式(5)中、Ph及びPhは、前記と同義である。]
  HO-Ph-R-Ph-OH (6)
[式(6)中、Ph、Ph及びRは、前記と同義である。]
  HO-(Ph-OH (7)
[式(7)中、Ph及びnは、前記と同義である。]
 化合物(4)において、X及びXは、互いに独立に、ハロゲン原子を表し、前記フェニレン基の水素原子を置換していてもよいハロゲン原子と同じものが挙げられる。
 化合物(4)の例としては、ビス(4-クロロフェニル)スルホン及び4-クロロフェニル-3’,4’-ジクロロフェニルスルホンが挙げられる。
 化合物(5)の例としては、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)スルホン及びビス(4-ヒドロキシ-3-フェニルフェニル)スルホンが挙げられる。
 化合物(6)の例としては、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシ-3-メチルフェニル)スルフィド及びビス(4-ヒドロキシフェニル)エーテルが挙げられる。
 化合物(7)の例としては、ヒドロキノン、レゾルシン、カテコール、フェニルヒドロキノン、4,4’-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、3,5,3’,5’-テトラメチル-4,4’-ジヒドロキシビフェニル、2,2’-ジフェニル-4,4’-ジヒドロキシビフェニル及び4,4’-ジヒドロキシ-p-クオターフェニルが挙げられる。なかでも、ヒドロキノン、レゾルシン、カテコール、フェニルヒドロキノン、2,2’-ジヒドロキシビフェニル、3,5,3’,5’-テトラメチル-4,4’-ジヒドロキシビフェニル、2,2’-ジフェニル-4,4’-ジヒドロキシビフェニル及び4,4’-ジヒドロキシ-p-クオターフェニルが好ましい。
 化合物(4)以外の芳香族ジハロゲノスルホン化合物の例としては、4,4’-ビス(4-クロロフェニルスルホニル)ビフェニルが挙げられる。
 本実施形態においては、芳香族ジハロゲノスルホン化合物及び芳香族ジヒドロキシ化合物の全部又は一部に代えて、4-ヒドロキシ-4’-(4-クロロフェニルスルホニル)ビフェニル等の、分子中にハロゲノ基及びヒドロキシ基を有する化合物を用いることもできる。
 本実施形態においては、目的とする芳香族ポリスルホンの種類に応じて、芳香族ジハロゲノスルホン化合物及び芳香族ジヒドロキシ化合物は、いずれも、1種を単独で用いてもよいし、2種以上を併用してもよい。
 芳香族ジハロゲノスルホン化合物と芳香族ジヒドロキシ化合物との重縮合は、塩基として炭酸のアルカリ金属塩を用いて行われることが好ましい。重縮合溶媒として有機溶媒中で行われることが好ましく、塩基として炭酸のアルカリ金属塩を用い、且つ有機溶媒中で行われることがより好ましい。
 炭酸のアルカリ金属塩は、正塩である炭酸アルカリ(アルカリ金属の炭酸塩)であってもよいし、酸性塩である重炭酸アルカリ(炭酸水素アルカリ、アルカリ金属の炭酸水素塩)であってもよいし、これら(炭酸アルカリ及び重炭酸アルカリ)の混合物であってもよい。好ましい炭酸アルカリの例としては、炭酸ナトリウム、炭酸カリウム等が挙げられる。好ましい重炭酸アルカリの例としては、重炭酸ナトリウム(炭酸水素ナトリウム)、重炭酸カリウム(炭酸水素カリウム)等が挙げられる。本発明においては、塩基は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 芳香族ジハロゲノスルホン化合物と芳香族ジヒドロキシ化合物との重縮合は、有機溶媒として化合物Aを用いて行われることが好ましい。
 本実施形態に係る組成物の製造方法では、第1段階として、芳香族ジハロゲノスルホン化合物と、芳香族ジヒドロキシ化合物とを、化合物Aに溶解させる。第2段階として、第1段階で得られた溶液に、炭酸のアルカリ金属塩を加えて、芳香族ジハロゲノスルホン化合物と芳香族ジヒドロキシ化合物とを重縮合反応させる。第3段階として、第2段階で得られた反応混合物から、未反応の塩基、副生成物(塩基としてアルカリ金属塩を用いた場合には、ハロゲン化アルカリ)、及び過剰な化合物Aを除去して、組成物を得る。
 第1段階の溶解温度は、好ましくは40℃以上180℃以下である。第2段階の重縮合の反応温度は、好ましくは180℃以上400℃以下である。仮に副反応が生じなければ、重縮合温度が高いほど、目的とする重縮合が速やかに進行するので、得られる芳香族ポリスルホンの重合度が高くなり、その結果、芳香族ポリスルホンは還元粘度が高くなる傾向にある。しかし、実際は、重縮合温度が高いほど、上記と同様の副反応が生じ易くなり、この副反応により、得られる芳香族ポリスルホンの重合度が低下するので、この副反応の度合いも考慮して、所定の還元粘度を有する芳香族ポリスルホンが得られるように、重縮合温度を調整する必要がある。所定の還元粘度としては、前記した還元粘度の好ましい範囲である0.30以上0.80以下、より好ましい範囲である0.40以上0.80以下の範囲に収まる還元粘度が挙げられる。
 芳香族ジヒドロキシ化合物に対する、芳香族ジハロゲノスルホン化合物の配合比率は、80モル%以上120モル%以下であることが好ましく、90モル%以上110モル%以下であることがより好ましい。
 芳香族ジヒドロキシ化合物に対する、炭酸のアルカリ金属塩の使用比率は、アルカリ金属として、90モル%以上130モル%以下であることが好ましく、95モル%以上120モル%以下であることがより好ましい。
 仮に副反応が生じなければ、炭酸のアルカリ金属塩の使用比率が多いほど、目的とする重縮合が速やかに進行するので、得られる芳香族ポリスルホンの重合度が高くなり、その結果、芳香族ポリスルホンは還元粘度が高くなる傾向にある。
 しかし、実際は、炭酸のアルカリ金属塩の使用比率が多いほど、上記と同様の副反応が生じ易くなり、この副反応により、得られる芳香族ポリスルホンの重合度が低下する。この副反応の度合いも考慮して、所定の還元粘度を有する芳香族ポリスルホンが得られるように、炭酸のアルカリ金属塩の使用比率を調整する必要がある。
 第2段階の重縮合は、通常、副生する水を除去しながら徐々に昇温し、化合物Aの還流温度に達した後、さらに、好ましくは1時間以上50時間以下、より好ましくは2時間以上30時間以下保温することにより行うとよい。仮に副反応が生じなければ、重縮合時間が長いほど、目的とする重縮合が進むので、得られる芳香族ポリスルホンの重合度が高くなり、その結果、芳香族ポリスルホンは還元粘度が高くなる傾向にある。しかし、実際は、重縮合時間が長いほど、上記と同様の副反応が進行し、この副反応により、得られる芳香族ポリスルホンの重合度が低下するので、この副反応の度合いも考慮して、所定の還元粘度を有する芳香族ポリスルホンが得られるように、重縮合時間を調整する必要がある。
 第3段階では、まず、第2段階で得られた反応混合物から、未反応の炭酸のアルカリ金属塩、及び副生したハロゲン化アルカリを、濾過、抽出、遠心分離等で除去することにより、芳香族ポリスルホンが化合物Aに溶解してなる溶液が得られる。次いで、この溶液から、化合物Aを所定量残存させながら、余剰分を除去することにより、芳香族ポリスルホン組成物が得られる。
 本製造方法において、例えば、芳香族ポリスルホン溶液から直接、減圧若しくは加圧下で化合物Aを低減してもよい。好ましくは、上述の溶液を芳香族ポリスルホンの貧溶媒と混合して、芳香族ポリスルホンを析出させ、ろ過や遠心分離等で化合物Aを除去するとよい。さらに、上述の析出物を、貧溶媒で繰返し洗浄することにより、芳香族ポリスルホン組成物を得るとよい。
 以下、本実施形態に係る組成物において、化合物Aの含有量を調整する方法の一例について詳述する。
 貧溶媒中で析出した芳香族ポリスルホンは、貧溶媒において、芳香族ポリスルホンと化合物Aとを含む混合析出物として存在する。そのため、芳香族ポリスルホンが析出した溶液(芳香族ポリスルホン溶液+貧溶媒)にろ過や遠心分離を行うと、上記混合析出物と溶媒(化合物A+貧溶媒)とが分離され、混合析出物が得られる。
 得られた混合析出物を貧溶媒中に分散させると、混合析出物の周囲の貧溶媒に向けて、混合析出物内から化合物Aが溶出する。同時に、混合析出物の周囲の貧溶媒が、混合析出物内に浸入する。このような貧溶媒及び化合物Aの移動は、混合析出物を貧溶媒に分散させた分散系において、化合物Aの濃度が、混合析出物内と混合析出物の周囲の分散媒とで等しくなるまで、すなわち混合析出物内と混合析出物の周囲の分散媒とで平衡に達するまで続く。
 このとき、混合析出物に含まれる化合物Aの量と、洗浄に用いる貧溶媒の量が既知であると、これらの量に基づいて、分散系中の溶媒(化合物A+貧溶媒)の移動が平衡に達したときに、混合析出物内に残存する化合物Aの量を概算することができる。
 そのため、洗浄に用いる貧溶媒の量を制御することで、混合析出物内に残存する化合物Aの量を制御することができる。洗浄に用いる貧溶媒に化合物Aを予め溶解させておくことにより、貧溶媒のみを用いて洗浄を行う場合と比べ、分散系中の溶媒の移動が平衡に達したときに、混合析出物から周囲の貧溶媒に向けた化合物Aの溶出量を抑制し、混合析出物内に化合物Aを多く残存させることができる。
 本製造方法においては、化合物Aを所定量含有する芳香族ポリスルホン組成物が得られるように、貧溶媒の使用量、洗浄時間、洗浄温度、洗浄回数、撹拌速度を調整することができる。例えば、貧溶媒の使用量を増やす、上述の平衡に達するまでの洗浄時間を長くする、洗浄温度を高くする、洗浄回数を増やす、又は撹拌速度を上げることにより、化合物Aの含有量を低減することができる。上記の操作を2種類以上組合せてもよい。
 芳香族ポリスルホンの貧溶媒の例としては、メタノール、エタノール、イソプロピルアルコール、ヘキサン、ヘプタン及び水が挙げられ、安価であることから好ましくは水及びメタノールが挙げられる。
本実施形態において、芳香族ポリスルホンの貧溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよい。
(樹脂フィルムの作製方法)
 本実施形態に係る樹脂フィルムの厚さは、100μm未満であり、好ましくは3μm以上100μm未満であり、より好ましくは3μm以上10μm以下である。樹脂フィルムの厚さが上述の範囲であることにより、樹脂フィルムの安定的な生産が可能となる。本明細書において樹脂フィルムの厚さは、マイクロメータにより、樹脂フィルム中の任意の3点において測定し、その平均値を算出することにより得ることができる。
 本実施形態に係る樹脂フィルムの作製方法としては、例えば上述の組成物を用いて、溶液キャスト法又は溶融押出法により樹脂フィルムを作製する方法が挙げられる。 
(溶液キャスト法)
本発明の一つの側面は、以下に示す樹脂フィルムの製造方法である。
<1>芳香族ポリスルホン、及び沸点が250℃以上400℃以下の有機化合物を含む芳香族ポリスルホン組成物を、基板に塗布する工程と、
前記塗布された芳香族ポリスルホン組成物を乾燥処理、及び加熱処理をする工程と、を含む樹脂フィルムの製造方法であって、
前記有機化合物が前記芳香族ポリスルホンの質量に対して500ppm以上4000ppm以下含まれ、厚さが100μm未満の樹脂フィルムの製造方法。
<2>前記芳香族ポリスルホン組成物は、前記有機化合物が前記芳香族ポリスルホンの質量に対して500ppm以上5000ppm以下含まれる前記芳香族ポリスルホン組成物である前記<1>に記載の樹脂フィルム製造方法。
有機化合物が芳香族ポリスルホンの質量に対して、500ppm以上5000ppm以下含まれる芳香族ポリスルホン組成物とは、前記基板に塗布する工程前の芳香族ポリスルホン組成物を指す。
以下、上述の組成物を用いて、溶液キャスト法により樹脂フィルムを作製する方法の一例について説明する。
 まず、本実施形態に係る組成物を、溶媒に溶解させて溶液を作製する。溶媒としては、例えば非プロトン性極性溶媒が好ましい。非プロトン性極性溶媒としては、例えばジメチルスルホキシド等のスルホキシド;ジメチルホルムアミド、ジメチルアセトアミド及びN-メチル-2-ピロリドン等のアミド;ジメチルスルホン、ジエチルスルホン、ジイソプロピルスルホン等のスルホン;1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン等の、窒素原子に結合している水素原子が置換されていてもよい尿素骨格を有する化合物が挙げられる。組成物を溶媒に溶解させる方法として、特に限定されず、従来公知の方法を使用できる。
 本実施形態において、上述の溶液に化合物Aを添加することにより、樹脂フィルムとしたときの化合物Aの含有量を調製することができる。例えば、試験的に樹脂フィルムを作製し、この樹脂フィルムに化合物Aが所望の量含まれない場合には、作製に用いた溶液に化合物Aを所望の量添加することにより、化合物Aの含有量を調製することができる。
 本実施形態に係る溶液は、本発明の効果を損なわない限りにおいて、公知のフィラー又は添加剤を含んでいてもよい。フィラーとしては、得られる樹脂フィルムの機械的強度をさらに向上できることから、無機フィラーが好ましい。
 得られた溶液は、必要に応じてフィルターなどによってろ過し、溶液中に含まれる微細な異物を除去してもよい。
 次いで、得られた溶液を基材に塗布し、塗膜を形成する。塗布方法としては、例えば、ローラーコート法、ディップコーター法、スプレイコーター法、スピンコート法、カーテンコート法、スロットコート法、スクリーン印刷法などが挙げられる。
 次いで、基材上の塗膜の表面乾燥及び加熱処理することにより、塗膜に残存する溶媒を除去する。塗膜表面の平滑性を高めるために、表面乾燥及び加熱処理の2段階で加熱処理を行うことが望ましい。乾燥方法としては、加熱、減圧、通風により乾燥する方法が挙げられる。これらの中で、生産効率及び取り扱い性に優れることから、加熱により乾燥する方法が好ましく、通風しつつ加熱により乾燥させることがより好ましい。
 塗膜表面の乾燥温度は、60~160℃であることが好ましく、60~150℃であることがより好ましく、60~140℃であることがさらに好ましい。乾燥温度が前記の範囲にあると、塗膜面に欠陥が生じにくく、また乾燥に必要な時間がかかりにくいため生産性が低下しにくい。
 乾燥後の塗膜について加熱処理を行う。加熱処理においては、処理温度が200~350℃であることが好ましく、かかる処理温度の下限は、250℃以上であることがより好ましく、280℃以上であることがさらに好ましい。一方、処理温度の上限は、340℃以下であることがより好ましく、330℃以下であることがさらに好ましい。すなわち、加熱処理の温度は250℃~340℃であることが好ましく、280℃~330℃であることがさらに好ましい。処理時間は10分~15時間の範囲で行う。かかる処理時間の下限は、20分以上であることがさらに好ましく、40分以上であることがとりわけ好ましい。一方、処理時間の上限は、12時間以下であることがさらに好ましく、10時間以下であることがとりわけ好ましい。すなわち、処理時間は、20分間~12時間の範囲で行うことが好ましく、40分間~10時間の範囲で行うことがさらに好ましい。 
 本実施形態に係る加熱処理は、窒素、アルゴン、ネオンなどの不活性ガスで満たされた空間で行われるか、真空で行われることが好ましい。
 このようにして基材上に作製された塗膜を、基材から剥離することにより、樹脂フィルムが得られる。
 本実施形態において、得られた前記樹脂フィルム中の化合物Aの芳香族ポリスルホンの質量に対する含有量を測定し、所定の含有量を含む樹脂フィルムのみを選別する検品工程が含まれていてもよい。本明細書において、樹脂フィルム中の化合物Aの芳香族ポリスルホンに対する含有量は後述の実施例に記載の方法により測定することができる。所定の含有量としては、前記した樹脂フィルム中の化合物Aの芳香族ポリスルホンの質量に対する含有量の好ましい範囲である500ppm以上4000ppm以下、600ppm以上3500ppm以下、より好ましい範囲である700ppm以上3200ppm以下、さらに好ましい範囲である750ppm以上3000ppmに収まる含有量が挙げられる。
(溶融押出法)
 本発明の一つの側面は、以下に示す樹脂フィルムの製造方法である。
<1>芳香族ポリスルホン、及び沸点が250℃以上400℃以下の有機化合物を含む芳香族ポリスルホン組成物を溶融混練する工程と、
前記溶融した芳香族ポリスルホン組成物を押し出して前駆体フィルムを成形する工程と、
前記前駆体フィルムを延伸する工程と、を含む樹脂フィルムの製造方法であって、
前記有機化合物が前記芳香族ポリスルホンの質量に対して、500ppm以上4000ppm以下含まれ、厚さが100μm未満の樹脂フィルムの製造方法。
 <2>前記芳香族ポリスルホン組成物は、前記有機化合物が前記芳香族ポリスルホンの質量に対して、500ppm以上5000ppm以下含まれる前記芳香族ポリスルホン組成物である前記<1>に記載の樹脂フィルム製造方法。
 有機化合物が芳香族ポリスルホンの質量に対して、500ppm以上5000ppm以下含まれる前記芳香族ポリスルホン組成物とは、前記溶融混練する工程前の芳香族ポリスルホン組成物を指す。
 以下、上述の組成物を用いて、溶融押出法により樹脂フィルムを作製する方法の一例について、図1を参照しながら説明する。
 図1は、本実施形態に係る樹脂フィルムを溶融押出法により製造する際に用いる装置の配置例を示す模式図である。まず、本実施形態に係る組成物を押出実験機により、溶融混練する。図1に示すように、コートハンガーダイ1により溶融した組成物を押し出して、前駆体フィルム10を成形する。前駆体フィルム10は、第1冷却ロール2及び第2冷却ロール3で冷却され、樹脂フィルム11が製造される。
 本実施形態において、コートハンガーダイ1の温度は、330~400℃であることが好ましく、350~380℃であることがより好ましい。コートハンガーダイ1の温度が低すぎると、コートハンガーダイ1を出た後の引き落としにより延伸されてしまい、光学的主軸は流れ方向に向いてしまうことがある。コートハンガーダイ1の温度が高すぎると、第1冷却ロール2との温度差が大きくなるため、第1冷却ロール2上で冷却ジワを生じたり、光学特性にムラができたりすることがある。
 本実施形態において、第1冷却ロール2及び第2冷却ロール3において、その温度は均一に制御されている。第1冷却ロール2の温度はコートハンガーダイ1の温度よりも低いことが好ましい。第2冷却ロール3の温度は第1冷却ロール2の温度よりも低いことが好ましい。
 本実施形態において、第1冷却ロール2及び第2冷却ロール3の速度は、一定であり、前駆体フィルム10の厚さによってそれぞれ調整される。このようにして、本実施形態に係る樹脂フィルムが得られる。
本実施形態において、得られた前記樹脂フィルム中の化合物Aの芳香族ポリスルホンの質量に対する含有量を測定し、所定の含有量を含む樹脂フィルムのみを選別する前記検品工程が含まれていてもよい。
 本実施形態によれば、靱性などの機械的強度に優れた樹脂フィルムが提供される。
<積層フィルム>
 本実施形態に係る積層フィルムは、上述の樹脂フィルムからなる層と、導体からなる層と、を有する。前記積層フィルムは、前記導体からなる層の少なくとも一方の面に、前記樹脂フィルムからなる層が積層された構造を有する。積層フィルムが特に高い絶縁性を要求される場合には、樹脂フィルムは厚いほど好ましい。
積層フィルムは、導体からなる層、及び樹脂フィルムからなる層をそれぞれ1層以上有していればよい。前記導体からなる層、又は前記樹脂フィルムからなる層を2層以上有している場合は前記導体からなる層と、前記樹脂フィルムからなる層が交互に積層された構造をとる。
樹脂フィルムの厚みは、特に限定されないが、好ましくは3μm以上100μm未満、さらに好ましくは3μm以上10μm以下である。
 本実施形態において、導体からなる層としては、例えば金属箔が挙げられる。金属箔としては、例えば金、銀、銅、アルミニウム又はニッケルからなる金属箔が挙げられ、銅箔が好ましい。金属箔の厚みは、好ましくは5~100μm、より好ましくは5~60μm、さらに好ましくは5~30μmである。
 以下、本実施形態に係る積層フィルムの製造方法の一例について説明する。
 本実施形態に係る積層フィルムの製造方法としては、樹脂フィルムと導体からなる層とを貼り合わせる方法が挙げられる。積層フィルムの他の製造方法としては、組成物を含む溶液を、導体からなる層に直接塗布して、導体からなる層上に樹脂フィルムを作製する方法が挙げられる。このような場合、基材として導体からなる層を用いることと、基材から塗膜を剥離しないこと以外は、溶液キャスト法による樹脂フィルムの製造方法と同様にして行うことで、容易に積層フィルムを作製できる。
 このようにして得られた積層フィルムにおいて、樹脂フィルムの導体からなる層とは反対側の表面は、必要に応じて、研磨処理や、酸あるいは酸化剤などの薬液による処理、紫外線照射処理、プラズマ照射などの処理を行ってもよい。
 本実施形態によれば、上述の樹脂フィルムを用いた機械的強度に優れた積層フィルムが提供される。
<フレキシブルプリント配線板用基板>
 本実施形態に係るフレキシブルプリント配線板(以下、「FPC」ということがある。)用基板は、上述の積層フィルムを含む。すなわち、フレキシブルプリント配線板用基板は、前記導体からなる層の一方の面に、前記樹脂フィルムからなる層が積層された前記積層フィルムと同様の構造を有する。フレキシブルプリント配線板は、前記フレキシブルプリント配線板用基板の導体からなる層の樹脂フィルムからなる層が積層された面とは反対の面に、エッチング等で導電パターンを形成し、前記導電パターンに樹脂材料からなる絶縁体であるカバーレイを積層して構成される。導電パターンとは、フレキシブルプリント配線板で、導電性材料が形成するパターンであり、回路の一部を形成する。エッチングとは前記導体の不要部分を化学的、電気的に除去し、前記導電パターンを形成するための手法である。カバーレイとは、フレキシブルプリント配線板の導体部を絶縁保護するために被覆したフィルムである。カバーレイとして使用される樹脂材料としては、ポリイミド樹脂フィルム、本発明の樹脂フィルムが挙げられる。
FPC用途として特に高い絶縁性が要求される場合には、樹脂フィルムは厚いほど好ましい。
 本実施形態によれば、上述の樹脂フィルムを含む、機械的強度に優れたフレキシブルプリント配線用基板が提供される。
<変形例>
 本発明の技術範囲は、上記実施形態に限定されず、本発明の効果を損なわない範囲において、種々の変更を加えることができる。
 本実施形態に係る積層フィルムは、フレキシブルプリント配線板用基板以外に、ビルドアップ法などによる半導体パッケージやマザーボード用の多層プリント基板用フィルム、テープオートメーテッドボンデリング用フィルム、タグテープ用フィルム、電子レンジ加熱用の包装フィルム、電磁波シールド用フィルム、高周波プリント配線基板、高周波ケーブル、通信機器回路、パッケージ用基板などに用いることもできる。
 以下、実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 なお、芳香族ポリスルホンの還元粘度の測定、組成物に含まれる化合物Aの定量分析、樹脂フィルムに含まれる化合物Aの定量分析及び樹脂フィルムの靱性評価は、それぞれ以下の方法で行った。
[芳香族ポリスルホンの還元粘度の測定]
 芳香族ポリスルホン約1gをN,N-ジメチルホルムアミド(試薬特級)に溶解させて、その容量を1dLとし、この溶液の粘度(η)を、オストワルド型粘度管を用いて、25℃で測定した。また、溶媒であるN,N-ジメチルホルムアミドの粘度(η0)を、オストワルド型粘度管を用いて、25℃で測定した。芳香族ポリスルホン溶液の粘度(η)とN,N-ジメチルホルムアミドの粘度(η0)から、比粘性率((η-η)/η) を求め、この値を、芳香族ポリスルホン溶液の濃度(約1g/dL)で割ることにより、芳香族ポリスルホンの還元粘度(dL/g)を求めた。
 通常は、還元粘度の値が大きいほど高分子量であるといえる。
[組成物に含まれる化合物Aの定量分析]
 既知量の組成物と、既知量のメタノールを室温で2時間以上混合した。メタノール中における化合物Aの濃度をガスクロマトグラフィーの面積比から算出した。次いで、組成物及びメタノールの量から、組成物中の化合物Aの含有量を算出した。
[樹脂フィルムに含まれる化合物Aの定量分析]
 樹脂フィルムを短辺が0.5mm以下となるように粉砕し、既知量の粉砕した樹脂フィルムと、既知量のアセトンとメタノールを体積比1:1で混合した混合液を室温で4時間以上混合した。混合液中における化合物Aの濃度をガスクロマトグラフィーの面積比から算出した。次いで、この樹脂フィルム及び混合液の量から、樹脂フィルム中の化合物Aの含有量を算出した。
[製造例1]
 撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた重合槽に、4,4’-ジヒドロキシジフェニルスルホン100.1g、4,4’-ジクロロジフェニルスルホン119.0g、及び化合物Aとしてジフェニルスルホン(以下、「DPS」ということがある。)194.3gを入れた。この混合溶液に窒素ガスを流通させながら180℃まで昇温し、さらに炭酸カリウム57.5gを添加した。この溶液を290℃まで徐々に昇温し、290℃で4時間反応させた。次いで、得られた反応混合溶液を、室温まで冷却して、固化させ、細かく粉砕した後、温水による洗浄及びアセトンとメタノールの混合溶媒による洗浄を数回行うことにより、未反応の炭酸カリウム及び副生した塩化カリウムを洗浄した。洗浄後、150℃で加熱乾燥することにより、混合析出物(芳香族ポリスルホン+DPS)を粉末として得た。得られた芳香族ポリスルホンの還元粘度は0.41dL/g、芳香族ポリスルホンの質量に対するDPSの割合は300ppmであった。
[実施例1]
 500mLセパラブルフラスコに、製造例1で得られた混合析出物60g及びN-メチル-2-ピロリドン(以下、「NMP」ということがある。)240gを入れ、60℃で2時間撹拌して、淡黄色の芳香族ポリスルホン溶液を得た。この溶液に、DPSを添加することにより、芳香族ポリスルホンの質量に対してDPSが800ppm含まれるように調製した。DPSを添加した溶液を、厚さ3mmのガラス板状にフィルムアプリケーターを用いて塗布し、高温熱風乾燥器を用いて60℃で乾燥して、塗膜を形成した。この塗膜を、窒素を流しながら250℃で熱処理して、ガラス板上に厚さ8μmの樹脂フィルムを形成した。この樹脂フィルムをガラス板から剥離することにより、実施例1の樹脂フィルムを得た。
樹脂フィルムの厚さを”マイクロメータPMU150-25MJ”(株式会社ミツトヨ製)によって測定した。また、測定は樹脂フィルムの任意の3点につき行い、その平均値は8μmであった。
[実施例2]
 芳香族ポリスルホン溶液にDPSを添加することにより、芳香族ポリスルホンの質量に対してDPSが3000ppm含まれるように調製した以外は、実施例1と同様にして行い、実施例2の樹脂フィルムを得た。
[実施例3]
 500mLセパラブルフラスコに、製造例1で得られた混合析出物75g及びNMP225gを入れ、60℃で2時間撹拌して、淡黄色の芳香族ポリスルホン溶液を得た。この溶液に、DPSを添加することにより、芳香族ポリスルホンの質量に対してDPSが800ppm含まれるように調製した。DPSを添加した溶液を、厚さ3mmのガラス板状にフィルムアプリケーターを用いて塗布し、高温熱風乾燥器を用いて60℃で乾燥して、塗膜を形成した。この塗膜を、窒素を流しながら250℃で熱処理して、ガラス板上に厚さ75μmの樹脂フィルムを形成した。この樹脂フィルムをガラス板から剥離することにより、実施例3の樹脂フィルムを得た。樹脂フィルムの厚さを”マイクロメータPMU150-25MJ”(株式会社ミツトヨ製)によって測定した。また、測定は樹脂フィルム上の任意の3点につき行い、その平均値は8μmであった。
[実施例4]
 芳香族ポリスルホン溶液にDPSを添加することにより、芳香族ポリスルホンの質量に対してDPSが3000ppm含まれるように調製したこと以外は、実施例3と同様にして行い、実施例4の樹脂フィルムを得た。
[比較例1]
 芳香族ポリスルホン溶液にDPSを添加しなかったこと以外は、実施例1と同様にして行い、比較例1の樹脂フィルムを得た。
[比較例2]
 芳香族ポリスルホン溶液にDPSを添加することにより、芳香族ポリスルホンの質量に対してDPSが5000ppm含まれるように調製した以外は、実施例1と同様にして行い、比較例2の樹脂フィルムを得た。
[比較例3]
 芳香族ポリスルホン溶液にDPSを添加しなかったこと以外は、実施例3と同様にして行い、比較例3の樹脂フィルムを得た。
[比較例4]
 芳香族ポリスルホン溶液にDPSを添加することにより、芳香族ポリスルホンの質量に対してDPSが5000ppm含まれるように調製した以外は、実施例3と同様にして行い、比較例4の樹脂フィルムを得た。
[樹脂フィルムの靱性評価]
 実施例及び比較例で得られた樹脂フィルムの靱性評価は、JIS P 8115のMIT試験機法により行い、樹脂フィルムが破断するまでの屈曲回数を求めた。この評価において、樹脂フィルムの屈曲回数が多いほど、樹脂フィルムは靱性に優れることを意味する。なお、実施例1、実施例2、比較例1及び比較例2における樹脂フィルムの靱性評価は評価1に示す方法で実施した。実施例3、実施例4、比較例3及び比較例4における樹脂フィルムの靱性評価は評価2に示す方法で実施した。
(評価1)
 実施例1、実施例2、比較例1及び比較例2の樹脂フィルムから、13cm×1cmの試験片を切り出した。この試験片を用いて、MIT耐疲労試験機(東洋精機(株)製)により、曲げ半径3.0mm、荷重2.0Nの条件で屈曲試験を行い、試験片が破断するまでの屈曲回数を求めた。同じ試験を3回行い、その平均値を算出した。
(評価2)
 実施例3、実施例4、比較例3及び比較例4の樹脂フィルムを用いて、曲げ半径0.38mm、荷重4.9Nとする以外は、評価1と同様にして行った。
 実施例及び比較例における組成物中の芳香族ポリスルホンの質量に対する、DPS含有量、樹脂フィルム中の芳香族ポリスルホンの質量に対する、DPS含有量、樹脂フィルムの厚さ、及び樹脂フィルムの屈曲回数を表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2に示す実施例1及び実施例2の樹脂フィルムにおいては、芳香族ポリスルホンの質量に対するDPSの割合が500ppm以上4000ppm以下であったため、得られた樹脂フィルムは靱性に優れていた。
 表3に示す実施例3及び実施例4の樹脂フィルムにおいても、芳香族ポリスルホンの質量に対するDPSの割合が500ppm以上4000ppm以下であったため、得られた樹脂フィルムは靱性に優れていた。上記実施例で得られた樹脂フィルムの厚さはすべて100μm未満であったため、樹脂フィルムの厚さによらず、靱性に優れていた。
 一方、表2に示す比較例1の樹脂フィルムにおいては、芳香族ポリスルホンの質量に対するDPSの割合が500ppm未満であったため、得られた樹脂フィルムは靱性に劣っていた。比較例2の樹脂フィルムにおいては、芳香族ポリスルホンの質量に対するDPSの割合が4000ppmを超えたため、得られた樹脂フィルムは靱性に劣っていた。
 表3に示す比較例3の樹脂フィルムにおいても、芳香族ポリスルホンの質量に対するDPSの割合が500ppm未満であったため、得られた樹脂フィルムは靱性に劣っていた。比較例4の樹脂フィルムにおいては、芳香族ポリスルホンの質量に対するDPSの割合が4000ppmを超えたため、得られた樹脂フィルムは靱性に劣っていた。
 以上の結果より、本発明が有用であることが確かめられた。
 本発明の芳香族ポリスルホンを成形材料とする樹脂フィルム、前記樹脂フィルムを含む積層フィルム及びフレキシブルプリント配線用基板は靱性が高く、機械的強度に優れており有用である。
 1…コートハンガーダイ、2…第1冷却ロール、3…第2冷却ロール、10…前駆体フィルム、11…樹脂フィルム。

Claims (7)

  1.  芳香族ポリスルホンを形成材料とする樹脂フィルムであって、
     前記樹脂フィルムの厚さは、100μm未満であり、
     前記樹脂フィルムは、沸点が250℃以上400℃以下である有機化合物をさらに含み、
     前記有機化合物は、前記芳香族ポリスルホンの質量に対して500ppm以上4000ppm以下含まれる樹脂フィルム。
  2.  前記芳香族ポリスルホンが、式(1)で表される繰返し単位を有し、
     前記芳香族ポリスルホンを構成する全繰返し単位の合計量に対して、式(1)で表される繰返し単位を80~100モル%有する請求項1に記載の樹脂フィルム。
      -Ph-SO-Ph-O- (1)
    [式(1)中、Ph及びPhは、フェニレン基を表し、前記フェニレン基に結合する1個以上の水素原子が、互いに独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基又はハロゲン原子で置換されていてもよい。]
  3.  前記有機化合物は、ハンセン溶解度パラメータにおける分散項δD(単位:MPa0.5)が16.0以上22.0以下、極性項δP(単位:MPa0.5)が12.0以上16.4以下、水素結合項δH(単位:MPa0.5)が3.0以上12.0以下である請求項1又は2に記載の樹脂フィルム。
  4.  前記有機化合物は、非プロトン性極性溶媒である請求項1~3のいずれか1項に記載の樹脂フィルム。
  5.  前記有機化合物は、ジフェニルスルホンである請求項1~4のいずれか1項に記載の樹脂フィルム。
  6.  請求項1~5のいずれか1項に記載の樹脂フィルムからなる層と、導体からなる層と、を有する積層フィルム。
  7.  請求項6に記載の積層フィルムを含むフレキシブルプリント配線板用基板。
PCT/JP2017/004708 2016-02-10 2017-02-09 樹脂フィルム、積層フィルム及びフレキシブルプリント配線板用基板 WO2017138599A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187022784A KR20180107137A (ko) 2016-02-10 2017-02-09 수지 필름, 적층 필름 및 플렉시블 프린트 배선판용 기판
EP17750320.8A EP3415554B1 (en) 2016-02-10 2017-02-09 Resin film, laminated film, and substrate for flexible printed wiring board
US16/076,612 US11104771B2 (en) 2016-02-10 2017-02-09 Resin film, laminated film, and substrate for flexible printed wiring board
CN201780010261.3A CN108699264B (zh) 2016-02-10 2017-02-09 树脂膜、层叠膜及柔性印刷布线板用基板

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016023701 2016-02-10
JP2016-023701 2016-02-10
JP2016-139739 2016-07-14
JP2016139739A JP6865541B2 (ja) 2016-02-10 2016-07-14 樹脂フィルム、積層フィルム及びフレキシブルプリント配線板用基板

Publications (1)

Publication Number Publication Date
WO2017138599A1 true WO2017138599A1 (ja) 2017-08-17

Family

ID=59563095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004708 WO2017138599A1 (ja) 2016-02-10 2017-02-09 樹脂フィルム、積層フィルム及びフレキシブルプリント配線板用基板

Country Status (1)

Country Link
WO (1) WO2017138599A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182855A (ja) * 1996-12-24 1998-07-07 Sumitomo Chem Co Ltd ポリエーテルスルホン樹脂フィルムの製造方法
JPH11167023A (ja) * 1997-12-03 1999-06-22 Kanegafuchi Chem Ind Co Ltd ポリスルフォン位相差フィルム製造方法
JPH11167022A (ja) * 1997-12-02 1999-06-22 Sekisui Chem Co Ltd 位相差板の製造方法
JP2003321556A (ja) * 2002-03-01 2003-11-14 Sumitomo Chem Co Ltd 芳香族ポリサルホン樹脂フィルム及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182855A (ja) * 1996-12-24 1998-07-07 Sumitomo Chem Co Ltd ポリエーテルスルホン樹脂フィルムの製造方法
JPH11167022A (ja) * 1997-12-02 1999-06-22 Sekisui Chem Co Ltd 位相差板の製造方法
JPH11167023A (ja) * 1997-12-03 1999-06-22 Kanegafuchi Chem Ind Co Ltd ポリスルフォン位相差フィルム製造方法
JP2003321556A (ja) * 2002-03-01 2003-11-14 Sumitomo Chem Co Ltd 芳香族ポリサルホン樹脂フィルム及びその製造方法

Similar Documents

Publication Publication Date Title
JP6373884B2 (ja) ポリイミド樹脂前駆体
TWI615276B (zh) 可撓性金屬疊層板及彼之製備方法
JP2018150544A (ja) ポリイミド樹脂前駆体
JP5708160B2 (ja) 高周波回路基板用樹脂基板および高周波回路基板
JP6865541B2 (ja) 樹脂フィルム、積層フィルム及びフレキシブルプリント配線板用基板
US20070093620A1 (en) Powder coating and process for the preparation of thin layers in the manufacture of printed circuit boards
WO2017138599A1 (ja) 樹脂フィルム、積層フィルム及びフレキシブルプリント配線板用基板
KR20130140800A (ko) 수지 조성물, 절연막, 막 형성 방법 및 전자 부품
WO2017221966A1 (ja) 芳香族ポリスルホンおよび芳香族ポリスルホン組成物
WO2017221972A1 (ja) 芳香族ポリスルホンおよび芳香族ポリスルホン組成物
JP6478507B2 (ja) ポリフェニレンエーテル含有液状物
JP6348932B2 (ja) 芳香族ポリスルホン組成物及び成形品
KR101745744B1 (ko) 프린트 배선용 기판 및 그것에 이용하는 수지 조성물
US20240043614A1 (en) Fluororesin
JP6938839B2 (ja) ディスプレイ基板用ポリイミドフィルム
JP2024142752A (ja) 長尺状塗工フィルムの製造方法及び金属張積層板の製造方法
KR101763873B1 (ko) 연성 금속 적층체
WO2023189795A1 (ja) 分散組成物、フッ素系樹脂フィルム、金属張積層板及びその製造方法
JP2013206788A (ja) 絶縁被覆体及びその製造方法
JP2022089150A (ja) フッ素樹脂
TW202321031A (zh) 覆金屬疊層板
JP2023065203A (ja) フッ素樹脂
JP2000211081A (ja) ポリイミドとフッ素樹脂の積層体およびその製造方法ならびに該積層体を用いた電線被覆用絶縁テ―プ
TW202432662A (zh) 聚芳基醚酮、聚芳基醚酮樹脂組成物及此等之成形品、及使用此等之電子器材、裝置
JPH05295261A (ja) 芳香族ポリスルホンフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187022784

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017750320

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017750320

Country of ref document: EP

Effective date: 20180910