WO2017217342A1 - キャパシタ及びその製造方法 - Google Patents

キャパシタ及びその製造方法 Download PDF

Info

Publication number
WO2017217342A1
WO2017217342A1 PCT/JP2017/021538 JP2017021538W WO2017217342A1 WO 2017217342 A1 WO2017217342 A1 WO 2017217342A1 JP 2017021538 W JP2017021538 W JP 2017021538W WO 2017217342 A1 WO2017217342 A1 WO 2017217342A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
terminal
trench
forming
wafer
Prior art date
Application number
PCT/JP2017/021538
Other languages
English (en)
French (fr)
Inventor
竹内 雅樹
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018523876A priority Critical patent/JP6688489B2/ja
Publication of WO2017217342A1 publication Critical patent/WO2017217342A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00195Optical arrangements with eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • G02B9/58Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only arranged - + + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body

Definitions

  • the present invention relates to a capacitor and a manufacturing method thereof.
  • Patent Document 1 discloses a trench capacitor for an integrated circuit.
  • the trench capacitor described in Patent Document 1 is formed of a trench, a first electrode layer, an insulating film, a dielectric layer, and a second electrode layer.
  • the trench is provided in the semiconductor substrate and includes a sidewall and a bottom, and is composed of a doped wall adjacent to the top of the substrate.
  • the first electrode layer is provided between the sidewalls of the trench and is electrically connected to a constant potential source.
  • the insulating film is disposed between the first electrode layer and the trench sidewall and insulates the first electrode layer from the substrate.
  • the dielectric layer is adjacent to the insulating film and the first electrode layer.
  • the second electrode layer is connected to a dielectric layer and a variable potential source representing the stored data in the capacitor so as to cover the dielectric layer, and forms a capacitor in the trench together with the first electrode layer and the dielectric layer.
  • a conventional capacitor as described in Patent Document 1 has a terminal for electrically connecting the chip and the capacitor on a surface in contact with the chip. Therefore, when soldering a conventional capacitor on a chip, the terminal becomes a so-called bottom electrode, and the mounting strength is not sufficient. In addition, the bottom electrode has a problem from the viewpoint of reliability because it is difficult to inspect the solder connectivity during the appearance inspection.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a highly reliable capacitor in mountability.
  • a trench capacitor according to an aspect of the present invention is a capacitor including a first surface and a second surface that are opposed to each other and have a longitudinal direction and a lateral direction, respectively, and a side surface that connects the first surface and the second surface.
  • the first trench capacitor provided on the first surface of the substrate and the surface of the substrate, and provided on the first surface in the vicinity of one side in the longitudinal direction so that the first trench capacitor is electrically connected to the outside. And a first terminal to be connected.
  • FIG. 1 is a cross-sectional view schematically showing a structure of a capacitor according to a first embodiment of the present invention.
  • 1 is a top view schematically showing the structure of a capacitor according to a first embodiment of the present invention. It is a figure which shows roughly the mounting aspect of the capacitor which concerns on 1st Embodiment of this invention. It is a figure which shows roughly the mounting aspect of the capacitor which concerns on 1st Embodiment of this invention. It is a figure which shows roughly the mounting aspect of the capacitor which concerns on 1st Embodiment of this invention. It is a figure which shows the area
  • FIG. 1 It is a figure which shows schematically the mounting aspect of the capacitor which concerns on 2nd Embodiment of this invention. It is a perspective view showing roughly the structure of the capacitor concerning a 3rd embodiment of the present invention. It is a schematic diagram which shows an example of the manufacturing process of the capacitor which concerns on 3rd Embodiment of this invention. It is a schematic diagram which shows an example of the manufacturing process of the capacitor which concerns on 3rd Embodiment of this invention. It is a schematic diagram which shows an example of the manufacturing process of the capacitor which concerns on 3rd Embodiment of this invention. It is a schematic diagram which shows an example of the manufacturing process of the capacitor which concerns on 3rd Embodiment of this invention. It is a schematic diagram which shows an example of the manufacturing process of the capacitor which concerns on 3rd Embodiment of this invention. It is a schematic diagram which shows an example of the manufacturing process of the capacitor which concerns on 3rd Embodiment of this invention.
  • FIG. 1 is a perspective view schematically showing the structure of a capacitor 10 according to the present embodiment.
  • the structure of the capacitor 10 will be described with reference to FIG. In FIG. 1, the configuration necessary for explaining at least a part of the characteristics of the structure of the capacitor 10 is extracted and described. However, the characteristics of the structure of the capacitor 10 are illustrated in other drawings. It does not preclude being specified by configuration.
  • the capacitor 10 has a rectangular parallelepiped shape in the present embodiment, and terminals 201 ⁇ / b> A and 202 ⁇ / b> A (an example of the first terminal) on the upper surface 11 (an example of the first surface). ), And the lower surface 12 (an example of the second surface) includes terminals 201B and 202B (an example of the second terminal). Further, a first trench capacitor 30A is formed on the upper surface 11 side of the capacitor 10, and a second trench capacitor 30B is formed on the lower surface 12 side.
  • the upper surface 11 and the lower surface 12 of the capacitor 10 each have a substantially rectangular shape having a long side and a short side. Further, the upper surface 11 and the lower surface 12 are connected by one side surface 13.
  • the side surface 13 has a substantially rectangular shape sharing the long side with the upper surface 11 and the lower surface 12. For example, the long sides of the upper surface 11, the lower surface 12, and the side surface 13 are about 1 mm. Moreover, the short side of the upper surface 11 and the lower surface 12 is about 0.5 mm, and the short side of the side surface 13 is about 0.4 mm.
  • Terminals 201A, 202A, 201B, 202B are rectangular electrodes for electrically connecting the capacitor 10 to the outside.
  • the terminals 201A and 202A are provided in the vicinity of one side of the upper surface 11 in the longitudinal direction (side surface 13 in the example of FIG. 1). More specifically, the terminals 201 ⁇ / b> A and 202 ⁇ / b> A are provided at one end and the other end of the upper surface 11 so as to be in contact with the long side shared by the upper surface 11 and the side surface 13.
  • the terminals 201B and 202B are provided on the lower surface 12 at positions facing the terminals 201A and 202A, respectively.
  • the terminals 201B and 202B only need to be provided in the vicinity of one side in the longitudinal direction of the lower surface 12 (the side surface 13 side in the example of FIG. 1), and are provided at positions facing the terminals 201A and 202A. It is not limited to.
  • the terminals 201 ⁇ / b> B and 202 ⁇ / b> B are formed on the lower surface 12 so as to be in contact with the long side shared by the lower surface 12 and the side surface 13.
  • the thickness of the exposed portions of the terminals 201A, 202A, 201B, 202B is about 1 ⁇ m to 10 ⁇ m, the length along the side surface 13 is about 200 ⁇ m, and the length along the direction perpendicular to the side surface 13 is about 300 ⁇ m. It is. Furthermore, the surface area of the exposed portions of the terminals 201A, 202A, 201B, 202B is preferably 10% or more and 50% or less with respect to the area of the upper surface 11.
  • the capacitor 10 is formed from a rectangular parallelepiped substrate 301.
  • the substrate 301 has one or more trenches 100A on the surface on the upper surface 11 side (hereinafter also referred to as “surface of the substrate 301”), and is also referred to as the surface on the lower surface 12 side (hereinafter referred to as “back surface of the substrate 301”). .) Have one or more trenches 100B.
  • the trenches 100 ⁇ / b> A are grooves that are arranged at substantially equal intervals on the surface of the substrate 301 along the connection side between the upper surface 11 and the side surface 13.
  • the trench 100 ⁇ / b> A has a short direction in a direction along the connection side and a long direction in a direction perpendicular to the connection side.
  • the trench 100 ⁇ / b> B is a groove arranged on the back surface of the substrate 301 at substantially equal intervals along the connection side between the lower surface 12 and the side surface 13.
  • the trench 100 ⁇ / b> B has a short direction in the direction along the connection side, and a long direction in the direction perpendicular to the connection side.
  • the trench 100A and the trench 100B are preferably provided at positions facing each other.
  • the length in the short direction of the trenches 100A and 100B is about 20 ⁇ m, and the length in the longitudinal direction is about 50 ⁇ m.
  • the number of trenches 100A and 100B may be one or more, and is not limited to the number shown in FIG. Further, the trenches 100A and 100B may have a configuration in which the longitudinal direction is provided in a direction along the connection side.
  • the shape seen from the upper surface of the trenches 100A and 100B is not limited to a rectangle, and may be a circle, a polygon, or a shape with rounded corners.
  • the trenches 100A and 100B are not limited to the configuration provided at equal intervals, and may be randomly arranged.
  • the number of the trenches 100A and the trenches 100B included in the substrate 301 is not limited to the same number.
  • FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG. 1 and schematically showing a configuration example of the capacitor 10 according to the first embodiment of the present invention.
  • the capacitor 10 includes a lower electrode 302, a dielectric film 303, an upper electrode 304, an insulating film on the front surface (on the upper surface 11 side) and the back surface (the lower surface 12 side) of the substrate 301. 305 are stacked.
  • the substrate 301 is formed from, for example, an n-type Si (silicon) semiconductor or p-type Si semiconductor having a thickness of about 400 ⁇ m.
  • n-type dopant P (phosphorus), As (arsenic), Sb (antimony), or the like can be included.
  • B (boron) etc. can be included.
  • an insulating substrate such as glass may be used for the substrate. In this case, insulation between the direct terminal formed on the upper surface 11 and the electrode terminal formed on the lower surface 12 can be ensured.
  • One or more trenches 100 ⁇ / b> A are formed on the surface of the substrate 301. Further, one or more trenches 100B are formed on the back surface of the substrate 301.
  • the trenches 100 ⁇ / b> A and 100 ⁇ / b> B are grooves formed in the thickness direction of the substrate 301.
  • the trenches 100A and 100B are formed by, for example, dry etching.
  • the depths of the trenches 100A and 100B are preferably about 0.1 ⁇ m or more and 200 ⁇ m or less, for example.
  • the depth of the trenches 100A and 100B refers to the distance from the plane extending along the surface of the substrate 301 in the openings of the trenches 100A and 100B to the point farthest from the plane inside the trenches 100A and 100B.
  • Lower electrodes 302 having a thickness of about 0.2 ⁇ m are formed on the front and back surfaces of the substrate 301 including the inner walls of the trenches 100A and 100B.
  • the lower electrode 302 is a metal layer formed using, for example, Mo (molybdenum), Al (aluminum), Au (gold), W (tungsten), Pt (platinum), or the like.
  • the substrate 301 can also serve as the lower electrode 302 by reducing the resistance of the surface of the substrate 301 (including the surfaces of the trenches 100A and 100B).
  • a dielectric film 303 having a thickness of about 0.1 ⁇ m to 3 ⁇ m is formed on the surface of the lower electrode 302 including the inner walls of the trenches 100A and 100B.
  • the dielectric film 303 is made of silicon nitride (for example, Si 3 N 4 ) or the like.
  • an upper electrode 304 having a thickness of about 0.1 ⁇ m to 1 ⁇ m is formed on the surface of the dielectric film 303 including the inner walls of the trenches 100A and 100B.
  • the upper electrode 304 is a metal layer formed using, for example, Mo (molybdenum), Al (aluminum), Au (gold), W (tungsten), Pt (platinum), or the like. Further, the upper electrode 304 may be formed using polycrystalline silicon having a reduced resistance.
  • an insulating film 305 is formed on the surface of the upper electrode 304 including the inner walls of the trenches 100A and 100B on the front and back surfaces of the substrate 301.
  • the insulating film 305 is formed using, for example, polyimide or the like.
  • the insulating film 305 is not limited to the structure filled in the trenches 100A and 100B.
  • the trenches 100A and 100B are filled with the lower electrode 302, the dielectric film 303, and the upper electrode 304, and the insulating film 305 is formed so as to cover the surface of the upper electrode 304 outside the trenches 100A and 100B. Good.
  • the insulating film 305 has vias V1A, V1B, V2A, and V2B.
  • the via V1A is formed such that the surface of the lower electrode 302 is exposed at a position corresponding to the terminal 201A on the surface of the substrate 301.
  • the via V ⁇ b> 1 ⁇ / b> B is formed so that the surface of the lower electrode 302 is exposed at a position corresponding to the terminal 201 ⁇ / b> B on the back surface of the substrate 301.
  • the via V2A is formed so that the surface of the upper electrode 304 is exposed at a position corresponding to the terminal 202A on the surface of the substrate 301.
  • the via V2B is formed so that the surface of the upper electrode 304 is exposed at a position corresponding to the terminal 202B on the back surface of the substrate 301.
  • Each of the vias V1A, V1B, V2A, and V2B is made of, for example, a metal such as Mo (molybdenum), Al (aluminum), Au (gold), W (tungsten), Pt (platinum), Cu (copper), or Ni (nickel). Filled and terminals 201A, 201B, 202A, 202B are formed.
  • a metal such as Mo (molybdenum), Al (aluminum), Au (gold), W (tungsten), Pt (platinum), Cu (copper), or Ni (nickel).
  • the terminals 201A and 201B formed in the vias V1A and V1B function as terminals for electrically connecting the lower electrode 302 to the outside.
  • the terminals 202A and 202B formed in the vias V2A and V2B function as terminals for electrically connecting the upper electrode 304 to the outside.
  • the lower electrode 302, the dielectric film 303, the upper electrode 304, and the insulating film 305 are stacked on the surface of the substrate 301 (on the upper surface 11 side), whereby the substrate 301 is stacked.
  • the first trench capacitor 30A is formed on the surface side of the first trench capacitor 30A.
  • the lower electrode 302, the dielectric film 303, the upper electrode 304, and the insulating film 305 are stacked on the back surface (the lower surface 12 side) of the substrate 301, and the second trench capacitor 30B is formed on the back surface side of the substrate 301. Is formed.
  • the capacitor 10 according to the present embodiment includes the trench capacitors on both the upper surface 11 and the lower surface 12, the capacitance can be increased.
  • FIG. 3 is a top view of the capacitor 10 according to the present embodiment.
  • the terminals 201 ⁇ / b> A and 202 ⁇ / b> A are formed close to the side surface 13 on the upper surface 11. That is, the terminals 201 ⁇ / b> A and 202 ⁇ / b> A are formed asymmetrically with respect to the center line passing through the Y axis on the upper surface 11.
  • the terminals 201B and 202B are provided on the lower surface 12 at positions facing the terminals 201A and 202A. As described above, the terminals 201B and 202B only need to be formed close to the side surface 13 on the lower surface 12, and are not limited to the configuration formed at positions facing the terminals 201A and 202A.
  • FIG. 4 is a diagram schematically showing an electrical connection mode of the capacitor 10. As shown in FIG. 4, in this embodiment, the terminal 201A and the terminal 201B are connected to each other, and an electric field having the same phase is applied. The terminals 202A and 202B are connected to each other, and an electric field having a phase opposite to that of the terminals 201A and 201B is applied.
  • the terminals 201A and 201B are terminals for connecting the lower electrode 302 to the outside, and the terminals 202A and 202B are terminals for connecting the upper electrode 304 to the outside.
  • the first trench capacitor 30A formed on the upper surface 11 side of the capacitor 10 and the second trench capacitor 30B formed on the lower surface 12 side are provided between the lower electrodes 302 and the upper electrodes 304.
  • An electric field having the same phase is applied. That is, in the present embodiment, the first trench capacitor 30A and the second trench capacitor 30B are connected in parallel.
  • FIG. 5 is a diagram schematically showing a state in which the capacitor 10 according to the present embodiment is mounted on the mounting substrate 50.
  • the capacitor 10 according to the present embodiment is mounted on the mounting substrate 50 with the side surface 13 as a surface (bottom surface) facing the mounting substrate 50. Since the terminals 201A and 202A are formed close to the side surface 13 side on the upper surface 11, when the capacitor 10 is mounted with the side surface 13 facing the mounting substrate 50 (bottom surface), the terminals 201A and 202A are disposed. Will be located closer to the bottom. For this reason, it becomes easy to electrically connect the capacitor 10 to the mounting substrate 50 by soldering the terminals 201A and 202A. Further, since the terminals 201A and 202A are located on the side surface instead of the bottom surface when the capacitor 10 is mounted on the mounting substrate 50, the solder connectivity can be easily confirmed, and the reliability can be improved. .
  • terminals 201B and 202B formed on the lower surface 12 side are also formed close to the side surface 13, it can be easily electrically connected to the mounting substrate 50 by solder mounting. Become.
  • FIG. 6 is a diagram showing a region 500 in the wafer where the capacitor 10 according to the present embodiment is formed.
  • a line L (an example of a first dicing line) indicates a boundary between regions 500 that are adjacent to each other in the longitudinal direction among the regions 500 that form the plurality of capacitors 10.
  • a line M (an example of a second dicing line) indicates a boundary between the regions 500 adjacent to each other in the short side direction among the regions 500 in which the plurality of capacitors 10 are formed.
  • FIGS. 7A to 7J are views showing a process flow when manufacturing the capacitor 10 according to the present embodiment using the wafer shown in FIG. 7A (a) to 7J (a) correspond to the BB ′ cross section and FIG. 7A (b) to 7J (b) BB ′ cross section of FIG. 6, and FIGS. 7A (b) to 7J (b) This corresponds to the CC ′ cross section of FIG. 6 and the CC ′ cross sections of FIGS. 7A (a) to 7J (a).
  • the upper side represents the front surface of the wafer, and the lower side represents the back surface of the wafer.
  • one or more trenches 100A are formed in the wafer by etching or the like.
  • the trenches 100A are preferably formed such that the depths in the thickness direction of the wafer are approximately the same.
  • the lower electrode 302 is laminated on the surface of the wafer including the inner wall of the trench 100A, and is formed in a desired region by etching or the like.
  • the dielectric film 303 and the upper electrode 304 are stacked in this order on the surface of the wafer including the inner wall of the trench 100A, and formed in a desired region by etching or the like.
  • the insulating film 305 is laminated on the surface of the wafer including the inner wall of the trench 100A, and the surface is flattened by a process such as an etch bag. Further, vias V1A and V2A are formed in the laminated insulating film 305 by etching or the like. As shown in FIGS. 7D (a) and 7 (b), the vias V1A and V2A are formed in the vicinity of the line L and in the vicinity of the line M on the surface side of the wafer.
  • vias V1A and V2A are filled with a metal such as molybdenum to form terminals 201A and 202A.
  • a metal such as molybdenum
  • the second trench capacitor and the terminals 201B and 202B are formed on the back side of the wafer by performing the steps shown in FIGS. 7A to 7E on the back side of the wafer.
  • the terminals 201B and 202B are formed in the vicinity of the line L and in the vicinity of the line M (for example, positions corresponding to the terminals 201A and 202A).
  • the capacitor 10 can be obtained by cutting the wafer along a dicing line including the line L and the line M.
  • the capacitor 10 formed in the process shown in FIG. 7A to FIG. 7J is mounted on the chip with the side surface 13 facing the mounting substrate (bottom surface).
  • a cross section cut by the line L corresponds to the side surface 13 of the capacitor 10.
  • the cross section of the wafer on which the capacitor 10 is formed becomes the surface (bottom surface) facing the mounting substrate when the capacitor 10 is mounted on the mounting substrate 50.
  • the front surface and the back surface of the capacitor are the side surfaces of the capacitor 10 when mounted. Therefore, the terminals 201A, 202A, 201B, 202B that become side electrodes at the time of mounting can be easily formed, and the mounting property can be ensured. Further, since it is not necessary to reduce the wafer thickness so much, it is possible to reduce the warpage of the substrate during the process. Further, according to the mounting method of the capacitor 10 according to the present embodiment, since the trench capacitor is formed on both surfaces of the substrate 301, the capacity can be increased.
  • FIG. 8 is a cross-sectional view showing a configuration example of the capacitor 10 according to the present embodiment. The same components as those of the capacitor 10 shown in FIG.
  • a lower electrode 302 is formed by doping a high concentration impurity in a part of the substrate 301 including the trenches 100A and 100B.
  • the lower electrode 302 is formed individually for each of the trenches 100A and 100B.
  • the via V1B is formed so that the surface of the upper electrode 304 is exposed, and the via V2B is formed so that the lower electrode 302 is exposed.
  • the terminals 201A and 202B are terminals for electrically connecting the lower electrode 302 to the outside, and the terminals 202A and 201B are for electrically connecting the upper electrode 304 to the outside. Terminal.
  • the entire substrate 301 is doped at a high concentration, and the lower electrode 302 is shared by the first trench capacitor 30A and the second trench capacitor 30B.
  • the structure to do may be sufficient.
  • FIG. 10 is a diagram schematically showing an electrical connection mode of the capacitor 10 according to the present embodiment. As shown in FIG. 10, in this embodiment, electric fields having opposite phases are applied to the terminal 202A and the terminal 201B.
  • the terminals 201A and 202B are terminals for connecting the lower electrode 302 to the outside, and the terminals 201A and 202B are terminals for connecting the upper electrode 304 to the outside. . Therefore, in the present embodiment, the first trench capacitor 30A formed on the upper surface 11 side of the capacitor 10 and the second trench capacitor 30B formed on the lower surface 12 side are connected in series. Since the capacitor 10 according to this embodiment connects the first trench capacitor 30A and the second trench capacitor 30B formed on both surfaces in series, it is possible to increase the breakdown voltage. Other configurations and effects of the capacitor 10 are the same as those of the first embodiment.
  • FIG. 11 is a perspective view illustrating a configuration example of the capacitor 10 according to the present embodiment.
  • symbol is attached
  • terminals 201A and 202A are formed in trenches V3A and V4A (an example of a first terminal trench) having openings from the upper surface 11 to the side surface 13. ing. That is, the trenches V3A and V4A have a structure in which a part of the corner formed by the upper surface 11 and the side surface 13 is cut out. Further, terminals 201B and 202B are formed in trenches V3B and V4B (an example of a second terminal trench) having openings from the lower surface 12 to the side surface 13.
  • the terminals 201 ⁇ / b> A, 201 ⁇ / b> B, 202 ⁇ / b> A, 202 ⁇ / b> B are formed so that the surfaces of the terminals 201 ⁇ / b> A, 201 ⁇ / b> B, 202 ⁇ / b> A, 202 ⁇ / b> B are exposed.
  • the exposed portion of the side surface 13 of the terminals 201A, 201B, 202A, 202B functions as a bottom electrode. Therefore, when the capacitor 10 is mounted on the mounting substrate 50, it can be mounted on the mounting substrate 50 via the bottom electrode and the side electrode, and a more reliable mounting property can be realized.
  • FIG. 12 is a process flow showing a method for manufacturing the capacitor 10 according to the present embodiment.
  • steps performed on the wafer surface in the method of manufacturing the capacitor 10 according to the present embodiment will be described with reference to FIGS. Note that the process performed on the back surface of the wafer is the same as the process performed on the wafer surface, and thus description thereof is omitted.
  • FIGS. 12A (a) to 12E (a) correspond to the BB ′ cross section of FIG. 6 and the BB ′ cross section of FIGS. 12A (b) to 12E (b).
  • FIGS. 12A (b) to 12E (b) 6 corresponds to the CC ′ cross section of FIG. 6 and the CC ′ cross section of FIGS. 12A (a) to 12E (a).
  • one or more trenches 100A are formed in the wafer by etching or the like.
  • a trench an example of a first terminal trench
  • FIG. 12A (b) shows a state in which the trench V4A is formed, but in this embodiment, two trenches V3A and V4A are formed across the line L in each region.
  • the positions where the trenches V3A and V4A are formed are positions that cross the line L and are in the vicinity of the line M.
  • the lower electrode 302 is laminated on the surface of the wafer and formed in a desired region by etching or the like. Further, the lower electrode 302 stacked inside the trenches V3A and V4A formed across the line L is removed by wet etching or the like. At this time, by masking the region where the lower electrode 302 remains, the lower electrode 302 can be protected from wet etching.
  • the dielectric film 303 and the upper electrode 304 are laminated in this order on the surface of the wafer including the inner wall of the trench 100A, and formed in a desired region by etching or the like.
  • a configuration in which the upper electrode 304 is formed so as to fill the trenches 100A, V3A, and V4A will be described as an example.
  • the surface of the upper electrode 304 stacked until the inside of the trenches 100A, V3A, and V4A is filled is planarized by a process such as an etch bag.
  • an insulating film 305 is laminated on the surface of the wafer. Further, the insulating film 305 stacked on the trenches V3A and V4A is removed by etching or the like.
  • the portion from which the insulating film 305 has been removed is filled with a metal such as molybdenum to form the terminals 201A and 202A.
  • a metal such as molybdenum
  • the terminals 201A and 202A can be formed on the upper electrode 304 exposed from the portion where the insulating film 305 has been removed by, for example, electroless plating.
  • the same process as shown in FIGS. 12A to 12E is performed on the back surface of the wafer.
  • the same process as shown in FIGS. 12A to 12E is performed on the back surface of the wafer.
  • at least one trench is formed across the line L in each region corresponding to the capacitor 10.
  • the capacitor 10 according to this embodiment can be obtained by cutting the wafer along dicing lines including the line L and the line M.
  • the trenches of the terminals 201A and 202A can be formed simultaneously with the capacitor trench 100A.
  • the trenches of the terminals 201B and 202B can be formed at the same time as the capacitor trench 100B. That is, in this embodiment, the terminal (bottom electrode) exposed on the side surface 13 of the capacitor 10 can be formed without adding a process.
  • Other configurations and functions of the capacitor 10 are the same as those in the first embodiment.
  • a capacitor 10 includes a top surface 11 and a bottom surface 12 that are opposed to each other and have a longitudinal direction and a short direction, respectively, and a side surface 13 that connects the top surface 11 and the bottom surface 12.
  • the first trench capacitor 30A provided on the upper surface 11 of the surfaces of the substrate 301
  • the second trench capacitor 30B provided on the lower surface 12 of the surfaces of the substrate 301
  • a terminal 201A or a terminal 201B that is provided in the vicinity of one side in the longitudinal direction and electrically connects the first trench capacitor 30A to the outside, and a second trench capacitor that is provided in the vicinity of one side in the longitudinal direction on the lower surface 12.
  • the terminal 202A for electrically connecting 30B to the outside or the terminal 202B is provided. Since the terminals 201A and 202A according to the present embodiment are formed close to the side surface 13 on the upper surface 11, when the capacitor 10 is placed with the side surface 13 as a contact surface (bottom surface), the terminals 201A and 202A are disposed. Will be located closer to the bottom. For this reason, it becomes easy to electrically connect the capacitor 10 to the mounting substrate 50 by soldering the terminals 201A and 202A. Further, since the terminals 201A and 202A are located on the side surface instead of the bottom surface when the capacitor 10 is mounted on the mounting substrate 50, the solder connectivity can be easily confirmed, and the reliability can be improved. . Since the terminals 201B and 202B formed on the lower surface 12 side are also formed close to the side surface 13, it is easy to electrically connect to the mounting substrate 50 by solder mounting.
  • the capacitor 10 includes trenches V3A and V4A having openings from the upper surface 11 to the side surface 13, and trenches V3B and V4B having openings from the lower surface 12 to the side surface 13.
  • the terminals 201A and 202A are provided with the trench V3A. It is also preferable that the terminals 201B and 202B are formed in the trenches V3B and V4B.
  • the electronic device according to the present invention is provided such that the capacitor 10 described above is mounted and the side surface 13 faces the mounting substrate 50. Accordingly, the electronic device according to the present invention can easily connect the capacitor 10 to the mounting substrate 50 by soldering the terminals 201A, 202A, 201B, and 202B. Further, since the terminals 201A, 202A, 201B, and 202B are located on the side surface instead of the bottom surface when the capacitor 10 is mounted on the mounting substrate 50, the solder connectivity can be easily confirmed, and the reliability is improved. Can be made.
  • the capacitor manufacturing method includes a step of preparing a wafer including a plurality of regions each having a longitudinal direction and a short direction, and forming a plurality of trenches 100A in each of the plurality of regions on the surface of the wafer.
  • the terminals 201 ⁇ / b> A and 202 ⁇ / b> A are formed close to the side surface 13 side on the upper surface 11. Therefore, when the capacitor 10 is placed with the side surface 13 as the contact surface (bottom surface), the terminals 201A and 202A are located closer to the bottom surface. For this reason, it becomes easy to electrically connect the capacitor 10 to the mounting substrate 50 by soldering the terminals 201A and 202A. Further, since the terminals 201A and 202A are located on the side surface instead of the bottom surface when the capacitor 10 is mounted on the mounting substrate 50, the solder connectivity can be easily confirmed, and the reliability can be improved. . Since the terminals 201B and 202B formed on the lower surface 12 side are also formed close to the side surface 13, it is easy to electrically connect to the mounting substrate 50 by solder mounting.
  • Forming the trenches V3B and V4B, the step of forming the terminals 201A and 202A includes the step of forming the terminals 201A and 202A in the trenches V3A and V4A, and the step of forming the terminals 201B and 202B It is preferable that the step of forming the terminals 201B and 202B in V3B and V4B includes the step of cutting the wafer includes the step of dividing the terminals 201A and 202A and the terminals 201B and 202B by lines L, respectively.
  • the trenches V3A and V4A of the terminals 201A and 202A can be formed simultaneously with the capacitor trench 100A. Further, the trenches for the terminals 201B and 202B can be formed simultaneously with the capacitor trench 100B. Thereby, the terminal (bottom electrode) exposed in the side surface 13 of the capacitor 10 can be formed without adding a process.
  • the step of forming the terminals 201A and 202A includes the step of forming the terminals 201A and 202A in the vicinity of the line M and the vicinity of the line L, which are boundaries between regions adjacent to each other in the short side direction among the plurality of regions.
  • Forming the terminals 201B, 202B includes forming the terminals 201B, 202B in the vicinity of the line M and in the vicinity of the line L
  • the step of cutting the wafer further includes the step of cutting the wafer along the line M. It is also preferred to include a cutting step.
  • the step of forming the trenches V3A and V4A includes the step of forming the trenches V3A and V4A across the line L in the vicinity of the line M that is a boundary between the regions adjacent to each other in the short side direction among the plurality of regions.
  • forming the trenches V3B and V4B includes forming the trenches V3B and V4B across the line L in the vicinity of the line M which is a boundary between the regions adjacent to each other in the short side direction among the plurality of regions.
  • the step of cutting includes a step of further cutting the wafer along line M.
  • the electronic device manufacturing method according to the present invention further includes a step of mounting the capacitor 10 manufactured by the capacitor manufacturing method according to the present invention with the cut surface formed by the step of cutting the wafer facing the mounting substrate. Prepare.
  • the capacitor 10 when the capacitor 10 is mounted on the mounting substrate 50, it can be mounted on the mounting substrate 50 via the bottom electrode and the side electrode, and a more reliable mounting property can be realized.
  • each embodiment described above is for facilitating understanding of the present invention, and is not intended to limit the present invention.
  • the present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof.
  • those obtained by appropriately modifying the design of each embodiment by those skilled in the art are also included in the scope of the present invention as long as they include the features of the present invention.
  • each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate.
  • Each embodiment is an exemplification, and it is needless to say that a partial replacement or combination of configurations shown in different embodiments is possible, and these are also included in the scope of the present invention as long as they include the features of the present invention. .
  • the present invention is not limited to this, and the trench capacitor may be formed on either the front surface or the back surface of the substrate. Even when the trench capacitor is formed only on one surface, the terminals may be formed on both surfaces (front surface and back surface).

Abstract

実装性において信頼性の高いキャパシタを提供する。 互いに対向し、それぞれが長手方向及び短手方向を有する第1面及び第2面と、当該第1面及び第2面をつなぐ側面を備えるキャパシタであって、基板と、基板の面のうち、第1面の方に設けられる第1トレンチキャパシタと、第1面において、長手方向の一方の辺近傍に設けられ、第1トレンチキャパシタを外部と電気的に接続させる第1端子と、を備える。

Description

キャパシタ及びその製造方法
 本発明は、キャパシタ及びその製造方法に関する。
 DRAMを始めとするメモリの高集積化に伴い、メモリセルの三次元化が進められている。メモリセルをより高密度に集積化させるために、1つのメモリセルに占める総表面積を減少させる必要がある。例えば、溝内に形成したキャパシタであるトレンチキャパシタを用いることで、表面積を低減させながら大容量化を実現することができる。
 特許文献1には、集積回路用のトレンチキャパシタが開示されている。特許文献1に記載のトレンチキャパシタは、トレンチと、第1電極層と、絶縁膜と、誘電体層と、第2電極層とから形成される。トレンチは、半導体基板内に設けられ、側壁と底部を含み、該基板の上部に隣接してドープされた壁からなる。第1電極層は、該トレンチの側壁間に設けられ定電位源に電気的に接続される。絶縁膜は、該第1電極層とトレンチ側壁の間に配置され第1電極層を基板から絶縁する。誘電体層は、絶縁膜と、該第1電極層に隣接する。第2電極層は、誘電体層と、該誘電体層を覆ってキャパシタ内の蓄積データを表す可変電位源に接続され、第1電極層,誘電体層とともにトレンチ内にキャパシタを形成する。
特開平5-121690号公報
 特許文献1に記載されているような従来のキャパシタは、チップと接触する面に当該チップとキャパシタとを電気的に接続させるための端子を有している。従って従来のキャパシタをチップにはんだ実装する場合、端子はいわゆる底面電極となり、実装強度が十分でない。また、底面電極は、外観検査の際に、はんだの接続性が検査しにくく、信頼性の観点から問題があった。
 本発明はこのような事情に鑑みてなされたものであり、実装性において信頼性の高いキャパシタを提供することを目的とする。
 本発明の一側面に係るトレンチキャパシタは、互いに対向し、それぞれが長手方向及び短手方向を有する第1面及び第2面と、当該第1面及び第2面をつなぐ側面を備えるキャパシタであって、基板と、基板の面のうち、第1面の方に設けられる第1トレンチキャパシタと、第1面において、長手方向の一方の辺近傍に設けられ、第1トレンチキャパシタを外部と電気的に接続させる第1端子と、を備える。
 本発明によれば、実装性において信頼性の高いキャパシタを提供することができる。
本発明の第1実施形態に係るキャパシタの構造を概略的に示す斜視図である。 本発明の第1実施形態に係るキャパシタの構造を概略的に示す断面図である。 本発明の第1実施形態に係るキャパシタの構造を概略的に示す上面図である。 本発明の第1実施形態に係るキャパシタの実装態様を概略的に示す図である。 本発明の第1実施形態に係るキャパシタの実装態様を概略的に示す図である。 ウエハにおいて、本発明の第1実施形態に係るキャパシタを形成する領域を示す図である。 本発明の第1実施形態に係るキャパシタの製造工程の一例を示す模式図である。 本発明の第1実施形態に係るキャパシタの製造工程の一例を示す模式図である。 本発明の第1実施形態に係るキャパシタの製造工程の一例を示す模式図である。 本発明の第1実施形態に係るキャパシタの製造工程の一例を示す模式図である。 本発明の第1実施形態に係るキャパシタの製造工程の一例を示す模式図である。 本発明の第1実施形態に係るキャパシタの製造工程の一例を示す模式図である。 本発明の第1実施形態に係るキャパシタの製造工程の一例を示す模式図である。 本発明の第1実施形態に係るキャパシタの製造工程の一例を示す模式図である。 本発明の第1実施形態に係るキャパシタの製造工程の一例を示す模式図である。 本発明の第1実施形態に係るキャパシタの製造工程の一例を示す模式図である。 本発明の第2実施形態に係るキャパシタの構造を概略的に示す断面図である。 本発明の第2実施形態に係るキャパシタの構造を概略的に示す断面図である。 本発明の第2実施形態に係るキャパシタの実装態様を概略的に示す図である。 本発明の第3実施形態に係るキャパシタの構造を概略的に示す斜視図である。 本発明の第3実施形態に係るキャパシタの製造工程の一例を示す模式図である。 本発明の第3実施形態に係るキャパシタの製造工程の一例を示す模式図である。 本発明の第3実施形態に係るキャパシタの製造工程の一例を示す模式図である。 本発明の第3実施形態に係るキャパシタの製造工程の一例を示す模式図である。 本発明の第3実施形態に係るキャパシタの製造工程の一例を示す模式図である。
[第1実施形態]
 以下、添付の図1~図7を参照して本発明の第1実施形態について説明する。
(1.キャパシタの斜視構造)
 図1は、本実施形態に係るキャパシタ10の構造を模式的に示した斜視図である。図1を用いて、キャパシタ10の構造について説明する。なお、図1においては、キャパシタ10の構造における特徴の少なくとも一部を説明するのに必要な構成を抽出して記載しているが、キャパシタ10の構造における特徴が、他の図面において図示される構成によって特定されることを妨げるものではない。
 図1に示すように、キャパシタ10は、本実施形態では直方体の形状をしており、その上面11(第1面の一例である。)において、端子201A,202A(第1端子の一例である。)を備え、その下面12(第2面の一例である。)において、端子201B,202B(第2端子の一例である。)を備えている。また、キャパシタ10の上面11側には第1トレンチキャパシタ30Aが形成され、下面12側には第2トレンチキャパシタ30Bが形成されている。
 キャパシタ10の上面11、下面12はそれぞれ長辺と短辺を有する略矩形の形状をしている。また、上面11と下面12とは、1つの側面13によってつながっている。側面13は上面11及び下面12とその長辺を共有する略矩形の形状をしている。例えば、上面11、下面12及び側面13の長辺は1mm程度である。また、上面11及び下面12の短辺は0.5mm程度であり、側面13の短辺は0.4mm程度である。
 端子201A,202A,201B,202Bは、キャパシタ10を電気的に外部に接続させるための矩形形状の電極である。端子201A、202Aは上面11の長手方向の一方(図1の例では側面13側)の辺近傍に設けられる。より具体的には、端子201A、202Aは、上面11と側面13とに共有される長辺に接するように、それぞれ上面11の一端と他端に設けられる。
 他方で、端子201B,202Bは、下面12において、それぞれ端子201A、202Aに対向する位置に設けられる。なお、端子201B、202Bは、下面12の長手方向の一方の辺(図1の例では側面13側)の辺近傍に設けられていればよく、端子201A、202Aに対向する位置に設けられる構成に限定されない。本実施形態では、端子201B、202Bは、下面12において、下面12と側面13とに共有される長辺に接するように形成されている。
 端子201A,202A,201B,202Bの露出部分の厚さは1μm以上10μm以下程度であり、側面13に沿った長さは200μm程度であり、側面13に垂直な方向に沿った長さは300μm程度である。さらに、端子201A,202A,201B,202Bの露出部分の表面積は、上面11の面積に対して、10%以上50%以下であることが好ましい。
 キャパシタ10は、直方体形状の基板301から形成される。基板301は、上面11側の面(以下、「基板301の表面」とも呼ぶ。)において、1つ以上のトレンチ100Aを有し、下面12側の面(以下、「基板301の裏面」とも呼ぶ。)において、1つ以上のトレンチ100Bを有している。
 トレンチ100Aは、上面11と側面13との接続辺に沿って、基板301の表面に略等間隔で並ぶ溝である。トレンチ100Aは、接続辺に沿った方向に短手方向を有し、接続辺に垂直な方向に長手方向を有している。他方で、トレンチ100Bは、下面12と側面13との接続辺に沿って、基板301の裏面に略等間隔で並ぶ溝である。トレンチ100Bは、接続辺に沿った方向に短手方向を有し、接続辺に垂直な方向に長手方向を有している。トレンチ100Aとトレンチ100Bはそれぞれ互いに対向する位置に設けられることが好ましい。トレンチ100A,100Bの短手方向の長さは、20μm程度であり、長手方向の長さは50μm程度である。
 なお、トレンチ100A、100Bの個数は1つ以上であればよく、図1に示した個数に限定されない。また、トレンチ100A、100Bは、長手方向が接続辺に沿った方向に設けられる構成でもよい。さらにトレンチ100A、100Bの上面から見た形状は矩形に限定されず、円形や多角形、または多角形の角が丸まった形状でもよい。また、トレンチ100A、100Bは等間隔に設けられる構成に限定されず、ランダムに配置されてもよい。さらに基板301が備えるトレンチ100Aとトレンチ100Bとの数は同じ数に限定されない。
(2.キャパシタの断面構造)
 次に図2を用いてキャパシタ10の断面構造について説明する。図2は図1のAA´断面であり、本発明の第1実施形態に係るキャパシタ10の構成例を概略的に示す断面図である。図2に示すように、キャパシタ10は、基板301の表面(上面11側の方)及び裏面(下面12側の方)に、下部電極302と、誘電膜303と、上部電極304と、絶縁膜305とが積層されている。
 基板301は、例えば、厚さ400μm程度のn型Si(シリコン)半導体又はp型Si半導体から形成されている。n型ドーパントとしてP(リン)やAs(ヒ素)、Sb(アンチモン)などを含むことができる。p型ドーパントとしては、B(ボロン)などを含むことができる。
 なお、基板には、ガラスなど、絶縁性の基板を用いてもよい。この場合、上面11に形成された伝直端子と下面12に形成された電極端子間の絶縁性が確保できる。
 基板301の表面には、1つ以上のトレンチ100Aが形成されている。また、基板301の裏面には、1つ以上のトレンチ100Bが形成されている。トレンチ100A、100Bは、基板301の厚さ方向に形成された溝である。トレンチ100A、100Bは、例えば、ドライエッチング等により形成される。トレンチ100A、100Bの深さは、例えば0.1μm以上200μm以下程度であることが好ましい。なお、トレンチ100A、100Bの深さは、トレンチ100A、100Bの開口部において基板301の表面に沿って広がる平面から、トレンチ100A,100B内部における当該平面から最も離れた点までの距離をいう。
 トレンチ100A,100Bの内壁を含む基板301の表面及び裏面には、厚さ0.2μm程度の下部電極302が形成される。本実施形態では、下部電極302は、例えばMo(モリブデン)やAl(アルミニウム)、Au(金)、W(タングステン)、Pt(プラチナ)等を用いて形成される金属層である。なお、基板301の表面(トレンチ100A、100Bの表面を含む)を低抵抗化させることで、基板301が下部電極302を兼ねる構成も可能である。
 基板301の表面及び裏面において、トレンチ100A,100Bの内壁を含む下部電極302の表面には、厚さ0.1μm以上3μm以下程度の誘電膜303が形成されている。誘電膜303は、窒化シリコン(例えばSi34)等から形成されている。
 さらに、基板301の表面及び裏面において、トレンチ100A,100Bの内壁を含む誘電膜303の表面には、厚さ0.1μm以上1μm以下程度の上部電極304が形成されている。本実施形態では、上部電極304は、例えばMo(モリブデン)やAl(アルミニウム)、Au(金)、W(タングステン)、Pt(プラチナ)等を用いて形成される金属層である。また、上部電極304は、低抵抗化された多結晶シリコンを用いて形成されてもよい。
 さらに、基板301の表面及び裏面において、トレンチ100A,100Bの内壁を含む上部電極304の表面には、絶縁膜305が形成されている。絶縁膜305は、例えばポリイミド等を用いて形成される。なお、絶縁膜305は、トレンチ100A、100Bの内部に充填される構成に限定されない。例えば、トレンチ100A、100Bは、下部電極302、誘電膜303及び上部電極304によって充填され、絶縁膜305は、トレンチ100A、100Bの外側において、上部電極304の表面を覆うように形成される構成でもよい。
 絶縁膜305は、ビアV1A,V1B,V2A,V2Bを有している。ビアV1Aは、基板301の表面の端子201Aに対応する位置において、下部電極302の表面が露出するように形成されている。ビアV1Bは、基板301の裏面の端子201Bに対応する位置において、下部電極302の表面が露出するように形成されている。
 また、ビアV2Aは、基板301の表面の端子202Aに対応する位置において、上部電極304の表面が露出するように形成されている。ビアV2Bは、基板301の裏面の端子202Bに対応する位置において、上部電極304の表面が露出するように形成されている。
 ビアV1A,V1B,V2A,V2Bにはそれぞれ例えばMo(モリブデン)やAl(アルミニウム)、Au(金)、W(タングステン)、Pt(プラチナ)、Cu(銅)、Ni(ニッケル)等の金属が充填されており、端子201A、201B、202A、202Bが形成されている。
 このようなビアV1A,V1Bに形成された端子201A,201Bは下部電極302を外部に電気的に接続させるための端子として機能する。他方でビアV2A、V2Bに形成された端子202A,202Bは上部電極304を外部に電気的に接続させるための端子として機能する。
 以上のとおり、キャパシタ10には、基板301の表面(上面11側の方)に、下部電極302と、誘電膜303と、上部電極304と、絶縁膜305とが積層されることで、基板301の表面側に、第1トレンチキャパシタ30Aが形成されている。また、基板301の裏面(下面12側の方)に、下部電極302と、誘電膜303と、上部電極304と、絶縁膜305とが積層され、基板301の裏面側に、第2トレンチキャパシタ30Bが形成されている。このように本実施形態に係るキャパシタ10は、上面11及び下面12の両方にトレンチキャパシタを備えているため、容量の高密度化を図ることができる。
(3.上面図)
 図3は、本実施形態に係るキャパシタ10の上面図である。図3に示すように、端子201A,202Aは、上面11において、側面13側に寄せて形成されている。即ち、端子201A,202Aは、上面11においてY軸を通る中心線に対して非対称に形成されている。また、端子201B,202Bは、下面12において、端子201A、202Aに対向する位置に設けられる。なお、上述のとおり端子201B,202Bは、下面12において、側面13側に寄せて形成されていればよく、端子201A、202Aに対向する位置に形成される構成に限定されない。
(4.実装図)
 図4及び図5を用いて、本実施形態に係るキャパシタ10を実装基板50上に実装した場合における、電気的な接続態様と、実装形態とについて説明する。
 図4は、キャパシタ10の電気的な接続態様を模式的に示した図である。図4に示すように、本実施形態においては、端子201A及び端子201Bが互いに接続され同位相の電界が印加される。また端子202A及び端子202Bが互いに接続され、端子201A、201Bとは逆位相の電界が印加される。
 図2に示したように、本実施形態においては端子201A,201Bは下部電極302を外部に接続するための端子であり、端子202A,202Bは上部電極304を外部に接続するための端子である。従って、本実施形態においては、キャパシタ10の上面11側に形成された第1トレンチキャパシタ30Aと下面12側に形成された第2トレンチキャパシタ30Bとは、下部電極302同士、及び上部電極304同士に同位相の電界が印加されることになる。即ち、本実施形態において、第1トレンチキャパシタ30Aと、第2トレンチキャパシタ30Bとは並列接続される。
 図5は、本実施形態に係るキャパシタ10を実装基板50上に実装した状態を模式的に示す図である。図5に示すように、本実施形態に係るキャパシタ10は、側面13を実装基板50と対向する面(底面)として、実装基板50上に実装される。端子201A、202Aは、上面11において、側面13側に寄せて形成されているため、側面13を実装基板50と対向する面(底面)にしてキャパシタ10を載置した場合に、端子201A,202Aは、底面寄りに位置することになる。このため、端子201A,202Aをはんだ実装等によって、キャパシタ10を実装基板50と電気的に接続させることが容易になる。また、端子201A,202Aは、キャパシタ10を実装基板50に実装した場合に、底面ではなく側面に位置するため、はんだの接続性を容易に確認することができ、信頼性を向上させることができる。
 なお、図5には示さないが、下面12側に形成された端子201B、202Bも側面13側に寄せて形成されているため、はんだ実装によって実装基板50に電気的に接続させることが容易になる。
(5.プロセスフロー)
 図6及び図7A~7Jを用いて本実施形態に係るキャパシタ10の製造方法について説明する。
 図6は、ウエハにおいて、本実施形態に係るキャパシタ10を形成する領域500を示す図である。図6においてラインL(第1ダイシングラインの一例である。)は、複数のキャパシタ10を形成する領域500のうち、長手方向において互いに隣接する領域500間の境界を示している。また、ラインM(第2ダイシングラインの一例である。)は、複数のキャパシタ10を形成する領域500のうち、短手方向において互いに隣接する領域500間の境界を示している。後述するダイシング工程によって、ラインLで切断され、ウエハが複数のキャパシタ10に分割される。
 図7A~7Jは、図6に示したウエハを用いて、本実施形態に係るキャパシタ10を製造する際のプロセスフローを示す図である。なお、図7A(a)~7J(a)は、図6のBB´断面及び図7A(b)~7J(b)BB´断面に対応し、図7A(b)~7J(b)は、図6のCC´断面及び図7A(a)~7J(a)のCC´断面に対応する。また図7において上側の辺はウエハの表面の面を表し、下側の辺はウエハの裏面を表している。
 まず、図7Aに示す工程において、エッチング等によってウエハに1つ以上のトレンチ100Aが形成される。トレンチ100Aは、それぞれ、ウエハの厚さ方向の深さが略同じ程度になるように形成されることが好ましい。次に、トレンチ100Aの内壁を含むウエハの表面に、下部電極302が積層され、エッチング等によって所望の領域に形成される。
 次に、図7B、7Cに示す工程において、誘電膜303及び上部電極304が、この順番で、トレンチ100Aの内壁を含むウエハの表面において積層され、エッチング等によって所望の領域に形成される。
 次に、図7Dに示す工程において、トレンチ100Aの内壁を含むウエハの表面において、絶縁膜305が積層され、エッチバッグ等の処理によって、その表面が平坦化される。さらに、積層された絶縁膜305にエッチング等によってビアV1A、V2Aを形成する。図7D(a)(b)に示すように、ビアV1A、V2Aは、ウエハの表面側において、ラインL近傍、かつラインM近傍に形成される。
 次に、図7Eに示す工程において、ビアV1A、V2Aにモリブデン等の金属が充填され、端子201A、202Aが形成される。図7E(b)には端子202Aしか示していないが、本実施形態では、端子201A、202Aは、ラインLに接するように形成される。
 図7F~図7Jに示す工程において、ウエハの裏面側に図7A~図7Eに示した工程を行うことで、ウエハの裏面側において、第2トレンチキャパシタと端子201B,202Bとを形成する。なお、図7I、7Jに示す工程において、端子201B,202Bは、ラインL近傍、かつラインM近傍(例えば端子201A,202Aに対応する位置)に形成される。
 最後に、ラインL、ラインMを含むダイシングラインに沿ってウエハを切断することで、キャパシタ10を得ることができる。
 図7A~図7Jに示した工程において形成されたキャパシタ10は、側面13を実装基板に対向する面面(底面)としてチップ上に実装される。なお、ラインLによって切断された断面が、キャパシタ10の側面13に対応する。
 このように、本実施形態に係るキャパシタ10の製造方法によると、キャパシタ10を形成するウエハの断面が、キャパシタ10を実装基板50に実装する場合の実装基板と対向する面(底面)となり、ウエハの表面及び裏面が実装時におけるキャパシタ10の側面となる。従って、実装時に側面電極となる端子201A、202A、201B,202Bを容易に形成することができ、実装性を確かなものにすることができる。さらに、ウエハ厚さをそれほど薄くする必要がなくなるため、プロセス途中での基板の反りを低減することが可能になる。また、本実施形態に係るキャパシタ10の実装方法によると、基板301の両面にトレンチキャパシタが形成されるため、容量の高密度化が可能になる。
[第2実施形態]
 第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 図8は、本実施形態に係るキャパシタ10の構成例を示す断面図である。なお、図2に示したキャパシタ10と同等の構成には、同等の符号を付して説明を省略する。
 図8に示すように、本実施形態に係るキャパシタ10においては、基板301のうちトレンチ100A、100Bを含む一部の領域に高濃度の不純物をドーピングして、下部電極302が形成される。下部電極302は、トレンチ100A、100Bのそれぞれに対して個別に形成される。また、本実施形態において、ビアV1Bは上部電極304の表面が露出するように形成され、ビアV2Bは下部電極302が露出するように形成されている。
 即ち、本実施形態においては、端子201A、202Bは下部電極302を外部に電気的に接続させるための端子であり、他方で端子202A、201Bは上部電極304を外部に電気的に接続させるための端子である。
 なお、第2実施形態に係るキャパシタ10は、図9に断面図を示すように、基板301全体を高濃度にドーピングして、第1トレンチキャパシタ30A、第2トレンチキャパシタ30Bで下部電極302を共有する構成でもよい。
 図10は、本実施形態に係るキャパシタ10の電気的な接続態様を模式的に示した図である。図10に示すように、本実施形態においては、端子202Aと端子201Bとに互いに逆位相の電界が印加される。
 図8に示したように、本実施形態においては端子201A、202Bは下部電極302を外部に接続するための端子であり、端子201A、202Bは上部電極304を外部に接続するための端子である。従って、本実施形態においては、キャパシタ10の上面11側に形成された第1トレンチキャパシタ30Aと下面12側に形成された第2トレンチキャパシタ30Bとは、直列接続される。本実施形態に係るキャパシタ10は、両面に形成された第1トレンチキャパシタ30Aと第2トレンチキャパシタ30Bとを直列接続するため、高耐圧化が可能になる。
 その他のキャパシタ10の構成・効果は第1実施形態と同様である。
[第3実施形態]
 図11は、本実施形態に係るキャパシタ10の構成例を示す斜視図である。なお、図1に示したキャパシタ10と同等の構成には、同等の符号を付して説明を省略する。
 図11に示すように、本実施形態に係るキャパシタ10では、上面11から側面13に亘って開口を有するトレンチV3A、V4A(第1端子トレンチの一例である。)に端子201A、202Aが形成されている。すなわち、トレンチV3A、V4Aは、上面11と側面13からなる角の一部を切り欠いた構造を有する。また、下面12から側面13に亘って開口を有するトレンチV3B、V4B(第2端子トレンチの一例である。)に端子201B、202Bが形成されている。本実施形態では、端子201A,201B,202A,202Bは側面13においてその表面が露出するように形成されている。これによって、側面13を実装基板と対向する面としてキャパシタ10をチップ上に実装した場合、端子201A,201B,202A,202Bの側面13において露出している部分が、底面電極として機能する。従って、キャパシタ10を実装基板50に実装する場合、実装基板50上に底面電極と側面電極とを介して実装することができ、より信頼性の高い実装性を実現することができる。
 図12は、本実施形態に係るキャパシタ10の製造方法を示すプロセスフローである。図12A~12Eを参照して、本実施形態に係るキャパシタ10の製造方法のうち、ウエハ表面に行う工程を図示して説明する。なお、ウエハの裏面に対して行う工程については、ウエハ表面に行う工程と同様であるため説明を省略する。本実施形態においても、図6において説明したウエハを用いてキャパシタ10が製造される例について説明する。また、図12A(a)~12E(a)は、図6のBB´断面及び図12A(b)~12E(b)のBB´断面に対応し、図12A(b)~12E(b)は、図6のCC´断面及び図12A(a)~12E(a)のCC´断面に対応する。
 まず、図12Aに示す工程おいて、エッチング等によってウエハに1つ以上のトレンチ100Aが形成される。このとき、図12A(b)に示すように、キャパシタ10に対応する領域それぞれに少なくとも1つ、ラインLをまたいでトレンチ(第1端子トレンチの一例である。)が形成される。図12A(b)においては、トレンチV4Aが形成される様子を示しているが、本実施形態では、各領域においてそれぞれ2つのトレンチV3A、V4AがラインLをまたいで形成される。さらに、図12A(a)に示すように、トレンチV3A、V4Aが形成される位置は、ラインLをまたぎ、かつラインM近傍となる位置である。
 次に、ウエハの表面に下部電極302が積層され、エッチング等によって所望の領域に形成される。さらに、ラインLをまたいで形成されたトレンチV3A、V4Aの内部に積層された下部電極302がウェットエッチング等によって除去される。このとき下部電極302を残存させる領域にはマスキング等を行うことで、下部電極302をウェットエッチングから保護することができる。
 次に、図12B、12Cに示す工程において、誘電膜303及び上部電極304が、この順番で、トレンチ100Aの内壁を含むウエハの表面において積層され、エッチング等によって所望の領域に形成される。本実施形態においては、一例として、上部電極304がトレンチ100A、V3A、V4Aの内部を充填するように形成された構成を例に説明する。トレンチ100A、V3A、V4Aの内部を充填するまで積層された上部電極304は、エッチバッグ等の処理によってその表面が平坦化される。
 次に、図12Dに示す工程において、ウエハの表面において、絶縁膜305が積層される。さらに、トレンチV3A、V4A上に積層された絶縁膜305が、エッチング等によって除去される。
 次に、図12Eに示す工程において、絶縁膜305が除去された部分にモリブデン等の金属が充填され、端子201A、202Aが形成される。なお、端子201A、202Aは、絶縁膜305が除去された部分から露出した上部電極304上に、例えば無電界メッキ等によって形成することも可能である。
 この後、図12A~12Eに示した工程と同様の工程を、ウエハの裏面にも行う。このとき、ウエハの裏面にトレンチを形成する工程では、キャパシタ10に対応する領域それぞれに少なくとも1つ、ラインLをまたいでトレンチが形成される。最後に、ラインL、ラインMを含むダイシングラインに沿ってウエハを切断することで、本実施形態に係るキャパシタ10を得ることができる。
 このように、本実施形態に係るキャパシタ10の製造方法においては、端子201A、202Aのトレンチ(例えば図12A~12EにおけるトレンチV3A、V4A)を、キャパシタ用のトレンチ100Aと同時に形成することができる。また、詳細な説明は省略したが、端子201B、202Bのトレンチについても、キャパシタ用のトレンチ100Bと同時に形成することができる。すなわち、本実施形態では、工程の追加なくキャパシタ10の側面13において露出する端子(底面電極)を形成することができる。
 その他のキャパシタ10の構成・機能は第1実施形態と同様である。
 以上、本発明の例示的な実施形態について説明した。本発明の一実施形態に係るキャパシタ10は、互いに対向し、それぞれが長手方向及び短手方向を有する上面11及び下面12と、当該上面11及び下面12をつなぐ側面13を備えるキャパシタであって、基板301と、基板301の面のうち、上面11の方に設けられる第1トレンチキャパシタ30Aと、基板301の面のうち、下面12の方に設けられる第2トレンチキャパシタ30Bと、上面11において、長手方向の一方の辺近傍に設けられ、第1トレンチキャパシタ30Aを外部と電気的に接続させる端子201A又は端子201Bと、下面12において、長手方向の一方の辺近傍に設けられ、第2トレンチキャパシタ30Bを外部と電気的に接続させる端子202A,又は端子202Bと、備える。本実施形態に係る端子201A、202Aは、上面11において、側面13側に寄せて形成されているため、側面13を接触面(底面)にしてキャパシタ10を載置した場合に、端子201A,202Aは、底面に寄りに位置することになる。このため、端子201A,202Aをはんだ実装等によって、キャパシタ10を実装基板50と電気的に接続させることが容易になる。また、端子201A,202Aは、キャパシタ10を実装基板50に実装した場合に、底面ではなく側面に位置するため、はんだの接続性を容易に確認することができ、信頼性を向上させることができる。なお、下面12側に形成された端子201B、202Bも側面13側に寄せて形成されているため、はんだ実装によって実装基板50に電気的に接続させることが容易になる。
 また、キャパシタ10は、上面11から側面13に亘って開口を有するトレンチV3A、V4Aと、下面12から側面13に亘って開口を有するトレンチV3B、V4Bとを備え、端子201A、202Aは、トレンチV3A、V4Aに形成され、端子201B、202Bは、トレンチV3B、V4Bに形成された、ことも好ましい。これによって、キャパシタ10を実装基板50に実装する場合、実装基板50上に底面電極と側面電極とを介して実装することができ、より信頼性の高い実装性を実現することができる。
 また、本発明に係る電子装置は、上述のキャパシタ10が実装され、側面13が実装基板50に対向するように設けられる。これによって、本発明に係る電子装置は、端子201A,202A、201B、202Bをはんだ実装等によって、キャパシタ10を実装基板50と電気的に接続させることが容易になる。また、端子201A、202A、201B、202Bは、キャパシタ10を実装基板50に実装した場合に、底面ではなく側面に位置するため、はんだの接続性を容易に確認することができ、信頼性を向上させることができる。
 また、本発明に係るキャパシタ製造方法は、それぞれが長手方向及び短手方向を有する複数の領域を含むウエハを用意するステップと、ウエハの表面において、複数の領域それぞれに、複数のトレンチ100Aを形成するステップと、表面に形成された、複数のトレンチ100Aに、第1トレンチキャパシタ30Aを形成するステップと、表面における、複数の領域それぞれにおいて、複数の領域のうち長手方向において互いに隣接する領域間の境界であるラインLの近傍に、第1トレンチキャパシタ30Aを外部と電気的に接続させる端子201A、202Aを形成するステップと、ウエハの裏面において、複数の領域それぞれに複数のトレンチ100Bを形成するステップと、裏面に形成された、複数のトレンチ100Bに、第2トレンチキャパシタ30Bを形成するステップと、裏面における、複数の領域それぞれにおいて、ラインLの近傍に、第2トレンチキャパシタ30Bを外部と電気的に接続させる端子201B、202Bを形成するステップと、ラインLに沿って、ウエハを切断するステップと、を備える。本実施形態に係るキャパシタ製造方法によって製造されたキャパシタ10においては、端子201A、202Aは、上面11において、側面13側に寄せて形成されている。従って、側面13を接触面(底面)にしてキャパシタ10を載置した場合に、端子201A,202Aは、底面に寄りに位置することになる。このため、端子201A,202Aをはんだ実装等によって、キャパシタ10を実装基板50と電気的に接続させることが容易になる。また、端子201A,202Aは、キャパシタ10を実装基板50に実装した場合に、底面ではなく側面に位置するため、はんだの接続性を容易に確認することができ、信頼性を向上させることができる。なお、下面12側に形成された端子201B、202Bも側面13側に寄せて形成されているため、はんだ実装によって実装基板50に電気的に接続させることが容易になる。
 ウエハの表面において、複数の領域のそれぞれに少なくとも1つ、ラインLをまたいでトレンチV3A、V4Aを形成するステップと、ウエハの裏面において、複数の領域のそれぞれに少なくとも1つ、ラインLをまたいでトレンチV3B、V4Bを形成するステップとをさらに備え、端子201A、202Aを形成するステップは、トレンチV3A,V4Aに端子201A、202Aを形成するステップを含み、端子201B、202Bを形成するステップは、トレンチV3B、V4Bに端子201B、202Bを形成するステップを含み、ウエハを切断するステップは、端子201A、202A及び端子201B、202BをそれぞれラインLで分割するステップを含む、ことも好ましい。この好ましい態様によると、端子201A、202AのトレンチV3A、V4Aを、キャパシタ用のトレンチ100Aと同時に形成することができる。また、端子201B、202Bのトレンチについても、キャパシタ用のトレンチ100Bと同時に形成することができる。これにより、工程の追加なくキャパシタ10の側面13において露出する端子(底面電極)を形成することができる。
 端子201A、202Aを形成するステップは、複数の領域のうち短手方向において互いに隣接する領域間の境界であるラインMの近傍、かつラインLの近傍に、端子201A、202Aを形成するステップを含み、端子201B、202Bを形成するステップは、ラインMの近傍、かつラインLの近傍に、端子201B、202Bを形成するステップを含み、ウエハを切断するステップは、ラインMに沿って、ウエハをさらに切断するステップを含む、ことも好ましい。また、トレンチV3A、V4Aを形成するステップは、複数の領域のうち短手方向において互いに隣接する領域間の境界であるラインMの近傍において、ラインLをまたいでトレンチV3A、V4Aを形成するステップを含み、トレンチV3B、V4Bを形成するステップは、複数の領域のうち短手方向において互いに隣接する領域間の境界であるラインMの近傍において、ラインLをまたいでトレンチV3B、V4Bを形成するステップを含み、ウエハを切断するステップは、ラインMに沿って、ウエハをさらに切断するステップを含む、ことも好ましい。
 さらに本発明に係る電子装置製造方法は、本発明に係るキャパシタ製造方法によって製造されたキャパシタ10を、ウエハを切断するステップによって形成された切断面を実装基板に対向させて、実装するステップを、備える。これによって、キャパシタ10を実装基板50に実装する場合、実装基板50上に底面電極と側面電極とを介して実装することができ、より信頼性の高い実装性を実現することができる。
 なお、以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもなく、これらも本発明の特徴を含む限り本発明の範囲に包含される。例えば、既述の実施形態では基板の表面及び裏面の双方にトレンチキャパシタを形成する構成について説明した。しかし、これに限定されず、トレンチキャパシタが形成されるのは、基板の表面及び裏面の何れか一方の面でもよい。なお、トレンチキャパシタが片方の面にしか形成されない場合でも、両方の面(表面及び裏面)に端子が形成されてもよい。
 10        キャパシタ
 11        上面
 12        下面
 13        側面
 30A       第1トレンチキャパシタ
 30B       第2トレンチキャパシタ
 301       基板
 302       下部電極
 303       誘電膜
 304       上部電極
 305       絶縁膜 

Claims (12)

  1.  それぞれが長手方向及び短手方向を有する複数の領域を含むウエハを用意するステップと、
     前記ウエハの表面において、前記複数の領域それぞれに、複数のトレンチを形成するステップと、
     前記表面に形成された、前記複数のトレンチに、第1トレンチキャパシタを形成するステップと、
     前記表面における、前記複数の領域それぞれにおいて、前記複数の領域のうち前記長手方向において互いに隣接する領域間の境界である第1ダイシングラインの近傍に、前記第1トレンチキャパシタを外部と電気的に接続させる第1端子を形成するステップと、
     前記第1ダイシングラインに沿って、前記ウエハを切断するステップと、
    を備えるキャパシタ製造方法。
  2.  前記ウエハの裏面において、前記複数の領域それぞれに複数のトレンチを形成するステップと、
     前記裏面における、前記複数のトレンチに、第2トレンチキャパシタを形成するステップと、
    をさらに備える請求項1に記載のキャパシタ製造方法。
  3.  前記ウエハの裏面における、前記複数の領域それぞれにおいて、前記第1ダイシングラインの近傍に、前記第2トレンチキャパシタを外部と電気的に接続させる第2端子を形成するステップ、
    をさらに備える請求項2記載のキャパシタ製造方法。
  4.  前記ウエハの表面において、前記複数の領域のそれぞれに少なくとも1つ、前記第1ダイシングラインをまたいで第1端子トレンチを形成するステップと、
     前記ウエハの裏面において、前記複数の領域のそれぞれに少なくとも1つ、前記第1ダイシングラインをまたいで第2端子トレンチを形成するステップと
    をさらに備え、
     前記第1端子を形成するステップは、
     前記第1端子トレンチに第1端子を形成するステップを含み、
     前記第2端子を形成するステップは、
     前記第2端子トレンチに第2端子を形成するステップを含み、
     前記ウエハを切断するステップは、
     前記第1端子及び前記第2端子をそれぞれ前記第1ダイシングラインで分割するステップを含む、
    請求項3に記載のキャパシタ製造方法。
  5.  前記第1端子を形成するステップは、
     前記複数の領域のうち前記短手方向において互いに隣接する領域間の境界である第2ダイシングラインの近傍、かつ前記第1ダイシングラインの近傍に、前記第1端子を形成するステップを含み、
     前記第2端子を形成するステップは、
     前記第2ダイシングラインの近傍、かつ前記第1ダイシングラインの近傍に、前記第2端子を形成するステップを含み、
     前記ウエハを切断するステップは、
     前記第2ダイシングラインに沿って、前記ウエハをさらに切断するステップを含む、
    請求項3に記載のキャパシタ製造方法。
  6.  前記第1端子トレンチを形成するステップは、
     前記複数の領域のうち前記短手方向において互いに隣接する領域間の境界である第2ダイシングラインの近傍において、第1ダイシングラインをまたいで第1端子トレンチを形成するステップを含み、
     前記第2端子トレンチを形成するステップは、
     前記複数の領域のうち前記短手方向において互いに隣接する領域間の境界である第2ダイシングラインの近傍において、第1ダイシングラインをまたいで第2端子トレンチを形成するステップを含み、
     前記ウエハを切断するステップは、
     前記第2ダイシングラインに沿って、前記ウエハをさらに切断するステップを含む、
    請求項4に記載のキャパシタ製造方法。
  7.  請求項1乃至6のいずれか一項に記載のキャパシタ製造方法によって製造されたキャパシタを、前記ウエハを切断するステップによって形成された切断面を実装基板に対向させて、実装するステップを、
    備える、電子装置製造方法。
  8.  互いに対向し、それぞれが長手方向及び短手方向を有する第1面及び第2面と、当該第1面及び第2面をつなぐ側面を備えるキャパシタであって、
     基板と、
     前記基板の面のうち、前記第1面の方に設けられる第1トレンチキャパシタと、
     前記第1面において、前記長手方向の一方の辺近傍に設けられ、前記第1トレンチキャパシタを外部と電気的に接続させる第1端子と、
    を備えるキャパシタ。
  9.  前記基板の面のうち、前記第2面の方に設けられる第2トレンチキャパシタと、
    をさらに備える請求項8に記載のキャパシタ。
  10.  前記第2面において、前記長手方向の一方の辺近傍に設けられ、前記第2トレンチキャパシタを外部と電気的に接続させる第2端子、
    をさらに備える請求項9に記載のキャパシタ。
  11.  前記キャパシタは、
     前記第1面から前記側面に亘って開口を有する第1端子トレンチと、前記第2面から前記側面に亘って開口を有する第2端子トレンチとを備え、
     前記第1端子は、前記第1端子トレンチに形成され、
     前記第2端子は、前記第2端子トレンチに形成された、
    請求項10に記載のキャパシタ。
  12.  請求項9乃至11の何れか一項に記載のキャパシタが実装された電子装置であって、前記側面が実装基板に対向するように設けられた電子装置。 
PCT/JP2017/021538 2016-06-17 2017-06-09 キャパシタ及びその製造方法 WO2017217342A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018523876A JP6688489B2 (ja) 2016-06-17 2017-06-09 電子装置及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-121259 2016-06-17
JP2016121259 2016-06-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/670,973 Continuation US11395578B2 (en) 2017-06-09 2019-10-31 Optical system for rigid endoscope and rigid endoscope

Publications (1)

Publication Number Publication Date
WO2017217342A1 true WO2017217342A1 (ja) 2017-12-21

Family

ID=60664578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021538 WO2017217342A1 (ja) 2016-06-17 2017-06-09 キャパシタ及びその製造方法

Country Status (2)

Country Link
JP (1) JP6688489B2 (ja)
WO (1) WO2017217342A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004819A (ja) * 2018-06-27 2020-01-09 日産自動車株式会社 半導体装置及びその製造方法
KR20200100917A (ko) * 2019-02-19 2020-08-27 성균관대학교산학협력단 커패시터 및 커패시터 제조방법
JP2020129577A (ja) * 2019-02-07 2020-08-27 株式会社東芝 コンデンサ及びコンデンサモジュール
KR20210034493A (ko) * 2019-09-20 2021-03-30 가부시끼가이샤 도시바 콘덴서
KR20210034492A (ko) * 2019-09-20 2021-03-30 가부시끼가이샤 도시바 콘덴서 및 에칭 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185443A (ja) * 1999-12-22 2001-07-06 Hitachi Ltd 薄膜コンデンサ
JP2009246180A (ja) * 2008-03-31 2009-10-22 Tdk Corp 薄膜コンデンサ
JP2010045297A (ja) * 2008-08-18 2010-02-25 Tdk Corp トレンチ型コンデンサ及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185443A (ja) * 1999-12-22 2001-07-06 Hitachi Ltd 薄膜コンデンサ
JP2009246180A (ja) * 2008-03-31 2009-10-22 Tdk Corp 薄膜コンデンサ
JP2010045297A (ja) * 2008-08-18 2010-02-25 Tdk Corp トレンチ型コンデンサ及びその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004819A (ja) * 2018-06-27 2020-01-09 日産自動車株式会社 半導体装置及びその製造方法
JP7112898B2 (ja) 2018-06-27 2022-08-04 日産自動車株式会社 半導体装置及びその製造方法
US11551864B2 (en) 2019-02-07 2023-01-10 Kabushiki Kaisha Toshiba Capacitor and capacitor module
JP2020129577A (ja) * 2019-02-07 2020-08-27 株式会社東芝 コンデンサ及びコンデンサモジュール
US10964474B2 (en) 2019-02-07 2021-03-30 Kabushiki Kaisha Toshiba Capacitor and capacitor module
JP7179634B2 (ja) 2019-02-07 2022-11-29 株式会社東芝 コンデンサ及びコンデンサモジュール
KR102250960B1 (ko) 2019-02-19 2021-05-11 성균관대학교산학협력단 커패시터 및 커패시터 제조방법
KR20200100917A (ko) * 2019-02-19 2020-08-27 성균관대학교산학협력단 커패시터 및 커패시터 제조방법
TWI750789B (zh) * 2019-09-20 2021-12-21 日商東芝股份有限公司 電容器
KR102385623B1 (ko) * 2019-09-20 2022-04-12 가부시끼가이샤 도시바 콘덴서
KR102384494B1 (ko) 2019-09-20 2022-04-12 가부시끼가이샤 도시바 콘덴서 및 에칭 방법
US11322308B2 (en) 2019-09-20 2022-05-03 Kabushiki Kaisha Toshiba Capacitor
KR20210034492A (ko) * 2019-09-20 2021-03-30 가부시끼가이샤 도시바 콘덴서 및 에칭 방법
KR20210034493A (ko) * 2019-09-20 2021-03-30 가부시끼가이샤 도시바 콘덴서

Also Published As

Publication number Publication date
JP6688489B2 (ja) 2020-04-28
JPWO2017217342A1 (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
WO2017217342A1 (ja) キャパシタ及びその製造方法
US20240038731A1 (en) Memory device
US7768133B2 (en) Semiconductor device and semiconductor module employing thereof
US9099347B2 (en) Three-dimensional semiconductor memory devices and method of fabricating the same
JP5922915B2 (ja) 半導体装置およびその製造方法
EP3550602A1 (en) Self-aligned gate endcap (sage) architecture having endcap plugs
JP2006310726A (ja) 半導体装置およびその製造方法
US20040140527A1 (en) Semiconductor device having poly-poly capacitor
TWI771902B (zh) 三維記憶體元件的接觸焊墊及其製造方法
US11374005B2 (en) Semiconductor structure and method of forming the same
JP2005158959A (ja) 半導体装置
KR20230044665A (ko) 반도체 장치
US10497804B2 (en) Vertical semiconductor device
JP2005026582A (ja) 半導体装置及びその半導体装置の製造方法
JP6528550B2 (ja) 半導体装置およびその製造方法
TW202332055A (zh) 半導體裝置
JP2018067663A (ja) ダイオード素子
CN112786583A (zh) 包括集成标准单元结构的集成电路
CN112951823A (zh) 半导体器件
CN114038903B (zh) 半导体结构及其制作方法
JP6314295B1 (ja) 半導体デバイス及びその製造方法
KR20230159912A (ko) 수직형 반도체 소자
CN116096077A (zh) 半导体存储器件及其制造方法
CN117858499A (zh) 半导体器件
TW202345342A (zh) 半導體裝置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523876

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813239

Country of ref document: EP

Kind code of ref document: A1