WO2017208570A1 - 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池 - Google Patents

双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池 Download PDF

Info

Publication number
WO2017208570A1
WO2017208570A1 PCT/JP2017/010813 JP2017010813W WO2017208570A1 WO 2017208570 A1 WO2017208570 A1 WO 2017208570A1 JP 2017010813 W JP2017010813 W JP 2017010813W WO 2017208570 A1 WO2017208570 A1 WO 2017208570A1
Authority
WO
WIPO (PCT)
Prior art keywords
bipolar plate
groove portion
groove
battery
negative electrode
Prior art date
Application number
PCT/JP2017/010813
Other languages
English (en)
French (fr)
Inventor
勇人 藤田
桑原 雅裕
毅 寒野
晴久 豊田
山口 英之
高輔 白木
清明 林
伊藤 岳文
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP17806132.1A priority Critical patent/EP3346537B1/en
Priority to AU2017275919A priority patent/AU2017275919B2/en
Priority to US15/765,081 priority patent/US20180277858A1/en
Priority to CN201780003447.6A priority patent/CN108352554B/zh
Priority to KR1020187007247A priority patent/KR102272748B1/ko
Publication of WO2017208570A1 publication Critical patent/WO2017208570A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to bipolar plates, cell frames and cell stacks, and redox flow batteries.
  • This application claims priority based on Japanese Patent Application No. 2016-107756 filed on May 30, 2016, and incorporates all the content described in the above Japanese application.
  • a redox flow battery (hereinafter sometimes referred to as an RF battery) in which an electrolytic solution is supplied to an electrode to perform a battery reaction.
  • Applications of the RF battery include load leveling applications, applications such as sag compensation and emergency power supplies, and natural energy output smoothing applications such as solar power generation and wind power generation.
  • An RF battery typically includes a battery cell including a positive electrode to which a positive electrode electrolyte is supplied, a negative electrode to which a negative electrode electrolyte is supplied, and a diaphragm interposed between the positive electrode and the negative electrode.
  • the main component In large-capacity applications, a so-called cell stack configured by stacking a plurality of battery cells and tightening them to some extent is used.
  • a bipolar plate is usually interposed between adjacent battery cells. That is, the cell stack is configured by repeatedly laminating a certain bipolar plate, a positive electrode, a diaphragm, a negative electrode, another bipolar plate,.
  • An RF battery is typically used by constructing an RF battery system including a circulation mechanism that circulates and supplies an electrolytic solution to the RF battery.
  • the circulation mechanism includes a tank that stores the positive electrode electrolyte and the negative electrode electrolyte, pipes that connect the tanks and the RF battery, and a pump that is provided in the pipe.
  • a bipolar plate having a plurality of grooves through which the electrolytic solution flows is used in order to adjust the flow of the electrolytic solution flowing in each cell by the pump. By having the groove on the electrode-side surface of the bipolar plate, the flow of the electrolyte flowing through the electrode is adjusted to reduce the pressure loss of the electrolyte.
  • the electrolyte flows across the adjacent groove via a portion located between the grooves (hereinafter referred to as a flange), and faces this flange.
  • the electrolytic solution causes a battery reaction, and the electrolytic solution discharged without being reacted is reduced.
  • the bipolar plate according to the present disclosure is: A bipolar plate for a battery in which a positive electrode is arranged on one side and a negative electrode is arranged on the other side, At least one surface of the bipolar plate includes a plurality of groove portions through which the electrolyte flows, and a flange portion positioned between the adjacent groove portions, The groove portion includes an introduction groove portion and a discharge groove portion that do not communicate with each other, The flange includes a undulating portion that suppresses sliding of the positive electrode or the negative electrode in the parallel direction of the adjacent groove portions, The undulating portion includes a rough surface provided on at least a part of the surface of the flange portion, The rough surface has a surface roughness of 0.1 ⁇ m or more and 10 ⁇ m or less in terms of arithmetic average roughness Ra.
  • the bipolar plate according to the present disclosure is: A bipolar plate for a battery in which a positive electrode is arranged on one side and a negative electrode is arranged on the other side, At least one surface of the bipolar plate includes a plurality of groove portions through which the electrolyte flows, and a flange portion positioned between the adjacent groove portions, The groove portion includes an introduction groove portion and a discharge groove portion that do not communicate with each other, The flange includes a undulating portion that suppresses sliding of the positive electrode or the negative electrode in the parallel direction of the adjacent groove portions, The undulating portion includes a step provided to have a height difference in the parallel direction of the adjacent groove portions, The step has a maximum height difference of 0.1 mm to 0.5 mm.
  • the bipolar plate according to the present disclosure is: A bipolar plate for a battery in which a positive electrode is arranged on one side and a negative electrode is arranged on the other side, At least one surface of the bipolar plate includes a plurality of groove portions through which the electrolyte flows, and a flange portion positioned between the adjacent groove portions,
  • the groove portion includes an introduction groove portion and a discharge groove portion that do not communicate with each other,
  • the flange includes a undulating portion that suppresses sliding of the positive electrode or the negative electrode in the parallel direction of the adjacent groove portions,
  • the undulating portion includes an inclined surface that is inclined from one groove portion side of the adjacent groove portion toward the other groove portion side,
  • the inclined surface has a height difference of 0.1 mm to 0.5 mm.
  • a cell frame according to the present disclosure includes the bipolar plate according to any one of the bipolar plates according to the present disclosure, and a frame body provided on an outer periphery of the bipolar plate.
  • the cell stack according to the present disclosure is formed by stacking a plurality of the cell frames according to the present disclosure, a positive electrode, a diaphragm, and a negative electrode.
  • the redox flow battery according to the present disclosure includes the cell stack according to the present disclosure.
  • FIG. 3 is a schematic plan view illustrating opposed comb-shaped flow paths provided in the bipolar plate according to Embodiment 1.
  • FIG. 3 is a schematic enlarged cross-sectional view showing the shape of a groove and a collar provided on the bipolar plate according to the first embodiment.
  • FIG. 6 is a schematic enlarged cross-sectional view showing the shape of a groove and a collar provided on a bipolar plate according to a second embodiment.
  • FIG. 6 is a schematic enlarged cross-sectional view showing the shape of a groove and a collar provided on a bipolar plate according to a third embodiment.
  • It is a schematic explanatory drawing of a redox flow battery. It is a schematic block diagram of the cell stack with which a redox flow battery is equipped. 6 is a graph showing a simulation result of a relationship between a step in the bipolar plate of Test Example 1 and cell resistance.
  • the bipolar plate of Patent Documents 1 and 2 is formed by a flange portion where most of the outermost surface is located between the groove portions. Since the surface of this collar part is comprised by the flat surface, there is no friction between an electrode and a bipolar plate, and there exists a possibility that position shift may generate
  • an object of the present disclosure is to provide a bipolar plate that can easily prevent displacement of electrodes during assembly of a battery cell. Another object is to provide a bipolar plate that is excellent in diffusibility of the electrolyte. Another object is to provide a cell frame including the bipolar plate, a cell stack including the cell frame, and a redox flow battery including the cell stack.
  • the bipolar plate can easily prevent displacement of the electrode when the battery cell is assembled.
  • the bipolar plate is also excellent in the diffusibility of the electrolytic solution.
  • the cell frame, the cell stack, and the redox flow battery can prevent the electrode from being displaced during assembly of the battery cell, and are excellent in the diffusibility of the electrolyte.
  • the bipolar plate according to the embodiment of the present invention is A bipolar plate for a battery in which a positive electrode is arranged on one side and a negative electrode is arranged on the other side, At least one surface of the bipolar plate includes a plurality of groove portions through which the electrolyte flows, and a flange portion positioned between the adjacent groove portions, The groove portion includes an introduction groove portion and a discharge groove portion that do not communicate with each other, The flange includes a undulating portion that suppresses sliding of the positive electrode or the negative electrode in the parallel direction of the adjacent groove portions, The undulating portion includes a rough surface provided on at least a part of the surface of the flange portion, The rough surface has a surface roughness of 0.1 ⁇ m or more and 10 ⁇ m or less in terms of arithmetic average roughness Ra.
  • the bipolar plate is provided with a undulating portion in a collar portion that comes into contact with the positive electrode or the negative electrode, whereby friction is generated between the undulating portion and the electrode, and the sliding of the electrode can be suppressed by the friction. Therefore, the bipolar plate can hold the electrode on the bipolar plate simply by arranging the electrode on the surface of the bipolar plate, and even when the battery cell is assembled, there is a positional shift between the electrode and the bipolar plate. Occurrence can be easily prevented.
  • the bipolar plate is provided with a undulation portion in a collar portion that comes into contact with the positive electrode or the negative electrode, so that when the electrolyte flows across the adjacent groove portions, the flow rate of the electrolyte solution is changed by the undulation portion. It tends to cause turbulence.
  • turbulent flow occurs in the buttock, the electrolyte is forcibly diffused into the electrode facing the buttock, and the active material ions contained in the electrolyte can be uniformly supplied into the electrode. Can be improved.
  • the undulating portion has a rough surface, it is easy to cause friction between the electrode and the bipolar plate, and it is easy to prevent displacement of the electrode with respect to the bipolar plate.
  • the surface roughness of the rough surface is 0.1 ⁇ m or more in terms of arithmetic average roughness Ra, it is possible to prevent displacement of the electrode with respect to the bipolar plate.
  • the surface roughness of the rough surface is 10 ⁇ m or less in terms of arithmetic average roughness Ra, it is easy to arrange the electrodes with no gap with respect to the bipolar plate. This is because if a gap is generated between the bipolar plate and the electrode, the electrolytic solution flowing across the adjacent groove portions via the flange portion is not easily diffused into the electrode, and the electrolytic solution may be unreacted. .
  • the bipolar plate according to the embodiment of the present invention is A bipolar plate for a battery in which a positive electrode is arranged on one side and a negative electrode is arranged on the other side, At least one surface of the bipolar plate includes a plurality of groove portions through which the electrolyte flows, and a flange portion positioned between the adjacent groove portions, The groove portion includes an introduction groove portion and a discharge groove portion that do not communicate with each other, The flange includes a undulating portion that suppresses sliding of the positive electrode or the negative electrode in the parallel direction of the adjacent groove portions, The undulating portion includes a step provided to have a height difference in the parallel direction of the adjacent groove portions, The step has a maximum height difference of 0.1 mm to 0.5 mm.
  • the undulating portion is provided with a step, the electrode can be hooked at the ridge line portion extending from the high portion to the low portion, and it is easy to prevent displacement of the electrode with respect to the bipolar plate. Further, when the undulating portion has a step, when the electrolyte flows so as to cross between adjacent grooves, the flow rate of the electrolyte can be easily changed with a stepped height difference, and the diffusibility of the electrolyte can be easily improved. .
  • the maximum height difference of the step is 0.1 mm or more, it is possible to prevent displacement of the electrode with respect to the bipolar plate and to improve the diffusibility of the electrolytic solution. On the other hand, since the maximum height difference of the step is 0.5 mm or less, it is easy to arrange the electrodes with no gap with respect to the bipolar plate.
  • the bipolar plate according to the embodiment of the present invention is A bipolar plate for a battery in which a positive electrode is arranged on one side and a negative electrode is arranged on the other side, At least one surface of the bipolar plate includes a plurality of groove portions through which the electrolyte flows, and a flange portion positioned between the adjacent groove portions,
  • the groove portion includes an introduction groove portion and a discharge groove portion that do not communicate with each other,
  • the flange includes a undulating portion that suppresses sliding of the positive electrode or the negative electrode in the parallel direction of the adjacent groove portions,
  • the undulating portion includes an inclined surface that is inclined from one groove portion side of the adjacent groove portion toward the other groove portion side, The inclined surface has a height difference of 0.1 mm to 0.5 mm.
  • the undulating portion has an inclined surface
  • the electrode can be hooked at the edge on the higher side of the inclined surface, and it is easy to prevent displacement of the electrode with respect to the bipolar plate.
  • the undulating part with an inclined surface
  • the flow rate of the electrolytic solution can be easily changed greatly due to the height difference of the inclined surface, and the diffusibility of the electrolyte is improved. easy.
  • the height difference between the inclined surfaces is 0.1 mm or more, it is possible to prevent displacement of the electrode with respect to the bipolar plate and to improve the diffusibility of the electrolyte.
  • the height difference of the inclined surface is 0.5 mm or less, it is easy to arrange the electrodes with no gap with respect to the bipolar plate.
  • the introduction groove part and the discharge groove part may satisfy any of the following (A) to (C).
  • the introduction groove portion and the discharge groove portion each have a comb-shaped region, and have a mesh-type opposed comb-tooth shape in which these comb teeth mesh with each other and are arranged to face each other.
  • the introduction groove portion and the discharge groove portion each have a comb-shaped region, and have a non-engagement type opposed comb-tooth shape in which these comb teeth do not mesh with each other.
  • At least one of the introduction groove portion and the discharge groove portion is constituted by a plurality of groove portions.
  • a comb-tooth shape is a shape provided with the elongate trunk groove extended in one direction, and the several branch groove branched in parallel in the same direction from this trunk groove.
  • the introduction groove portion and the discharge groove portion that are not in communication with each other have comb-shaped regions means that the introduction groove portion and the discharge groove portion project from the independent trunk grooves (comb teeth) from the independent trunk grooves.
  • the comb teeth are meshed with each other and arranged opposite to each other” means that the comb teeth of the introduction groove portion and the comb teeth of the discharge groove portion are alternately arranged in a plan view.
  • the comb teeth of the introduction groove portion and the discharge groove portion are meshed with each other so as to face each other, so that the comb teeth of the introduction groove portion and the comb teeth of the discharge groove portion are in a parallel state, and in the electrode so as to cross between the parallel comb teeth.
  • a battery reaction takes place.
  • the amount of the electrolyte flowing through the battery reaction region across the comb teeth is likely to increase as compared with the case where the introduction groove portion and the discharge groove portion are not engaged with each other. Therefore, according to the above configuration, activation of the battery reaction in the battery reaction zone of the electrode can be expected, and the flow state of the electrolytic solution in the battery reaction zone of the electrode tends to be uniform over the entire electrode. It is easy to perform the battery reaction uniformly.
  • the region disposed opposite to the buttocks located between adjacent groove portions functions as a battery reaction region, so the introduction groove portion and the discharge groove portion
  • the battery reaction can be expected to be activated as compared with the case of communicating with.
  • “intermittent groove portions” means that the introduction groove portion and the discharge groove portion are constituted by a plurality of groove groups provided at intervals in the longitudinal direction. Even in this case, activation of the battery reaction can be expected as compared to the case where the introduction groove portion and the discharge groove portion communicate with each other because the region opposed to the flange portion located between the adjacent groove portions functions as a battery reaction region. .
  • a cell frame according to an embodiment of the present invention includes the bipolar plate according to any one of (1) to (4) above and a frame body provided on an outer periphery of the bipolar plate.
  • the cell frame includes the bipolar plate according to the embodiment of the present invention, it is possible to easily prevent the displacement between the electrode and the bipolar plate even when the battery cell is assembled.
  • the electrolytic solution can be forcibly diffused into the electrode opposed to the buttocks and the battery reactivity can be improved.
  • a cell stack according to the embodiment of the present invention is formed by laminating a plurality of cell frames, positive electrodes, diaphragms, and negative electrodes described in (5) above.
  • the cell stack includes the cell frame according to the embodiment of the present invention, it is possible to easily prevent the displacement between the electrode and the bipolar plate even when the battery cell (cell stack) is assembled. be able to. In addition, it is considered that the electrolytic solution can be forcibly diffused into the electrode opposed to the buttocks and the battery reactivity can be improved.
  • a redox flow battery according to an embodiment of the present invention includes the cell stack described in (6) above.
  • the redox flow battery includes the cell stack according to the embodiment of the present invention, it is possible to easily prevent misalignment between the electrode and the bipolar plate even when the battery cell (cell stack) is assembled. can do. In addition, it is considered that the electrolytic solution can be forcibly diffused into the electrode opposed to the buttocks and the battery reactivity can be improved.
  • the RF battery 100 is constructed and used as an RF battery system provided with a circulation mechanism that circulates and supplies an electrolytic solution to the RF battery 100 as shown in FIG.
  • the RF battery 100 is typically connected to a power generation unit and a load such as a power system or a customer via an AC / DC converter, a substation facility, or the like.
  • the RF battery 100 is charged using the power generation unit as a power source, and is discharged using the load as a power consumption target.
  • Examples of the power generation unit include a solar power generator, a wind power generator, and other general power plants.
  • the RF battery 100 includes a battery cell 100 ⁇ / b> C separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101.
  • the positive electrode cell 102 has a built-in positive electrode 104 to which a positive electrode electrolyte is supplied, and the negative electrode cell 103 has a built-in negative electrode 105 to which a negative electrode electrolyte is supplied.
  • the RF battery 100 typically includes a plurality of battery cells 100C, and includes a bipolar plate 121 (FIG. 6) between adjacent battery cells 100C and 100C.
  • the positive electrode 104 and the negative electrode 105 are reaction fields in which active material ions contained in the supplied electrolyte solution perform a battery reaction.
  • the diaphragm 101 is a separation member that separates the positive electrode 104 and the negative electrode 105 and transmits predetermined ions.
  • the bipolar plate 121 is a conductive member that is interposed between the positive electrode 104 and the negative electrode 105 and that allows current to flow but does not allow electrolyte to pass through. Typically, it is used in the state of a cell frame 120 including a frame body 122 formed on the outer periphery of the bipolar plate 121 as shown in FIG.
  • the frame body 122 has openings on the front and back surfaces thereof, and liquid supply holes 123 and 124 for supplying an electrolytic solution to the electrodes 104 and 105 disposed on the bipolar plate 121 and drainage holes 125 and 126 for discharging the electrolytic solution.
  • a seal member 127 such as an O-ring is disposed on the frame body 122 so as to surround the entire circumference.
  • a plurality of battery cells 100C are stacked and used in a form called a cell stack 200.
  • the cell stack 200 is configured by repeatedly stacking a bipolar plate 121 of a certain cell frame 120, a positive electrode 104, a diaphragm 101, a negative electrode 105, a bipolar plate 121 of another cell frame 120, and so on. Is done.
  • a current collecting plate (not shown) is disposed in place of the bipolar plate 121 on the electrodes 104 and 105 positioned at both ends of the battery stack 100C in the cell stack 200 in the stacking direction.
  • End plates 201 are typically disposed at both ends of the cell stack 200 in the stacking direction of the battery cells 100C, and the pair of end plates 201 and 201 are connected and integrated by a connecting member 202 such as a long bolt. .
  • the RF battery system includes the RF battery 100 and the following positive electrode circulation mechanism and negative electrode circulation mechanism, and circulates and supplies the positive electrode electrolyte to the positive electrode 104 and circulates and supplies the negative electrode electrolyte to the negative electrode 105.
  • FIG. 5 shows the operating principle of a vanadium-based RF battery 100 using a vanadium electrolyte containing vanadium (V) ions as an active material for the positive electrode electrolyte and the negative electrode electrolyte.
  • V vanadium
  • the RF battery 100 performs charge and discharge in accordance with the valence change reaction of ions that become active materials in the electrolyte solution of each electrode.
  • a solid line arrow in the battery cell 100C in FIG. 5 indicates a charging reaction, and a broken line arrow indicates a discharging reaction.
  • the positive electrode circulation mechanism is provided in the positive electrode tank 106 that stores the positive electrode electrolyte supplied to the positive electrode 104, the pipes 108 and 110 that connect the positive electrode tank 106 and the RF battery 100, and the supply-side pipe 108. And a pump 112.
  • the negative electrode circulation mechanism includes a negative electrode tank 107 that stores a negative electrode electrolyte supplied to the negative electrode 105, pipes 109 and 111 that connect the negative electrode tank 107 and the RF battery 100, and a supply-side pipe 109. And a provided pump 113.
  • the liquid supply holes 123 and 124 and the drainage holes 125 and 126 constitute an electrolyte solution distribution line, and pipes 108 to 111 are connected to the line. .
  • As the basic configuration of the RF battery system a known configuration can be used as appropriate.
  • the RF battery 100 includes a plurality of groove portions through which an electrolyte flows and a flange portion located between adjacent groove portions on at least one of a surface facing the positive electrode 104 and a surface facing the negative electrode 105.
  • a bipolar plate is provided. This bipolar plate is characterized in that when the positive electrode 104 or the negative electrode 105 is disposed, the bipolar plate has a configuration that can prevent displacement of the electrodes 104 and 105 with respect to the bipolar plate.
  • the eaves portion includes an undulating portion that suppresses slipping of the positive electrode 104 or the negative electrode 105 in the parallel direction of adjacent grooves.
  • FIGS. 2 to 4 is thicker than the positive electrode 104 and the negative electrode 105 for convenience of explanation.
  • the bipolar plate 1 is a rectangular flat plate.
  • the positive electrode 104 and the negative electrode 105 of the adjacent battery cell 100C are arranged on the front and back surfaces of the bipolar plate 1, respectively.
  • the bipolar plate 1 includes a plurality of groove portions 10 and a flange portion 20 positioned between the adjacent groove portions 10 and 10 on the surface facing the electrodes 104 and 105.
  • the plurality of grooves 10 function as flow paths through which the electrolytic solution flows, and are provided to adjust the flow of the electrolytic solution flowing through the electrodes 104 and 105 by the pumps 112 and 113 in each battery cell 100C.
  • the positive electrode electrolyte is circulated in the groove 10 provided on one surface of the bipolar plate 1 on which the positive electrode 104 is disposed oppositely, and the groove 10 provided on the other surface of the bipolar plate 1 on which the negative electrode 105 is disposed on the opposite surface.
  • a negative electrode electrolyte is distributed.
  • the flow of the electrolyte in each battery cell 100 ⁇ / b> C can be adjusted by the shape and size of the groove 10.
  • the groove part 10 is provided with the introduction groove part 12 which introduce
  • the introduction groove portion 12 and the discharge groove portion 14 are independent without communicating.
  • the introduction groove portion 12 and the discharge groove portion 14 each have a comb-shaped region. In this example, the comb teeth of the introduction groove portion 12 and the comb teeth of the discharge groove portion 14 mesh with each other so as to face each other.
  • the introduction groove portion 12 is connected to the liquid supply hole 123 (or 124, FIG. 6) and is connected to the introduction port 12i and the introduction port 12i, and extends in the longitudinal direction of the bipolar plate 1 (vertical direction in FIG. 1).
  • One extending longitudinal groove portion 12y that extends and a lateral direction (left and right direction in FIG. 1) of the bipolar plate 1 are extended from the introduced longitudinal groove portion 12y, and are arranged in parallel at a predetermined interval W (FIG. 1).
  • the introduction port 12i, the introduction vertical groove portion 12y, and the introduction horizontal groove portion 12x are continuous.
  • the discharge groove portion 14 has a shape similar to the introduction groove portion 12.
  • the discharge groove 14 is connected to the drain hole 125 (or 126, FIG. 6) and is connected to the discharge port 14o for discharging the electrolytic solution that has passed through the electrodes 104 and 105 from the introduction groove 12, and the discharge port 14o.
  • One discharge vertical groove portion 14y extending in the vertical direction and a plurality of discharge horizontal groove portions 14x extending in the horizontal direction of the bipolar plate 1 from the discharge vertical groove portion 14y and arranged in parallel with a predetermined interval W therebetween.
  • the discharge port 14o, the discharge vertical groove portion 14y, and the discharge horizontal groove portion 14x are continuous.
  • the cross-sectional shape of the groove 10 is rectangular as shown in FIG.
  • the cross-sectional shape of the groove 10 may be V-shaped, U-shaped, semicircular, etc., in addition to the rectangular shape.
  • each horizontal groove part 12x, 14x is provided in the overlapping position.
  • the groove portion 10 may be provided at a position where a part of each of the lateral groove portions 12x and 14x overlaps when the bipolar plate 1 is seen through the plane, or may be provided at a position where they do not overlap.
  • the collar part 20 is a part located between the adjacent groove parts 10 and 10, as shown to FIG.
  • the groove portion 10 has a meshing-type opposed comb shape in which the comb teeth of the introduction groove portion 12 and the discharge groove portion 14 mesh with each other and are arranged to face each other. Therefore, the flange portion 20 includes the introduction lateral groove portion 12x and the discharge lateral groove.
  • the part located between the part 14x is said (refer FIG. 2).
  • the flange 20 forms most of the outermost surface of the bipolar plate 1. Therefore, when the battery cell 100 ⁇ / b> C is assembled, the flange 20 comes into contact with the electrodes 104 and 105.
  • the flange portion 20 includes a undulation portion 22 that suppresses slipping of the electrodes 104 and 105 in the parallel direction of the adjacent introduction lateral groove portion 12 x and discharge lateral groove portion 14 x.
  • the undulating portion 22 is characterized by a point formed by a rough surface provided on the surface of the flange portion 20.
  • the rough surface constituting the undulating portion 22 has a surface roughness of 0.1 ⁇ m or more and 10 ⁇ m or less in terms of arithmetic average roughness Ra.
  • the positive electrode 104 and the negative electrode 105 are generally composed of a porous body containing fibers. Since the surface roughness of the rough surface is not less than 0.1 ⁇ m in terms of arithmetic average roughness Ra, the fibers constituting each electrode 104, 105 can be hooked on the flange 20, so that each electrode 104, The position shift 105 can be prevented.
  • the surface roughness of the rough surface is 10 ⁇ m or less in terms of arithmetic average roughness Ra, it is easy to arrange the electrodes 104 and 105 on the bipolar plate 1 without a gap.
  • the surface roughness of the rough surface is an arithmetic average roughness Ra, and is preferably 6.4 ⁇ m or less, 3.2 ⁇ m or less, particularly preferably 0.2 ⁇ m or more and 1.6 ⁇ m or less.
  • the electrolyte introduced from the inlet 12i flows along the groove 10 (in the direction of the solid arrow shown in FIG. 1), and the flange 20 between the introduction lateral groove 12x and the discharge lateral groove 14x.
  • a flow (in the direction of the dashed arrow shown in FIG. 1) is formed across the width direction (vertical direction in FIG. 1).
  • the electrolytic solution flowing through the groove 10 from the introduction port 12i to the discharge port 14o penetrates and diffuses into the electrodes 104 and 105 disposed to face the bipolar plate 1.
  • the electrolyte solution that has permeated and diffused into the electrodes 104 and 105 causes a battery reaction in the electrodes 104 and 105.
  • the electrolyte flows so as to cross over the flange portion 20, the amount of the electrolyte discharged without being reacted can be reduced.
  • the flow rate of the electrolytic solution changes due to a fine level difference of the undulating portion 22, and a turbulent flow can be generated in the electrolytic solution.
  • the electrolytic solution is forcibly diffused into the electrodes 104 and 105 disposed opposite to the flange 20, and active material ions contained in the electrolytic solution are uniformly distributed in the electrodes 104 and 105. It is thought that battery reactivity can be improved.
  • the length L (FIG. 1) of the portion where the comb teeth of the introduction groove portion 12 and the discharge groove portion 14 mesh with each other increases as the amount of the electrolyte flowing across the flange portion 20 increases. Therefore, the length of the meshing portion is 80% or more of the length of the bipolar plate 1 (the length in the left-right direction in FIG. 1), and more preferably 90% or more.
  • the length of the width W of the flange part 20 is 100% or more and 700% or less of the width of the groove part 10 and further 200% or more and 500% or less.
  • the undulating portion 22 is provided over the entire width W of the flange portion 20.
  • the undulating portion 22 may be provided in a part of the flange portion 20 in the width direction.
  • the constituent material of the bipolar plate 1 a conductive material having a small electric resistance, which does not react with the electrolytic solution and has resistance to the electrolytic solution (chemical resistance, acid resistance, etc.) can be suitably used. Furthermore, it is preferable that the constituent material of the bipolar plate 1 has an appropriate rigidity. This is because the shape and dimensions of the groove 10 are unlikely to change over a long period of time, and it is easy to maintain the effect of reducing the flow resistance and the pressure loss due to having the groove 10.
  • the specific constituent material is a composite material containing a carbon material and an organic material, more specifically, a conductive material including a conductive inorganic material such as graphite and an organic material such as a polyolefin-based organic compound or a chlorinated organic compound. Examples include plastic.
  • Examples of the carbon material include graphite, carbon black, diamond-like carbon (DLC), and the like.
  • Examples of carbon black include acetylene black and furnace black.
  • the carbon material preferably contains graphite.
  • the main component is graphite, and at least one of carbon black and DLC can be included as a part.
  • the conductive inorganic material can contain a metal such as aluminum in addition to the carbon material. Examples of the conductive inorganic material include powder and fiber.
  • Polyolefin organic compounds include polyethylene, polypropylene, polybutene and the like.
  • Examples of the chlorinated organic compound include vinyl chloride, chlorinated polyethylene, and chlorinated paraffin.
  • the bipolar plate 1 described above is formed into a plate shape by using a known method such as injection molding, press molding, vacuum molding, or the like, and the groove portion 10 and the flange portion 20 as well as the undulating portion 22 are formed on the flange portion 20. It can be manufactured by molding. If the groove portion 10 and the undulating portion 22 are simultaneously formed, the productivity of the bipolar plate 1 is excellent. It is also possible to form the groove portion 10 and the undulating portion 22 by performing cutting or the like on a flat plate material that does not have the groove portion 10. Moreover, a rough surface can also be formed in the collar part 20 by blasting the collar part 20.
  • Embodiment 2 With reference to FIG. 3, the bipolar plate 2 which concerns on Embodiment 2 is demonstrated.
  • the bipolar plate 2 is characterized in that the undulating portion 22 provided in the collar portion 20 is formed of a step.
  • the bipolar plate 2 of the second embodiment is different from the bipolar plate 1 of the first embodiment in the form of the undulating portion 22, and the other configurations are the same.
  • FIG. 3 shows only one surface side of the bipolar plate 2.
  • the step H constituting the undulating portion 22 has a height difference in the parallel direction of the adjacent introduction lateral groove portion 12x and the discharge lateral groove portion 14x.
  • one step is provided such that the thickness of the bipolar plate 2 decreases from the introduction lateral groove portion 12x side toward the discharge lateral groove portion 14x side.
  • the introduction lateral groove portion 12x side is referred to as a high portion 22h
  • the discharge lateral groove portion 14x side is referred to as a low portion 22p.
  • the step H constituting the undulating portion 22 has a maximum height difference of 0.1 mm or more and 0.5 mm or less. Since the maximum height difference of the step is 0.1 mm or more, each electrode 104, 105 can be hooked at the ridge line portion between the high portion 22h and the low portion 22p, so the position of each electrode 104, 105 with respect to the bipolar plate 2 Deviation can be prevented. Further, since the maximum height difference of the step is 0.1 mm or more, the flow rate of the electrolyte flowing from the introduction lateral groove 12x side to the discharge lateral groove 14x side through the flange 20 is greatly changed, and the turbulent flow in the electrolyte Is likely to occur. When the battery cell 100C is assembled and compressed, as shown in FIG.
  • the distance between the bipolar plate 2 and the diaphragm 101 becomes larger on the low portion 22p side than on the high portion 22h side. This is because the flow velocity is slower on the lower portion 22p side.
  • the maximum height difference of the step is 0.5 mm or less, the electrodes 104 and 105 can be easily arranged with no gap with respect to the bipolar plate 2.
  • the maximum height difference is preferably 0.2 mm or more and 0.4 mm or less.
  • one step is provided at the central portion in the width direction of the flange 20, but a plurality of steps may be provided.
  • the introduction lateral groove portion 12x side is the high portion 22h and the discharge horizontal groove portion 14x is the low portion 22p.
  • the introduction horizontal groove portion 12x side may be the low portion 22p and the discharge horizontal groove portion 14x is the high portion 22h.
  • the low part 22p may be used, and the central part may be the low part 22p (high part 22h), or the high part 22h and the low part 22p may be provided irregularly.
  • the flange portion 20 of the bipolar plate 2 may be a smooth surface having a surface roughness of arithmetic average roughness Ra of less than 1.0 ⁇ m, or a surface roughness of Ra of 1.0 ⁇ m or more. Also good.
  • Embodiment 3 With reference to FIG. 4, the bipolar plate 3 which concerns on Embodiment 3 is demonstrated.
  • the bipolar plate 3 is characterized in that the undulating portion 22 provided in the flange portion 20 is formed of an inclined surface.
  • the bipolar plate 3 of the third embodiment is different from the bipolar plate 1 of the first embodiment in the form of the undulating portion 22, and the other configurations are the same.
  • FIG. 4 shows only one surface side of the bipolar plate 3.
  • the inclined surface constituting the undulating portion 22 is inclined from one groove portion 12x side to the other groove portion 14x side of the adjacent introduction horizontal groove portion 12x and discharge horizontal groove portion 14x.
  • the bipolar plate 2 is inclined so that the thickness of the bipolar plate 2 decreases from the introduction lateral groove portion 12x side toward the discharge lateral groove portion 14x side.
  • the introduction lateral groove portion 12x side is referred to as a high portion 22h
  • the discharge lateral groove portion 14x side is referred to as a low portion 22p.
  • the inclined surface constituting the undulating portion 22 has a height difference of 0.1 mm to 0.5 mm. Since the height difference between the inclined surfaces is 0.1 mm or more, the electrodes 104 and 105 can be hooked on the high portion 22h side, so that the displacement of the electrodes 104 and 105 with respect to the bipolar plate 3 can be prevented. In addition, since the height difference of the inclined surface is 0.1 mm or more, the flow rate of the electrolyte flowing from the introduction lateral groove portion 12x side to the discharge lateral groove portion 14x side through the flange portion 20 greatly changes, and turbulent flow occurs in the electrolyte solution. Is likely to occur. When the battery cell 100C is assembled and compressed, as shown in FIG.
  • the distance between the bipolar plate 3 and the diaphragm 101 becomes larger on the low portion 22p side than on the high portion 22h side. This is because the flow velocity is slower on the lower portion 22p side.
  • the height difference of the inclined surface is 0.5 mm, it is easy to arrange the electrodes 104 and 105 with respect to the bipolar plate 3 without a gap.
  • the height difference between the inclined surfaces is preferably 0.2 mm or more and 0.4 mm or less.
  • the inclined surface is continuous from the side edge of the introduction horizontal groove portion 12x to the side edge of the discharge horizontal groove portion 14x.
  • a flat surface or a step may be provided between the side edges in addition to the inclined surface.
  • the introduction lateral groove portion 12x side is the high portion 22h and the discharge horizontal groove portion 14x is the low portion 22p.
  • the introduction horizontal groove portion 12x side may be the low portion 22p and the discharge horizontal groove portion 14x is the high portion 22h.
  • the flange portion 20 of the bipolar plate 3 may be a smooth surface having a surface roughness of arithmetic average roughness Ra of less than 1.0 ⁇ m, or a surface roughness of Ra of 1.0 ⁇ m or more. Also good.
  • the groove 10 can be arranged as follows.
  • the comb teeth of the introduction groove portion 12 and the comb teeth of the discharge groove portion 14 extend in the vertical direction (vertical direction in FIG. 1), and the lateral direction of the bipolar plate ( In FIG. 1, they are alternately arranged in the left-right direction).
  • the introduction groove portion 12 and the discharge groove portion 14 have a non-engagement type opposed comb-tooth shape in which they do not mesh with each other.
  • the introduction lateral groove portion and the discharge lateral groove portion may be arranged to face each other with an interval in the lateral direction of the bipolar plate.
  • a region disposed opposite to the collar portion located between adjacent groove portions functions as a battery reaction region.
  • At least one of the introduction groove portion 12 and the discharge groove portion 14 is not a continuous groove portion but a plurality of intermittent groove portions.
  • the introduction lateral groove portion and the discharge lateral groove portion can be a plurality of groove groups provided at intervals in the lateral direction.
  • each electrode 104, 105 is composed of a porous body having a large number of fine pores.
  • a porous body containing carbon fiber for example, carbon felt or carbon paper can be suitably used.
  • Known electrodes can be used.
  • an ion exchange membrane such as a cation exchange membrane or an anion exchange membrane can be mentioned.
  • the ion exchange membrane has characteristics such as (1) excellent isolation between positive electrode active material ions and negative electrode active material ions, and (2) excellent H + ion permeability as a charge carrier in the battery cell 100C. And can be suitably used for the diaphragm 101.
  • a known diaphragm can be used.
  • the electrolytic solution used for the RF battery 100 includes active material ions such as metal ions and non-metal ions.
  • active material ions such as metal ions and non-metal ions.
  • vanadium-based electrolytic solutions containing vanadium ions having different valences (FIG. 5) can be given.
  • manganese-titanium electrolytes examples thereof include manganese-titanium electrolytes.
  • an aqueous solution containing at least one acid or acid salt selected from sulfuric acid, phosphoric acid, nitric acid, and hydrochloric acid can be used.
  • the bipolar plate of the embodiment can be suitably used as a bipolar plate of a redox flow battery.
  • the redox flow battery according to the embodiment is a storage battery for the purpose of stabilizing fluctuations in power generation output, storing power when surplus generated power, load leveling, etc., for power generation of natural energy such as solar power generation and wind power generation. Available.
  • the redox flow battery of the embodiment can be used as a storage battery that is attached to a general power plant and is used for the purpose of instantaneous voltage drop / power failure countermeasures and load leveling.
  • the redox flow battery of the embodiment can be suitably used for a large-capacity storage battery for the above-described purpose.
  • Test Example 1 a bipolar plate having a mesh-type comb-tooth-shaped flow path and an undulating portion formed of a step in the collar portion (see FIG. 3) is used (see FIG. 3).
  • a fluid simulation (numerical analysis using Excel (registered trademark) spreadsheet software manufactured by Microsoft Corporation) was performed to calculate the cell resistance of the RF battery.
  • an RF battery having a single cell structure in which a battery cell in which a positive electrode, a diaphragm, and a negative electrode are stacked is sandwiched between cell frames having bipolar plates. The detailed conditions of the test are shown below.
  • Constituent material Carbon felt containing carbon fiber and binder carbon SDL Carbon Japan Co., Ltd.
  • Constituent material Nafion (registered trademark) 212 made by DuPont Electrolyte composition: sulfuric acid V aqueous solution (V concentration: 1.7 mol / L, sulfuric acid concentration: 4.3 mol / L) Flow rate: 300mL / min
  • FIG. 7 shows a graph of the cell resistance (normalized with the cell resistance being 1 when the level difference H is 0 mm) when the level difference H (undulation: maximum height difference) formed in the ridge portion of the bipolar plate is changed.
  • the horizontal axis is the step H (mm)
  • the vertical axis is the normalized cell resistance.
  • FIG. 7 shows that the reduction rate ((Rs ⁇ Rx) / Rs) of the cell resistance Rx when the level difference H is changed compared to the cell resistance Rs when the level difference H is 0.01 mm.
  • the step H is preferably 0.5 mm or less.
  • the present invention is not limited to these exemplifications, is shown by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
  • the specification of the groove portion of the bipolar plate (the size, shape, number, etc. of the horizontal groove portion and the vertical groove portion), the type of the electrolyte, and the like can be changed.
  • Redox flow battery 100C battery cell 101 diaphragm 102 positive electrode cell 103 negative electrode cell 104 positive electrode 105 negative electrode 106 positive electrode tank 107 negative electrode tank 108-111 piping 112, 113 pump 200 cell stack 201 end plate 202 connecting member 120 cell frame 121 bipolar plate 122 frame 123 , 124 Liquid supply hole 125, 126 Drain hole 127 Seal member 1, 2, 3 Bipolar plate 10 Groove part 12 Introduction groove part 12i Introduction port 12x Introduction lateral groove part 12y Introduction vertical groove part 14 Discharge groove part 14o Discharge port 14x Discharge lateral groove part 14y Discharge vertical part Groove part 20 ridge part 22 undulation part 22h high part 22p low part

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

一面側に正極電極が配置され、他面側に負極電極が配置される電池用の双極板であって、当該双極板の少なくとも一面は、電解液が流通する複数の溝部と、隣り合う前記溝部間に位置する畝部とを備え、前記溝部は、互いに連通しない導入溝部と排出溝部とを備え、前記畝部は、隣り合う前記溝部の並列方向への前記正極電極又は前記負極電極の滑りを抑制する起伏部を備え、前記起伏部は、前記畝部の表面の少なくとも一部に設けられた粗面を備え、前記粗面は、表面粗さが算術平均粗さRaで0.1μm以上10μm以下である双極板。

Description

双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池
 本発明は、双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池に関する。
 本出願は、2016年5月30日付の日本国出願の特願2016-107756に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
 大容量の蓄電池の一つとして、電解液を電極に供給して電池反応を行うレドックスフロー電池(以下、RF電池と呼ぶことがある)が知られている。RF電池の用途としては、負荷平準化用途の他、瞬低補償や非常用電源などの用途、太陽光発電や風力発電などの自然エネルギーの出力平滑化用途などが挙げられる。
 RF電池は、代表的には、正極電解液が供給される正極電極と、負極電解液が供給される負極電極と、正極電極と負極電極との間に介在される隔膜とを備える電池セルを主な構成要素とする。大容量用途では、複数の電池セルを積層し、ある程度締め付けて構成されるセルスタックと呼ばれるものが利用される。隣り合う電池セル間には、通常、双極板が介在される。つまり、セルスタックは、ある双極板、正極電極、隔膜、負極電極、別の双極板、…と順に繰り返し積層して構成される。
 RF電池は、代表的には、RF電池に電解液を循環供給する循環機構を備えるRF電池システムを構築して利用される。循環機構は、正極電解液及び負極電解液をそれぞれ貯留するタンクと、各タンクとRF電池とをそれぞれ接続する配管と、配管に設けられるポンプとを備える。特許文献1,2では、ポンプにより各電極に流通される電解液の各セル内での電解液の流れを調整するために、電解液が流通する複数の溝部を有する双極板を用いている。双極板における電極側の面に溝部を有することで、電極に流通される電解液の流れを調整して、電解液の圧力損失を低減している。また、双極板における電極側の面に溝部を有することで、溝部間に位置する部分(以下、畝部と呼ぶ)を介して隣り合う溝部を渡るように電解液が流れ、この畝部に対向する電極において電解液が電池反応を行い、未反応のまま排出される電解液を低減している。
特開2015-122230号公報 特開2015-210849号公報
 本開示に係る双極板は、
 一面側に正極電極が配置され、他面側に負極電極が配置される電池用の双極板であって、
 当該双極板の少なくとも一面は、電解液が流通する複数の溝部と、隣り合う前記溝部間に位置する畝部とを備え、
 前記溝部は、互いに連通しない導入溝部と排出溝部とを備え、
 前記畝部は、隣り合う前記溝部の並列方向への前記正極電極又は前記負極電極の滑りを抑制する起伏部を備え、
 前記起伏部は、前記畝部の表面の少なくとも一部に設けられた粗面を備え、
 前記粗面は、表面粗さが算術平均粗さRaで0.1μm以上10μm以下である。
 本開示に係る双極板は、
 一面側に正極電極が配置され、他面側に負極電極が配置される電池用の双極板であって、
 当該双極板の少なくとも一面は、電解液が流通する複数の溝部と、隣り合う前記溝部間に位置する畝部とを備え、
 前記溝部は、互いに連通しない導入溝部と排出溝部とを備え、
 前記畝部は、隣り合う前記溝部の並列方向への前記正極電極又は前記負極電極の滑りを抑制する起伏部を備え、
 前記起伏部は、隣り合う前記溝部の並列方向に高低差を有するように設けられた段差を備え、
 前記段差は、最大高低差が0.1mm以上0.5mm以下である。
 本開示に係る双極板は、
 一面側に正極電極が配置され、他面側に負極電極が配置される電池用の双極板であって、
 当該双極板の少なくとも一面は、電解液が流通する複数の溝部と、隣り合う前記溝部間に位置する畝部とを備え、
 前記溝部は、互いに連通しない導入溝部と排出溝部とを備え、
 前記畝部は、隣り合う前記溝部の並列方向への前記正極電極又は前記負極電極の滑りを抑制する起伏部を備え、
 前記起伏部は、隣り合う前記溝部の一方の溝部側から他方の溝部側に向かって傾斜する傾斜面を備え、
 前記傾斜面は、高低差が0.1mm以上0.5mm以下である。
 本開示に係るセルフレームは、上記本開示に係る双極板のいずれか1つに記載の双極板と、前記双極板の外周に設けられる枠体とを備える。
 本開示に係るセルスタックは、上記本開示に係るセルフレームと、正極電極と、隔膜と、負極電極とを複数積層してなる。
 本開示に係るレドックスフロー電池は、上記本開示に係るセルスタックを備える。
実施形態1に係る双極板に設けられた対向櫛歯形状の流路を表す概略平面図である。 実施形態1に係る双極板に設けられた溝部及び畝部の形状を表す概略拡大断面図である。 実施形態2に係る双極板に設けられた溝部及び畝部の形状を表す概略拡大断面図である。 実施形態3に係る双極板に設けられた溝部及び畝部の形状を表す概略拡大断面図である。 レドックスフロー電池の概略説明図である。 レドックスフロー電池に備わるセルスタックの概略構成図である。 試験例1の双極板における段差とセル抵抗との関係のシミュレーション結果を示すグラフである。
 [本開示が解決しようとする課題]
 特許文献1,2の双極板は、その最表面の大部分が各溝部間に位置する畝部で形成される。この畝部の表面は平坦面で構成されているため、電極と双極板との間に摩擦がなく、電池セルの組立時に、電極と双極板との間で位置ずれが発生する虞がある。
 そこで、本開示は、電池セルの組立時に電極の位置ずれを容易に防止できる双極板を提供することを目的の一つとする。また、電解液の拡散性にも優れる双極板を提供することを更なる目的の一つとする。上記双極板を備えるセルフレーム及びこのセルフレームを備えるセルスタック、並びにこのセルスタックを備えるレドックスフロー電池を提供することを別の目的の一つとする。
 [本開示の効果]
 上記双極板は、電池セルの組立時に電極の位置ずれを容易に防止できる。また、上記双極板は、電解液の拡散性にも優れる。上記セルフレーム及びセルスタック、並びにレドックスフロー電池は、電池セルの組立時に電極の位置ずれを防止でき、電解液の拡散性にも優れる。
 [本発明の実施形態の説明]
 最初に本発明の実施形態の内容を列記して説明する。
 (1)本発明の実施形態に係る双極板は、
 一面側に正極電極が配置され、他面側に負極電極が配置される電池用の双極板であって、
 当該双極板の少なくとも一面は、電解液が流通する複数の溝部と、隣り合う前記溝部間に位置する畝部とを備え、
 前記溝部は、互いに連通しない導入溝部と排出溝部とを備え、
 前記畝部は、隣り合う前記溝部の並列方向への前記正極電極又は前記負極電極の滑りを抑制する起伏部を備え、
 前記起伏部は、前記畝部の表面の少なくとも一部に設けられた粗面を備え、
 前記粗面は、表面粗さが算術平均粗さRaで0.1μm以上10μm以下である。
 上記双極板は、正極電極や負極電極と接触する畝部に起伏部を備えることで、起伏部によって電極との間に摩擦が生じ、その摩擦によって電極の滑りを抑制することができる。よって、上記双極板は、双極板の表面に電極を配置するだけで電極を双極板上に保持することができ、電池セルの組立時であっても電極と双極板との間で位置ずれが発生することを容易に防止することができる。
 また、上記双極板は、正極電極や負極電極と接触する畝部に起伏部を備えることで、隣り合う溝部間を渡るように電解液が流れるとき、起伏部によって電解液の流速が変化して乱流を生じさせ易い。畝部で乱流が生じると、畝部に対向配置される電極内へ電解液が強制拡散され、電解液に含まれる活物質イオンを電極内に均一的に供給することができ、電池反応性を向上できると考えられる。
 起伏部が粗面を備えることで、電極と双極板との間に摩擦を生じさせ易く、双極板に対する電極の位置ずれを防止し易い。粗面の表面粗さが算術平均粗さRaで0.1μm以上であることで、双極板に対する電極の位置ずれを防止できる。一方、粗面の表面粗さが算術平均粗さRaで10μm以下であることで、双極板に対して電極を隙間なく配置し易い。双極板と電極との間に隙間が生じると、畝部を介して隣り合う溝部間を渡るように流れる電解液が電極内へ拡散され難く、電解液が未反応となる虞があるためである。
 (2)本発明の実施形態に係る双極板は、
 一面側に正極電極が配置され、他面側に負極電極が配置される電池用の双極板であって、
 当該双極板の少なくとも一面は、電解液が流通する複数の溝部と、隣り合う前記溝部間に位置する畝部とを備え、
 前記溝部は、互いに連通しない導入溝部と排出溝部とを備え、
 前記畝部は、隣り合う前記溝部の並列方向への前記正極電極又は前記負極電極の滑りを抑制する起伏部を備え、
 前記起伏部は、隣り合う前記溝部の並列方向に高低差を有するように設けられた段差を備え、
 前記段差は、最大高低差が0.1mm以上0.5mm以下である。
 起伏部が段差を備えることで、高い部分から低い部分に亘る稜線部分で電極を引っ掛けることができ、双極板に対する電極の位置ずれを防止し易い。また、起伏部が段差を備えることで、隣り合う溝部間を渡るように電解液が流れるとき、段状の高低差で電解液の流速を大きく変化させ易く、電解液の拡散性を向上させ易い。段差の最大高低差が0.1mm以上であることで、双極板に対する電極の位置ずれを防止できると共に、電解液の拡散性を向上させ易い。一方、段差の最大高低差が0.5mm以下であることで、双極板に対して電極を隙間なく配置し易い。
 (3)本発明の実施形態に係る双極板は、
 一面側に正極電極が配置され、他面側に負極電極が配置される電池用の双極板であって、
 当該双極板の少なくとも一面は、電解液が流通する複数の溝部と、隣り合う前記溝部間に位置する畝部とを備え、
 前記溝部は、互いに連通しない導入溝部と排出溝部とを備え、
 前記畝部は、隣り合う前記溝部の並列方向への前記正極電極又は前記負極電極の滑りを抑制する起伏部を備え、
 前記起伏部は、隣り合う前記溝部の一方の溝部側から他方の溝部側に向かって傾斜する傾斜面を備え、
 前記傾斜面は、高低差が0.1mm以上0.5mm以下である。
 起伏部が傾斜面を備えることで、傾斜面の高い側の縁部で電極を引っ掛けることができ、双極板に対する電極の位置ずれを防止し易い。また、起伏部が傾斜面を備えることで、隣り合う溝部間を渡るように電解液が流れるとき、傾斜面の高低差で電解液の流速を大きく変化させ易く、電解液の拡散性を向上させ易い。傾斜面の高低差が0.1mm以上であることで、双極板に対する電極の位置ずれを防止できると共に、電解液の拡散性を向上させ易い。一方、傾斜面の高低差が0.5mm以下であることで、双極板に対して電極を隙間なく配置し易い。
 (4)上記の双極板の一例として、
 前記導入溝部と前記排出溝部とは、以下の(A)から(C)のいずれかを満たす形態が挙げられる。
 (A)前記導入溝部と前記排出溝部とはそれぞれ櫛歯形状の領域を備え、これらの櫛歯が互いに噛み合って対向配置される噛合型の対向櫛歯形状である。
 (B)前記導入溝部と前記排出溝部とはそれぞれ櫛歯形状の領域を備え、これらの櫛歯が互いに噛み合わない非噛合型の対向櫛歯形状である。
 (C)前記導入溝部及び前記排出溝部の少なくとも一方が断続した複数の溝部で構成される。
 上記(A)の形態について、「櫛歯形状」とは、一方向に延びる長尺な幹溝と、この幹溝から同方向に並列して分岐する複数の枝溝とを備える形状のことを言う。また、「互いに連通しない導入溝部と排出溝部とがそれぞれ櫛歯形状の領域を備える」とは、導入溝部と排出溝部とが、それぞれ独立した幹溝からそれぞれ独立した枝溝(櫛歯)が突出していることを言う。更に、「櫛歯が互いに噛み合って対向配置される」とは、導入溝部の櫛歯と排出溝部の櫛歯とが、平面視において互いに交互に配置されることを言う。
 導入溝部と排出溝部の各櫛歯が互いに噛み合って対向配置されることで、導入溝部の櫛歯と排出溝部の櫛歯とが並列状態となり、これら並列された櫛歯間を渡るように電極における電池反応が行われる。この櫛歯間を渡る電池反応域に流通する電解液の量は、導入溝部と排出溝部とが噛み合っていない場合に比較して増加し易い。よって、上記構成によれば、電極の電池反応域における電池反応の活性化が期待でき、電極の電池反応域における電解液の流通状態が電極全体に亘って一様になり易く、電極の広い範囲で電池反応を均一的に行い易い。
 上記(B)の形態について、非噛合型の対向櫛歯形状であっても、隣り合う溝部間に位置する畝部に対向配置される領域が電池反応域として機能するため、導入溝部と排出溝部とが連通する場合に比較して電池反応の活性化が期待できる。
 上記(C)の形態について、「断続した複数の溝部」とは、導入溝部や排出溝部を、その長手方向に間隔をあけて設けられた複数の溝群で構成することを言う。この場合でも、隣り合う溝部間に位置する畝部に対向配置される領域が電池反応域として機能するため、導入溝部と排出溝部とが連通する場合に比較して電池反応の活性化が期待できる。
 (5)本発明の実施形態に係るセルフレームは、上記(1)から(4)のいずれか1つに記載の双極板と、前記双極板の外周に設けられる枠体とを備える。
 上記セルフレームは、本発明の実施形態に係る双極板を備えるため、電池セルの組立時であっても電極と双極板との間で位置ずれが発生することを容易に防止することができる。また、畝部に対向配置される電極内へ電解液を強制拡散でき、電池反応性を向上できると考えられる。
 (6)本発明の実施形態に係るセルスタックは、上記(5)に記載のセルフレームと、正極電極と、隔膜と、負極電極とを複数積層してなる。
 上記セルスタックは、本発明の実施形態に係るセルフレームを備えるため、電池セル(セルスタック)の組立時であっても電極と双極板との間で位置ずれが発生することを容易に防止することができる。また、畝部に対向配置される電極内へ電解液を強制拡散でき、電池反応性を向上できると考えられる。
 (7)本発明の実施形態に係るレドックスフロー電池は、上記(6)に記載のセルスタックを備える。
 上記レドックスフロー電池は、本発明の実施形態に係るセルスタックを備えるため、電池セル(セルスタック)の組立時であっても電極と双極板との間で位置ずれが発生することを容易に防止することができる。また、畝部に対向配置される電極内へ電解液を強制拡散でき、電池反応性を向上できると考えられる。
 [本発明の実施形態の詳細]
 以下、図面を参照して、本発明の実施形態に係るレドックスフロー電池(RF電池)に備わる双極板、及びその双極板を備えるRF電池を詳細に説明する。図中の同一符号は、同一名称物を示す。
 まず、図5,6を参照して、実施形態のRF電池100を備えるRF電池システムの基本構成を説明し、次に図1~4を参照して、実施形態のRF電池100に備わる双極板の各実施形態について説明する。
 〔RF電池の概要〕
 実施形態に係るRF電池100は、図5に示すようなRF電池100に電解液を循環供給する循環機構が設けられたRF電池システムが構築されて利用される。RF電池100は、代表的には、交流/直流変換器や変電設備などを介して、発電部と、電力系統や需要家などの負荷とに接続される。RF電池100は、発電部を電源として充電を行い、負荷を電力消費対象として放電を行う。発電部は、例えば、太陽光発電機、風力発電機、その他一般の発電所などが挙げられる。
 〔RF電池の基本構成〕
 RF電池100は、隔膜101で正極セル102と負極セル103とに分離された電池セル100Cを備える。正極セル102には、正極電解液が供給される正極電極104が内蔵され、負極セル103には、負極電解液が供給される負極電極105が内蔵されている。RF電池100は、代表的には、複数の電池セル100Cを備えて、隣り合う電池セル100C,100C間に双極板121(図6)を備える。
 正極電極104及び負極電極105は、供給された電解液に含まれる活物質イオンが電池反応を行う反応場である。隔膜101は、正極電極104と負極電極105とを分離すると共に、所定のイオンを透過する分離部材である。双極板121は、正極電極104と負極電極105との間に介在され、電流を流すが電解液を通さない導電部材である。代表的には、図6に示すように双極板121の外周に形成された枠体122を備えるセルフレーム120の状態で利用される。枠体122は、その表裏面に開口し、双極板121上に配置された各電極104,105に電解液を供給する給液孔123,124及び電解液を排出する排液孔125,126を有する。枠体122には、その全周を取り囲むようにOリングなどのシール部材127が配置される。
 複数の電池セル100Cは積層されて、セルスタック200と呼ばれる形態で利用される。セルスタック200は、図6に示すように、あるセルフレーム120の双極板121、正極電極104、隔膜101、負極電極105、別のセルフレーム120の双極板121、…と順に繰り返し積層されて構成される。セルスタック200における電池セル100Cの積層方向の両端に位置する電極104,105には、双極板121に代えて集電板(図示せず)が配置される。セルスタック200における電池セル100Cの積層方向の両端には代表的にはエンドプレート201が配置されて、一対のエンドプレート201,201間が長ボルトなどの連結部材202で連結されて一体化される。
 〔RF電池システムの概要〕
 RF電池システムは、RF電池100と、以下の正極循環機構及び負極循環機構を備えて、正極電極104に正極電解液を循環供給すると共に、負極電極105に負極電解液を循環供給する。図5に、正極電解液及び負極電解液の活物質にバナジウム(V)イオンを含有するバナジウム電解液を使用したバナジウム系のRF電池100の動作原理を示す。この循環供給によって、RF電池100は、各極の電解液中の活物質となるイオンの価数変化反応に伴って充放電を行う。図5中の電池セル100C内の実線矢印は充電反応を、破線矢印は放電反応をそれぞれ示す。
 正極循環機構は、正極電極104に供給する正極電解液を貯留する正極タンク106と、正極タンク106とRF電池100との間を接続する配管108,110と、供給側の配管108に設けられたポンプ112とを備える。同様に、負極循環機構は、負極電極105に供給する負極電解液を貯留する負極タンク107と、負極タンク107とRF電池100との間を接続する配管109,111と、供給側の配管109に設けられたポンプ113とを備える。複数のセルフレーム120を積層することで給液孔123,124及び排液孔125,126(図6)は電解液の流通管路を構成し、この管路に配管108~111が接続される。RF電池システムの基本構成は、公知の構成を適宜利用できる。
 〔RF電池の主な特徴点〕
 実施形態のRF電池100は、正極電極104との対向面及び負極電極105との対向面の少なくとも一方の面に、電解液が流通する複数の溝部と、隣り合う溝部間に位置する畝部とを備える双極板を備える。この双極板は、正極電極104又は負極電極105を配置したとき、双極板に対する電極104,105の位置ずれを防止できる構成を備える点を特徴の一つとする。具体的には、畝部が、隣り合う溝部の並列方向への正極電極104又は負極電極105の滑りを抑制する起伏部を備える。以下、上述した実施形態のRF電池100に備わる双極板について詳細に説明する。図2~4に示す各双極板は、説明の便宜上、正極電極104及び負極電極105よりも厚みを厚くしている。
 ≪実施形態1≫
 図1,2を参照して、実施形態1に係る双極板1について説明する。双極板1は、図1に示すように、長方形状の平板である。双極板1の表裏面はそれぞれ、隣り合う電池セル100Cの正極電極104と負極電極105とが配置される。双極板1は、各電極104,105との対向面に、複数の溝部10と、隣り合う溝部10,10間に位置する畝部20とを備える。複数の溝部10は、電解液が流通する流路として機能し、ポンプ112,113により各電極104,105に流通される電解液の各電池セル100C内での流れを調整するために設けられる。正極電極104が対向配置される双極板1の一面に設けられた溝部10には正極電解液が流通され、負極電極105が対向配置される双極板1の他面に設けられた溝部10には負極電解液が流通される。各電池セル100C内での電解液の流れは、溝部10の形状や寸法等によって調整することができる。
 ・溝部
 溝部10は、図1に示すように、各電解液を各電極に導入する導入溝部12と、各電解液を各電極から排出する排出溝部14とを備える。導入溝部12と排出溝部14とは、連通せずに独立している。導入溝部12と排出溝部14とはそれぞれ櫛歯形状の領域を備える。本例では、導入溝部12の櫛歯と排出溝部14の櫛歯とが互いに噛み合って対向配置される噛合型の対向櫛歯形状である。
 導入溝部12は、給液孔123(又は124、図6)に繋がって電解液が供給される導入口12iと、導入口12iに連なり、双極板1の縦方向(図1では上下方向)に延設される一つの導入縦溝部12yと、導入縦溝部12yから双極板1の横方向(図1では左右方向)に延設され、所定の間隔W(図1)をあけて並列配置される複数の導入横溝部12xとを備える。導入口12i、導入縦溝部12y、導入横溝部12xは連続している。
 排出溝部14は、導入溝部12と類似の形状である。排出溝部14は、排液孔125(又は126、図6)に繋がって導入溝部12から各電極104,105を経た電解液を排出する排出口14oと、排出口14oに連なり、双極板1の縦方向に延設される一つの排出縦溝部14yと、排出縦溝部14yから双極板1の横方向に延設され、所定の間隔Wをあけて並列配置される複数の排出横溝部14xとを備える。排出口14o、排出縦溝部14y、排出横溝部14xは連続している。
 本例では、溝部10の断面形状は、図2に示すように長方形状である。溝部10の断面形状は、長方形状以外に、V字状、U字状、半円状等であってもよい。また、本例では、双極板1の表裏面に溝部10を備える場合に双極板1を平面透視したとき、重なる位置に各横溝部12x,14xを備える。溝部10は、双極板1を平面透視した場合に各横溝部12x,14xの一部が重なる位置に設けてもよいし、重ならない位置に設けてもよい。
 ・畝部
 畝部20は、図1,2に示すように、隣り合う溝部10,10間に位置する部分である。本例では、溝部10は、導入溝部12と排出溝部14の各櫛歯が互いに噛み合って対向配置される噛合型の対向櫛歯形状であるため、畝部20は、導入横溝部12xと排出横溝部14xとの間に位置する部分のことを言う(図2を参照)。畝部20は、双極板1の最表面の大部分を形成する。よって、電池セル100Cを組み立てたとき、畝部20が各電極104,105と接触することになる。
 畝部20は、図2に示すように、隣り合う導入横溝部12xと排出横溝部14xの並列方向への各電極104,105の滑りを抑制する起伏部22を備える。本例では、起伏部22は、畝部20の表面に設けられた粗面で構成される点を特徴の一つとする。
 起伏部22を構成する粗面は、表面粗さが算術平均粗さRaで0.1μm以上10μm以下である。正極電極104及び負極電極105は、一般的に繊維を含む多孔体で構成される。粗面の表面粗さが算術平均粗さRaで0.1μm以上であることで、畝部20に各電極104,105を構成する繊維を引っ掛けることができるため、双極板1に対する各電極104,105の位置ずれを防止できる。一方、粗面の表面粗さが算術平均粗さRaで10μm以下であることで、双極板1に対して電極104,105を隙間なく配置し易い。双極板1と電極104,105との間に隙間が生じると、畝部20を介して隣り合う溝部12x、14x間を渡るように流れる電解液が電極104,105内へ拡散され難く、電解液が未反応となる虞があるためである。粗面の表面粗さは算術平均粗さRaで、更に6.4μm以下、3.2μm以下、特に0.2μm以上1.6μm以下が好ましい。
 双極板1では、導入口12iから導入された電解液は、溝部10に沿った流れ(図1で示す実線矢印の方向)と、導入横溝部12xと排出横溝部14xとの間の畝部20を介して幅方向(図1の上下方向)に渡るような流れ(図1で示す破線矢印の方向)とを形成する。導入口12iから導入されて排出口14oに至るまでの間に溝部10を流通する電解液は、双極板1に対向配置される各電極104,105に浸透して拡散する。各電極104,105内に浸透、拡散した電解液は、各電極104,105内で電池反応を行う。本例では、電解液が畝部20を渡るように流れるため、未反応のまま排出される電解液量を減少できる。特に、畝部20に起伏部22を備えることで、起伏部22の細かい高低差によって電解液の流速が変化し、電解液に乱流を生じさせることができると考えられる。畝部20で乱流が生じると、畝部20に対向配置される各電極104,105内へ電解液が強制拡散され、電解液に含まれる活物質イオンを各電極104,105内に均一的に供給することができ、電池反応性を向上できると考えられる。
 導入溝部12と排出溝部14の各櫛歯の噛み合う部分の長さL(図1)は、長いほど畝部20を渡るように流れる電解液の量が増加すると考えられる。よって、上記噛み合う部分の長さは、双極板1の長さ(図1の左右方向の長さ)の80%以上、更に90%以上であることが挙げられる。
 また、導入溝部12と排出溝部14との間隔W、つまり畝部20の幅Wは、長いほど畝部20を渡るように流れる電解液の量が増加すると考えられる。よって、畝部20の幅Wの長さは、溝部10の幅の100%以上700%以下、更に200%以上500%以下であることが挙げられる。
 本例では、起伏部22は、畝部20の全幅Wに亘って設けている。起伏部22は、畝部20の幅方向の一部分に設けてもよい。
 双極板1の構成材料は、電気抵抗が小さい導電性材料であって、電解液と反応せず、電解液に対する耐性(耐薬品性、耐酸性など)を有するものが好適に利用できる。更に、双極板1の構成材料は、適度な剛性を有することが好ましい。溝部10の形状や寸法が長期に亘って変化し難く、溝部10を有することによる流通抵抗の低減効果、圧力損失の低減効果を維持し易いからである。具体的な構成材料は、炭素材と有機材とを含有する複合材料、より具体的には黒鉛などの導電性無機材とポリオレフィン系有機化合物や塩素化有機化合物などの有機材とを含む導電性プラスチックが挙げられる。
 炭素材は、黒鉛の他、カーボンブラック、ダイヤモンドライクカーボン(DLC)などが挙げられる。カーボンブラックは、アセチレンブラックやファーネスブラックなどが挙げられる。炭素材は、黒鉛を含むことが好ましい。黒鉛を主体とし、一部としてカーボンブラック及びDLCの少なくとも一方を含むことができる。導電性無機材は、炭素材に加えて、アルミニウムなどの金属を含むことができる。導電性無機材は、粉末や繊維が挙げられる。
 ポリオレフィン系有機化合物は、ポリエチレン、ポリプロピレン、ポリブテンなどが挙げられる。塩素化有機化合物は、塩化ビニル、塩素化ポリエチレン、塩素化パラフィンなどが挙げられる。
 上述した双極板1は、上記の構成材料を射出成型、プレス成型、真空成型などの公知の方法によって板状に成形すると共に、溝部10と畝部20は勿論、畝部20に起伏部22を成形することで製造できる。溝部10と起伏部22とを同時成形すれば双極板1の製造性に優れる。溝部10を有していない平板材に切削加工などを行って、溝部10や起伏部22を形成することもできる。また、畝部20にブラスト加工を施すことで、畝部20に粗面を形成することもできる。
 ≪実施形態2≫
 図3を参照して、実施形態2に係る双極板2について説明する。双極板2は、畝部20に備わる起伏部22が段差で構成される点を特徴の一つとする。実施形態2の双極板2は、起伏部22の形態が実施形態1の双極板1と異なり、その他の構成については同様である。図3は、双極板2の一面側のみを示す。
 起伏部22を構成する段差Hは、図3に示すように、隣り合う導入横溝部12xと排出横溝部14xの並列方向に高低差を有する。本例では、導入横溝部12x側から排出横溝部14x側に向かって双極板2の厚さが薄くなるような段差を一つ備える。本例では、導入横溝部12x側を高部22h、排出横溝部14x側を低部22pと呼ぶ。
 起伏部22を構成する段差Hは、最大高低差が0.1mm以上0.5mm以下である。段差の最大高低差が0.1mm以上であることで、高部22hと低部22pとの稜線部分で各電極104,105を引っ掛けることができるため、双極板2に対する各電極104,105の位置ずれを防止できる。また、段差の最大高低差が0.1mm以上であることで、畝部20を介して導入横溝部12x側から排出横溝部14x側に流れる電解液の流速が大きく変化し、電解液に乱流が生じ易い。それは、電池セル100Cを組み立てて圧縮すると、図3に示すように、双極板2と隔膜101との間の間隔が、高部22h側よりも低部22p側で大きくなるため、高部22h側よりも低部22p側で流速が遅くなるためである。一方、段差の最大高低差が0.5mm以下であることで、双極板2に対して各電極104,105を隙間なく配置し易い。最大高低差は、更に0.2mm以上0.4mm以下が好ましい。
 本例では、畝部20の幅方向の中央部分に一つの段差を設けているが、複数の段差を設けてもよい。また、本例では、導入横溝部12x側を高部22h、排出横溝部14xを低部22pとしているが、導入横溝部12x側を低部22p、排出横溝部14xを高部22hとしてもよい。一つの畝部20に複数の段差を設ける場合、畝部20の幅方向の一方から他方に向かって高さが順次低くなる又は高くなる必要はなく、例えば、幅方向の両側を高部22h(低部22p)とし、中央部分を低部22p(高部22h)としてもよいし、高部22hと低部22pとを不規則に設けてもよい。
 双極板2の畝部20は、表面粗さが算術平均粗さRaで1.0μm未満の平滑面であってもよいし、表面粗さがRaで1.0μm以上の粗面で構成してもよい。
 ≪実施形態3≫
 図4を参照して、実施形態3に係る双極板3について説明する。双極板3は、畝部20に備わる起伏部22が傾斜面で構成されている点を特徴の一つとする。実施形態3の双極板3は、起伏部22の形態が実施形態1の双極板1と異なり、その他の構成については同様である。図4は、双極板3の一面側のみを示す。
 起伏部22を構成する傾斜面は、図4に示すように、隣り合う導入横溝部12x及び排出横溝部14xの一方の溝部12x側から他方の溝部14x側に向かって傾斜する。本例では、導入横溝部12x側から排出横溝部14x側に向かって双極板2の厚さが薄くなるように傾斜している。本例では、導入横溝部12x側を高部22h、排出横溝部14x側を低部22pと呼ぶ。
 起伏部22を構成する傾斜面は、高低差が0.1mm以上0.5mm以下である。傾斜面の高低差が0.1mm以上であることで、高部22h側で各電極104,105を引っ掛けることができるため、双極板3に対する各電極104,105の位置ずれを防止できる。また、傾斜面の高低差が0.1mm以上であることで、畝部20を介して導入横溝部12x側から排出横溝部14x側に流れる電解液の流速が大きく変化し、電解液に乱流が生じ易い。それは、電池セル100Cを組み立てて圧縮すると、図4に示すように、双極板3と隔膜101との間の間隔が、高部22h側よりも低部22p側で大きくなるため、高部22h側よりも低部22p側で流速が遅くなるためである。一方、傾斜面の高低差が0.5mmであることで、双極板3に対して各電極104,105を隙間なく配置し易い。傾斜面の高低差は、更に0.2mm以上0.4mm以下が好ましい。
 本例では、導入横溝部12xの側縁から排出横溝部14xの側縁まで連続した傾斜面としているが、両側縁の間において、傾斜面に加えて平坦面や段差を設けてもよい。また、本例では、導入横溝部12x側を高部22h、排出横溝部14xを低部22pとしているが、導入横溝部12x側を低部22p、排出横溝部14xを高部22hとしてもよい。
 双極板3の畝部20は、表面粗さが算術平均粗さRaで1.0μm未満の平滑面であってもよいし、表面粗さがRaで1.0μm以上の粗面で構成してもよい。
 ≪変形例≫
 実施形態1~3の双極板1~3は、溝部10の配置形態を以下とすることができる。
 (1)噛合型の対向櫛歯形状とする場合に、導入溝部12の櫛歯と排出溝部14の櫛歯とが縦方向(図1では上下方向)に延びており、双極板の横方向(図1では左右方向)に交互に配置される。
 (2)導入溝部12と排出溝部14とが互いに噛み合わない非噛合型の対向櫛歯形状である。例えば、導入横溝部と排出横溝部とが、双極板の横方向に間隔をあけて対向配置された形態とすることができる。非噛合型の櫛歯形状であっても、各電極104,105において、隣り合う溝部間に位置する畝部に対向配置される領域が電池反応域として機能する。
 (3)導入溝部12及び排出溝部14の少なくとも一方を連続した溝部ではなく、断続した複数の溝部とする。例えば、導入横溝部や排出横溝部を、その横方向に間隔をあけて設けられた複数の溝群とすることができる。
 〔その他のRF電池の構成部材〕
 ・正極電極及び負極電極
 正極電極104及び負極電極105は、隔膜101と双極板1~3との間に介在される。各電極104,105は、主として双極板1~3の溝部10を介して電解液が供給され、この電解液が各電極104,105に浸透、拡散して、電解液中の活物質が各電極104,105上で電池反応を行う。この目的から、各電極104,105は、多数の微細な細孔を有する多孔体で構成される。各電極104,105の構成材料は、炭素繊維を含む多孔体、例えば、カーボンフェルトやカーボンペーパーなどが好適に利用できる。公知の電極を利用できる。
 ・隔膜
 隔膜101は、例えば、陽イオン交換膜や陰イオン交換膜といったイオン交換膜が挙げられる。イオン交換膜は、(1)正極活物質のイオンと負極活物質のイオンとの隔離性に優れる、(2)電池セル100C内での電荷担体であるHイオンの透過性に優れる、といった特性を有しており、隔膜101に好適に利用できる。公知の隔膜を利用できる。
 〔電解液〕
 RF電池100に利用する電解液は、金属イオンや非金属イオンなどの活物質イオンを含む。例えば、正極活物質及び負極活物質として、価数の異なるバナジウムイオン(図5)を含むバナジウム系電解液が挙げられる。その他、正極活物質として鉄(Fe)イオン、負極活物質としてクロム(Cr)イオンを含む鉄-クロム系電解液、正極活物質としてマンガン(Mn)イオン、負極活物質としてチタン(Ti)イオンを含むマンガン-チタン系電解液などが挙げられる。電解液は、活物質に加えて、硫酸、リン酸、硝酸、塩酸から選択される少なくとも1種の酸又は酸塩を含む水溶液などを利用できる。
 〔用途〕
 実施形態の双極板は、レドックスフロー電池の双極板として好適に利用可能である。実施形態のレドックスフロー電池は、太陽光発電、風力発電などの自然エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした蓄電池に利用できる。また、実施形態のレドックスフロー電池は、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした蓄電池としても利用できる。特に、実施形態のレドックスフロー電池は、上述の目的の大容量の蓄電池に好適に利用できる。
 [試験例1]
 試験例1では、双極板に噛合型の櫛歯形状の流路を有すると共に、畝部に段差で構成される起伏部を形成したものを用い(図3を参照)、この双極板を所定位置に配置したRF電池を想定した流体シミュレーション(マイクロソフト社製のエクセル(登録商標)の表計算ソフトウェアによる数値解析)を行い、RF電池のセル抵抗を求めた。試験例1では、正極電極-隔膜-負極電極を重ねた電池セルを、双極板を備えるセルフレームで挟んだ単セル構造のRF電池とした。以下に、試験の詳細な条件を示す。
 ・双極板
 寸法:長さ200mm、幅198mm、厚み6.2mm
 溝部形状:導入溝部と排出溝部とを備える噛合型の対向櫛歯形状(図3を参照)
 横溝部について
  数:導入溝部16本×排出溝部16本
  長さL:150mm
  櫛歯の重複長さ:142mm
  溝部の幅:1.3mm
  溝部の深さ:1.0mm
  溝部の断面形状:矩形形状
  畝部の幅W:3.9mm
 縦溝部について
  長さ:170mm
 構成材料:黒鉛80質量%とマトリックス樹脂としてポリプロピレン20質量%とを圧粉成形した双極板
 ・電極
  寸法:長さ170mm、幅150mm、厚み0.5mm
  構成材料:炭素繊維とバインダー炭素とを含むカーボンフェルト
       SGLカーボンジャパン株式会社製 GDL10AA
 ・隔膜
  構成材料:デュポン株式会社製 ナフィオン(登録商標)212
 ・電解液
  組成:硫酸V水溶液(V濃度:1.7mol/L、硫酸濃度:4.3mol/L)
  流量:300mL/min
 双極板の畝部に形成される段差H(起伏部:最大高低差)を変えたときのセル抵抗(段差Hが0mmのときのセル抵抗を1として規格化)のグラフを図7に示す。図7において、横軸が段差H(mm)であり、縦軸が規格化したセル抵抗である。図7より、段差Hが0.01mmのときのセル抵抗Rsに比較して、段差Hを変えたときのセル抵抗Rxの低減率((Rs-Rx)/Rs)は、段差Hが0.1mmのとき約2%、段差Hが0.2mmのとき約4%、段差Hが0.3mmのとき約6%、段差Hが0.4mmのとき約7%、段差Hが0.5mmのとき約9%であった。つまり、段差Hが大きいほどセル抵抗が低減され、電解液の拡散性に優れることがわかる。ただし、段差Hが大き過ぎると、双極板と正極電極や負極電極との間に隙間が生じ、畝部を介して隣り合う溝部間を渡るように流れる電解液が電極内へ拡散され難く、電解液が未反応となる虞がある。また、段差Hが大きくなり、双極板と正極電極や負極電極との間の隙間が広がると、圧縮率が減少し、双極板と正極電極や負極電極との間の接触抵抗が増加するといった問題も発生し得る。よって、段差Hは、0.5mm以下とすることが好ましいと言える。
 本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。例えば、双極板の溝部の仕様(横溝部や縦溝部の大きさ、形状、個数など)、電解液の種類などを変更することができる。
 100 レドックスフロー電池(RF電池)
 100C 電池セル
 101 隔膜
 102 正極セル  103 負極セル
 104 正極電極  105 負極電極
 106 正極タンク  107 負極タンク
 108~111 配管
 112,113 ポンプ
 200 セルスタック  201 エンドプレート  202 連結部材
 120 セルフレーム  121 双極板  122 枠体
 123,124 給液孔  125,126 排液孔
 127 シール部材
 1,2,3 双極板
 10 溝部
  12 導入溝部  12i 導入口
  12x 導入横溝部  12y 導入縦溝部
  14 排出溝部  14o 排出口
  14x 排出横溝部  14y 排出縦溝部
 20 畝部  22 起伏部  22h 高部  22p 低部

Claims (7)

  1.  一面側に正極電極が配置され、他面側に負極電極が配置される電池用の双極板であって、
     当該双極板の少なくとも一面は、電解液が流通する複数の溝部と、隣り合う前記溝部間に位置する畝部とを備え、
     前記溝部は、互いに連通しない導入溝部と排出溝部とを備え、
     前記畝部は、隣り合う前記溝部の並列方向への前記正極電極又は前記負極電極の滑りを抑制する起伏部を備え、
     前記起伏部は、前記畝部の表面の少なくとも一部に設けられた粗面を備え、
     前記粗面は、表面粗さが算術平均粗さRaで0.1μm以上10μm以下である双極板。
  2.  一面側に正極電極が配置され、他面側に負極電極が配置される電池用の双極板であって、
     当該双極板の少なくとも一面は、電解液が流通する複数の溝部と、隣り合う前記溝部間に位置する畝部とを備え、
     前記溝部は、互いに連通しない導入溝部と排出溝部とを備え、
     前記畝部は、隣り合う前記溝部の並列方向への前記正極電極又は前記負極電極の滑りを抑制する起伏部を備え、
     前記起伏部は、隣り合う前記溝部の並列方向に高低差を有するように設けられた段差を備え、
     前記段差は、最大高低差が0.1mm以上0.5mm以下である双極板。
  3.  一面側に正極電極が配置され、他面側に負極電極が配置される電池用の双極板であって、
     当該双極板の少なくとも一面は、電解液が流通する複数の溝部と、隣り合う前記溝部間に位置する畝部とを備え、
     前記溝部は、互いに連通しない導入溝部と排出溝部とを備え、
     前記畝部は、隣り合う前記溝部の並列方向への前記正極電極又は前記負極電極の滑りを抑制する起伏部を備え、
     前記起伏部は、隣り合う前記溝部の一方の溝部側から他方の溝部側に向かって傾斜する傾斜面を備え、
     前記傾斜面は、高低差が0.1mm以上0.5mm以下である双極板。
  4.  前記導入溝部と前記排出溝部とは、以下の(A)から(C)のいずれかを満たす請求項1から請求項3のいずれか1項に記載の双極板。
     (A)前記導入溝部と前記排出溝部とはそれぞれ櫛歯形状の領域を備え、これらの櫛歯が互いに噛み合って対向配置される噛合型の対向櫛歯形状である。
     (B)前記導入溝部と前記排出溝部とはそれぞれ櫛歯形状の領域を備え、これらの櫛歯が互いに噛み合わない非噛合型の対向櫛歯形状である。
     (C)前記導入溝部及び前記排出溝部の少なくとも一方が断続した複数の溝部で構成される。
  5.  請求項1から請求項4のいずれか1項に記載の双極板と、前記双極板の外周に設けられる枠体とを備えるセルフレーム。
  6.  請求項5に記載のセルフレームと、正極電極と、隔膜と、負極電極とを複数積層してなるセルスタック。
  7.  請求項6に記載のセルスタックを備えるレドックスフロー電池。
PCT/JP2017/010813 2016-05-30 2017-03-16 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池 WO2017208570A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17806132.1A EP3346537B1 (en) 2016-05-30 2017-03-16 Bipolar plate, cell frame and cell stack, and redox flow battery
AU2017275919A AU2017275919B2 (en) 2016-05-30 2017-03-16 Bipolar Plate, Cell Frame, Cell Stack, and Redox Flow Battery
US15/765,081 US20180277858A1 (en) 2016-05-30 2017-03-16 Bipolar plate, cell frame, cell stack, and redox flow battery
CN201780003447.6A CN108352554B (zh) 2016-05-30 2017-03-16 双极板、电池框架、电池堆以及氧化还原液流电池
KR1020187007247A KR102272748B1 (ko) 2016-05-30 2017-03-16 쌍극판, 셀 프레임, 셀 스택, 및 레독스 플로우 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016107756A JP6108008B1 (ja) 2016-05-30 2016-05-30 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池
JP2016-107756 2016-05-30

Publications (1)

Publication Number Publication Date
WO2017208570A1 true WO2017208570A1 (ja) 2017-12-07

Family

ID=58666381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010813 WO2017208570A1 (ja) 2016-05-30 2017-03-16 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池

Country Status (8)

Country Link
US (1) US20180277858A1 (ja)
EP (1) EP3346537B1 (ja)
JP (1) JP6108008B1 (ja)
KR (1) KR102272748B1 (ja)
CN (1) CN108352554B (ja)
AU (1) AU2017275919B2 (ja)
DE (1) DE202017006767U1 (ja)
WO (1) WO2017208570A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180287209A1 (en) * 2017-04-04 2018-10-04 Panasonic Intellectual Property Management Co., Ltd. Stacked all-solid-state battery and method of manufacturing the same
CN110137527A (zh) * 2018-02-09 2019-08-16 国家能源投资集团有限责任公司 电极浆液和浆液电极以及液流电池和电池堆
WO2019167144A1 (ja) * 2018-02-27 2019-09-06 住友電気工業株式会社 セルスタック、及びレドックスフロー電池
WO2019167142A1 (ja) * 2018-02-27 2019-09-06 住友電気工業株式会社 セルスタック、及びレドックスフロー電池
WO2019234869A1 (ja) * 2018-06-06 2019-12-12 住友電気工業株式会社 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
JP2020077540A (ja) * 2018-11-08 2020-05-21 旭化成株式会社 レドックスフロー電池

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710487B (zh) * 2015-06-23 2021-03-16 住友电气工业株式会社 双极板、电池框架、电池堆和氧化还原液流电池
CN110024195A (zh) * 2016-12-06 2019-07-16 昭和电工株式会社 集电板和氧化还原液流电池
US20200075968A1 (en) * 2016-12-06 2020-03-05 Showa Denko K.K. Collector plate and redox flow battery
US10790531B2 (en) 2016-12-06 2020-09-29 Showa Denko K.K. Collector plate and redox flow battery
KR20190103204A (ko) * 2017-01-19 2019-09-04 스미토모덴키고교가부시키가이샤 쌍극판, 셀 프레임, 셀 스택 및 레독스 플로우 전지
EP3654430B1 (en) * 2017-07-13 2023-09-06 Sumitomo Electric Industries, Ltd. Bipolar plate, cell frame, battery cell, cell stack, and redox flow battery
KR20200116557A (ko) * 2018-02-05 2020-10-13 스미토모덴키고교가부시키가이샤 셀 프레임, 전지 셀, 셀 스택, 및 레독스 플로우 전지
JP7068613B2 (ja) * 2018-08-13 2022-05-17 住友電気工業株式会社 レドックスフロー電池セル及びレドックスフロー電池
CN109888321B (zh) * 2019-01-21 2020-12-11 西安交通大学 燃料梯级利用物料分离传输燃料电池及其工作方法
CN109904482B (zh) * 2019-01-21 2020-11-06 西安交通大学 一种均匀传质液流电池及其工作方法
CN109860665B (zh) * 2019-01-21 2020-08-21 西安交通大学 一种低泵功液流电池及其工作方法
CN110323456A (zh) * 2019-06-24 2019-10-11 一汽解放汽车有限公司 一种具有低接触电阻双极板的制备方法
CN114068948B (zh) * 2021-11-17 2023-10-13 吉林大学 具有仿生主动集排水功能的燃料电池双极板及集排水方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638568U (ja) * 1986-07-02 1988-01-20
JPH0896820A (ja) * 1994-09-28 1996-04-12 Toyota Motor Corp 燃料電池
JPH09283157A (ja) * 1996-04-18 1997-10-31 Mitsubishi Electric Corp 燃料電池、燃料電池の製造方法、複合ガスセパレータ、およびその製造方法
JPH11297338A (ja) * 1998-04-10 1999-10-29 Nisshinbo Ind Inc 固体高分子型燃料電地用セパレータ及びその製造方法
JP2003142128A (ja) * 2001-08-21 2003-05-16 Sony Corp 燃料電池
JP2007149467A (ja) * 2005-11-25 2007-06-14 Matsushita Electric Works Ltd 燃料電池用セパレータとその製造方法
JP2009181805A (ja) * 2008-01-30 2009-08-13 Equos Research Co Ltd 燃料電池用セパレータ
JP2014530476A (ja) * 2011-10-17 2014-11-17 ロッキード・マーチン・コーポレーション 高表面積フロー電池電極
JP2015505147A (ja) * 2011-12-20 2015-02-16 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 混合流を用いるフローバッテリ
JP2015122230A (ja) 2013-12-24 2015-07-02 住友電気工業株式会社 レドックスフロー電池
JP2015122231A (ja) * 2013-12-24 2015-07-02 住友電気工業株式会社 レドックスフロー電池
JP2015210849A (ja) 2014-04-23 2015-11-24 住友電気工業株式会社 双極板、レドックスフロー電池、及び双極板の製造方法
JP2016107756A (ja) 2014-12-04 2016-06-20 富士通株式会社 搬送設備および台車

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3657538B2 (ja) * 2001-06-12 2005-06-08 住友電気工業株式会社 レドックスフロー電池用セルスタック
JP2005243442A (ja) * 2004-02-26 2005-09-08 Mitsubishi Electric Corp 燃料電池
JP2006324129A (ja) * 2005-05-19 2006-11-30 Sumitomo Electric Ind Ltd レドックスフロー電池およびそのセル
JP2008153133A (ja) * 2006-12-19 2008-07-03 Toshiba Corp 燃料電池
US8455152B2 (en) * 2009-10-22 2013-06-04 Enerfuel, Inc. Integrated PEM fuel cell
US8968961B2 (en) * 2010-01-25 2015-03-03 Ramot At Tel-Aviv University Ltd. Method of manufacturing proton-conducting membranes
CN202084586U (zh) * 2011-06-07 2011-12-21 迪吉亚节能科技股份有限公司 电池芯结构
TWI447995B (zh) * 2011-12-20 2014-08-01 Ind Tech Res Inst 雙極板與燃料電池
CN103117402B (zh) * 2013-01-31 2015-04-29 中国东方电气集团有限公司 多孔电极组、液流半电池和液流电池堆
CN203218353U (zh) * 2013-02-04 2013-09-25 广东猛狮电源科技股份有限公司 一种蓄电池底部防滑减震垫
JP6103386B2 (ja) * 2014-01-24 2017-03-29 住友電気工業株式会社 レドックスフロー電池

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638568U (ja) * 1986-07-02 1988-01-20
JPH0896820A (ja) * 1994-09-28 1996-04-12 Toyota Motor Corp 燃料電池
JPH09283157A (ja) * 1996-04-18 1997-10-31 Mitsubishi Electric Corp 燃料電池、燃料電池の製造方法、複合ガスセパレータ、およびその製造方法
JPH11297338A (ja) * 1998-04-10 1999-10-29 Nisshinbo Ind Inc 固体高分子型燃料電地用セパレータ及びその製造方法
JP2003142128A (ja) * 2001-08-21 2003-05-16 Sony Corp 燃料電池
JP2007149467A (ja) * 2005-11-25 2007-06-14 Matsushita Electric Works Ltd 燃料電池用セパレータとその製造方法
JP2009181805A (ja) * 2008-01-30 2009-08-13 Equos Research Co Ltd 燃料電池用セパレータ
JP2014530476A (ja) * 2011-10-17 2014-11-17 ロッキード・マーチン・コーポレーション 高表面積フロー電池電極
JP2015505147A (ja) * 2011-12-20 2015-02-16 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 混合流を用いるフローバッテリ
JP2015122230A (ja) 2013-12-24 2015-07-02 住友電気工業株式会社 レドックスフロー電池
JP2015122231A (ja) * 2013-12-24 2015-07-02 住友電気工業株式会社 レドックスフロー電池
JP2015210849A (ja) 2014-04-23 2015-11-24 住友電気工業株式会社 双極板、レドックスフロー電池、及び双極板の製造方法
JP2016107756A (ja) 2014-12-04 2016-06-20 富士通株式会社 搬送設備および台車

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180287209A1 (en) * 2017-04-04 2018-10-04 Panasonic Intellectual Property Management Co., Ltd. Stacked all-solid-state battery and method of manufacturing the same
US10763550B2 (en) * 2017-04-04 2020-09-01 Panasonic Intellectual Proprety Management Co., Ltd. Stacked all-solid-state battery and method of manufacturing the same
CN110137527A (zh) * 2018-02-09 2019-08-16 国家能源投资集团有限责任公司 电极浆液和浆液电极以及液流电池和电池堆
US11411216B2 (en) 2018-02-09 2022-08-09 China Energy Investment Corporation Limited Electrode slurry, slurry electrode, flow battery and stack
WO2019167144A1 (ja) * 2018-02-27 2019-09-06 住友電気工業株式会社 セルスタック、及びレドックスフロー電池
WO2019167142A1 (ja) * 2018-02-27 2019-09-06 住友電気工業株式会社 セルスタック、及びレドックスフロー電池
JPWO2019167142A1 (ja) * 2018-02-27 2021-02-25 住友電気工業株式会社 セルスタック、及びレドックスフロー電池
JP6991468B2 (ja) 2018-02-27 2022-01-12 住友電気工業株式会社 セルスタック、及びレドックスフロー電池
US11527770B2 (en) 2018-02-27 2022-12-13 Sumitomo Electric Industries, Ltd. Cell stack and redox flow battery
WO2019234869A1 (ja) * 2018-06-06 2019-12-12 住友電気工業株式会社 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
JP2020077540A (ja) * 2018-11-08 2020-05-21 旭化成株式会社 レドックスフロー電池
JP7189734B2 (ja) 2018-11-08 2022-12-14 旭化成株式会社 レドックスフロー電池

Also Published As

Publication number Publication date
JP6108008B1 (ja) 2017-04-05
EP3346537B1 (en) 2021-06-02
CN108352554B (zh) 2021-05-11
KR102272748B1 (ko) 2021-07-06
EP3346537A4 (en) 2018-10-31
AU2017275919A1 (en) 2018-04-19
JP2017216077A (ja) 2017-12-07
KR20190015170A (ko) 2019-02-13
CN108352554A (zh) 2018-07-31
EP3346537A1 (en) 2018-07-11
DE202017006767U1 (de) 2018-04-30
US20180277858A1 (en) 2018-09-27
AU2017275919B2 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
JP6108008B1 (ja) 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池
WO2016208482A1 (ja) 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池
US9166243B2 (en) Flow battery with interdigitated flow field
WO2016189970A1 (ja) レドックスフロー電池
WO2015111313A1 (ja) レドックスフロー電池
JP2017010809A (ja) レドックスフロー電池、及びレドックスフロー電池用電極
WO2018134956A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
WO2020158623A1 (ja) 電池セル、セルスタック、及びレドックスフロー電池
WO2020158624A1 (ja) 電池セル、セルスタック、及びレドックスフロー電池
WO2020158625A1 (ja) 電池セル、セルスタック、及びレドックスフロー電池
JP2020129502A (ja) 電池セル、セルスタック、及びレドックスフロー電池
JPWO2019234867A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187007247

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15765081

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2017806132

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017275919

Country of ref document: AU

Date of ref document: 20170316

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE