WO2017195672A1 - 静電チャック、および、プラズマ処理装置 - Google Patents

静電チャック、および、プラズマ処理装置 Download PDF

Info

Publication number
WO2017195672A1
WO2017195672A1 PCT/JP2017/017005 JP2017017005W WO2017195672A1 WO 2017195672 A1 WO2017195672 A1 WO 2017195672A1 JP 2017017005 W JP2017017005 W JP 2017017005W WO 2017195672 A1 WO2017195672 A1 WO 2017195672A1
Authority
WO
WIPO (PCT)
Prior art keywords
tray
substrate
electrode
electrostatic chuck
frequency power
Prior art date
Application number
PCT/JP2017/017005
Other languages
English (en)
French (fr)
Inventor
現示 酒田
秀和 横尾
強 相原
勝 北河
渡辺 章
Original Assignee
株式会社 アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アルバック filed Critical 株式会社 アルバック
Priority to KR1020187000533A priority Critical patent/KR102073799B1/ko
Priority to CN201780002185.1A priority patent/CN107710399B/zh
Priority to JP2017564654A priority patent/JP6445191B2/ja
Publication of WO2017195672A1 publication Critical patent/WO2017195672A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Definitions

  • the present invention relates to an electrostatic chuck that electrostatically attracts a substrate, and a plasma processing apparatus that includes an electrostatic chuck and performs a predetermined process on a processing target.
  • the electrostatic chuck includes a dielectric layer and a plurality of electrodes.
  • the dielectric layer includes a tray support portion having a plate shape and a plurality of substrate support portions protruding from one surface of the tray support portion, and each substrate support portion supports one substrate.
  • One electrode is located inside each substrate support.
  • a plurality of substrates supported by the electrostatic chuck are transported to the electrostatic chuck in a state of being placed on one tray.
  • the tray has the same number of through holes as the number of substrates that can be adsorbed by the electrostatic chuck, and each substrate is disposed on the tray so as to close one through hole.
  • each substrate support of the dielectric layer passes through one through hole.
  • the substrate is transferred from the tray to the substrate support portion, and the tray is supported by the tray support portion.
  • the tray since the tray is also exposed to the plasma together with the plurality of substrates, the tray is heated by the plasma. Thereby, a board
  • substrate is heated by the radiant heat from a tray.
  • the result of etching on the substrate may be affected by the heating of the substrate by radiant heat. Therefore, it is desired to suppress the heating of the tray.
  • An object of the present invention is to provide an electrostatic chuck and a plasma processing apparatus capable of suppressing heating of a tray.
  • the electrostatic chuck has a plate-like tray support part having a surface, a dielectric layer comprising a substrate support part protruding from the surface, and is located inside the substrate support part.
  • the plasma processing apparatus is a plasma processing apparatus including an electrostatic chuck and a chamber that partitions a space in which the electrostatic chuck is accommodated, and the electrostatic chuck is the electrostatic chuck.
  • the electrostatic chuck attracts not only the substrate to be processed but also the tray on which the substrate is placed. Therefore, when the tray is exposed to plasma, an object in which the tray and the electrostatic chuck are joined, in other words, an object having a heat capacity obtained by combining the heat capacity of the tray and the heat capacity of the electrostatic chuck is exposed to the plasma. On the other hand, when the tray is exposed to plasma without being attracted to the electrostatic chuck, the tray has only the heat capacity of the tray alone. Therefore, according to the above-described configuration, an object having a heat capacity larger than the heat capacity of the tray alone is exposed to the plasma by the amount of heat capacity of the electrostatic chuck as compared with the structure in which the tray is not attracted. Heating of the tray included in the object can be suppressed.
  • the tray electrode may not overlap the substrate electrode in the thickness direction of the dielectric layer.
  • the electrostatic chuck can be used as an electrostatic chuck mounted on a plasma etching apparatus which is an example of a plasma processing apparatus.
  • the substrate electrode provided in the electrostatic chuck can be used as an electrode for applying a bias potential to the substrate.
  • the substrate electrode and the tray electrode are coupled, that is, from the substrate electrode to the tray electrode. Supply of high frequency power can be suppressed.
  • the tray support portion is a cooling gas passage through which a cooling gas for cooling the tray flows, and is located in a portion of the surface that is not covered by the substrate support portion.
  • the cooling gas flow path having a plurality of openings may be provided.
  • the electrostatic chuck covers the portion of the surface that is not covered by the substrate support portion to block the plurality of openings, and is cooled by the cooling gas so as to cool the tray. You may further provide the sealing layer comprised by these.
  • the tray can be cooled via the sealing layer while suppressing the leakage of the cooling gas from between the electrostatic chuck and the tray by the sealing layer.
  • the substrate support portion is one of a plurality of substrate support portions
  • the substrate electrode is one of a plurality of substrate electrodes
  • the plurality of substrate electrodes are Are connected in parallel to each other to form a parallel circuit.
  • a high-frequency power supply for supplying high-frequency power to each of the substrate electrodes, and further supplying the high-frequency power of 400 kHz to 4 MHz to each of the substrate electrodes.
  • the inventors of the present application have found the following matters while intensively studying high-frequency power supplied to a plurality of substrate electrodes. That is, the present inventors supply high frequency power having a frequency exceeding this range to each substrate electrode if the frequency of the high frequency power supplied to each of the plurality of substrate electrodes is 400 kHz or more and 4 MHz or less. It has been found that the temperature distribution is less likely to occur between the plurality of substrates exposed to the plasma compared to the case of performing the above.
  • the plasma processing apparatus since the plasma processing apparatus includes a high frequency power source that supplies high frequency power of 400 kHz or more and 4 MHz or less to each substrate electrode, the occurrence of temperature distribution among a plurality of substrates can be suppressed.
  • the tray electrode is connected in series with a suppression unit that applies a DC voltage to the tray electrode and suppresses high-frequency power from propagating to the tray electrode.
  • the series tray circuit may be connected in parallel to the plurality of substrate electrodes to form a parallel circuit.
  • the plasma processing apparatus further includes a DC power supply that applies a DC voltage to each of the series tray circuit and the plurality of substrate electrodes, and the high-frequency power supply is separately applied to the series tray circuit and the plurality of substrate electrodes. High frequency power may be supplied.
  • the block diagram which shows the structure of the plasma etching apparatus in one Embodiment which actualized the plasma processing apparatus of this invention as a plasma etching apparatus.
  • Sectional drawing which shows the cross-section in one Embodiment which actualized the electrostatic chuck of this invention.
  • the top view which shows the planar structure of the dielectric material layer with which an electrostatic chuck is provided.
  • the block diagram which shows typically the electric structure for supplying electric power to an electrostatic chuck.
  • Sectional drawing which shows the cross-section of a tray with the cross-section of the board
  • the top view for demonstrating the supply point of the electric power in a test example.
  • Sectional drawing which shows the cross-section in the modification of an electrostatic chuck.
  • the plasma etching apparatus 10 includes a chamber body 11 having a bottomed cylindrical shape, and an upper opening of the chamber body 11 is sealed with a quartz plate 12.
  • the chamber main body 11 and the quartz plate 12 constitute an example of a chamber.
  • the chamber space 11S that is a space defined by the chamber main body 11 and the quartz plate 12 includes a plurality of substrates S to be etched and a plurality of substrates.
  • the electrostatic chuck 13 for attracting the tray T on which the substrate S is placed and the stage 14 for supporting the electrostatic chuck 13 are accommodated.
  • the electrode built in the electrostatic chuck 13 is connected to a suction power source 15 (DC power source) and a bias power source 16 (high frequency power source).
  • the suction power source 15 applies a DC voltage to the electrodes
  • the bias power source 16 supplies high-frequency power of 400 kHz to 4 MHz to the electrodes.
  • the cooling chuck 13 is connected to a cooling gas supply unit 17 that supplies a cooling gas to a cooling gas flow path of the electrostatic chuck 13.
  • the cooling gas supply unit 17 is, for example, a mass flow controller that supplies helium gas that is a cooling gas.
  • the electrostatic chuck 13 is connected to a refrigerant supply unit 18 that supplies the refrigerant to the refrigerant flow path of the electrostatic chuck 13.
  • the refrigerant supply unit 18 is, for example, a pump that circulates cooling water that is a refrigerant in the refrigerant flow path.
  • An ICP antenna 21 is located on the opposite side of the quartz plate 12 from the chamber space 11S.
  • the ICP antenna 21 is composed of, for example, a two-stage coil having a spiral shape that is wound twice and a half in the circumferential direction of the substrate S.
  • the ICP antenna 21 has an input terminal 21I that is an end portion on the center side in a spiral shape and an output terminal 21O that is an outer end portion in the spiral shape.
  • an antenna power source 22 that outputs high-frequency power having a frequency of 13.56 MHz is connected to the input terminal 21I of the ICP antenna 21.
  • the exhaust port 11P1 formed in the chamber body 11 is connected to an exhaust unit 31 that exhausts the fluid in the chamber space 11S.
  • the exhaust unit 31 includes, for example, a pressure adjustment valve that adjusts the pressure in the chamber space 11S and various pumps.
  • the gas supply port 11P2 formed in the chamber body 11 is connected to an etching gas supply unit 32 that supplies an etching gas to the chamber space 11S.
  • the etching gas supply unit 32 is, for example, a mass flow controller that supplies various gases into the chamber space 11S.
  • the substrate S when the substrate S is etched, the substrate S is first placed on the electrostatic chuck 13, and the exhaust unit 31 reduces the pressure of the chamber space 11S to a predetermined pressure.
  • the cooling gas supply unit 17 supplies the cooling gas to the electrostatic chuck 13, and the refrigerant supply unit 18 supplies the refrigerant to the electrostatic chuck 13.
  • the etching gas supply unit 32 supplies the etching gas to the chamber space 11S, and then the antenna power supply 22 supplies high frequency power to the ICP antenna 21, whereby plasma P is generated from the etching gas.
  • the suction power source 15 applies a DC voltage to the electrostatic chuck 13, and the bias power source 16 supplies high-frequency power to the electrostatic chuck 13. As a result, the substrate S is etched while being attracted to the electrostatic chuck 13.
  • FIG. 2 hatching is omitted in a part of the electrostatic chuck for the convenience of illustrating the electrode and the cooling gas flow path of the electrostatic chuck. Moreover, in FIG. 2, the cooling gas flow path is schematically shown by a solid line.
  • the electrostatic chuck 13 includes a dielectric layer 41, a substrate electrode 42, and a tray electrode 43.
  • the dielectric layer 41 includes a tray support portion 41a and a plurality of substrate support portions 41b.
  • the tray support portion 41a has a plate shape having a surface 41S, and each substrate support portion 41b protrudes from the surface 41S. Yes.
  • the plurality of substrate electrodes 42 are positioned one by one inside each substrate support portion 41b, and are electrodes for adsorbing the substrate S to the substrate support portion 41b.
  • each substrate electrode 42 is located inside a substrate support portion 41b different from the substrate support portion 41b in which all other substrate electrodes 42 are located.
  • the tray electrode 43 is an electrode for adsorbing the tray T on which the plurality of substrates S are placed on the tray support portion 41a, located inside the tray support portion 41a.
  • the portion of the tray support portion 41a that is not covered by the substrate support portion 41b in the surface 41S is the tray placement surface 41aS on which the tray T is placed indirectly.
  • the tray placement surface 41aS has a size capable of placing the tray T in a plan view facing the surface 41S.
  • the end protruding from the tray support portion 41a is the tip, and the surface constituting the tip is the substrate placement surface 41bS.
  • the substrate placement surface 41bS has a size capable of placing a single substrate S in a plan view facing the surface 41S.
  • the distance between the tray mounting surface 41aS and the substrate mounting surface 41bS is larger than the thickness of the tray T.
  • the protruding amount of the substrate support portion 41b from the tray support portion 41a is larger than the thickness of the tray T.
  • the dielectric layer 41 is made of a dielectric material such as ceramic.
  • the dielectric layer 41 is, for example, a stacked body in which a plurality of dielectric sheets are stacked.
  • the substrate electrode 42 is a metal sheet formed of a metal such as tungsten.
  • the size of the substrate electrode 42 is preferably substantially equal to the size of the substrate placement surface 41bS. The larger the ratio of the size of the substrate electrode 42 to the size of the substrate placement surface 41bS, the greater the force that attracts the substrate S to the substrate support portion 41b.
  • the substrate electrode 42 is located closer to the tip of the substrate support portion 41b.
  • the distance between the substrate electrode 42 and the substrate mounting surface 41bS is shortened as compared with the configuration in which the substrate electrode 42 is positioned closer to the surface 41S. be able to. Therefore, charge is easily exchanged between the substrate electrode 42 and the substrate S, and as a result, the adsorption of the substrate S and the desorption of the substrate S by the substrate support portion 41b are facilitated.
  • the distance between the substrate electrode 42 and the substrate placement surface 41bS is preferably about 0.3 mm to 1.9 mm, for example.
  • the tray electrode 43 is a metal sheet formed of a metal such as tungsten.
  • the size of the tray electrode 43 is preferably substantially equal to the size of the surface 41S. The greater the ratio of the size of the tray electrode 43 to the size of the surface 41S, the greater the force that attracts the substrate S to the tray support 41a.
  • the tray electrode 43 In the thickness direction of the dielectric layer 41, the tray electrode 43 is located closer to the surface 41S of the tray support portion 41a. Thereby, in the thickness direction of the dielectric layer 41, the tray electrode 43 and the tray placement surface 41aS are compared with the configuration in which the tray electrode 43 is positioned closer to the surface opposite to the surface 41S. The distance between them can be shortened. Therefore, charge is easily exchanged between the tray electrode 43 and the tray T, and as a result, the tray support portion 41a can easily attract and release the tray T.
  • the distance between the tray electrode 43 and the tray mounting surface 41aS is preferably about 0.3 mm to 1.9 mm, for example.
  • the distance between the tray electrode 43 and each substrate electrode 42 is the distance between the tray electrode 43 and the tray placement surface 41aS and the substrate electrode 42. It is larger than the distance between the substrate placement surface 41bS.
  • the tray support 41a has a cooling gas passage 45 through which a cooling gas for cooling the tray T flows.
  • the cooling gas flow path 45 has a plurality of tray openings 45a located in a portion of the surface 41S that is not covered by the substrate support portion 41b.
  • the cooling gas channel 45 has a plurality of tray openings 45a located on the tray placement surface 41aS.
  • the cooling gas channel 45 has a plurality of substrate openings 45b on each substrate placement surface 41bS.
  • the cooling gas channel 45 has a connection opening 45c located at a portion other than the surface 41S in the outer peripheral surface of the dielectric layer 41, and the above-described cooling gas supply unit 17 is connected to the connection opening 45c. ing.
  • the cooling gas channel 45 is supplied with cooling gas from the cooling gas supply unit 17.
  • the electrostatic chuck 13 further includes a sealing layer 46.
  • the sealing layer 46 covers a portion of the surface 41S that is not covered by the substrate support portion 41b, thereby closing the plurality of tray openings 45a included in the cooling gas channel 45 and being cooled by the cooling gas.
  • the tray T is configured to be cooled.
  • the sealing layer 46 covers the entire tray mounting surface 41aS.
  • the sealing layer 46 has a through hole in a portion overlapping the substrate support portion 41b in a plan view facing the surface 41S.
  • the sealing layer 46 may be composed of a plurality of elements, and a portion of the surface 41S where the substrate support portion 41b is not located may be covered with the plurality of elements.
  • the tray T is cooled via the sealing layer 46 while the sealing layer 46 prevents the cooling gas from leaking between the electrostatic chuck 13 and the tray T. be able to.
  • the sealing layer 46 has higher elasticity than the dielectric layer 41, and the forming material of the sealing layer 46 is, for example, a resin such as silicone rubber.
  • the forming material of the sealing layer 46 is a material that is cooled by the cooling gas, and the sealing layer 46 extends to the surface of the sealing layer 46 opposite to the surface in contact with the tray support portion 41a. It has a thickness enough to be cooled by the cooling gas.
  • the cooling gas is discharged toward the sealing layer 46 from the plurality of tray openings 45a, thereby cooling the sealing layer 46. Therefore, the tray T can be indirectly cooled via the sealing layer 46. it can. Further, since the cooling gas is discharged toward the substrate S from the plurality of substrate openings 45b, the substrate S is cooled by the cooling gas.
  • the electrostatic chuck 13 includes a support layer 47 that supports the dielectric layer 41.
  • the support layer 47 has a plate shape larger than that of the dielectric layer 41 in a plan view facing the surface 41 ⁇ / b> S, and protrudes from the outer edge of the dielectric layer 41 over the entire circumferential direction of the dielectric layer 41.
  • the support layer 47 includes therein a refrigerant flow path 47a through which a refrigerant flows, and the above-described refrigerant supply unit 18 is connected to the refrigerant flow path 47a.
  • the material for forming the support layer 47 is, for example, a metal such as aluminum.
  • the tray support 41a has a disk shape in a plan view facing the surface 41S of the tray support 41a.
  • the dielectric layer 41 includes six substrate support portions 41b, and each substrate support portion 41b has a cylindrical shape.
  • the six substrate support portions 41b protrude from the surface 41S at positions where the distances from the center of the surface 41S are substantially equal to each other.
  • the electrostatic chuck 13 includes six substrate electrodes 42.
  • each substrate electrode 42 has a disk shape, and the six substrate electrodes 42 are arranged at positions where the distances from the center of the surface 41S are substantially equal to each other. ing.
  • Each substrate electrode 42 is located inside a substrate support portion 41b different from the substrate support portion 41b where all other substrate electrodes 42 are located.
  • Each substrate electrode 42 is connected to, for example, a wiring exposed to the outside of the electrostatic chuck 13 through the inside of the electrostatic chuck 13, and the tray electrode 43 is, for example, static like the substrate electrode 42.
  • the wiring is exposed to the outside of the electrostatic chuck 13 through the inside of the electric chuck 13.
  • the six substrate electrodes 42 and the tray electrode 43 are connected in parallel to each other, for example, by connecting wirings connected to the respective electrodes to each other outside the electrostatic chuck 13.
  • FIG. 4 schematically shows an electrical configuration for supplying electric power to the electrostatic chuck among the electrical configurations included in the plasma etching apparatus 10.
  • the six substrate electrodes 42 are connected in parallel to each other to form a parallel circuit.
  • the plasma etching apparatus 10 includes a bias power supply 16, and the bias power supply 16 supplies high frequency power of 400 kHz or more and 4 MHz or less to the six substrate electrodes 42.
  • the frequency of the high-frequency power supplied to each of the six substrate electrodes 42 is 400 kHz or more and 4 MHz or less, compared with the case where high-frequency power having a frequency exceeding this range is supplied to each substrate electrode. Temperature distribution is less likely to occur between the six substrates S exposed to P.
  • the tray electrode 43 is connected in series with an inductor 51, which is an example of a suppressing unit, to form a series tray circuit.
  • the tray electrode 43 and the inductor 51 may be connected to each other outside the electrostatic chuck 13 or may be connected to each other inside the electrostatic chuck 13.
  • the inductor 51 has a function of applying a DC voltage to the tray electrode 43 and suppressing high-frequency power from propagating to the tray electrode 43.
  • the series tray circuit is connected in parallel outside the six substrate electrodes 42 and the electrostatic chuck 13 to form a parallel circuit.
  • the suction power supply 15 applies a DC voltage to each of the series tray circuit and the six substrate electrodes 42, and the bias power supply 16 supplies high-frequency power to each of the series tray circuit and the plurality of substrate electrodes 42.
  • the suction power supply 15 is connected to a parallel circuit including six substrate electrodes 42 and a tray electrode 43 through a filter 52.
  • the filter 52 is a low-pass filter, and has a function of suppressing the high frequency power output from the bias power source 16 from being supplied to the suction power source 15.
  • the suction power supply 15 applies a positive DC voltage to the six substrate electrodes 42 and the tray electrode 43, but may apply a negative DC voltage.
  • the tray T has a disk shape including the front surface TS and the back surface TR.
  • the tray T has a plurality of, for example, six through holes Ta penetrating between the front surface TS and the back surface TR.
  • the opening on the front surface TS is larger than the opening on the back surface TR.
  • the opening on the front surface TS is larger than the substrate S
  • the opening on the back surface TR is smaller than the substrate S.
  • each of the opening on the front surface TS and the opening on the back surface TR is larger than the substrate support portion 41b.
  • Each through hole Ta is partitioned by a two-stage cylinder surface Tb, and the cylinder surface Tb has a stepped portion Tc between the first-stage cylinder surface and the second-stage cylinder surface.
  • the tray T supports one substrate S at the step portion Tc of each through hole Ta.
  • each substrate support portion 41b passes through a through hole Ta different from the through hole Ta through which all other substrate support portions 41b pass, whereby the substrate S placed on the stepped portion Tc of the tray T is It is mounted on the substrate mounting surface 41bS of the substrate support portion 41b.
  • the suction power source 15 applies a DC voltage to each of the substrate electrode 42 and the tray electrode 43.
  • the substrate S is attracted to each substrate support portion 41b, and the tray T is attracted to the tray support portion 41a.
  • the electrostatic chuck 13 attracts the tray T in addition to the substrate S, when the tray T is exposed to the plasma P, an object in which the tray T and the electrostatic chuck 13 are joined, in other words, the heat capacity of the tray T An object having a heat capacity combined with the heat capacity of the electrostatic chuck 13 is exposed to the plasma P.
  • the tray T when the tray T is exposed to the plasma P in a state where it is not attracted to the electrostatic chuck 13, the tray T has only a heat capacity due to the tray alone. Therefore, according to the above-described configuration, an object having a larger heat capacity than the heat capacity of the tray T alone is exposed to the plasma P by the heat capacity of the electrostatic chuck 13 as compared with the structure in which the tray T is not attracted. Therefore, heating of the tray T included in this object can be suppressed.
  • the suction power supply 15 stops the application of the DC voltage to each of the substrate electrode 42 and the tray electrode 43. Thereby, the adsorption
  • the substrate support portion 41b is removed from the through hole Ta of the tray T, whereby the substrate S placed on the substrate placement surface 41bS of the substrate support portion 41b is removed. And placed on the stepped portion Tc of the tray T.
  • the temperature of the fourth substrate S4 was 93 ° C to 98 ° C
  • the temperature of the fifth substrate S5 was 98 ° C to 104 ° C
  • the temperature of the sixth substrate was 98 ° C to 104 ° C. .
  • Test Example 2 In Test Example 2, etching was performed under the same conditions as in Test Example 1 except that the frequency of the bias high-frequency power was changed to 12.5 MHz, and the temperatures of the first substrate S1 to the sixth substrate S6 were measured.
  • the temperature of the first substrate S1 is 126 ° C. to 132 ° C.
  • the temperature of the second substrate S2 is 110 ° C. to 115 ° C.
  • the temperature of the third substrate S3 is 121 ° C. to 126 ° C.
  • the temperature of the fourth substrate S4 is 98 ° C. to 104 ° C.
  • the temperature of the fifth substrate S5 is 110 ° C. to 115 ° C.
  • the temperature of the sixth substrate S6 is 110 ° C. to 115 ° C. It was.
  • Test Example 1 it was confirmed that temperature distribution was less likely to occur between the six substrates exposed to plasma compared to Test Example 2.
  • the effects listed below can be obtained.
  • the tray T can be cooled through the sealing layer 46 while the sealing layer 46 prevents the cooling gas from leaking between the electrostatic chuck 13 and the tray T.
  • the bias power supply 16 supplies high-frequency power of 400 kHz or more and 4 MHz or less to each substrate electrode 42, the occurrence of temperature distribution among the plurality of substrates S can be suppressed.
  • the filter 52 connected to the suction power supply 15 and the parallel circuit may be omitted.
  • the series tray circuit included in the parallel circuit includes the inductor 51, the suction power supply 15 applies a DC voltage to each of the substrate electrode 42 and the series tray circuit in the parallel circuit, and is used for biasing.
  • the power supply 16 supplies high-frequency power to each of the substrate electrode 42 and the series tray circuit, an effect equivalent to the above-described (4) can be obtained.
  • the suppression unit that constitutes the series circuit is not limited to the inductor 51 described above, but may be a capacitor or a combination of an inductor and a capacitor. Even with such a configuration, it is possible to obtain the same effect as the above-described (4).
  • the plasma etching apparatus 10 may not include the inductor 51. In such a configuration, since the bias potential is also applied to the tray T, the tray T is easily etched. However, as long as the tray T is attracted to the electrostatic chuck 13, the same effect as the above (1) can be obtained.
  • a plurality of substrate electrodes 42 and series tray circuits may not constitute one parallel circuit.
  • each substrate electrode 42 and tray electrode 43 are connected to different suction power sources, and each substrate electrode 42 is connected to each different bias power source, each substrate electrode A DC voltage can be applied to each of the electrode 42 and the tray electrode 43, and a bias potential can be applied to each substrate electrode 42.
  • since high frequency power is not supplied to the tray electrode 43 it is possible to omit the inductor 51 connected in series to the tray electrode 43.
  • the plurality of substrate electrodes 42 constitute a parallel circuit, and the plasma etching apparatus 10 includes a suction power source for applying a DC voltage to each of the plurality of substrate electrodes 42 and a high frequency power for each of the plurality of substrate electrodes 42. It is also possible to have a configuration including a bias power source for supplying a DC voltage and a DC power source for applying a DC voltage to the tray electrode 43. Even in such a configuration, since the high-frequency power is not supplied to the tray electrode 43, the inductor 51 connected in series to the tray electrode 43 can be omitted.
  • the frequency of the high-frequency power output from the bias power supply 16 may be less than 400 kHz or greater than 4 MHz. Even in such a configuration, since a bias potential is applied to each substrate electrode 42, it is possible to draw positive ions in the plasma toward each substrate electrode 42.
  • the electrostatic chuck 13 does not have to include the sealing layer 46, and even in such a configuration, the substrate electrode 42 positioned inside the substrate support portion 41b and the tray support portion 41a are positioned. If the tray electrode 43 is provided, the same effect as the above-described (1) can be obtained.
  • FIG. 8 shows a cross-sectional structure in a modified example of the electrostatic chuck 13.
  • the cooling gas flow path 45 included in the dielectric layer 41 is not shown for convenience of illustration.
  • the tray electrode 61 may not overlap the plurality of substrate electrodes 42 in the thickness direction of the dielectric layer 41, that is, in plan view. That is, the tray electrode 61 has a plurality of through holes 61a that penetrate the tray electrode 61 along the thickness direction of the dielectric layer 41, and each through hole 61a faces the surface 41S of the tray support portion 41a. In the plan view, it is only necessary to be formed at a position overlapping with one substrate electrode 42. And the through-hole 61a should just have the magnitude
  • the following effects can be obtained. (5) When high-frequency power for applying a bias potential to the substrate electrode 42 is supplied to the substrate electrode 42, the substrate electrode 42 and the tray electrode 43 are coupled, that is, the substrate electrode. The supply of high frequency power from 42 to the tray electrode 43 can be suppressed.
  • the tray electrode 43 includes a plurality of electrode elements, and each electrode element has a dielectric
  • the configuration may be such that the body layer 41 is positioned so as not to overlap the substrate electrode 42 in the thickness direction of the body layer 41. Even with this configuration, it is possible to obtain the same effect as the above-described (5).
  • the electrostatic chuck 13 may be provided with at least one substrate support portion 41b and at least one substrate electrode 42 and the same number of substrate electrodes 42 as the substrate support portion 41b. If the electrostatic chuck 13 includes at least one substrate support portion 41b, and the same number of substrate electrodes 42, tray support portions 41a, and tray electrodes 43 as the substrate support portions 41b, the above-described (1) is applied. You can get the effect.
  • the substrate electrode 42 may be composed of a pair of electrodes having different polarities.
  • one substrate electrode may be composed of a pair of a positive electrode and a negative electrode. Then, it is only necessary that one pair of the positive electrode and the negative electrode is located inside one substrate support portion 41b.
  • the plasma etching apparatus 10 only needs to include a DC power source that applies a positive voltage to the positive electrode and a DC power source that applies a negative voltage to the negative electrode.
  • the plasma etching apparatus 10 is not limited to the inductively coupled plasma etching apparatus that generates the plasma P using the ICP antenna 21, but is a capacitively coupled plasma that generates plasma using an electrode located inside the chamber body 11.
  • An etching apparatus may be used.
  • the plasma processing apparatus to which the electrostatic chuck 13 is applied is not limited to the plasma etching apparatus 10 described above, but may be a sputtering apparatus or a CVD apparatus.
  • SYMBOLS 10 Plasma etching apparatus, 11 ... Chamber main body, 11P1 ... Exhaust port, 11P2 ... Gas supply port, 11S ... Chamber space, 12 ... Quartz plate, 13 ... Electrostatic chuck, 14 ... Stage, 15 ... Power supply for adsorption, 16 ... Bias power source, 17 ... cooling gas supply unit, 18 ... refrigerant supply unit, 21 ... ICP antenna, 21I ... input terminal, 21O ... output terminal, 22 ... antenna power source, 31 ... exhaust unit, 32 ... etching gas supply unit, 41 ... Dielectric layer, 41a ... Tray support, 41aS ... Tray mounting surface, 41b ...
  • Substrate support 41bS ... Substrate mounting surface, 41S, TS ... Surface, 42 ... Substrate electrode, 43, 61 ...
  • Electrode 45 cooling gas flow path 45a ... tray opening 45b ... substrate opening 45c ... connection opening 46 ... sealing layer 47 ... support layer 47a ... coolant flow , 51 ... Inductor, 52 ... Filter, 61a, Ta ... through hole, S ... substrate, T ... tray, Tb ... cylindrical surface, Tc ... stepped portion, TR ... backside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

静電チャック(13)は、表面(41S)を有した板状を有するトレイ支持部(41a)と、表面(41S)から突出する基板支持部(41b)とを備える誘電体層(41)と、基板支持部(41b)の内部に位置し、基板を基板支持部(41b)に吸着するための基板用電極(42)と、トレイ支持部(41a)の内部に位置し、基板が載置されるトレイをトレイ支持部(41a)に吸着するためのトレイ用電極(43)と、を備える。

Description

静電チャック、および、プラズマ処理装置
 本発明は、基板を静電的に吸着する静電チャック、および、静電チャックを備え、処理対象に所定の処理を行うプラズマ処理装置に関する。
 複数の基板を一度に吸着することが可能な静電チャックを備えるエッチング装置が知られている。静電チャックは、誘電体層と複数の電極とを備えている。誘電体層は、板状を有するトレイ支持部と、トレイ支持部の1つの面から突出した複数の基板支持部とを備え、各基板支持部は、1枚の基板を支持する。電極は、各基板支持部の内部に1つずつ位置している。
 静電チャックに支持される複数の基板は、1つのトレイに載せられた状態で静電チャックまで搬送される。トレイは、静電チャックが吸着することの可能な基板の数と同数の貫通孔を有し、各基板は、1つの貫通孔を塞ぐようにトレイに配置される。
 トレイが静電チャックの上に配置されるとき、誘電体層の各基板支持部が、1つの貫通孔を通る。これにより、トレイから基板支持部に基板が受け渡され、かつ、トレイはトレイ支持部に支持される。
 そして、静電チャックが収容される空間内にプラズマが生成され、電極に電圧が印加されることによって、静電チャックが基板を吸着し、かつ、基板がエッチングされる。基板のエッチングが終了すると、トレイがトレイ支持部から離れることによって、基板が静電チャックからトレイに受け渡される(例えば、特許文献1参照)。
特開2011-3913号公報
 ところで、複数の基板とともにトレイもプラズマに曝されるため、トレイがプラズマによって加熱される。これにより、トレイからの輻射熱によって基板が加熱される。基板におけるエッチングの結果は、輻射熱による基板の加熱によって影響される場合がある。そのため、トレイの加熱を抑えることが望まれている。
 こうした事情は、エッチング装置に限らず、上述した静電チャックを備えるCVD装置、および、スパッタ装置などのプラズマ処理装置においても共通している。
 本発明は、トレイの加熱を抑えることを可能とした静電チャック、および、プラズマ処理装置を提供することを目的とする。
 本発明の一態様は静電チャックである。静電チャックは、表面を有した板状を有するトレイ支持部と、前記表面から突出する基板支持部とを備える誘電体層と、前記基板支持部の内部に位置し、基板を前記基板支持部に吸着するための基板用電極と、前記トレイ支持部の内部に位置し、前記基板が載置されるトレイを前記トレイ支持部に吸着するためのトレイ用電極と、を備える。
 本発明の他の態様はプラズマ処理装置である。プラズマ処理装置は、静電チャックと、前記静電チャックが収容される空間を区画するチャンバと、を備えるプラズマ処理装置であって、前記静電チャックが、上記静電チャックである。
 上記構成によれば、静電チャックは、処理の対象である基板に加えて、基板が載置されるトレイも吸着する。そのため、トレイがプラズマに曝されるときには、トレイと静電チャックとが接合した物体、言い換えれば、トレイによる熱容量と静電チャックの熱容量とを合わせた熱容量を有した物体がプラズマに曝される。一方で、トレイが静電チャックに吸着されていない状態でプラズマに曝されたときには、トレイは、トレイ単体による熱容量しか有しない。それゆえに、上述した構成によれば、トレイを吸着しない構成と比べて、静電チャックが有する熱容量の分だけ、トレイ単体における熱容量よりも大きい熱容量を有した物体がプラズマに曝されるため、この物体に含まれるトレイの加熱を抑えることができる。
 上記静電チャックにおいて、前記トレイ用電極は、前記誘電体層の厚さ方向において、前記基板用電極に重ならなくてもよい。
 静電チャックは、プラズマ処理装置の一例であるプラズマエッチング装置に搭載される静電チャックとして用いられることが可能である。静電チャックがエッチング装置に搭載されたときには、静電チャックの備える基板用電極を、基板にバイアス電位を印加するための電極として用いることが可能である。
 上記構成によれば、基板用電極にバイアス電位を印加するための高周波電力が供給されたときに、基板用電極とトレイ用電極とがカップリングすること、すなわち、基板用電極からトレイ用電極に高周波電力が供給されることを抑えられる。
 上記静電チャックにおいて、前記トレイ支持部は、前記トレイを冷却するための冷却ガスが流れる冷却ガス流路であって、前記表面の中で、前記基板支持部によって覆われていない部分に位置する複数の開口を有した前記冷却ガス流路を有してもよい。前記静電チャックは、前記表面の中で、前記基板支持部によって覆われていない部分を覆うことによって前記複数の開口を塞ぎ、かつ、前記冷却ガスによって冷却されることで前記トレイを冷却するように構成された封止層をさらに備えてもよい。
 上記構成によれば、冷却ガスが静電チャックとトレイとの間から漏れることを封止層によって抑えつつ、封止層を介してトレイを冷却することができる。
 上記処理装置において、前記基板支持部は、複数の基板支持部のうちの1つであり、前記基板用電極は、複数の基板用電極のうちの1つであり、複数の前記基板用電極は、互いに並列に接続されて並列回路を構成している。前記各基板用電極に各別に高周波電力を供給する高周波電源であって、400kHz以上4MHz以下の高周波電力を前記各基板用電極に供給する前記高周波電源をさらに備える。
 本願発明者らは、複数の基板用電極に供給する高周波電力について鋭意研究する中で、以下の事項を見出した。すなわち、本願発明者らは、複数の基板用電極の各々に供給する高周波電力の周波数が、400kHz以上4MHz以下であれば、この範囲を超えた周波数を有した高周波電力を各基板用電極に供給するときと比べて、プラズマに曝された複数の基板間において温度の分布が生じにくくなることを見出した。
 この点で、上記構成によれば、プラズマ処理装置が400kHz以上4MHz以下の高周波電力を各基板用電極に供給する高周波電源を備えるため、複数の基板間において温度の分布が生じることが抑えられる。
 上記プラズマ処理装置において、前記トレイ用電極は、前記トレイ用電極に直流電圧を印加させ、かつ、前記トレイ用電極に高周波電力が伝搬することを抑える抑制部と直列に接続されて直列トレイ回路を構成し、前記直列トレイ回路は、複数の前記基板用電極と並列に接続されて並列回路を構成してもよい。前記プラズマ処理装置は、前記直列トレイ回路および複数の前記基板用電極に各別に直流電圧を印加する直流電源をさらに備え、前記高周波電源は、前記直列トレイ回路および複数の前記基板用電極に各別に高周波電力を供給してもよい。
 上記構成によれば、並列回路を構成する複数の基板用電極およびトレイ用電極の各々に直流電圧を印加しつつ、トレイ用電極に高周波電力が伝搬することを抑えることができる。
本発明のプラズマ処理装置をプラズマエッチング装置として具体化した一実施形態におけるプラズマエッチング装置の構成を示すブロック図。 本発明の静電チャックを具体化した一実施形態における断面構造を示す断面図。 静電チャックが備える誘電体層の平面構造を示す平面図。 静電チャックに電力を供給するための電気的構成を模式的に示すブロック図。 トレイの断面構造をトレイに載置された基板の断面構造とともに示す断面図。 静電チャックの作用を説明するための作用図。 試験例における電力の供給点を説明するための平面図。 静電チャックの変形例における断面構造を示す断面図。
 図1から図7を参照して、静電チャック、および、プラズマ処理装置を具体化した一実施形態を説明する。以下では、プラズマ処理装置をプラズマエッチング装置として具体化した例を説明する。また以下では、プラズマエッチング装置の構成、静電チャックの構成、静電チャックの作用、および、試験例を順番に説明する。
 [プラズマエッチング装置の構成]
 図1を参照して、プラズマエッチング装置の構成を説明する。
 図1が示すように、プラズマエッチング装置10は、有底筒体形状を有したチャンバ本体11を備え、チャンバ本体11の上側開口は、石英板12によって封止されている。これらチャンバ本体11と石英板12とは、チャンバの一例を構成し、チャンバ本体11と石英板12によって区画される空間であるチャンバ空間11Sには、エッチングの対象である複数の基板Sと、複数の基板Sが載置されるトレイTとを吸着する静電チャック13と、静電チャック13を支持するステージ14とが収容されている。
 静電チャック13に内蔵された電極は、吸着用電源15(直流電源)およびバイアス用電源16(高周波電源)に接続されている。吸着用電源15は、直流電圧を電極に印加し、バイアス用電源16は、400kHz以上4MHz以下の高周波電力を電極に供給する。
 静電チャック13には、静電チャック13が有する冷却ガス流路に冷却ガスを供給する冷却ガス供給部17が接続されている。冷却ガス供給部17は、例えば、冷却ガスであるヘリウムガスを供給するマスフローコントローラである。静電チャック13には、静電チャック13が有する冷媒流路に冷媒を供給する冷媒供給部18が接続されている。冷媒供給部18は、例えば、冷媒流路において冷媒である冷却水などを循環させるポンプである。
 石英板12に対してチャンバ空間11Sとは反対側には、ICPアンテナ21が位置している。ICPアンテナ21は、例えば、基板Sの周方向に2回半巻き回された渦巻き形状を有する2段のコイルから構成されている。ICPアンテナ21は、渦巻き形状における中心側の端部である入力端子21Iと、渦巻き形状における外側の端部である出力端子21Oとを有している。ICPアンテナ21の入力端子21Iには、例えば、周波数が13.56MHzである高周波電力を出力するアンテナ用電源22が接続されている。
 チャンバ本体11に形成された排気ポート11P1には、チャンバ空間11Sの流体を排気する排気部31が接続されている。排気部31は、例えば、チャンバ空間11Sの圧力を調整する圧力調整弁や各種のポンプから構成されている。
 チャンバ本体11に形成されたガス供給ポート11P2には、チャンバ空間11Sにエッチングガスを供給するエッチングガス供給部32が接続されている。エッチングガス供給部32は、例えば、各種のガスをチャンバ空間11S内に供給するマスフローコントローラである。
 こうしたプラズマエッチング装置10において、基板Sをエッチングするときには、まず、基板Sが静電チャック13に載置され、そして、排気部31がチャンバ空間11Sの圧力を所定の圧力まで減圧する。次いで、冷却ガス供給部17が静電チャック13に冷却ガスを供給し、冷媒供給部18が静電チャック13に冷媒を供給する。
 一方で、エッチングガス供給部32がチャンバ空間11Sにエッチングガスを供給し、その後、アンテナ用電源22がICPアンテナ21に高周波電力を供給することによって、エッチングガスからプラズマPが生成される。次いで、吸着用電源15が静電チャック13に直流電圧を印加し、バイアス用電源16が静電チャック13に高周波電力を供給する。これにより、基板Sが静電チャック13に吸着された状態でエッチングされる。
 [静電チャックの構成]
 図2から図4を参照して、静電チャックの構成を説明する。図2では、静電チャックが有する電極および冷却ガス流路を図示する便宜上から、静電チャックの一部においてハッチングが省略されている。また、図2では、冷却ガス流路を実線によって模式的に示している。
 図2が示すように、静電チャック13は、誘電体層41、基板用電極42、および、トレイ用電極43を備えている。誘電体層41は、トレイ支持部41aと複数の基板支持部41bとを備え、トレイ支持部41aは、表面41Sを有した板状を有し、各基板支持部41bは、表面41Sから突出している。
 複数の基板用電極42は、各基板支持部41bの内部に1つずつ位置し、基板Sを基板支持部41bに吸着するための電極である。言い換えれば、各基板用電極42は、他の全ての基板用電極42が位置する基板支持部41bとは異なる基板支持部41bの内部に位置している。
 トレイ用電極43は、トレイ支持部41aの内部に位置し、複数の基板Sが載置されるトレイTをトレイ支持部41aに吸着するための電極である。
 トレイ支持部41aのうち、表面41Sの中で基板支持部41bによって覆われていない部分が、トレイTが間接的に載置されるトレイ載置面41aSである。トレイ載置面41aSは、表面41Sと対向する平面視において、トレイTを載置することが可能な大きさを有している。
 各基板支持部41bのうち、トレイ支持部41aから突出した端部が先端であり、先端を構成する面が基板載置面41bSである。基板載置面41bSは、表面41Sと対向する平面視において、1枚の基板Sを載置することが可能な大きさを有している。
 誘電体層41の厚さ方向において、トレイ載置面41aSと基板載置面41bSとの間の距離は、トレイTの厚さよりも大きい。言い換えれば、誘電体層41の厚さ方向において、トレイ支持部41aからの基板支持部41bの突出量は、トレイTの厚さよりも大きい。
 誘電体層41は、例えば、セラミックなどの誘電体で形成されている。誘電体層41は、例えば、複数の誘電体製のシートが積層された積層体である。
 基板用電極42は、例えばタングステンなどの金属で形成された金属シートである。表面41Sと対向する平面視において、基板用電極42の大きさは、基板載置面41bSの大きさにほぼ等しいことが好ましい。基板載置面41bSの大きさに対する基板用電極42の大きさの比が大きいほど、基板支持部41bに基板Sを吸着する力を大きくすることができる。
 誘電体層41の厚さ方向において、基板用電極42は、基板支持部41bにおける先端寄りに位置している。これにより、誘電体層41の厚さ方向において、基板用電極42が、表面41S寄りに位置している構成と比べて、基板用電極42と基板載置面41bSとの間の距離を短くすることができる。それゆえに、基板用電極42と基板Sとの間において電荷の授受が行われやすくなり、結果として、基板支持部41bによる基板Sの吸着と吸着の解除とが行われやすくなる。
 基板用電極42と基板載置面41bSとの間の距離は、例えば0.3mmから1.9mm程度であることが好ましい。
 トレイ用電極43は、例えばタングステンなどの金属で形成された金属シートである。表面41Sと対向する平面視において、トレイ用電極43の大きさは、表面41Sの大きさにほぼ等しいことが好ましい。表面41Sの大きさに対するトレイ用電極43の大きさの比が大きいほど、トレイ支持部41aに基板Sを吸着する力を大きくすることができる。
 誘電体層41の厚さ方向において、トレイ用電極43は、トレイ支持部41aにおける表面41S寄りに位置している。これにより、誘電体層41の厚さ方向において、トレイ用電極43が、表面41Sとは反対側の面寄りに位置している構成と比べて、トレイ用電極43とトレイ載置面41aSとの間の距離を短くすることができる。それゆえに、トレイ用電極43とトレイTとの間において電荷の授受が行われやすくなり、結果として、トレイ支持部41aによるトレイTの吸着と吸着の解除とが行われやすくなる。
 トレイ用電極43とトレイ載置面41aSとの間の距離は、例えば0.3mmから1.9mm程度であることが好ましい。
 誘電体層41の厚さ方向において、トレイ用電極43と各基板用電極42との間の距離は、トレイ用電極43とトレイ載置面41aSとの間の距離、および、基板用電極42と基板載置面41bSとの間の距離よりも大きい。これにより、トレイ用電極43と基板用電極42との間における電気的な相互作用よりも、トレイ用電極43とトレイTとの間、および、基板用電極42と基板Sとの間において、電気的な相互作用が生じやすくなる。
 トレイ支持部41aは、トレイTを冷却するための冷却ガスが流れる冷却ガス流路45を有している。冷却ガス流路45は、表面41Sの中で、基板支持部41bによって覆われていない部分に位置する複数のトレイ用開口45aを有している。言い換えれば、冷却ガス流路45は、トレイ載置面41aSに位置する複数のトレイ用開口45aを有している。
 冷却ガス流路45は、各基板載置面41bSに複数の基板用開口45bを有している。冷却ガス流路45は、誘電体層41の外周面のうち、表面41S以外の部分に位置する接続用開口45cを有し、接続用開口45cには、上述した冷却ガス供給部17が接続されている。冷却ガス流路45には、冷却ガス供給部17から冷却ガスが供給される。
 静電チャック13は、封止層46をさらに備えている。封止層46は、表面41Sの中で、基板支持部41bによって覆われていない部分を覆うことによって、冷却ガス流路45が有する複数のトレイ用開口45aを塞ぎ、かつ、冷却ガスによって冷却されることでトレイTを冷却するように構成されている。
 言い換えれば、封止層46は、トレイ載置面41aSの全体を覆っている。封止層46は、表面41Sと対向する平面視において、基板支持部41bと重なる部分に貫通孔を有している。あるいは、封止層46は、複数の要素から構成され、表面41Sのうち、基板支持部41bが位置しない部分を、複数の要素によって覆っていてもよい。
 誘電体層41が封止層46を備えるため、冷却ガスが静電チャック13とトレイTとの間から漏れることを封止層46によって抑えつつ、封止層46を介してトレイTを冷却することができる。
 封止層46は誘電体層41よりも弾性が高く、封止層46の形成材料は、例えばシリコーンゴムなどの樹脂である。また、封止層46の形成材料は、冷却ガスによって冷却される材料であり、かつ、封止層46は、封止層46のうち、トレイ支持部41aに接する面とは反対側の面まで冷却ガスによって冷却される程度の厚さを有している。
 冷却ガスは、複数のトレイ用開口45aから封止層46に向けて放出されることによって、封止層46を冷却するため、封止層46を介して間接的にトレイTを冷却することができる。また、冷却ガスは、複数の基板用開口45bから基板Sに向けて放出されるため、基板Sが冷却ガスによって冷却される。
 静電チャック13は、誘電体層41を支持する支持層47を備えている。支持層47は、表面41Sと対向する平面視において、誘電体層41よりも大きい板形状を有し、誘電体層41の周方向の全体にわたって、誘電体層41の外縁からはみ出している。支持層47は、冷媒の流れる冷媒流路47aを内部に有し、冷媒流路47aには、上述した冷媒供給部18が接続されている。支持層47の形成材料は、例えばアルミニウムなどの金属である。
 図3が示すように、トレイ支持部41aの表面41Sと対向する平面視において、トレイ支持部41aは円板状を有している。誘電体層41は、6つの基板支持部41bを備え、各基板支持部41bは円柱状を有している。6つの基板支持部41bは、表面41Sの中心からの距離が互いにほぼ等しい位置において、表面41Sから突出している。
 静電チャック13は6つの基板用電極42を備えている。トレイ支持部41aの表面41Sと対向する平面視において、各基板用電極42は円板状を有し、6つの基板用電極42は、表面41Sの中心からの距離が互いにほぼ等しい位置に配置されている。各基板用電極42は、他の全ての基板用電極42が位置する基板支持部41bとは異なる基板支持部41bの内部に位置している。
 各基板用電極42は、例えば、静電チャック13の内部を通って静電チャック13の外部に露出する配線に接続し、また、トレイ用電極43は、基板用電極42と同じく、例えば、静電チャック13の内部を通って静電チャック13の外部に露出する配線に接続している。そして、6つの基板用電極42、および、トレイ用電極43は、例えば、各電極に接続された配線が静電チャック13の外部にて互いに接続されることによって、互いに並列に接続されている。
 図4は、プラズマエッチング装置10が備える電気的構成のうち、静電チャックに電力を供給するための電気的構成を模式的に示している。
 図4が示すように、6つの基板用電極42は、互いに並列に接続されて並列回路を構成している。プラズマエッチング装置10は、バイアス用電源16を備え、バイアス用電源16は、400kHz以上4MHz以下の高周波電力を6つの基板用電極42に各別に供給する。
 6つの基板用電極42の各々に供給する高周波電力の周波数が、400kHz以上4MHz以下であれば、この範囲を超えた周波数を有した高周波電力を各基板用電極に供給するときと比べて、プラズマPに曝された6つの基板S間において温度の分布が生じにくくなる。
 トレイ用電極43は、抑制部の一例であるインダクタ51と直列に接続されて直列トレイ回路を構成している。トレイ用電極43とインダクタ51とは、静電チャック13の外部において互いに接続されてもよいし、静電チャック13の内部において互いに接続されてもよい。インダクタ51は、トレイ用電極43に直流電圧を印加させ、かつ、トレイ用電極43に高周波電力が伝搬することを抑える機能を有する。直列トレイ回路は、6つの基板用電極42と静電チャック13の外部において並列に接続されて並列回路を構成している。
 吸着用電源15は、直列トレイ回路および6つの基板用電極42に各別に直流電圧を印加し、バイアス用電源16は、直列トレイ回路および複数の基板用電極42に各別に高周波電力を供給する。
 そのため、並列回路を構成する6つの基板用電極42およびトレイ用電極43の各々に直流電圧を印加しつつ、トレイ用電極43に高周波電力が伝搬することを抑えることができる。
 それゆえに、トレイTが複数の基板SとともにプラズマPに曝されるとき、トレイTにバイアス電位が印加されることが抑えられ、結果として、トレイTがエッチングされることが抑えられる。
 吸着用電源15は、フィルタ52を介して6つの基板用電極42とトレイ用電極43とから構成される並列回路に接続されている。フィルタ52はローパスフィルタであり、吸着用電源15にバイアス用電源16の出力した高周波電力が供給されることを抑える機能を有している。吸着用電源15は、6つの基板用電極42およびトレイ用電極43に正の直流電圧を印加するが、負の直流電圧を印加してもよい。
 [静電チャックの作用]
 図5および図6を参照して静電チャック13の作用を説明する。以下では、静電チャック13の作用の説明に先立ち、静電チャック13によって吸着されるトレイTの構成を説明する。
 図5が示すように、トレイTは、表面TSと裏面TRとを含む円板状を有している。トレイTは、表面TSと裏面TRとの間を貫通する複数、例えば6つの貫通孔Taを有し、各貫通孔Taにおいて、表面TSでの開口が裏面TRでの開口よりも大きい。表面TSと対向する平面視において、表面TSでの開口は基板Sよりも大きく、裏面TRでの開口は基板Sよりも小さい。また、表面TSと対向する平面視において、表面TSでの開口および裏面TRでの開口の各々は、基板支持部41bよりも大きい。
 各貫通孔Taは、二段の筒面Tbによって区画され、筒面Tbは、一段目の筒面と二段目の筒面との間の段差部Tcを有している。トレイTは、各貫通孔Taの段差部Tcにおいて、1枚の基板Sを支持する。
 図6が示すように、プラズマエッチング装置10において基板Sがエッチングされるときには、まず、6つの基板Sの載置されたトレイTが、静電チャック13まで搬送され、トレイTが、トレイ支持部41aに載置される。このとき、各基板支持部41bは、他の全ての基板支持部41bが通る貫通孔Taとは異なる貫通孔Taを通り、それによって、トレイTの段差部Tcに載置された基板Sが、基板支持部41bの基板載置面41bSに載置される。
 そして、チャンバ空間11S内にプラズマPが生成された後、吸着用電源15が、各基板用電極42およびトレイ用電極43の各々に直流電圧を印加する。これにより、各基板支持部41bに基板Sが吸着され、かつ、トレイ支持部41aにトレイTが吸着される。
 静電チャック13は、基板Sに加えてトレイTも吸着するため、トレイTがプラズマPに曝されるときには、トレイTと静電チャック13とが接合した物体、言い換えれば、トレイTによる熱容量と静電チャック13の熱容量とを合わせた熱容量を有した物体がプラズマPに曝される。
 一方で、トレイTが静電チャック13に吸着されていない状態でプラズマPに曝されたときには、トレイTは、トレイ単体による熱容量しか有しない。そのため、上述した構成によれば、トレイTを吸着しない構成と比べて、静電チャック13が有する熱容量の分だけ、トレイT単体における熱容量よりも大きい熱容量を有した物体がプラズマPに曝されるため、この物体に含まれるトレイTの加熱を抑えることができる。
 基板Sのエッチングが終了すると、吸着用電源15が、各基板用電極42およびトレイ用電極43の各々への直流電圧の印加を停止する。これにより、各基板支持部41bによる基板Sの吸着が解除され、かつ、トレイ支持部41aによるトレイTの吸着が解除される。
 次いで、トレイTが静電チャック13から搬送されるとき、トレイTの貫通孔Taから基板支持部41bが抜かれ、それによって、基板支持部41bの基板載置面41bSに載置された基板Sが、トレイTの段差部Tcに載置される。
 [試験例]
 図7を参照して、試験例を説明する。
 [試験例1]
 図7が示すように、第1基板S1から第6基板S6が載置されたトレイTを誘電体層41のトレイ支持部41a上に載置し、第1基板S1から第6基板S6の各々を互いに異なる基板支持部41b上に載置した。そして、以下の条件にて第1基板S1から第6基板S6のエッチングを行ったときの各基板の温度を測定した。このとき、第1基板S1を吸着するための基板用電極42にバイアス用の高周波電力を供給する供給点Psを設定した。すなわち、第1基板S1を吸着するための基板用電極42と高周波電源との間の伝送路が最も短い状態で、6つの基板用電極42およびトレイ用電極43に高周波電力を供給した。
 [エッチング条件]
 ・基板            :サファイア基板
 ・アンテナ用高周波電力    :2100W
 ・バイアス用高周波電力    :1000W
 ・バイアス用高周波電力の周波数:2MHz
 ・吸着用の直流電圧      :2kV
 ・チャンバ空間の圧力     :0.06Pa
 ・冷媒の温度         :30℃
 ・冷却ガスの圧力       :1kPa
 ・エッチングガス       :BCl
 ・エッチングガス流量     :150sccm
 試験例1では、第1基板S1の温度が93℃から98℃であり、第2基板S2の温度が98℃から104℃であり、第3基板S3の温度が104℃から110℃であることが認められた。また、第4基板S4の温度が93℃から98℃であり、第5基板S5の温度が98℃から104℃であり、第6基板の温度が98℃から104℃であることが認められた。
 [試験例2]
 試験例2では、バイアス用高周波電力の周波数を12.5MHzに変更する以外は、試験例1と同じ条件でエッチングを行い、第1基板S1から第6基板S6の温度を測定した。
 試験例2では、第1基板S1の温度が126℃から132℃であり、第2基板S2の温度が110℃から115℃であり、第3基板S3の温度が121℃から126℃であることが認められた。また、第4基板S4の温度が98℃から104℃であり、第5基板S5の温度が110℃から115℃であり、第6基板S6の温度が110℃から115℃であることが認められた。
 このように、試験例1によれば、試験例2に比べて、プラズマに曝された6つの基板間において温度の分布が生じにくいことが認められた。
 以上説明したように、静電チャック、および、プラズマ処理装置の一実施形態によれば、以下に列挙する効果を得ることができる。
 (1)トレイTを吸着しない構成と比べて、静電チャック13が有する熱容量の分だけ、トレイT単体における熱容量よりも大きい熱容量を有した物体がプラズマPに曝されるため、この物体に含まれるトレイTの加熱を抑えることができる。
 (2)冷却ガスが静電チャック13とトレイTとの間から漏れることを封止層46によって抑えつつ、封止層46を介してトレイTを冷却することができる。
 (3)バイアス用電源16が400kHz以上4MHz以下の高周波電力を各基板用電極42に供給するため、複数の基板S間において温度の分布が生じることが抑えられる。
 (4)並列回路を構成する複数の基板用電極42およびトレイ用電極43の各々に直流電圧を印加しつつ、トレイ用電極43に高周波電力が伝搬することを抑えることができる。
 なお、上述した実施形態は、以下のように適宜変更して実施することができる。
 ・吸着用電源15と並列回路とに接続されるフィルタ52は割愛されてもよい。こうした構成であっても、並列回路に含まれる直列トレイ回路がインダクタ51を含み、吸着用電源15が並列回路における基板用電極42および直列トレイ回路の各々に直流電圧を印加し、かつ、バイアス用電源16が基板用電極42および直列トレイ回路の各々に高周波電力を供給する以上は、上述した(4)と同等の効果を得ることはできる。
 ・直列回路を構成する抑制部は、上述したインダクタ51に限らず、キャパシタであってもよいし、インダクタとキャパシタとの組み合わせであってもよい。こうした構成であっても、上述した(4)と同等の効果を得ることはできる。
 ・プラズマエッチング装置10は、インダクタ51を備えていなくてもよい。こうした構成では、トレイTにもバイアス電位が印加されるため、トレイTがエッチングされやすくはなる。ただし、トレイTが静電チャック13に吸着される以上は、上述した(1)と同等の効果を得ることはできる。
 ・複数の基板用電極42および直列トレイ回路が、1つの並列回路を構成していなくてもよい。こうした構成では、各基板用電極42およびトレイ用電極43が各別の吸着用電源に接続され、かつ、各基板用電極42が各別のバイアス用電源に接続されていれば、各基板用電極42およびトレイ用電極43の各々に直流電圧を印加すること、および、各基板用電極42にバイアス電位を印加することが可能である。こうした構成では、トレイ用電極43に高周波電力が供給されないため、トレイ用電極43に直列に接続されるインダクタ51を割愛することが可能である。
 ・複数の基板用電極42が並列回路を構成し、プラズマエッチング装置10は、複数の基板用電極42に各別に直流電圧を印加する吸着用電源と、複数の基板用電極42に各別に高周波電力を供給するバイアス用電源と、トレイ用電極43に直流電圧を印加する直流電源とを備える構成でもよい。こうした構成においてもトレイ用電極43には高周波電力が供給されないため、トレイ用電極43に直列に接続されるインダクタ51を割愛することが可能である。
 ・バイアス用電源16が出力する高周波電力の周波数は、400kHz未満であってもよいし、4MHzよりも大きくてもよい。こうした構成であっても、各基板用電極42にはバイアス電位が印加されるため、各基板用電極42に向けてプラズマ中の正イオンを引き込むことは可能である。
 ・静電チャック13は封止層46を有していなくてもよく、こうした構成であっても、基板支持部41bの内部に位置する基板用電極42と、トレイ支持部41aの内部に位置するトレイ用電極43とを備えていれば、上述した(1)と同等の効果を得ることはできる。
 ・図8は、静電チャック13の変形例における断面構造を示し、図8では、図示の便宜上から、誘電体層41が有する冷却ガス流路45の図示が省略されている。図8が示すように、トレイ用電極61は、誘電体層41の厚さ方向において、つまり平面視において、複数の基板用電極42に重ならなくてもよい。すなわち、トレイ用電極61は、誘電体層41の厚さ方向に沿ってトレイ用電極61を貫通する複数の貫通孔61aを有し、各貫通孔61aは、トレイ支持部41aの表面41Sと対向する平面視において、1つの基板用電極42と重なる位置に形成されていればよい。そして、貫通孔61aは、表面41Sと対向する平面視において、基板用電極42以上の大きさを有していればよい。
 こうした構成によれば、以下の効果を得ることができる。
 (5)基板用電極42にバイアス電位を印加するための高周波電力が基板用電極42に供給されたときに、基板用電極42とトレイ用電極43とがカップリングすること、すなわち、基板用電極42からトレイ用電極43に高周波電力が供給されることを抑えられる。
 ・トレイ用電極43が、誘電体層41の厚さ方向において複数の基板用電極42と重ならない構成では、トレイ用電極43が、複数の電極要素から構成され、かつ、各電極要素が、誘電体層41の厚さ方向において、基板用電極42と重ならないように位置する構成であってもよい。こうした構成であっても、上述した(5)と同等の効果を得ることはできる。
 ・静電チャック13は、少なくとも1つの基板支持部41bと、少なくとも1つの基板用電極42であって、基板支持部41bと同数の基板用電極42を備えていればよい。静電チャック13が、少なくとも1つの基板支持部41b、基板支持部41bと同数の基板用電極42、トレイ支持部41a、および、トレイ用電極43を備えていれば、上述した(1)に準じた効果を得ることはできる。
 ・基板用電極42は、極性の互いに異なる一対の電極から構成されていてもよく、この場合には、1つの基板用電極が、正電極と負電極との対から構成されればよい。そして、正電極と負電極との1つの対が、1つの基板支持部41bの内部に位置していればよい。こうした構成では、プラズマエッチング装置10は、正の電圧を正電極に印加する直流電源と、負の電圧を負電極に印加する直流電源とを備えていればよい。
 ・プラズマエッチング装置10は、ICPアンテナ21を用いてプラズマPを生成する誘導結合型のプラズマエッチング装置に限らず、チャンバ本体11の内部に位置する電極を用いてプラズマを生成する容量結合型のプラズマエッチング装置であってもよい。
 ・静電チャック13が適用されるプラズマ処理装置は、上述したプラズマエッチング装置10に限らず、スパッタ装置やCVD装置などであってもよい。
 10…プラズマエッチング装置、11…チャンバ本体、11P1…排気ポート、11P2…ガス供給ポート、11S…チャンバ空間、12…石英板、13…静電チャック、14…ステージ、15…吸着用電源、16…バイアス用電源、17…冷却ガス供給部、18…冷媒供給部、21…ICPアンテナ、21I…入力端子、21O…出力端子、22…アンテナ用電源、31…排気部、32…エッチングガス供給部、41…誘電体層、41a…トレイ支持部、41aS…トレイ載置面、41b…基板支持部、41bS…基板載置面、41S,TS…表面、42…基板用電極、43,61…トレイ用電極、45…冷却ガス流路、45a…トレイ用開口、45b…基板用開口、45c…接続用開口、46…封止層、47…支持層、47a…冷媒流路、51…インダクタ、52…フィルタ、61a,Ta…貫通孔、S…基板、T…トレイ、Tb…筒面、Tc…段差部、TR…裏面。

Claims (6)

  1.  表面を有した板状を有するトレイ支持部と、前記表面から突出する基板支持部とを備える誘電体層と、
     前記基板支持部の内部に位置し、基板を前記基板支持部に吸着するための基板用電極と、
     前記トレイ支持部の内部に位置し、前記基板が載置されるトレイを前記トレイ支持部に吸着するためのトレイ用電極と、を備える
     静電チャック。
  2.  前記トレイ用電極は、前記誘電体層の厚さ方向において、前記基板用電極に重ならない
     請求項1に記載の静電チャック。
  3.  前記トレイ支持部は、前記トレイを冷却するための冷却ガスが流れる冷却ガス流路であって、前記表面の中で、前記基板支持部によって覆われていない部分に位置する複数の開口を有した前記冷却ガス流路を有し、
     前記表面の中で、前記基板支持部によって覆われていない部分を覆うことによって前記複数の開口を塞ぎ、かつ、前記冷却ガスによって冷却されることで前記トレイを冷却するように構成された封止層をさらに備える
     請求項1または2に記載の静電チャック。
  4.  静電チャックと、
     前記静電チャックが収容される空間を区画するチャンバと、を備えるプラズマ処理装置であって、
     前記静電チャックが、請求項1から3のいずれか一項に記載の静電チャックである
     プラズマ処理装置。
  5.  前記基板支持部は、複数の基板支持部のうちの1つであり、
     前記基板用電極は、複数の基板用電極のうちの1つであり、
     複数の前記基板用電極は、互いに並列に接続されて並列回路を構成し、
     前記各基板用電極に各別に高周波電力を供給する高周波電源であって、前記高周波電源は400kHz以上4MHz以下の高周波電力を前記各基板用電極に供給する前記高周波電源をさらに備える
     請求項4に記載のプラズマ処理装置。
  6.  前記トレイ用電極は、前記トレイ用電極に直流電圧を印加させ、かつ、前記トレイ用電極に前記高周波電力が伝搬することを抑える抑制部と直列に接続されて直列トレイ回路を構成し、
     前記直列トレイ回路は、複数の前記基板用電極と並列に接続されて並列回路を構成し、
     前記直列トレイ回路および複数の前記基板用電極に各別に直流電圧を印加する直流電源をさらに備え、
     前記高周波電源は、前記直列トレイ回路および複数の前記基板用電極に各別に高周波電力を供給する
     請求項5に記載のプラズマ処理装置。
PCT/JP2017/017005 2016-05-09 2017-04-28 静電チャック、および、プラズマ処理装置 WO2017195672A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187000533A KR102073799B1 (ko) 2016-05-09 2017-04-28 정전 척 및 플라즈마 처리 장치
CN201780002185.1A CN107710399B (zh) 2016-05-09 2017-04-28 静电吸盘及等离子处理装置
JP2017564654A JP6445191B2 (ja) 2016-05-09 2017-04-28 静電チャック、および、プラズマ処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-093947 2016-05-09
JP2016093947 2016-05-09

Publications (1)

Publication Number Publication Date
WO2017195672A1 true WO2017195672A1 (ja) 2017-11-16

Family

ID=60267706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017005 WO2017195672A1 (ja) 2016-05-09 2017-04-28 静電チャック、および、プラズマ処理装置

Country Status (5)

Country Link
JP (1) JP6445191B2 (ja)
KR (1) KR102073799B1 (ja)
CN (1) CN107710399B (ja)
TW (1) TWI648784B (ja)
WO (1) WO2017195672A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022500846A (ja) * 2018-09-14 2022-01-04 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. 静電チャック

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102345663B1 (ko) * 2018-04-05 2021-12-29 램 리써치 코포레이션 냉각제 가스 존들 및 대응하는 그루브 및 단극성 정전 클램핑 전극 패턴들을 갖는 정전 척들
CN110228283B (zh) * 2019-07-18 2020-10-09 清华大学 基于静电吸附的快速、选择性转印装置及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109848A1 (ja) * 2009-03-26 2010-09-30 パナソニック株式会社 プラズマ処理装置及びプラズマ処理方法
JP2011003913A (ja) * 2010-07-26 2011-01-06 Ulvac Japan Ltd 静電チャック
JP2011114178A (ja) * 2009-11-27 2011-06-09 Samco Inc プラズマ処理装置及びプラズマ処理方法
JP2013045989A (ja) * 2011-08-26 2013-03-04 Shinko Electric Ind Co Ltd 静電チャック及び半導体・液晶製造装置
JP2014150186A (ja) * 2013-02-01 2014-08-21 Hitachi High-Technologies Corp プラズマ処理装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282692A (ja) * 2002-03-27 2003-10-03 Matsushita Electric Ind Co Ltd 基板搬送用トレーおよびこれを用いた基板処理装置
CN1983518B (zh) * 2004-06-21 2011-06-08 东京毅力科创株式会社 等离子体处理装置和方法
US7544251B2 (en) * 2004-10-07 2009-06-09 Applied Materials, Inc. Method and apparatus for controlling temperature of a substrate
KR20070072571A (ko) * 2004-11-04 2007-07-04 가부시키가이샤 알박 정전 척 장치
JP4850811B2 (ja) * 2007-11-06 2012-01-11 東京エレクトロン株式会社 載置台、処理装置および処理システム
JP2010232250A (ja) * 2009-03-26 2010-10-14 Panasonic Corp プラズマ処理装置
KR101299102B1 (ko) 2009-07-07 2013-08-28 주식회사 만도 쇽업소버
JP2011171329A (ja) * 2010-02-16 2011-09-01 Panasonic Corp プラズマ処理における基板保持用のトレイおよびプラズマ処理方法
JP5348439B2 (ja) * 2011-09-30 2013-11-20 Toto株式会社 静電チャック
US8988848B2 (en) * 2011-12-15 2015-03-24 Applied Materials, Inc. Extended and independent RF powered cathode substrate for extreme edge tunability
CN103187348A (zh) * 2011-12-31 2013-07-03 北京北方微电子基地设备工艺研究中心有限责任公司 晶片固定装置、半导体设备和晶片固定方法
JP2015115421A (ja) * 2013-12-10 2015-06-22 東京エレクトロン株式会社 プラズマ処理装置及びフォーカスリング
KR102222902B1 (ko) * 2014-05-12 2021-03-05 삼성전자주식회사 플라즈마 장비 및 이를 이용한 반도체 소자의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109848A1 (ja) * 2009-03-26 2010-09-30 パナソニック株式会社 プラズマ処理装置及びプラズマ処理方法
JP2011114178A (ja) * 2009-11-27 2011-06-09 Samco Inc プラズマ処理装置及びプラズマ処理方法
JP2011003913A (ja) * 2010-07-26 2011-01-06 Ulvac Japan Ltd 静電チャック
JP2013045989A (ja) * 2011-08-26 2013-03-04 Shinko Electric Ind Co Ltd 静電チャック及び半導体・液晶製造装置
JP2014150186A (ja) * 2013-02-01 2014-08-21 Hitachi High-Technologies Corp プラズマ処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022500846A (ja) * 2018-09-14 2022-01-04 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. 静電チャック
JP7198915B2 (ja) 2018-09-14 2023-01-04 北京北方華創微電子装備有限公司 静電チャック

Also Published As

Publication number Publication date
KR102073799B1 (ko) 2020-02-05
TW201806025A (zh) 2018-02-16
CN107710399B (zh) 2021-04-16
TWI648784B (zh) 2019-01-21
JPWO2017195672A1 (ja) 2018-07-26
JP6445191B2 (ja) 2018-12-26
KR20180015252A (ko) 2018-02-12
CN107710399A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
JP5270310B2 (ja) 静電チャック及び基板処理装置
JP5102706B2 (ja) バッフル板及び基板処理装置
TWI490942B (zh) Plasma processing device
US9240307B2 (en) Plasma processing apparatus
KR20090100310A (ko) 샤워헤드 및 기판 처리 장치
JP6445191B2 (ja) 静電チャック、および、プラズマ処理装置
KR102302313B1 (ko) 재치대에 피흡착물을 흡착시키는 방법 및 플라즈마 처리 장치
JP2007005491A (ja) 電極アッセンブリ及びプラズマ処理装置
JP2009224441A (ja) シャワーヘッド及び基板処理装置
TW201637065A (zh) 載置台及電漿處理裝置
JP4615464B2 (ja) プラズマ処理装置用電極アッセンブリ及びプラズマ処理装置
JP7153574B2 (ja) 上部電極構造、プラズマ処理装置、及び上部電極構造を組み立てる方法
JP2011119708A (ja) 基板保持装置、及び、プラズマ処理装置
JP5654083B2 (ja) 静電チャック及び基板処理装置
TW202224064A (zh) 邊緣環及基板處理裝置
JP7346269B2 (ja) 静電吸着部の制御方法、及びプラズマ処理装置
WO2018233039A1 (zh) 进气机构及预清洗腔室
JP5235033B2 (ja) 電極アッセンブリ及びプラズマ処理装置
TWI570763B (zh) 蝕刻裝置
KR20210076858A (ko) 에지 링 및 기판 처리 장치
JP6230986B2 (ja) プラズマ処理装置
JP2022550482A (ja) 基板支持体のための一体化された電極及び接地面
TW202142056A (zh) 電漿處理方法及電漿處理裝置
TW201941296A (zh) 反應性離子蝕刻裝置
JP2007080834A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017564654

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187000533

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796033

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796033

Country of ref document: EP

Kind code of ref document: A1