WO2017191953A1 - 소둔 분리제 조성물, 이의 제조 방법, 및 이를 이용한 방향성 전기강판의 제조방법 - Google Patents

소둔 분리제 조성물, 이의 제조 방법, 및 이를 이용한 방향성 전기강판의 제조방법 Download PDF

Info

Publication number
WO2017191953A1
WO2017191953A1 PCT/KR2017/004592 KR2017004592W WO2017191953A1 WO 2017191953 A1 WO2017191953 A1 WO 2017191953A1 KR 2017004592 W KR2017004592 W KR 2017004592W WO 2017191953 A1 WO2017191953 A1 WO 2017191953A1
Authority
WO
WIPO (PCT)
Prior art keywords
mgo particles
particles
composition
annealing
mgo
Prior art date
Application number
PCT/KR2017/004592
Other languages
English (en)
French (fr)
Inventor
박종호
박창빈
김창수
박종태
김광수
김상완
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201780036013.6A priority Critical patent/CN109312415A/zh
Publication of WO2017191953A1 publication Critical patent/WO2017191953A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • Annealing separator composition a method for producing the same, and a method for producing a grain-oriented electrical steel sheet using the same.
  • the grain-oriented electrical steel sheet contains 2.5 to 4.0% of Si and has an aggregate structure in which the grain orientations are aligned in the (110) [001] direction. It can exhibit excellent magnetic properties in the rolling direction, and is mainly used as iron core materials for transformers, electric motors, generators and other electronic devices.
  • an annealing separator comprising crab 1 MgO particles and second MgO particles, third MgO particles, or a combination thereof; Additives and dispersion medium Comprising, an additive composition; And it provides a annealing separator composition comprising a solvent.
  • the first MgO particles have an average particle diameter of 100 or less (except 0 // m).
  • the second MgO particles and the third MgO particles each have an average particle diameter of 100 zm or more.
  • It contains at least one or more of the low melting point particles of 900 ° C or less.
  • each component of the annealing separator is as follows.
  • the first MgO particles may be seawater magnesia particles, an average particle diameter of 65 to 72, and a purity of 99.0 to 99.5%.
  • the second MgO particles and the third MgO particles may be molten magnesia particles, respectively.
  • the second MgO particles may have an average particle diameter of 330 to 350 mi and a purity of 99.0 to 99.5%.
  • the third MgO particles may have an average particle diameter of 480 // m or more and a purity of 99.8% or more.
  • the annealing separator comprises the first MgO particles, the second MgO particles, the third MgO particles, or a combination thereof.
  • “combination of these” means a mixture which is a combination of two or more of the first MgO particles, the second MgO particles ⁇ and the third MgO particles.
  • the annealing separator may be a mixture of the first MgO particles and the second MgO particles.
  • the total amount of the annealing separator 100 of the increase 3 ⁇ 4 the first MgO particles are included in the 50 to 80 weight 3 ⁇ 4; and the second MgO particles may be included in the remainder.
  • the annealing separator may have a loss on Igniton (L0I) of 0.76% or less, and a content of S0 3 and C1 included as impurities may be 0.006% by weight or less.
  • the annealing separator may be a mixture of the first MgO particles, the second MgO particles, and the third MgO particles.
  • the annealing Separation agent loss of ignition . Loss on Igniton (LOI) is 0.73% or less, and the content of S0 3 and C1 included as impurities may be 0.008% by weight or less.
  • the low melting point particles may be a compound of a metal selected from Sr, Ni, Cu, Cr, Bi, Co, Ca, Zr, Mg, and Mn.
  • the low melting point particles because the compound of the metal is included, may be made of a hydrate containing the compound of the metal.
  • the particle size of the low melting point particles is 1.0 or less, it can be dispersed in the colloidal phase in the dispersion medium. That is, the additive composition including the low melting point particle and the dispersion medium satisfying the particle size range becomes a colloidal phase.
  • the additive based on 100 parts by weight of the annealing separator, the additive is included in the range of 0.33 to 1.05 parts by weight, and the dispersion medium is 2.64 to
  • an annealing separator comprising a first MgO particles, a second MgO particles, a low] 3 MgO particles, or a combination thereof;
  • An additive composition comprising an additive and a dispersion medium; And a solvent; to prepare a mixture; It provides a method for producing an annealing separator composition comprising a; and stirring the mixture.
  • the said 1st MgO particle is an average particle diameter of 100 kPa or less (except 0).
  • the second MgO particles and the third MgO particles each have an average particle diameter of 100 or more.
  • the step of stirring the mixture may be performed for 10 minutes or more.
  • the step of preparing the mixture Previously, one or more of the first MgO particles, the second MgO particles, and the third MgO particles may be prepared and used.
  • the seawater magnesia particle used as a raw material can also use the thing manufactured according to the manufacturing process of said 1st MgO.
  • preparing a steel slab Heating the steel slab; Hot rolling the heated steel slab to produce a hot rolled sheet; Cold rolling the hot rolled sheet to produce a leaded sheet; Decarburizing annealing the cold rolled sheet; applying an annealing separator composition on a surface of the decarburizing annealing steel sheet; And annealing the steel sheet to which the annealing separator composition is applied.
  • the annealing separator composition to be used is as described above.
  • the step of annealing the steel sheet to which the annealing separator supernatant is applied may be performed for 15 to 30 hours in a temperature range of 1150 to 1230 0 C.
  • the steel slab Si: 2.5 to 4.0% by weight, and C: 0.040 to 0.1% by weight, the balance may be used containing Fe and other unavoidable impurities.
  • Annealing separator composition according to an embodiment of the present invention 1) annealing
  • a grain-oriented electrical steel sheet is manufactured through a process including hot rolling-cold rolling-decarburizing-annealing- sand annealing of a steel slab containing Si: 2.5-4.0 wt%, and a composition for forming an insulating film on the surface thereof. After coating, annealing and heat flattening, the final product is obtained.
  • the decarburization annealing process removes the carbon contained in the cold rolled steel sheet (ie, the cold rolled sheet) and at the same time uses an inhibitor (Inhibi tor) to properly control the growth of the secondary recrystallized grain in the subsequent high temperature annealing process Corresponds to the process required to produce.
  • an inhibitor Inhibi tor
  • an annealing separator mainly containing MgO is applied to the surface of the steel sheet and then subjected to a solid annealing, wherein Si0 2 in the oxide film reacts with the MgO.
  • This reaction may be represented by the following chemical reaction 1, which corresponds to Mg 2 Si0 4 , which forms the base coating.
  • grains as an annealing separator, to tummify water with a solvent, to disperse
  • the reaction of the formation of the base coating affects the behavior of the inhibitors (MnS, A1N) in the steel plate located at the bottom thereof, and may be a factor in determining the secondary recrystallization process in the finishing annealing process. Can determine the magnetic properties of the secondary recrystallization.
  • annealing separators are not treated precisely. Specifically, the Gansu method, the seawater method, the Gansu method, or
  • MgO particles which are finally obtained by rehydrating MgO prepared by seawater rehydration to prepare Mg (0H) 2 , and calcining it in a temperature range of 800 to 1100 ° C.
  • the Oh Doing so for generally the MgO particles prepared by not only has a fine particle size of around 10 jMii, and a steel heat loss greater than the minimum 0.8%, the total amount of S0 3 and C1 contained as impurities exceeds about 0.02% of It is known that it is not suitable to be applied to the manufacturing process of the enlarged grain-oriented electrical steel sheet.
  • the loss on ignition of MgO particles is related to the trace amount of hydrated water produced on the surface of the MgO particles.
  • the surface portion of the MgO particles contains water and a reaction form of the hydroxide hydroxide [Mg (0H) 2 ], which decomposes when reaching a temperature of about 350 in the finishing annealing process (Mg (0H) 2 ⁇ MgO +
  • MgO particles contain SO 3 and C 1 as impurities. If these impurities are excessive, it concentrates at the interface between the base coating and the lower steel plate. It may cause the base coating to come off or to cause surface defects such as thinning of the film, local staining, and discoloration.
  • the annealing separator composition referred to in embodiments of the present invention includes an annealing separator, an additive composition, and a solvent.
  • the annealing separator refers only to the solid component of the MgO round that meets a specific particle size range
  • the additive composition refers to the additive comprising a solid component and a dispersion medium is a liquid component
  • the solvent is the annealing separator composition It is defined as referring to the liquid component contained in the balance to control the total amount of water.
  • the annealing separator including the first MgO particles, the second MgO particles, the third MgO particles, or a combination thereof;
  • An additive composition comprising an additive and a dispersion medium;
  • solvent provides the annealing separator composition comprising a •.
  • the said 1 MgO particle is an average particle diameter of 100 or less (except 0 ⁇ ).
  • the second MgO particles and the third MgO particles each have an average particle diameter of 100 or more.
  • It includes at least one or more of the low melting point particles of 900 or less.
  • the base coating properties and the magnetic properties have excellent directionality
  • the average particle diameter of the first MgO particles exceeds 100, the base coating may be formed unevenly, and the movement of the steel sheets may be facilitated during decarburization annealing, thereby increasing the telescope defects in which the steel sheets are pushed out during winding. Can be.
  • the average particle diameter of the 1 MgO particles is controlled to be 100 or less.
  • the average particle diameter of the second MgO particles and the third MgO particles are controlled to be equal to or more than loo, respectively.
  • the first MgO particles may be seawater magnesia particles.
  • the first MgO particles which are the seawater magnesia particles, include: extracting Mg ions from seawater; Reacting the extracted Mg silver with Ca (0H) 2 to prepare Mg (0H) 2 ; And calcining the prepared Mg (0H) 2 at a temperature range of 1800 ° C. or more, thereby preparing first MgO particles.
  • the reaction of the extracted Mg ions with Ca (0H) 2 is performed by using substitution reaction, rehydration for rehydrating MgO prepared by a water treatment method, sea water method, water treatment method, or sea water method.
  • substitution reaction for rehydrating MgO prepared by a water treatment method, sea water method, water treatment method, or sea water method.
  • the firing process is one that exceeds the temperature range of the firing in a general process, and such a process is also distinguished.
  • the average particle diameter is 65 to 72 mm 3 and the purity is 99. 0-99.
  • a first MgO particle of 5% can be produced.
  • an excellent annealing separator composition supported by the examples and evaluation examples described below can be prepared.
  • the second MgO particles and the third MgO particles are each melted.
  • Magnesia particles In this case, melting the seawater magnesia particles in the silver range of 2800 ° C or more, to prepare the second MgO particles or the third MgO particles; At this time, seawater used as raw materials
  • Magnesia particles may be prepared according to the manufacturing process of the first MgO.
  • the temperature of melting the seawater magnesia particles is higher than the temperature range of melting in the general process, this process is also distinguished.
  • the average particle diameter is 330 to 350 and the purity is 99. 0-99.
  • the second MgO particles may be prepared to be 5%, and independently of the above, the third MgO particles may be prepared to have an average particle diameter of 480 ⁇ m or more and a purity of 99.8% or more.
  • the annealing separator is mentioned to include the first MgO particles, the second MgO particles, the third MgO particles, or a combination thereof.
  • “combination of these” means a mixture which is a combination of two or more of the first MgO particles, the second MgO particles, and the third MgO particles.
  • the annealing separator may be a mixture of the first 1 MgO particles and the second MgO particles. In this case, based on 100% by weight of the total amount of the annealing separator, 50 to 80% by weight of the system 1 MgO particles may be included, and the system 2 MgO particles may be included as the remainder.
  • the annealing separator has a loss on ignition loss (L0I) of not more than 0.7763 ⁇ 4> and an amount of S0 3 and C1 contained as impurities is 0. 006 wt% or less.
  • the annealing separator may be a mixture of the first MgO particles, the second MgO particles, and the third MgO particles.
  • the first MgO particles are included in the amount of 50 to 80 1 to increase
  • the second MgO particles are contained in 20 to 40% by weight
  • the third MgO particles It may be included as a balance.
  • the annealing separator may have a loss on ignition loss (L0I) of not more than 0.7% and an amount of S0 3 and CI included as impurities of 0.008% by weight or less. .
  • the loss of ignition loss and the impurity content are reduced by using an annealing separator in which the above-mentioned first MgO site-, crab 2 MgO particles, and nearly 13 MgO particles are properly combined. This is to form a uniform base coating over the entire width and length.
  • the loss of ignition is 0. 8% or less, for example 0.
  • moisture in the coil in the finishing annealing process Minimizing emissions, suppressing further oxidation and further nitriding, not only forms the base coating uniformly, but also lowers the disappearance of the inhibitor to improve the magnetic properties of the final product.
  • the low melting point particles having a melting point of 900 ° C or less as an additive, it is possible to suppress the defects caused by using the above-mentioned low-active MgO particles as an annealing separator.
  • the low melting point particles, Sr, Ni, Cu, Cr, Bi, Co, Ca, Zr, Mg may be one containing a compound of a metal selected from Mn.
  • the low melting point particles because the compound of the metal is included, may be made of a hydrate containing the compound of the metal.
  • the particle size of the low melting point particles is 1.0 ⁇ or less, it can be dispersed in the colloidal phase in the dispersion medium. That is, the additive composition including the low melting point particle and the dispersion medium satisfying the particle size range becomes a colloidal phase.
  • the temperature at which the formation of the base coating is initiated is known to be 900 to 950 ° C. For this reason, it is pointed out that in the process of forming the base coating, further oxidation or further nitriding is caused by the steel sheet component or the annealed condition, and defects occur in the outer winding portion or the edge portion of the coil.
  • the low melting point particles when used as an additive, the reaction properties of the oxide film formed on the surface of the decarburized annealing steel sheet and the MgO particles as annealing separator are improved. In this sense, the low melting point particles can be seen as an additive for promoting reaction. Specifically, simultaneously with the annealing separator used in the present invention, the melting point
  • the additive serves to protect the oxide film located under the dense molten layer on the oxide film surface of the decarburized annealing steel sheet. Such a molten layer has the effect of suppressing further oxidation and nitriding.
  • the dense molten layer thus formed can lower the temperature at which the base coat begins to form by allowing the annealing separator and oxide film to react at temperatures lower than 900 ° C.
  • the base coating formed at a low degree of silver the deinhibitor in the steel sheet is suppressed, and the magnetic properties can also be improved.
  • the additive is included 0.33 to 1.05 parts by weight
  • the dispersion medium is included 2.64 to 103.95 parts by weight
  • the solvent may be included as a balance.
  • the additive is less than 0.33 parts by weight, the effect of promoting the formation of the base coating is insignificant. On the other hand, if the additive exceeds 1.05 parts by weight, depending on the weight of the coil and the atmosphere during finishing annealing, the effect of the additive may occur excessively, so that defects such as local metallic gloss spots may occur.
  • the additive may be included in an amount of 1 to 20 weight 3 ⁇ 4, based on 100 wt 3 ⁇ 4 of the total amount of the additive composition including the additive and the dispersion medium, to form a colloidal phase.
  • the weight part range of the said dispersion medium considers this.
  • Annealing separators comprising first MgO particles, second MgO particles, third MgO particles, or a combination thereof;
  • An additive composition comprising an additive and a dispersion medium; And a solvent; to prepare a mixture; It provides a method for producing an annealing separator composition comprising a; and stirring the mixture.
  • first MgO particles the second MgO particles, the crab 2 MgO particles, and the additive is as described above.
  • the step of stirring the mixture in the speed range of 1500 to 2000 rpra, may be performed for 10 minutes or more.
  • the separating agent is dispersed evenly, and may be excellent in adhesion when applied to the surface of the steel sheet.
  • the mixer (Mxer) used at the time of stirring is not specifically limited if a stirring floppler is provided in the normal tank.
  • first MgO particles, the second MgO particles, the third MgO particles, or a combination thereof may be prepared and used.
  • the manufacturing process and the physical properties of each of the first MgO particles, the second MgO particles, and the system 3 MgO particles are as described above.
  • preparing a steel slab Heating the steel slab; Hot rolling the heated steel slab to produce a hot rolled sheet; Rolling the hot rolled sheet to produce a cold rolled sheet; Decarburizing annealing the cold rolled sheet; applying an annealing separator composition on a surface of the decarburizing annealing steel sheet; And annealing the steel sheet to which the annealing separator composition has been applied.
  • This is a series of processes including, and the annealing separator composition used in such a process is the same as the above.
  • the decarburizing annealing of the cold rolled sheet is generally performed by setting a temperature in a furnace of about 800 to 950 ° C. under a wet atmosphere composed of a mixture of ammonia, hydrogen, and nitrogen.
  • decarburization annealing is not performed well, and the grains remain in a fine state, which may cause the crystals to grow in an unfavorable orientation during the annealing.
  • the primary recrystallized grains may be excessively grown at too high a temperature. Because there is.
  • silicon which is the component having the highest oxygen affinity in the steel sheet, reacts with oxygen to form Si0 2 on the surface of the steel sheet. As oxygen gradually penetrates into the steel sheet, Fe-based oxides are further formed.
  • an oxide film containing the SiO 2 and the Fe-based oxide is necessarily formed on the surface of the steel sheet.
  • the annealing step by using the above-described annealing separator composition, it is possible to obtain a final product having a uniform base coating and excellent magnetic properties.
  • the step of finishing annealing the steel sheet to which the annealing separator composition is applied may be performed for 15 to 30 hours in the silver range of 1150 to 1230 ° C.
  • the steel slab Si: 2.5 to 4.0% by weight, C: 0.040 to 0.1% by weight, and Mn: 0.05 to 0.20% by weight, N: 0.01% by weight or less (except 0% by weight) , S : 0.008% by weight or less (excluding 0% by weight), and A1: 0.015 to 0.04% by weight, and the balance may include Fe and other unavoidable impurities.
  • P 0.01 to 0.075% by weight
  • Sn 0.02 to 0.08% by weight of the other unavoidable impurities, but is not limited thereto.
  • Preparation the back extract the Mg followed from sea water magnesia particles and production of water jeonyung magnesia particles, said extracted ions Mg Ca (0H) 2 and After the reaction, Mg (0H) 2 was prepared and calcined Mg (0H) 2 was prepared to prepare seawater magnesia particles, which were used as the system-based MgO particles.
  • the molten magnesia particles prepared by the above method were melted to prepare molten magnesia particles, which were used as second MgO particles and third MgO particles, respectively.
  • the particle size and purity of the crab 1 MgO particles, the second MgO particles and the 3 MgO particles were prepared in various ways.
  • a particle diameter is a measured value by a laser diffraction method.
  • a series of hot rolled and cold rolled steel slabs based on weight%, based on C: 0.050, Si: 3.33, Mn: 0. 100, A1: 0.028, the remainder containing Fe and other inevitable impurities. Through the process to produce a cold rolled plate having a final thickness of 0.23 mm.
  • the cold rolled sheet was decarburized annealing for 130 seconds at 850 ° C silver. At this time, the amount of oxygen in the oxide film on the surface of the decarburized annealing was 890 ppm.
  • the annealed separator composition thus prepared was applied to the surface of the decarburized annealed steel sheet using a coater, dried and wound up with a coil. At this time, on the basis of the increase after drying, the annealing separator composition is applied so as to be 6.0 g / m 2 per side.
  • annealing After annealing the steel sheet to which the annealing separator composition was applied for 20 hours at 1200 ° C., and then applying an insulating coating composition in a continuous line, annealing was performed at 850 ° C.
  • the insulating coating composition as a composition generally used in the art, a solution containing aluminum phosphate and colloidal silica as a main component Used.
  • Table 2 shows the base coating appearance properties, adhesiveness, and magnetic properties formed in each case of Table 1.
  • Adhesion As a standard generally judged in the art about 20 ⁇ ⁇ bending test result after insulation coating treatment, it is very good ( ⁇ ) , Good ( ⁇ ), Usually ( ⁇ ) or bad (X).
  • first MgO particles seawater magnesia particles having an average particle diameter of 65 to 72 and a purity of 99.0 to 99.5%.
  • molten magnesia particles (second MgO particles) having an average particle diameter of 330 and a purity of 99.0 to 99.5% are used, so that the mixture thereof is 100 parts by weight in total, and the slurry phase is used as a solvent.
  • the adjusted composition was used.
  • Loss on Igniton (LOI) of the final composition, and the contents of S0 3 and C1 included as impurities in the final composition, are measured according to methods generally known in the art, respectively.
  • the loss on ignition ion (LOI) is 0.76% or less, and the contents of S0 3 and C1 included as impurities It becomes a composition which is 0.006% by weight or less, and it can be confirmed that the base coating appearance, adhesion, and magnetic properties of the steel sheet manufactured using the same are excellently expressed.
  • A2 and A3 had a very low loss of heat and an impurity content, and the appearance quality of the base coating was very uniform and good over the entire length and width of the coil.
  • A6 and A7 which do not satisfy the particle size, purity, and composition conditions of A1 to A5, have a loss of ignition greater than 0.76%, and a composition having an amount of S0 3 and C1 contained as impurities more than 0.006% by weight.
  • Coil length and width The appearance quality of the base coating was uneven and the adhesion was poor. In this case, magnetic property thermal phenomenon occurred in the coil inner winding in any case.
  • A6 and A7 become a comparative example of the present invention
  • A1 to A5 can be utilized as an embodiment of the present invention.
  • the additive composition is further added to the compositions of A1 to A5, it may be an embodiment of the present invention.
  • Hot-rolled steel slabs containing, by weight%, C: 0.055, Si: 3.32, Mn: 0.095, S: 0.005, Al: 0.027, and N: 0.005, the remainder containing Fe and other inevitable impurities And a cold rolled plate having a final thickness of 0.27 mm 3 through a series of rolling operations.
  • the cold rolled sheet was subjected to decarburization annealing at a temperature of 850 ° C. for 150 seconds when the degree of oxidation was adjusted in N 2 + 3 ⁇ 4 atmosphere. At this time, the amount of oxygen in the oxide film on the surface of the decarburized annealing was 870 ppm.
  • the first MgO particles (average particle diameter: 68 urn)-seawater magnesia, the second MgO particles (average particle diameter: 350 / zm) and the third MgO particles (average particle diameter: 480 / an), respectively, 3 and the like are combined common respectively B1 to B10 the composition that different purity, Ti0 2 8 parts by weight was added portion behind, by adding a solvent to ahyong common propeller the stirrer in the mixing tank (mixing tank) of the water temperature 8 0 C Stir at 1800 rpm for 15 minutes.
  • the annealing separator composition thus prepared was applied to the surface of the decarburized annealing steel sheet using a coater, dried, and wound up into a 20 ton coil. At this time, based on the weight after drying, the annealing separator composition is applied to be 6.5g / m 2 per side.
  • Table 4 shows the base coating appearance properties, adhesion, and magnetic properties formed in each case of Table 3.
  • Adhesion 20ram after insulation coating (p bending test result, which is generally judged in the art, indicating very good ( ⁇ ), good (O), normal ( ⁇ ), bad (X) Will
  • B1 to B5 are 50 to 70 parts by weight of seawater magnesia particles (first MgO particles) having an average particle diameter of 68 and a purity of 99.0 to 99.5%, and molten magnesia particles having an average particle diameter of 350 and a purity of 99.0 to 99.5% (second MgO particles) using molten magnesia particles (third MgO particles) of 20 to 50 parts by weight, an average particle diameter of 480 and a purity of 99.8 3 ⁇ 4>, and a total of 100 parts by weight of these mixtures in a slurry phase as a solvent.
  • the adjusted composition was used.
  • B6 and B7 do not use the third MgO particles, using 50 to 80 parts by weight of the first MgO particles, 20 to 50 parts by weight of the crab 2 MgO particles, so that their mixture is 100 parts by weight in total, A composition in which the slurry phase was adjusted with a solvent was used.
  • Loss on Ignition (L0I) of the final composition, and final The contents of SO 3 and C 1 included as impurities of the composition are the values measured according to methods generally known in the art, respectively.
  • the loss of ignition loss (L0I: Loss on Igni ti on) is 0.72% by properly blending the seawater magnesia particles and at least one of the two molten magnesia particles having different particle diameters in the B1 to B7 composition range.
  • the content of S0 3 and C1 contained as an impurity is 0.008 weight 3 ⁇ 4> or less, the base coating appearance, adhesion, and magnetic properties of the steel sheet manufactured using this can be confirmed that excellent expression throughout.
  • B8 to B10 which does not satisfy the B1 to B7 composition conditions, become a composition in which the loss of ignition is more than 0.72%, and the content of S0 3 and C1 contained as impurities is more than 0.008% by weight, Scalability defects and color deviation defects occurred at the edges.
  • B8 to B10 become comparative examples of the present invention, and B1 to B7 may be utilized as embodiments of the present invention.
  • B1 to B7 may be utilized as embodiments of the present invention.
  • the additive composition is further added to the compositions of B1 to B7, it may be an embodiment of the present invention.
  • a series of processes for hot rolling and cold rolling steel slabs including, by weight, C: 0.054, Si: 3.30, Mn: 0.085, and A1: 0.029, the remainder containing Fe and other unavoidable impurities.
  • the lead plate was produced with a final thickness of 0.23 mm 3.
  • the cold rolled sheet was decarburized annealed for 140 seconds at a temperature of 850 0 C.
  • the amount of oxygen in the oxide film on the surface of the decarburized annealing was 940 ppm.
  • each of the additive compositions shown in Table 5 was mixed with the A2 composition used in Evaluation Example 1, and stirred at 2000 rpm for 10 minutes using a general propeller stirring apparatus in a mixing tank of mercury 8 0 C. It was.
  • the additive composition of Table 5 after blending to satisfy each composition, after the additive is first pulverized using a general ultrasonic grinding device, a dispersion medium is added and 5 at 2000 rpm using a general propeller phase stirring device Stir for minutes.
  • the annealing separator composition thus prepared was applied to the surface of the decarburized annealing steel sheet using a coater, dried, and wound up into a 20 ton coil. At this time, based on the weight after drying, the annealing separator composition is applied so as to be 6.0 g / m 2 per side.
  • the insulating coating composition was applied in a continuous line, and then annealing was performed at 850 ° C.
  • the insulating coating composition As the insulating coating composition, as a composition generally used in the art, a solution containing aluminum phosphate and colloidal silica as a main component was used.
  • Table 6 shows the base coating appearance properties, adhesion, and magnetic properties formed in each case of Table 5.
  • CI is the same as the A2 composition used in Evaluation Example 1, and when the additive composition is added to it, such as C2 to C7 it can be confirmed that the loss of ignition of the final annealing separator composition is 0.8% or less. In addition, it can be confirmed that the magnetic properties are excellent when the total amount of SO 3 and C 1 as impurities is 0.01% or less.
  • C9 using the B10 of the evaluation example 2 is a composition of the annealing separator is not suitable for the embodiment of the present invention, irrespective of the use of the additive has a high ignition loss and impurities content, the base coating appearance, Adhesion, magnetic properties You can see that it's feverish.
  • CI, C9 and C10 are comparative examples of the present invention, and C2 to C7 are evaluated as examples of the present invention.
  • the reduction of the ignition loss and the impurity content of the final annealing separator composition is reduced. It can be comprehensively evaluated that the magnetic properties can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

소둔분리제로 사용되는 MgO의 입경을 제어하여 강 열 감량과 불순물 함량을 낮추고, 저융점 첨가제를 포함하는 첨가제 조성물을 첨가하여 사상 소둔시 MgO로부터의 수분량을 최소화할 수 있는 소둔분리제 조성물 및 그 제조방법에 관한 것으로, 입경이 다른 MgO입자를 각각 포함하는 소둔 분리제, 융점이 900℃이하인 저융점 입자 중 적어도 1종 이상을 포함하는 첨가제 조성물 및 용매를 포함하는 소둔분리제 조성물을 제공한다. 또한 이러한 소둔분리제 조성물을 이용하여 방향성 전기강판을 제조하는 방법을 제공한다.

Description

【명세서】
【발명의 명칭】
소둔 분리제 조성물, 이의 제조 방법 및 이를 이용한 방향성 전기강판의 제조방법
【기술분야】
소둔 분리제 조성물, 이의 제조 방법, 및 이를 이용한 방향성 전기강판의 제조방법에 관한 것이다.
【발명의 배경이 되는 기술】
일반적으로 방향성 전기강판은, Si 2.5~4.0 %을 함유하고, 결정립의 방위가 ( 110) [001]방향으로 정렬된 집합 조직을 가지고 있다. 이는, 압연 방향으로 우수한 자기적 특성을 발현할 수 있어, 변압기, 전동기, 발전기 및 기타 전자 기기 등의 철심 재료로 주로 사용된다.
최근에는 그 생산 효율을 높일 목적으로, 방향성 전기강판의 생산 공정에서 다뤄지는 강판 (특히, 코일 형태로 권취된 강판)의 대형화가 추진되고 있다.
그런데, 대형화에 따른 문제점으로, 강판 내 각 부분의 온도 상승의 차이가 발생하여, 베이스 코팅이 불균일하게 형성되거나, 강판 내 /외권부의 형상 불량이 유발될 수 있다.
최근의 연구에 의하면, 이러한 문제점은 소둔 분리제의 성상과 많은 상관성을 갖고 있다는 것이 판명되어, 소둔 분리제를 정밀하게 제어할 필요성이 대두되고 있다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명의 구현예들에서는, 앞서 지적된 문제점을 해소하기 위해, 1) 소둔 분리제로 사용되는 MgO의 입경 등을 제어하고, 2) 저융점 첨가제를 포함하는 첨가제 조성물을 첨가한 소둔 분리제 조성물, 이의 제조 방법, 및 이를 이용한 방향성 전기강판의 제조 방법을 제공한다.
【과제의 해결 수단】
본 발명의 일 구현예에서는, 게 1 MgO 입자ᅳ 제 2 MgO 입자, 제 3 MgO 입자, 또는 이들의 조합을 포함하는, 소둔 분리제; 첨가제 및 분산매를 포함하는 , 첨가제 조성물; 및 용매 ;를 포함하는 소둔 분리제 조성물을 제공한다.
여기세 상기 제 1 MgO 입자는 평균 입경이 100 이하 (단, 0//m 제외)인 것이다. 또한, 상기 제 2 MgO 입자 및 상기 제 3 MgO 입자는 각각 평균 입경이 100 zm이상인 것이다. 그리고, 상기 첨가제는, 융점이
900oC이하인 저융점 입자 중 적어도 1종 이상을 포함하는 것이다.
구체적으로, 상기 소둔 분리제의 각 구성 요소에 관한 설명은 다음과 같다.
우선, 상기 제 1 MgO 입자는, 해수 마그네시아 입자일 수 있고, 평균 입경이 65 내지 72 이며, 순도가 99.0 내지 99.5 %일 수 있다.
한편, 상기 제 2 MgO 입자 및 상기 제 3 MgO 입자는 각각, 전융 마그네시아 입자일 수 있다. 이 경우, 상기 제 2 MgO 입자는 평균 입경이 330 내지 350 mi일 수 있고, 순도가 99.0 내지 99.5 %일 수 있다. 또한, 상기 제 3 MgO 입자는, 평균 입경이 480 //m 이상이고, 순도가 99.8 % 이상일 수 있다.
보다 구체적으로, 상기 소둔 분리제는 상기 제 1 MgO 입자, 상기 제 2 MgO 입자, 상기 제 3 MgO 입자, 또는 이들의 조합을 포함함을 언급하였다. 이때, "이들의 조합"이란, 상기 제 1 MgO 입자, 상기 제 2 MgO 입자ᅳ 및 상기 제 3 MgO 입자 중 2 이상의 조합인 흔합물을 의미한다.
예를 들어, 상기 소둔 분리제는, 상기 제 1 MgO 입자 및 상기 제 2 MgO 입자의 흔합물일 수 있다. 이 경우, 상기 소둔 분리제의 총량 100 증량¾에 대해, 상기 제 1 MgO 입자는 50 내지 80 중량 ¾;포함되고, 상기 제 2 MgO 입자는 잔부로 포함될 수 있다. 이러한 조성을 만족할 때, 상기 소둔 분리제는, 강 열 감량 (L0I : Loss on Igni t ion)이 0.76% 이하이고, 불순물로 포함된 S03 및 C1의 함량이 0.006 중량 % 이하가 될 수 있다.
또 다른 예로, 상기 소둔 분리제는, 상기 제 1 MgO 입자, 상기 제 2 MgO 입자, 및 상기 제 3 MgO 입자의 흔합물일 수 있다. 이 경우, 상기 소둔 분리제의 총량 100 증량 %에 대해, 상기 제 1 MgO 입자는 50 내지 80 증량 % 포함되고, 상기 제 2 MgO 입자는 20 내지 40 증량 %포함되고, 상기 제 3 MgO 입자는 잔부로 포함될 수 있다. 이러한 조성을 만족할 때, 상기 소둔 분리제는, 강 열 감량. (LOI : Loss on Igni t ion)이 0.73% 이하이고, 불순물로 포함된 S03 및 C1의 함량이 0.008 중량 % 이하가 될 수 있다.
한편 상기 첨가제 조성물에 포함되는 저융점 입자에 관한 설명은 다음과 같다.
상기 저융점 입자는, Sr , Ni , Cu , Cr , Bi , Co , Ca , Zr , Mg, 및 Mn 중에서 선택되는 금속의 화합물아 포함된 것일 수 있다. 구체적으로, 상기 저융점 입자는, 상기 금속의 화합물이 포함된 것이므로, 상기 금속의 화합물이 포함된 수화물로 이루어진 것일 수도 있다.
아을러, 상기 저융점 입자의 입경은 1.0 이하이고, 상기 분산매 내 콜로이드 상으로 분산될 수 있다. 즉, 상기 입경 범위를 만족하는 저융점 입자와 상기 분산매를 포함하는 첨가제 조성물은 콜로이드 상이 된다. 이와 독립적으로, 상기 소둔 분리제 100 중량부를 기준으로, 상기 첨가제는 0.33 내지 1.05 중량부 포함되고, 상기 분산매는 2.64 내지
103.95 중량부 포함되고, 상기 용매는 잔부로 포함될 수 있다.
본 발명의 다른 일 구현예에서는, 제 제 1 MgO 입자, 제 2 MgO 입자, 저] 3 MgO 입자, 또는 이들의 조합을 포함하는, 소둔 분리제; 첨가제 및 분산매를 포함하는, 첨가제 조성물; 및 용매;를 흔합하여, 흔합물을 제조하는 단계 ; 및 상기 흔합물을 교반하는 단계 ;를 포함하는 소둔 분리제 조성물의 제조 방법을 제공한다.
여기서, 상기 제 1 MgO 입자는, 평균 입경이 100卿이하 (단, 0 제외)인 것이다. 또한, 상기 제 2 MgO 입자 및 상기 제 3 MgO 입자는 각각, 평균 입경이 100 이상인 것이다.
아을러, 상기 첨가제는, 융점이 90CTC이하인 저융점 입지" 중 적어도
1종 이상을 포함하는 것어다.
구체적으로, 상기 흔합물을 교반하는 단계;는, 1500 내지 2000 rpm 의 속도 범위로, 10 분 이상수행되는 것일 수 있다.
한편, 상기 흔합물을 제조하는 단계; 이전에, 상기 제 1 MgO 입자, 상기 제 2 MgO 입자, 상기 제 3 MgO 입자 중 하나 이상의 입자를 제조하여 사용할 수 있다.
보다 구체적으로, 상기 게 1 MgO를 제조하여 사용하는 경우, 해수로부터 Mg 이은을 추출하는 단계; 상기 추출된 Mg 이온을 Ca(0H)2과 반웅시켜, Mg(0H)2를 제조하는 단계 ; 및 상기 제조된 Mg(0H)2를 1800 °C 이상의 온도 범위에서 소성하여 /상기 제 1 MgO 입자를 제조하는 단계;를 거칠 수 있다.
이와 독립적으로, 상기 계 2 MgO 입자 또는 상기 제 3 MgO 입자를 제조하여 사용하는 경우, 해수 마그네시아 입자를 2800 °C 이상의 온도 범위에서 용융하여, 상기 제 2 MgO 입자 또는 상기 제 3 MgO 입자를 제조하는 단계;를 거칠 수 있다. 이때, 원료로 사용하는 해수 마그네시아 입자는, 상기 제 1 MgO의 제조 공정에 따라 제조된 것을 사용할 수도 있다.
본 발명의 또 다른 일 구현예에서는, 전술한 소둔 분리제 조성물을 사용하여 방향성 전기강판을 제조하는 방법을 제공한다.
구체적으로, 강 슬라브를 준비하는 단계; 상기 강 슬라브를 가열하는 단계; 상기 가열된 강 슬라브를 열간 압연하여, 열연판을 제조하는 단계; 상기 열연판을 냉간 압연하여, 넁연판을 제조하는 단계 ; 상기 냉연판을 탈탄 소둔하는 단계; 상기 탈탄 소둔된 강판의 표면 상에, 소둔 분리제 조성물을 도포하는 단계 ; 및 상기 소둔 분리제 조성물이 도포된 강판을 사상 소둔하는 단계;를 포함하는 일련의 공정이며, 이러한 공정에서
사용하는 소둔 분리제 조성물은 전술한 것과 같다.
보다 구체적으로, 상기 소둔 분리제 초성물이 도포된 강판을 사상 소둔하는 단계;는, 1150 내지 1230 0C의 온도 범위에서, 15 내지 30 시간 동안 수행될 수 있다.
한편, 상기 강 슬라브는, Si : 2.5 내지 4.0 중량 %, 및 C: 0.040 내지 0. 100중량 %을 포함하고, 잔부로는 Fe 및 기타 불가피한 불순물을 포함하는 것을 사용할 수 있다.
【발명의 효과】
본 발명의 일 구현예에 따른 소둔 분리제 조성물은, 1) 소둔
분리제로 사용되는 MgO의 입경 등을 제어함으로써, 그 강 열 감량과 불순물 함량을 낮추고, 2) 저융점 첨가제를 포함하는 첨가제 조성물을
첨가함으로써, 사상 소둔 시 MgO로부터의 수분량을 최소화하는 이점이 있다. 이를 적용한 공정에서는, 베이스 코팅 특성과 자기 특성이 우수한 방향성 전기강판이 수득될 수 있다 .
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 구현예들을 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
일반적으로, 방향성 전기강판은 Si : 2.5~4.0wt%을 함유하는 강 슬라브의 열간 압연-냉간 .압연 -탈탄 소둔 -사상 소둔을 포함하는 공정을 거쳐 제조되고, 그 표면에 절연 피막 형성용 조성물을 도포하고, 소둔 후 열교정 (Heat Flattening)하는 공정을 통해 최종 제품이 된다.
이때, 탈탄 소둔 공정은 냉간 압연된 강판 (즉, 냉연판)은 내에 포함된 탄소를 제거하는 동시에, 후속 공정인 고온 소둔 공정에서 2차 재결정립의 성장을 적절히 제어하기 위헤 억제제 ( Inhibi tor)를 생성시키기 위해 요구되는 공정에 해당된다.
이러한 탈탄 소둔 공정 이후에는, 주로 MgO를 포함하는 소둔 분리제를 강판 표면에 도포한 뒤 고은 소둔하는 공정올 거치는데, 이때 상기 산화막 내 Si02는 상기 MgO와 반웅한다. 이러한 반웅은 하기 화학 반웅식 1로 표시될 수 있으며, 이는 Mg2Si04, 베이스 코팅을 형성시키는 반웅에 해당된다.
[화학 반웅식 1] 2Mg(0H)2 + Si02→ Mg2Si04(베이스 코팅) + 2H20 상기 베이스 코팅은 통상적으로, 코일로 권취된 강판사이의 융착을 방지하고, 이러한 강판에 장력을 부여하여 철손을 감소시키는 효과 및 절연성을 부여한하는 효과가 있다고 여겨졌다.
특히 탈탄 소둔 공정에서는 강판 내 1차 재결정이 일어나고, 강판 표면에 산화막 내 Fe2Si04. Si02 등을 주성분으로 하는 산화막이 형성된다. 이후, 소둔 분리제를 탈탄 소둔된 강판에 도포하고 건조한 후, 코일로 권취하고, 사상 소둔하는 것이 일반적이다.
여기서, 소둔 분리제로는 MgO 입자를 사용하고, 여기에 용매로 물을 투밉하고, 교반 장치를 이용해 분산시켜 슬러리 상으로 형성한 뒤, 강판에 도포하는 것이 일반적이다.
이와 관련하여, 사상 소둔 공정에서는, 소둔 분리제의 주성분인 MgO, 그리고 탈탄 소둔 공정에서 형성된 산화막의 주성분 중 Si02의 반웅이 일어나 베이스 코팅 (즉, 포스테라이트; Forster i te) 피막이 형성되는데 , 그 화학 반웅식을 나타내면 다음과 같다.
2Mg0 + Si02 → Mg2Si04
이러한 베이스 코팅의 형성 반웅은, 그 하부에 위치하는 강판 내 인히비터 (MnS, A1N) 등의 거동에 영향을 미쳐, 이후 사상 소둔 과정에서의 2차 재결정 과정을 결정하는 요인이 될 수 있고 최종적으로는 2차 재결정에 따른 자기적 특성을 결정할 수 있다.
그런데, 일반적으로 알려진 소둔 분리제는, 그 성상이 정밀하게 다뤄지고 있지 않다. 구체적으로, 간수법, 해수법, 간수법, 또는
해수법으로 제조된 MgO를 재수화하는 재수화하여 Mg(0H)2을 제조하고, 이를 800 내지 1100oC의 온도 범위에서 소성하여 최종적으로 수득되는 MgO 입자를 사용하는 것이 일반적이다.
다만, 아렇게 일반적으로 제조된 MgO 입자의 경우, 10 jMii 내외의 미세한 입경을 가질 뿐만 아니라, 강 열 감량이 최소 0.8 %를 초과하며, 불순물로 포함되는 S03와 C1의 총량이 0.02 % 초과인 것으로 알려져 있고, 대형화된 방향성 전기강판의 제조 공정에 적용되기에는 부적합하다.
일반적으로, MgO 입자의 강 열 감량은, MgO 입자의 표면에 생성되는 미량의 수화 수분량과 관련된다. 구체적으로, MgO 입자의 표면 일부분에는 수분과 반웅한 수산화 마그네슴 [Mg(0H)2] 형태가 존재하며, 이것은 사상 소둔 공정에서 약 350 의 온도에 도달할 때 분해되면서 (Mg(0H)2 → MgO +
¾0), 수분을 일부 배출하는 원인이 된다.
이때, 코일로 권취된 강판을 사상 소둔하는 것이 일반적이며, 최근 코일의 대면적화에 따라사상 소둔 중에는 코일 내 온도 차이가 필연적으로 발생하게 된다. 사상 소둔 공정에서의 코일 내 온도 차이는, MgO 입자의 분해 및 그에 따른 수분 배출의 시기와 정도의 차이를 유발하며, 결국 베이스 코팅이 불균일하게 형성될 뿐만 아니라 강판 내 인히비터가 소실되어 자기 특성이 열위해질 수 있다.
또한 일반적으로, MgO 입자는 불순물로 S03와 C1를 포함한다. 이러한 불순물이 과다할 경우, 베이스 코팅과 그 하부 강판의 계면에 농화하여 베이스 코팅을 탈락시키거나, 피막의 박막화나 국부적인 얼룩, 변색 등의 표면 결함을 유발하게 될다.
이러한 문제를 인식하여 본 발명의 구현예들에서는, 1) 소둔 분리제로 사용되는 MgO의 입경 등의 물성을 제어함으로써, 그 강 열 감량과 불순물 함량을 낮추고, 2) 저융점 첨가제를 포함하는 첨가제 조성물을 첨가함으로써, 사상 소둔 시 MgO로부터의 수분량을 최소화하고자 한다.
구체적으로, 이하의 본 발명의 구현예들에서 언급하는 소둔 분리제 조성물은 소둔 분리제, 첨가제 조성물, 및 용매를 포함하는 것이다. 아울러, 상기 소둔 분리제는 특정 입경 범위를 만즉하는 MgO 둥의 고체 성분만을 지칭하고, 상기 첨가제 조성물은 고체 성분인 첨가제 및 액체 성분인 분산매를 포함하는 것을 지칭하고, 상기 용매는 상기 소둔 분리제 조성물 전체의 수분량을 조절하기 위해 잔부로 포함되는 액체 성분을 지칭하는 것으로 정의한다.
이하 본 발명의 구현예들을 각각 상세히 설명한다.
본 발명의 일 구현예에서는, 제 1 MgO 입자, 제 2 MgO 입자, 제 3 MgO 입자, 또는 이들의 조합을 포함하는, 소둔 분리제; 첨가제 및 분산매를 포함하는, 첨가제 조성물; 및 용매 ;를 포함하는 소둔 분리제 조성물을 제공한다.
여기서, 상기 계 1 MgO 입자는 평균 입경이 100 이하 (단, 0卿 제외)인 것이다. 또한, 상기 제 2 MgO 입자 및 상기 제 3 MgO 입자는 각각 평균 입경이 100 이상인 것이다. 그리고, 상기 첨가제는, 융점이
900 이하인 저융점 입자 중 적어도 1종 이상을 포함하는 것이다.
이처럼 각 구성 요소를 정밀하게 제어함으로써, 상기 소둔 분리제가 적용된 공정에서는, 베이스 코팅 특성과 자기 특성이 우수한 방향성
전기강판이 수득될 수 있다.
다만, 상기 제 1 MgO 입자의 평균 입경이 100 를 초과하면, 베이스 코팅이 불층분하게 형성될 수 있고, 탈탄 소둔 시 강판 상호간의 움직임이 용이하게 되어 권취시 강판이 밀려나오는 텔레스코프 결함이 증가할 수 있다. 이에, 본 발명의 일 구현예에서는 상기 게 1 MgO 입자의 평균 입경이 100 이하가 되도록 제어한다. 또한, 상기 제 2 MgO 입자 및 상기 제 3 MgO 입자의 경우, 각각의 평균 입경이 100 μm 미만이더라도 베이스 코팅의 형상을 제어하는 효과에 큰 차이를 미치치 않지만, 원료 제조 비용이 증가하는 문제가 있다. 이에, 본 발명의 일 구현예에서는 상기 제 2 MgO 입자 및 상기 제 3 MgO 입자의 평균 입경이 각각, loo 이상이 되도록 제어한다.
구체적으로, 상기 제 1 MgO 입자는, 해수 마그네시아 입자일 수 있다. 이와 관련하여 후술하겠지만, 상기 해수 마그네시아 입자인 제 1 MgO 입자는, 해수로부터 Mg 이온을 추출하는 단계; 상기 추출된 Mg 이은을 Ca(0H)2과 반웅시켜 Mg(0H)2를 제조하는 단계 ; 및 상기 제조된 Mg(0H)2를 1800 °C 이상의 온도 범위에서 소성하여, 상가 제 1 MgO 입자를 제조하는 단계;를 거쳐 제조될 수 있다.
이와 관련하여, 상기 추출된 Mg 이온을 Ca(0H)2과 반웅시키는 것은, 치환 반옹을 이용한 것인 바, 간수법, 해수법, 간수법, 또는 해수법으로 제조된 MgO를 재수화하는 재수화하여 Mg(0H)2을 제조하는 일반적인 공정과 구별된다.
또한, 상기 제조된 Mg(0H)2를 1800 °C 이상의 은도 범위에서
소성하는 공정은ᅳ 일반적인 공정에서 소성하는 온도 범위를 상회하는 것인 바, 이러한 공정 또한 구별된다.
이러한 일련의 공정에 따라, 평균 입경이 65 내지 72卿이며, 순도가 99 . 0 내지 99 . 5 %인 제 1 MgO 입자가 제조될 수 있다. 아을러, 이라한 평균 입경 및 순도 범위를 가지는 제 1 MgO 입자를 사용하면, 후술되는 실시예 및 평가예로부터 뒷받침되는 우수한 소둔 분리제 조성물이 제조될 수 있다.
한편 , 상기 제 2 MgO 입자 및 상기 제 3 MgO 입자는 각각, 전융
마그네시아 입자일 수 있다. 이 경우, 해수 마그네시아 입자를 2800 °C 이상의 은도 범위에서 용융하여, 상기 제 2 MgO 입자 또는 상기 제 3 MgO 입자를 제조하는 단계;를 거칠 수 있다. 이때, 원료로사용하는 해수
마그네시아 입자는 상기 제 1 MgO의 제조 공정에 따라 제조된 것을 사용할 수도 있다.
이때, 해수 마그네시아 입자를 용융하는 온도가, 일반적인 공정에서 용융하는 온도 범위를 상회하는 것인 바, 이러한 공정 또한 구별된다. 이러한 일련의 공정에 따라, 평균 입경이 330 내지 350 이고 순도가 99 . 0 내지 99 . 5 %이 되도록 상기 제 2 MgO 입자를 제조하고, 이와 독립적으로, 평균 입경이 480 μm 이상이고 순도가 99. 8 % 이상이 되도록 상기 제 3 MgO 입자를 제조할수 있다. 이러한 평균 입경 및 순도 범위를 가지는 계 2 MgO 입자 및 제 3 MgO 입자를 각각 사용하거나 적절히 조합하여 사용하면, 후술되는 실시예 및 평가예로부터 뒷받 ¾되는 우수한 소둔 분리제 조성물이 제조될 수 있다.
보다 구체적으로 상기 소둔 분리제는 상기 제 1 MgO 입자, 상기 제 2 MgO 입자, 상기 제 3 MgO 입자, 또는 이들의 조합을 포함함을 언급하였다. 이때, "이들의 조합"이란, 상기 제 1 MgO 입자, 상기 제 2 MgO 입자, 및 상기 제 3 MgO 입자 중 2 이상의 조합인 흔합물을 의미한다.
예를 들어, 상기 소둔 분리제는, 상기 계 1 MgO 입자 및 상기 제 2 MgO 입자의 흔합물일 수 있다. 이 경우, 상기 소둔 분리제의 총량 100 증량 %에 대해, 상기 계 1 MgO 입자는 50 내지 80 중량 % 포함되고, 상기 계 2 MgO 입자는 잔부로 포함될 수 있다. 이러한 조성을 만족할 때, 상기 소둔 분리제는, 강 열 감량 (L0I : Loss on Igni t i on)이 0. 76¾> 이하이고, 불순물로 포함된 S03 및 C1의 함량이 0 . 006 중량 % 이하가 될 수 있다.
또 다른 예로, 상기 소둔 분리제는, 상기 제 1 MgO 입자, 상기 제 2 MgO 입자, 및 상기 제 3 MgO 입자의 흔합물일 수 있다. 이 경우, 상기 소둔 분리제의 총량 100 중량 >에 대해, 상기 제 1 MgO 입자는 50 내지 80 증량1 To 포함되고, 상기 제 2 MgO 입자는 20 내지 40 중량 %포함되고, 상기 제 3 MgO 입자는 잔부로 포함될 수 있다. 이러한 조성을 만족할 때, 상기 소둔 분리제는, 강 열 감량 (L0I : Loss on Igni t i on)이 0. 73% 이하이고, 불순물로 포함된 S03 및 CI의 함량이 0.008 중량 % 이하가 될 수 있다.
앞서 예시한 두 경우 모두, 전술한 제 1 MgO 입지-, 게 2 MgO 입자, 및 거 13 MgO 입자를 적절히 조합한 소둔 분리제를 사용함으로써 , 강 열 감량과 불순물 함량을 낮춘 것이다. 이는, 전폭 및 전장에 걸쳐서 균일한 베이스 코팅을 형성하기 위한 것이다.
구체적으로, 강 열 감량을 0 . 8% 이하, 예를 들어 0 . 76% 이하, 또는 0 .73% 이하로 낮게 유지함으로써, 사상 소둔 공정에서 코일의 수분 배출량을 최소화하고, 추가산화 및 추가 질화를 억제하여, 베이스 코팅을 균일하게 형성할 뿐만 아니라, 인히비터 소실을 낮추어 최종 제품의 자기 특성을 개선하는 이점이 있다.
아을러, S03와 C1의 총량을 0.01 증량 % 미만, 예를 들어 0.008 증량 이하, 또는 0.006 중량 % 이하로 낮게 유지함으로써, 불균일한 베이스 코팅을 유발하는 원인을 최소화한다.
다만, 강 열 감량, 수화수분 등이 낮은 저활성 MgO 입자를 소둔 분리제로사용하면, 반응성이 부족하기 때문에ᅳ 균일하고 층분한 베이스 코팅 두께를 얻는 것이 곤란하다. 그 결과, 강판의 추가 산화나 추가 질화 둥이 초래되어, 베이스 코팅의 금속 반점, 변색 등의 결함이 유발될 수 있다.
본 발명의 일 구현예에서는, 융점이 900oC이하인 저융점 입자 중 적어도 1종 이상을 첨가제로 사용함으로써, 전술한 저활성 MgO 입자를 소둔 분리제로 사용함에 따른 결함을 억제할 수 있다.
상기 저융점 입자는, Sr , Ni , Cu , Cr , Bi, Co , Ca , Zr , Mg , 및 Mn 중에서 선택되는 금속의 화합물이 포함된 것일 수 있다. 구체적으로, 상기 저융점 입자는, 상기 금속의 화합물이 포함된 것이므로, 상기 금속의 화합물이 포함된 수화물로 이루어진 것일 수도 있다. 아을러, 상기 저융점 입자의 입경은 1.0卿이하이고, 상기 분산매 내 콜로이드 상으로 분산될 수 있다. 즉, 상기 입경 범위를 만족하는 저융점 입자와 상기 분산매를 포함하는 첨가제 조성물은 콜로이드 상이 된다.
일반적인 경우, 상기 저융점 입자를 첨가제로 사용하지 않기 때문에, 베이스 코팅의 형성이 개시되는 온도가 900 내지 950 °C로 알려져 있다. 이 때문에, 베이스 코팅 형성 과정에서, 강판 성분이나사상 소둔 조건에 따라 추가 산화나 추가 질화가 유발되어, 코일의 외권부나 에지부에 결함이 발생하는 문제점이 지적된다.
그런데 상기 저융점 입자를 첨가제로 사용할 경우, 탈탄 소둔된 강판의 표면에 형성된 산화막과, 소둔 분리제인 MgO 입자의 반웅성이 향상된다. 이러한 의미에서, 상기 저융점 입자는 반웅 촉진,용 첨가제로 볼 수 있다. 구체적으로, 본 발명에 사용된 소둔분리제와 동시에, 융점
900oC이하의 반웅촉진용 첨가제를 적용함에 따라, 이하의 2가지 효과를 얻을 수 있다.
1) 우선, 수화 수분량이 적은 소둔 분리제를 사용함으로써 , 사상 소둔 시 배출되는 수분에 의한 코일 내 국부적인 추가 산화 현상이 적어진다. 다만, 탈탄 소둔된 강판의 산화막이 환원되는 부반웅을 방지하기 위해, 상기 첨가제를 사용한다.
상기 첨가제는, 탈탄 소둔된 강판의 산화막 표면에 치밀한 용융층을 형성함으로써, 그 하부에 위치하는 산화막을 보호하는 역할을 한다. 이러한 용융층에 의해, 추가적인 산화나 질화를 억제하는 효과가 있다.
이에 따라, 강 열 감량과 불순물 함량이 매우 적은 소둔 분리제를 사용하였음에도 불구하고, 결함이 발생하지 않고, 전장 및 전폭에 걸쳐서 매우 우수한 베이스코팅을 얻을 수 있다.
2) 또한, 이처럼 형성된 치밀한 용융층은, 소둔 분리제와 산화막이 900°C보다 낮은 온도에서 반웅할 수 있게끔 함으로써 베이스 코팅이 형성되기 시작하는 온도를 낮출 수 있다. 낮은 은도에서 형성된 베이스 코팅에 의해, 강판 내 탈 인히비터가 억제되어, 자기특성도 개선되는 효과를 얻을 수 있다.
한편, 상기 소둔 분리제 100 중량부를 기준으로, 상기 첨가제는 0.33 내지 1.05 중량부 포함되고, 상기 분산매는 2.64 내지 103.95 중량부 포함되고, 상기 용매는 잔부로 포함될 수 있다.
상기 첨가제가 0.33 중량부 미만일 경우, 베이스 코팅 형성을 촉진하는 효과가 미미하다. 그에 반면, 상기 첨가제가 1.05 중량부를 초과하면, 코일 중량 및 사상 소둔 시 분위기에 따라, 오히려 첨가제의 효과가 과잉으로 발생하여 국부적인 금속 광택 반점 등의 결함이 발생할수 있다.
상기 첨가제는, 상기 첨가제 및 상기 분산매를 포함하는 첨가제 조성물의 총량 100 중량 ¾)에 대해, 1 내지 20 중량 ¾로 포함되어, 콜로이드 상을 형성할 수 있다. 상기 분산매의 중량부 범위는, 이를 고려한 것이다. 본 발명의 다른 일 구현예에서는, 본 발명의 다른 일 구현예에서는, 제 제 1 MgO 입자, 제 2 MgO 입자, 제 3 MgO 입자, 또는 이들의 조합을 포함하는, 소둔 분리제; 첨가제 및 분산매를 포함하는, 첨가제 조성물; 및 용매 ;를 흔합하여 , 흔합물을 제조하는 단계 ; 및 상기 흔합물을 교반하는 단계 ;를 포함하는 소둔 분리제 조성물의 제조 방법을 제공한다.
여기서, 상기 제 1 MgO 입자, 상기 제 2 MgO 입자, 상기 게 2 MgO 입자, 및 상기 첨가제에 관한 설명은 전술한 바와 같다.
상기 흔합 시, 믹싱 탱크 (Mi xing Tank) 내 상기 첨가제 조성물 및 상기 소둔 분리제 중 어떠한 물질을 먼저 투입하는지는 관계 없다.
다만, 상기 흔합물을 교반하는 단계;는, 1500 내지 2000 rpra 의 속도 범위로, 10 분 이상 수행되는 것일 수 있다. 이를 만족할 때, 소둔
분리제가 층분히 분산되어, 강판 표면에 도포 시 부착성이 우수할 수 있다. 한편, 교반 시 사용되는 믹서 (Mxer )는, 통상의 탱크 내에 교반 플로펠러가 설치되어 있는 것이라면, 특별히 한정되지 않는다.
한편, 상기 제 1 MgO 입자, 제 2 MgO 입자, 제 3 MgO 입자, 또는 이들의 조합을 첨가제 조성물과 혼합하는 단계; 이전에 , 상기 제 1 MgO 입자, 상기 제 2 MgO 입자, 상기 제 3 MgO 입자 중 하나 이상의 입자를 제조하여 사용할 수 있다. 이때, 상기 제 1 MgO 입자, 상기 제 2 MgO 입자, 및 상기 계 3 MgO 입자 각각의 제조 공정 및 그에 따른 물성은 전술한 바와 같다.
본 발명의 또 다른 일 구현예에서는, 전술한 소둔 분리제 조성물을 사용하여 방향성 전기강판을 제조하는 방법을 제공한다.
구체적으로, 강 슬라브를 준비하는 단계; 상기 강 슬라브를 가열하는 단계; 상기 가열된 강 슬라브를 열간 압연하여 , 열연판을 제조하는 단계; 상기 열연판을 넁간 압연하여, 냉연판을 제조하는 단계; 상기 냉연판을 탈탄 소둔하는 단계; 상기 탈탄 소둔된 강판의 표면 상에, 소둔 분리제 조성물을 도포하는 단계 ; 및 상기 소둔 분리제 조성물이 도포된 강판을 사상 소둔하는 단계 ;를 포함하는 일련의 공정이며, 이러한 공정에서 사용하는 소둔 분리제 조성물은 전술한 갓과 같다.
상기 냉연판을 탈탄 소둔하는 단계;는, 암모니아, 수소, 및 질소의 흔합 기체로 이루어진 습윤 분위기 하에서, 로 ( furnace) 내 온도를 800 내지 950 °C 정도로 설정하여 수행되는 것이 일반적이다.지나치게 낮은 은도에서는 탈탄 소둔이 잘 이루어지지 않을 뿐만 아니라 결정립이 미세한 상태로 유지되어 고은소둔 시 바람직하지 못한 방위로 결정이 성장될 우려가 있으며, 반대로 너무 높은 온도에서는 1차 재결정된 결정립이 과다하게 성장될 우려가 있기 때문이다.
상기와 같은 분위기로 제어된 로 ( furnace)에 강판이 통과되면서, 강판 내 산소 친화도가 가장 높은 성분인 실리콘 (Si )이 산소와 반웅하여, 강판의 표면에 Si02이 형성된다. 점차 산소가 강판 내로 침투하면, Fe계 산화물이 더 형성된다.
즉, 탈탄 소둔 공정에서는 필연적으로 강판의 표면에 상기 Si02및 상기 Fe계 산화물을 포함하는 산화막이 형성되는 것이다.
상기 상기 탈탄 소둔된 강판의 표면 상에, 소둔 분리제 조성물을 도포하는 단계 ; 및 상기 소둔 분리제 조성물이 도포된 강판을 사상
소둔하는 단계;에서, 상기 소둔 분리제 조성물로 전술한 것을 사용하면, 베이스 코팅을 균일하게 형성되고 자기적 특성이 우수한 최종 제품을 얻을 수 있다.
보다 구체적으로, 상기 소둔 분리제 조성물이 도포된 강판을 사상 소둔하는 단계;는, 1150 내지 1230 °C의 은도 범위에서, 15 내지 30 시간 동안 수행될 수 있다.
한편, 상기 강 슬라브는, Si : 2.5 내지 4.0 중량 %, C : 0.040 내지 0. 100 중량 %, 및 Mn: 0.05 내지 0.20 중량 %, N: 0.01 중량 % 이하 (단, 0 중량 % 제외), S : 0.008 중량 % 이하 (단, 0 중량 % 제외), 및 A1 : 0.015 내지 0.04 중량 %을 포함하고, 잔부로는 Fe 및 기타 불가피한 불순물을 포함하는 것을 사용할 수 있다.
여기서, 기타 불가피한 불순물 중 P: 0.01 내지 0.075 중량 %, 및 Sn: 0.02 내지 0.08 중량 %을 포함할 수 있으나, 이에 제한되지 않는다. '
이하, 본 발명의 바람직한 실시예, 이에 대비되는 비교예, 및 이들의 평가예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일
실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.
제조예: 해수마그네시아 입자및 전융마그네시아 입자의 제조 해수로부터 Mg 이은을 추출한 뒤, 상기 추출된 Mg 이온을 Ca(0H)2과 반웅시켜, Mg(0H)2를 제조한 다음, 상기 제조된 Mg(0H)2를 소성하여, 해수 마그네시아 입자를 제조하고, 이를 계 1 MgO 입자로 사용하였다.
이와 독립적으로, 위 방법으로 제조된 해수 마그네시아 입자를 용융시켜, 용융 마그네시아 입자를 제조하고, 이를 각각 제 2 MgO 입자 및 제 3 MgO 입자로 사용하였다.
이때, 상기 게 1 MgO 입자, 상기 제 2 MgO 입자 및 상기 게 3 MgO 입자의 입경과 순도가 다양하게 제조하였다.
아을러, 입경은 Laser 회절법에 의한 측정 값이다.
평가예 1 : MgO 입자의 입경에 따른 효과 평가
중량 %로, C: 0.050 , Si : 3.33 , Mn: 0. 100 , A1: 0.028를 기본으로 하고, 나머지가 Fe 및 기타 불가피하게 흔입되는 불순물을 포함하는 강 슬라브를 열간 압연 및 냉간 압연하는 일련의 공정을 통해 최종 두께 0.23 mm의 냉연판을 제조하였다.
이후, 연속 소둔 라인에서, 상기 냉연판을 850 °C의 은도에서 130 초간 탈탄 소둔하였다. 이때 탈탄 소둔된 강판 표면의 산화막 내 산소량은 890 ppm이었다.
이어서, 해수 마그네시아인 게 1 MgO 입자, 전융 마그네시아인 거 12 MgO 입자 (평균 입경: 330 卿)을 표 1에 나타낸 A1 내지 A7 조성으로 각각 흔합하고, Ti02 8중량부를 첨가한 뒤, 용매를 첨가하여 수온 8°C의 믹싱 탱크 (Mixing Tank) 내에서, 일반적인 프로펠러상 교반 장치를 이용하여 1800 rpm의 교반 속도로 15분 동안 교반하였다.
이렇게 제조된 소둔 분리제 조성물을, 를 코터를 이용해 상기 탈탄 소둔된 강판 표면에 도포하고 건조한 후 코일로 권취했다. 이때, 건조 후의 증량 기준으로, 상기 소둔 분리제 조성물은 한쪽 면당 6.0g/m2이 되도록 도포한 것이다.
상기 소둔 분리제 조성물이 도포된 강판을 1200 °C 에서 20 시간 동안사상 소둔한 후, 연속 라인에서 절연 피막 조성물을 도포한 후, 850°C에서 소둔 처리하였다.
상기 절연 피막 조성물으로는, 당업계에서 일반적으로 사용되는 조성물로서, 인산 알루미늄과 콜로이달 실리카를 주성분으로 하는 용액을 사용하였다.
표 1의 각 경우에 형성된 베이스 코팅 외관 특성과 밀착성, 자기 특성을 표 2에 나타냈다.
【표 1】
Figure imgf000016_0001
【표 2】
Figure imgf000016_0002
A2 매우균일하고 양호, 검은 회색을 띄며 광택있음 O 1.92 0.80
A3 매우균일하고 양호, 검은 회색을 띄며 광택있음 - 0 1.92 0.81
A4 거의 균일하고 양호, 다소 거무스름함, 광택있음 O 1.92 0.82
A5 균일하고 양호하며 광택있음 O 1.91 0.83
A6 피막이 얇고 에지부에 가스마크상 얼룩 발생 Χ-Δ 1.87 0.94
A7 피막이 매우 얇고, 에지부에 스케일상 결함 X 1.89 0.90 주) 밀착성: 절연피막 처리 후 20瞧 φ 굽힘 시험 결과에 대해, 당업계에서 일반적으로 판단하는 기준으로, 매우 좋음 (©), 좋음 (ᄋ), 보통 (Δ) , 나쁨 ( X )을 표시한 것임 A1 내지 Α5의 경우, 평균 입경이 65 내지 72 이며 순도가 99.0 내지 99.5 %인 해수 마그네시아 입자 (제 1 MgO 입자)를 50 내지 80 중량부, 평균 입경이 330 이며 순도가 99.0 내지 99.5 %인 용융 마그네시아 입자 (제 2 MgO 입자)를 20 내지 50 증량부 사용하고, 이들의 흔합물이 총 100 중량부가 되도록 하여, 용매로 슬러리 상을. 조정한 조성물을 사용하였다.
최종 조성물의 —강 열 감량 (LOI : Loss on Igni t ion) , 그리고 최종 조성물의 불순물로 포함된 S03 및 C1의 함량은, 각각 당업계에 일반적으로 일려진 방법에 따라 측정한 값이다.
표 1 및 2 따르면, A1 내지 A5의 입경, 순도, 및 조성 조건을 만족함으로써, 강 열 감량 (LOI : Loss on Igni t ion)이 0.76% 이하이고, 불순물로 포함된 S03 및 C1의 함량이 0.006 중량 % 이하인 조성물이 되어, 이를 사용하여 제조된 강판의 베이스 코팅 외관, 밀착성, 및 자기 특성이 두루 우수하게 발현되는 것을 확인할 수 있다.
특히, A2 및 A3은 강 열 감량과 불순물 함량이 매우 낮아, 코일 전장 및 전폭에 걸쳐서 베이스 코팅의 외관 품질이 매우 균일하고 양호하며, 자기 특성도 매우 우수한 것을 확인하였다.
그에 반면, A1 내지 A5의 입경, 순도, 및 조성 조건을 만족하지 않는 A6 및 A7는, 강 열 감량이 0.76% 초과이고, 불순물로 포함된 S03 및 C1의 함량이 0.006 중량 % 초과인 조성물이 되어, 코일 전장 및 폭방향으로 베이스 코팅의 외관 품질이 불균일하면서 밀착성도 불량하였다. 또한, 이러한 경우에는 어느 경우에서도 코일 내권부에 자기특성 열위현상이 발생하였다.
따라서, A6 및 A7은 본 발명의 비교예가 되고, A1 내지 A5는 본 발명의 실시예로 활용될 수 있다. 후술하겠지만, A1 내지 A5의 조성물에 첨가제 조성물을 더 첨가하면, 본 발명의 실시예가 될 수 있다.
평가예 2 : gO 입자의 혼합조성에 따른효과평가
중량 %로, C : 0.055 , Si : 3.32 , Mn: 0.095 , S : 0.005 , Al: 0.027 , 및 N: 0.005을 포함하고, 나머지가 Fe 및 기타 불가피하게 흔입되는 불순물을 포함하는 강 슬라브를 열간 압연 및 넁간 압연하는 일련의 공정을 통해 최종 두께 0.27匪의 냉연판을 제조하였다.
이후, 연속 소둔 라인에서, N2 + ¾ 분위기 증에서 산화도를 조정하면세 상기 냉연판을 850 °C의 온도에서 150 초간 탈탄 소둔하였다. 이때 탈탄 소둔된 강판 표면의 산화막 내 산소량은 870 ppm이었다.
이어서, 해수 마그네시아인 제 1 MgO 입자 (평균 입경: 68 urn)-, 전융 마그네시아인 제 2 MgO 입자 (평균 입경: 350 /zm) 및 제 3 MgO 입자 (평균 입경: 480 /an)이고, 각각 표 3과 같이 순도가 다른 것을 B1 내지 B10 조성으로 각각 흔합하고, Ti02 8중량부를 첨가한 뒤, 용매를 첨가하여 수온 80C의 믹싱 탱크 (Mixing Tank) 내에서 일반적인 프로펠러상 교반 장치를 아용하여 1800 rpm에서 15분 동안 교반하였다.
이렇게 제조된 소둔 분리제 조성물을, 를 코터를 이용해 상기 탈탄 소둔된 강판 표면에 도포하고 건조한 후 20톤 코일로 권취했다. 이때, 건조 후의 중량 기준으로, 상기 소둔 분리제 조성물은 한쪽 면당 6.5g/m2이 되도록 도포한 것이다.
상기 소둔 분리제 조성물이 도포된 강판을 1200 °C 에서 20 시간 동안 사상 소둔한 후, 연속 라인에서 절연 피막 조성물을 도포한 후, 850°C에서 소둔 처리하였다. '
상기 절연 피막 조성물으로는, 당업계에서 일반적으로 사용되는 조성물로서, 인산 알루미늄과 콜로이달 실리카를 주성분으로 하는 용액을 사용하였다. 표 3의 각 경우에 형성된 베이스 코팅 외관 특성과 밀착성, 자기 특성을 표 4에 나타냈다.
【표 3]
Figure imgf000019_0001
【표 4】
Figure imgf000020_0001
주) 밀착성: 절연피막 처리 후 20ram(p 굽힘 시험 결과에 대해, 당업계에서 일반적으로 판단하는 기준으로, 매우 좋음 (©), 좋음 (O), 보통 (Δ), 나쁨 (X)을 표시한 것임
B1 내지 B5은 평균 입경이 68 이며 순도가 99.0 내지 99.5 %인 해수 마그네시아 입자 (제 1 MgO 입자)를 50 내지 70 중량부, 평균 입경이 350 이며 순도가 99.0 내지 99.5 %인 용욤 마그네시아 입자 (제 2 MgO 입자)를 20 내지 50 중량부, 평균 입경이 480 이며 순도가 99.8 ¾>인 용융 마그네시아 입자 (제 3 MgO 입자)를 사용하고, 이들의 흔합물이 총 100 증량부가 되도록 하여, 용매로 슬러리 상을 조정한 조성물을사용하였다. 또한, B6 및 B7은 제 3 MgO 입자 사용하지 않되, 제 1 MgO 입자를 50 내지 80 중량부, 게 2 MgO 입자를 20 내지 50 중량부 사용하고, 이들의 흔합물이 총 100 중량부가 되도록 하여, 용매로 슬러리 상을 조정한 조성물을 사용하였다.
최종 조성물의 강 열 감량 (L0I: Loss on Ignition), 그리고 최종 조성물의불순물로 포함된 S03 및 C1의 함량은, 각각 당업계에 일반적으로 일려진 방법에 따라 측정한 값이다.
표 3 및 4 따르면, 해수 마그네시아 입자, 그리고 입경이 서로 다른 용융 마그네시아 입자 2종 중 1 종 이상을 B1 내지 B7 조성 범위로 적절히 배합함으로써, 강 열 감량 (L0I : Loss on Igni t i on)이 0.72% 이하이고, 불순물로 포함된 S03 및 C1의 함량이 0.008 중량 ¾> 이하인 조성물이 되어, 이를 사용하여 제조된 강판의 베이스 코팅 외관, 밀착성, 및 자기 특성이 두루 우수하게 발현되는 것을 확인할 수 있다.
그에 반면, B1 내지 B7 조성 조건을 만족하지 않는 B8 내지 B10은, 강 열 감량이 0.72% 초과이고, 불순물로 포함된 S03 및 C1의 함량이 0.008 중량 % 초과인 조성물이 되어, 코일 전장에 걸쳐서 스케일성 결함과 에지부에 색상편차 결함이 발생하였다.
따라서, B8 내지 B10 은 본 발명의 비교예가 되고, B1 내지 B7는 본 발명의 실시예로 활용될 수 있다. 후술하겠지만, B1 내지 B7의 조성물에 첨가제 조성물을 더 첨가하면, 본 발명의 실시예가 될 수 있다.
평가예 3 : 첨가제에 따른효과평가
중량 %로, C : 0.054, Si : 3.30 , Mn : 0.085 , 및 A1: 0.029을 포함하고, 나머지가 Fe 및 기타 불가피하게 흔입되는 불순물을 포함하는 강 슬라브를 열간 압연 및 냉간 압연하는 일련의 공정을 통해 최종 두께 0.23 隱의 넁연판을 제조하였다.
이후, 연속 소둔 라인에서, 상기 냉연판을 850 0C의 온도에서 140 초간 탈탄 소둔하였다. 이때 탈탄 소둔된 강판 표면의 산화막 내 산소량은 940 ppm이었다.
이어서, 평가예 1에서 사용된 A2 조성에, 표 5의 첨가제 조성물을 각각 흔합하고, 수은 80C의 믹싱 탱크 (Mixing Tank) 내에서 일반적인 프로펠러상 교반 장치를 이용하여 2000 rpm에서 10분 동안 교반하였다.
여기서, 표 5의 첨가제 조성물은, 각각의 조성을 만족하도록 배합한 뒤, 일반적인 초음파 분쇄 장치를 이용하여 1차적으로 첨가제를 분쇄한 이후에 분산매를 첨가하고 일반적인 프로펠러상 교반장치를 이용하여 2000 rpm에서 5분 동안 교반한 것이다. 이렇게 제조된 소둔 분리제 조성물을, 를 코터를 이용해 상기 탈탄 소둔된 강판 표면에 도포하고 건조한 후 20톤 코일로 권취했다. 이때, 건조 후의 중량 기준으로, 상기 소둔 분리제 조성물은 한쪽 면당 6.0g/m2이 되도록 도포한 것이다.
상기 소둔 분리제 조성물이 도포된 강판을 1200 °C 에서 20 시간 동안 사상 소둔한 후, 연속 라인에서 절연 피막 조성물을 도포한 후ᅳ 850oC에서 소둔 처리하였다.
상기 절연 피막 조성물으로는, 당업계에서 일반적으로 사용되는 조성물로서, 인산 알루미늄과 콜로이달 실리카를 주성분으로 하는 용액을 사용하였다.
표 5의 각 경우에 형성된 베이스 코팅 외관 특성과 밀착성, 자기 특성을 표 6에 나타냈다.
【표 5]
첨가제 조성물 배합조건 최종 소둔 분리제 조성물 (소둔 분리제 100중량부 기준) 물성 반응 촉진용 첨가제 강 열 감량 S03 , C1 함량
(%) (중량 ) 수산화물 및 /흑은 염소화합물 황화합물,
산화물 질소화합물 및 /흑은
인화합물
C1 - - 0.41 0.005
C2 Ca(0H)2 CoCl2-6H20 - 0.68 0.008 0.5중량부 0.02 증량부
C3 Ca(0H)2 CoCl2-6H20 NiS04-6¾0 0.55 0.003 0.5중량부 0.02중량부 0.05중량부
C4 Cr203 SnCl2 Ni S04-6H20 0.73 0.005 0.2중량부 0.05 중량부 0.08중량부
C5 Cr203 NiCl2-6H20 - 0.36 0.002 0.5중량부 0.04중량부 C6 MnO NiCl2-6H20 Ca(H2P04)2 0.72. 0.005 0.5중량부 0.04중량부 0.06중량부
C7 Mg(0H)2 MnCl2 Ca(H2P04)2 0.35 0.006 0.5중량부 0.05 중량부 0.10 중량부
C8 Mg(0H)2 NiCl2-6H20 - 1.08 0. 12 1.5중량부 0.40 중량부
C9 Mg(0H)2 NiClz-6H20 NiS04-6H20 1.54 0.40 0.8중량부 0.5 중량부 0.25중량부
【표 6】
Figure imgf000023_0001
CI은 평가예 1에서 사용된 A2 조성과 동일하며, 여기에 C2 내지 C7와 같이 첨가제 조성물을 첨가한 경우 최종 소둔 분리제 조성물의 강열감량이 0.8%이하임을 확인할 수 있다. 또한, 불순물로서 S03와 C1의 총량이 0.01%이하일 때, 자기특성이 우수해지는 것을 확인할 수 있다.
그러나, 평가예 2의 B10을 사용한 C9는 소둔 분리제의 조성이 본 발명의 일 구현예에 적합하지 않은 것인 바, 첨가제의 사용과 무관하게 강 열 감량과 불순물 함량이 높고, 베이스 코팅 외관, 밀착성, 자기특성 등이 열위한 것을 확인할 수 있다.
아을러, 첨가제를 사용하더라도 그 사용량이 지나치게 많은 C10은, 오히려 강 열 감량과 불순물 함량이 높고, 베이스 코팅 외관, 밀착성, 자기특성 등이 열위한 것을 확인할 수 있다.
따라서, CI, C9 및 C10 은 본 발명의 비교예가 되고, C2 내지 C7는 본 발명의 실시예로 평가된다.
나아가, 해수 마그네시아 입자, 전융 마그네시아 입자의 각 입경 및 순도, 이들의 배합비, 그리고 첨가제의 사용 여부 및 그 사용량 등을 적절히 제어함으로써, 최종 소둔 분리제 조성물의 강 열 감량과 불순물 함량을 낮추고, 강판의 자기 특성을 향상시킬 수 있음을 종합적으로 평가할 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims

【청구범위】
【청구항 1】
제 1 MgO 입자, 제 2 MgO 입자, 제 3 MgO 입자, 또는 이들의 조합을 포함하는, 소둔 분리제;
첨가제 및 분산매를 포함하는, 첨가제 조성물; 및
용매;
를 포함하며,
상기 제 1 MgO 입자는, 평균 입경이 100 이하 (단, 0/ m 제외)인 것이고, 상기 계 2 MgO 입자 및 상기 제 3 MgO 입자는 각각, 평균 입경이 100 이상인 것이고,
상기 첨가제는, 융점이 900°C이하인 저융점 입자 중 적어도 1종 이상을 포함하는 것인,
소둔 분리제 조성물.
【청구항 2]
제 1항에 있어서,
상기 제 1 MgO 입자는,
해수 마그네시아 입자인 것인,
소둔 분리제 조성물.
【청구항 3】
제 2항에 있어서,
상기 제 1 MgO 입자는,
평균 입경이 65 내지 72 인 것인,
소둔 분리제 조성물.
【청구항 4】
제 3항에 있어서ᅳ
상기 제 1 MgO 입자는,
순도가 99.0 내지 99.5 %인 것인,
소둔 분리제 조성물.
【청구항 5】
제 4항에 있어서, 상기 제 2 MgO 입자 및 상기 제 3 MgO 입자는 각각, 전융 마그네시아 입자인 것인,
소둔 분리제 조성물.
【청구항 6]
제 5항에 있어서,
상기 제 2 MgO 입자는,
평균 입경이 330 내지 350 인 것인,
소둔 분리제 조성물.
【청구항 7]
계 6항에 있어서,
상기 제 2 MgO 입자는,
순도가 99.0 내지 99.5 %인 것인,
소둔 분리제 조성물.
【청구항 8】
제 5항에 있어서,
상기 제 3 MgO 입자는,
평균 입경이 480 im 이상인 것인,
소둔 분리제 조성물.
【청구항 9]
제 8항에 있어서,
상기 제 3 MgO 입자는,
순도가 99.8 % 이상인 것인,
소둔 분리제 조성물.
【청구항 10】
제 1항에 있어서,
상기 소둔 분리제는,
상기 게 1 MgO 입자 및 상기 제 2 MgO 입자의 흔합물인 것인, 소둔 분리제 조성물.
【청구항 11】
제 10항에 있어서, 상기 소둔 분리제의 총량 100 중량 >에 대해,
상기 제 1 MgO 입자는 50 내지 80 중량 % 포함되고, 상기 제 2 MgO 입자는 잔부로 포함되는 것인,
소둔 분리제 조성물.
【청구항 12】
제 11항에 있어서,
상기 소둔 분리제는,
강 열 감량 (LOI : Loss on Igni t ion)이 0.76% 이하인 것인,
소둔 분리제 조성물.
【청구항 13】
제 11항에 있어서,
상기 소둔 분리제는,
불순물로 포함된 S03 및 C1의 함량이 0.006 중량 % 이하인 것인,
소둔 분리제 조성물.
【청구항 14】
제 1항에 있어서,
상기 소둔 분리제는,
상기 제 1 MgO 입자, 상기 제 2 MgO 입자, 및 상기 제 3 MgO 입자의 혼합물인 것인,
소둔 분리제 조성물.
【청구항 15】
제 1항에 있어서,
상기 소둔 분리제의 총량 100 증량 %에 대해,
상기 제 1 MgO 입자는 50 내지 80 중량 % 포함되고, 상기 제 2 MgO 입자는 20 내지 40 중량 % 포함되고, 상기 제 3 MgO 입자는 잔부로 포함되는 것인, 소둔 분리제 조성물.
【청구항 16】
제 15항에 있어서,
상기 소둔 분리제는,
강 열 감량 (LOI : Loss on Igni t ion)이 0.73% 이하인 것인, 소둔 분리제 조성물.
【청구항 17】
제 11항에 있어서,
상기 소둔 분리제는,
불순물로 포함된 S03 및 C1의 함량이 0.008 증량 % 이하인 것인,
소둔 분리제 조성물.
【청구항 18]
제 1항에 있어서,
상기 저융점 입자는,
Sr , Ni , Cu, Cr , Bi , Co , Ca , Zr , Mg, 및 Mn 증에서 선택되는 금속의 화합물이 포함된 것인,
소둔 분리제 조성물.
【청구항 19】
제 18항에 있어서,
상기 저융점 입자는,
입경이 1.0 m이하인 것인,
소둔 분리제 조성물.
[청구항 20】
제 19항에 있어서,
상기 저융점 입자는,
상기 분산매 내 콜로이드 상으로 분산되는 것인,
소둔 분리제 조성물.
【청구항 21】
제 1항에 있어서,
상기 소둔 분리제 100 중량부를 기준으로, 상기 첨가제는 0.33 내지 1.05 중량부 포함되고, 상기 분산매는 2.64 내지 103.95 중량부 포함되고, 상기 용매는 잔부로 포함되는 것인,
소둔 분리제 조성물.
[청구항 22】
제 1 MgO 입자, 제 2 MgO 입자, 게 3 MgO 입자, 또는 이들의 조합을 포함하는, 소둔 분리제; 첨가제 및 분산매를 포함하는, 첨가제 조성물; 및 용매 ;를 흔합하여, 흔합물을 제조하는 단계 ; 및
상기 흔합물을 교반하는 단계 ;
를 포함하며 ,
상기 제 1 MgO 입자는, 평균 입경이 100 ; 이하 (단, 0 제외)인 것이고, 상기 제 2 MgO 입자 및 상기 제 3 MgO 입자는 각각, 평균 입경이 100 ;隱이상인 것이고,
상기 첨가제는, 융점이 900oC이하인 저융점 입자 중 적어도 1종 이상을 포함하는 것인,
소둔 분리제 조성물의 제조 방법 .
【청구항 23】
제 22항에 있어서'
상기 흔합물을 교반하는 단계;는,
1500 내지 2000 rpm 의 속도 범위로 수행되는 것인,
소둔 분리계 조성물의 제조 방법 .
【청구항 24】
제 22항에 있어서,
상기 흔합물을 교반하는 단계;는,
10 분 이상 수행되는 것인,
소둔 분리제 조성물의 제조 방법 .
【청구항 25]
제 22항에 있어서,
상기 흔합물을 제조하는 단계 ; 이전에 ,
해수로부터 Mg 이은을 추출하는 단계;
상기 추출된 Mg 이은을 Ca(0H)2과 반웅시켜, Mg(0H)2를 제조하는 단계; 및 상기 제조된 Mg(0H)2를 1800 °C 이상의 온도 범위에서 소성하여, 상기 제 1
MgO 입자를 제조하는 단계;를 더 포함하는 것인,
소둔 분리제 조성물의 제조 방법 .
【청구항 26]
제 22항에 있어서, 상기 흔합물을 제조하는 단계; 이전에,
해수 마그네시아 입자를 2800 °C 이상의 온도 범위에서 용융하여, 상기 제 2 MgO 입자 또는 상기 제 3 MgO 입자를 제조하는 단계;를 더 포함하는 것인, 소둔 분리제 조성물의 제조 방법.
【청구항 27】
강 슬라브를 준비하는 단계 ;
상기 강 슬라브를 가열하는 단계 ;
상기 가열된 강 슬라브를 열간 압연하여, 열연판을 제조하는 단계 ;
상기 열연판을 냉간 압연하여, 냉연판을 제조하는 단계 ;
상기 넁연판을 탈탄 소둔하는 단계 ;
상기 탈탄 소둔된 강판의 표면 상에, 소둔 분리제 조성물을 도포하는 단계; 상기 소둔 분리제 조성물이 도포된 강판을 사상 소둔하는 단계 ;
를 포함하며,
상기 소둔 분리제 조성물은, 제 1 MgO 입자, 제 2 MgO 입자, 제 3 MgO 입자, 또는 이들의 조합을 포함하는, 소둔 분리제; 첨가제 및 분산매를 포함하는, 첨가제 조성물; 용매 ;를 포함하며,
상기 제 1 MgO 입자는, 평균 입경이 100 이하 (단, 0 제외)인 것이고, 상기 제 2 MgO 입자 및 상기 계 3 MgO 입자는 각각, 평균 입경이 100 卿이상인 것이고,
상기 첨가제는, 융점이 900oC이하인 저융점 입자 중 적어도 1종 이상을 포함하는 것인,
방향성 전기강판의 제조 방법 .
PCT/KR2017/004592 2016-05-02 2017-04-28 소둔 분리제 조성물, 이의 제조 방법, 및 이를 이용한 방향성 전기강판의 제조방법 WO2017191953A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780036013.6A CN109312415A (zh) 2016-05-02 2017-04-28 退火隔离剂组合物、它的制备方法以及利用它的取向电工钢板的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0054028 2016-05-02
KR1020160054028A KR101796751B1 (ko) 2016-05-02 2016-05-02 소둔 분리제 조성물, 이의 제조 방법, 및 이를 이용한 방향성 전기강판의 제조방법

Publications (1)

Publication Number Publication Date
WO2017191953A1 true WO2017191953A1 (ko) 2017-11-09

Family

ID=60202955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004592 WO2017191953A1 (ko) 2016-05-02 2017-04-28 소둔 분리제 조성물, 이의 제조 방법, 및 이를 이용한 방향성 전기강판의 제조방법

Country Status (3)

Country Link
KR (1) KR101796751B1 (ko)
CN (1) CN109312415A (ko)
WO (1) WO2017191953A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109628717A (zh) * 2018-12-10 2019-04-16 首钢智新迁安电磁材料有限公司 一种底层优良的低温高磁感取向硅钢制造方法
WO2022158541A1 (ja) * 2021-01-21 2022-07-28 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN114855070A (zh) * 2021-02-03 2022-08-05 上海梅山钢铁股份有限公司 一种表面黑灰等级为1级的冷轧电镀锡钢板及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0157539B1 (ko) * 1994-05-13 1998-11-16 미노루 다나까 우수한 반응성을 가진 방향성 전기강판용 아닐링 분리제 및 이의 사용방법
JP2001303258A (ja) * 2000-04-25 2001-10-31 Kawasaki Steel Corp 方向性電磁鋼の焼鈍分離剤用マグネシアおよびその製造方法と被膜特性に優れる方向性電磁鋼板の製造方法
KR100762436B1 (ko) * 2006-10-18 2007-10-02 주식회사 포스코 표면성상이 우수한 방향성 전기강판용 소둔분리제 및 이를이용한 방향성 전기강판의 제조방법
KR101155606B1 (ko) * 2012-02-22 2012-06-13 삼화화학공업주식회사 방향성 전기강판 소둔 분리제용 마그네시아의 제조방법
KR20160017896A (ko) * 2014-08-07 2016-02-17 주식회사 포스코 포스테라이트 피막이 제거된 방향성 전기강판용 예비 코팅제 조성물, 이를 이용하여 제조된 방향성 전기강판 및 상기 방향성 전기강판의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900662B1 (ko) * 2002-11-11 2009-06-01 주식회사 포스코 침규확산용 분말도포제 및 이를 이용한 고규소 방향성전기강판 제조방법
JP5729009B2 (ja) * 2011-02-25 2015-06-03 Jfeスチール株式会社 焼鈍分離剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0157539B1 (ko) * 1994-05-13 1998-11-16 미노루 다나까 우수한 반응성을 가진 방향성 전기강판용 아닐링 분리제 및 이의 사용방법
JP2001303258A (ja) * 2000-04-25 2001-10-31 Kawasaki Steel Corp 方向性電磁鋼の焼鈍分離剤用マグネシアおよびその製造方法と被膜特性に優れる方向性電磁鋼板の製造方法
KR100762436B1 (ko) * 2006-10-18 2007-10-02 주식회사 포스코 표면성상이 우수한 방향성 전기강판용 소둔분리제 및 이를이용한 방향성 전기강판의 제조방법
KR101155606B1 (ko) * 2012-02-22 2012-06-13 삼화화학공업주식회사 방향성 전기강판 소둔 분리제용 마그네시아의 제조방법
KR20160017896A (ko) * 2014-08-07 2016-02-17 주식회사 포스코 포스테라이트 피막이 제거된 방향성 전기강판용 예비 코팅제 조성물, 이를 이용하여 제조된 방향성 전기강판 및 상기 방향성 전기강판의 제조방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109628717A (zh) * 2018-12-10 2019-04-16 首钢智新迁安电磁材料有限公司 一种底层优良的低温高磁感取向硅钢制造方法
CN109628717B (zh) * 2018-12-10 2020-09-29 首钢智新迁安电磁材料有限公司 一种底层优良的低温高磁感取向硅钢制造方法
WO2022158541A1 (ja) * 2021-01-21 2022-07-28 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JPWO2022158541A1 (ko) * 2021-01-21 2022-07-28
JP7459939B2 (ja) 2021-01-21 2024-04-02 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN114855070A (zh) * 2021-02-03 2022-08-05 上海梅山钢铁股份有限公司 一种表面黑灰等级为1级的冷轧电镀锡钢板及其制造方法

Also Published As

Publication number Publication date
CN109312415A (zh) 2019-02-05
KR101796751B1 (ko) 2017-11-10

Similar Documents

Publication Publication Date Title
KR100762436B1 (ko) 표면성상이 우수한 방향성 전기강판용 소둔분리제 및 이를이용한 방향성 전기강판의 제조방법
JP6463458B2 (ja) 方向性電磁鋼板用予備コーティング剤組成物、これを含む方向性電磁鋼板およびその製造方法
WO2008047999A1 (en) Annealing separating agent for grain oriented electrical steel sheet having uniform glass film and excellent magnetic properties and method of manufacturig the same
JP5245277B2 (ja) 焼鈍分離剤用のマグネシアおよび方向性電磁鋼板の製造方法
KR101651431B1 (ko) 방향성 전기강판의 제조방법
WO2017191953A1 (ko) 소둔 분리제 조성물, 이의 제조 방법, 및 이를 이용한 방향성 전기강판의 제조방법
JP4192282B2 (ja) 焼鈍分離剤用MgOの製造方法
JP3536775B2 (ja) 方向性電磁鋼の焼鈍分離剤用マグネシアおよびその製造方法と被膜特性に優れる方向性電磁鋼板の製造方法
KR20040041772A (ko) 고규소 강판 제조방법
JP4632775B2 (ja) 焼鈍分離剤用のMgOの製造方法
JP5418844B2 (ja) 方向性電磁鋼板の製造方法
JP4192283B2 (ja) 方向性電磁鋼板の製造方法
JPH1088244A (ja) 方向性電磁鋼板製造時における焼鈍分離剤用のMgO
CN115491477B (zh) 退火隔离剂的制备方法以及退火隔离剂和方向性电磁钢板
KR101410474B1 (ko) 방향성 전기강판 및 그 제조방법
JP4310996B2 (ja) 方向性電磁鋼板の製造方法並びにこの方法に用いる焼鈍分離剤
KR101796750B1 (ko) 소둔 분리제의 첨가제 조성물, 이의 제조 방법, 이를 포함하는 소둔 분리제 조성물, 및 이를 이용한 방향성 전기강판의 제조방법
JP3536776B2 (ja) 方向性電磁鋼の焼鈍分離剤用マグネシアと磁気特性および被膜特性に優れる方向性電磁鋼板の製造方法
JPS6141989B2 (ko)
TW200525042A (en) Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet
KR100900661B1 (ko) 침규확산 피복조성물 및 이를 이용한 고규소 전기강판제조방법
JP4259338B2 (ja) 方向性電磁鋼板の製造方法および焼鈍分離剤の調製方法
JP2001192737A (ja) グラス被膜特性及び磁気特性の優れる方向性電磁鋼板の製造方法
EP4209603A1 (en) Method for producing grain-oriented electromagnetic steel sheet
KR100905652B1 (ko) 침규확산 피복조성물 및 이를 이용한 고규소 전기강판제조방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792855

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792855

Country of ref document: EP

Kind code of ref document: A1