TW200525042A - Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet - Google Patents

Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet Download PDF

Info

Publication number
TW200525042A
TW200525042A TW093137129A TW93137129A TW200525042A TW 200525042 A TW200525042 A TW 200525042A TW 093137129 A TW093137129 A TW 093137129A TW 93137129 A TW93137129 A TW 93137129A TW 200525042 A TW200525042 A TW 200525042A
Authority
TW
Taiwan
Prior art keywords
annealing
compound
steel sheet
solid content
mentioned
Prior art date
Application number
TW093137129A
Other languages
Chinese (zh)
Other versions
TWI272311B (en
Inventor
Takeshi Omura
Kazumichi Sashi
Yasuyuki Hayakawa
Masaki Kawano
Shinichi Yoshikawa
Original Assignee
Jfe Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corp filed Critical Jfe Steel Corp
Publication of TW200525042A publication Critical patent/TW200525042A/en
Application granted granted Critical
Publication of TWI272311B publication Critical patent/TWI272311B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Abstract

This invention relates to a method for annealing a grain oriented magnetic steel sheet, in which a treating fluid containing an Al compound in the form of a solution or a colloidal solution and further a compound stable at a high temperature and having a viscosity of 25 mPa s or less is used as an separation agent for annealing. The separating agent exhibits good separation effect for annealing without the occurrence of powdery dust problems and of the staining of a production line. A method for producing a grain oriented magnetic steel sheet, in which the above separation agent for annealing is applied to a finish annealing step and the like. The method allows the production of a grain oriented magnetic steel sheet which has no forsterite-like coating film or is excellent in characteristics of a forsterite-like coating film.

Description

200525042 九、發明說明: 【發明所屬之技術領域】 本發明係關於在退火時防止方向性鋼板互相熔執之退火 分離劑,以及利用該退火分離劑之退火方法。 本發明亦相關於應用該退火分離劑之方向性電磁鋼板之 製造方法。在此,方向性電磁鋼板包括具有鎂橄欖石質被 膜及不具鎂橄欖石質被膜者,而本發明係分別關於該等之 製造方法。 【先前技術】 電磁鋼板係廣泛用於變壓器或旋轉機之鐵心材料之材 料。其中,方向性電磁鋼板係由於結晶方位高度集積於被 稱為高斯(G 〇 s s )方位的{ 1 1 0丨< 0 0 1 >方位,故為達成特優 之低鐵損之鋼板。對電磁鋼板要求之特性中,尤其鐵損特 性係直接與產品之能量損失相關之特性,因此被重視。 又,在電磁鋼板中,衝孔性(p u n c h a b i 1 i t y )或彎曲加工 性亦屬於重要之特性。即,在製造變壓器或旋轉機之鐵心 之情況,電磁鋼板係經過衝孔、剪斷以及彎曲等之加工而 形成指定之形狀。又,在鋼帶通過此等加工用之加工線時, 係使鋼板被彎曲。從而上述特性係屬重要的。 ^般而言’方向性電磁鋼板係利用如日本專利特開 2 0 0 3 - 4 1 3 2 3號公報之第[0 0 0 5 ]段等所揭示之步驟所製 造。即,對軋延(r ο 1 1 i n g )所得之鋼板施加再結晶退火,然 後施加被稱為後加工(f i n i s h i n g )退火之1次之批式退 火。藉此批式退火,促進二次再結晶,以達高斯方位之結 3 12XP/發明說明書(補件)/94-03/93137129 200525042 晶粒之集積。 其次,在批式退火中,鋼板係以線圈狀被加熱,但用以 製造方向性電磁鋼板之批式退火一般需要處於高溫,因 此,在線圈内發生鋼板互相之炫執。為了防止此種熔執, 塗佈以MgO為主成分之退火分離劑,並在退火時使鎂撖欖 石質被膜形成之技術被廣泛使用。鎂橄欖石質被膜被認為 係由退火分離劑中之MgO與形成於鋼板表面上之氧化物中 之S i 0 2發生反應所形成之被膜(但該被膜中亦含有F e )。 此鎂橄欖石質被膜具有良好之退火分離性能,又,其亦 具有對方向性電磁鋼板之特性有利之一面。例如,可將硬 質塗層(張力被膜)以良好之密合性賦與於鎂橄欖石質被膜 上,藉以使鋼板被賦與張力,可企求低鐵損化。 反之,由於鎂撖欖石質被膜係一種硬質玻璃被膜,具有 鎂橄欖石質被膜之方向性電磁鋼板在衝孔性或彎曲加工性 均不佳。即,有使施行衝孔之模具快速磨耗,或使鋼板剪 斷面發生毛邊(b u r r )之問題。又,由於彎曲加工時亦容易 發生剝離,故被要求良好之耐彎曲剝離性,即使在例如弛 力退火後被施加彎曲等之加工,亦不會剝離。 為了解決此等問題,提案有: (1 )作為得到加工性良好(重視加工性)之方向性電磁鋼板 之手段,不形成對加工性不利之鎂橄欖石質被膜本身地製 造方向性電磁鋼板之方法;及 (2 )重視低鐵損等,形成一具有即使在弛力退火後被施加彎 曲等之加工亦不會剝離之良好之耐彎曲剝離性之鎂撖欖石 6 312XP/發明說明書(補件)/94-03/93 ] 37129 200525042 質被膜之方法等。 作為(1 )之方法,使退火分離劑之成分變化之方法,即, 在再結晶退火後塗佈一未含與鋼板表面之S i 0 2反應之M g 0 的退火分離劑,並施加後加工退火之方法被嘗試。 在此,作為以MgO以外之成分為主成分之退火分離劑, 已知有日本專利特開平6 - 1 3 6 4 4 8號公報、特開平7 - 1 1 8 7 5 0 號公報以及特開平5 - 1 5 6 3 6 2號公報所揭示之以氧化鋁(粉 末)為主成分之退火分離劑或曰本專利特開平Π - 6 1 2 6 1號 公報及特開平8 - 1 3 4 5 4 2號公報所揭示之以氧化鋁及/或二 氧化矽為主成分之退火分離劑。此等退火分離劑係藉靜電 塗佈或作為懸浮有水漿液(s 1 u r r y )或醇類等之懸浮液而塗 佈於鋼板上。但,此等退火分離劑由於缺乏對鋼板之密合 性,易於在退火分離劑塗佈後之製造線之通板中發生剝 離。因此有下述問題:1 )難以控制塗佈量;2 )退火分離劑 之產率不好;3 )有可能產生粉塵並因此而造成生產線之污 染等。 作為對鋼板之密合性優異之退火分離劑,有一種以呈羽 毛狀形態之膠體狀態氧化鋁集合體為主成分之退火分離劑 被揭示於日本專利特開平1 0 _ 1 2 1 1 4 2號公報中。然而,此 退火分離劑之問題在於鋼板之均勻塗佈有困難。又,在進 一步形成絕緣被膜之前,此退火分離劑必需經過利用酸洗 或驗洗淨之除去步驟,造成操作不便。 總言之,習知技術中一旦形成鎂橄欖石質被膜後,利用 酸洗、化學研磨、或電解研磨等之手段來除去鎂橄欖石質 7 312XP/發明說明書(補件)/94-03/93137129 200525042 被膜之如此耗費成本又繁複之方法一直被作為最實用之方 法而施行。 另夕卜,不使用退火分離劑地製造加工性良好之方向性電 磁鋼板之嘗試亦有人做過。例如,日本專利特開 2 0 0 0 - 1 2 9 3 5 6號公報中,提案有一種藉未含抑制劑形成成 分之成分系使高斯方位結晶粒二次再結晶之技術,並認為 可藉此方法使後加工退火溫度低溫化,變得不需要退火分 離劑。然而,雖然方向性電磁鋼板之後加工退火屬於低溫, 卻非為完全可防止鋼板之熔執之水準,自安定生產之觀點 而言仍有問題。 另一方面,作為(2 )之方法,在上述日本專利特開 2 0 0 3 _ 4 1 3 2 3號公報中揭示有一種在再結晶退火後,夾雜著 連續退火而施行2次之批式退火,藉以同時達成磁特性與 被膜特性之技術。即,在習知技術中,於後加工退火中, 已實現二次再結晶之進行及鎂橄欖石質被膜之形成。然 而,由於雙方個別之最適退火條件並不一致,若要企求磁 特性之提高,則被膜特性會惡化,反之若要企求被膜特性 之提高,則磁特性會惡化。對此,日本專利特開2 0 0 3 - 4 1 3 2 3 號公報所揭示之技術乃設法以二次之批式退火來達成後加 工退火之功能,即利用第一次之批式退火來促進二次再結 晶,並利用第二次之批式退火來形成鎂撖欖石質被膜。 在此公報中認為,在第一次之批式退火時有可能發生鋼 板互相之緊密黏連之情況,則亦可塗佈退火分離劑。但, 在再結晶退火後之第一次之批式退火中若使用以MgO為主 8 312XP/發明說明書(補件)/94-03/93〗37129 200525042 成分之退火分離劑,則對在第二次之批式退火中之鎂橄欖 石質被膜之形成有惡劣之影響,而變得非常難以得到良好 之被膜特性。又,於上述日本專利特開2 0 0 3 - 4 1 3 2 3號公報 之方法中,較佳的是在第一次之批式退火後施行脫碳,但 如鎂橄欖石質被膜之被膜亦有阻礙脫碳之缺點。 在另一方面,若不使用以MgO為主成分之退火分離劑地 施行第一次之批式退火,則造成與(1 )相同之各種問題。 【發明内容】 (發明所欲解決之問題) 本發明係為了解決上述問題而提出者,提案一種不含 M g 0、對鋼板之塗佈性及塗佈後之密合性均優、可在不造成 粉塵問題及所引起之生產線污染之下製造方向性電磁鋼板 之退火分離劑、及利用此退火分離劑之退火方法。 又,本發明係關於使用該退火分離劑之適於變壓器或旋 轉機之鐵心材料之方向性電磁鋼板之製造方法。本發明尤 其提案一種鎂橄欖石質被膜之被膜特性優異之方向性電磁 鋼板以及不具鎂橄欖石質被、膜且加工性優異之方向性電磁 鋼板之製造方法。 (解決問題之手段) 本發明之形態可分類為:(1 )方向性電磁鋼板之退火方 法;(2 )作為退火分離劑之使用;(3 )具有鎂撖欖石質被膜 之方向性電磁鋼板之製造方法;以及(4 )不具有鎂橄欖石質 被膜之方向性電磁鋼板之製造方法。 (1 )鋼板之退火方法 9 3 12XP/發明說明書(補件)/94-03/93137129 200525042 本發明為一種方向性電磁鋼板之退火方法,係將退火分 離劑塗佈於鋼板上並將被塗佈之鋼板退火者,上述退火分 離劑為以溶液或膠體(c ο 1 1 〇 i d )溶液之狀態含有A 1化合 物,且含有高溫下安定之化合物,並進一步具有25 m Pa· s 以下之黏度者。 較佳的是,在上述退火分離劑之塗佈後,施行使上述退 火分離劑焙燒之焙燒處理。 在此,高溫下安定之化合物係指在作為對象之退火之 際,該化合物與鋼板表面或鋼板表面之氧化物等不發生或 不易發生反應,以及該化合物本身不發生或難以發生反應 者。具體可例示選自S i化合物、S r化合物、C a化合物、 Z r化合物、T i化合物以及B a化合物所組成群組之至少一 種。另外,雖然MgO單獨在高溫下亦安定,但會與鋼板表 面之氧化物起反應,因此不符合在此所指之「高溫下安 定」。 又,在此,A 1化合物係處於溶液狀態或膠體溶液狀態, 因此為具有對形成溶液或膠體溶液之液體(為了方便起 見,統稱為溶媒)有親和性之構造部(官能基等)之物質。從 而,其為在化學上與例如一般之漿液或懸浮液所用之氧化 鋁粒子等不同之物質。又,在存在形態上亦與漿液或懸浮 液不同,自不待言。 溶媒最好以水為基底。又,上述A 1化合物最好為具有經 基及有機酸基之A 1化合物、及具有羥基及有機酸基之A 1 化合物之脫水反應物(亦包含部分脫水反應物)之至少任一 10 312XP/發明說明書(補件)/94-03/93137129 200525042 者。進一步較佳的是,上述A 1化合物為選自驗性乙酸A 1、 驗性甲酸A 1、驗性鹽酸A 1、驗性硝酸A 1、驗性草酸A 1、 驗性胺續酸A 1、驗性乳酸A 1以及驗性檸檬酸A 1之一種或 二種以上之混合物。 另外,上述退火分離劑以溶液或膠體溶液之狀態含有上 述之高溫下安定之化合物亦可。 又,上述A 1化合物之含量以下述式(1 )所示之固形分比 率為40〜95mass%為佳。 A 1化合物之固形分比率=(上述A 1化合物之固形 分)/{(上述A 1化合物之固形分)+(上述高溫下安定之化 合物之固形分(和))丨…式(1) 但,上述A 1化合物之固形分係換算為A 1 2 0 3,且上述高 溫下安定之化合物係換算為在上述退火分離劑塗佈後經焙 燒之情況所產生之主要化合物。 本發明最好為一種方向性電磁鋼板之退火方法,係將退 火分離劑塗佈於鋼板上並將被塗佈之鋼板者,上述退火分 離劑係以溶液或膠體溶液之狀態含有A 1化合物,且進一步 含有選自S i合化物、S r化合物、C a化合物、Z r化合物、 T i化合物以及B a化合物所組成群組之至少一種化合物, 上述A 1化合物之含量以下述式(2 )所示之固形分比率為 40〜95mass%,且上述退火分離劑之黏度為25mPa· s以下。 在此,A 1化合物之固形分比率=(A 1化合物之固形 分)/{( A 1化合物之固形分)+(上述至少一種化合物之固 形分(和))丨…式(2) 11 312XP/發明說明書(補件)/94-03/93137129 200525042 在此,各化合物之固形分係換算為下述各化合物之重量 之值: A1 化合物···AI2O3; Si 化合物·,·5ί〇2;200525042 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to an annealing release agent that prevents directional steel plates from fusing to each other during annealing, and an annealing method using the annealing release agent. The present invention also relates to a method for manufacturing a grain-oriented electrical steel sheet using the annealing separator. Here, the directional electromagnetic steel sheet includes those having a forsterite film and those without a forsterite film, and the present invention relates to a method for manufacturing each of them. [Previous technology] Electromagnetic steel plates are materials widely used as core materials for transformers or rotating machines. Among them, the directional electromagnetic steel sheet is a steel sheet having a high iron loss due to the highly integrated crystalline azimuth in the {1 1 0 丨 < 0 0 1 > azimuth called a Gaussian azimuth. Among the characteristics required for electromagnetic steel plates, especially the iron loss characteristics are characteristics directly related to the energy loss of the product, so they are valued. Also, in the electromagnetic steel sheet, punchability (p u n c h a b i 1 i t y) or bending workability are also important characteristics. That is, in the case of manufacturing the core of a transformer or a rotating machine, the electromagnetic steel sheet is formed into a predetermined shape by processing such as punching, cutting, and bending. In addition, when the steel strip passes through the processing lines for such processing, the steel sheet is bent. Therefore, the above characteristics are important. In general, the grain-oriented electrical steel sheet is manufactured using steps disclosed in, for example, paragraph [0 0 5] of Japanese Patent Laid-Open Nos. 2 0-4 1 3 2 3. That is, the steel sheet obtained by rolling (r ο 1 1 i n g) is subjected to recrystallization annealing, and then subjected to a batch annealing called a post-processing (f i n i s h i n g) annealing. By this batch annealing, secondary recrystallization is promoted to achieve the knot of the Da Gaussian orientation. 3 12XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 Grain accumulation. Secondly, in batch annealing, steel plates are heated in a coil shape, but batch annealing for manufacturing directional electromagnetic steel plates generally needs to be at a high temperature, and therefore, the steel plates are dazzled with each other in the coil. In order to prevent such fusing, the technique of coating an annealing separator containing MgO as a main component and forming a magnesite stone film during annealing is widely used. The forsterite film is considered to be a film formed by the reaction between MgO in the annealing separator and S i 0 2 in the oxide formed on the surface of the steel sheet (but the film also contains Fe). This forsterite film has good annealing and separation properties, and it also has one side that is beneficial to the characteristics of the grain-oriented electrical steel sheet. For example, a hard coat (tensile film) can be imparted to the forsterite film with good adhesion, so that the steel sheet can be tensioned, and iron loss can be reduced. Conversely, since the forsterite film is a kind of hard glass film, the grain-oriented electrical steel sheet with forsterite film is not good in punchability or bending workability. That is, there is a problem that the punching die is rapidly worn, or a burr (b u r r) occurs on the cut surface of the steel plate. In addition, since peeling easily occurs during bending processing, good bending and peeling resistance is required, and it does not peel even when processing such as bending is applied after relaxation annealing. In order to solve these problems, the proposals are as follows: (1) As a means to obtain a grain-oriented electrical steel sheet with good workability (emphasis on workability), a method of manufacturing a grain-oriented electrical steel sheet without forming a forsterite film that is not detrimental to the workability itself. Methods; and (2) attaching importance to low iron loss, etc., to form a magnesium mullite 6 312XP / manufacturing specification (Supplementary Specification) which has good resistance to bending and peeling even if processed by bending or the like after relaxation annealing, and will not peel off. Pieces) / 94-03 / 93] 37129 200525042 method of coating. As the method of (1), the method of changing the composition of the annealing release agent is to apply an annealing release agent that does not contain M g 0 that reacts with S i 0 2 on the surface of the steel plate after recrystallization annealing, and apply it. A process annealing method is tried. Here, as an annealing separator containing a component other than MgO as a main component, Japanese Patent Laid-Open No. 6-1 3 6 4 4 8, Japanese Patent Laid-Open No. 7-1 1 8 7 50, and Japanese Patent Laid-Open No. Hei 6 are known. 5-1 5 6 3 6 The annealed separating agent containing alumina (powder) as the main ingredient disclosed in Japanese Patent Publication No. JP 6-2 1 6 and Japanese Patent Publication No. 8-1 3 4 5 4 An annealing and separating agent based on alumina and / or silicon dioxide as disclosed in the No. 2 bulletin. These annealing and separating agents are applied to the steel sheet by electrostatic coating or as a suspension in which an aqueous slurry (s 1 u r r y) or alcohol is suspended. However, these annealed release agents are susceptible to peeling in the through-plate of the manufacturing line after the annealing release agent is applied due to the lack of adhesion to the steel sheet. Therefore, there are the following problems: 1) it is difficult to control the coating amount; 2) the yield of the annealed release agent is not good; 3) dust may be generated and contamination of the production line may be caused due to this. As an annealing release agent with excellent adhesion to steel plates, an annealing release agent based on a colloidal alumina aggregate in the form of feathers is disclosed in Japanese Patent Laid-Open No. 1 0 _ 1 2 1 1 4 2 Bulletin. However, the problem with this annealed release agent is that it is difficult to uniformly coat the steel sheet. In addition, before further forming the insulating film, the annealing and separating agent must be subjected to a removal step using pickling or inspection cleaning, which causes inconvenience in operation. In short, once the forsterite film is formed in the conventional technology, the forsterite is removed by means of pickling, chemical grinding, or electrolytic grinding. 93137129 200525042 Such a costly and complicated method of coating has been implemented as the most practical method. In addition, attempts have been made to produce a grain-oriented electrical steel sheet with good processability without using an annealing separator. For example, Japanese Patent Laid-Open No. 2000- 1 2 9 3 5 6 proposes a technique for re-crystallizing Gaussian orientation crystal grains by using a component that does not contain an inhibitor-forming component, and considers it possible to borrow This method lowers the post-processing annealing temperature and eliminates the need for an annealing separator. However, although the annealing of the grain-oriented electrical steel sheet after processing belongs to a low temperature, it is not a level that can completely prevent the steel sheet from being welded, and there are still problems from the viewpoint of stable production. On the other hand, as a method of (2), the above-mentioned Japanese Patent Laid-Open No. 2 0 3 _ 4 1 3 2 3 discloses a batch method in which continuous annealing is performed twice after recrystallization annealing. Annealing is a technique to achieve both magnetic characteristics and film characteristics. That is, in the conventional technique, the secondary recrystallization and the formation of the forsterite film have been achieved in the post-processing annealing. However, since the optimal annealing conditions are not consistent between the two sides, if the magnetic properties are to be improved, the film characteristics may be deteriorated. If the magnetic properties are to be improved, the magnetic characteristics may be deteriorated. In this regard, the technology disclosed in Japanese Patent Laid-Open No. 2000- 4 1 3 2 3 is to try to achieve the function of post-processing annealing by using two batch annealing, that is, using the first batch annealing to Promote secondary recrystallization, and use the second batch annealing to form a magnesite-like stone film. In this publication, it is considered that in the first batch annealing, it is possible that the steel plates are closely adhered to each other, and an annealing release agent may also be applied. However, in the first batch annealing after recrystallization annealing, if MgO is used as the main annealing separator 8 312XP / Invention Specification (Supplement) / 94-03 / 93〗 37129 200525042, the The formation of the forsterite film in the secondary batch annealing has a bad influence, and it becomes very difficult to obtain good film characteristics. Further, in the method of the above-mentioned Japanese Patent Laid-Open No. 2003- 4 1 3 2 3, it is preferable to perform decarburization after the first batch annealing, but a film such as a forsterite film There are also disadvantages that hinder decarbonization. On the other hand, if the first batch annealing is performed without using an annealing separator containing MgO as a main component, the same problems as in (1) are caused. [Summary of the Invention] (Problems to be Solved by the Invention) The present invention is proposed by the present invention to solve the above problems, and proposes a method that does not contain M g 0, and has excellent coating properties and adhesiveness after coating. Annealing and separating agent for manufacturing directional electromagnetic steel sheet without causing dust problem and pollution of production line and annealing method using the annealing and separating agent. The present invention also relates to a method for manufacturing a grain-oriented electrical steel sheet suitable for a core material of a transformer or a rotary machine using the annealing separator. In particular, the present invention proposes a method for manufacturing a directional electromagnetic steel sheet having excellent coating characteristics of a forsterite film and a directional electromagnetic steel sheet having no forsterite coating, a film, and excellent processability. (Means for solving problems) The form of the present invention can be classified into: (1) an annealing method of a grain-oriented electromagnetic steel sheet; (2) the use as an annealing separating agent; (3) a grain-oriented electrical steel sheet having a magnesite-like film Manufacturing method; and (4) a manufacturing method of a grain-oriented electrical steel sheet without a forsterite film. (1) Annealing method for steel sheet 9 3 12XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 The present invention is an annealing method for directional electromagnetic steel sheet, which is an annealing separator coated on the steel sheet and coated. For an annealed steel sheet, the above-mentioned annealing separating agent contains an A 1 compound in the state of a solution or a colloid (c ο 1 1 〇id) solution, and contains a compound stable at high temperature, and further has a viscosity of 25 m Pa · s or less. By. Preferably, after the application of the annealing separator, the baking treatment is performed by baking the annealing separator. Here, a compound that is stable at a high temperature refers to a compound that does not or does not easily react with the surface of a steel plate or an oxide on the surface of a steel plate when the target is annealed, and that the compound itself does not occur or is difficult to react. Specifically, at least one selected from the group consisting of a Si compound, a Sr compound, a Ca compound, a Zr compound, a Ti compound, and a Ba compound can be exemplified. In addition, although MgO is stable at high temperatures alone, it reacts with oxides on the surface of the steel sheet, so it does not meet the "stability at high temperatures" referred to here. Here, since the A 1 compound is in a solution state or a colloidal solution state, it is a structural part (functional group, etc.) having an affinity for a liquid (for convenience, collectively referred to as a solvent) for forming a solution or a colloidal solution. substance. Therefore, it is a substance which is chemically different from, for example, alumina particles used in a general slurry or suspension. Moreover, it is different from a slurry or a suspension in terms of existence, and it goes without saying. The solvent is preferably water based. In addition, the A 1 compound is preferably at least any one of a dehydration reaction product (also including a partially dehydrated reaction product) of the A 1 compound having a hydroxyl group and an organic acid group, and the A 1 compound having a hydroxyl group and an organic acid group. / Invention Specification (Supplement) / 94-03 / 93137129 200525042. It is further preferred that the A 1 compound is selected from the group consisting of acetic acid A 1, acetic acid A 1, chloric acid A 1, nitro acid A 1, oxalic acid A 1, and amine amino acid A 1 1. One or more mixtures of lactic acid A 1 and citric acid A 1. In addition, the annealing separator may contain a compound which is stable at a high temperature in a state of a solution or a colloidal solution. The content of the A 1 compound is preferably a solid content ratio of 40 to 95 mass% represented by the following formula (1). Solid content ratio of A 1 compound = (solid content of the above A 1 compound) / {(solid content of the above A 1 compound) + (solid content (and) of the compound stable at the above-mentioned high temperature) 丨 ... formula (1) but The solid component of the above-mentioned A 1 compound is converted into A 1 2 0 3, and the stable compound at the above-mentioned high temperature is converted into a main compound produced in the case of baking after the above-mentioned annealing separating agent is applied. The present invention is preferably an annealing method for a directional electromagnetic steel sheet, which is an annealing separator coated on a steel sheet and the coated steel sheet, the annealing separator contains an A 1 compound in the state of a solution or a colloidal solution, And further contains at least one compound selected from the group consisting of a Si compound, a Sr compound, a Ca compound, a Zr compound, a Ti compound, and a Ba compound, and the content of the A1 compound is represented by the following formula (2) The solid content ratio shown is 40 to 95 mass%, and the viscosity of the annealing separator is 25 mPa · s or less. Here, the solid content ratio of the A 1 compound = (solid content of the A 1 compound) / {(solid content of the A 1 compound) + (solid content (and) of at least one of the above compounds) 丨 ... (2) 11 312XP / Invention specification (Supplement) / 94-03 / 93137129 200525042 Here, the solid content of each compound is converted to the value of the weight of each of the following compounds: A1 compound ·· AI2O3; Si compound ··· 5ί〇2;

Sr化合物…SrO; Ca化合物…CaO; Z r化合物…Z r〇2 ; Ti化合物…Ti〇2 ;Sr compounds ... SrO; Ca compounds ... CaO; Z r compounds ... Z r〇2; Ti compounds ... Ti〇2;

Ba化合物"-BaO。 在此,上述退火分離劑以溶液或膠體溶液之狀態含有選 自上述S i化合物、S r化合物、C a化合物、Z r化合物、T i 化合物以及Ba化合物所組成群組之至少一種化合物亦可。 特別合適之發明之形態為一種方向性電磁鋼板之退火方 法,係將退火分離劑塗佈於鋼板上,並將被塗佈之鋼板退 火者上述退火分離劑為,以A 1化合物及S i化合物為主成 分,A 1化合物與S i化合物之比率換算為A 1 2 0 3 /( A 1 2 0 3 + Si〇2)之數值為40〜95mass% ,黏度為25mPa· s以下,且 呈溶液或膠體溶液之狀態。 在上述發明中,上述退火分離劑以關於上述退火分離劑 塗佈後經焙燒之情況所求之固形分比率,進一步含有S或 含S化合物25丨n ass%以下亦可。上述之「S或含S化合物」 最好為選自硫酸Sr、硫酸Mg以及硫化Mg之至少一種。 (2 )作為退火分離劑之使用 本發明為一種液體作為退火分離劑之使用,該液體係以 溶液’或膠體溶液之狀態含有A 1化合物,且進一步含有選自 S i化合物、S r化合物、C a化合物、Z r化合物、T i化合物 以及B a化合物所組成群組之至少一種化合物者,上述A 1 12 312XP/發明說明書(補件)/94-03/93137129 200525042 化合物之含量以上述式(2 )所示之固形分比率為 40〜95 in ass% ,且黏度為25 m Pa· s以下。 在此,上述退火分離劑以溶液或膠體溶液之狀態含有選 自上述S i化合物、S r化合物、C a化合物、Z r化合物、T i 化合物以及Ba化合物所組成群組之至少一種化合物亦可。 本發明亦為一種液體作為退火分離劑之使用,該液體係 以A 1化合物及S i化合物為主成分,A 1化合物與S i化合 物之比率換算為Al2〇J(Al2〇3+Si〇2)之數值為40〜95mass %,黏度為25mPa · s以下,且呈溶液或膠體溶液之狀態。 此外,適合使用於(1 )所載述之鋼板之退火方法之退火分 離劑均亦可應用於(2 )之發明,自不待言。 (3 )具有鎂橄欖石質被膜之方向性電磁鋼板之製造方法 本發明為一種方向性電磁鋼板之製造方法,其具有:將 由含有 C: 0.08mass% 以下、Si: 2.0 〜8.0mass% 、Μη: 0.005〜l.Omass%之炼鋼製成之扁胚(亦包括薄扁胚。以下 同)軋延至最終板厚而製成鋼板之步驟;對上述鋼板施加再 結晶退火之步驟;以及對上述鋼板以(1 )所載述之退火方法 施加之第一扣b式退火步驟; 在此,若將第一批式退火步驟中在退火前塗佈之上述退 火分離劑稱為第一退火分離劑, 則將上述再結晶退火在上述第一退火分離劑之塗佈前施 行,或在上述第一退火分離劑之塗佈後,在上述批式退火 之前施行,並且設定第一退火分離劑之每單面之塗佈量為 0.005 〜5g /ιτί , 13 312XP/發明說明書(補件)/94-03/93137129 200525042 並具有在其後對上述鋼板施加連續退火之步驟,及將含 有MgO之第二退火分離劑塗佈於上述鋼板上,然後施加批 式退火之第二批式退火步驟。 本方向性電磁鋼板之磁特性及鎂撖欖石質被膜之被膜特 性均優。 (4 )不具鎂橄欖石質被膜之方向性電磁鋼板之製造方法 本發明為一種方向性電磁鋼板之製造方法,其具有:將 由含有 C: 0.08 in ass% 以下、Si: 2.0 〜8.0mass% 、Μη: 0 . 0 0 5〜1 . 0 m a s s %之熔鋼製成之扁胚軋延至最終板厚而製 成鋼板之步驟;對上述鋼板施加再結晶退火之步驟;以及 對上述鋼板以(1 )所載述之退火方法施加批式退火之後加 工退火步驟, 在此,上述再結晶退火係於上述後加工退火步驟中之退 火分離劑之塗佈前施行,或在(1 )所載述之退火分離劑之塗 佈後,在上述批式退火之前施行,並且設定上述退火分離 劑之每單面之塗佈量為0 . 0 0 5〜5 g / ιτί。 本方向性電磁鋼板之磁特性及加工性均優。 上述(3 )及(4 )之任一發明均可應用於未使用抑制劑形成 成分之方向性電磁鋼板。在此情況,上述扁胚最好為由具 有使A 1含量減低至1 5 0 p p m以下且使Ν、S、S e各含量減低 至5 0 p p m以下之組成之熔鋼所製成之扁胚。 又,在上述(3 )及(4 )之任一發明中均較佳的是,上述將 扁胚軋延至最終板厚以製成鋼板之步驟具有:對上述扁胚 施加熱軋以製成熱軋鋼板之步驟;視需要施加使上述熱軋 14 312XP/發明說明書(補件)/94-03/93137129 200525042 鋼板退火之熱軋鋼板退火之步驟;以及施加1次之冷軋, 或夾著中間退火之2次以上之冷軋以形成最終板厚之步 驟。 (4 )之發明之更合適之形態為,一種方向性電磁鋼板之製 造方法,其具有:對於由含有C: 0.08mass%以下、Si: 2.0〜8.0 mass%、Μη: 0.005〜l.Omass%之炼鋼製成之扁胚 施加熱軋之步驟;其次,施加1次之冷軋,或施行夾著中 間退火之2次以上之冷軋以作成最終板厚之步驟;繼之施 行再結晶退火之步驟;以及繼之以(1 )所載述之退火方法施 行後加工退火之步驟;並且設定上述後加工退火中在退火 前塗佈之退火分離劑之塗佈量為每單面〇 . 〇 0 5〜5 g / m2,或, 一種方向性電磁鋼板之製造方法,其具有:對於由含有 C: 0· 08 mass% 以下、Si: 2. 0 〜8· 0 in ass%、Μη: 0, 005 〜1. 0 mass %,同時具有使A1含量減低至150ppm以下及使N、S、Se 各含量減低至50ppm以下之成分組成之炫鋼所製成之扁胚 施加熱軋之步·驟;其次,施加1次之冷軋,或施行夾著中 間退火之2次以上之冷軋以作成最終板厚之步驟;繼之施 行再結晶退火之步驟;以及繼之以(1 )所載述之退火方法施 行後加工退火之步驟;並且設定上述後加工退火中在退火 前塗佈之退火分離劑之塗佈量為每單面0 . 0 0 5〜5 g / m2。 在此較合適之發明形態中,較佳的是,上述退火分離劑 為以A 1化合物及S i化合物為主成分,A 1化合物與S i化 合物之比率換算為A 1 2 0 3八A 1 2 0 3 + S i 0 2)之數值為 4 0〜9 5 m a s s % ,黏度為2 5 in P a · s以下,且呈溶液或膠體溶 15 312XP/發明說明書(補件)/94-03/93137129 200525042 液之狀態。 【實施方式】 本案發明人等針對塗佈性及塗佈後之密合性均優之退火 分離劑潛心反覆研究結果發現,首先,以A 1化合物及高溫 下安定之化合物作為主成分,並且至少使A 1化合物呈溶液 之狀態或膠體溶液之狀態,藉此可解決上述問題點。又, 本案發明人等亦發現上述退火分離劑之合適黏度、A 1化合 物之固形分比率以及應用於鋼板時之合適塗佈量。以下, 根據達成本發明之成功之實驗加以說明。 <貫驗1〉 以連續鑄造法製造由含有C:0.020mass%、Si:3.30mass % 、Μη: 0.070mass% 以及 Sb: 400massppm 且具有被抑制 至 A 1 * 38massppm、N: 33massppni、S: 18ppm、Se:未滿 1 0 p p m (未滿分析界限值)之成分組成而構成之扁鋼胚。然 後,對該扁鋼胚施力σ 1次之冷軋或夾著中間退火之2次以 上之冷軋,以形成最終板厚。其次,對冷軋之鋼板施加再 結晶退火及後加工退火。 在此,在後加工退火之前,使用二氧化矽溶膠(膠體狀二 氧化矽)之水性膠體溶液(固形分濃度3 . 0 m a s s % )作為退 火分離劑,於鋼板表面(兩面)以每單面0 . 1〜3 · 0 g / πί之範 圍使用輥塗器進行塗佈。 塗佈後,以鋼板之到達溫度2 5 0 °C之條件施行焙燒處 理,然後放冷。由塗佈前與焙燒處理後之鋼板重量之差異 求出退火分離劑之附著量,以此作為退火分離劑之塗佈量。 16 312XP/發明說明書(補件)/94-03/9313 7129 200525042 在後加工退火時,於8 5 0 °C下在氮氣環境内保持3 0小時 後,於1 0 0 0 °C下在氬氣環境内保持5小時。 對於所得之鋼板,針對退火分離劑之塗佈性、乾燥後之 退火分離劑之密合性、後加工退火時之退火分離效果等3 項目施行試驗。 各性能評價法之細節如下所述。後述之實驗2、3以及實 施例之評價方法亦相同。 _塗佈性 對塗佈退火分離劑後之鋼板藉目視予以評價。 〇:在鋼板全體均句塗佈 △:在鋼板全體塗佈,但不均勻 X :有塗到之處及未塗到之處 •乾燥後之密合性 將退火分離劑焙燒後,將鋼板一邊刷光(b r u s h i n g ),一 邊以流速約1 . 0 m / s之條件施行流水洗滌1 0秒鐘。然後, 用榨水棍(r i n g e r r ο 1 1 )除水,以2 Ο 0 °C x 1 0 s之條件施行乾 燥。然後,再次測定鋼板重量,再度算出退火分離劑之附 著量。繼之求出水洗前後之退火分離劑附著量之差異,以 此作為剝離量。根據所得之剝離量,以下述方式予以評價。 〇:分離劑之剝離量為塗佈量之1 0 %以下 △:分離劑之剝離量超過塗佈量之1 0 %未滿8 0 % X :分離劑之剝離量為塗佈量之8 0 %以上 •退火分離效果 塗佈分離劑,一邊施加0 . 7 4 Μ P a之按壓載重,一邊施行 17 312XP/發明說明書(補件)/94-03/93137129 200525042 後加工退火。然後,將經炫執之鋼板使用拉伸試驗機予以 剝離,測定剝離所需要之強度(剝離強度),藉此以下述方 式評價。 〇:無鋼板之熔執(剝離強度為1 0 N以下) △:一部分發現鋼板之熔執(剝離強度超過1 0 N且未滿 60N) X :鋼板完全熔執(剝離強度6 0 N以上) 將試驗結果示於表1中。實驗1所用之退火分離劑在塗 佈性及退火分離效果方面良好,但在所有之條件下,其分 離劑對鋼板之密合性不足。 表1 塗佈量 (g/m) 黏度 (mPa · s) 塗佈性 分離劑密 合性 剝離量 (g/m) 退火分離 效果 剝離強度 (N) 0. 1 3. 1 〇 Δ 0. 05 〇 3 0· 5 3. 1 〇 Δ 0.20 〇 0 1 3· 1 〇 Δ 0. 65 〇 0 2 3. 1 〇 X 1. 70 〇 0 3 3. 1 〇 X 2. 90 〇 2 由上述實驗1可知,二氧化矽溶膠雖然具有後加工退火 時之退火分離效果,但在作為退火分離劑之對鋼板之密合 性上有問題。於是,本案發明人等使用二氧化矽溶膠作為 退火分離劑,且為了提高對鋼板之密合性,對於添加氧化 鋁溶膠作為造膜成分之有效性加以檢討。 <實驗2 > 於與實驗1相同之製造步驟中,於後加工退火前之鋼板 表面(雙面),將以氧化鋁溶膠(膠體狀氧化鋁)及二氧化矽 溶膠為主成分之水性膠體溶液所構成之退火分離劑(固形 分濃度2 . 0 ni a s s % )以每單面0 . 5 g / πί之塗佈量使用輥塗器 18 312ΧΡ/發明說明書(補件)/94-03/93137129 200525042 塗佈。其次,以鋼板之到達溫度2 5 0 °C施行焙燒,並放冷。 然後,與實驗1地,施行於8 5 0 °C下在氮氣環境中保持3 0 小時後,於1 0 0 0 t下在氬氣環境中保持5小時之後加工退 火。 對所得之鋼板,針對退火分離劑之塗佈性、乾燥後之退 火分離劑之密合性、後加工退火時之退火分離效果之3項 目,以與實驗1相同之評價方法施行調查。 使氧化鋁溶膠與二氧化矽溶膠之比率在換算成 A 1 2 0 3 /( A 1 2 0 3 + S i 0 2)為2 0〜1 0 0 m a s s %之範圍内變化,並使 退火分離劑之黏度在3 . 5〜1 0 0 m P a · s之範圍内變化。另 外,退火分離劑之黏度係使用不同黏度之氧化鋁溶膠來改 變。氧化铭溶膠之黏度可利用例如溶膠粒子之形狀或固形 分濃度等來控制。例如,在溶膠粒子之外形為羽毛狀之情 況係為高黏度,而在接近球狀(或粒狀)或橢圓體(或棒狀) 之情況則為低黏度。 於表2顯示使氧化鋁溶膠與二氧化矽溶膠之比率變化時 之實驗結果。在氧化鋁溶膠之比率低時,退火分離劑之密 合性不足。另,若氧化鋁溶膠之比率太多,造膜作用變得 太強,難以達成對鋼板之均勻塗佈,招致產品之外觀不良。 另外,退火分離效果在所有之條件均得到良好之結果。 又,在表3顯示使退火分離劑之黏度變化之實驗結果。 若黏度變高,對鋼板之塗佈性會顯著劣化,而產生塗佈之 部分及未塗佈之部分。由於未能塗佈之部分發生鋼板之熔 執,為了確保良好之塗佈性並具有退火分離效果,必需控 19 312XP/發明說明書(補件)/94-03/93 ] 37129 200525042 制黏度之事實被確認。 表2Ba compound " -BaO. Here, the annealing separating agent may contain at least one compound selected from the group consisting of the above-mentioned Si compound, S r compound, Ca compound, Z r compound, T i compound, and Ba compound in the state of a solution or a colloidal solution. . A particularly suitable form of the invention is an annealing method for a grain-oriented electrical steel sheet. An annealing separator is coated on the steel sheet, and the coated steel sheet is annealed by the above-mentioned annealing separator. The compounds are A 1 compounds and Si compounds. As the main component, the ratio of the A 1 compound to the Si compound is converted into A 1 2 0 3 / (A 1 2 0 3 + Si〇2). The value is 40 ~ 95 mass%, the viscosity is 25 mPa · s or less, and it is a solution. Or the state of a colloidal solution. In the above invention, the annealing separating agent may further contain S or an S-containing compound at 25 to n ass% at a solid content ratio determined in the case where the annealing separating agent is applied and baked. The "S or S-containing compound" is preferably at least one selected from the group consisting of sulfuric acid Sr, sulfuric acid Mg, and sulfurized Mg. (2) Use as an annealing separating agent The present invention is the use of a liquid as an annealing separating agent. The liquid system contains an A 1 compound in a state of a solution 'or a colloidal solution, and further contains a compound selected from Si compounds, S r compounds, For at least one compound in the group consisting of C a compound, Z r compound, T i compound, and B a compound, the content of the above-mentioned A 1 12 312XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 is based on the above formula (2) The solid content ratio shown is 40 to 95 in ass%, and the viscosity is 25 m Pa · s or less. Here, the annealing separating agent may contain at least one compound selected from the group consisting of the above-mentioned Si compound, S r compound, Ca compound, Z r compound, T i compound, and Ba compound in the state of a solution or a colloidal solution. . The invention also uses a liquid as an annealing separator. The liquid system mainly uses A 1 compound and S i compound, and the ratio of A 1 compound and S i compound is converted into Al2OJ (Al2〇3 + Si〇2 The value of) is 40 to 95 mass%, the viscosity is 25 mPa · s or less, and the state is a solution or a colloidal solution. In addition, the annealing separator suitable for the annealing method of the steel plate described in (1) can also be applied to the invention of (2), and it goes without saying. (3) Manufacturing method of grain-oriented electrical steel sheet with forsterite film The present invention is a method of manufacturing grain-oriented electrical steel sheet, which includes: containing C: 0.08mass% or less, Si: 2.0 ~ 8.0mass%, Mn : 0.005 ~ l.Omass% flat steel made of steel (also including thin flat metal. The same applies below) a step of rolling to a final plate thickness to make a steel plate; a step of applying recrystallization annealing to the above steel plate; The first buckle b annealing step applied to the steel sheet by the annealing method described in (1); Here, if the above-mentioned annealing release agent applied before annealing in the first batch annealing step is referred to as a first annealing release agent , The recrystallization annealing is performed before the application of the first annealing release agent, or after the application of the first annealing release agent and before the batch annealing, and each of the first annealing release agent is set The coating amount on one side is 0.005 ~ 5g / ιτί, 13 312XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 and has the step of applying continuous annealing to the above steel plate afterwards, and the second step containing MgO Annealing separator Cloth on the steel sheet, then applying a batch anneal step of the second batch annealing. The magnetic properties of this grain-oriented electromagnetic steel sheet and the coating properties of the magnesite coating are excellent. (4) Manufacturing method of grain-oriented electrical steel sheet without forsterite film The present invention is a method of manufacturing grain-oriented electrical steel sheet, which includes: containing C: 0.08 in ass% or less, Si: 2.0 ~ 8.0mass%, Μη: 0. 0 05 ~ 1.0 mass% of a flat billet made of molten steel rolled to a final sheet thickness to make a steel sheet; a step of applying recrystallization annealing to the above steel sheet; and the above steel sheet with (1 The annealing method described in the above) applies a batch annealing step followed by a process annealing step. Here, the recrystallization annealing is performed before the application of the annealing separating agent in the post-processing annealing step described above, or described in (1). After the annealing release agent is applied, it is performed before the batch annealing, and the coating amount per one side of the annealing release agent is set to 0. 0 5 to 5 g / ιτί. This grain oriented electromagnetic steel sheet has excellent magnetic properties and workability. Any of the inventions (3) and (4) above can be applied to a grain-oriented electrical steel sheet without using an inhibitor-forming component. In this case, the flat embryo is preferably a flat embryo made of molten steel having a composition that reduces the content of A 1 to 150 ppm or less and each of the contents of N, S, and Se to 50 ppm or less. . Further, in any of the above inventions (3) and (4), it is preferable that the step of rolling the flat slab to a final sheet thickness to form a steel sheet includes: applying hot rolling to the flat slab to form a heat The step of rolling a steel sheet; if necessary, the step of annealing a hot-rolled steel sheet to anneal the above-mentioned hot-rolled 14 312XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042; An annealing step of cold rolling more than 2 times to form the final sheet thickness. (4) A more suitable form of the invention is a method for manufacturing a grain-oriented electrical steel sheet, which comprises: C: 0.08mass% or less, Si: 2.0 ~ 8.0 mass%, Mn: 0.005 ~ l.Omass% The flat embryo made of steel is subjected to hot rolling; secondly, cold rolling is applied once, or cold rolling is performed twice or more with intermediate annealing to obtain the final sheet thickness; followed by recrystallization annealing Step; and followed by the step of post-processing annealing performed by the annealing method described in (1); and setting the coating amount of the annealing release agent applied before annealing in the above-mentioned post-processing annealing to per side 〇. 〇 0 5 to 5 g / m2, or a method for manufacturing a grain-oriented electrical steel sheet, comprising: C: 0 · 08 mass% or less, Si: 2. 0 to 8. 0 in ass%, Μη: 0 , 005 to 1. 0 mass%, and at the same time, a step of applying hot rolling to a flat billet made of Hyun steel having a composition of reducing A1 content to 150 ppm or less and each of N, S, Se content to 50 ppm or less ; Secondly, apply cold rolling once, or cold rolling more than two times with intermediate annealing to make the most A step of plate thickness; a step of performing recrystallization annealing; and a step of performing post-processing annealing by using the annealing method described in (1); and setting an annealing separator applied before annealing in the above-mentioned post-processing annealing The coating amount is 0.05 to 5 g / m2 per one side. In this more suitable form of the invention, it is preferable that the annealing separator is composed of A 1 compound and S i compound as main components, and the ratio of A 1 compound to S i compound is converted to A 1 2 0 3 8 A 1 2 0 3 + S i 0 2) The value is 40 ~ 9 5 mass%, the viscosity is 25 in P a · s or less, and it is solution or colloid soluble 15 312XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 Liquid state. [Embodiment] The inventors of the present case have repeatedly studied the annealing release agent with excellent coating properties and adhesion after coating. It is found that firstly, the A 1 compound and the compound stable at high temperature are used as the main component, and at least By making the A 1 compound in a solution state or a colloidal solution state, the above problems can be solved. In addition, the inventors of the present case also found the appropriate viscosity of the above-mentioned annealing separator, the solid content ratio of the A 1 compound, and the appropriate coating amount when applied to a steel sheet. In the following, it will be explained based on the successful experiments of the invention. < Experiment 1> Manufactured by a continuous casting method from C: 0.020mass%, Si: 3.30mass%, Mn: 0.070mass%, and Sb: 400massppm and has been suppressed to A 1 * 38massppm, N: 33massppni, S: 18ppm, Se: Flat steel slab composed of components less than 10 ppm (under analysis limit). Then, the flat steel slab is subjected to cold rolling σ 1 time or cold rolling 2 or more times with intermediate annealing to form the final sheet thickness. Next, recrystallization annealing and post-processing annealing are applied to the cold-rolled steel sheet. Here, before post-processing annealing, an aqueous colloidal solution (solid concentration 3.0 mass%) of silica dioxide sol (colloidal silica) was used as an annealing separator, and each surface of the steel plate (both sides) was treated on one side. A range of from 0.1 to 3.0 g / πί was applied using a roll coater. After coating, the steel sheet is subjected to a baking treatment at a temperature of 250 ° C, and then allowed to cool. The amount of annealed release agent was determined from the difference between the weights of the steel sheets before coating and the calcination treatment, and this was used as the amount of the annealed release agent. 16 312XP / Invention Manual (Supplement) / 94-03 / 9313 7129 200525042 During post-processing annealing, it is held in a nitrogen atmosphere at 8 50 ° C for 30 hours, and then under argon at 100 ° C. Keep in air environment for 5 hours. For the obtained steel sheet, tests were performed on three items, such as the coatability of the annealing separator, the adhesiveness of the annealing separator after drying, and the annealing separation effect during post-processing annealing. The details of each performance evaluation method are described below. The evaluation methods of Experiments 2 and 3 and Examples described later are also the same. _Coatability The steel sheet after the annealing separator was applied was evaluated visually. 〇: Uniform coating on the entire steel sheet △: Coating on the entire steel sheet, but unevenness X: There are applied and uncoated places Brushing, while washing with running water for 10 seconds at a flow rate of about 1.0 m / s. Then, the water was removed with a squeeze rod (r i n g e r r ο 1 1), and the drying was performed under the condition of 2 0 0 ° C x 1 0 s. Then, the weight of the steel sheet was measured again, and the amount of the annealed release agent was calculated again. Then, the difference in the amount of the annealed release agent adhered before and after water washing was determined, and this was taken as the peeling amount. Based on the obtained peeling amount, it evaluated as follows. 〇: The peeling amount of the separating agent is 10% or less of the coating amount △: The peeling amount of the separating agent exceeds 10% of the coating amount and less than 80% X: The peeling amount of the separating agent is 80% of the coating amount % Or more • Annealing separation effect Apply a separating agent and apply 17 312XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 while applying a press load of 0.74 MPa for post-processing annealing. Then, the steel plate subjected to dazzling was peeled using a tensile tester, and the strength (peel strength) required for peeling was measured, thereby evaluating in the following manner. 〇: Fuse without steel plate (peel strength below 10 N) △: Fuse of steel plate was found in some cases (peel strength exceeds 10 N and less than 60 N) X: complete fusion of steel plate (peel strength 60 N or more) The test results are shown in Table 1. The annealing release agent used in Experiment 1 was good in terms of coatability and annealing separation effect, but under all conditions, the release agent had insufficient adhesion to the steel plate. Table 1 Coating amount (g / m) Viscosity (mPa · s) Coating release agent Adhesive peeling amount (g / m) Annealing separation effect Peel strength (N) 0.1 1 3. 1 〇Δ 0. 05 〇3 0 · 5 3. 1 〇Δ 0.20 〇0 1 3 · 1 〇Δ 0. 65 〇0 2 3. 1 〇X 1. 70 〇3 3. 1 〇X 2. 90 〇2 From the above experiment 1 It can be seen that, although the silica dioxide sol has an annealing separation effect during post-processing annealing, it has problems in the adhesion to the steel sheet as an annealing separator. Therefore, the inventors of the present application used silica sol as an annealing separator, and in order to improve the adhesion to the steel sheet, the effectiveness of adding alumina sol as a film-forming component was reviewed. < Experiment 2 > In the same manufacturing steps as Experiment 1, the surface of the steel plate (both sides) before post-processing annealing will be water-based with alumina sol (colloid alumina) and silica sol as the main components. Colloidal solution of annealing separator (solid content of 2.0 ni ass%) at a coating amount of 0.5 g / πί per side using a roller coater 18 312XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 coated. Next, the steel sheet is baked at a temperature of 250 ° C and allowed to cool. Then, as in Experiment 1, after being held in a nitrogen atmosphere at 850 ° C for 30 hours, it was subjected to processing annealing after being kept in an argon atmosphere at 1000 t for 5 hours. For the obtained steel sheet, investigations were conducted on the three items of coating properties of the annealing separator, adhesion of the annealed release agent after drying, and annealing separation effect during post-processing annealing in the same manner as in Experiment 1. Change the ratio of alumina sol to silica sol within the range of A 1 2 0 3 / (A 1 2 0 3 + S i 0 2) to 2 0 ~ 1 0 0 mass%, and make the annealing separate The viscosity of the agent varies within a range of 3.5 to 100 m P a · s. In addition, the viscosity of the annealed release agent was changed using alumina sols of different viscosities. The viscosity of the oxidized sol can be controlled by, for example, the shape of the sol particles or the solid content concentration. For example, feathers outside the sol particles are high-viscosity and low-viscosity when close to spherical (or granular) or ellipsoidal (or rod-like). Table 2 shows the experimental results when the ratio of the alumina sol to the silica sol was changed. When the ratio of the alumina sol is low, the adhesiveness of the annealing separator is insufficient. In addition, if the ratio of the alumina sol is too large, the film-forming effect becomes too strong, and it is difficult to achieve uniform coating on the steel sheet, resulting in poor appearance of the product. In addition, the annealing separation effect gave good results under all conditions. In addition, Table 3 shows the experimental results of changing the viscosity of the annealing separator. If the viscosity becomes higher, the coating property to the steel sheet will be significantly deteriorated, and a coated part and an uncoated part will occur. Since the uncoated part is subject to fusing of the steel sheet, in order to ensure good coatability and have an annealing separation effect, it is necessary to control the fact that the viscosity is 19 312XP / Invention Specification (Supplement) / 94-03 / 93] 37129 200525042 be confirmed. Table 2

氧化鋁溶膠•二氧化矽溶膠比率 Al2〇3/(Al2〇3 + Si〇2) · mass% 黏度 (mPa · s) 一 60 ~ 3.5 60 '~ 10 60 ~ Γ 25 60 ~ 50 60 ' 卜100 <實驗3〉 塗佈性 〇 _ 分離劑 密合性 π~~ 剝離量 Sg/ni) 退火分 離效果 剝離IF"' 度(Ν) 〇 〇 U 0 0 〇 ο 0 0 0 in —〇 0~~ 0 Δ Δ r 丄VJ _^28 45 其次,於與實驗1相同之製造步驟中,對於後加工退火 前之鋼板表面(雙面),將以氧化鋁溶膠及二氧化矽溶勝為 主成分之水性膠體溶液所構成之退火分離劑(固形分濃度 2· 5mass% )以每單面〇· 001〜6g/rri範圍内之各條件作為塗 佈量’利用輥塗器塗佈。將退火分離劑之黏度設定為 2 · 5 m P a · s,而將氧化鋁溶膠與二氧化矽溶膠之比率按 Al2〇3/(Al2〇3+Si〇2)換算者設定為 75mass%。 其次’以鋼板之到達溫度2 5 0 t之條件施行焙燒,並放 冷。然後’與實驗1同樣施行以8 5 0 °C在氮氣環境内保持 3 0小時後,於1 0 〇 〇 °C下在氬氣環境内保持5小時之後加工 退火。 對所得之鋼板以與實驗1相同之評價方法,針對退火分 離劑之塗佈性、乾燥後之退火分離劑之密合性、後加工退 312XP/發明說明書(補件)/94-03/93137129 20 200525042 火時之退火分離效果之3項目,施行調查。 表4顯示使塗佈量變化時之實驗結果。在塗佈量非常少 時,退火分離效果不足,而發生鋼板之熔執。另,若塗佈 量變多,退火分離劑對鋼板之密合性會降低。根據以上所 述,為了確保良好之對鋼板之密合性且具有退火分離效 果,最好能控制退火分離劑之塗佈量。 表 氧化鋁溶膠·二氧化矽溶膠 比率 Al2〇3/(Al2〇3 + Si〇2): mass% 黏度 (mPa · s) 塗佈量 (g/m) 塗佈性 分離 劑密 合性 剝離量 (g/m) 退火 分離 效果 剝離| 強度d ⑻· 75 2.5 0.001 〇 〇 0 X 100 75 2.5 0.005 〇 〇 0 ] 〇 10 75 2.5 0.05 〇 〇 0 〇 0 75 2.5 0. 5 〇 〇 0 〇 0 75 2. 5 1 〇 〇 0 〇 0 75 2.5 2 〇 〇 0 〇 0 75 2.5 3 〇 〇 0 〇 0 75 2. 5 6 〇 Δ 1 . 2 〇 0 由以上之實驗結果新發現,作為退火分離劑,採用如二Alumina sol / silica dioxide sol ratio Al2〇3 / (Al2〇3 + Si〇2) · mass% viscosity (mPa · s)-60 ~ 3.5 60 '~ 10 60 ~ Γ 25 60 ~ 50 60' Bu 100 < Experiment 3> Coating 〇_ Separation agent adhesion π ~~ Peeling amount Sg / ni) Annealing separation effect peeling IF " Degree (N) 〇〇U 0 0 〇ο 0 0 0 in —〇0 ~ ~ 0 Δ Δ r 丄 VJ _ ^ 28 45 Secondly, in the same manufacturing steps as in Experiment 1, for the surface of the steel plate (both sides) before post-processing annealing, alumina sol and silica will be the main ingredients The annealed separating agent (solid content concentration 2.5 mass%) composed of an aqueous colloidal solution was applied by a roller coater under each condition in a range of 0.001 to 6 g / rri per side as a coating amount. The viscosity of the annealed separating agent was set to 2 · 5 m Pa · s, and the ratio of the alumina sol to the silica sol was 75 mass% in terms of Al2O3 / (Al2O3 + Si02) conversion. Next, 'the baking is performed under the condition that the steel sheet reaches a temperature of 250 ° C, and the steel sheet is allowed to cool. Then, the same as Experiment 1 was performed in a nitrogen atmosphere at 850 ° C for 30 hours, and then annealed in a argon atmosphere at 1000 ° C for 5 hours. The obtained steel sheet was evaluated by the same method as in Experiment 1, regarding the coatability of the annealing separator, the adhesion of the dried separator after drying, and post-processing withdrawal 312XP / Invention Specification (Supplement) / 94-03 / 93137129 20 200525042 Investigation of 3 items of annealing and separation effect in fire. Table 4 shows the experimental results when the coating amount was changed. When the coating amount is very small, the effect of annealing separation is insufficient, and fusion of the steel sheet occurs. In addition, if the coating amount is increased, the adhesiveness of the annealing separator to the steel sheet is reduced. Based on the above, in order to ensure good adhesion to the steel sheet and have the effect of annealing separation, it is desirable to control the amount of the annealing separator applied. Table alumina sol / silica dioxide sol ratio Al2O3 / (Al2O3 + Si0): mass% viscosity (mPa · s) coating amount (g / m) coating release agent adhesive peeling amount (g / m) Annealing separation effect Peeling | strength d · 75 2.5 0.001 〇〇0 X 100 75 2.5 0.005 〇〇0] 〇10 75 2.5 0.05 〇〇0 〇0 75 2.5 0.5. 5 〇〇〇〇75 2. 5 1 0 0 0 0 0 0 0 0 75 2.5 2 0 0 0 0 0 0 0 75 2.5 3 3 0 0 0 0 0 0 75 2. 5 6 0 0 1. 2 0 0 From the above experimental results, it was newly discovered that as an annealing separator, Adopted as two

氧化矽等高溫退火時之安定性優異之化合物以及溶液狀態 或膠體溶液狀態之A 1化合物作為主成分,且規定A 1化合 物之固形分比率及黏度,可藉以得到優異之塗佈性及塗佈 後之密合性,於是完成本發明。 其次,針對本發明之退火分離劑、方向性電磁鋼板之退 火方法以及方向性電磁鋼板之製造方法,予以詳細說明。 首先,對於退火分離劑之限定理由加以說明。限定係一 般於塗佈於鋼板時之規定。 作為退火分離劑之主成分,係使用屬於溶液狀態或膠體 溶液狀態之A 1化合物,以及高溫下安定之化合物、即具有 優異之高溫下安定性且在批式退火時不反應或難以起反應 21 312XP/發明說明書(補件)/94-03/93137129 200525042 之除了 MgO以外之公知之一種或二種以上之化合物。另 外,上述高溫下安定之化合物與A 1化合物一起形成溶液狀 態或膠體溶液狀態亦可。即,退火分離劑形成溶液或膠體 溶液狀態亦可。 在此,處於溶液之狀態係指上述化合物溶於水或有機溶 劑等之介質中之狀態。又,處於膠體溶液之狀態係指1 〇 〇 η m 左右以下之上述化合物之粒子透過對上述介質有親和性之 官能基等之構造部分,安定分散於上述介質中之狀態而 言。任一情況均將成為介質之液體統稱為溶媒。膠體溶液 在外觀上並無懸浮而呈透明,因此與溶液相似,但有膠體 粒子存在之情況可經由光散射之測定而確認。 另外,主成分係指後述之副劑或添加劑以外之組成成分 而言。從而,主成分在乾燥後之退火分離劑成分(即形成溶 質或膠體之物體)全體中所佔之比例為約6 5 m a s s %以上, 以7 5 m a s s %以上較佳。 關於成為溶媒之液體,並無特別之限定,水或有機溶劑 均可使用。作為有機溶劑,一般係使用曱醇、異丙醇、乙 二醇等,但並未限定於此等。根據成本或上述化合物之選 擇多樣性之觀點等而言,以水為溶媒者較佳。此情況,在 液體特性之調整等之目的下,使約5 0 in a s s %以下之有機溶 劑混合於水亦可。將上述以水為主溶媒之情況,稱為水系 退火分離劑。 A 1化合物及上述之高溫下安定之化合物均幾乎不會如 習知之使用於退火分離劑之MgO般與紅鋁鐵質發生反應, 312XP/發明說明書(補件)/94-03/93137129 22 200525042 從而不.會形成如鎂橄欖石質被膜般使衝孔加工性顯著惡化 之被膜。因此,在供給衝孔加工性優異之方向性電磁鋼板 之情況非常有效。 退火分離劑之主成分使用二種以上之化合物係為了利用 高溫下安定之化合物來得到高度之退火分離效果,並利用 溶液狀或膠體狀之A 1化合物來得到良好之造膜效果。由此 二種效果之複合,始可有效作用為具有優異之塗佈性及塗 佈後之鋼板密合性之鋼板用退火分離劑,尤其滿足對方向 性電磁鋼板用之退火分離劑所要求之特性。 A 1化合物為了確保造膜功能,限定於在水等之溶媒中形 成膠體之化合物。即,A 1化合物若未呈膠體狀態,則無法 發揮造膜作用,因而無法得到密合性。例如,在氧化鋁以 漿液或懸浮液塗佈之情況,不會造膜。A 1化合物膠體之粒 徑最好設定為約5 0 n m以下。至於下限,並無合適之粒徑界 限,即使在分析界限附近,亦可充分發揮效果。 在水系退火分離劑之情況,較佳的是A 1化合物為具有經 基及有機酸基之鋁化合物及/或其脫水反應物(部分脫水亦 可。以下皆同)。進一步較佳的是由A 1、羥基以及有機酸 基所構成之鋁化合物及/或其脫水反應物。具體可舉出例如 選自驗性乙酸ί呂、驗性曱酸紹、驗性鹽酸紹、驗性硝酸紹、 驗性草酸铭、驗性胺續酸纟S、驗性乳酸紹、驗性檸檬酸在呂 之一種化合物,或選自二種以上之此等化合物之混合物。 其中,鹼性乙酸鋁為由分子式A 1 X ( 0 H ) y ( C Η 3 C 0 0 ) y (χ、y、ζ為1以上)所示者較佳,而以Al2(OH)5(CH3COO) 23 3 ] 2XP/發明說明書(補件)/94-03/93137129 200525042 特別合適。其可以自分子級之溶解狀態至數nm左右之膠體 狀態存在,並可合適被使用作為塗液原料。由熱分析得知, 在大約2 0 0〜2 3 0 °C有很大之脫水反應峰值,經過加熱,形 成脫水縮合所形成之分子間網狀組織而形成膜。上述鹼性 乙酸鋁等一部分或全部發生脫水反應均可。 在以有機溶劑作為溶媒之情況,作為合適之A 1化合物, 亦可應用與水系退火分離劑之情況相同之物。 作為除MgO外之高溫下安定之化合物,可使用公知物, 並未特別限定,但可舉出如S i化合物、S r化合物、C a化 合物、Z r化合物、T i化合物、B a化合物。具體化合物可 舉出 Si〇2、SrO、Ti〇2、BaO、CaO 等氧化物。 另外,為了以溶液或膠體溶液含有上述之高溫下安定之 化合物,例如在水系退火分離劑之情況,較佳的是使用化 學變化為具有羥基等之親水基之形態者。但,在高溫下安 定之化合物之情況,作為其他方法,亦可設計為在溶媒中 形成在表面被覆有已知親水性物質之狀態。在以有機溶劑 作為溶媒之情況,亦利用親油性基,藉相同之技術思想予 以設計即可。 另外,在高溫下安定之化合物時之高溫係指退火溫度而 言,不過在方向性電磁鋼板用途之情況,在1 2 0 0 °C下安定 即充分,進一步較佳的是在1 3 0 0 °C下安定即可。在此等溫 度下,該化合物本身與鋼板或鋼板表面之氧化物等(S i 0 2、 FeO、Fe3〇4、Fe2Si〇4等)實質不發生反應即可。 上述化合物均可藉由與A 1化合物之共存而得到改善退 24 3 12XP/發明說明書(補件)/94-03/93137129 200525042 火分離劑之塗佈性之效果,其中以塗佈性、退火分離性能 等之觀點而言,尤以S i化合物特別合適。作為S i化合物, 膠體狀二氧化矽、即所謂之膠態二氧化矽(c ο 1 1 〇 i d a 1 s i 1 i c a )由於與氧化ig溶膠之安定性高且成本亦較低廉,而 特別合適。膠態二氧化^夕係以S i 0 2為主成分之無機膠體’ 其呈非晶狀之情況較多。 另外,氧化鋁粒子等之非屬於溶液•膠體溶液之A 1化合 物(稱為非膠體系A 1化合物)雖然亦在高溫下安定,但其對 溶液•膠體溶液狀A 1化合物之塗佈性之改善效果低。從 而,雖然作為主成分之一部分之非膠體系A 1化合物之添加 本身並未被禁止,但最好能含有非膠體系A 1化合物以外之 高溫下安定之化合物。又,在後述之固形分比率之計算中 不考慮非膠體系A 1化合物。 A 1化合物之固形分比率按照下述式(1 )所示之固形分比 率時,最好為40〜95 mass%。 A 1化合物之固形分比率=(A 1化合物之固形分)/{( A 1化 合物之固形分)+(高溫下安定之化合物之固形分(和))丨… 式(1 ) 其中,A 1化合物之固形分係換算為A 1 2 0 3,而上述高溫 下安定之化合物係換算為焙燒後之主要化合物。例如,若 為二氧化矽溶膠,係以二氧化矽、即S i 0 2為主要化合物, 而若為二氧化鈦溶膠,係以二氧化鈦、即T i 0 2為主要化合 物。另外,即使在未特別設置焙燒步驟之情況,亦予以換 算為施行焙燒之情況所產生之主要化合物。 25 312XP/發明說明書(補件)/94-03/93137 ] 29 200525042 在固形分實質上僅由此等化合物所構成之情況,式(1 ) 被式(3 )所代替。 A 1化合物之固形分比率=(A 1化合物之固形分)/(全固 形分)…式(3 ) 在此,固形分係指乾燥後之退火分離劑成分所含之分量。 若A 1化合物之固形分比率為4 0 hi a s s %以下,則屬造膜 成分之A 1化合物不足,致使退火分離劑之密合性不充分。 又,在固形分比率超過9 5 m a s s %時,高反應性之A 1化合 物量太多,塗液不安定。因此,無法形成均勻之被膜,致 使產品之外觀不良。A 1化合物之固形分比率以5 0 m a s s %較 佳,以60mass%進一步較佳,而以70mass%以上更佳。 作為高溫下安定之化合物,使用選自S i化合物、S r化 合物、C a化合物、Z r化合物、T i化合物以及B a化合物所 組成群組之至少一種化合物之情況,A 1化合物之固形分比 率被下述式(2 )所代替。 A 1化合物之固形分比率=(A 1化合物之固形分)/{( A 1化 合物之固形分)+(上述至少一種化合物之固形分(和))丨… 式(2) 其中,各化合物之固形分最好使用被換算為下述各化合 物之重量之值: A1 化合物···AhCb; Si 化合物-"SiC^; S r 4匕合物··· S r 0 ; C a 4匕合物··· C a 0 ; Z r 化合物··· Z r (h ; Ti 化合物··· Ti〇2 ; B a化合物··· B a 0。 26 312XP/發明說明書(補件)/94-03/93137129 200525042 高溫下安定之化合物採用S i化合物之情況,即在固形分 以A 1化合物及S i化合物為主成分之情況,最好將A 1化合 物與S 1化合物之比率換算為A 1 2 0 3八A 1 2 0 3 + S i 0 2 )之數值 予以設定為40〜95mass% 。 將退火分離劑之黏度規定為2 5 ( m P a · s )以下。若黏度超 過2 5 ( m P a · s ),塗佈性顯著惡化,妨礙退火分離劑在鋼板 上之均勻塗佈。又,其結果為產生未塗佈之部分,而成為 後加工退火時之鋼板互相緊密黏連之原因。另外,本發明 中之黏度係將液溫2 5 °C之退火分離劑之黏度使用奥士華 (0 s t w a 1 d )黏度計測定之數值。 另外,在未用膠體溶液而使用膠體之漿液之情況,亦無 法得到塗佈之均句性。可推測黏度不適合以及漿液内之膠 體之凝聚所造成之黏度變動大為其一因素。 此外,於上述退火分離劑中添加S (單質)或含有S之化 合物(以下將兩者統稱為含S化合物),可藉此將良好之磁 特性安定賦予於方向性電磁鋼板。其理由雖然尚未明朗, 但,可推測的是,在批式退火時,含S化合物被分解,致 使S侵入鋼中並偏析於粒界。即,由於粒子成長被所偏析 之S抑制,造成二次再結晶之安定化。 另外,若偏析之S量過多,有可能反而引起二次再結晶 不良之發生。在重視此種狀況之迴避之情況,較佳的是將 含S化合物之添加量相對於焙燒後之退火分離劑成分之固 形分比率設定為約2 5 m a s s %以下。另外,即使在未特別設 置焙燒步驟之情況,亦按施行焙燒時所產生之含S化合物 312XP/發明說明書(補件)/94-03/93137129 27 200525042 之固形分比率施行評價。 含S化合物並未特別限定,不過以硫酸鹽(包括亞硫酸鹽 等)、金屬硫化物等之無機S化合物較佳。具體可舉出硫酸 勰、硫酸鎂以及硫化鎂等。 退火分離劑之塗佈方法可應用一般工業上所用之輥塗 法、流塗法、噴霧法、刀塗法等之各種方法。 另外,本發明之退火分離劑最好能在塗佈後加熱,以施 行焙燒處理。關於焙燒方法,應用如通常所實施之熱風式、 紅外式、誘導加熱式等方法。焙燒之條件係配合各種情況 設定即可,不過,通常合適之溫度為約150〜400 °C ’合適 之時間為約1〜3 0 0秒鐘。 另外,為了進一步提高退火分離劑之塗佈性或對鋼板之 密合性之性能,摻配界面活性劑、防,錄劑等之添加劑亦可。 關於添加劑之含量,為了維持作為退火分離劑之充分之退 火分離效果,最好能相對於乾燥後之退火分離劑成分,設 定為lOmass%以下左右。 另外,界面活性劑亦可應用市面上出售之非離子系、陰 離子系、陽離子系之任一者。 防銹劑亦與界面活性劑一樣,在種類上並未被限定,可 應用市售者。 本發明之退火分離劑雖然特別適於對方向性電磁鋼板之 應用,但並未禁止對其他鋼板之應用。 又,本發明之退火分離劑雖然在直接將鋼帶捲成線圈狀 在爐内加熱之情況特別有效,但此外,亦可應用於將鋼板 28 312XP/發明說明書(補件)/94-03/93137129 200525042 重疊施行加熱處理之情況等。 其次,關於依照本發明施行方向性電磁鋼板之製造上合 適之條件,於下述加以說明。 關於成品板及起始素材(熔鋼或扁鋼胚)之成分組成,可 應用已知對方向性電磁鋼板合適之任一成分。以下,針對 代表性成分系中合適之熔鋼成分,說明各成分之限定理由。 C : 0 · 0 8 m a s s % 以下 C之含量若超過0 . 0 8 m a s s % ,則對於將C減低至不發生 磁老化之50 in assppm以下乙事,在製造過程中難以達成, 因此,最好設定為0 . 0 8 ni a s s %以下。尤其下限不需要設 定,不過在工業上5 m assppm左右為減低之界限。Compounds with excellent stability during high-temperature annealing such as silicon oxide, and A 1 compounds in solution or colloidal solution states are used as the main component, and the solid content ratio and viscosity of the A 1 compound are specified to obtain excellent coating properties and coating The close adhesion is then completed, and the present invention has been completed. Next, the annealing separator of the present invention, the method for annealing the grain-oriented electrical steel sheet, and the method for manufacturing the grain-oriented electrical steel sheet will be described in detail. First, the reasons for limiting the annealing separator will be described. The limitation is a general rule when applied to a steel sheet. As the main component of the annealing separating agent, the A 1 compound in a solution state or a colloidal solution state and a compound stable at high temperature, that is, having excellent stability at high temperature and not reacting or difficult to react during batch annealing 21 312XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 One or two or more compounds other than MgO which are well known. In addition, the compound which is stable at the above-mentioned high temperature may form a solution state or a colloidal solution state together with the A 1 compound. That is, the annealing separator may be in the form of a solution or a colloidal solution. Here, the state of being in a solution means a state in which the compound is dissolved in a medium such as water or an organic solvent. The state of the colloidal solution refers to a state in which particles of the compound of about 100 m or less are stably dispersed in the medium through a structural portion such as a functional group having affinity for the medium. In any case, the liquid that becomes the medium is collectively referred to as a solvent. The colloidal solution is transparent in appearance without suspension, so it is similar to the solution, but the presence of colloidal particles can be confirmed by light scattering measurement. The main component refers to a component other than an auxiliary agent or an additive described later. Therefore, the proportion of the main component in the whole of the annealed separating agent component (that is, the object forming a solute or a colloid) after drying is about 65 m a s s% or more, and more preferably 75 m a s s% or more. The liquid used as the solvent is not particularly limited, and either water or an organic solvent can be used. As the organic solvent, methanol, isopropyl alcohol, ethylene glycol, or the like is generally used, but it is not limited thereto. From the standpoint of cost or the diversity of the selection of the compounds, water is preferred as the solvent. In this case, an organic solvent of about 50 in a s s% or less may be mixed with water for the purpose of adjusting liquid characteristics and the like. The above-mentioned case where water is the main solvent is called an aqueous annealing separator. The A 1 compound and the above-mentioned stable compound at high temperature hardly react with red aluminum and iron like the conventional MgO used in the annealing separator, 312XP / Invention Specification (Supplement) / 94-03 / 93137129 22 200525042 As a result, a film that significantly deteriorates punchability like a forsterite film is formed. Therefore, it is very effective when supplying a grain-oriented electrical steel sheet excellent in punchability. The main component of the annealing separator is to use two or more compounds in order to obtain a high degree of annealing separation effect by using a stable compound at high temperature, and use a solution-like or colloidal A 1 compound to obtain a good film-forming effect. The combination of the two effects can effectively act as an annealing separator for steel plates with excellent coating properties and adhesion of the steel plate after coating, and especially meets the requirements for the annealing separator for grain oriented electromagnetic steel plates. characteristic. The A 1 compound is limited to a compound that forms a colloid in a solvent such as water in order to ensure the film forming function. That is, if the A 1 compound is not in a colloidal state, the film-forming effect cannot be exhibited, and adhesion cannot be obtained. For example, in the case where alumina is applied as a slurry or suspension, no film is formed. The particle diameter of the colloid of the A 1 compound is preferably set to about 50 nm or less. As for the lower limit, there is no suitable particle size limit, and the effect can be fully exerted even near the analysis limit. In the case of an aqueous annealing separator, it is preferable that the A 1 compound is an aluminum compound having a via group and an organic acid group and / or a dehydration reaction product (partial dehydration is also possible. The same applies hereinafter). Further preferred are aluminum compounds and / or dehydration reactants thereof composed of A1, a hydroxyl group, and an organic acid group. Specific examples include acetic acid, acetic acid, acetic acid, acetic acid, acetic acid, oxalic acid, acetic acid, lactic acid, and citric acid. One compound of the acid, or a mixture of two or more of these compounds. Among them, basic aluminum acetate is preferably represented by the molecular formula A 1 X (0 H) y (C Η 3 C 0 0) y (χ, y, and ζ are 1 or more), and Al2 (OH) 5 ( CH3COO) 23 3] 2XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 is particularly suitable. It can exist from a molecular-level dissolved state to a colloidal state of about several nm, and can be suitably used as a coating liquid raw material. It is known from thermal analysis that there is a large dehydration reaction peak at about 200 ~ 230 ° C. After heating, an intermolecular network structure formed by dehydration condensation is formed to form a film. A part or all of the above-mentioned basic aluminum acetate and the like may be subjected to a dehydration reaction. In the case where an organic solvent is used as a solvent, as a suitable A 1 compound, the same thing as in the case of an aqueous annealing separator can be applied. Known compounds that are stable at high temperatures other than MgO can be used and are not particularly limited, but examples thereof include Si compounds, Sr compounds, Ca compounds, Zr compounds, Ti compounds, and Ba compounds. Specific compounds include oxides such as Si02, SrO, Ti02, BaO, and CaO. In addition, in order to contain the above-mentioned stable compound at a high temperature in a solution or a colloidal solution, for example, in the case of an aqueous annealing separator, it is preferable to use a chemically changed form having a hydrophilic group such as a hydroxyl group. However, in the case of a compound which is stable at a high temperature, as another method, it may be designed to form a state in which a surface is coated with a known hydrophilic substance in a solvent. When an organic solvent is used as a solvent, a lipophilic group is also used, and it can be designed by the same technical idea. In addition, the high temperature when the compound is stable under high temperature refers to the annealing temperature, but in the case of the use of the grain oriented steel sheet, it is sufficient to stabilize at 1 200 ° C, and more preferably 1 300 Stable at ° C. At this temperature, the compound itself does not substantially react with the steel plate or oxides on the surface of the steel plate (S i 0 2, FeO, Fe304, Fe2Si04, etc.). The above compounds can be improved by coexistence with the A 1 compound. 24 3 12XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 The coating effect of the fire separating agent, including coating properties and annealing From the standpoint of separation performance and the like, Si compounds are particularly suitable. As the Si compound, colloidal silicon dioxide, so-called colloidal silicon dioxide (c ο 1 1 o i d a 1 s i 1 i c a), is particularly suitable because of its high stability and low cost with oxidized ig sol. Colloidal dioxide is an inorganic colloid with S i 0 2 as its main component, which is often amorphous. In addition, A1 compounds such as alumina particles that are not part of a solution / colloid solution (referred to as non-colloidal system A1 compounds) are stable at high temperatures, but their coating properties for solution / colloid solution A1 compounds The improvement effect is low. Therefore, although the addition of the non-gum system A 1 compound as a part of the main component itself is not prohibited, it is preferable to contain a compound which is stable at a high temperature other than the non-gum system A 1 compound. The non-gum system A 1 compound is not considered in the calculation of the solid content ratio described later. When the solid content ratio of the compound A 1 is in accordance with the solid content ratio represented by the following formula (1), it is preferably 40 to 95 mass%. Solid content ratio of A 1 compound = (solid content of A 1 compound) / {(solid content of A 1 compound) + (solid content of compound stable at high temperature (and)) 丨 ... Formula (1) where A 1 The solid content of the compound is converted into A 1 2 0 3, and the stable compound at the above high temperature is converted into the main compound after firing. For example, if it is a silica dioxide sol, it is based on silicon dioxide, that is, Si02, and if it is a titanium dioxide sol, it is based on titanium dioxide, i.e., Ti02. In addition, even in the case where a roasting step is not specifically set, it is converted into a main compound generated when the roasting is performed. 25 312XP / Invention Specification (Supplement) / 94-03 / 93137] 29 200525042 In the case where the solid content is substantially composed only of these compounds, formula (1) is replaced by formula (3). The solid content ratio of the A 1 compound = (solid content of the A 1 compound) / (full solid content) ... Formula (3) Here, the solid content refers to the content of the annealing separator component after drying. If the solid content ratio of the A 1 compound is 40 hi a s s% or less, the A 1 compound, which is a film forming component, is insufficient, resulting in insufficient adhesion of the annealing separator. In addition, when the solid content ratio exceeds 95 m a s s%, the amount of the highly reactive A 1 compound is too large, and the coating liquid is unstable. Therefore, a uniform film cannot be formed, resulting in a poor appearance of the product. The solid content ratio of the A 1 compound is preferably 50 m s s%, more preferably 60 mass%, and more preferably 70 mass% or more. As a stable compound at high temperature, when using at least one compound selected from the group consisting of Si compound, Sr compound, Ca compound, Zr compound, Ti compound, and Ba compound, the solid content of A1 compound The ratio is replaced by the following formula (2). Solid content ratio of A 1 compound = (solid content of A 1 compound) / {(solid content of A 1 compound) + (solid content (and) of at least one of the above compounds) 丨 ... Formula (2) The solid content is preferably the value converted to the weight of each of the following compounds: A1 compound ... AhCb; Si compound- " SiC ^; S r 4 compound ... S r 0; C a 4 compound C a 0; Z r compounds ... Z r (h; Ti compounds ... Ti 〇 2; B a compounds ... B a 0. 26 312XP / Invention Specification (Supplement) / 94- 03/93137129 200525042 When the stable compound at high temperature uses Si compound, that is, when the solid content is mainly composed of A 1 compound and Si compound, it is best to convert the ratio of A 1 compound to S 1 compound into A 1 The value of 2 0 38 A 1 2 0 3 + S i 0 2) is set to 40 to 95 mass%. The viscosity of the annealed release agent is specified to be 25 (m P a · s) or less. If the viscosity exceeds 25 (m P a · s), the coatability is significantly deteriorated, preventing uniform application of the annealing release agent on the steel sheet. As a result, uncoated portions were generated, which caused the steel plates to adhere to each other during post-processing annealing. In addition, the viscosity in the present invention is a value obtained by measuring the viscosity of the annealed separating agent at a liquid temperature of 25 ° C using an Oschwa (0 s t w a 1 d) viscometer. In addition, even when a colloidal slurry is used instead of a colloidal solution, the uniformity of coating cannot be obtained. It can be inferred that the viscosity is not suitable and the viscosity change caused by the agglomeration of colloids in the slurry is a major factor. In addition, by adding S (simple substance) or an S-containing compound (hereinafter collectively referred to as an S-containing compound) to the annealing separator, it is possible to impart good magnetic properties to the grain-oriented electrical steel sheet. Although the reason for this is not clear, it is speculated that during batch annealing, the S-containing compound is decomposed, so that S penetrates into the steel and segregates at the grain boundaries. That is, since the growth of the particles is suppressed by the segregated S, the stabilization of the secondary recrystallization is caused. In addition, if the amount of segregated S is too large, it may cause secondary recrystallization defects. In the case of avoiding such a situation, it is preferable that the solid content ratio of the amount of the S-containing compound to the annealing separator component after firing is set to about 25 m a s s% or less. In addition, even in the case where the baking step is not specifically set, the solid content ratio of the S-containing compound 312XP / Invention Specification (Supplement) / 94-03 / 93137129 27 200525042 generated during the baking is evaluated. The S-containing compound is not particularly limited, but inorganic S compounds such as sulfates (including sulfites and the like) and metal sulfides are preferred. Specific examples include europium sulfate, magnesium sulfate, and magnesium sulfide. As the method for applying the annealing separator, various methods such as a roll coating method, a flow coating method, a spray method, and a knife coating method which are generally used in the industry can be applied. In addition, it is preferable that the annealing separating agent of the present invention can be heated after coating to perform a baking treatment. As for the firing method, methods such as a hot air method, an infrared method, and an induction heating method that are generally implemented are applied. The firing conditions may be set in accordance with various conditions, but generally a suitable temperature is about 150 to 400 ° C, and a suitable time is about 1 to 300 seconds. In addition, in order to further improve the coating property of the annealed release agent or the adhesion property to the steel sheet, additives such as a surfactant, a preventive agent, and a recording agent may be blended. Regarding the content of the additives, in order to maintain a sufficient annealing separation effect as an annealing separator, it is desirable to set the content of the annealing separator after drying to about 10% or less. In addition, as the surfactant, any of commercially available nonionic, anionic, and cationic systems can be used. Similar to the surfactant, the rust preventive is not limited in type, and it can be used commercially. Although the annealing and separating agent of the present invention is particularly suitable for the application to the directional electromagnetic steel sheet, the application to other steel sheets is not prohibited. In addition, although the annealing separator of the present invention is particularly effective when the steel strip is directly wound into a coil and heated in a furnace, it can also be applied to steel plate 28 312XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 Cases of overlapping heat treatment. Next, the conditions suitable for the manufacture of the grain-oriented electrical steel sheet according to the present invention will be described below. Regarding the component composition of the finished plate and the starting material (fused steel or flat steel blank), any one of the components known to be suitable for the grain-oriented electrical steel sheet can be applied. Hereinafter, the reasons for limitation of each component will be described with respect to a suitable molten steel component in a representative component system. C: 0 · 0 8 mass% or less If the C content exceeds 0.08 mass%, it is difficult to achieve a reduction of C to less than 50 in assppm without magnetic aging. Therefore, it is best to Set to 0. 0 8 ni ass% or less. In particular, the lower limit does not need to be set, but in the industry, about 5 m assppm is the lower limit.

Si: 2.0 〜8.0 mass%Si: 2.0 ~ 8.0 mass%

Si為在提高鋼之電阻並改善鐵損之方面有效之元素,為 了得到其效果,最好含有2. Omass%以上,另一方面,若 超過8 . 0 m a s s % ,加工性或磁束密度會降低,因此,最好 將上限設定為8.0mass%。從而,較佳之Si含量為 2.0 〜8.0 mass% 〇 Μη: 0.005 〜1.0 ni ass% Μη為在熱加工性之改善方面有效之元素,最好添加 0 . 0 0 5 m a s s %以上。另一方面,過剩之Μ η會使成品板之磁 束密度降低。自此觀點而言,較佳之Μη含量為l.Omass% 以下。從而,較佳之Μη含量為0.005〜l.Omass% 。 在方向性電磁鋼板之製造之際,為了二次再結晶時之高 斯方位之發達,一般添加形成抑制劑用之元素(抑制劑形成 29 312XP/發明說明書(補件)/94-03/93137129 200525042 成分)。然而,經由減少鋼之雜質元素, 劑之下使高斯方位發達之事實,最近已 為了在不使用抑制劑之下利用二次再 位晶粒,最好使A 1含量減低至1 5 0 in a s s Se含量減低至50massppni以下。此種成 特性之觀點上較佳,例如進一步較佳的; 1 0 0 m a s s p p m以下。但,此種成分之降低 升高,因此在上述範圍内使之殘存不會 現狀,為了減低成本所限定之含量下限 lOniassppni 左右。 另外,在使用抑制劑之情況,反而依 而添加此等元素。例如,一般在使用A 況,添力口 A 1 ·· (K 0 1 5 〜0 . 0 4 m a s s % 及 N : %,在使用B N作為抑制劑之情況,添加B %及 N: 0.005 〜0.015mass%,在使用 Μι 抑制劑之情況,添力σ S e、S之任一者為0 另外,將S b及/或S η以合計0 · 0 0 5〜0 於方向性電磁鋼板可進一步改善磁特性 此外,即使各以0 . 1 m a s s %以下含有 各以0.2111833%以下含有?、(:11、(:1~,以 有N i,亦不會有問題。又,較佳的是殘 之雜質。 由具有上述成分之炫鋼,可利用平常 造法來製造普通尺寸之扁胚,或利用直 312XP/發明說明書(補件)/94-03/93137129 亦可在不使用抑制 為人所知。 結晶來得到高斯方 p p m以下,使N、S、 分之儘量降低在磁 L將A 1含量設定為 ,有時導致成本之 造成任何問題。依 ,各元素均為約 照所應用之抑制劑 1 N作為抑制劑之情 0. 005〜0· 015 mass ·· 0· 001 〜0· 006mass iSe及/或MnS作為 • 005 〜0· 06mass% 〇 • 1 m a s s %左右添力口 ,故較佳。 Ge、Mo、Te、B i 5 0. 5 mass%以下含 部為鐵及不可避免 之造塊法或連續績 接鑄造法來製造厚 30 200525042 度1 0 0 mm以下之薄鑄片(所謂之薄扁胚)亦可。扁胚係藉平 常方法予以再加熱並施行熱軋,不過鑄造後未加熱而直接 施行熱軋亦可。在薄鑄片之情況,可施行熱軋,或省略熱 軋,直接進入以後之步驟亦可。 經過熱軋之鋼板,繼之依照需要被施加退火(熱軋鋼板退 火)。尤其在熱軋中形成帶狀組織之情況,為了實現整粒之 一次再結晶組織以促進二次再結晶之發達,最好能實施熱 軋鋼板退火。 為了消除上述帶狀組織,最好能將熱軋鋼板退火溫度設 定為8 0 0 °C以上。另一方面,若由熱軋鋼板退火導致粒徑 過度粗大化,則在整粒之一次再結晶組織之實現上不合 適,因此,最好能將熱軋鋼板退火溫度設定為1 1 0 0 °c以 下。從而,為了在成品板中使高斯組織高度發達,將熱軋 鋼板退火溫度設定為8 0 0 °C以上且1 1 0 0 °C以下為佳。另 外,熱軋鋼板退火之合適退火時間為1〜3 0 0秒鐘。 其次,施行1次以上之冷軋以製成冷軋鋼板後,施行再 結晶退火。另外,在施行2次以上冷軋之情況,在各冷軋 之間夾有中間退火。中間退火最好能在9 0 0〜1 2 0 0 °C之溫度 下施行1〜3 0 0秒鐘左右之時間。 另外,為了使高斯組織更發達,將冷軋之溫度提升至 1 0 0〜2 5 0 °C施行亦可。此種冷軋有時被稱為溫輥 (warm- rolling) ?但本案中當作冷軋之一種。在相同之目 的下,在冷軋途中施行1 0 0〜2 5 0 °C範圍内之老化處理1次 或多次亦可。 31 3 12XP/發明說明書(補件)/94-03/93137129 200525042 再結晶退火在主要形成一次再結晶組織之目的下,最好 能以連續退火施行之。在再結晶退火需要脫碳之情況,將 環境設定為濕潤環境,而在不需要脫碳之情況,在乾燥環 境下施行亦可。較佳之再結晶退火條件為7 5 0〜1 1 0 0 °C下 1〜3 0 0秒鐘左右。 另外,將二次再結晶退火(後加工退火,或後加工退火被 分為二個批式退火時之第一次批式退火)之鋼板中所含C 量調整為1 ◦ 0〜2 5 0 m a s s p p m尤其在未含抑制劑之方向性電 磁鋼板中提高磁束密度方面為上合適者。C量之調整藉再 結晶退火施行或另外以其他方法施行均可。 將藉浸矽法增加S i量之技術應用於例如再結晶退火後 之鋼板亦可。 本發明之退火分離劑之塗佈係在再結晶退火之前或後實 施。 習知之退火分離劑由於對鋼板之密合性不良,在再結晶 退火之前塗佈退火分離劑係在再結晶退火中發生剝離所引 起之生產線污染之觀點上無法做到者。此在被膜之形成上 需要長時間加熱之以MgO為主成分之退火分離劑之情況亦 相同。但,本發明之退火分離劑對鋼板之密合性良好,不 必擔心剝離所引起之生產線污染,因此在再結晶退火之前 或後均可塗佈。 在本步驟中,為了發揮對鋼板之緊密黏連防止效果,最 好將本發明之退火分離劑之塗佈量設定為〇 . 〇 〇 5 g / ηΐ以 上。另一方面,為了確保退火分離劑之密合性,最好將附 32 312ΧΡ/發明說明書(補件)/94-03/93】37129 200525042 著量設定為5 g / ιτί以下。從而,退火分離劑之塗佈量 設在0.005〜5g/iri之範圍内。進一步較佳之下限為〇· ηΐ,進一步較佳之上限為2 g / rrf。 另外,雖然方向性電磁鋼板製造時之合適塗佈量為 所述,但依照各個熱處理條件或要求品質,亦可在上 適範圍外使用。 退火分離劑僅塗佈於鋼板之單面,或塗佈於鋼板之 均可,不過在確實得到效果之觀點上較佳的是塗佈於 面。變更退火分離劑在鋼板表裏之組成等雖然未予禁 但在步驟上,最好能將相同之退火分離劑塗佈於雙面 在製造不具鎂橄欖石質被膜且具有優異之磁特性及 性之方向性電磁鋼板之情況,施行再結晶退火及本發 火分離劑之塗佈後,以批次退火實施後加工退火。後 退火之目的在於二次再結晶之進行,以及雜質之減低 化)。作為退火條件,可應用達成此項目的之公知條件 佳之後加工退火溫度為約7 5 0〜1 3 0 0 °C,但設定前半部 7 5 0〜1 0 0 0 °C 、後半部為約9 0 0〜1 3 0 0 °C亦可。在此,在 部主要促進二次再結晶,而在後半部主要促進純化。 之後加工退火時間以上述溫度域之保持時間而言,為 1〜3 0 0小時左右。 另外,在應用以MgO為主成分之退火分離劑之習知 之情況,由於形成較厚之被膜,與未應用分離劑之情 較,純化所需要之時間會長時間化。但本發明之退火 劑雖然發生A 1化合物之造膜,仍有不妨礙純化之效果 3 12XP/發明說明書(補件)/94-03/93137129 最好 05g/ 如上 述合 雙面 雙 止, 上。 力口工 明退 加工 (純 〇較 為約 前半 較佳 技術 況相 分離 觀 33 200525042 察到。 在以提高磁特性為目的之以含有C約1 之狀態施行後加工退火之情況,較佳的是 了後,將C減低至不發生磁老化之5 0 p p m 方法包括在後加工退火中脫碳之方法,以 後附加脫碳步驟之方法。為了在後加工退 加工退火中,尤其在後半之含有氫之環境 上之高溫退火即可。 另一方面,作為附加於後加工退火後之 的有(1 )氧化性環境内之退火(脫碳退火) 除去表層石墨之表面磨削,(3 )藉化學手段 電解洗滌•化學磨削、電漿照射等。另外, 可脫碳之理由為,在後加工退火終了之前 析出於鋼板表層,而完成鋼中之脫碳。 關於此種有石墨析出於鋼板表層之現象 以下之機構。C在鋼中形成暫穩定之雪明· 能量高之活性化狀態下則形成石墨。因此 雪明碳體析出於紅鋁鐵質中之前,以石墨 純鐵之狀態圖可推測,石墨之熔解度稍低 解度。從而可推測的是,表面之固熔C減 衡之濃度為止,因此產生由表層之固熔C 固熔C所形成之濃度梯度,於是,從紅鋁 進行。 但,在後加工退火之際,若在表面形成 312XP/發明說明書(補件)/94-03/93137129 00 〜250niassppm 在二次再結晶終 以下。C之減低 及在後加工退火 火中脫碳,在後 内實施1 0 0 0 °c以 脫碳步驟,有效 ,(2 )藉機械手段 除去表層石墨之 藉手段(2 )或(3 ) ,C以石墨型態 ,例如可推測為 碳體,而在表面 ,在冷卻中C以 析出於表層。由 於雪明碳體之熔 少至與石墨達平 與紅鋁鐵質中之 鐵質起之脫碳便 緻密或牢固之被 34 200525042 膜層(例如應用於以M g 0為主成分之習知退火分離 況),表面活性化則被阻礙,結果,石墨在鋼板表層 亦被阻礙。然而,本發明之退火分離劑所形成之被 優異之密合性,卻對石墨在鋼板表層之析出並無不 響,雖然其理由不明,仍可合適利用上述脫碳方法 在後加工退火後,藉平坦化退火附加張力以嬌正 在減低鐵損之目的上有效者。在濕潤環境下施行此 退火,藉此同時施行脫碳亦可(上述(1 )之方法之一 另外,在後加工退火後,進一步應用藉浸矽法增 量之技術亦可。此技術在想要進一步減少鐵損之情 效。 在積層多個鋼板並使用於鐵心等之情況,在積層 損之改善上有效的是在平坦化退火後,對鋼板表面 緣被膜。尤其為了確保良好之衝孔性,較佳的是使 樹脂之有機系被膜作為絕緣被膜。另一方面,在重 性之情況,最好應用無機系被膜作為絕緣被膜。 另外,不需要特別設置僅將退火分離劑去除之步 在製造具有優異之鎂撖欖石質被膜特性及磁特性 性電磁鋼板之情況,施行再結晶退火及本發行退火 之塗佈後,為了二次再結晶之表現,施行第一次之 火。此時之退火條件可應用使二次再結晶進行之公 條件。較佳之條件為約7 5 0〜1 1 0 0 °C 、約1〜3 0 0小時 然後,在第二次之批式退火時形成鎂撖欖石質被 作為其準備階段,首先施行利用連續退火之内部氧 312χρ/發明說明書(補件)/94-03/93〗37129 Η之情 之析出 膜具有 良影 〇 形狀係 平坦化 種)。 加Si 況為有 體之鐵 施加絕 用含有 視熔接 驟。 之方向 分離劑 批式退 知退火 〇 膜,而 化被膜 35 200525042 (subscale)之形成。在磁特性之改善為目的之下,在直接 於以指定量含有C之狀態施行第一次之批式退火之情況, 較佳的是在形成此内部氧化被膜之連續退火時,亦同時施 行脫碳。上述連續退火之退火條件(時間•溫度•環境 等),可以在後續之批式退火中容易且安定形成鎂撖欖石質 被膜之方式應用公知之退火條件。較佳之退火溫度為約 7 5 0〜1 0 0 0 °C ,較佳之退火時間為約1〜3 0 0秒鐘,較佳之環 境為由氫氣與氮氣所構成之氧化性環境。 在上述連續退火之前,不需要設置本發明退火分離劑之 去除之步驟。亦即,即使將鎂橄欖石質被膜附加於本發明 之退火分離劑上,鎂橄欖石質被膜之密合性仍然良好,且 本發明退火分離劑之存在亦不對純化發生妨礙。 其次,將以MgO作為主成分之退火分離劑塗佈於鋼板之 表面上,施行第二次之批式退火。由於此第二次之批式退 火係在鎂撖欖石質被膜之形成以及雜質之純化之目的下施 行,可應用習知之可達成此二個目的之公知退火條件。較 佳之退火溫度為約9 0 0〜1 3 0 0 °C ,較佳之退火時間為約 1〜3 0 0小時。另外,以M g 0為主成分之退火分離劑有可應 用公知者。例如,作為固形分最好設定M g 0 ··約8 0〜9 9 in a s s % ,且將其殘餘依照需要設定為選自T i 0 2、S r S Ch、M g S 0 4 等之一種以上者,較適於使用。 在第二次之批式退火後,進一步應用藉浸矽法增加S i 量之技術亦可。 然後,在最後依照需要塗佈張力被膜,予以焙燒。又, 36 3 ] 2XP/發明說明書(補件)/94-03/93137129 200525042 亦可利用平坦化退火來修整形狀,此外亦可實施兼做張力 被膜之焙燒之平坦化退火。 本發明之方向性電磁鋼板之意義為表現二次再結晶之電 磁鋼板。因此,不僅高斯方位,立方體方位({ 1 0 0 }< 0.01 >方位或丨1 0 0丨< 0 1 1 >方位)二次再結晶之情況亦包括在 本案申請專利範圍内。對立方體方位之集積可應用已知之 方法,例如可利用軋延集合組織之控制來施行,而再結晶 退火以後之步驟在概要上與表現高斯方位集積之二次再結 晶之情況》相同。 [實施例] (實施例1 ) 依照下述方法製成具有優異之鎂撖欖石質被膜特性及磁 特性之方向性電磁鋼板。 以連績鎮造法製造含有C: 0.020mass%、Si: 3.35mass % 、Μη: 0· 0 5 0 m a s s % 以及 S b · 3 8 0 m a s s p p m,且扣p 制劑形 成成分含有Al: 320 massppni以及N: 80massppm,而殘部 為鐵及不可避免之雜質而構成之扁鋼胚。將該扁鋼胚在 1 2 0 0 °C下加熱後,藉熱軋而加工為板厚2 . 0 m m之熱軋鋼 板,並在1 0 5 0 °C下施行熱軋鋼板退火6 0秒鐘。繼之,藉 冷軋加工為板厚0 . 3 0 m m之冷軋鋼板,在露點一 4 5 °C之乾燥 環境中以9 0 0 °C 、1 0秒鐘之條件施行再結晶退火。 在再結晶退火後,實施第一次之批式退火。將退火分離 劑依照表5所示,在再結晶退火之前或之後塗佈。退火分 離劑之塗佈係使用輥塗機進行,然後施行鋼板之到達溫度 37 312XP/發明說明書(補件)/94-03/93137129 200525042 (板溫)為2 5 0 °C之焙燒處理,並放冷。焙燒係以丙烷氣體 直火焙燒施行。第一次之批式退火係在氮氣環境中 8 5 0 C 、保持4 0小時之條件貫施’以完成二次再結晶。 然後,分別調查退火分離劑之塗佈性、乾燥後之退火分 離劑之密合性、第一次批式退火後之退火分離效果,對於 此等特性良好之試樣,進一步施行後續之步驟,作成成品 板。 在後續之步驟中,首先,實施用以形成良好之内部氧化 被膜之連續退火,然後塗佈以MgO為主成分之退火分離 劑。由於第一次批式退火係以C殘留1 0 0〜1 5 0 m a s s p p m之狀 態實施,在此用以形成内部氧化被膜之連續退火時,亦同 時施行脫碳。連續退火係在露點5 5 °C之氧化性環境中,以 8 3 5 °C施行1 2 0秒鐘。 第二次批式退火用之退火分離劑係使用含有MgO : 95丨11&53%以及11丨〇2:5111355%作為固形分者。其次,在乾 氫氣環境中以1 2 0 0 °C保持5小時之條件實施第二次之批式 退火。 然後,在最後施行張力被膜之塗佈•焙燒及應力放鬆退 火。張力被膜係使用含有磷酸、鉻酸以及膠態二氧化矽者, 在8 0 0 °C之溫度下予以焙燒。.關於應力放鬆退火係於氮氣 環境中以8 0 0 °C 、3小時之條件實施。 表5中,顯示退火分離劑之成分及塗佈條件。以S i 0 2、 A 1 2 0 3之粉末為主成分之退火分離劑係除了 N 〇 . 2 6之外, 均以水性漿液塗佈,N 〇 · 2 6係以固形分成為5 m a s s %之方 38 312XP/發明說明書(補件)/94-03/93137129 200525042 式懸浮於酒精中,以噴霧塗佈。粉末以外為主成分者,其 稀釋比率乃依塗佈量而不同,但均以水稀釋以成為膠體溶 液並塗佈。作為副劑添加之硫酸鋰、硫酸鎂以及硫化鎂係 各別添加3 w t % 。表5所示以外之固形分並未添加,另適 當添加0 . 5 m a s s %以下之界面活性劑(非離子系)等。 針對第一次批式退火所用之退火分離劑,將退火分離劑 塗佈步驟之順序(依再結晶退火之前或後而區分)、退火分 離劑之塗佈性、乾燥後之退火分離劑之密合性以及第一次 批式退火後之退火分離效果示於表6中。 N〇.1 4及1 9由於退火分離劑之黏度在本發明範圍外, 塗佈性明顯惡劣,而在未能塗到之部分發生鋼板互相之緊 密黏連。No. 12及15之A1化合物與Si化合物之比率在 本發明之合適範圍外,Ν ο · 1 2由於造膜成分之A 1化合物 量少,退火分離劑對鋼板之密合性低劣。另一方面,No · 1 5由於高反應性A 1化合物量多,塗液不安定,無法形成 均句被膜。於是,造成外觀不良。 Ν ο · 1〜4由於退火分離劑之主成分在本發明範圍外,對 鋼板之密合性不足。No · 5由於退火分離劑塗佈量不足, 在後加工退火時發生鋼板互相之緊密黏連。Ν 〇 . 1 7由於塗 佈量太多,顯示對鋼板之密合性不足,而發生剝離。 Ν 〇 · 3、4、6、7、1 2以及2 6係將退火分離劑之塗佈分 為再結晶退火之前與後之二種程序實施。本發明之退火分 離劑與退火分離劑之塗佈順序無關,均可得到良好之退火 分離劑之塗佈性、乾燥後之退火分離劑之密合性以及第一 39 3 ] 2XP/發明說明書(補件)/94-03/93】37〗29 200525042 次批式退火後之退火分離效果。在屬於比較例之Ν ο . 3、4 以及26發現,因退火分離劑之塗佈順序不同,在退火分離 效果上有差異。其原因可推測為,在再結晶退火之前施行 塗佈之情況,對鋼板之密合性不良之此等退火分離劑會於 再結晶退火時剝離,致使第一次批式退火時附著於鋼板上 之退火分離劑量變少,因而發生鋼板互相之緊密黏連。另 一方面,在再結晶退火之後施行塗佈之情況,由於剝離量 少,在鋼板上殘存有在防止鋼板互相之緊密黏連上所需要 之量,因此,未發生鋼板互相之緊密黏連。 將後續之步驟施加於應用本發明之退火分離劑之試樣而 製備成品板之情況,將磁特性、鎂橄欖石質被膜特性以及 第二次批式退火後之A 1、C、N、S、S e含量(紅鋁鐵質中, 即除去鋼板表面之被膜後之分析結果)示於表7中。鎂橄欖 石質被膜特性係將應力放鬆退火後之試樣捲繞在圓柱上, 依未發生被膜剝離之最小彎曲半徑施行評價。磁特性係使 用3 0 X 3 0 0 ]n ni之艾普斯坦試片,依照J I S C 2 5 5 0施行測定。 Bs為磁化力800Α/ηι之磁束密度(T),Wi7/5G為在頻率50Hz 及最大磁束密度1 · 7 T時之鐵損值(W / k g )。 在應用本發明之退火分離劑之情況,達成了磁特性與鎂 橄欖石質被膜特性之兼顧,並且無問題地實現了雜質之純 化。又,在添加含S化合物為副劑之情況(Ν 〇 . 8、1 0以及 1 1 ),發現了磁特性之進一步改善。 40 312XP/發明說明書(補件)/94-03/9313 7129 200525042 表5Si is an effective element for improving the electrical resistance and iron loss of steel. In order to obtain the effect, Si should be contained at least 2. Omass%. On the other hand, if it exceeds 8. 0 mass%, the workability or magnetic flux density will decrease. , So it's best to set the upper limit to 8.0mass%. Therefore, the preferred Si content is 2.0 to 8.0 mass%. Mn: 0.005 to 1.0 ni ass% Mn is an element effective in improving the hot workability, and it is preferable to add more than 0.05 m a s s%. On the other hand, excessive M η will decrease the magnetic flux density of the finished plate. From this viewpoint, the preferable Mη content is 1.0 mass% or less. Therefore, the preferred Mη content is 0.005 ~ l.Omass%. In the manufacture of directional electromagnetic steel sheets, in order to develop the Gaussian orientation during secondary recrystallization, an element for forming an inhibitor is generally added (inhibitor formation 29 312XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 ingredient). However, the fact that the Gaussian orientation is developed by reducing the impurity elements of the steel has recently been used to reduce the A 1 content to 15 0 in ass in order to use the secondary relocation grains without using inhibitors. Se content was reduced to below 50 massppni. From the viewpoint of such characteristics, it is more preferable, for example, it is further preferable; 100 m a s s p p m or less. However, the reduction of such ingredients increases, so that the remaining within the above range will not be the status quo, and the lower limit of the content is limited to lOniassppni in order to reduce the cost. In addition, when an inhibitor is used, these elements are added instead. For example, in the case of using A in general, Timing mouth A 1 ·· (K 0 1 5 ~ 0. 0 4 mass% and N:%, in the case of using BN as an inhibitor, add B% and N: 0.005 ~ 0.015 mass%, in the case of using a Mi inhibitor, any of the addition forces σ S e and S is 0. In addition, adding S b and / or S η to a total of 0 · 0 0 5 to 0 can further improve the direction of the electromagnetic steel sheet. Improved magnetic properties. In addition, even if each contains 0.1 mass% or less and 0.2111833% or less each ?? (: 11, (: 1 ~, with Ni, there is no problem. Also, residual From the dazzling steel with the above composition, ordinary size flat embryos can be produced by ordinary manufacturing methods, or straight 312XP / Invention Specification (Supplement) / 94-03 / 93137129 can also be used without suppression. Crystallize to get Gaussian ppm or less, make N, S, and fractions as low as possible. Set the A 1 content in the magnetic L to sometimes cause any problems in cost. According to this, each element is about the suppression applied according to the application. Agent 1 N as an inhibitor 0. 005 ~ 0 · 015 mass ·· 0 · 001 ~ 0 · 006mass iSe and / or MnS as • 005 ~ 0 · 06mass% 〇 • 1 mass%, it is better to add force. Ge, Mo, Te, B i 5 0.5 mass% or less containing iron and unavoidable block making method or continuous continuous casting It is also possible to manufacture thin cast slabs (so-called thin flat slabs) with a thickness of 30 200525042 degrees or less than 100 mm. Flat slabs are reheated and hot rolled by the usual method, but they are directly heated without being heated after casting. Yes. In the case of thin slabs, hot rolling can be performed, or hot rolling can be omitted, and the process can be directly performed. The hot-rolled steel sheet can be annealed (hot-rolled steel sheet annealing) as required. Especially in In the case where a band-like structure is formed during hot rolling, in order to achieve the primary recrystallized structure of the whole grain to promote the development of secondary recrystallization, it is preferable to perform annealing on the hot-rolled steel sheet. The annealing temperature of the steel sheet is set to more than 800 ° C. On the other hand, if the grain size is excessively coarsened due to the annealing of the hot-rolled steel sheet, it is not suitable for the realization of the primary recrystallization structure of the whole grain, so it is best to Setting of annealing temperature for hot rolled steel sheet 1 1 0 ° C or less. Therefore, in order to highly develop the Gaussian structure in the finished sheet, the annealing temperature of the hot-rolled steel sheet is preferably set to 8 0 ° C or higher and 1 1 0 0 ° C. In addition, hot rolling A suitable annealing time for steel sheet annealing is 1 to 300 seconds. Second, cold rolling is performed more than once to make a cold rolled steel sheet, and then recrystallization annealing is performed. When cold rolling is performed twice or more, intermediate annealing is interposed between the cold rollings. The intermediate annealing is preferably performed at a temperature of 900 to 12 ° C for a time of about 1 to 300 seconds. In addition, in order to further develop the Gaussian structure, the temperature of cold rolling may be increased to 100 ~ 250 ° C. This type of cold rolling is sometimes referred to as warm-rolling-but it is considered a type of cold rolling in this case. For the same purpose, the aging treatment may be performed once or more than 100 ° C to 250 ° C during cold rolling. 31 3 12XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 Recrystallization annealing is best performed by continuous annealing for the purpose of forming a primary recrystallized structure. If decarburization is required for recrystallization annealing, set the environment to a humid environment, and if decarburization is not required, perform it in a dry environment. The preferred recrystallization annealing conditions are about 1 to 300 seconds at 750 to 110 ° C. In addition, the amount of C contained in the steel sheet of the secondary recrystallization annealing (post-work annealing, or the first batch annealing when the post-processing annealing is divided into two batch annealings) is adjusted to 1 ◦ 0 ~ 2 5 0 Massppm is particularly suitable for increasing the magnetic flux density in a grain-oriented electrical steel sheet without an inhibitor. The amount of C may be adjusted by recrystallization annealing or by other methods. It is also possible to apply the technique of increasing the amount of Si by the silicon immersion method to, for example, a steel sheet after recrystallization annealing. The coating of the annealing separator of the present invention is performed before or after the recrystallization annealing. The conventional annealed release agent has poor adhesion to the steel sheet, and the application of the annealed release agent before recrystallization annealing is impossible from the viewpoint of contamination of the production line caused by peeling during recrystallization annealing. This also applies to the case where an annealing separator containing MgO as a main component is required to be heated for a long time in the formation of a film. However, the annealed release agent of the present invention has good adhesion to the steel sheet, and there is no need to worry about contamination of the production line caused by peeling, so it can be applied before or after recrystallization annealing. In this step, in order to exert the effect of preventing close adhesion to the steel sheet, it is preferable to set the coating amount of the annealing release agent of the present invention to not less than 0.5 g / ηΐ. On the other hand, in order to ensure the adhesiveness of the annealing separator, it is best to set the weight attached to 32 312XP / Invention Specification (Supplement) / 94-03 / 93] 37129 200525042 to 5 g / ιτί or less. Therefore, the application amount of the annealing release agent is set in the range of 0.005 to 5 g / iri. A further preferred lower limit is 0 · ηΐ, and a further preferred upper limit is 2 g / rrf. In addition, although the appropriate coating amount during the manufacture of the grain-oriented electrical steel sheet is as described above, it can be used outside the above-mentioned range according to the respective heat treatment conditions or required quality. The annealed release agent may be applied to only one side of the steel sheet, or may be applied to the steel sheet, but it is preferable to apply it to the surface from the standpoint of obtaining an effect. Although the composition of the annealed release agent on the surface of the steel plate is not prohibited, it is best to apply the same annealed release agent on both sides in the process of manufacturing without a forsterite film and having excellent magnetic properties and properties. In the case of a grain-oriented electrical steel sheet, after recrystallization annealing and application of the pyrophoric separating agent, batch annealing and post-process annealing are performed. The purpose of post-annealing is to carry out secondary recrystallization and reduce impurities). As the annealing conditions, it is possible to apply the well-known conditions for achieving this item. The annealing temperature after processing is about 7 50 ~ 130 0 ° C, but the first half is set at 7 50 ~ 100 0 ° C and the second half is about 9 0 0 to 1 3 0 ° C is also acceptable. Here, secondary recrystallization is mainly promoted in the part, and purification is mainly promoted in the second half. The subsequent processing annealing time is about 1 to 300 hours in terms of the holding time in the above temperature range. In addition, in the case of the conventional application of an annealing separator containing MgO as a main component, since a thicker film is formed, the time required for purification is longer than that in the case where no separating agent is applied. However, although the annealing agent of the present invention has film formation of the A 1 compound, it still has the effect of not hindering the purification. 3 12XP / Invention Specification (Supplement) / 94-03 / 93137129 It is best 05g / . Likou Gongming withdrawal processing (pure 0 is better than the first half of the best technical conditions phase separation view 33 200525042). In the case of post-annealing in the state containing C about 1 for the purpose of improving magnetic properties, it is preferred After that, C is reduced to 50 ppm without magnetic aging. The method includes a method of decarburization in post-processing annealing, and a method of adding a decarburization step later. To post-process annealing, especially in the second half, it contains hydrogen. High temperature annealing on the environment is sufficient. On the other hand, as additional to post-processing annealing, there are (1) annealing in an oxidizing environment (decarburization annealing), surface grinding to remove surface graphite, (3) by chemical Means electrolytic washing, chemical grinding, plasma irradiation, etc. In addition, the reason for decarburization is that the decarburization in the steel surface is completed before the post-processing annealing is completed, and the decarburization in the steel is completed. The phenomenon is the following mechanism. C forms a temporarily stable Xueming in the steel, and graphite is formed in an activated state with high energy. Therefore, before the precipitation of the Xueming carbon body in the red aluminum iron, the stone The state diagram of the pure iron can be inferred that the melting degree of graphite is slightly lower. Therefore, it can be inferred that the concentration of solid solution C on the surface is reduced, so the concentration formed by solid solution C on the surface layer is generated. The gradient is then made from red aluminum. However, if post-processing annealing is used, if 312XP / Invention Specification (Supplement) / 94-03 / 93137129 00 to 250niassppm is formed on the surface, it will be less than the end of the secondary recrystallization. C reduction And decarburization in the post-processing annealing fire, and the implementation of the decarburization step at 100 ° C within the post-processing is effective, (2) borrowing means (2) or (3) by mechanical means to remove surface graphite, and C using graphite The type can be presumed to be a carbon body, for example, on the surface, C is precipitated into the surface layer during cooling. Since the melting of the cuming carbon body is as small as that of graphite and iron in red aluminum iron, it will decarburize. Dense or firm coatings (such as those applied to conventional annealing and separation with M g 0 as the main component), surface activation is impeded, and as a result, graphite is also impeded in the surface layer of steel plates. However, the present invention The excellent adhesion of the annealed release agent, However, it is not uncommon for the precipitation of graphite on the surface of the steel sheet. Although the reason is unknown, the above-mentioned decarburization method can still be suitably used after the post-processing annealing, and the flattening annealing is added to the tension to reduce the iron loss. It is also possible to perform this annealing in a humid environment, thereby performing decarburization at the same time (one of the methods of (1) above. In addition, after the post-processing annealing, it is also possible to further apply the technology of immersion by silicon immersion. It is necessary to further reduce the effect of iron loss. In the case where multiple steel plates are laminated and used for iron cores, it is effective to improve the lamination loss by coating the surface edge of the steel plate after flattening annealing. Especially to ensure good punching It is preferable that the organic coating of the resin is used as the insulating coating. On the other hand, in heavy cases, it is preferable to use an inorganic film as the insulating film. In addition, there is no need to specifically set the step of removing the annealing separator only. In the case of manufacturing an electromagnetic steel sheet having excellent magnesium mullite film properties and magnetic properties, after the recrystallization annealing and the coating of this release annealing are performed, The performance of the second recrystallization, the first fire. As the annealing conditions at this time, a common condition for performing secondary recrystallization can be applied. The preferred conditions are about 750 to 110 ° C and about 1 to 300 hours. Then, the formation of magnesite in the second batch annealing is used as its preparation stage. Annealed internal oxygen 312χρ / Invention Specification (Supplement) / 94-03 / 93〗 37129 The precipitation film has a good shape (the shape is flat). In the case of Si, it is a body of iron. Orientation Separation agent Batch de-annealing 〇 Membrane, and formation of coating 35 200525042 (subscale). For the purpose of improving the magnetic characteristics, in the case where the first batch annealing is performed directly in a state containing C in a specified amount, it is preferable to also perform a simultaneous annealing when forming the continuous oxidation of this internal oxide film. carbon. The annealing conditions (time, temperature, environment, etc.) of the continuous annealing described above can be easily and stably formed in the subsequent batch annealing by using known annealing conditions. The preferred annealing temperature is about 750 ~ 100 ° C, the preferred annealing time is about 1 ~ 300 seconds, and the preferred environment is an oxidizing environment composed of hydrogen and nitrogen. Prior to the continuous annealing described above, it is not necessary to provide a step of removing the annealing separating agent of the present invention. That is, even if a forsterite film is added to the annealing separator of the present invention, the adhesion of the forsterite film is still good, and the presence of the annealing separator of the present invention does not hinder purification. Next, an annealing separator containing MgO as a main component was coated on the surface of the steel sheet, and a second batch annealing was performed. Since this second batch of annealing is performed under the objectives of formation of the magnesite stone film and purification of impurities, the well-known annealing conditions that can achieve these two purposes can be applied. A preferred annealing temperature is about 900 to 130 ° C, and a preferred annealing time is about 1 to 300 hours. In addition, an annealing separator containing M g 0 as a main component is known. For example, as the solid content, it is best to set M g 0 ·· about 8 0 ~ 9 9 in ass%, and set the residue as selected from T i 0 2, S r S Ch, M g S 0 4 and so on as required. More than one is more suitable for use. After the second batch annealing, it is also possible to further apply the technique of increasing the amount of Si by dipping silicon. Then, a tension film is applied and fired as necessary. In addition, 36 3] 2XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 The shape can be trimmed by a flattening annealing, and a flattening annealing that also serves as a tension film can be performed. The meaning of the directional electromagnetic steel sheet of the present invention is an electromagnetic steel sheet exhibiting secondary recrystallization. Therefore, not only the Gaussian orientation, but also the secondary recrystallization of the cube orientation ({1 0 0} < 0.01 > orientation or 丨 1 0 0 丨 < 0 1 1 > orientation) is also included in the scope of patent application for this case. Known methods can be applied to the accumulation of cube orientations. For example, the control can be performed by using the rolled aggregate structure, and the recrystallization step is the same as that in the case of secondary recrystallization in which the Gaussian orientation accumulation is expressed. [Examples] (Example 1) A grain-oriented electrical steel sheet having excellent magnesium mullite quality and magnetic properties was prepared according to the following method. Manufactured by the continuous method, containing C: 0.020mass%, Si: 3.35mass%, Mn: 0 · 0 0 0 0 0 0 0 0 0 0 0 0% and S b · 3 8 0 massppm, and the component for forming the formulation contains Al: 320 massppni and N: 80massppm, and the remainder is a flat steel blank composed of iron and unavoidable impurities. After heating the flat steel blank at 120 ° C, it was processed into a hot-rolled steel sheet having a thickness of 2.0 mm by hot rolling, and the hot-rolled steel sheet was annealed at 1050 ° C for 60 seconds. bell. Then, cold-rolled steel sheet with a thickness of 0.30 mm was subjected to recrystallization annealing in a dry environment at a dew point of 45 ° C at 90 ° C for 10 seconds. After the recrystallization annealing, the first batch annealing is performed. The annealing separator is applied before or after recrystallization annealing as shown in Table 5. The application of the annealing separator is performed by using a roll coater, and then the baking temperature of the steel plate is 37 312XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 (plate temperature) is 2 50 ° C, and Let it cool. The roasting is performed by propane gas direct firing. The first batch annealing was performed at 850 C in a nitrogen atmosphere for 40 hours to complete the second recrystallization. Then, investigate the coating properties of the annealing release agent, the adhesion of the annealing release agent after drying, and the annealing separation effect after the first batch annealing. For these samples with good characteristics, further steps are performed. Made into finished boards. In the subsequent steps, first, continuous annealing is performed to form a good internal oxide film, and then an annealing separator containing MgO as a main component is applied. Since the first batch annealing is performed in a state where C remains at 100 to 150 m a s s p p m, decarburization is also performed at the same time as continuous annealing for forming an internal oxide film. Continuous annealing is performed in an oxidizing environment with a dew point of 55 ° C, and at 85 ° C for 120 seconds. The annealing separator for the second batch annealing uses solids containing MgO: 95 丨 11 & 53% and 11 丨 02: 5111355%. Next, a second batch annealing was performed in a dry hydrogen environment at 12 ° C for 5 hours. Then, coating, baking and stress relaxation tempering of the tension film are performed at the end. Tensile coatings are those which contain phosphoric acid, chromic acid, and colloidal silica, and are fired at 800 ° C. Stress relaxation annealing is performed in a nitrogen environment at 800 ° C for 3 hours. Table 5 shows the components and application conditions of the annealing separator. The annealing and separating agent based on the powder of Si 0, A 1 2 0 3 as the main component is coated with an aqueous slurry except for N 0.26, and N 0 · 2 6 is 5 mass% in solid form. Formula 38 312XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 suspended in alcohol and spray-coated. For those other than powder, the dilution ratio varies depending on the coating amount, but all are diluted with water to form a colloidal solution and applied. Lithium sulfate, magnesium sulfate, and magnesium sulfide, which are added as auxiliary agents, are added at 3 w t% each. Solid contents other than those shown in Table 5 are not added, and surfactants (non-ionic), etc., which are 0.5 m a s s% or less, are appropriately added. For the annealing separating agent used in the first batch annealing, the order of the annealing separating agent coating step (different before or after recrystallization annealing), the coating property of the annealing separating agent, and the density of the annealing separating agent after drying. The conformability and the annealing separation effect after the first batch annealing are shown in Table 6. No. 14 and 19, because the viscosity of the annealed release agent is outside the scope of the present invention, the coatability is significantly poor, and the steel plates are closely adhered to each other in the parts that have not been applied. The ratio of the A1 compound to the Si compound in Nos. 12 and 15 is outside the appropriate range of the present invention. Since the amount of the A 1 compound in the film forming component is small, the adhesion of the annealing separator to the steel sheet is poor. On the other hand, No. 15 has a large amount of the highly reactive A 1 compound, and the coating solution is unstable, so that a uniform film cannot be formed. As a result, the appearance is poor. Since the main components of the annealing separator are outside the scope of the present invention, the adhesion to the steel sheet is insufficient. No. 5 Due to insufficient coating amount of the annealing release agent, the steel sheets were closely adhered to each other during post-processing annealing. Ν〇.17 Due to too much coating amount, it showed insufficient adhesion to the steel sheet, and peeling occurred. Ν ·· 3,4,6,7,12, and 26 are used to separate the application of the annealing separator into two procedures before and after recrystallization annealing. The annealing and separating agent of the present invention is independent of the coating order of the annealing and separating agent, and can obtain good coating properties of the annealing and separating agent, adhesion of the annealing and separating agent after drying, and the first 39 3] 2XP / Invention Specification ( Supplement) / 94-03 / 93】 37〗 29 200525042 Annealing separation effect after batch annealing. It was found in Comparative Examples Nos. 3, 4, and 26 that the annealing separation effect was different due to the application order of the annealing separation agent. The reason is presumably that in the case of coating before recrystallization annealing, these annealing release agents, which have poor adhesion to the steel sheet, will peel off during recrystallization annealing, causing the first batch annealing to adhere to the steel sheet. The annealing separation dose becomes smaller, so that the steel plates are closely adhered to each other. On the other hand, in the case where coating is performed after recrystallization annealing, the amount required to prevent the steel plates from adhering to each other remains on the steel plate due to the small amount of peeling. Therefore, the steel plates do not adhere to each other. When the subsequent steps are applied to a sample to which the annealed separating agent of the present invention is applied to prepare a finished board, the magnetic characteristics, forsterite film characteristics, and A 1, C, N, S after the second batch annealing And S e content (in red aluminum and iron, that is, the analysis result after removing the coating on the surface of the steel plate) is shown in Table 7. The characteristics of the forsterite film are that the sample after stress relaxation annealing is wound on a cylinder, and the evaluation is performed according to the minimum bending radius without film peeling. The magnetic properties were measured using an Epstein test piece of 3 × 3 0 0n, which was performed in accordance with J I S C 2 550. Bs is the magnetic flux density (T) of the magnetizing force 800A / ηι, and Wi7 / 5G is the iron loss value (W / k g) at a frequency of 50 Hz and a maximum magnetic flux density of 1 · 7 T. In the case where the annealing separator of the present invention is applied, the magnetic properties and the properties of the forsterite film are both achieved, and impurities are purified without any problems. In addition, when S-containing compounds were added as auxiliary agents (No. 0.8, 10, and 1 1), further improvement in magnetic characteristics was found. 40 312XP / Invention Specification (Supplement) / 94-03 / 9313 7129 200525042 Table 5

No. 分離劑主成分 塗佈量(g/m〇 黏度(niPa · s) 氧·(;瓣)·二氧 (溶勝)比率 Al2〇/(Al2〇3+Si〇2): mss% 備註 A1化&4勿 Si化糾勿 其他 1 A1締末 — — 1.2 — 100 bb|交例 2 — Si〇2粉末 — 1.2 — 0 交例 3 Α1‘Λ粉末 sia粉末 — 1.2 — 60 交例 4 — 膠態二氧彳诚 — 1.2 2.5 0 tbl交例 5 鹼丨生乙酸Α1 膠態二氧彳(^夕 — 0.001 1.8 75 ㈣交例 6 絵性乙酸Α1 膠態二氧彳_ — 0.05 1.8 75 發明例 7 鹼1±乙酸Α1 膠態二氧彳喊 — 0.1 1.8 75 發明例 8 絵性乙酸Α1 膠態二氧彳嫩 石jil酸Sr 0.1 1.8 75 發明例 9 驗性乙酸Α1 膠態二氧彳w夕 — 0.5 1.8 75 發明例 10 验性乙酸A1 膠態二氧彳嘛 硫酸Mg 0.5 1.9 75 發明例 11 絵性乙酸A1 膠態二氧彳嘛 硫化Mg 0.5 1.7 75 發明例 12 驗1*生乙酸A1 膠態二氧^夕 — 1.2 3.2 25 發明例 13 鹼1±乙酸A1 膠態二氧彳喊 — 1.2 1.8 75 發明例 14 鹼11乙酸A1 膠態二氧彳诚 — 1.2 50 75 交例 15 絵性乙酸A1 — — 1.2 2.5 100 ⑽交例 16 絵性乙酸A1 膠態二氧彳β夕 — 3 1.8 75 發明例 17 絵性乙酸A1 膠態二氧彳_ — 6 1.8 75 交例 18 鹼11鹽酸A1 膠態二氧彳_ — 1.2 1.9 75 發明例 19 鹼14鹽酸A1 膠態二氧彳喊 — 1.2 100 75 交例 20 驗性硝酸A1 膠態二氧彳Μ夕 — 1.2 3.5 75 發明例 21 給性曱酸A1 膠態二氧彳嫩 — 1.2 2.1 75 發明例 22 鹼ft乳酸A1 膠態二氧to夕 — 1.2 2.5 75 發明例 23 鹼剛雜A1 膠態二氧僻 — 1.2 2.4 75 發明例 24 鹼草酸A1 膠態二氧僻 — 1.2 3.1 75 發明例 25 鹼_黃酸A1 膠態二氧彳W夕 — 1.2 2.8 75 發明例 26 ΑΙΛ粉末 Sift粉末 — 1.2 1.6* 75 ⑽交例 * :懸浮於黏度1.6之酒精中,以噴霧塗佈 312XP/發明說明書(補件)/94-03/93137129 4] 200525042 表6No. Coating amount of the main component of the separating agent (g / m0 viscosity (niPa · s) oxygen · (; flap) · dioxygen (solvent) ratio Al2〇 / (Al2〇3 + Si〇2): mss% Remarks A1 chemical & 4 do not Si chemical correction other 1 A1 association end--1.2-100 bb | Intersection 2-Si〇2 powder-1.2-0 Intersection 3 Α1'Λ 粉 sia powder-1.2-60 Intersection 4 — Colloidal Dioxin — 1.2 2.5 0 tbl Interaction Example 5 Alkali 丨 Hydroxyacetate A1 Colloidal Dioxin (^ — — 0.001 1.8 75 Interaction Example 6 Alkaline Acetic Acid A1 Colloidal Dioxin_ — 0.05 1.8 75 Invention Example 7 Base 1 ± Acetic Acid A1 Colloidal Dioxin Diol—0.1 1.8 75 Invention Example 8 Alkaline Acetic Acid A1 Colloidal Dioxonite Jil Acid Sr 0.1 1.8 75 Invention Example 9 Assay Acetic Acid A1 Colloidal Dioxin w — 0.5 1.8 75 Invention Example 10 Acetylic Acetic Acid A1 Colloidal Dioxa Sulfate Mg 0.5 1.9 75 Invention Example 11 Acetylic Acetic Acid A1 Colloidal Dioxa Sulfate Mg 0.5 1.7 75 Invention Example 12 Test 1 * Raw Acetic Acid A1 Colloidal Dioxin — 1.2 3.2 25 Invention Example 13 Base 1 ± Acetic Acid A1 Colloidal Dioxin Cry — 1.2 1.8 75 Invention Example 14 Base 11 Acetic Acid A1 Colloidal Dioxin — 1.2 50 75 cross 15 Alkaline acetic acid A1 — — 1.2 2.5 100 Example of cross-linking 16 Alkaline acetic acid A1 colloidal dioxin β — 3 1.8 75 Invention example 17 Alkaline acetic acid A1 colloidal dioxin — — 6 1.8 75 Example 18 Alkali 11 A1 colloidal dioxin hydrochloride — — 1.2 1.9 75 Invention Example 19 Alkali 14 A1 colloidal dioxin hydrochloride — 1.2 100 75 Example 20 A nitric acid A1 colloidal dioxin — 1.2 3.5 75 Examples of invention 21 Glycolic acid A1 colloidal dioxin tender — 1.2 2.1 75 Invention Example 22 Alkali ft Lactic acid A1 Colloidal dioxin toxyl — 1.2 2.5 75 Invention example 23 Alkali rigid A1 colloidal dioxin — 1.2 2.4 75 Invention Example 24 Alkali oxalic acid A1 colloidal dioxin — 1.2 3.1 75 Invention Example 25 Alkali_flavonic acid A1 colloidal dioxin — 1.2 2.8 75 Invention Example 26 ΑΙΛ Powder Sift Powder — 1.2 1.6 * 75 Intersection Example *: Suspended in alcohol with a viscosity of 1.6 and spray-coated 312XP / Invention Manual (Supplement) / 94-03 / 93137129 4] 200525042 Table 6

No . 退火分離劑塗佈步驟之順 序(再結晶退火之前/後) 塗佈性 退火分離 劑密合性 剝離量 (g/m) 退火分 離效果 剝離強度(N) 備註 1 後 〇 X 1.10 〇 0 比較例 2 後 〇 X 1.05 〇 0 比較例 3 前 〇 X 1.05 X 65 比較例 後 〇 X 1.10 〇 0 比較例 4 前 〇 X 1.10 Δ 50 比較例 後 〇 X 1.00 〇 0 比較例 5 後 〇 〇 0 X 90 比較例 6 前 〇 〇 0 〇 5 發明例 後 〇 〇 0 〇 5 發明例 7 前 〇 〇 0 〇 2 發明例 後 〇 〇 0 〇 3 發明例 8 後 〇 〇 0 〇 2 名务明例 9 後 〇 〇 0 〇 0 發明例 10 後 〇 〇 0 〇 0 潑^明例 11 後 〇 〇 0 〇 0 發明例 12 前 〇 Δ 0.80 〇 0 發明例 後 〇 Δ 0.75 〇 0 發明例 13 後 〇 〇 0 〇 0 發明例 14 後 X 〇 0 Δ 20 比較例 15 後 Δ 〇 0 〇 0 比較例 16 後 〇 〇 0.15 〇 0 發明例 17 後 〇 Δ 1.5 〇 0 比較例 18 後 〇 〇 0 〇 0 發明例 19 後 X 〇 0 Δ 40 比較例 20 後 〇 〇 0 〇 0 發明例 21 後 〇 〇 0 〇 0 發明例 22 後 〇 〇 0 〇 0 發明例 23 後 〇 〇 0 〇 0 發明例 24 後 〇 〇 0 〇 0 發明例 25 後 〇 〇 0 〇 0 發明例 26 前 〇 X 1.0 X 70 比較例 後 〇 X 1.0 〇 0 比較例 42 3】2XP/發明說明書(補件)/94-03/93】37】29 200525042 表No. Sequence of the annealing separator coating step (before / after recrystallization annealing) Coatable annealing separator Adhesive peeling amount (g / m) Annealing separation effect Peel strength (N) Remark 1 After 〇X 1.10 〇0 After Comparative Example 2 After OX 1.05 〇0 Comparative Example 3 Before OX 1.05 X 65 After Comparative Example 〇X 1.10 〇0 Comparative Example 4 Before 〇X 1.10 Δ 50 After Comparative Example 〇X 1.00 〇 After Comparative Example 5 After 〇00 X 90 Comparative Example 6 Before 0.000 005 After Invention Example 005 005 Invention Instance 7 Before 0.000 002 After Invention Instance 0.000 003 Invention Instance 8 After 0000 002 Famous Example 9 After 00 00 Inventive Example 10 After 2000 0 Introductory Example 11 After 0 000 OO 0 Inventive Example 12 Before 0 Δ 0.80 0 After Inventive Example 0 Δ 0.75 0 Inventive Example 13 After 0000 〇 Inventive Example 14 After X 〇 0 Δ 20 Comparative Example 15 After Δ 〇 0 〇 0 Comparative Example 16 After 〇 0.15 〇 0 Inventive Example 17 After 〇 Δ 1.5 〇 Comparative Example 18 After 0000 OO 0 Inventive Example 19 After X 〇0 Δ 40 Comparative Example 20 After 〇00 〇0 Example 21 After 0000 0 Inventive Example 22 After 0000 0 Inventive Example 23 After 0000 0 Inventive Example 24 After 0000 Inventive Example 25 After 0000 Inventive Example 26 Before XX After 1.0 X 70 Comparative Example 〇 1.0 1.0 Comparative Example 42 3] 2XP / Invention Specification (Supplement) / 94-03 / 93] 37] 29 200525042 Table

No. ------Ί__ 退火分離劑塗 佈步驟之順序 (再結晶退火 之前/後) Bs(T) Wl7/5〇(W/kg) 耐彎曲剝 離十ί最小 彎曲半徑 (mm) 紅鋁鐵質t (第二次心 (massi 尹之含量 又退火後) ppm) 備註 A1 N C S Se 6 1.90 1.03 25 5 <5 10 <4 <10 發明例 7 〇 刖 1.91 1. 03 30 5 <5 5 <4 <10 發明例 8 r\ 後 1.92 0.98 30 8 <5 10 5 <10 發明例 9 後 1.91 1.03 25 9 <5 8 <4 <10 發明例 10 後 1.92 0.99 30 5 <5 8 6 <10 發明例 11 1 η 後 1.92 0.97 30 7 <5 6 5 <10 發明例 13 L_ 後 1.90 1.05 35 5 <5 10 <4 <10 發明例 16 — 後 1.89 1.06 30 8 <5 8 <4 <10 發明例 18 後 1.90 1.04 25 9 <5 13 <4 <10 發明例 20 後 1.91 1.04 30 5 <5 15 5 <10 發明例 21 後 1.90 1.05 30 6 <5 11 <4 <10 發明例 22 後 1.89 1.05 25 6 <5 6 <4 <10 發明例 23 後 1.90 1.03 30 8 <5 7 5 <10 發明例 24 後 1.91 1.02 30 8 <5 9 5 <10 發明例 25 後 1.91 1.02 25 7 <5 9 <4 <10 發明例 (實施例2 ) 依照下述方法製成具有優異之鎂橄欖石質被膜特性及 磁特性之方向性電磁鋼板。 以連續鑄造法製造含有C: 0.019mass%、Si: 3.28mass %、Μη: 0.073mass% 以及 Sb: 330massppm,且含有被抑 制含量至 A 1 : 38massppm、 N: 30massppm、 S: 18massppm 以及S e :未滿1 〇 m a s s p p in (未滿分析界限值)且未含抑制劑 形成成分之扁鋼胚。在此,殘部為鐵及不可避免之雜質。 將該扁鋼胚在1 2 0 0 °C下加熱後,藉熱軋加工為板厚2. 0 m m 之熱軋鋼板,在1 0 5 0 °C下施行熱軋鋼板退火6 0秒鐘。 繼之,藉冷軋加工為板厚0 . 3 0 m m之冷軋鋼板,在露點一 4 5 °C之乾燥環境中以9 0 0 °C 、1 0秒鐘之條件施行再結晶退 火0 在再結晶退火後,實施第一次之批式退火。將退火分離 43 312XP/發明說明書(補件)/9‘03/93137〗29 200525042 劑依照表8所示,在再結晶退火之前或之後塗佈。退火分 離劑之塗佈係使用輥塗機而施行,然後在2 5 0 °C到達溫度 下施加焙燒,並放冷。焙燒係以丙烷氣體直火焙燒施行。 第一次之批式退火係在氮氣環境中以8 6 5 °C保持5 0小時之 條件貫施’以完成二次再結晶。 然後,各別調查退火分離劑之塗佈性、乾燥後之退火分 離劑之密合性以及第一次批式退火後之退火分離效果,對 於結果良好之試樣進一步施行後續之步驟,以製成成品板。 在後續之步驟中,首先,實施用以形成良好之内部氧化 被膜之連續退火,然後塗佈以MgO為主成分之退火分離 劑。由於第一次批式退火係以C殘留1 0 0〜1 5 0 m a s s p p m之狀 態實施,在用以形式内部氧化被膜而進行之連續退火時, 亦同時施行脫碳。連續退火係在露點6 0 °C之氧化性環境 中,在8 5 (TC下施行8 0秒鐘。又,退火分離劑係使用含有 MgO : 92. 5 mass% 以及 Ti〇2 : 7. 5 mass% 作為固形分者。 其次,實施第二次之批式退火。依照本實施例之鋼組成, 並不需要施行在抑制劑成分之純化上所需要之1 2 0 0 °C附 近之高溫退火,只要為可形成鎂橄欖石質被膜之條件即 可。於是,在第二次之批式退火中,在比習知所設者為低 之1 1 0 0 t下保持5小時,且將環境設定為乾氫氣。 繼之,在最後施行張力被膜之塗佈•焙燒及應力放鬆退 火。張力被膜係使用含有磷酸、鉻酸以及膠態二氧化矽者, 在8 0 0 °C溫度下施行焙燒。關於應力放鬆退火,係以在氮 氣環境中8 0 0 °C下保持3小時之條件實施。退火分離劑之 44 3 12XP/發明說明書(補件)/94-03/93137129 200525042 成分及塗佈條件係與實施例1 一樣,依照與表5所示 No .相對應之條件進行。 表8顯示分離劑塗佈步驟之順序(再結晶退火之前〗 後)、退火分離劑之塗佈性、乾燥後之退火分離劑之密 以及第一次批式退火後之退火分離效果。與實施例1 樣,對於由本發明之方法所製成之鋼,與退火分離劑 佈順序並無關,均可得到良好之退火分離劑之塗佈性 燥後之退火分離劑之密合性以及第一次批式退火後之 分離效果。由此表得知,本發明之退火分離劑即使應 未含抑制劑之成分系亦屬有效。 表9顯示將後續之步驟施加於應用本發明之退火分 之試樣而製備成品板之情況之磁特性、鎂橄欖石質被 性以及第二次批式退火後之A 1、C、N、S、S e含量。 性之調查方法與實施例1相同。 在應用本發明範圍内之退火分離劑之情況,達成了 性與鎂橄欖石質被膜特性之兼顧,且雜質之濃度亦屬 構成問題之程度。 3 12XP/發明說明書(補件)/94-03/93137129 各 t之 合性 之塗 、乾 退火 用於 離劑 膜特 各特 磁特 於不 200525042 表8No. ------ Ί__ The sequence of the annealing separator coating step (before / after recrystallization annealing) Bs (T) Wl7 / 5〇 (W / kg) Tensile resistance to bending and peeling Minimum minimum bending radius (mm) Red Aluminum ferrite t (second heart (after mass annealing) and annealed ppm) Remark A1 NCS Se 6 1.90 1.03 25 5 < 5 10 < 4 < 10 Invention Example 7 〇 1.1.91 1. 03 30 5 < 5 5 < 4 < 10 Inventive Example 8 r \ after 1.92 0.98 30 8 < 5 10 5 < 10 Inventive Example 9 after 1.91 1.03 25 9 < 5 8 < 4 < 10 Inventive Example 10 after 1.92 0.99 30 5 < 5 8 6 < 10 Invention Example 11 After 1 η 1.92 0.97 30 7 < 5 6 5 < 10 Invention Example 13 L_ After 1.90 1.05 35 5 < 5 10 < 4 < 10 Invention Example 16 — After 1.89 1.06 30 8 < 5 8 < 4 < 10 Invention Example 18 After 1.90 1.04 25 9 < 5 13 < 4 < 10 Invention Example 20 After 1.91 1.04 30 5 < 5 15 5 < 10 Inventive Example 21 after 1.90 1.05 30 6 < 5 11 < 4 < 10 Inventive Example 22 after 1.89 1.05 25 6 < 5 6 < 4 < 10 Inventive Example 23 after 1.90 1.03 30 8 < 5 7 5 < 10 Invention Example 24 After 1.91 1.02 30 8 < 5 9 5 < 10 Invention Example 25 1.91 1.02 25 7 < 5 9 < 4 < 10 invention (Example 2) prepared according to the following method has an excellent forsterite film of grain-oriented electrical steel sheet and magnetic properties of the. Manufactured by a continuous casting method containing C: 0.019mass%, Si: 3.28mass%, Mn: 0.073mass%, and Sb: 330massppm, and contains suppressed contents to A1: 38massppm, N: 30massppm, S: 18massppm, and Se: Flat steel slabs less than 10 masspp in (within less than the analytical limit) and without inhibitor-forming components. Here, the remainder is iron and unavoidable impurities. After heating the flat steel blank at 120 ° C, hot-rolled steel sheet having a sheet thickness of 2.0 mm was processed by hot rolling, and the hot-rolled steel sheet was annealed at 1050 ° C for 60 seconds. Next, cold-rolled steel sheets with a sheet thickness of 0.30 mm were cold-rolled and recrystallized and annealed in a dry environment at a dew point of 45 ° C at 90 ° C for 10 seconds. After recrystallization annealing, the first batch annealing is performed. Annealing separation 43 312XP / Invention Specification (Supplement) / 9 '03 / 93137〗 29 200525042 The agent was applied before or after recrystallization annealing as shown in Table 8. The application of the annealing separating agent is performed using a roll coater, and then it is fired at a temperature of 250 ° C and allowed to cool. The roasting is performed by propane gas direct fire roasting. The first batch annealing was carried out under a nitrogen atmosphere at 86 5 ° C for 50 hours to complete the secondary recrystallization. Then, investigate the coating properties of the annealing separator, the adhesiveness of the dried annealing separator after drying, and the annealing separation effect after the first batch annealing. For the samples with good results, follow the subsequent steps to prepare Finished boards. In the subsequent steps, first, continuous annealing is performed to form a good internal oxide film, and then an annealing separator containing MgO as a main component is applied. Since the first batch annealing is performed in a state where C remains at 100 to 150 m a s s p p m, decarburization is also performed at the same time when continuous annealing is performed to form an internal oxidation film. Continuous annealing is performed in an oxidizing environment at a dew point of 60 ° C at 80 ° C for 80 seconds. In addition, an annealing separator is used which contains MgO: 92.5 mass% and Ti〇2: 7. 5 Mass% is the solid content. Second, the second batch annealing is performed. According to the steel composition of this example, the high temperature annealing around 1 200 ° C required for the purification of the inhibitor components is not required. As long as it is a condition that can form a forsterite film. Therefore, in the second batch annealing, it is maintained for 5 hours at 1 100 t lower than the conventional setting, and the environment is maintained. It is set to dry hydrogen. Next, coating, baking, and stress relaxation annealing of the tension film are performed at the end. The tension film is made of phosphoric acid, chromic acid, and colloidal silicon dioxide, and is fired at 800 ° C. The stress relaxation annealing is carried out under the conditions of maintaining at 800 ° C for 3 hours in a nitrogen atmosphere. 44 3 12XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 Composition and coating The conditions are the same as in Example 1 and correspond to No. shown in Table 5. Table 8 shows the sequence of the separation agent coating steps (before and after recrystallization annealing), the coatability of the annealing separation agent, the density of the annealing separation agent after drying, and the annealing separation effect after the first batch annealing. As in Example 1, for the steel made by the method of the present invention, regardless of the order of the annealing release agent cloth, good coating properties of the annealing release agent and the adhesion of the annealing release agent after drying and The separation effect after the first batch annealing. From this table, it can be seen that the annealing separator of the present invention is effective even if it does not contain an inhibitor. Table 9 shows that the subsequent steps are applied to the annealing applied to the present invention The magnetic characteristics, forsterite texture, and A 1, C, N, S, and S e contents after the second batch annealing in the case where a finished plate is prepared by dividing the sample. The same. In the case of applying the annealing separating agent within the scope of the present invention, the balance between the properties and the characteristics of the forsterite film is achieved, and the concentration of impurities is also a problem. 3 12XP / Invention Specification (Supplement) / 94 -03/93137129 The adhesion of the coating t, annealing for dry film from each of Unexamined Patent Laid-magnetic not 200,525,042 in Table 8

No . 退火分離劑塗佈步驟之順 序(再結晶退火之前/後) 塗佈性 退火分離 劑密合性 剝離量 (g/rri) 退火分 離效果 剝離強度(N) 備註 1 前 〇 X 1.15 Δ 45 比較例 後 〇 X 1.00 〇 0 比較例 2 前 〇 X 1.00 Δ 35 比較例 後 〇 X 1.00 〇 0 比較例 3 後 〇 X 1.05 〇 0 比較例 4 後 〇 X 1.15 〇 0 比較例 5 後 〇 〇 0 X 60 比較例 6 後 〇 〇 0 〇 3 發明例 7 後 〇 〇 0 〇 3 發明例 8 前 〇 〇' 0 〇 3 發明例 後 〇 〇 0 〇 2 發明例 9 前 〇 〇 0 〇 0 發明例 後 〇 〇 0 〇 0 發明例 10 後 〇 〇 0 〇 0 發明例 11 後 〇 〇 0 〇 0 發明例 12 後 〇 Δ 0.8 〇 0 發明例 13 後 〇 〇 0 〇 0 發明例 14 前 X 〇 0 Δ 40 比較例 後 X 〇 0 Δ 25 比較例 15 後 Δ 〇 0 〇 0 比較例 16 後 〇 〇 0.2 〇 0 發明例 17 後 〇 Δ 2 〇 0 比較例 18 後 〇 〇 0 〇 0 發明例 19 後 X 〇 0 Δ 35 比較例 20 後 〇 〇 0 〇 0 發明例 21 後 〇 〇 0 〇 0 發明例 22 後 〇 〇 0 〇 0 發明例 23 後 〇 〇 0 〇 0 發明例 24 後 〇 〇 0 〇 0 發明例 25 後 〇 〇 0 〇 0 發明例 46 312XP/發明說明書(補件)/94-03/93】3 7129 200525042 表No. Sequence of annealing separator coating steps (before / after recrystallization annealing) Coatable annealing separator Adhesive peeling amount (g / rri) Annealing separation effect Peel strength (N) Remark 1 Before 〇X 1.15 Δ 45 After Comparative Example 0 × 1.00 0 Comparative Example 2 Before 0 × 1.00 Δ 35 After Comparative Example 0 × 1.00 0 Comparative Example 3 After 0 × 1.05 0 Comparative Example 4 After 0 × 1.15 0 Comparative Example 5 After 0 × 0 X 60 Comparative Example 6 After 0000 〇3 Inventive Example 7 After 0000 〇3 Inventive Example 8 〇 0 '0 〇3 After Inventive Example 〇 0 〇 2 Inventive Example 9 前 〇 00 〇 0 After Inventive Example 〇00 〇0 Inventive Example 10 after 0000 〇0 Inventive Example 11 after 0000 〇0 Inventive Example 12 after 〇Δ 0.8 〇0 Inventive Example 13 after 0000 〇0 Inventive Example 14 before X 〇 Δ 40 After Comparative Example X 〇 0 Δ 25 After Comparative Example 15 After Δ 〇 0 〇 0 Comparative Example 16 after 〇 〇 0.2 〇 0 Invention Example 17 After 〇 Δ 2 〇 Comparative Example 18 After 〇 00 〇 0 After Invention Example 19 After X 〇 0 Δ 35 Comparative Example 20 and later 00 Example 0 Invention Example 2 1 After 0000 0 Inventive Example 22 After 0000 0000 Inventive Example 23 After 0000 Inventive Example 24 After 0000 Inventive Example 25 After 0000 Inventive Example 46 312XP / Invention Specification (Supplement) / 94-03 / 93】 3 7129 200525042 Table

No . 〇 t含-1退:ί 〕pm) 退火分離劑汾 佈步驟之順;再 結晶退火 之前/後) ~~72_ Bs(T) W17/50 (W/kg) 耐彎曲剝離性最 小彎曲半徑(_) 紅鋁鐵質中: (第二次批5 後)(inassi: ϊ 備註 A1 N C S Se Ό 7 後 ^ l.9l 1.01 25 10 <5 10 10 <10 發明例 0 € ^ l. 90 1.02 25 9 <5 12 11 <10 發明例 0 9 10 _ HZ---—_ 1.92 0.99 30 8 <5 5 8 <10 發明例 一 — 1.91 1.03 25 9 <5 6 10 <10 發明例 後 1. 92 0.99 30 9 <5 5 12 <10 發明例 11 Ίί' 1.92 0. 98 25 11 <5 8 11 <10 發明例 13 1 η 1.90 1.04 30 11 <5 9 10 <10 @明例 lb —€ ^ 1.89 1.05 30 14 <5 13 12 <10 發明例 18 20 __ ,Γ—------ 1.90 1.04 30 9 <5 8 12 <10 發明例 - 後 1 1.90 1.05 25 13 <5 11 12 <10 發明例 21 1.91 1.03 25 15 <5 9 11 <10 發明例 22 23 1.91 1.03 30 16 <5 5 13 <10 發明例 r 後 1.91 1.03 30 12 <5 6 12 <10 發明例 24 lZ I — 1.90 1.05 25 11 <5 6 9 <10 發明例 25 1.91 1.04 30 14 <5 7 11 <10 發明例 (實施例3 ) 依照下述方法製成不具鎂橄欖石質被膜且磁特性及加 工性均優之方向性電磁鋼板。 以連續鑄造法製造含有C: 0.020mass%、Si·· 3.31mass %、Μ η : 0 · 〇 6 〇 m a s s % 以及 S b : 4 5 0 m a s s ρ ρ πι,且抑制劑形 成成分含有Al: 300 niassppm及N: 70massppm,而殘部為 鐵及不可避免之雜質所構成之扁鋼胚。將該扁鋼胚在1 2 0 0 °C下加熱後,藉熱軋加工為板厚1 . 8 m m之熱軋鋼板,並在 9 5 0 °C下施行熱軋鋼板退火6 0秒鐘。繼之,藉冷軋加工為 板厚0 . 2 7 ιη η!之冷軋鋼板,在露點一 4 5 °C之乾燥環境下以 8 8 0 °C 、1 0秒鐘之條件施行再結晶退火,然後實施後加工 退火。 將退火分離劑依照表1 0所示,在再結晶退火之前或之後 塗佈。塗佈係使用輥塗機施行,在2 5 0 °C之到達板溫下施 47 312XP/發明說明書(補件)/94-03/93137129 200525042 加焙燒後放冷。焙燒係以丙烷氣體直火焙燒施行。在後加 工退火時,在8 6 0 °C下在N 2環境下保持4 5小時以達二次 再結晶後,在1 2 0 0 °C下在Η 2環境中保持5小時以施行純 化。退火分離劑之成分及塗佈條件係與實施例1 一樣,依 照與表5所示各Ν 〇 .相對應之條件施行。 然後,分別調查退火分離劑之塗佈性、乾燥後之退火分 離劑之密合性以及後加工退火後之退火分離效果,對於結 果良好之試樣,進一步施行後續之步驟,以製成成品板。 在後續之步驟中,施行絕緣被膜之塗佈·焙燒及應力放 鬆退火。絕緣被膜係使用一般所用之含有機樹脂之鉻酸鹽 系者,在3 0 0 °C溫度下施行焙燒。應力放鬆退火係以氮氣 環境中7 5 0 °C 、2小時之條件實施。 表1 0顯示退火分離劑之塗佈性、乾燥後之退火分離劑之 密合性、後加工退火後之退火分離效果、磁特性、絕緣被 膜特性以及後加工退火後之A 1、C、N、S、S e含量。Ν 〇 · 1 4及1 9由於退火分離劑之黏度在本發明範圍外,塗佈性 明顯惡劣,在未塗佈之部分發生鋼板互相之緊密黏連。在 Ν 〇 . 1 2及1 5之情況,A 1化合物與S i化合物之比率均在本 發明之合適範圍外,Ν 〇 . 1 2由於造膜成分A 1化合物量少, 退火分離劑對鋼板之密合性低劣。另一方面,Ν 〇 . 1 5由於 高反應性A 1化合物量多,塗液不安定而無法形成均勻被 膜。於是,造成外觀不良。 Ν ο · 1〜4由於退火分離劑之主成分在本發明範圍外,對 鋼板之密合性不足。No . 5由於退火分離劑塗佈量不足, 48 312XP/發明說明書(補件)/94-03/93137129 200525042 在後加工退火時發生鋼板互相之緊密黏連。Ν ο · 1 7由於退 火分離劑之塗佈量太多,對鋼板之密合性不足而發生剝 離。No. 1_1、4-1、5、6_1、14以及19由於鋼板互相緊 密黏連,無法施行磁特性及耐彎曲剝離性之評價。 Ν〇.1、4、6、1 1以及1 6係依退火分離劑之塗佈順序區 分為在再結晶退火之前與之後二種程序實施。本發明之退 火分離劑與退火分離劑之塗佈順序無關,均可得到良好之 分離劑之塗佈性、乾燥後之分離劑之密合性以及後加工退 火時之退火分離效果。在屬於比較例之Ν ο · 1及4發現, 因退火分離劑之塗佈順序不同,在退火分離效果上有差 異。可推測,基於與實施例1相同之理由,發生後加工退 火時之退火分離劑附著量之差異。 於是得知,應用依照本發明之退火分離劑者,顯示良好 之退火分離劑之塗佈性、乾燥後之退火分離劑之密合性、 後加工退火後之退火分離效果、磁特性、絕緣被膜特性以 及紅鋁鐵質之雜質之純化。尤其關於被膜特性顯示比實施 例1、2所示之鎂橄欖石質被膜更良好之特性。由此可知, 在需要利用高溫退火來純化之利用抑制劑之型式之方向性 電磁鋼板中,亦可有利地應用本發明之退火分離劑。 49 312XP/發明說明書(補件)/94-03/93 ] 37129 200525042 200525042 (實施例4 ) 依照下述方法製成不具鎂橄欖石質被膜且 工性均優之方向性電磁鋼板。 以連續鑄造法製造含有C: 0.018mass%、 % 、 Μη: 0.070mass% 以及 Sb:300massppm, 至 A 1 · 40massppm、N: 25massppni、S: 1 5 m a s 未滿1 0 m a s s p p m之未含抑制劑形成成分之扁 殘部為鐵及不可避免之雜質。將該扁鋼胚在 後,藉熱軋加工為板厚1 . 8 m m之熱軋鋼板, 行熱軋鋼板退火6 Q秒鐘。繼之,藉冷軋加工 之冷軋鋼板,在露點一 4 5 °C之乾燥環境下以 之條件施行再結晶退火,然後實施後加工退 將退火分離劑依照表1 1所示,在再結晶退 塗佈。塗佈係使用輥塗機施行,在2 5 0 °C之 行焙燒後放冷。焙燒係以丙烷氣體直火焙燒 工退火時,在8 7 5 °C下在N 2環境下保持4 5 次再結晶後,在1 0 0 0 °C下在A r環境中保持 加工退火後,在氧化性環境中施行脫碳退火 質中之C量。 然後,作為退火分離劑之成分及塗佈條件 1 一樣,依照與表5所示各No ·相對應之條 分別調查退火分離劑之塗佈性、乾燥後之退 合性以及後加工退火後之退火分離效果,對 試樣進一步施行後續之步驟,以製成成品板 312XP/發明說明書(補件)/94-03/93137129 磁特性及加 Si : 3. 32mass 且被抑制含量 sppm 以及 Se : 鋼胚。在此, 1 2 0 0 °C下加熱 在9 5 0 °C下施 為板厚0.35mm 8 8 0 °C X 1 0 秒鐘 火。 火之前或之後 到達板溫下施 施行。在後加 小時以進行二 5小時。在後 ,減低紅鐵 ,係與實施例 件進行。然後 火分離劑之密 於結果良好之 51 200525042 在後續之步驟中,施行絕緣被膜之塗佈·焙燒及應力放 鬆退火。絕緣被膜使用一般所用之含有機樹脂之鉻酸鹽系 者,在3 0 0 °C下施行焙燒。應力放鬆退火係以氮氣環境中 7 5 0 °C 、2小時之條件實施。No. 〇t contains -1 withdrawal: ί pm) Anneal release agent Fenbu step forward; before / after recrystallization annealing) ~~ 72_ Bs (T) W17 / 50 (W / kg) bending resistance peeling resistance minimum bending Radius (_) in red aluminum and iron: (after the second batch of 5) (inassi: ϊ Note A1 NCS Se Ό 7 after ^ l.9l 1.01 25 10 < 5 10 10 < 10 Invention Example 0 € ^ l 90 1.02 25 9 < 5 12 11 < 10 Invention Example 0 9 10 _ HZ ----_ 1.92 0.99 30 8 < 5 5 8 < 10 Invention Example 1-1.91 1.03 25 9 < 5 6 10 < 10 after the invention example 1. 92 0.99 30 9 < 5 5 12 < 10 invention example 11 Ί '1.92 0. 98 25 11 < 5 8 11 < 10 invention example 13 1 η 1.90 1.04 30 11 < 5 9 10 < 10 @ 明 例 lb-€ ^ 1.89 1.05 30 14 < 5 13 12 < 10 Invention Example 18 20 __, Γ ------- 1.90 1.04 30 9 < 5 8 12 < 10 Inventive Examples-Later 1 1.90 1.05 25 13 < 5 11 12 < 10 Inventive Examples 21 1.91 1.03 25 15 < 5 9 11 < 10 Inventive Examples 22 23 1.91 1.03 30 16 < 5 5 13 < 10 Invention After example 1.91 1.03 30 12 < 5 6 12 < 10 Invention Example 24 lZ I — 1.90 1.05 25 11 < 5 6 9 < 10 rounds Example 25 1.91 1.04 30 14 < 5 7 11 < 10 Inventive Example (Example 3) A grain-oriented electrical steel sheet having no forsterite film and excellent magnetic properties and processability was produced according to the following method. Continuous casting Production method contains C: 0.020mass%, Si ·· 3.31mass%, M η: 0 · 〇6 〇mass%, and S b: 4 5 0 mass ρ ρ πι, and the inhibitor-forming component contains Al: 300 niassppm and N : 70massppm, and the remainder is a flat steel blank composed of iron and unavoidable impurities. After heating the flat steel slab at 120 ° C, the hot-rolled steel sheet having a plate thickness of 1.8 mm was processed by hot rolling, and the hot-rolled steel sheet was annealed at 95 ° C for 60 seconds. Next, the cold-rolled steel sheet with a sheet thickness of 0.27 ιη η! Was subjected to recrystallization annealing in a dry environment with a dew point of 45 ° C at 880 ° C for 10 seconds. , And then post-processing annealing. The annealing separator was applied before or after recrystallization annealing as shown in Table 10. The coating is carried out using a roll coater and is applied at a plate temperature of 250 ° C. 47 312XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 After baking, it is allowed to cool. The roasting is performed by propane gas direct fire roasting. During post-processing annealing, it was maintained at 860 ° C in a N 2 environment for 4 5 hours to achieve secondary recrystallization, and then maintained at 12 0 ° C in a Η 2 environment for 5 hours to perform purification. The components and application conditions of the annealing release agent were the same as those in Example 1, and were performed in accordance with the conditions corresponding to each N 0. Then, investigate the coating properties of the annealed release agent, the adhesiveness of the annealed release agent after drying, and the effect of the annealed separation after the post-processing annealing. For the samples with good results, further steps are performed to make the finished board . In the subsequent steps, coating, firing, and stress relaxation annealing of the insulating film are performed. The insulating coating is a chromate system containing organic resins, and is fired at 300 ° C. The stress relaxation annealing was performed under a nitrogen atmosphere at 750 ° C for 2 hours. Table 1 0 shows the coating properties of the annealing separator, the adhesiveness of the annealing separator after drying, the annealing separation effect after the post-processing annealing, the magnetic characteristics, the characteristics of the insulation film, and the A, C, and N after the post-processing annealing. , S, Se content. Since the viscosity of the annealing separator is outside the scope of the present invention, the coating properties are significantly poor, and the steel plates are closely adhered to each other in the uncoated portion. In the cases of N. 12 and 15. Both the ratio of A 1 compound to S i compound are outside the proper range of the present invention. Since N. 0.1 2 has a small amount of the film-forming component A 1 compound, the annealing separating agent is The adhesion is poor. On the other hand, No. 15 has a large amount of highly reactive A 1 compounds, and the coating solution is unstable, so that a uniform film cannot be formed. As a result, the appearance is poor. Since the main components of the annealing separator are outside the scope of the present invention, the adhesion to the steel sheet is insufficient. No. 5 Due to insufficient coating amount of the annealing separator, 48 312XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 In the post-processing annealing, the steel plates are closely adhered to each other. Ν ο · 1 7 The peeling occurred due to insufficient coating of the annealed release agent and insufficient adhesion to the steel sheet. Nos. 1_1, 4-1, 5, 6_1, 14 and 19 cannot evaluate the magnetic properties and bending peel resistance because the steel plates are closely adhered to each other. No.1, 4, 6, 11, 1 and 16 are classified according to the coating sequence of the annealing separator, and are implemented before and after the recrystallization annealing. The annealing separation agent of the present invention is independent of the application order of the annealing separation agent, and can obtain good coatability of the separation agent, adhesion of the separation agent after drying, and annealing separation effect during post-processing annealing. It was found in Nos. 1 and 4 that are comparative examples that the annealing separation effect was different due to the different application order of the annealing separation agent. It is presumed that, for the same reason as in Example 1, there is a difference in the amount of annealed release agent attached when post-processing annealing occurs. Therefore, it was learned that those who applied the annealing separator according to the present invention showed good coatability of the annealing separator, adhesion of the dried separator after drying, annealing separation effect after post-annealing, magnetic properties, and insulation coating. Characteristics and purification of red aluminum and iron impurities. In particular, the film characteristics showed better characteristics than the forsterite film shown in Examples 1 and 2. From this, it can be known that the annealing separator of the present invention can also be favorably applied to a directional electromagnetic steel sheet of a type using an inhibitor that needs to be purified by high temperature annealing. 49 312XP / Invention Specification (Supplement) / 94-03 / 93] 37129 200525042 200525042 (Example 4) A grain-oriented electrical steel sheet having no forsterite film and excellent workability was prepared according to the following method. Production of non-containing inhibitors containing C: 0.018mass%,%, Mn: 0.070mass% and Sb: 300massppm, to A 1 · 40massppm, N: 25massppni, S: 1 5mas below 10 massppm by continuous casting The flat residue of the composition is iron and unavoidable impurities. The flat steel blank was then hot-rolled to a hot-rolled steel sheet having a thickness of 1.8 mm, and the hot-rolled steel sheet was annealed for 6 Q seconds. Next, the cold-rolled steel sheet processed by cold rolling is subjected to recrystallization annealing under the conditions of a dew point of 45 ° C in a dry environment, and then post-processing is performed. The annealing separator is recrystallized according to Table 11 Uncoated. The coating was carried out using a roll coater, and it was allowed to cool after firing at 250 ° C. When the roasting system is annealed with a propane gas direct fire roaster, it is recrystallized after being maintained in the N 2 environment at 875 ° C for 45 times, and then processed and annealed in the Ar environment at 1000 ° C. The amount of C in the decarburized annealed material is performed in an oxidizing environment. Then, as the components of the annealing separator and the coating conditions 1, the coating properties of the annealing separator, the release properties after drying, and the post-annealing properties were investigated in accordance with the No. corresponding to each of the No. shown in Table 5. The effect of annealing separation, the sample is further subjected to subsequent steps to make a finished plate 312XP / Invention Manual (Supplement) / 94-03 / 93137129 Magnetic properties and Si: 3. 32mass and suppressed content sppm and Se: steel Embryo. Here, the heating is performed at 1 200 ° C and the plate thickness is 0.35 mm at 850 ° C. 8 8 0 ° C X 10 seconds fire. Perform before or after the fire reaches the plate temperature. Add hours afterwards for two to five hours. After that, the reduction of red iron is carried out in accordance with the embodiment. Then the fire separation agent is denser than that with good results. 51 200525042 In the subsequent steps, coating, firing and stress relaxation annealing of the insulation film are performed. The insulating coating is a chromate system containing organic resins, and is fired at 300 ° C. The stress relaxation annealing is performed under a nitrogen atmosphere at 750 ° C for 2 hours.

表1 1顯示退火分離劑之塗佈性、乾燥後之退火分離劑之 密合性、後加工退火後之退火分離效果、磁特性、絕緣被 膜特性以及後加工退火後之A 1、C、N、S、S e含量。與實 施例3 —樣,應用依照本發明之退火分離劑之鋼與退火分 離劑之塗佈順序無關地可得到良好之結果。Table 1 1 shows the coating properties of the annealing release agent, the adhesiveness of the annealing release agent after drying, the annealing separation effect after post-processing annealing, the magnetic characteristics, the characteristics of the insulating film, and the A, C, and N after post-processing annealing. , S, Se content. As in Example 3, good results can be obtained regardless of the application order of the steel and the annealing separator according to the present invention.

52 312XP/發明說明書(補件)/94-03/93137〗29 200525042 rn un ΪΒ# f-妄暴 i IX署52 312XP / Invention Specification (Supplement) / 94-03 / 93137 〖29 200525042 rn un ΪΒ # f- delusion i IX Agency

Ixlg备Ixlg

Ixlg&n t妻备Ixlg & n t wife

Is〉一 SIIs〉 一 SI

ls> 一 IIls > one II

s> 一 IIs > one II

01〉 II01〉 II

2> lLOT—I ls> m2 > lLOT—I ls > m

12> 一ICO 01〉一Is12 > One ICO 01> One Is

2> I s> 92 > I s > 9

12V I QZ 0I> 一 u12V I QZ 0I > one u

Is〉一ILOI s> - 91Is〉 一 ILOI s >-91

0I> 1 II0I > 1 II

0I> SI0I > SI

QI> 1 IIQI > 1 II

1Ξ> 一1COI 12> 一 911Ξ > one 1COI 12 > one 91

2〉UI2〉 UI

SVOOISVOOI

Is〉1 II 01> 一 91Is〉 1 II 01 > a 91

Is〉UI ls> 一 81 01〉一 u g> m οΐν m 91 01 22Is〉 UI ls > a 81 01〉 a u g > m οΐν m 91 01 22

CNJI ozCNJI oz

卜I 01Bu I 01

LOI 01LOI 01

LOILOI

LOI 01LOI 01

iCNIiCNI

9Z 91 81 619Z 91 81 61

IZ 91IZ 91

II 001II 001

LOI ΗLOI Η

9Z 82 ΊΖ 839Z 82 ΊZ 83

9Z oe u9Z oe u

8S 61 838S 61 83

8S 001 001 828S 001 001 82

9CXI 61 ΙΖ ΪΖ Ω9CXI 61 ΙZZ ΪZ Ω

OCNIOCNI

IZ ΩIZ Ω

IV 88 §8IV 88 §8

SC 88 88SC 88 88

6CO 88 9ε 88 I寸 卜Co 卜Co 6006CO 88 9ε 88 I inch BU Co BU 600

6CO 01> m 61S导 li »,f、^ 義咐 ψ¥ 05 hs 05 91 oz6CO 01 > m 61S lead li », f, ^ will command ψ ¥ 05 hs 05 91 oz

OCNIOCNI

OZOZ

OCNIOCNI

LOILOI

LOI {£LOI {£

LOLOLOLO

LOI 91 LO1LOI 91 LO1

OCNI ozOCNI oz

LnILnI

LOI oz oz aLOI oz oz a

(sve J a) Ή 38 88 88Ί S3 on 83Ί 5 83Ί 9ΖΊ(sve J a) Ή 38 88 88Ί S3 on 83Ί 5 83Ί 9ZZΊ

eco.T-—Ieco.T-—I

S 3 sS 3 s

9e.I S8.T--i9e.I S8.T--i

zoo.r—I 88Ί 88Ί 88Ί 88Ί 88.1 卜8Ί 98 Ί ^Ί 83Ί §3Ί 88 58 §8 98 s ΖΟ0Ί88Ί sizoo.r—I 88Ί 88Ί 88Ί 88Ί 88.1 Ί 8Ί 98 Ί Ί 83Ί §3Ί 88 58 §8 98 s ZO00Ί88Ί si

LOILOI

OCNI 08OCNI 08

6Z 61 is b,6Z 61 is b,

V 〇V 〇

V 〇 〇 x 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇V 〇 〇 x 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

V 〇 〇 〇 〇V 〇 〇 〇 〇

V 〇 〇 〇 〇 〇 on 00 Ί i-οΟΊV 〇 〇 〇 〇 〇 on 00 Ί i-οΟΊ

LOO.ILOO.I

Lon 00 ·Ι 0 5 9Ό ΟΟΟΌ 1- o li§ xLon 00 · Ι 0 5 9Ό ΟΟΟΌ 1- o li§ x

X x x x 〇 〇 〇 〇 〇 〇 〇 〇 〇X x x x 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

VV

V 〇 〇 〇 〇V 〇 〇 〇 〇

V 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇V 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

XX

V 〇 〇 〇 x 〇 〇 〇 〇 〇 〇 II< ±I ^\«i!l 敬 feV 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 Ⅱ < ± I ^ \ «i! L respect fe

JLJL

JL T2 一丨一 H: z-sJL T2 One 丨 One H: z-s

Too cslobToo cslob

SISI

SISI

Kr uKr u

ZIZIZIZI

COICOI

寸IInch I

LOI 91LOI 91

卜I 001 6ί b, 02 Ώ 6(NurnIs/s-寸 6/ίρ}®)_^?ίι^^α;χ(ΝϊΓη 200525042 (實施例5 ) 應用如表1 2所載述之退火分離劑,製備方向性電磁鋼 板。製造步驟乃如表1 3所示,步驟A及步驟B (利用一次 之後加工退火之方法)係應用實施例3、步驟C及步驟D (利 用二次之批式退火之方法)係應用實施例1之扁鋼胚及製 造條件。關於退火分離劑,主成分以外之成分或塗佈條件 亦與實施例1相同。另外,No · 6係藉光散射法實質未觀 察到散射,判定實質上屬於溶液。 將實施結果示於表1 3中,本發明之退火分離劑均顯示優 異之結果。尤其作為高溫下安定之化合物而含有S i化合物 時之退火分離效果較高,其中較佳的是單獨使用S i化合物 作為高溫下安定之化合物。即,與表13所示之No. 1〜5、 7之塗佈量及黏度相同之單獨使用膠體溶液狀S i化合物 (膠態二氧化矽)之實施例1 (表6之Ν ο · 1 3 )或實施例3 (表 1 0之N ◦· 1 3 )均顯示最良好之特性,比表1 3所示之本實施 例之結果良好。 表12Bu I 001 6ί b, 02 Ώ 6 (NurnIs / s-inch6 / ίρ} ®) _ ^? Ίι ^^ α; χ (ΝϊΓη 200525042 (Example 5) Apply the annealing separator as described in Table 12 To prepare a directional electromagnetic steel sheet. The manufacturing steps are shown in Table 13. Steps A and B (using the method of post-process annealing once) are applied in Example 3, Step C, and Step D (using the second batch annealing). The method) is to apply the flat steel blank and manufacturing conditions of Example 1. Regarding the annealing separator, the components other than the main component or the coating conditions are the same as those of Example 1. In addition, No. 6 is substantially not observed by the light scattering method. It is judged that the solution is essentially a solution to the scattering. The implementation results are shown in Tables 13 and 3. The annealing and separating agents of the present invention all show excellent results. The annealing and separating effect is particularly high when the Si compound is contained as a stable compound at high temperature. Among them, it is preferable to use the S i compound alone as a stable compound at a high temperature. That is, to use the colloidal solution S i compound alone in the same coating amount and viscosity as No. 1 to 5, 7 shown in Table 13 ( Colloidal silicon dioxide) Example 1 (N of Table 6) 1 3) or Example 3 (N ◦ · 1 3 in Table 10) showed the best characteristics, which is better than the results of this example shown in Table 13. Table 12

No. 分離劑主成分 塗佈量 (g/rri) 黏度 (mPa · s) A1化合物之固形分比率 (mass%) A1化合物 高溫下安定之化合物 其他 1 驗性乙酸A1 膠態二氧化;δ夕、Tift微粉末 — 1.2 1.8 Al2〇3/(Al2〇3+Si〇2+Ti〇2) : 50 2 鹼性乙酸A1 膠態二氧化碎、Tift微粉末 硫酸Sr 1.2 1.8 Al2〇3/(Al2〇3+Si〇2+Ti〇2) : 50 3 驗性乙酸A1 膠體狀Tia — 1.2 1.8 Α1·2〇3/(Αΐ2〇3+T1O2) · 60 4 驗性乙酸A1 膠體狀Sr0、Ba0 — 1.2 1.8 Al2〇3/(Al2a+SrO+M)) : 70 5 驗性乙酸A1 CaO微粉末 硫酸Mg 1.2 1.8 Al2〇3/(Al2〇3+CaO) · 80 6 驗性乙酸A1 膠態二氧化矽 — 0.1 1.8 AWai^+Sift) : 90 7 鹼性乙酸A1 ΖιΌ:,微粉末 — 1.2 1.8 Α1Λ/(Α12〇3+ΖγΟ〇 : 70 54 3 12XP/發明說明書(補件)/94-03/93137129 200525042 表13No. Coating amount of the main component of the separating agent (g / rri) Viscosity (mPa · s) Solid content ratio (mass%) of A1 compound A1 Compound stable at high temperature Other 1 acetic acid A1 colloidal dioxide; δ , Tift fine powder — 1.2 1.8 Al2O3 / (Al2〇3 + Si〇2 + Ti〇2): 50 2 alkaline acetic acid A1 colloidal dioxide crushing, Tift fine powder sulfuric acid Sr 1.2 1.8 Al2 03 / (Al2 〇3 + Si〇2 + Ti〇2): 50 3 acetic acid A1 colloidal Tia — 1.2 1.8 Α1 · 2〇3 / (Αΐ2〇3 + T1O2) · 60 4 acetic acid A1 colloidal Sr0, Ba0 — 1.2 1.8 Al2〇3 / (Al2a + SrO + M)): 70 5 acetic acid A1 CaO micropowder sulfuric acid Mg 1.2 1.8 Al2〇3 / (Al2〇3 + CaO) · 80 6 acetic acid A1 colloidal dioxide Silicon — 0.1 1.8 AWai ^ + Sift): 90 7 Alkaline acetic acid A1 Zirconium :, fine powder — 1.2 1.8 Α1Λ / (Α12〇3 + Zγ〇〇: 70 54 3 12XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 Table 13

No. 步 驟 氺 塗 佈 性 退火分 離劑密 合f生 剝離量 (g/m) 退火 分離 效果 剝離 強度 (N) Be (T) W.7/50 (W/kg) 耐彎曲剝離 性最小彎曲 半徑(mm) 紅鋁鐵質中之含量 (後加工退火 /第二次批式退、火後 (mass^〇_ .) A1 N C S Se / 1 Π 1 A 〇 〇 0 〇 2 1.86 1.05 20 5 <5 13 5 <1U ^ ι π 2 A 〇 〇 0 〇 2 1.89 1.02 20 6 <5 13 <4 1 <1ϋ /1 π 3-1 A 〇 〇 0 〇 5 1.86 1.05 20 6 <5 14 5 <ιυ η 3-2 B 〇 〇 0 〇 6 1.85 1.06 20 5 <5 JL· 5 <10 —ΤΠΓ 4 C 〇 〇 0 〇 5 1.91 1.03 30 9 <5 JL· <ιυ ^ΊΓ 5-1 C 〇 〇 0 〇 「5 1.92 0.99 30 5 <5 9 5-2 D 〇 〇 0 〇 4 1.92 0.99 30 8 <5 9 5 <10 6-1 A 〇 〇 0 〇 r 3 1.85 1.07 20 6 <5 15 5 <10 6-2 C 〇 〇 0 〇 3 1.90 1.05 30 6 <5 9 ιΤ" '<10 7-1 B 〇 〇 0 〇 5 1.85 1.06 20 7 <5 12 <4 <iii 7-2 D 〇 〇 0 〇 4 1.91 1.04 30 7 <5 HJ <4 <1〇1 *A:再結晶退火—退火分離劑之塗佈—後加工退火 B :退火分離劑之塗佈—再結晶退火—後加工退火 C :再結晶退火—退火分離劑之塗佈第一次之批式退火^連續退火〜第二次之批式退火 D :退火分離劑之塗佈—再結晶退火―►第一次之批式退火—連續退火〜第二次之批式退火 (實施例6 )No. Step 氺 Coating annealing release agent Adhesive f peeling amount (g / m) Annealing separation effect Peel strength (N) Be (T) W.7 / 50 (W / kg) Flexural peel resistance Minimum bending radius (mm) Content in red aluminum iron (post-processing annealing / second batch withdrawal, after fire (mass ^ 〇_.) A1 NCS Se / 1 Π 1 A 〇〇0 〇2 1.86 1.05 20 5 < 5 13 5 < 1U ^ π 2 A 〇〇0 〇2 1.89 1.02 20 6 < 5 13 < 4 1 < 1ϋ / 1 π 3-1 A 〇〇0 〇5 1.86 1.05 20 6 < 5 14 5 < ιυ η 3-2 B 〇〇0 〇6 1.85 1.06 20 5 < 5 JL · 5 < 10 --TΠΓ 4 C 〇〇0 〇5 1.91 1.03 30 9 < 5 JL · < ιυ ^ ΊΓ 5-1 C 〇〇0 〇 5 1.92 0.99 30 5 < 5 9 5-2 D 〇〇〇 〇4 1.92 0.99 30 8 < 5 9 5 < 10 6-1 A 〇〇0 〇r 3 1.85 1.07 20 6 < 5 15 5 < 10 6-2 C 〇〇0 〇3 1.90 1.05 30 6 < 5 9 ιΤ " '< 10 7-1 B 〇〇0 〇5 1.85 1.06 20 7 < 5 12 < 4 < iii 7-2 D 〇〇0 〇4 1.91 1.04 30 7 < 5 HJ < 4 < 1〇1 * A: Recrystallization annealing-coating of an annealing separator Post-processing annealing B: Coating of annealing separator—recrystallization annealing—post-processing annealing C: Recrystallization annealing—coating of annealing separator The first batch annealing ^ continuous annealing ~ the second batch annealing D : Coating of annealing separating agent-recrystallization annealing-► batch annealing for the first time-continuous annealing ~ batch annealing for the second time (Example 6)

由熔鋼利用連續鑄造法來製造表14所載述成分之各扁 鋼胚,以與實施例5相同之要領依照表1 5之分類製備方向 性電磁鋼板。但對於No · 2並未特別調整二次再結晶前之 C量,從而亦省略脫碳處理。又,對於N〇 . 1及N〇 · 7係 在絡點3 0 C之氧化性環境中施行再結晶退火,並將二次再 、、口日日退火别之C量调整為1〇〇〜i5〇massppmo 退火分離劑及塗佈條件係依照表5之Ν ο · 1 3。 將貫施結果示於表1 5中。磁特性雖然亦依存鋼板之成 分’但均在各成分實現所期待之磁特性。 55 312XP/發明說明書(補件)/94-03/9313 7129 200525042 表14The flat steel blanks having the composition described in Table 14 were manufactured from molten steel by a continuous casting method, and a grain-oriented electrical steel sheet was prepared in the same manner as in Example 5 in accordance with the classification in Table 15. However, the amount of C before secondary recrystallization was not specifically adjusted for No. 2 and the decarburization treatment was also omitted. In addition, for No. 1 and No. 7 systems, recrystallization annealing was performed in an oxidizing environment at a junction temperature of 30 C, and the amount of C in secondary re-, day-to-day and day-to-day annealing was adjusted to 100 ~ i50massppmo Anneal release agent and coating conditions are in accordance with NO 5 of Table 5. The results are shown in Table 15 below. Although the magnetic properties also depend on the components of the steel sheet ', each component achieves the desired magnetic properties. 55 312XP / Invention Specification (Supplement) / 94-03 / 9313 7129 200525042 Table 14

No . 扁鋼胚成分 C (mass %) Si (mass %) Μη (mass %) A1 (massppm) N (massppm) S (massppm) Se (massppm ) 其他 (massppm) 1 0.075 3.2 0.05 40 40 20 <10 2 0.003 3.2 0.05 300 i 80 20 <10 3 0.015 2.1 0.04 310 75 20 <10 4 0.02 7.8 0.05 43 i 37 20 <10 Sn : 400 5 0.018 3.35 0.008 290 80 20 <10 6 0. 020 3.15 0.065 50 38 20 <10 7 0. 062 3.0 0.03 35 60 20 <10 B:25 8 0.015 5.0 0.04 30 30 20 150 9 0.015 3.05 0.05 35 40 150 <10 表1 5No. flat steel component C (mass%) Si (mass%) Μη (mass%) A1 (massppm) N (massppm) S (massppm) Se (massppm) Other (massppm) 1 0.075 3.2 0.05 40 40 20 < 10 2 0.003 3.2 0.05 300 i 80 20 < 10 3 0.015 2.1 0.04 310 75 20 < 10 4 0.02 7.8 0.05 43 i 37 20 < 10 Sn: 400 5 0.018 3.35 0.008 290 80 20 < 10 6 0. 020 3.15 0.065 50 38 20 < 10 7 0. 062 3.0 0.03 35 60 20 < 10 B: 25 8 0.015 5.0 0.04 30 30 20 150 9 0.015 3.05 0.05 35 40 150 < 10 Table 1 5

No. 步 驟 氺 塗 佈 性 退火分 離劑密 合ι± 剝離量 (g/m) 絲 絲 剝離 5級 ⑻ Be (T) W咖 (W/kg) 而ff曲剝離 性最小彎曲 半徑(mm) lilgi钱質中之含量(勒口球冒 /第二蚀试退^後Xmassppn) A1 N C S Se 1 -1 A 〇 〇 0 〇 0 1.85 1.08 20 7 <5 15 5 <10 2-1 A 〇 〇 0 〇 0 1.82 1.16 20 6 <5 13 <4 <10 3-1 A 〇 〇— 0 〇 0 1.87 1.15 20 5 <5 13 <4 <10 1-2 B 〇 〇 0 〇 0 1.85 1.07 20 5 <5 12 <4 <10 2-2 C 〇 0 〇 0 1.82 1.08 30 9 <5 7 6 <10 3-2 D Ο 〇 0 〇 0 1.92 1.08 30 8 <5 8 5 <10 4 A 〇 〇 0 〇 0 1.82 1.02 20 5 <5 11 5 <10 5 B 〇 〇 0 〇 0 1.85 1.06 Γ 20 5 <5 14 6 <10 6 C 〇 〇 0 〇 0 1.91 r 1.03 30 7 <5 9 6 <10 7 C 〇 〇 0 〇 0 1.90 1·05 30 8 <5 6 <4 <10 8 D 〇 〇 0 〇 0 1.91 1.05 30 6 <5 5 5 <10 9 C 〇 〇 0 〇 0 1.90 1.06 30 6 <5 5 5 *A :再結晶退火退火分離劑之塗佈—後加工退火 B :退火分離劑之塗佈—再結晶退火後加工退火 C ··再結晶退火->退火分離劑之塗佈第一次之批式退火·^連續退火〜第二次之批式退火 D :退火分離劑之塗佈—再結晶退火第一次之批式退火—連續退火〜第二次之批式退火 (產業上之可利用性) 依照本發明之方向性電磁鋼板用退火分離劑具有良好 之塗佈性及對鋼板之密合性,在退火分離劑之塗佈過程及 其後之步驟中可確保安定之操作。又,在達成密合性之同 56 3UXP/發明說明書(補件)/9103/93137129 200525042 時,亦具有不妨礙純化或脫碳且亦不需要被膜去除作業等 之優異操作性。 藉由將該退火分離劑應用於方向性電磁鋼板之製造步 驟,可容易達成在磁特性及鎂橄欖石質被膜特性上均優之 方向性電磁鋼板暨不具鎂橄欖石質被膜且在磁特性及加工 性上均優之方向性電磁鋼板之製造。No. Step 氺 Coating annealed release agent adhesion ± ± Peeling amount (g / m) Filament peeling Grade 5 ⑻ Be (T) W coffee (W / kg) and minimum bending radius (mm) lffgi peelability Content in money (Xmassppn after strangling / second eclipse test) A1 NCS Se 1 -1 A 〇〇0 〇0 1.85 1.08 20 7 < 5 15 5 < 10 2-1 A 〇〇 0 〇0 1.82 1.16 20 6 < 5 13 < 4 < 10 3-1 A 〇〇— 0 〇0 1.87 1.15 20 5 < 5 13 < 4 < 10 1-2 B 〇〇0 〇0 1.85 1.07 20 5 < 5 12 < 4 < 10 2-2 C 〇0 〇0 1.82 1.08 30 9 < 5 7 6 < 10 3-2 D 〇 〇0 〇0 1.92 1.08 30 8 < 5 8 5 < 10 4 A 〇〇0 〇0 1.82 1.02 20 5 < 5 11 5 < 10 5 B 〇〇 〇0 1.85 1.06 Γ 20 5 < 5 14 6 < 10 6 C 〇〇〇 〇 0 1.91 r 1.03 30 7 < 5 9 6 < 10 7 C 〇〇〇 〇0 1.90 1.05 30 8 < 5 6 < 4 < 10 8 D 〇〇0 〇0 1.91 1.05 30 6 < 5 5 5 < 10 9 C 〇00 〇0 1.90 1.06 30 6 < 5 5 5 * A: Coating of recrystallization annealing annealing separating agent-post-processing annealing B: coating of annealing separating agent- Post-Crystal Annealing Process C ·· Recrystallization Annealing- > Application of Annealing Separator First Batch Annealing ^ Continuous Annealing ~ Second Batch Annealing D: Application of Annealing Agent-Recrystallization Anneal batch annealing for the first time-continuous annealing ~ batch annealing for the second time (industrial availability) The annealing separator for directional electromagnetic steel sheets according to the present invention has good coatability and tightness to steel sheets It can ensure stable operation in the coating process of annealing release agent and the subsequent steps. In addition, when achieving the same adhesion as 56 3UXP / Invention Specification (Supplement) / 9103/93137129 200525042, it also has excellent operability that does not hinder purification or decarburization, and does not require coating removal operations. By applying the annealing separating agent to the manufacturing steps of the directional electromagnetic steel sheet, it is easy to achieve a directional electromagnetic steel sheet excellent in both magnetic characteristics and forsterite coating characteristics and without a forsterite coating and in magnetic characteristics and Manufacture of grain-oriented electrical steel sheet with excellent workability.

57 312XP/發明說明書(補件)/94-03/9313 712957 312XP / Invention Manual (Supplement) / 94-03 / 9313 7129

Claims (1)

200525042 十、申請專利範圍: 1 . 一種方向性電磁鋼板之退火方法,係將退火分離劑塗 佈於鋼板上,使被塗佈之鋼板退火者,其特徵為, 上述退火分離劑係以溶液或膠體(c ο 1 1 〇 i d )溶液之狀態 含有 A1 化合物,含有高溫下安定之化合物,且黏度為 2 5 ( m P a · s)以下。 2. 如申請專利範圍第 1項之方向性電磁鋼板之退火方 法,其中,上述退火分離劑係以溶液或膠體溶液之狀態含 有上述高溫下安定之化合物。 3. 如申請專利範圍第 1項之方向性電磁鋼板之退火方 法,其中,上述A 1化合物之含量係以下述式(1 )表示之固 形分比率為40〜95mass%: A 1化合物之固形分比率=(上述A 1化合物之固形分)/{(上 述A 1化合物之固形分)+ (上述高温下安定之化合物之固形 分(和))丨.·.式(1 ) 其中,上述A 1化合物之固形分係換算為A 1 2 0 3,且上述 高溫下安定之化合物係換算為在上述退火分離劑塗佈後經 焙燒之情況所產生之主要化合物。 4 .如申請專利範圍第 1項之方向性電磁鋼板之退火方 法,其中,上述高溫下安定之化合物係由選自S i化合物、 S r化合物、C a化合物、Z r化合物、T i化合物以及B a化合 物所組成群組之至少一種化合物所構成,上述A 1化合物之 含量係以下述式(2 )表示之固形分比率為4 0〜9 5 m a s s % : A 1化合物之固形分比率=(A 1化合物之固形分)/{( A 1化合 58 312XP/發明說明書(補件)/94-03/93137129 200525042 物之固形分)+ (上述至少一種化合物之固形分( (2) 在此,各化合物之固形分係換算為下述各化合 之值: A1 化合物...AI2O3; Si 化合物...Si〇2; Sr化合物...SrO; Ca化合物...CaO; Z r 化合物...Z r 0 2 ; T i 化合物...T i 0 2 ; B a化合物...B a 0。 5 ·如申請專利範圍第 4 項之方向性電磁鋼板 法,其中,上述退火分離劑係以溶液或膠體溶液 有上述至少一種化合物。 6 . —種方向性電磁鋼板之退火方法,係將退火 佈於鋼板上,使被塗佈之鋼板退火者,其特徵為 上述退火分離劑係以A 1化合物及S i化合物為 A1化合物與Si化合物之比率換算為Al2〇3/(Al2〇 數值為 40〜95mass%,黏度為 25mPa· s以下,且 膠體溶液之狀態。 7. 如申請專利範圍第1至6項中任一項之方向 板之退火方法,其中,上述A 1化合物為具有羥基 基之A 1化合物、及具有羥基及有機酸基之A 1化 水反應物之任一方或兩方。 8. 如申請專利範圍第 7項之方向性電磁鋼板 法,其中,上述 A 1化合物為選自驗性乙酸A 1、 A 1、驗性鹽酸A 1、驗性石肖酸A 1、驗性草酸A 1、 3 ] 2XP/發明說明書(補件)/94-03/93137129 和))}··.式 物之重量 之退火方 之狀態含 分離劑塗 主成分, 3 + S ί 0 2 )之 呈溶液或 性電磁鋼 及有機酸 合物之脫 之退火方 鹼性曱酸 鹼性胺磺 59 200525042 酸A 1、驗性乳酸A 1以及驗性檸檬酸A 1之一種或二種以 之混合物。 9 .如申請專利範圍第1至6項中任一項之方向性電磁 板之退火方法,其中,上述退火分離劑係依照上述退火 離劑塗佈後經焙燒之情況所求得之固形分比率,進一步 有S或含S化合物25 mass%以下。 1 0 .如申請專利範圍第 9項之方向性電磁鋼板之退火 法,其中,上述S或含S化合物為選自硫酸Sr、硫酸 以及硫化Mg之至少一種。 1 1 . 一種液體作為退火分離劑之使用,該液體係以溶液 膠體溶液之狀態含有A 1化合物,且進一步含有選自S i 合物、S r化合物、C a化合物、Z r化合物、T i化合物以 B a化合物所組成群組之至少一種化合物者, 上述A1化合物之含量以下述式(2)表示之固形分比率 4◦〜95mass%,且黏度為25mPa· s以下: A 1化合物之固形分比率二(A 1化合物之固形分)/{( A 1化 物之固形分)+ (上述至少一種化合物之固形分(和))丨.·· (2) 在此,各化合物之固形分係換算為下述各化合物之重 之值: A1 化合物...AI2O3; Si 化合物...Si〇2; Sr化合物...SrO; Ca化合物...Ca〇; Z r 化合物...Z r 0 2 ; T i 化合物...T i 0 2 ; B a化合物...B a 0。 312XP/發明說明書(補件)/94-03/93137129 上 鋼 分 含 方 Mg 或 化 及 為 合 式 量 60 200525042 1 2 .如申請專利範圍第1 1項之液體作為退火分離劑之使 用,其中,上述液體係以溶液或膠體溶液之狀態含有上述 至少一種化合物。 1 3 . —種液體作為退火分離劑之使用,該液體係以A 1化 合物及S i化合物作為主成分,A 1化合物與S i化合物之比 率換算為 Al2〇J(Al2〇3 + Si〇2)之數值為 40〜95mass%,黏度 為2 5 m P a · s以下,且呈溶液或膠體溶液之狀態者。 1 4 . 一種方向性電磁鋼板之製造方法,其具有: 將由含有 C:0.08niass%WT、Si:2.0〜8.0mass%、 Μ η : 0 . 0 0 5〜1 . 0 m a s s %之熔鋼製成之扁胚軋延至最終板厚而 製成鋼板之步驟; 對上述鋼板施加再結晶退火之步驟;以及 對上述鋼板藉由申請專利範圍第1至1 0項中任一項之方 法施加批式退火之第一批式退火步驟; 在此,將第一批式退火步驟中在退火前塗佈之上述退火 分離劑稱為第一退火分離劑,且 上述再結晶退火係在上述第一退火分離劑之塗佈前施 行,或在上述第一退火分離劑之塗佈後、且在上述批式退 火之前施行,並且 設定第一退火分離劑之每單面的塗佈量為0 . 0 0 5〜5 g / m2, 又具有:在其後對上述鋼板施加連續退火之步驟; 將含有MgO之第二退火分離劑塗佈於上述鋼板上,然後 施加批式退火之第二批式退火步驟。 1 5 .如申請專利範圍第1 4項之方向性電磁鋼板之製造方 61 312XP/發明說明書(補件)/94-03/93137 ] 29 200525042 法,其中,上述扁胚為由具有使A 1含量減低至1 5 0 p p m以 下,且使N、S、Se各含量減低至50ppm以下之組成之熔鋼 所製成之扁胚。 1 6 .如申請專利範圍第1 4或1 5項之方向性電磁鋼板之製 造方法,其中,上述將扁胚軋延至最終板厚以製成鋼板之 步驟係具有: 對上述扁胚施加熱軋以製成熱軋鋼板之步驟; 視需要施加使上述熱軋鋼板退火之熱軋鋼板退火之步 驟;以及 施加1次之冷軋,或施行夾著中間退火之2次以上之冷 軋以作成最終板厚之步驟。 1 7. —種方向性電磁鋼板之製造方法,其特徵為具有: 將由含有 C:0.08mass%以下、Si:2.0〜8.0mass% 、 Μη :0.005〜l.Omass%之炫鋼製成之扁胚軋延至最終板厚而 製成鋼板之步驟; 對上述鋼板施加再結晶退火之步驟;以及 對上述鋼板藉由申請專利範圍第1至1 0項中任一項之方 法施加批式退火之後加工退火步驟; 在此,上述再結晶退火係在上述後加工退火步驟之退火 分離劑之塗佈前施行,或在該退火分離劑之塗佈後且在上 述批式退火之前施行,並且 設定上述退火分離劑之每單面之塗佈量為 0 . 0 0 5〜5 g / in2 者。 1 8.如申請專利範圍第1 7項之方向性電磁鋼板之製造方 62 3 ] 2XP/發明說明書(補件)/94-03/93137129 200525042 法,其中,上述扁胚為由具有使A1含量減低至150ppm以 下且使N、S、S e各含量減低至5 0 p p m以下之組成之熔鋼所 製成之扁胚。 1 9 .如申請專利範圍第1 7或1 8項之方向性電磁鋼板之製 造方法,其中,上述將扁胚軋延至最終板厚以製成鋼板之 步驟係具有: 對上述扁胚施加熱軋以製成熱軋鋼板之步驟; 視需要施加使上述熱軋鋼板退火之熱軋鋼板退火之步 驟; 施加1次之冷軋,或施行夾著中間退火之2次以上之冷 札以作成最終板厚之步驟。 2 0 . —種方向性電磁鋼板之製造方法,其具有: 對於由含有 C:0.08mass% 以下、Si:2.0 〜8.0niass%、 Mn:0.005〜l.Omass%之炫鋼製成之扁胚施加熱軋之步驟; 其次,施加1次之冷軋,或施行夾著中間退火之2次以 上之冷軋以形成最終板厚之步驟; 繼之,施行再結晶退火之步驟;以及 繼之,藉由申請專利範圍第6項之方法施行後加工退火 之步驟; 並且設定上述後加工退火中在退火前塗佈之退火分離 劑之塗佈量為每單面0 . 0 0 5〜5 g / m2。 2 1 . —種方向性電磁鋼板之製造方法,其具有: 對於由含有 C:0.08mass%以下、Si:2.0〜8.0mass% 、 “11:〇.〇〇5〜1.〇1丨1333%,且具有使八1含量減低至15(^0丨11以下 63 312XP/發明說明書(補件)/94-03/93137129 200525042 並使N、S、Se各含量減低至50ppm以下之成分組成之炼鋼 所製成之扁胚施加熱軋之步驟; 其次,施加1次之冷軋,或施行夾著中間退火之2次以 上之冷軋以形成最終板厚之步驟; 繼之,施行再結晶退火之步鄉;以及 繼之,藉由申請專利範圍第6項之方法施行後加工退火 之步驟;200525042 10. Scope of patent application: 1. An annealing method for a directional electromagnetic steel sheet, which is an annealing separator coated on the steel sheet, and the coated steel sheet is annealed, characterized in that the annealing separator is a solution or The state of the colloidal (c ο 1 1 〇id) solution contains an A1 compound, a compound which is stable at high temperature, and has a viscosity of 25 (m P a · s) or less. 2. The annealing method for grain-oriented electrical steel sheet according to item 1 of the patent application, wherein the annealing separator contains the above-mentioned stable compound at high temperature in the state of a solution or a colloidal solution. 3. For the annealing method of grain-oriented electrical steel sheet according to item 1 of the application, wherein the content of the A 1 compound is a solid content ratio expressed by the following formula (1) of 40 to 95 mass%: the solid content of the A 1 compound Ratio = (solid content of the above-mentioned A 1 compound) / {(solid content of the above-mentioned A 1 compound) + (solid content (and) of the above-mentioned stable compound at a high temperature) 丨 .. Formula (1) wherein the above-mentioned A 1 The solid content of the compound is converted into A 1 2 0 3, and the stable compound at the above-mentioned high temperature is converted into the main compound produced in the case of baking after the application of the annealing separator. 4. The annealing method for a grain-oriented electrical steel sheet according to item 1 of the scope of patent application, wherein the compound stable at high temperature is selected from the group consisting of Si compound, Sr compound, Ca compound, Zr compound, Ti compound, and B a compound is composed of at least one compound, and the content of the A 1 compound is a solid content ratio represented by the following formula (2) of 40 to 9 5 mass%: the solid content ratio of the A 1 compound = ( A 1 solid content of compound) / {(A 1 compound 58 312XP / Invention (Supplement) / 94-03 / 93137129 200525042 solid content of the substance) + (solid content of at least one of the above compounds ((2) here, The solid content of each compound is converted into the following compound values: A1 compound ... AI2O3; Si compound ... Si〇2; Sr compound ... SrO; Ca compound ... CaO; Z r compound .. .Z r 0 2; T i compound ... T i 0 2; B a compound ... B a 0. 5 · The method of grain-oriented electrical steel sheet according to item 4 of the patent application scope, wherein the annealing separator is There is at least one of the above compounds in a solution or a colloidal solution. The annealing method is to anneal cloth on a steel sheet and anneal the coated steel sheet, characterized in that the above-mentioned annealing separating agent converts the ratio of A 1 compound and Si compound to A1 compound and Si compound to Al203. / (Al2〇 value is 40 ~ 95mass%, viscosity is 25mPa · s or less, and the state of the colloid solution. 7. For the annealing method of the direction plate according to any one of the claims 1 to 6, the above-mentioned A The 1 compound is either one or both of the A 1 compound having a hydroxyl group and the A 1 water reactant having a hydroxyl group and an organic acid group. 8. For example, the directional electromagnetic steel sheet method of item 7 of the scope of patent application, wherein, The above A 1 compound is selected from the group consisting of test acetic acid A 1, A 1, test hydrochloric acid A 1, test lithocholic acid A 1, test oxalic acid A 1, 3] 2XP / Invention Specification (Supplement) / 94-03 / 93137129 and))} .. The state of the annealed side of the formula weight contains the main component of the separating agent coating, 3 + S ί 0 2) is an annealed side alkali which is a solution or a magnetic steel and organic acid compound Alkaline acid sulfamate 59 200525042 acid A 1, lactic acid A 1 and lemon Acid A one kind or two kinds of 1 to the mixture. 9. The annealing method for a directional electromagnetic plate according to any one of claims 1 to 6, in which the above-mentioned annealed separating agent is a solid content ratio obtained in accordance with the case of baking after the above-mentioned annealed separating agent is coated. Further, S or S-containing compounds are 25 mass% or less. 10. The annealing method for a grain-oriented electrical steel sheet according to item 9 of the application, wherein the S or S-containing compound is at least one selected from the group consisting of sulfuric acid Sr, sulfuric acid, and sulfurized Mg. 1 1. Use of a liquid as an annealing separator, the liquid system containing a compound A 1 in the state of a solution colloidal solution, and further containing a compound selected from the group consisting of S i compound, S r compound, Ca compound, Z r compound, T i If the compound is at least one compound of the group B a, the content of the above-mentioned A1 compound is represented by the following formula (2) with a solid content ratio of 4 to 95 mass% and a viscosity of 25 mPa · s or less: A 1 compound solid form Fraction ratio two (solid content of A 1 compound) / {(solid content of A 1 compound) + (solid content (and) of at least one of the above compounds) 丨 .. (2) Here, the solid content of each compound is Converted to the weight of each of the following compounds: A1 compound ... AI2O3; Si compound ... Si〇2; Sr compound ... SrO; Ca compound ... Ca〇; Z r compound ... Z r 0 2; T i compounds ... T i 0 2; B a compounds ... B a 0. 312XP / Invention Specification (Supplement) / 94-03 / 93137129 Shanggang Substance contains square Mg or chemical compound and combined amount 60 200525042 1 2. If the liquid in item 11 of the scope of patent application is used as an annealing separator, of which, The liquid system contains at least one of the above compounds in a state of a solution or a colloidal solution. 1 3. The use of a liquid as an annealing separator, the liquid system uses A 1 compound and Si compound as the main component, and the ratio of A 1 compound and Si compound is converted into Al2OJ (Al2〇3 + Si〇2 ) The value is 40 ~ 95mass%, the viscosity is 25 m P a · s or less, and it is in the state of a solution or a colloidal solution. 1 4. A method for manufacturing a grain-oriented electrical steel sheet, comprising: made of molten steel containing C: 0.08niass% WT, Si: 2.0 ~ 8.0mass%, Μη: 0. 0 0 5 ~ 1.0 mass% A step of rolling a flat slab into a final sheet thickness to form a steel sheet; applying a recrystallization annealing step to the above-mentioned steel sheet; and applying a batch method to the above-mentioned steel sheet by a method of any of claims 1 to 10 in the scope of patent application First batch annealing step of annealing; Here, the above-mentioned annealing separating agent applied before annealing in the first batch annealing step is referred to as a first annealing separating agent, and the recrystallization annealing is performed in the first annealing separation 0 0 5 before the application of the agent, or after the application of the first annealing release agent and before the batch annealing, and the coating amount per side of the first annealing release agent is set to 0. 0 0 5 ~ 5 g / m2, and has the step of applying continuous annealing to the above steel plate afterwards; applying a second annealing separator containing MgO on the above steel plate, and then applying the second batch annealing step of batch annealing. 1 5. According to the method of manufacturing patented directional electromagnetic steel sheet No. 14 in the scope of patent application 61 312XP / Invention Specification (Supplement) / 94-03 / 93137] 29 200525042 method, wherein the above-mentioned flat embryo has A flat embryo made of molten steel having a content lower than 150 ppm and a content of N, S, and Se reduced to 50 ppm or less. 16. The method for manufacturing a grain-oriented electrical steel sheet according to item 14 or 15 of the scope of patent application, wherein the step of rolling the flat billet to the final sheet thickness to make the steel sheet includes: applying hot rolling to the flat billet. A step of making a hot-rolled steel sheet; if necessary, applying a step of annealing the hot-rolled steel sheet to anneal the above-mentioned hot-rolled steel sheet; and applying cold rolling once or performing cold rolling more than two times with intermediate annealing to make a final Steps for plate thickness. 1 7. A method for manufacturing a directional electromagnetic steel sheet, characterized in that: it is made of flat steel made of dazzling steel containing C: 0.08mass% or less, Si: 2.0 ~ 8.0mass%, Μη: 0.005 ~ l.Omass% A step of rolling a blank to a final thickness to make a steel sheet; a step of applying recrystallization annealing to the above-mentioned steel sheet; and applying batch annealing to the above-mentioned steel sheet by a method according to any one of claims 1 to 10 Annealing step; Here, the recrystallization annealing is performed before the application of the annealing separator in the post-processing annealing step, or after the application of the annealing separator and before the batch annealing, and the annealing is set. The coating amount of each side of the separating agent is 0.05 to 5 g / in2. 1 8. According to the method of manufacture of directional electromagnetic steel sheet No. 17 in the scope of patent application 62 3] 2XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 method, wherein the flat embryo is used to make A1 content A flat embryo made of molten steel having a composition reduced to 150 ppm or less and each content of N, S, and Se to 50 ppm or less. 19. The method for manufacturing a directional electromagnetic steel sheet according to item 17 or 18 of the scope of patent application, wherein the step of rolling the flat billet to a final sheet thickness to form a steel sheet includes: applying hot rolling to the flat billet. The step of making hot-rolled steel sheet; the step of annealing the hot-rolled steel sheet to anneal the hot-rolled steel sheet as needed; applying the cold rolling once, or performing two times of cold rolling with intermediate annealing to make the final sheet Thick steps. 2. A method for manufacturing a directional electromagnetic steel sheet, comprising: for a flat blank made of a dazzling steel containing C: 0.08 mass% or less, Si: 2.0 to 8.0 niass%, Mn: 0.005 to l. Omass% A step of applying hot rolling; secondly, applying cold rolling once, or performing two or more cold rolling sandwiching intermediate annealing to form a final sheet thickness; followed by a step of recrystallization annealing; and, The post-processing annealing step is performed by the method in the patent application No. 6; and the coating amount of the annealing release agent applied before the annealing in the above-mentioned post-processing annealing is set to 0. 0 0 5 to 5 g per side. m2. 2 1. A method for manufacturing a grain-oriented electrical steel sheet, comprising: for C: 0.08 mass% or less, Si: 2.0 to 8.0 mass%, "11: 〇.〇〇5 ~ 1.〇1 丨 1333% And has a component composition that reduces the content of eight 1 to 15 (^ 0 丨 11 or less 63 312XP / Invention Specification (Supplement) / 94-03 / 93137129 200525042 and reduces the content of N, S, Se to less than 50ppm The flat blank made of steel is subjected to hot rolling; secondly, cold rolling is applied once, or cold rolling is performed twice or more with intermediate annealing to form a final sheet thickness; followed by recrystallization annealing Zhixiang Township; and, followed by the step of post-process annealing by the method of the 6th scope of the patent application; 並且設定上述後加工退火中在退火前塗佈之退火分離 劑之塗佈量為每單面〇 . 〇 〇 5〜5 g / m 2。In addition, the coating amount of the annealing separator applied before the annealing in the post-processing annealing is set to 5 to 5 g / m 2 per one side. 64 3 12XP/發明說明書(補件)/94-03/93】37129 200525042 七、指定代表圖·· (一) 本案指定代表圖為:第( )圖。 (二) 本代表圖之元件符號簡單說明: 無 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 無 312XP/發明說明書(補件)/94-03/9313712964 3 12XP / Invention Specification (Supplement) / 94-03 / 93] 37129 200525042 VII. Designated Representative Charts ... (1) The designated representative map in this case is: (). (2) Brief description of the component symbols in this representative figure: None 8. If there is a chemical formula in this case, please disclose the chemical formula that can best show the characteristics of the invention: None 312XP / Invention Specification (Supplement) / 94-03 / 93137129
TW093137129A 2003-12-03 2004-12-02 Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet TWI272311B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003404520 2003-12-03

Publications (2)

Publication Number Publication Date
TW200525042A true TW200525042A (en) 2005-08-01
TWI272311B TWI272311B (en) 2007-02-01

Family

ID=34650139

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093137129A TWI272311B (en) 2003-12-03 2004-12-02 Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet

Country Status (6)

Country Link
EP (2) EP2559775B1 (en)
KR (1) KR100774229B1 (en)
CN (1) CN100513597C (en)
ES (2) ES2643750T3 (en)
TW (1) TWI272311B (en)
WO (1) WO2005054523A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6323423B2 (en) * 2015-09-25 2018-05-16 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
KR101850133B1 (en) * 2016-10-26 2018-04-19 주식회사 포스코 Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
RU2709911C1 (en) * 2016-11-28 2019-12-23 ДжФЕ СТИЛ КОРПОРЕЙШН Textured electromagnetic steel sheet and method of producing textured electromagnetic steel sheet
KR101906962B1 (en) 2016-12-22 2018-10-11 주식회사 포스코 Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
EP3910079A4 (en) * 2019-01-08 2022-09-28 Nippon Steel Corporation Grain-oriented magnetic steel sheet, method for manufacturing grain-oriented magnetic steel sheet, and annealing separating agent used for manufacturing grain-oriented magnetic steel sheet

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794520A (en) * 1967-11-06 1974-02-26 Westinghouse Electric Corp Nonreactive refractory separating coatings for electrical steels
US3785882A (en) * 1970-12-21 1974-01-15 Armco Steel Corp Cube-on-edge oriented silicon-iron having improved magnetic properties and method for making same
IT1127263B (en) 1978-11-28 1986-05-21 Nippon Steel Corp SEPARATION SUBSTANCE TO BE USED IN THE ANNEALING PHASE OF ORIENTED GRAINS OF SILICON STEEL
JPS5573823A (en) * 1978-11-28 1980-06-03 Nippon Steel Corp Annealing release material for electrical steel sheet
JP2674917B2 (en) 1991-12-06 1997-11-12 新日本製鐵株式会社 Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
EP0565029B1 (en) * 1992-04-07 1999-10-20 Nippon Steel Corporation Grain oriented silicon steel sheet having low core loss and method of manufacturing same
JPH06136448A (en) 1992-10-26 1994-05-17 Nippon Steel Corp Production of grain-oriented silicon steel sheet
JP2679944B2 (en) 1993-10-26 1997-11-19 新日本製鐵株式会社 Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH08134542A (en) 1994-11-08 1996-05-28 Sumitomo Metal Ind Ltd Production of grain oriented silicon steel sheet having excellent blanking property
JPH08188828A (en) * 1995-01-06 1996-07-23 Nippon Steel Corp Suspension for separating agent during annealing
JPH10121142A (en) 1996-10-11 1998-05-12 Sumitomo Metal Ind Ltd Separation agent for annealing and production of grain-oriented silicon steel sheet using it
JPH1161261A (en) 1997-08-08 1999-03-05 Kawasaki Steel Corp Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JP3707268B2 (en) 1998-10-28 2005-10-19 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
EP1279747B1 (en) * 2001-07-24 2013-11-27 JFE Steel Corporation A method of manufacturing grain-oriented electrical steel sheets
US6676771B2 (en) * 2001-08-02 2004-01-13 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
JP4196550B2 (en) 2001-08-02 2008-12-17 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
KR20060103517A (en) 2006-10-02
EP1698706B1 (en) 2017-08-16
KR100774229B1 (en) 2007-11-07
CN1890390A (en) 2007-01-03
WO2005054523A1 (en) 2005-06-16
ES2643750T3 (en) 2017-11-24
EP1698706A1 (en) 2006-09-06
ES2673149T3 (en) 2018-06-20
TWI272311B (en) 2007-02-01
EP1698706A4 (en) 2007-05-30
EP2559775B1 (en) 2018-04-18
EP2559775A1 (en) 2013-02-20
CN100513597C (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP5786950B2 (en) Annealing separator for grain-oriented electrical steel sheet
TWI270578B (en) Grain oriented electromagnetic steel plate and method for producing the same
JP5692479B2 (en) Method for producing grain-oriented electrical steel sheet
CN109628717B (en) Method for manufacturing low-temperature high-magnetic-induction oriented silicon steel with excellent bottom layer
WO2014047757A1 (en) Manufacturing method of common grain-oriented silicon steel with high magnetic induction
CN111684106B (en) Electromagnetic steel sheet with insulating coating and method for producing same
KR20200021999A (en) Directional electronic steel sheet
JP6705147B2 (en) Insulating coating of grain-oriented electrical steel sheet and method of forming the same
KR101796751B1 (en) Annealing separating agent composition, method for manufacturing the same, and method for manufacturing steel sheet using the same
TW200525042A (en) Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet
JP5418844B2 (en) Method for producing grain-oriented electrical steel sheet
JP4569281B2 (en) Annealing separator for grain-oriented electrical steel sheet, method for annealing grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
JP2007204817A (en) Ferrite film-fitted grain oriented electromagnetic steel sheet
JP2861702B2 (en) Grain-oriented electrical steel sheet having an insulating film excellent in workability and heat resistance, and method for producing the same
JP4291733B2 (en) Annealing separator and method for producing grain-oriented electrical steel sheet using the same
KR101796750B1 (en) Additive composition of annealing separating agent, method for manufacturing the same, annealing separating agent composition including the same, and method for manufacturing steel sheet using the same
JPH1053818A (en) Production of separation agent at annealing, excellent in film forming capacity, and grain oriented silicon steel sheet using same
JP6904499B1 (en) Film forming method and manufacturing method of electrical steel sheet with insulating coating
JP4259338B2 (en) Method for producing grain-oriented electrical steel sheet and method for preparing annealing separator
JPS63169329A (en) Release composition and its use
JPS59215488A (en) Protective coating material for annealing grain-oriented electrical steel sheet
KR20010048860A (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having no glass film
JP2001192737A (en) Method for producing grain oriented silicon steel sheet excellent in glass film characteristic and magnetic property
JP2001192739A (en) Method for producing grain oriented silicon steel sheet excellent in glass film characteristic and magnetic property