WO2005054523A1 - Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet - Google Patents

Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet Download PDF

Info

Publication number
WO2005054523A1
WO2005054523A1 PCT/JP2004/018431 JP2004018431W WO2005054523A1 WO 2005054523 A1 WO2005054523 A1 WO 2005054523A1 JP 2004018431 W JP2004018431 W JP 2004018431W WO 2005054523 A1 WO2005054523 A1 WO 2005054523A1
Authority
WO
WIPO (PCT)
Prior art keywords
annealing
compound
steel sheet
grain
solid content
Prior art date
Application number
PCT/JP2004/018431
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Omura
Kazumichi Sashi
Yasuyuki Hayakawa
Masaki Kawano
Shinichi Yoshikawa
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to ES04801652.1T priority Critical patent/ES2643750T3/en
Priority to EP04801652.1A priority patent/EP1698706B1/en
Publication of WO2005054523A1 publication Critical patent/WO2005054523A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to an annealing separator for preventing seizure of grain-oriented electrical steel sheets during annealing, and an annealing method using the same for IJ.
  • the present invention also relates to a method for producing a grain-oriented electrical steel sheet utilizing the annealing separator.
  • a forsterite coating is applied to the grain-oriented electric steel sheet.
  • grain-oriented electrical steel sheet is a steel sheet that achieves particularly excellent low iron loss by highly accumulating the crystal orientation in the ⁇ 110 ⁇ and 001> orientations called the Goss orientation.
  • iron loss properties are regarded as important because they directly lead to the energy consumption of products.
  • punchability and bendability are also important properties. That is, when manufacturing an iron core for a transformer or a rotating machine, the electromagnetic steel sheet is formed into a predetermined shape through processing such as punching and shear bending. Also, when a steel strip passes through a processing line for performing these processing, the steel sheet may be bent. Therefore, the above characteristics are important.
  • grain-oriented electrical steel sheets are manufactured by processes disclosed in, for example, paragraph [0005] of JP-A-2003-41323. That is, the steel sheet obtained by rolling is subjected to recrystallization annealing, and then to one batch annealing called finish annealing. This batch annealing promotes secondary recrystallization, and accumulates Goss-directional crystal grains.
  • the steel sheet is heated in a coil shape.
  • Finish annealing for producing electrical steel sheets generally requires a high temperature, S, so that the steel sheets are seized in the coil.
  • S a high temperature
  • a technique of applying an annealing separator containing MgO as a main component and forming a funal stellite coating at the time of annealing is widely used. Fuorusuteti DOO quality coating and MgO in the annealing separating agent, during S i 0 2 and is believed to be formed by the reaction (although the coating film of the oxide formed on the surface of the steel sheet Fe Are also included).
  • This forsterite coating has good annealing separation performance and also has an advantage in the properties of directional magnetic steel sheets.
  • a hard coating tensile coating
  • low iron loss can be achieved by applying tension to the steel sheet.
  • the grain-oriented electrical steel sheet having the forsterite coating is inferior in both punching properties and bending properties.
  • the die for punching is worn out quickly and burrs are generated on the O-sheared surface of the steel sheet.
  • peeling is likely to occur even when bending and bending, good bending and peeling resistance that does not peel even when bending and the like are applied after strain relief annealing, for example, is required.
  • a method of changing the component of the annealing separating agent i.e., an annealing separator containing no MgO which reacts with Si0 2 steel plate surface, recrystallization; applied after 3 ⁇ 4 blunt, the finish annealing Application methods have been attempted.
  • the annealing separating agent containing as a main component other than MgO include alumina disclosed in JP-A-6-136448, JP-A-7-118750 and JP-A-5-156362. (Powder) as a main component, and those containing alumina and / or silicium as a main component disclosed in JP-A-11-61261 and JP-A-8-134542. ing.
  • annealing separators are applied electrostatically or as a suspension in water slurry or alcohols to the steel sheet.
  • these annealing separators have poor adhesion to steel sheets, they tend to peel off during the production line after application of the annealing separator. As a result, 1) it is difficult to control the amount of coating. 2) The yield of the annealing separator is poor. 3) There were problems such as the generation of dust and concerns about line contamination.
  • an annealing separator having excellent adhesiveness to a steel sheet an annealing separator mainly composed of an aggregate of colloidal alumina in a feather form is disclosed in Japanese Patent Application Laid-Open No. 10-121142. ing.
  • JP-A-2003-41323 discloses a technique for achieving both the magnetic properties and the film properties by performing two patch annealing steps after continuous re-annealing after recrystallization annealing. Is disclosed.
  • the present invention has been made to solve the above-mentioned problems, and does not contain MgO, has excellent coatability to a steel sheet and excellent adhesion after coating, and causes a dust problem and a resulting line contamination. It proposes an annealing separator that can produce grain-oriented electrical steel sheets without any problem, and an annealing method using it.
  • the present invention also relates to a method for producing a grain-oriented electrical steel sheet suitable for an iron core material of a transformer or a rotating machine, using the annealing separator.
  • it proposes a method of manufacturing a grain-oriented electrical steel sheet with excellent coating properties of forsterite coating and a method of producing a grain-oriented electrical steel sheet with excellent workability without a phono-resterite coating. It is.
  • the embodiments of the present invention include (1) a method of annealing a grain-oriented electrical steel sheet, (2) a use as an annealing separator, (3) a method of producing a grain-oriented electrical steel sheet having a forsterite coating, and (4) It is classified as a method of manufacturing grain-oriented electrical steel sheets without forsterite coating.
  • the present invention is a.
  • a method for annealing a grain-oriented electrical steel sheet comprising applying an annealing separator to a steel sheet and annealing the coated steel sheet, wherein the annealing separator contains an A1 compound in the form of a solution or a colloid solution, and A method for annealing a grain-oriented electrical steel sheet, comprising a compound stable at high temperatures and having a viscosity of 25 mPa's or less.
  • a compound that is stable at high temperatures means that the compound does not react with or hardly reacts with the steel sheet surface or oxides on the steel sheet surface during the target annealing, and that the compound itself does not react or reacts. It is hard to wake up.
  • at least one selected from the group consisting of Si compounds, Sr compounds, Ca compounds, Zr compounds, Ti compounds and Ba compounds is exemplified.
  • MgO alone is stable at high temperatures, it does not fall under “high-temperature stability” as it reacts with oxides on the steel sheet surface.
  • the A1 compound is in a solution state or a colloid solution state, a substance having a structural part (functional group or the like) having an affinity for a solution or a liquid forming the colloid solution (collectively referred to as a solvent for convenience). It is. Therefore, it is a substance that is chemically different from, for example, general slurry and alumina particles used in suspensions. Needless to say, even in the form of existence, it is different from slurry or suspension To do.
  • the solvent is water-based.
  • the A1 compound is at least one of an A1 compound having a hydroxyl group and an organic acid group, and a dehydration reaction product (including a partial dehydration reaction product) of the A1 compound having a hydroxyl group and an organic acid group.
  • the A1 compound is a basic acetic acid Al, a basic formic acid Al, a basic hydrochloric acid Al, a basic nitric acid Al, a basic oxalic acid, a basic sulfamic acid Al, a basic lactic acid A1 and a basic quinone One or a mixture of two or more selected from the acids A1.
  • the annealing separator may contain the compound stable at a high temperature in the form of a solution or a colloid solution. Further, the content of the A1 compound is 40 to 95 mass ° / in terms of a solid content ratio represented by the following formula (1). It is preferable that
  • Solid content ratio of A1 compound (Solid content of A1 compound) / ⁇ (Solid content of A1 compound) + (Solid content (sum) of compound stable at high temperature) ⁇ Formula (1)
  • the present invention preferably comprises
  • a method for annealing a grain-oriented electrical steel sheet comprising applying an annealing separator to a steel sheet and annealing the coated steel sheet,
  • the annealing separator contains the A1 compound in the form of a solution or a colloid solution, and at least one selected from the group consisting of Si compound, Sr compound, Ca compound, Zr compound, Ti compound and Ba compound.
  • One type of compound is further contained, and the content of the A1 compound is 40 to 95 mass / ° in a solid content ratio represented by the following formula (2).
  • a viscosity of the annealing separating agent is 25 niPa ⁇ s or less.
  • Solid content ratio of A1 compound (solid content of A1 compound) / ⁇ (solid content of A1 compound) + (previously described solid content of at least one compound (sum)) ⁇ Formula (2) Wherein the solids content of the compound is converted value to the weight of each compound of the following A1 compound ⁇ ⁇ ⁇ ⁇ 1 2 0 3, Si compound ⁇ ⁇ 'Si0 2,
  • the annealing separating agent may include at least one compound selected from the group consisting of the Si compound, the Sr compound, the Ca compound, the compound, the Ti compound and the Ba compound, in the form of a solution or a colloid solution. It may be contained in a state.
  • a particularly preferred embodiment of the invention is a method for annealing a grain-oriented electrical steel sheet, comprising applying an annealing separator to a steel sheet and annealing the coated steel sheet, wherein the annealing separator is an A1 compound and a Si compound.
  • the annealed separating agent further has a solid content ratio of 25 ma SS // which is required when the annealed product containing S or S is baked after applying the annealed separating agent.
  • the “S or S-containing compound” is preferably at least one selected from Sr sulfate, Mg sulfate and Mg sulfide.
  • the present invention provides an A1 compound in the form of a solution or a colloid solution, and at least one compound selected from the group consisting of a Si compound, an Sr compound, a Ca compound, a Zr compound, a Ti compound and a Ba compound.
  • the liquid further contains: the content of the compound A1 is 40 to 95 mass ° / in terms of a solid content ratio represented by the above formula (2). And a liquid having a viscosity of 25 mPa's or less is used as an annealing separator.
  • the annealing separator contains at least one compound selected from the group consisting of the Si compound, the Sr compound, the compound, the Zr compound, the Ti compound, and the Ba compound in the form of a solution or a colloid solution. May be.
  • the present invention also includes a main component A1 compound Contact Yopi Si compound, 40 ⁇ 95Mass% in value ratio in terms of Al 2 0 3 / (A1 2 0 3 + Si0 2) of the A1 compound and Si compound And a liquid having a viscosity of 25 mPa's or less and being in the form of a solution or a coid solution is used as an annealing separator.
  • the preferred annealing separator used in the method for annealing a steel sheet according to (1) is applicable to all the inventions of (2).
  • the recrystallization annealing is performed either before the application of the first annealing separator or after the application of the first annealing separator and before the batch annealing. And the amount of application of the first annealing separator on one side is 0.005 to
  • the grain-oriented electrical steel sheet has excellent magnetic properties and forsterite coating properties. (4) A method for producing a grain-oriented electrical steel sheet having no forsterite coating
  • the recrystallization annealing is performed before the application of the annealing separating agent in the finish annealing step, or is performed after the application of the annealing separating agent according to (1) and before the patch annealing.
  • This grain-oriented electrical steel sheet has excellent magnetic properties and workability.
  • the invention can be applied to a grain-oriented electrical steel sheet that does not use an inhibitor-forming component.
  • the slab is a slab made of molten steel having a composition in which A1 is 150 ppm or less and N, S, and Se are each reduced to 50 ppm or less.
  • the step of rolling the slab to a final thickness to form a steel sheet includes: a step of hot-rolling the A1 slab to form a hot-rolled steel sheet; A step of performing hot-rolled sheet annealing to anneal the hot-rolled steel sheet as necessary, and a step of performing one or more cold-rolling operations including one or more intermediate-annealing processes to obtain a final thickness. And preferably
  • a further preferred form of the invention of (4) is:
  • 0mass 0/0 includes and 150ppm or less of Al Oyopi N, S Hot rolling of a slab made of molten steel having a composition of 50 ppm m or less, and then two or more cold rollings with one cold re-rolling or intermediate annealing An annealing separator applied to the final sheet thickness, followed by recrystallization annealing, and then subjected to finish annealing by the annealing method described in (1), and is applied before the annealing in the finish annealing.
  • This is a method for producing a grain-oriented electrical steel sheet, wherein the coating amount is 0.005 to 5 g / m 2 per side.
  • the annealing separator is mainly composed of A1 compound and S i compound, the Al 2 0 3 / (A1 2 0 3 + Si0 2) the ratio of the A1 compound and Si compound
  • the converted value is 40 to 95 mass. /. It is preferable that the viscosity is 25 mPa's or less and that the solution is in the form of a solution or a colloid solution.
  • the inventors of the present invention have conducted intensive studies on an annealing separator having excellent coatability and adhesion after coating.As a result, the inventors first found that the A1 compound and the compound stable at high temperatures were the main components, and at least the A1 compound was It has been found that the above-mentioned problems can be solved by using a solution state or a colloid solution state.
  • the present inventors have also found a suitable viscosity of the annealing separator, a solid content ratio of the A1 compound, and a suitable coating amount when applied to a steel sheet. The present invention will be described below based on experiments that have succeeded.
  • an aqueous colloid solution (solid content: 3.0 ma SS %) of silica sol (colloidal silicic power) was used as an annealing separating agent, and the surface of the steel sheet (both sides) was 0.1 ... 3. Coating was performed using a roll coater in the range of Og / m 2 .
  • the steel sheet was baked at the ultimate temperature of 250 ° C and then allowed to cool.
  • the applied amount of the annealing separator was determined from the difference in the weight of the steel sheet before and after the baking treatment, and this was used as the applied amount of the annealing separator.
  • the specimen was kept at 850 ° C for 30 hours in a nitrogen atmosphere, and then kept at 1000 ° C for 5 hours in an Ar atmosphere.
  • the obtained steel sheet was tested for three items: the applicability of the annealing separator, the adhesion of the annealing separator after drying, and the annealing separation effect during finish annealing.
  • the details of each performance evaluation method are as follows. The same applies to the evaluation methods in Experiments 2 and 3 described later and the examples.
  • the steel sheet after the application of the annealing separator was visually evaluated.
  • the steel plate After baking the annealing separator, the steel plate was washed with running water at a flow rate of about 1. Om / s for 10 seconds while brushing the steel sheet. Then, it was drained with a ringer roll and dried under the condition of 200 ⁇ X10Os. Then, the weight of the steel sheet was re-measured, and the adhesion amount of the annealing separator was calculated again. Then, the difference between the amounts of the adhesion of the annealing separator before and after the water washing was determined, and this was defined as the amount of peeling. Based on the obtained peeling amount, the following evaluation was made.
  • Separation amount of separating agent is 10% or less of applied amount
  • Separation amount of separating agent is more than 10 to less than 80% of applied amount
  • the separation amount of the separating agent is 80% or more of the applied amount • Annealing separation effect
  • peeling strength was measured to evaluate as follows.
  • silica sol had an annealing separation effect at the time of finish annealing, but had a problem in adhesion to a steel sheet as an annealing separating agent. Therefore, the present inventors examined the effectiveness of using alumina sol as a film-forming component in order to use silica sol as an annealing separating agent and to improve adhesion to a steel sheet.
  • the ratio of the alumina sol and silica sol, in the range of. 20 to 100 mass% with A1 2 0 3 Pas Al 2 0 3 + Si0 2) in terms of the viscosity of the annealing separator is in the range of 3. 5 ⁇ 100 mPa 's, respectively change I let it. Note that the viscosity of the annealing separator was changed by using alumina sols having different viscosities.
  • the viscosity of the alumina sol can be controlled by, for example, the shape of the sol particles and the solid content concentration.
  • the viscosity will be high, and if it is close to spherical (or granular) or elliptical (or rod-like), the viscosity will be low.
  • Table 2 shows the experimental results when the ratio between the alumina sol and the silica sol was changed. When the ratio of alumina sol was low, the adhesion of the annealing separator was insufficient. On the other hand, if the ratio of the alumina sol was too large, the film-forming effect was too strong, and it was difficult to apply uniformly to the steel sheet, resulting in poor appearance of the product. The effect of annealing separation was good under all conditions.
  • Table 3 shows the experimental results when the viscosity of the annealing separator was changed. When the viscosity was increased, the applicability to the steel sheet was significantly deteriorated, and some portions were applied and some were not. Since the steel sheet seized in the area where the coating was not performed, it was found that the viscosity had to be controlled in order to secure good coating properties and to have an annealing separation effect. Table 2
  • an annealing separator solid content concentration consisting of an aqueous colloid solution containing alumina sol and silicic acid sol as main components was used. 2.5 m ass %) was applied under each condition that the application amount was in the range of 0.001 to 6 g / m 2 per one side.
  • the viscosity of the annealing separator was set to 2.5 mPa's, the ratio of the alumina sol and silica sol was 75 mass% in the A1 2 0 3 / (Al 2 0 3 + Si0 2) terms.
  • the steel sheet was baked at the ultimate temperature of 250 ° C and allowed to cool. Then, as in Experiment 1, finish annealing was performed at 850 ° C for 30 hours in a nitrogen atmosphere and then at 1000 ° C for 5 hours in an Ar atmosphere.
  • the obtained steel sheet was examined for three items: the coatability of the annealing separator, the adhesion of the annealing separator after drying, and the annealing separation effect during finish annealing.
  • Table 4 shows the experimental results when the coating amount was changed. When the coating amount was extremely small, the annealing separation effect was insufficient and the steel sheet was seized. On the other hand, when the amount of coating increases, the adhesion of the annealing separator to the steel sheet decreases. From the above, it is preferable to control the application amount of the annealing separator in order to ensure good adhesion to the steel sheet and to have an annealing separation effect. Table 4
  • the present invention By adopting the A1 compound as the main component and defining the solid content ratio and viscosity of the A1 compound, it is newly possible to obtain excellent coating properties and adhesion after coating. Heading, the present invention has been completed.
  • the annealing separator of the present invention the method for annealing a grain-oriented electrical steel sheet, and the method for producing a grain-oriented electrical steel sheet will be described in detail. First, the reason for limiting the annealing separator will be described. Limitations are generally specified at the time of application to the steel sheet.
  • A1 compound in the form of a solution or colloid solution as the main component of the annealing separator and a compound that is stable at high temperatures, that is, it has excellent high-temperature stability and does not react or hardly react during patch annealing.
  • One or more compounds are used as the main components.
  • the high-temperature stable compound may be in a solution state or a colloid solution state together with the A1 compound. That is, the annealing separator may be a solution or a colloid solution.
  • being in a solution state means a state in which the compound is dissolved in water or an organic solvent as a medium.
  • a colloid solution state means that particles of the compound having a size of about 100 nm or less are stably dispersed in the medium via a structural part such as a functional group having an affinity for the medium. Say state.
  • the liquid serving as the medium is generically called a solvent.
  • the colloid solution is similar to the solution because it is transparent without apparent suspension, but the presence of colloid particles is confirmed by light scattering measurements.
  • the main component refers to a composition component other than the below-described auxiliary agent and additive.
  • the main component accounts for about 65 mass% or more, preferably 75 ma SS % or more, based on the whole of the annealed separator component after drying (that is, the substance forming a solute or colloid).
  • the liquid serving as the solvent and water or an organic solvent can be used.
  • the organic solvent methanol, isopropanol, ethylene dalicol and the like are generally used, but not limited thereto.
  • the use of water as a solvent is preferred from the viewpoint of cost and diversity of selection of the compound. This In this case, water may be mixed with an organic solvent of about 50 ma Ss % or less for the purpose of adjusting the liquid properties. In the above case where water is the main solvent, it is referred to as an aqueous annealing separator.
  • the A1 compound and the compounds stable at high temperatures described above hardly react with the base iron unlike MgO used in conventional annealing separators, and thus significantly degrade punching workability such as forsterite coating. Does not form a coating. For this reason, it is very effective when supplying grain-oriented electrical steel sheets with excellent punching workability.
  • the use of two or more compounds as the main components of the annealing separator is due to both the large annealing separation effect of a stable compound at high temperature and the good film-forming effect of a solution or colloidal A1 compound.
  • the combination of the two functions effectively as an annealing separator for steel sheets with excellent applicability and adhesion to steel sheets after coating, and is particularly required for annealing separators for grain-oriented electrical steel sheets. Satisfies the characteristics.
  • the A1 compound is limited to a compound that forms a colloid in a solvent such as water in order to secure a film forming function. That is, the A1 compound does not exhibit a film-forming effect unless it is in a colloidal state, so that adhesion cannot be obtained. For example, when alumina is applied as a slurry / suspension, no film is formed.
  • the particle size of the A1 compound colloid is preferably about 50 mn or less. As for the lower limit, there is no suitable particle size limit, and the effect is sufficiently exhibited even near the analysis limit.
  • the A1 compound is preferably an aluminum compound having a hydroxyl group and an organic acid group and / or a dehydration reaction product thereof (partially dehydration may be performed. The same applies hereinafter). More preferably, it is an aluminum compound comprising Al, a hydroxyl group and an organic acid group, and / or a dehydration product thereof.
  • basic aluminum acetate, basic aluminum formate, basic aluminum hydrochloride, basic aluminum nitrate, basic aluminum oxalate, basic aluminum sulfamate, base Examples include one selected from basic aluminum lactate and basic aluminum citrate, or a mixture of two or more selected from these.
  • basic aluminum acetate is represented by the molecular formula of Al x (0H) y (CH 3 C00) z , where x, y, and z are 1 or more, and in particular, Al 2 (OH) 5 (CH 3 COO) is preferred. It can exist from a dissolved state at the molecular level to a colloidal state of about several nm, and can be suitably used as a coating liquid material. Thermal analysis shows a large peak of the dehydration reaction at about 200 to 230 ° C, and heating forms a network between molecules by dehydration condensation to form a film. Part or all of the basic aluminum acetate and the like may have caused a dehydration reaction.
  • the same A1 compound as that used in the case of the aqueous annealing separator can be used as a suitable A1 compound.
  • High temperature stability as the compound except the M g 0, can be used known ones, is not particularly limited, for example, Si compounds, Sr compounds, Ca compounds, Zr compounds, Ti compounds, Ba compounds No. Specific compounds, Si0 2, SrO,
  • Oxides such as TiO 2 , BaO, and CaO are mentioned.
  • aqueous annealing separating agent for example, in the case of an aqueous annealing separating agent, it is necessary to use a chemical conversion to a form having a hydrophilic group such as a hydroxyl group. preferable.
  • a state in which the surface is covered with a known hydrophilic substance in a solvent may be created.
  • an organic solvent is used as a solvent, it may be designed based on a similar concept using a lipophilic group or the like.
  • the high temperature when referring to a compound that is stable at high temperature refers to the annealing temperature, but for oriented magnetic steel sheets, 1200 ° C is sufficient if it is stable, and more preferably 1300 ° C. .
  • the compound, it themselves, steel, or an oxide such as a steel sheet surface Si0 2, Fe0, Fe 3 0 4, Fe 2 Si0 4 , etc.
  • All of the above compounds have the effect of improving the applicability of the annealing separator in coexistence with the A1 compound.
  • Si compounds are particularly preferable from the viewpoint of applicability, annealing separation performance, and the like.
  • colloidal silicon force As a Si compound, colloidal silicon force, The so-called colloidal silicide is particularly suitable because it has high stability with alumina sol and relatively low cost.
  • Colloidal silica is an inorganic colloids which mainly components Si0 2, it is often amorphous.
  • A1 compounds that are not a solution or colloid solution referred to as non-colloidal A1 compounds
  • non-colloidal A1 compounds such as alumina particles
  • the effect is small. Therefore, although the addition of the non-colloidal A1 compound itself as a part of the main component is not prohibited, it is preferable to include a compound which is stable at a high temperature other than the non-colloidal A1 compound.
  • Non-colloidal A1 compounds shall not be considered in the calculation of the solid content ratio described below.
  • the solid content ratio of the A1 compound is preferably 40 to 95 ma SS % in terms of the solid content ratio represented by the following formula (1).
  • Solid content ratio of A1 compound (solid content of A1 compound) / ⁇ (solid content of A1 compound) + (solid content of high-temperature stable compound (sum)) ⁇ Formula (1)
  • a silica sol silica i.e. Si0 2 is the main compound
  • Wachi Ti0 2 such to titania is the main compound if titania sol.
  • the baking step is not particularly provided, it is converted to the main compound generated when the baking treatment is performed.
  • Solid content ratio of A1 compound (solid content of A1 compound) / (total solid content) Formula (3)
  • solid content refers to the amount contained in the annealing separator after drying.
  • the solid content ratio of the A1 compound is 40 mass ° /. If the ratio is less than the above, the amount of the A1 compound as a film forming component becomes insufficient, and the adhesion of the annealing separator becomes insufficient.
  • the solid content ratio is 95 ma SS /. When the amount exceeds the limit, the amount of the highly reactive A1 compound becomes too large, Not determined. For this reason, a uniform film cannot be formed, and the appearance of the product becomes poor.
  • Solid content of A1 compound is preferably, 50 mA SS%, more preferably, 60 mass%, more preferably at least 70 mass%. When at least one compound selected from the group of Si compound, Sr compound, compound, Zr compound, Ti compound and Ba compound is used as the compound stable at high temperature, the solid content of A1 compound is as follows. Replaced by equation (2).
  • Solid content ratio of A1 compound (solid content of A1 compound) / ⁇ (solid content of A1 compound) + (the solid content of at least one compound (sum)) ⁇ formula (2)
  • each compound is preferably a value converted to the weight of each compound described below.
  • the viscosity in the present invention is a value obtained by measuring the viscosity of the annealing separator at the liquid temperature with an Ostwald viscometer.
  • the amount of the S-containing compound to be added is about 25 ma SS ° / in solid content ratio to the annealing separator component after baking. It is preferable that: Even when the baking step is not particularly provided, the evaluation is made based on the solid content ratio of the S-containing compound generated when the baking treatment is performed.
  • the S-containing compound is not particularly limited, but is preferably an inorganic S compound such as a sulfate (including a sulfite) and a metal sulfide. Specific examples include stotium sulfate, magnesium sulfate, and magnesium sulfide.
  • Various methods such as a roll coater, a flow coater, a spray, and a knife coater, which are generally used in industry, can be applied as a method of applying the annealing separating agent. It is preferable that the annealing separator of the present invention be heated and baked after application.
  • a method such as a hot air method, an infrared method, or an induction heating method, which is usually performed, can be applied.
  • the conditions of the baking treatment may be set according to various circumstances, but usually, a preferable temperature is about 150 to 400 ° C and a preferable time is about 1 to 300 seconds.
  • additives such as a surfactant and a heat-resistant agent may be blended.
  • the content of the additive is preferably about iomass % or less based on the annealed separating agent component after drying in order to maintain a sufficient annealing separating effect as the annealing separating agent.
  • Surfactants can be any of commercially available nonionic, anionic or cationic surfactants. These are also applicable.
  • the type of the protective agent is not particularly limited, and a commercially available one can be used.
  • the annealing separator of the present invention is particularly suitable for application to grain-oriented electrical steel sheets. The application to other steel sheets is not prohibited.
  • the annealing separator of the present invention is particularly effective when the steel strip is heated in a furnace while being wound in a coil shape, but can also be applied to a case where a steel sheet is stacked and subjected to a heat treatment.
  • preferred conditions for producing a grain-oriented electrical steel sheet according to the present invention will be described below.
  • any composition known to be suitable for grain-oriented electrical steel sheets can be applied.
  • the reasons for limiting the respective components of the preferred molten steel components in the typical component system will be described.
  • the content of C exceeds 0.08 mass%, it is difficult to reduce C to 50 mass PP or less, at which magnetic aging does not occur, during the manufacturing process.Therefore, the content of C is set to 0.08 mass% or less. Is preferred. In particular, a lower limit is not required. Industrially, about 5 massppm is the limit of reduction.
  • Si is an element effective in increasing the electrical resistance of steel and improving iron loss. To obtain the effect, it is preferable to contain 2.0 mass% or more. On the other hand, if it exceeds 8.0 mass%, the workability and the magnetic flux density decrease, so the upper limit is preferably set to 8.0 mass%. Therefore, a preferable Si content is 2.0 to 8.0 mass%. Mn: 0.005 to 1.0 mass%
  • Mn is an element effective for improving hot workability, and is preferably added at 0.005 mass% or more. On the other hand, excess Mn lowers the magnetic flux density of the product plate. From this viewpoint, the preferable content of Mn is 1. Omass. /. It is as follows. Therefore, the preferable content of Mn is 0.005 to 1.0 mass. /. It is. In the production of grain-oriented electrical steel sheets, it is common to add an element that forms an inhibitor (inhibitor-forming component) in order to develop the Goss orientation during secondary recrystallization. However, it has recently become known that it is also possible to develop the Goss orientation without using inhibitors by reducing the impurity elements in steel.
  • Sb and / or Sn are added to the grain-oriented electrical steel sheet in a total amount of about 0.005 to 0.1 mass%, since the magnetic properties can be further improved.
  • slabs of normal dimensions may be manufactured by a normal ingot-making method or a continuous sintering method, or a thin slab piece of ioo mm or less (a so-called thin slab). May be directly manufactured by a manufacturing method. The slab is re-heated and hot-rolled by an ordinary method, but may be immediately hot-rolled without heating after fabrication.
  • hot rolling may be performed, or hot rolling may be omitted and the process may proceed to the subsequent steps.
  • the hot-rolled steel sheet is then subjected to annealing (hot-rolled sheet annealing) as necessary.
  • annealing hot-rolled sheet annealing
  • the hot-rolled sheet annealing temperature is preferably set to 800 ° C. or higher.
  • the hot-rolled sheet annealing temperature is preferably 1100 ° C or less. Therefore, in order to highly develop the Goss structure in the product sheet, it is preferable that the hot-rolled sheet annealing temperature be 800 ° C or higher and 1100 ° C or lower.
  • the preferred annealing time for hot-rolled sheet annealing is 1 to 300 seconds.
  • recrystallization annealing is performed.
  • intermediate annealing is interposed between each cold rolling.
  • the intermediate annealing is preferably performed at 900 to 1200 ° C. for about 1 to 300 seconds.
  • the cold rolling temperature may be increased by 100 to 250. This is treated as a type of cold rolling, called S, which is sometimes called warm rolling.
  • S which is sometimes called warm rolling.
  • the aging treatment in the range of 100 to 250 ° C may be performed once or plural times during the cold rolling.
  • Recrystallization annealing is preferably performed by continuous annealing for the purpose of mainly forming a primary recrystallization structure.
  • the recrystallization annealing may be performed in a dry atmosphere if decarburization is not required and the dehumidification is not required.
  • Preferred recrystallization annealing conditions are 750 to 1100 ° C. for about 1 to 300 seconds. Adjusting the C content in the steel sheet to 100 to 250 massppm in the secondary recrystallization annealing (finish annealing or the first patch annealing when the final annealing is divided into two patch annealings) is particularly effective in containing inhibitors. This is suitable for improving the magnetic flux density in a non-oriented electrical steel sheet.
  • the adjustment of the C content may be performed by recrystallization annealing or may be performed separately thereafter.
  • the technique of increasing the amount of Si by the siliconizing method may be applied to, for example, a steel sheet after recrystallization annealing.
  • the application of the annealing separator of the present invention is performed before or after recrystallization annealing.
  • annealing separators have poor adhesion to steel sheets, so applying an annealing separator before recrystallization annealing was not possible from the viewpoint of line contamination due to peeling during recrystallization annealing.
  • an annealing separator containing MgO as a main component which requires a long heating time to form a film.
  • the annealing separator of the present invention has good adhesion to a steel sheet, and there is no fear of line contamination due to peeling, so that it can be applied before or after recrystallization annealing.
  • the application amount of the annealing separator of the present invention is preferably 0.005 g / m 2 or more in order to exert the effect of preventing adhesion of the steel sheet.
  • the amount of adhesion is preferably 5 g / m 2 or less. Therefore, it is preferable that the application amount of the annealing separator be in the range of 0.005 to 5 g / m 2 .
  • a more preferred lower limit is 0.05 g / m 2 and a more preferred upper limit is 2 g / m 2 .
  • the preferable application amount in the production of the grain-oriented electrical steel sheet is as described above. Depending on the heat treatment conditions and required quality of each force, it can be used outside the above-mentioned preferred range.
  • the annealing separator may be applied to only one side or both sides of the steel sheet, but is preferably applied to both sides in order to surely obtain the effect. It is not prohibited to change the composition of the annealing separator on the front and back of the steel sheet, but it is preferable to apply the same annealing separator on both sides in the process.
  • Magnetic properties without forsterite coating In the case of manufacturing a magnetic steel sheet, after the recrystallization annealing and the application of the annealing separator of the present invention, the finish annealing is performed by patch annealing. The purpose of finish annealing is to reduce (purify) impurities during the secondary recrystallization. Known annealing conditions can be applied as the annealing conditions.
  • the preferred finish annealing temperature is about 750-1300 ° C, but the first half may be about 750-1000 ° C and the second half may be about 900-1300 ° C.
  • secondary recrystallization is mainly promoted in the first half, and purification is mainly promoted in the second half.
  • a preferable finish annealing time is about 1 to 300 hours as a holding time in the above temperature range.
  • Methods for reducing C include a method of decarburizing during finish annealing and a method of adding a decarburization step after finish annealing.
  • a method of decarburizing during finish annealing In order to decarburize during the finish annealing, it is recommended to perform high-temperature annealing at 1000 ° C or more during finish annealing, especially in the atmosphere containing hydrogen in the latter half.
  • decarburization processes added after finish annealing include (1) annealing in an oxidizing atmosphere (decarburizing annealing), (2) surface grinding to mechanically remove surface graphite, and (3) surface grinding of Electrolytic cleaning to remove the graphite chemically, chemical polishing, plasma irradiation, etc. are effective.
  • decarburization by means (2) or (3) is possible is that C precipitates as graphite on the surface of the steel sheet by the end of finish annealing, and decarburization in the steel has been completed. It is.
  • C forms a metastable cementite in steel, S, and forms graphite in an activated state with high surface energy. Therefore, during cooling, C precipitates as graphite on the surface layer before it precipitates as cementite in the base iron.
  • the solubility of graphite is slightly lower than that of cementite. Therefore, the concentration of solid solution C in the surface layer decreases to a concentration that is in equilibrium with the graphite, causing a concentration gradient between solid solution C in the surface layer and solid solution C in the ground iron, and decarbonization from the ground iron. It is speculated that this will progress.
  • a dense or strong coating layer is formed on the surface during finish annealing (for example, when a conventional annealing separator containing MgO as a main component is applied), surface activation is hindered, and Precipitation of the steel sheet surface layer is also inhibited.
  • the film formed by the annealing separator of the present invention is excellent in adhesion, it does not adversely affect the precipitation of the graphite steel sheet surface for any unknown reason, and the above decarburization method can be suitably used. .
  • After finish annealing it is effective to correct the shape by applying tension by flattening annealing to reduce iron loss. By performing the flattening annealing in a humid atmosphere, decarburization may be performed at the same time (a type of the method (1)).
  • a technique of increasing the amount of Si by the siliconizing method after the finish annealing may be further applied.
  • This technology is effective for further reducing iron loss.
  • an insulating coating to the surface of the steel sheet after flattening annealing.
  • an organic coating containing a resin is desired as the insulating coating.
  • weldability is important, it is desirable to apply an inorganic coating as an insulating coating.
  • the first recrystallization after the recrystallization annealing and the application of the annealing separator of the present invention are required to develop secondary recrystallization.
  • known annealing conditions under which secondary recrystallization proceeds can be applied. Preferred conditions are about 750 to 1100 ° C for about 1 to 300 hours.
  • a forsterite coating is formed by the second patch annealing.
  • a subscale is formed by continuous annealing.
  • the first batch annealing is performed with a predetermined amount of C contained for the purpose of improving the magnetic properties, it is preferable that decarburization is simultaneously performed in the continuous annealing for forming the subscale.
  • Known annealing conditions can be applied to the annealing conditions (time, temperature, atmosphere, etc.) of the continuous annealing so that the forsterite coating can be easily and stably formed in the subsequent batch annealing.
  • the preferred annealing temperature is about 750 to 1000 ° C.
  • the preferred annealing time is about 1 to 300 seconds
  • the preferred atmosphere is an oxidizing atmosphere consisting of hydrogen gas and nitrogen gas.
  • the step of removing the annealing separator of the present invention before the continuous annealing is unnecessary. That is, even if a forsterite coating is applied over the annealing separator of the present invention, not only the adhesion of the forsterite coating is good, but also the purification due to the presence of the annealing separator of the present invention. There is no hindrance.
  • an annealing separator mainly composed of MgO is applied to the steel sheet surface, and a second batch annealing is performed. Since the second batch annealing is performed for the purpose of forming a forsterite coating and purifying impurities, known annealing conditions that can achieve the two purposes can be applied.
  • the preferred annealing temperature is about 900-1300 ° C., and the preferred annealing time is about 1-300 hours.
  • known annealing separators containing MgO as a main component can be used.
  • the MgO about 8 0 to 99 mass%, the remainder optionally used Ti0 2, SRS0 4, MgSO be preferably those with one or more selected 4 and the like or al Can be
  • the grain-oriented electrical steel sheet in the present invention means an electrical steel sheet in which secondary recrystallization has developed. Therefore, not only the Goss direction but also the Cube direction ( ⁇ 100 ⁇ The present invention also covers the case where (100) (011) orientation is secondary recrystallized.
  • a known method can be applied to the accumulation in the Cube orientation, for example, it can be performed by controlling the rolling texture.However, the steps after recrystallization annealing are the same as the case where secondary recrystallization in which the Goss orientation is accumulated The same is true in the outline.
  • a grain-oriented electrical steel sheet with excellent forsterite coating properties and magnetic properties was prepared by the following method.
  • Oyopi Sb 380 comprises massppm, Al as a is et to Inhi Bitter forming component: 320 massppm
  • Oyopi N A steel slab containing 80 massppm, the balance being iron and unavoidable impurities was produced by a continuous production method. After the steel slab was heated to 1200 ° C, it was hot-rolled to finish a hot-rolled sheet having a thickness of 2.0 mm, and annealed at 1050 ° C for 60 seconds.
  • the annealing separator was applied before or after recrystallization annealing according to Table 5.
  • the annealing separator was applied using a roll coater, and then subjected to a baking treatment at an ultimate temperature of the steel sheet (sheet temperature) of 250 ° C and allowed to cool.
  • the baking was performed by propane gas baking.
  • the first patch annealing was carried out in a nitrogen atmosphere at 850 ° C for 40 hours to complete the secondary recrystallization.
  • a second patch annealing was performed in a dry hydrogen atmosphere at 1200 ° C for 5 hours.
  • a tension coating was applied and baked and a strain relief annealing was performed.
  • Tensile coatings containing phosphoric acid, coumic acid, and cinnamate were used and baked at a temperature of 800 ° C.
  • the strain relief annealing was performed in a nitrogen atmosphere at 800 ° C for 3 hours.
  • Table 5 shows the components of the annealing separator and the application conditions. S i0 2, the annealing separator composed A1 2 0 3 powder the main components was applied by the exception water slurry scratch No. 26, No. 26 is to be a solid 5 mas s% in alcohol And applied by spraying.
  • the ratio of the main component other than powder was different depending on the amount of application, but was diluted with water and applied as a colloid solution. 3 wt% each of sodium sulfate, magnesium sulfate and magnesium sulfide added as adjuncts. /. Added. Solid contents other than those described in Table 5 were not added, but a surfactant (non-ion type) or the like was appropriately added at 0.5 mass% or less.
  • Table 6 shows the order of the annealing separator application process (before or after recrystallization annealing), the coating properties of the annealing separator, and the annealing separator after drying. 5 shows the adhesion and the effect of annealing separation after the first patch annealing.
  • Nos. 1 to 4 had insufficient adhesion to the steel sheet because the main component of the annealing separator was outside the present invention.
  • adhesion of the steel sheet occurred at the time of finish annealing because the amount of the applied annealing separator was insufficient.
  • No. 17 had too much applied amount of annealing separator Therefore, peeling occurred due to insufficient adhesion to the steel sheet.
  • the annealing separator was applied in two different order, before and after recrystallization annealing. Regardless of the sequence of the annealing separator application step, the annealing separator of the present invention has good applicability of the annealing separator, adhesion of the annealing separator after drying, and annealing separation effect after the first batch annealing. Obtained. In Comparative Examples Nos. 3, 4, and 26, the annealing separation effect was different depending on the application sequence of the annealing separating agent.
  • Table 7 shows the magnetic properties, forsterite coating properties, and 1, (, 3) after the second batch annealing when the sample to which the annealing separator of the present invention was applied was subjected to subsequent steps to obtain a product plate.
  • 36 content (results of analysis after removing the coating in the base steel, that is, the surface of the steel sheet)
  • Forsterite coating characteristics are as follows: the sample after strain relief annealing was wound around a cylinder to remove the coating. was evaluated by the minimum bend radius not occurred.
  • B 8 is magnetic flux density at a magnetizing force 800A / m (T)
  • W 17 / 50 is the iron loss value (W / kg) at a frequency of 50 Hz and a maximum magnetic flux density of 1.7 T.
  • a grain-oriented electrical steel sheet having excellent forsterite coating properties and magnetic properties was prepared by the following method.
  • the first patch annealing was performed.
  • Table 8 shows the annealing separators. Accordingly, it was applied before or after recrystallization annealing.
  • Application of annealing separator was performed using a roll coater primary, then baked at the ultimate temperature 2 50 ° C, and allowed to cool. Baking was carried out by baking with propane.
  • the first patch annealing was performed in a nitrogen atmosphere at 865 ° C. for 50 hours to complete the secondary recrystallization.
  • annealing separator After that, the applicability of the annealing separator, the adhesion of the annealing separator after drying, and the annealing separation effect after the first patch annealing were investigated, and for samples with good results, the subsequent steps were further performed. , And product plate. 'In a subsequent step, first, they performed continuously annealed to form a good subscale, then coated with an annealing separator composed mainly of M g 0. Since the first batch annealing was performed with 100 to 150 mass ppm of C remaining, decarburization was performed simultaneously in the continuous annealing performed to form this subscale. The continuous annealing was performed at 850 ° C for 80 seconds in an oxidizing atmosphere with a dew point of 60 ° C.
  • annealing separator Mg0 as solid content: 92. 5 mas s%, Ti0 2: 7. 5 mas s. /. Used was used.
  • a second batch annealing was performed.
  • the temperature was kept at 1100 ° C, which is lower than before, for 5 hours, and the atmosphere was changed to hydrogen.
  • a tension coating was applied and baked and a strain relief annealing was performed.
  • Tensile coatings containing phosphoric acid and oxalic acid were used and baked at 800 ° C.
  • the strain relief annealing was performed in a nitrogen atmosphere at 800 for 3 hours.
  • the components of the annealing separator and the application conditions were the same as in Example 1 under the conditions corresponding to each No. shown in Table 5.
  • Table 8 shows the order of the separating agent application process (before or after recrystallization annealing), the applicability of the annealing separating agent, the adhesion of the annealing separating agent after drying, and the annealing separation effect after the first patch annealing.
  • Example 1 for the steel produced by the method of the present invention, regardless of the sequence of the step of applying the annealing separator, good coatability of the annealing separator, adhesion of the annealing separator after drying, Separation effect after first and first patch annealing Is obtained. This shows that the annealing separator of the present invention is effective even when applied to a component system containing no inhibitor.
  • Table 9 shows the magnetic properties, forsterite coating properties, and the Al, C, N, and B values after the second batch annealing when the sample to which the annealing separator of the present invention was applied was subjected to subsequent steps to obtain a product plate. Shows the S and Se contents. The method of investigating each characteristic was the same as in Example 1.
  • a grain-oriented electrical steel sheet having no forsterite coating and excellent magnetic properties and workability was prepared by the following method.
  • cold rolling was performed to form a cold rolled sheet with a thickness of 0.27 mm
  • recrystallization annealing was performed at 880 ° C for 10 s in a dry atmosphere with a dew point of -45 ° C, and then finish annealing was performed. .
  • the annealing separator was applied before or after recrystallization annealing according to Table 10. Coating was carried out using a roll coater, and was baked at an ultimate plate temperature of 250 ° C and then allowed to cool. The baking was done by baking bread over open fire. 45 at 860 ° C for finish annealing After secondary recrystallization by holding in an N 2 atmosphere for a period of time, purification was performed by holding in an H 2 atmosphere at 1200 ° C. for 5 hours. As in Example 1, the components of the annealing separator and the application conditions were set under the conditions corresponding to each No. shown in Table 5.
  • the insulating coating used was a cuprate-based one containing a commonly used organic resin, and was baked at a temperature of 300 ° C.
  • the strain relief annealing was performed in a nitrogen atmosphere at 750 ° C for 2 hours.
  • Table 10 shows the applicability of the annealing separator, the adhesion of the annealing separator after drying, the annealing separation effect after finish annealing, the magnetic properties, the properties of the insulating coating, and the 1,2,3,36 content after finish annealing. Is shown. In Nos.
  • the order of applying the annealing separator was two before and after recrystallization annealing.
  • the annealing separator of the present invention has good coating properties of the separating agent, adhesion of the separating agent after drying, and finish annealing regardless of the sequence of the annealing separating agent application step. An annealing separation effect at the time is obtained.
  • Comparative Examples Nos. 1 and 4 there was a difference in the annealing separation effect depending on the application sequence of the annealing separating agent. This is considered to be due to the difference in the amount of the annealing separator attached during the final annealing for the same reason as in Example 1.
  • the one to which the annealing separator according to the present invention is applied has good applicability of the annealing separator, adhesion of the annealing separator after drying, annealing separation effect after finish annealing, magnetic properties, insulation coating properties, and impurities in the base iron. It can be seen that this indicates the purification of In particular, the film properties were better than those of the forsterite films shown in Examples 1 and 2. This shows that the annealing separator of the present invention can be advantageously applied to a grain-oriented electrical steel sheet that uses an inhibitor and requires purification by high-temperature annealing.
  • a grain-oriented electrical steel sheet having no forsterite coating and excellent in magnetic properties and workability was prepared by the following method.
  • Oyopi Se A steel slab containing no inhibitor-forming component, each of which was suppressed to less than 10 massppm, was produced by a continuous casting method. The balance was iron and inevitable impurities. After the steel slab was heated to 1200, it was hot-rolled into a hot-rolled sheet having a thickness of 1.8 mm, and annealed at 950 ° C for 6.0 seconds.
  • the annealing separator was applied before or after recrystallization annealing according to Table 11.
  • the coating was performed using a mouth coater, and was baked at an ultimate plate temperature of 250 ° C and then allowed to cool. The baking was performed by baking bread directly on the fire.
  • finish annealing is secondary recrystallization by holding at 87 5 ° C with 45 hours between the N 2 atmosphere and maintained at subsequent 1000 ° C in a 5:00 between Ar atmosphere.
  • decarburization annealing was performed in an oxidizing atmosphere to reduce the amount of C in the base steel.
  • the components of the annealing separator and the application conditions were set under the conditions corresponding to each No. shown in Table 5.
  • the insulating film used was a chromate-based material containing a commonly used organic resin, and was baked at a temperature of 300 ° C.
  • the strain relief annealing was performed in a nitrogen atmosphere at 750 ° C for 2 hours.
  • Table 11 shows the applicability of the annealing separator, the adhesion of the annealing separator after drying, the annealing separation effect after finish annealing, the magnetic properties, the insulating coating properties, and the Al, C, N, S, and Se after finish annealing. Shows the content.
  • good results were obtained with steel to which the annealing separator according to the present invention was applied irrespective of the sequence of the annealing separator applying step.
  • a grain-oriented electrical steel sheet was prepared by applying the annealing separator shown in Table 12.
  • the manufacturing process is as shown in Table 13.
  • Steps A and B (the method using the final annealing) were performed in Example 3, and Steps C and D (the method using the two patch annealings) were performed according to Example 1.
  • Slab and manufacturing conditions were applied.
  • the annealing separator the components other than the main components and the application conditions were the same as in Example 1. No. 6 was substantially recognized as a solution because no light scattering was recognized by the light scattering method.
  • Viscosity Solid content ratio (mass ⁇ 1 ⁇ 2)
  • Each steel slab having the components described in Table 14 was manufactured from molten steel by a continuous casting method, and a grain-oriented electrical steel sheet was prepared in the same manner as in Example 5 according to the classification in Table 15.
  • the C content before secondary recrystallization was not particularly adjusted, and therefore the decarburization treatment was omitted.
  • recrystallization annealing was performed in an oxidizing atmosphere with a dew point of 30 ° C, and the C content before secondary recrystallization annealing was adjusted to 100 to 150 mass ppm.
  • the conditions for applying the annealing separator were in accordance with No. 13 in Table 5.
  • Table 15 shows the results. The magnetic properties also depend on the composition of the steel sheet, but all achieve the expected magnetic properties for each component. Table 14
  • the annealing separator for grain-oriented electrical steel sheets according to the present invention has good coatability and adhesion to a steel sheet, and can secure a stable operation in the step of applying the annealing separator and the subsequent steps. It also has excellent operability, such as achieving adhesion, without impeding purification and decarburization, and eliminating the need for coating removal work.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

A method for annealing a grain oriented magnetic steel sheet, wherein a treating fluid containing an Al compound in the form of a solution or a colloidal solution and further a compound stable at a high temperature and having a viscosity of 25 mPa s or less is used as an separation agent for annealing. The separating agent exhibits good separation effect for annealing without the occurrence of powdery dust problems and of the staining of a production line. A method for producing a grain oriented magnetic steel sheet, wherein the above separation agent for annealing is applied to a finish annealing step and the like. The method allows the production of a grain oriented magnetic steel sheet which has no forsterite-like coating film or is excellent in characteristics of a forsterite-like coating film.

Description

方向性電磁鋼板の焼鈍方法およぴ方向性電磁鋼板の製造方法 技術分野  Method of annealing grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
本発明は、焼鈍に際して方向性電磁鋼板同士の焼付を防止する焼鈍分離剤、 およびそれを禾 IJ用した焼鈍方法に関するものである。  The present invention relates to an annealing separator for preventing seizure of grain-oriented electrical steel sheets during annealing, and an annealing method using the same for IJ.
本発明はまた、 その焼鈍分離剤ョを活用した、方向性電磁鋼板の製造方法に 関するものである。 ここで、方向性電糸磁鋼板にはフオルステライ ト質被膜を 田 1  The present invention also relates to a method for producing a grain-oriented electrical steel sheet utilizing the annealing separator. Here, a forsterite coating is applied to the grain-oriented electric steel sheet.
有するものと有さないものがある力 本発書明はそれぞれの製造方法に関する ものである。 背景技術 Some have and some do not. This statement is about each manufacturing method. Background art
電磁鋼板は、変圧器や回転機の鉄心材料として広く用いられている材料で ある。 中でも、 方向性電磁鋼板は、 結晶方位をゴス (Gos s) 方位と呼ばれる { 110} く 001>方位に高度に集積させることにより、 とくに優れた低鉄損を達 成した鋼板である。 電磁鋼板に要求される特性のうち、特に鉄損特性は製品 のエネルギー口スに直接つながる特性であるために重要視されている。  Electrical steel sheets are widely used as core materials for transformers and rotating machines. Among them, grain-oriented electrical steel sheet is a steel sheet that achieves particularly excellent low iron loss by highly accumulating the crystal orientation in the {110} and 001> orientations called the Goss orientation. Of the properties required for electrical steel sheets, iron loss properties, in particular, are regarded as important because they directly lead to the energy consumption of products.
また、 電磁鋼板においては、 打ち抜き性 (punchab i l ity)や曲げ加工性も 重要な特性である。 すなわち、 変圧器や回転機の鉄心を作製する場合には、 電磁鋼板は打ち抜き、せん断おょぴ曲げ等の加工を経て所定の形状とされる。 またこれらの加工を行なうための加工ラインを鋼帯が通る際には、鋼板が湾 曲されたりする。 したがって、 上記特性が重要なのである。 一般的に方向性電磁鋼板は、 特開 2003- 41323号公報の第 〔0005〕 段落など に開示されている工程により製造されている。 すなわち、圧延により得られ た鋼板には再結晶焼鈍が施され、 その後、仕上げ焼鈍と呼ばれる 1回のバッ チ焼鈍が施される。 このバッチ焼鈍によって二次再結晶が促進され、 ゴス方 位の結晶粒が集積される。  In electrical steel sheets, punchability and bendability are also important properties. That is, when manufacturing an iron core for a transformer or a rotating machine, the electromagnetic steel sheet is formed into a predetermined shape through processing such as punching and shear bending. Also, when a steel strip passes through a processing line for performing these processing, the steel sheet may be bent. Therefore, the above characteristics are important. Generally, grain-oriented electrical steel sheets are manufactured by processes disclosed in, for example, paragraph [0005] of JP-A-2003-41323. That is, the steel sheet obtained by rolling is subjected to recrystallization annealing, and then to one batch annealing called finish annealing. This batch annealing promotes secondary recrystallization, and accumulates Goss-directional crystal grains.
ところで、ノ ツチ焼鈍においては鋼板はコイル状で加熱されるが、方向性 電磁鋼板を製造するための仕上げ焼鈍は一般に高温である必要力 Sあるので、 コイル内で鋼板同士の焼き付きが発生する。この焼き付きを防 lbするために は、 MgOを主成分とする焼鈍分離剤を塗布し、 焼鈍に際してフナルステラィ ト質被膜を形成させる技術が広く用いられている。フオルステティ ト質被膜 は、 焼鈍分離剤中の MgOと、 鋼板表面に形成される酸化物中の S i 02とが反応 して形成されるものと考えられている (ただし該被膜中には Feも含有され る)。 By the way, in the notch annealing, the steel sheet is heated in a coil shape. Finish annealing for producing electrical steel sheets generally requires a high temperature, S, so that the steel sheets are seized in the coil. In order to prevent this burning, a technique of applying an annealing separator containing MgO as a main component and forming a funal stellite coating at the time of annealing is widely used. Fuorusuteti DOO quality coating and MgO in the annealing separating agent, during S i 0 2 and is believed to be formed by the reaction (although the coating film of the oxide formed on the surface of the steel sheet Fe Are also included).
このフォルステライ ト質被膜は焼鈍分離性能が良好で、また;^向性電磁鋼 板の特性に有利な面も有する。 例えば、 フォルステラィ ト質被膜の上には、 硬質のコーティング (張力被膜) を密着性良く付与することができ、 鋼板に 張力を付与することによって低鉄損化を図ることができる。  This forsterite coating has good annealing separation performance and also has an advantage in the properties of directional magnetic steel sheets. For example, a hard coating (tensile coating) can be applied on the forsterite coating with good adhesion, and low iron loss can be achieved by applying tension to the steel sheet.
反面、 フオルステライ ト被膜は硬質のグラス被膜であるため、 フォルステ ライ ト質被膜を有する方向性電磁鋼板は打ち抜き性や曲げ加ェ性が共に劣 る。 すなわち、 打ち抜きを行なう金型が早く磨耗したり、 鋼板 Oせん断面に かえりが発生したりすることが問題となっている。 また、 曲げカロェに際して も剥離を生じやすいので、例えば、歪取り焼鈍後に曲げなどのカロェを施して も剥離しない良好な耐曲げ剥離性が求められる。 これらの問題の解決のため、  On the other hand, since the forsterite coating is a hard glass coating, the grain-oriented electrical steel sheet having the forsterite coating is inferior in both punching properties and bending properties. In other words, there is a problem that the die for punching is worn out quickly and burrs are generated on the O-sheared surface of the steel sheet. In addition, since peeling is likely to occur even when bending and bending, good bending and peeling resistance that does not peel even when bending and the like are applied after strain relief annealing, for example, is required. To resolve these issues,
(1) 加工性の良い (加工性を重視した) 方向性電磁鋼板を^る手段とし て、加工性に不利なフォルステライ ト質被膜自体を形成させずに方向性電磁 鋼板を製造する方法、  (1) As a means of producing a grain-oriented electrical steel sheet with good workability (emphasizing workability), a method of manufacturing a grain-oriented electrical steel sheet without forming a forsterite coating that is disadvantageous to workability,
(2) 低鉄損等を重視し、 歪取り焼鈍後に曲げなどの加工を施しても剥離 しない良好な耐曲げ剥離性を有するフォルステラィ ト質被膜を形成させる 方法、  (2) A method of forming a forsterite coating film having good bending and peeling resistance, which does not peel even when subjected to processing such as bending after strain relief annealing, with emphasis on low iron loss and the like,
などが提案されている。  And so on.
(1)の方法としては、 焼鈍分離剤の成分を変化させる方法、 すなわち、 鋼 板表面の Si02と反応する MgOを含まない焼鈍分離剤を、 再結晶; ¾鈍後に塗布 し、 仕上げ焼鈍を施す方法が試みられている。 ここで、 MgO以外を主成分とする焼鈍分離剤と しては、 特開平 6 - 136448号 公報、特開平 7- 118750号公報およぴ特開平 5- 156362号公報に開示されている、 アルミナ (粉末) を主成分としたものや、 特開平 11 - 61261号公報およぴ特開 平 8- 134542号公報に開示されているアルミナおよび/またはシリ力を主成 分としたものが知られている。 これらの焼鈍分離剤は静電塗布されるか、水 スラリ一あるいはアルコール類等に懸濁させた懸濁液として鋼板に塗布さ れる。 しかしながら、 これらの焼鈍分離剤は鋼板に対する密着性が乏しいた めに、 焼鈍分離剤塗布後の製造ラインを通板中に剥離しやすい。 この結果、 1)塗布量の制御が難しい。 2)焼鈍分離剤の歩溜ま りが悪い。 3)粉塵の発生や、 それによるライン汚染が懸念される、 などの問題があった。 鋼板への密着性に優れた焼鈍分離剤としては、コロイ ド状態のアルミナの 集合体が羽毛状形態となったものを主成分とする焼鈍分離剤が、 特開平 10-121142号公報で開示されている。 しかしながら、 この焼鈍分離剤は鋼板 へ均一に塗布することが難しいところに問題があった。 また、 この焼鈍分離 剤は、絶縁被膜をさらに形成する前に、酸洗あるいはアル力リ洗浄による除 去工程が必要とされており、 操業上不便である。 結局、 従来は、 一度フオルステライ ト質被膜を形成した後に、 酸洗、 化学 研磨あるいは電解研磨等の手段によってフォルステラィ ト質被膜を除去す るという、 コス トゃ手間の楼かる方法が、最も実用的な方法として行なわれ てきた。 なお、焼鈍分離剤を使用せずに、加工性のよい方向性電磁鋼板を製造する 試みもなされている。 例えば、 同 特開 2000 - 129356は、 インヒ ビター形成成 分を含まない成分系にてゴス方位結晶粒を二次再結晶させる技術を提案し、 この方法によって仕上げ焼鈍温度が低温化し、條鈍分離剤が不要となるとし ている。しかながら、方向性電磁鋼板の仕上げ焼魏としては低温であっても、 鋼板の焼き付きを完全に防止し得る水準ではなく、安定生産という観点から は問題があった。 一方、 (2)の方法としては、 前記特開 2003-41323号公報に、 再結晶焼鈍後 に、連続焼鈍を挟む 2回のパッチ焼鈍を施すことにより、磁気特性と被膜特 性を両立する技術が開示されている。 すなわち、 従来の技術では、 仕上げ焼 鈍において二次再結晶の進行とフォルステラィ ト質被膜の 成との両方を 実現している。 しかし、 それぞれの最適な焼鈍条件が一致しないため、 磁気 特性の向上を図ろうとすると被膜特性が劣化し、逆に被膜特'ト生の向上を図ろ うとすると磁気特性が劣化する。これに対して特開 2003-41323に開示の技術 は、 2回のパッチ焼鈍で仕上げ焼鈍の機能を達成するようにし、 1回目のパ ツチ焼鈍で二次再結晶を促進し、 2回目のパッチ焼鈍でフオノレステライ ト質 被膜を形成しよう とするものである。 As the method of (1) a method of changing the component of the annealing separating agent, i.e., an annealing separator containing no MgO which reacts with Si0 2 steel plate surface, recrystallization; applied after ¾ blunt, the finish annealing Application methods have been attempted. Here, examples of the annealing separating agent containing as a main component other than MgO include alumina disclosed in JP-A-6-136448, JP-A-7-118750 and JP-A-5-156362. (Powder) as a main component, and those containing alumina and / or silicium as a main component disclosed in JP-A-11-61261 and JP-A-8-134542. ing. These annealing separators are applied electrostatically or as a suspension in water slurry or alcohols to the steel sheet. However, since these annealing separators have poor adhesion to steel sheets, they tend to peel off during the production line after application of the annealing separator. As a result, 1) it is difficult to control the amount of coating. 2) The yield of the annealing separator is poor. 3) There were problems such as the generation of dust and concerns about line contamination. As an annealing separator having excellent adhesiveness to a steel sheet, an annealing separator mainly composed of an aggregate of colloidal alumina in a feather form is disclosed in Japanese Patent Application Laid-Open No. 10-121142. ing. However, there was a problem in that it was difficult to apply the annealing separator uniformly to the steel sheet. In addition, this annealing separator requires a removal step by pickling or cleaning before further forming an insulating film, which is inconvenient in operation. After all, conventionally, the most practical method is to form the forsterite coating once and then remove the forsterite coating by means of pickling, chemical polishing or electrolytic polishing, etc. It has been done as an effective method. Attempts have been made to produce grain-oriented electrical steel sheets with good workability without using an annealing separator. For example, Japanese Patent Application Laid-Open No. 2000-129356 proposes a technique for secondary recrystallization of Goss-oriented crystal grains in a component system not containing an inhibitor-forming component. The agent is no longer needed. However, even at low temperatures, the finish of grain-oriented electrical steel sheets is not at a level that can completely prevent seizure of the steel sheets, and there is a problem from the viewpoint of stable production. On the other hand, as the method (2), JP-A-2003-41323 discloses a technique for achieving both the magnetic properties and the film properties by performing two patch annealing steps after continuous re-annealing after recrystallization annealing. Is disclosed. That is, in the conventional technology, both the progress of the secondary recrystallization and the formation of the forsterite coating are achieved in the finish annealing. However, since the optimum annealing conditions do not match each other, the coating properties deteriorate when trying to improve the magnetic properties, and conversely, the magnetic properties deteriorate when trying to improve the coating properties. On the other hand, the technology disclosed in JP-A-2003-41323 achieves the function of finish annealing by performing two patch annealings, promotes secondary recrystallization by the first patch annealing, and performs the second patch annealing. It is intended to form a phonoresterite coating by annealing.
この公報では 1回目のバッチ焼鈍時に鋼板同士の密着が懸念される場合、 焼鈍分離剤を塗布してもよいとしている。 しかし、再結晶焼 ¾後の 1回目の バッチ焼鈍に MgOを主成分とする焼鈍分離剤を用いると、 2回目のパッチ焼 鈍でのフォルステライ ト被膜形成に悪影響を及ぼし、良好な彼膜特性を得る こととが非常に困難になってしまう。 また、 前記特開 2003- 41323号公報の方 法では、 1回目のバッチ焼鈍後に脱炭を行なうことが好ましレヽが、 フォルス テライ ト質被膜のような被膜は脱炭を阻害するという不都合もある。  This publication states that if there is a concern that the steel sheets may adhere to each other during the first batch annealing, an annealing separator may be applied. However, if an annealing separator containing MgO as a main component is used in the first batch annealing after recrystallization annealing, the formation of a forsterite film in the second patch annealing is adversely affected, and the favorable film properties are improved. Is very difficult to obtain. In the method of JP-A-2003-41323, it is preferable to perform decarburization after the first batch annealing, but there is also a disadvantage that a coating such as a forsterite coating hinders decarburization. is there.
他方、 MgOを主成分とする焼鈍分離剤を用いずに 1回目のノ ツチ焼鈍を施 そうとすると、 (1)と同様の諸問題が発生する。 発明の開示  On the other hand, if the first notch annealing is performed without using an annealing separator mainly composed of MgO, the same problems as in (1) occur. Disclosure of the invention
〔発明が解決しようとする課題〕  [Problems to be solved by the invention]
本発明は上述の問題を解消するためになされたものであり、 MgOを含まず、 かつ鋼板への塗布性および塗布後の密着性に優れ、粉塵問題やそれによるラ ィン汚染を生じさせることなく方向性電磁鋼板を製造できる焼鈍分離剤、お ょぴそれを利用した焼鈍方法を提案するものである。  The present invention has been made to solve the above-mentioned problems, and does not contain MgO, has excellent coatability to a steel sheet and excellent adhesion after coating, and causes a dust problem and a resulting line contamination. It proposes an annealing separator that can produce grain-oriented electrical steel sheets without any problem, and an annealing method using it.
また、本発明はその焼鈍分離剤を用いた、変圧器や回転機の鉄心材料に好 適な方向性電磁鋼板の製造方法に関するものである。 とくに、 フォルステラ ィ ト質被膜の被膜特性に優れた方向性電磁鋼板、およぴフオノレステラィ ト質 被膜を有さない、加工性に優れた方向性電磁鋼板の製造方法を提案するもの である。 The present invention also relates to a method for producing a grain-oriented electrical steel sheet suitable for an iron core material of a transformer or a rotating machine, using the annealing separator. In particular, it proposes a method of manufacturing a grain-oriented electrical steel sheet with excellent coating properties of forsterite coating and a method of producing a grain-oriented electrical steel sheet with excellent workability without a phono-resterite coating. It is.
〔課題を解決するための手段〕 [Means for solving the problem]
本発明の形態は、 ( 1 )方向性電磁鋼板の焼鈍方法、 (2 ) 焼鈍分離剤とし ての使用、 (3 ) フォルステライ ト質被膜を有する方向性電磁鋼板の製造方 法および(4 ) フォルステラィ ト質被膜を有さない方向性電磁鋼板の製造方 法に類別される。  The embodiments of the present invention include (1) a method of annealing a grain-oriented electrical steel sheet, (2) a use as an annealing separator, (3) a method of producing a grain-oriented electrical steel sheet having a forsterite coating, and (4) It is classified as a method of manufacturing grain-oriented electrical steel sheets without forsterite coating.
( 1 ) 鋼板の焼鈍方法。 (1) Steel sheet annealing method.
本発明は、  The present invention
鋼板に焼鈍分離剤を塗布し、塗布された鋼板を焼鈍する、方向性電磁鋼板 の焼鈍方法であって、前記焼鈍分離剤が、 A1化合物を溶液またはコロイ ド溶 液の状態で含有し、かつ、高温で安定な化合物を含有し、さらに粘度が 25mPa ' s以下である、 方向性電磁鋼板の焼鈍方法である。 A method for annealing a grain-oriented electrical steel sheet, comprising applying an annealing separator to a steel sheet and annealing the coated steel sheet, wherein the annealing separator contains an A1 compound in the form of a solution or a colloid solution, and A method for annealing a grain-oriented electrical steel sheet, comprising a compound stable at high temperatures and having a viscosity of 25 mPa's or less.
前記焼鈍分離剤の塗布の後、前記焼鈍分離剤を焼き付ける焼き付け処理を 施すことが好ましい。 ここで、 高温で安定な化合物とは、 対象とする焼鈍に際して、 該化合物が 鋼板表面もしくは鋼板表面の酸化物等と反応しないあるいは反応を起こし にくいこと、 および、該化合物自身が反応しないあるいは反応を起こしにく いことを指す。 具体的には、 Si化合物、 Sr化合物、 Ca化合物、 Zr化合物、 Ti 化合物おょぴ Ba化合物の群から選ばれる少なく とも 1種が例示される。なお、 MgOは単独では高温でも安定であるが、 鋼板表面の酸化物と反応するので、 ここでいう 「高温で安定」 には該当しない。 また、 ここで、 A1化合物は溶液状態またはコロイ ド溶液状態にあるので、 溶液あるいはコロイ ド溶液を形成する液体(便宜上溶媒と総称する) と親和 性を有する構造部 (官能基等) を有する物質である。 従って、 例えば一般の スラリ一や懸濁液に用いられるアルミナ粒子などとは化学的に異なる物質 である。 また言うまでもなく、存在形態においてもスラリーや懸濁液と相違 する。 After the application of the annealing separator, it is preferable to perform a baking process of baking the annealing separator. Here, a compound that is stable at high temperatures means that the compound does not react with or hardly reacts with the steel sheet surface or oxides on the steel sheet surface during the target annealing, and that the compound itself does not react or reacts. It is hard to wake up. Specifically, at least one selected from the group consisting of Si compounds, Sr compounds, Ca compounds, Zr compounds, Ti compounds and Ba compounds is exemplified. Although MgO alone is stable at high temperatures, it does not fall under “high-temperature stability” as it reacts with oxides on the steel sheet surface. Here, since the A1 compound is in a solution state or a colloid solution state, a substance having a structural part (functional group or the like) having an affinity for a solution or a liquid forming the colloid solution (collectively referred to as a solvent for convenience). It is. Therefore, it is a substance that is chemically different from, for example, general slurry and alumina particles used in suspensions. Needless to say, even in the form of existence, it is different from slurry or suspension To do.
溶媒は水をベースとすることが好ましい。 また、 前記 A1化合物は、 水酸基 および有機酸基を有する A1化合物、および、水酸基おょぴ有機酸基を有する A1化合物の脱水反応物 (一部脱水反応物も含む)、 の少なく ともいずれかで あることが好ましい。 さらに好ましくは、 前記 A1化合物は、 塩基性酢酸 Al、 塩基性ギ酸 Al、 塩基性塩酸 Al、 塩基性硝酸 Al、 塩基性シュゥ酸 Al、 塩基性ス ルファミン酸 Al、 塩基性乳酸 A1および塩基性クェン酸 A1から選ばれる 1種、 または 2種以上の混合物である。 なお、 前記焼鈍分離剤が、 前記高温で安定な化合物を、 溶液またはコロイ ド溶液の状態で含有してもよい。 また、 前記 A1化合物の含有量が下記式(1)で表される固形分比率で 40〜 95mas s°/。であることが好ましい。  Preferably, the solvent is water-based. Further, the A1 compound is at least one of an A1 compound having a hydroxyl group and an organic acid group, and a dehydration reaction product (including a partial dehydration reaction product) of the A1 compound having a hydroxyl group and an organic acid group. Preferably, there is. More preferably, the A1 compound is a basic acetic acid Al, a basic formic acid Al, a basic hydrochloric acid Al, a basic nitric acid Al, a basic oxalic acid, a basic sulfamic acid Al, a basic lactic acid A1 and a basic quinone One or a mixture of two or more selected from the acids A1. The annealing separator may contain the compound stable at a high temperature in the form of a solution or a colloid solution. Further, the content of the A1 compound is 40 to 95 mass ° / in terms of a solid content ratio represented by the following formula (1). It is preferable that
A1化合物の固形分比率 = (前記 A1化合物の固形分)/ { (前記 A1化合物の固形 分) + (前記高温で安定な化合物の固形分(和)) } 式(1 )  Solid content ratio of A1 compound = (Solid content of A1 compound) / {(Solid content of A1 compound) + (Solid content (sum) of compound stable at high temperature)} Formula (1)
ただし、 前記 A1化合物の固形分は A1203に換算し、 前記高温で安定な化合 物は、前記焼鈍分離剤を塗布した後に焼き付けた場合に生成される主要化合 物に換算するものとする。 本発明は好ましくは、 However, the solid content of the A1 compound is converted to A1 2 0 3, a stable compound wherein the elevated temperature is assumed to be converted into the primary compounds produced when baked after applying the annealing separator . The present invention preferably comprises
鋼板に焼鈍分離剤を塗布し、塗布された鋼板を焼鈍する、方向性電磁鋼板 の焼鈍方法であって、  A method for annealing a grain-oriented electrical steel sheet, comprising applying an annealing separator to a steel sheet and annealing the coated steel sheet,
前記焼鈍分離剤が、 A1化合物を溶液またはコロイ ド溶液の状態で含有し、 か つ、 S i化合物、 Sr化合物、 Ca化合物、 Zr化合物、 Ti化合物おょぴ Ba化合物の群 から選ばれる少なく とも 1種の化合物をさらに含有し、 前記 A1化合物の含有 量が下記式(2)で表される固形分比率で 40〜95mas s°/。であり、 かつ、前記焼鈍 分離剤の粘度が 25niPa · s以下である、 方向性電磁鋼板の焼鈍方法である。 ここで、 The annealing separator contains the A1 compound in the form of a solution or a colloid solution, and at least one selected from the group consisting of Si compound, Sr compound, Ca compound, Zr compound, Ti compound and Ba compound. One type of compound is further contained, and the content of the A1 compound is 40 to 95 mass / ° in a solid content ratio represented by the following formula (2). And a viscosity of the annealing separating agent is 25 niPa · s or less. here,
A1化合物の固形分比率 = (A1化合物の固形分)/ { (A1化合物の固形分) + (前 記少なく とも 1種の化合物の固形分(和)) } 式(2) ここで各化合物の固形分は下記の各化合物の重量に換算された値である A1化合物 · · ·Α1203、 Si化合物 · · 'Si02Solid content ratio of A1 compound = (solid content of A1 compound) / {(solid content of A1 compound) + (previously described solid content of at least one compound (sum))} Formula (2) Wherein the solids content of the compound is converted value to the weight of each compound of the following A1 compound · · · Α1 2 0 3, Si compound · · 'Si0 2,
Sr化合物 ' ' '31~0、 Ca化合物 ·'·θ3θ、 Sr compound '' '' 31 ~ 0, Ca compound
Zr化合物 · · -Zr02、 Ti化合物 · ·'Τί02Zr compound · · -Zr0 2, Ti compound · · 'Τί0 2,
Ba化合物 · · ·Β3θ。 ここで、 前記焼鈍分離剤が、 前記 Si化合物、 Sr化合物、 Ca化合物、 化合 物、 Ti化合物おょぴ Ba化合物の群から選ばれる少なく とも 1種の化合物を、 溶液またはコ'ロイ ド溶液の状態で含有してもよい。 とくに好ましい発明の形態は、鋼板に焼鈍分離剤を塗布し、塗布さ bた鋼 板を焼鈍する、 方向性電磁鋼板の焼鈍方法であって、 前記焼鈍分離剤 、 A1 化合物おょぴ Si化合物を主成分と し、 A1化合物と Si化合物との比率が Al203/(A1203 + Si02)に換算した値で 40〜95mass。/。であり、 粘度が 25mPa's以 下であり、 かつ、 溶液またはコロイ ド溶液の状態である、 方向性電磁 兩板の 焼鈍方法である。 上記発明において、前記焼鈍分離剤はさらに Sまたは Sを含有するィ匕合物 を、前記焼鈍分離剤を塗布した後に焼き付けた場合について求められる 固形 分比率で 25maSS»/。以下含有してもよい。 前記の 「 Sまたは Sを含有する化合 物」 は、 硫酸 Sr、 硫酸 Mgおよび硫化 Mgから選ばれる少なく とも 1種で ¾>るこ とが好ましい。 Ba compound · · · 3θ. In this case, the annealing separating agent may include at least one compound selected from the group consisting of the Si compound, the Sr compound, the Ca compound, the compound, the Ti compound and the Ba compound, in the form of a solution or a colloid solution. It may be contained in a state. A particularly preferred embodiment of the invention is a method for annealing a grain-oriented electrical steel sheet, comprising applying an annealing separator to a steel sheet and annealing the coated steel sheet, wherein the annealing separator is an A1 compound and a Si compound. as a main component, 40~95Mass a value ratio in terms of Al 2 0 3 / (A1 2 0 3 + Si0 2) of the A1 compound and Si compound. /. And a viscosity of 25 mPa's or less and in a solution or colloid solution state. In the above invention, the annealed separating agent further has a solid content ratio of 25 ma SS // which is required when the annealed product containing S or S is baked after applying the annealed separating agent. The following may be contained. The “S or S-containing compound” is preferably at least one selected from Sr sulfate, Mg sulfate and Mg sulfide.
(2) 焼鈍分離剤としての使用 (2) Use as an annealing separator
本発明は、 A1化合物を溶液またはコロイ ド溶液の状態で含有し、 つ、 Si化合物、 Sr化合物、 Ca化合物、 Zr化合物、 Ti化合物および Ba化合物の群か ら選ばれる少なく とも 1種の化合物をさらに含有する液体であって、 ΙΪΓ記 A1 化合物の含有量が前記の式(2)で表される固形分比率で 40〜95mass°/。であり、 かつ、 粘度が 25mPa's以下である液体の、 焼鈍分離剤としての使用であ る。 ここで、 前記焼鈍分離剤が、 前記 Si化合物、 Sr化合物、 化合物、 Zr化合 物、 Ti化合物および Ba化合物の群から選ばれる少なく とも 1種の化合物を、 溶液またはコロイ ド溶液の状態で含有してもよい。 本発明はまた、 A1化合物おょぴ Si化合物を主成分とし、 A1化合物と Si化合 物との比率が Al203/ (A1203 + Si02)に換算した値で 40〜95mass%であり、粘度 が 25mPa ' s以下であり、かつ、溶液またはコ口ィ ド溶液の状態である液体の、 焼鈍分離剤としての使用である。 その他、 ( 1 )に記載の鋼板の焼鈍方法に用いられる好適な焼鈍分離剤は、 言うまでもなく、 すべて ( 2 ) の発明にも適用可能である。 The present invention provides an A1 compound in the form of a solution or a colloid solution, and at least one compound selected from the group consisting of a Si compound, an Sr compound, a Ca compound, a Zr compound, a Ti compound and a Ba compound. The liquid further contains: the content of the compound A1 is 40 to 95 mass ° / in terms of a solid content ratio represented by the above formula (2). And a liquid having a viscosity of 25 mPa's or less is used as an annealing separator. Here, the annealing separator contains at least one compound selected from the group consisting of the Si compound, the Sr compound, the compound, the Zr compound, the Ti compound, and the Ba compound in the form of a solution or a colloid solution. May be. The present invention also includes a main component A1 compound Contact Yopi Si compound, 40~95Mass% in value ratio in terms of Al 2 0 3 / (A1 2 0 3 + Si0 2) of the A1 compound and Si compound And a liquid having a viscosity of 25 mPa's or less and being in the form of a solution or a coid solution is used as an annealing separator. In addition, it goes without saying that the preferred annealing separator used in the method for annealing a steel sheet according to (1) is applicable to all the inventions of (2).
( 3 ) フオルステライ ト質被膜を有する方向性電磁鋼板の製造方法 本発明は、 (3) A method for producing a grain-oriented electrical steel sheet having a forsterite coating
C : 0. 08mas s0/0以下、 Si : 2. 0〜8. Omass0/ Mn: 0. 005·〜: L . Omass0/0を含む溶 鋼から作成したスラブ (薄スラブ等も含む。 以下同様) を最終板厚まで圧延 して鋼板とする工程と、前記鋼板に再結晶焼鈍を施す工程と、前記鋼板にパ ツチ焼鈍を( 1 )に記載の焼鈍方法で施す第 1のバッチ焼鈍工程と、を有し、 ここで、第 1のバッチ焼鈍工程において焼鈍前に塗布する上記焼鈍分離剤 を第 1の焼鈍分離剤と呼ぶものとすると、 C: 0. 08mas s 0/0 or less, Si: 2. 0~8 Omass 0 / Mn:. 0. 005 · ~: including L Omass 0/0 slab that was created from the soluble steel containing (thin slab or the like. The same shall apply hereinafter) to the final sheet thickness to form a steel sheet, a step of subjecting the steel sheet to recrystallization annealing, and a first batch of applying the patch annealing to the steel sheet by the annealing method according to (1). An annealing step, wherein the annealing separator applied before annealing in the first batch annealing step is referred to as a first annealing separator.
前記再結晶焼鈍は、前記第 1の焼鈍分離剤の塗布の前に施すか、あるいは、 前記第 1の焼鈍分離剤の塗布の後であって前記バッチ焼鈍の前に施すかの いずれかであって、 かつ、 第 1の焼鈍分離剤の片面当りの塗布量を 0. 005〜 The recrystallization annealing is performed either before the application of the first annealing separator or after the application of the first annealing separator and before the batch annealing. And the amount of application of the first annealing separator on one side is 0.005 to
5g/m2とし、 And 5g / m 2,
その後、 前記鋼板に連続焼鈍を施す工程と、 前記鋼板に MgOを含有する第 2の焼鈍分離剤を塗布し、その後バッチ焼鈍を施す第 2のパッチ焼鈍工程と を有する、 方向性電磁鋼板の製造方法である。  Thereafter, a step of subjecting the steel sheet to continuous annealing, and a second patch annealing step of applying a second annealing separator containing MgO to the steel sheet and thereafter performing batch annealing, the production of grain-oriented electrical steel sheet. Is the way.
本方向性電磁鋼板は、磁気特性おょぴフオルステライ ト質被膜の被膜特性 に優れる。 ( 4 ) フオルステライ ト質被膜を有しない方向性電磁鋼板の製造方法 本発明は、 The grain-oriented electrical steel sheet has excellent magnetic properties and forsterite coating properties. (4) A method for producing a grain-oriented electrical steel sheet having no forsterite coating
C : 0. 08mass0/0以下、 Si: 2. 0〜 8. Omass0/ Mn: 0. 005〜: L. Omass%を含む溶 鋼から作成したスラブを最終板厚まで圧延して鋼板とする工程と、前記鋼板 に再結晶焼鈍を施す工程と、 前記鋼板にバッチ焼鈍を ( 1 ) に記載の焼鈍方 法方法で施す仕上げ焼鈍工程と、 を有し、 C: 0. 08mass 0/0 less, Si: 2. 0~ 8. Omass 0 / Mn: 0. 005~: a steel plate by rolling a slab made from soluble steel containing L. Omass% to a final sheet thickness A step of performing recrystallization annealing on the steel sheet; and a finish annealing step of performing batch annealing on the steel sheet by the annealing method according to (1).
ここで前記再結晶焼鈍は、前記仕上げ焼鈍工程における焼鈍分離剤の塗布 の前に施すか、 あるいは、 ( 1 ) に記載の焼鈍分離剤の塗布の後であって前 記パッチ焼鈍の前に施すかのいずれかであって、 かつ、前記焼鈍分離剤の片 面当りの塗布量を 0. 005〜5g/m2とする、 方向性電磁鋼板の製造方法である。 本方向性電磁鋼板は、 磁気特性おょぴ加工性に優れる。 上記 (3 ) および (4 ) のいずれの発明においても、 インヒビター形成成 分を用いない方向性電磁鋼板への適用が可能である。 この場合、前記スラブ が、 A1を 150ppm以下、 N , S , Seを各々 50ppm以下に低減した組成を有する 溶鋼から作成したスラブであることが好ましい。 また、 上記 (3 ) および (4 ) のいずれの発明においても、 スラブを最終 板厚まで圧延して鋼板とする前記工程が、前記 A1スラブを熱間圧延して熱延 鋼板とする工程と、必要に応じて前記熱延鋼板を焼鈍する熱延板焼鈍を施す 工程と、 1回の冷間圧延、 もしくは、 中間焼鈍を挾む 2回以上の冷間圧延を 施して最終板厚とする工程と、 を有することが好ましい。 Here, the recrystallization annealing is performed before the application of the annealing separating agent in the finish annealing step, or is performed after the application of the annealing separating agent according to (1) and before the patch annealing. A method for producing a grain-oriented electrical steel sheet, wherein the coated amount of the annealing separator is 0.005 to 5 g / m 2 per side. This grain-oriented electrical steel sheet has excellent magnetic properties and workability. In any of the above inventions (3) and (4), the invention can be applied to a grain-oriented electrical steel sheet that does not use an inhibitor-forming component. In this case, it is preferable that the slab is a slab made of molten steel having a composition in which A1 is 150 ppm or less and N, S, and Se are each reduced to 50 ppm or less. Further, in any of the above inventions (3) and (4), the step of rolling the slab to a final thickness to form a steel sheet includes: a step of hot-rolling the A1 slab to form a hot-rolled steel sheet; A step of performing hot-rolled sheet annealing to anneal the hot-rolled steel sheet as necessary, and a step of performing one or more cold-rolling operations including one or more intermediate-annealing processes to obtain a final thickness. And preferably
( 4 ) の発明のさらに好適な形態は、 A further preferred form of the invention of (4) is:
C : 0. 08mass%以下、 Si: 2. 0~ 8. 0mass%, Mn: 0. 005〜: 1. 0mass0/0を含んだ 溶鋼から作成したスラブを熱間圧延する工程と、次いで 1回の冷間圧延もし くは中間焼鈍を挟む 2回以上の冷間圧延を施して最終板厚とする工程と、次 いで再結晶焼鈍を施す工程と、 次いで ( 1 ) に記載の焼鈍方法で仕上げ焼鈍 を施す工程を有し、 かつ、前記仕上げ焼鈍において焼鈍前に塗布する焼鈍分 離剤の塗布量を片面当り 0. 005〜5g/m2とする、 方向性電磁鋼板の製造方法、 または、 C: 0. 08mass% or less, Si: 2. 0 ~ 8. 0mass %, Mn: 0. 005~: 1. a step of a slab made from molten steel containing 0mass 0/0 hot rolling, then 1 Cold rolling or intermediate annealing two or more times of cold rolling to obtain the final thickness, followed by recrystallization annealing, and then the annealing method described in (1). and a step of subjecting the finish annealing, and the the coating amount of the annealing fraction eluant to applied before annealing in the finishing annealing and per side 0. 005~5g / m 2, a manufacturing method of the grain-oriented electrical steel sheet, Or
C : 0. 08mas s0/0以下、 Si : 2. 0~ 8. Omass°/oN Mn: 0. 005〜 1. 0mass0/0を含み、 かつ Alを 150ppm以下おょぴ N, S, Seを各々 50PPm以下に低減した成分組成 を有する溶鋼から作成したスラブを熱間圧延する工程と、次いで 1回の冷 re 圧延もしくは中間焼鈍を挟む 2回以上の冷間圧延を施して最終板厚とする 工程と、 次いで再結晶焼鈍を施す工程と、 次いで (1 ) に記載の焼鈍方法で 仕上げ焼鈍を施す工程を有し、 かつ、前記仕上げ焼鈍において焼鈍前に塗布 する焼鈍分離剤の塗布量を片面当り 0. 005〜5g/m2とする、方向性電磁鋼板の 製造方法である。 C: 0. 08mas s 0/0 less, Si: 2. 0 ~ 8. Omass ° / o N Mn: 0. 005~ 1. 0mass 0/0 includes and 150ppm or less of Al Oyopi N, S Hot rolling of a slab made of molten steel having a composition of 50 ppm m or less, and then two or more cold rollings with one cold re-rolling or intermediate annealing An annealing separator applied to the final sheet thickness, followed by recrystallization annealing, and then subjected to finish annealing by the annealing method described in (1), and is applied before the annealing in the finish annealing. This is a method for producing a grain-oriented electrical steel sheet, wherein the coating amount is 0.005 to 5 g / m 2 per side.
この好適な発明の形態においては、前記焼鈍分離剤が、 A1化合物および S i 化合物を主成分とし、 A1化合物と Si化合物との比率が Al203/ (A1203 + Si02) に換算した値で 40〜95mass。/。であり、 粘度が 25mPa ' s以下であり、 かつ、 溶液 またはコロイ ド溶液の状態であることが好ましい。 発明を実施するための最良の形態 In the form of the preferred invention, the annealing separator is mainly composed of A1 compound and S i compound, the Al 2 0 3 / (A1 2 0 3 + Si0 2) the ratio of the A1 compound and Si compound The converted value is 40 to 95 mass. /. It is preferable that the viscosity is 25 mPa's or less and that the solution is in the form of a solution or a colloid solution. BEST MODE FOR CARRYING OUT THE INVENTION
発明者らは、塗布性および塗布後の密着性に優れた焼鈍分離剤について鋭 意研究を重ねた結果、まず A1化合物と高温で安定な化合物とを主成分とする こと、少なく とも A1化合物が溶液の状態またはコロイ ド溶液の状態であるこ と、 により、 上記問題点を解決できることを見出した。 また本発明者らは、 前記焼鈍分離剤の好適な粘度や A 1化合物の固形分比率、および鋼板に適用す る際の好適な塗布量をも見出した。以下に本発明を成功に到らしめた実験に 基づいて説明する。  The inventors of the present invention have conducted intensive studies on an annealing separator having excellent coatability and adhesion after coating.As a result, the inventors first found that the A1 compound and the compound stable at high temperatures were the main components, and at least the A1 compound was It has been found that the above-mentioned problems can be solved by using a solution state or a colloid solution state. The present inventors have also found a suitable viscosity of the annealing separator, a solid content ratio of the A1 compound, and a suitable coating amount when applied to a steel sheet. The present invention will be described below based on experiments that have succeeded.
<実験 1 > <Experiment 1>
C:0. 020mass0/o、 Si : 3. 30mass¾、 Mn : 0. 070mass0/0おょぴ Sb : 400massppmを含 み、 Al: 38massppm、 N : 33massppm、 S : 18ppm、 Se : 10ppm未満 (分析限界値^: 満)に抑制した成分組成からなる鋼スラブを連続铸造にて製造した。その後、 該銅スラブに 1回の冷間圧延もしくは中間焼鈍を挟む 2回以上の冷間圧延 を施して最終板厚とした。次いで、冷間圧延された鋼板は再結晶焼鈍おょぴ 仕上げ焼鈍を施された。 ここで、 仕上げ焼鈍前に、 焼鈍分離剤としてシリカゾル (コロイ ド状シリ 力) の水性コロイ ド溶液 (固形分濃度 3. 0maS S % ) を用い、 鋼板表面 (両面) に片面当り 0· 1〜3. Og/m2の範囲で、 ロールコーターを用いて塗布した。 塗布の後は、 鋼板の到達温度 250°Cの条件で焼き付け処理を施し、 その後 放冷した。 塗布前と焼き付け処理後との、鋼板重量の差から焼鈍分離剤の付 着量を求め、 これを焼鈍分離剤の塗布量とした。 仕上げ焼鈍においては、 850°Cで 30時間、窒素雰囲気で保定した後、 1000°C で 5時間、 Ar雰囲気で保定した。 C:. 0 020mass 0 / o , Si: 3. 30mass¾, Mn: 0. 070mass 0/0 Oyopi Sb: 400massppm only including, Al: 38massppm, N: 33massppm , S: 18ppm, Se: less than 10ppm ( A steel slab with a composition controlled to the analytical limit ^: full) was manufactured by continuous production. Thereafter, the copper slab was subjected to one cold rolling or two or more cold rollings with intermediate annealing to obtain a final sheet thickness. Next, the cold-rolled steel sheet was subjected to recrystallization annealing and finish annealing. Here, before the final annealing, an aqueous colloid solution (solid content: 3.0 ma SS %) of silica sol (colloidal silicic power) was used as an annealing separating agent, and the surface of the steel sheet (both sides) was 0.1 ... 3. Coating was performed using a roll coater in the range of Og / m 2 . After the application, the steel sheet was baked at the ultimate temperature of 250 ° C and then allowed to cool. The applied amount of the annealing separator was determined from the difference in the weight of the steel sheet before and after the baking treatment, and this was used as the applied amount of the annealing separator. In the final annealing, the specimen was kept at 850 ° C for 30 hours in a nitrogen atmosphere, and then kept at 1000 ° C for 5 hours in an Ar atmosphere.
得られた鋼板について、焼鈍分離剤の塗布性、乾燥後の焼鈍分離剤の密着 性、 仕上げ焼鈍時の焼鈍分離効果の 3項目について、 試験を行なった。 各性能評価法の詳細は以下の通りである。 後述する実験 2、 3、 および実 施例での評価方法も同様である。  The obtained steel sheet was tested for three items: the applicability of the annealing separator, the adhesion of the annealing separator after drying, and the annealing separation effect during finish annealing. The details of each performance evaluation method are as follows. The same applies to the evaluation methods in Experiments 2 and 3 described later and the examples.
•塗布性 • Applicability
焼鈍分離剤を塗布後の鋼板を目視にて評価した。  The steel sheet after the application of the annealing separator was visually evaluated.
〇 :鋼板全体が均一に塗布されている  〇: The entire steel sheet is uniformly applied
△ :全体に塗布されているが不均一である  Δ: applied to the whole but uneven
X :塗布されているところとされていないところがある  X: Some parts are applied and some are not
•乾燥後の密着性 • Adhesion after drying
焼鈍分離剤を焼き付け後、 鋼板をブラッシングしながら 10秒間、 流速約 1. Om/sの条件で流水洗浄した。 その後、 リンガーロールで水切り し、 200^ X lOsの条件で乾燥させた。 その後、 鋼板重量を再測定して焼鈍分離剤の付 着量を再度算出した。 そして水洗前後の焼鈍分離剤付着量の差を求めて、 こ れを剥離量とした。 得られた剥離量に墓づき、 次のように評価した。  After baking the annealing separator, the steel plate was washed with running water at a flow rate of about 1. Om / s for 10 seconds while brushing the steel sheet. Then, it was drained with a ringer roll and dried under the condition of 200 ^ X10Os. Then, the weight of the steel sheet was re-measured, and the adhesion amount of the annealing separator was calculated again. Then, the difference between the amounts of the adhesion of the annealing separator before and after the water washing was determined, and this was defined as the amount of peeling. Based on the obtained peeling amount, the following evaluation was made.
〇 :分離剤の剥離量が塗布量の 10%以下  〇: Separation amount of separating agent is 10% or less of applied amount
△ :分離剤の剥離量が塗布量の 10超〜 80%未満  △: Separation amount of separating agent is more than 10 to less than 80% of applied amount
X :分離剤の剥離量が塗布量の 80%以上 •焼鈍分離効果 X: The separation amount of the separating agent is 80% or more of the applied amount • Annealing separation effect
分離剤を塗布し、 0. 74MPaの押し付け荷重をかけながら、 仕上げ焼鈍を施 した。その後、焼き付いた鋼板を引張試験機で剥がし、剥離に要する強度(剥 離強度) を測定することによって次のように評価した。  A separating agent was applied, and finish annealing was performed while applying a pressing load of 0.74 MPa. Thereafter, the baked steel sheet was peeled off with a tensile tester, and the strength required for peeling (peeling strength) was measured to evaluate as follows.
〇 :鋼板の焼き付きなし (剥離強度 10N以下)  〇: No seizure of steel sheet (peel strength 10N or less)
△ :鋼板の焼き付きが一部分で認められる (剥離強度 10N超〜 60N未満) X :完全に鋼板が焼き付いている (剥離強度 60N以上) 表 1に試験結果を示す。 実験 1に用いた焼鈍分離剤は、 塗布性および焼鈍. 分離効果は良好であつたが、すべての条件で分離剤の鋼板への密着性が不十 分であった。  △: Seizure of the steel sheet is partially observed (peel strength of more than 10N to less than 60N) X: Steel sheet is completely seized (peel strength of 60N or more) Table 1 shows the test results. The annealing separator used in Experiment 1 had good applicability and annealing. The separation effect was good, but the adhesion of the separating agent to the steel sheet was insufficient under all conditions.
表 1 table 1
Figure imgf000013_0001
Figure imgf000013_0001
上記の実験 1より、シリカゾルは仕上げ焼鈍時の焼鈍分離効果は有してい るが焼鈍分離剤としての鋼板への密着性に問題があることが判明した。そこ で、 発明者らは、 シリカゾルを焼鈍分離剤として用い、 かつ、 鋼板への密着 性を高めるため、造膜成分としてアルミナゾルの添加することの有効性を検 討した。 From the above Experiment 1, it was found that silica sol had an annealing separation effect at the time of finish annealing, but had a problem in adhesion to a steel sheet as an annealing separating agent. Therefore, the present inventors examined the effectiveness of using alumina sol as a film-forming component in order to use silica sol as an annealing separating agent and to improve adhesion to a steel sheet.
<実験 2 > <Experiment 2>
実験 1 と同じ製造工程において、 仕上げ焼鈍前の鋼板表面 (両面) に、 ァ ルミナゾル(コロイ ド状アルミナ) およびシリ力ゾルを主成分とした水性コ ロイ ド溶液からなる焼鈍分離剤 (固形分濃度 2. 0masS % ) を、 片面あたり 0. 5g/m2の塗布量で、 ロールコータ一を用いて塗布した。 次いで鋼板の到達 温度 250°Cで焼き付けて放冷した。その後、実験 1 と同様に、 850°Cで 30時間、 窒素雰囲気で保定した後に 1000°Cで 5時間、 Ar雰囲気で保定する仕上げ焼鈍 を施した。 In the same manufacturing process as in Experiment 1, the surface (both sides) of the steel sheet before Ruminazoru (colloids like alumina) and silica force sol annealing separator consisting of an aqueous co Roy de solution mainly containing (solid concentration 2. 0mas S%), and the per side 0. 5 g / m 2 coating amount The coating was performed using a roll coater. Next, the steel sheet was baked at the ultimate temperature of 250 ° C and allowed to cool. After that, as in Experiment 1, finish annealing was performed at 850 ° C for 30 hours in a nitrogen atmosphere and then at 1000 ° C for 5 hours in an Ar atmosphere.
得られた鋼板に対し、焼鈍分離剤の塗布性、乾燥後の焼鈍分離剤の密着性、 仕上げ焼鈍時の焼鈍分離効果の 3項目について、実験 1 と同様の評価方法で 調査した。  The same evaluation method as in Experiment 1 was used to evaluate the three properties of the obtained steel sheet: the applicability of the annealing separator, the adhesion of the annealing separator after drying, and the annealing separation effect during finish annealing.
アルミナゾルとシリカゾルの比率は、 A1203 パ Al203+Si02)換算で 20〜 100mass%の範囲で、 焼鈍分離剤の粘度は 3. 5〜 100 mPa ' sの範囲で、 それぞれ 変化させた。 なお、 焼鈍分離剤の粘度は、 異なる粘度のアルミナゾルを用い ることにより変化させた。 アルミナゾルの粘度は、例えばゾル粒子の形状や 固形分濃度などにより制御できる。例えばゾル粒子の外形が羽毛状の場合は 高粘度となり、 球状 (あるいは粒状) や楕円体 (あるいは棒状) に近い場合 は低粘度となる。 表 2に、アルミナゾルとシリ力ゾルの比率を変化させた場合の実験結果を 示す。アルミナゾルの比率が低いものは焼鈍分離剤の密着性が不十分であつ た。 他方、 アルミナゾルの比率が多すぎると、 造膜作用が強くなりすぎて、 鋼板への均一な塗布が困難になり、 製品の外観不良を招いた。 なお、 焼鈍分 離効果は全ての条件で良好であった。 The ratio of the alumina sol and silica sol, in the range of. 20 to 100 mass% with A1 2 0 3 Pas Al 2 0 3 + Si0 2) in terms of the viscosity of the annealing separator is in the range of 3. 5~ 100 mPa 's, respectively change I let it. Note that the viscosity of the annealing separator was changed by using alumina sols having different viscosities. The viscosity of the alumina sol can be controlled by, for example, the shape of the sol particles and the solid content concentration. For example, if the outer shape of the sol particles is feather-like, the viscosity will be high, and if it is close to spherical (or granular) or elliptical (or rod-like), the viscosity will be low. Table 2 shows the experimental results when the ratio between the alumina sol and the silica sol was changed. When the ratio of alumina sol was low, the adhesion of the annealing separator was insufficient. On the other hand, if the ratio of the alumina sol was too large, the film-forming effect was too strong, and it was difficult to apply uniformly to the steel sheet, resulting in poor appearance of the product. The effect of annealing separation was good under all conditions.
また、表 3に焼鈍分離剤の粘度を変化させた実験結果を示す。粘度が大き くなると鋼板への塗布性が著しく劣化し、塗布されている部分と塗布されて いない部分が発生した。塗布できていない部分において鋼板の焼き付きが発 生したため、 良好な塗布性を確保し焼鈍分離効果を有する為には、粘度を制 御する必要があることが判明した。 表 2 Table 3 shows the experimental results when the viscosity of the annealing separator was changed. When the viscosity was increased, the applicability to the steel sheet was significantly deteriorated, and some portions were applied and some were not. Since the steel sheet seized in the area where the coating was not performed, it was found that the viscosity had to be controlled in order to secure good coating properties and to have an annealing separation effect. Table 2
Figure imgf000015_0001
Figure imgf000015_0001
表 3 Table 3
Figure imgf000015_0002
Figure imgf000015_0002
<実験 3> <Experiment 3>
次に、 実験 1 と同じ製造工程において、 仕上げ焼鈍前の鋼板表面 (両面) にロールコーターを用いて、アルミナゾルおよびシリ力ゾルを主成分とした 水性コロイ ド溶液からなる焼鈍分離剤 (固形分濃度 2.5mass%) を、 塗布量 を片面当り 0.001〜6g/m2の範囲の各条件として塗布した。焼鈍分離剤の粘度 は 2.5mPa'sと し、 アルミナゾルとシリカゾルの比率は A1203 / (Al203+Si02) 換算で 75mass%とした。 次いで、 鋼板の到達温度 250°Cの条件で焼き付け、 放冷した。 その後、 実 験 1 と同様に 850°Cで 30時間、窒素雰囲気で保定した後に 1000°Cで 5時間、 Ar 雰囲気で保定する仕上げ焼鈍を施した。 Next, in the same manufacturing process as in Experiment 1, using a roll coater on the steel sheet surface (both sides) before finish annealing, an annealing separator (solid content concentration) consisting of an aqueous colloid solution containing alumina sol and silicic acid sol as main components was used. 2.5 m ass %) was applied under each condition that the application amount was in the range of 0.001 to 6 g / m 2 per one side. The viscosity of the annealing separator was set to 2.5 mPa's, the ratio of the alumina sol and silica sol was 75 mass% in the A1 2 0 3 / (Al 2 0 3 + Si0 2) terms. Next, the steel sheet was baked at the ultimate temperature of 250 ° C and allowed to cool. Then, as in Experiment 1, finish annealing was performed at 850 ° C for 30 hours in a nitrogen atmosphere and then at 1000 ° C for 5 hours in an Ar atmosphere.
得られた鋼板について、実験 1 と同様の評価方法により、焼鈍分離剤の塗 布性、乾燥後の焼鈍分離剤の密着性、 および仕上げ焼鈍時の焼鈍分離効果の 3項目について調査した。 表 4に塗布量を変化させた際の実験結果を示す。塗布量が極端に少ない場 合は、 焼鈍分離効果が不十分となり、 鋼板の焼き付きが発生した。 一方、 塗 布量が多くなると、 焼鈍分離剤の鋼板への密着性が低下する。 以上より、 良 好な鋼板への密着性を確保し、かつ焼鈍分離効果を有する為には焼鈍分離剤 の塗布量を制御することが好ましい。 表 4  Using the same evaluation method as in Experiment 1, the obtained steel sheet was examined for three items: the coatability of the annealing separator, the adhesion of the annealing separator after drying, and the annealing separation effect during finish annealing. Table 4 shows the experimental results when the coating amount was changed. When the coating amount was extremely small, the annealing separation effect was insufficient and the steel sheet was seized. On the other hand, when the amount of coating increases, the adhesion of the annealing separator to the steel sheet decreases. From the above, it is preferable to control the application amount of the annealing separator in order to ensure good adhesion to the steel sheet and to have an annealing separation effect. Table 4
Figure imgf000016_0001
Figure imgf000016_0001
以上の実験結果より、焼鈍分離剤として、 シリカのような高温焼鈍時の安 定性に優れる化合物と、造膜成分として溶液状態またはコロイ ド溶液状態のFrom the above experimental results, it was found that a compound such as silica, which has excellent stability during high-temperature annealing, as an annealing separating agent, and a solution-forming or colloid-solution-forming film-forming component.
A1化合物を主成分として採用し、 A1化合物の固形分比率および粘度を規定す ることにより、優れた塗布性および塗布後の密着性が得られることを新たに 見出し、 本発明を完成するに至った。 次に本発明の焼鈍分離剤、方向性電磁鋼板の焼鈍方法、および方向性電磁 鋼板の製造方法について、 詳しく説明する。 まず、 焼鈍分離剤の限定理由について説明する。 限定は一般に、 鋼板に塗 布する時点での規定である。 By adopting the A1 compound as the main component and defining the solid content ratio and viscosity of the A1 compound, it is newly possible to obtain excellent coating properties and adhesion after coating. Heading, the present invention has been completed. Next, the annealing separator of the present invention, the method for annealing a grain-oriented electrical steel sheet, and the method for producing a grain-oriented electrical steel sheet will be described in detail. First, the reason for limiting the annealing separator will be described. Limitations are generally specified at the time of application to the steel sheet.
焼鈍分離剤の主成分として溶液の状態またはコロイ ド溶液の状態である A1化合物と、 高温で安定な化合物、 すなわち高温安定性に優れ、 パッチ焼鈍 時に反応しないあるいは反応を起こしにくい、 MgOを除く公知の 1種または 2 種以上の化合物を主成分として使用する。 なお、上記高温で安定な化合物が A1化合物と共に溶液状態あるいはコロイ ド溶液状態となつていてもよい。す なわち、 焼鈍分離剤が溶液あるいはコロイ ド溶液であってもよい。  A1 compound in the form of a solution or colloid solution as the main component of the annealing separator, and a compound that is stable at high temperatures, that is, it has excellent high-temperature stability and does not react or hardly react during patch annealing. One or more compounds are used as the main components. The high-temperature stable compound may be in a solution state or a colloid solution state together with the A1 compound. That is, the annealing separator may be a solution or a colloid solution.
ここで、 溶液の状態にあるとは、 水や有機溶剤を媒体に、 前記化合物が溶 解している状態を言う。 また、 コロイ ド溶液状態にあるとは、 lOOnm程度以 下の前記化合物の粒子が、前記媒体と親和性を有する、官能基等の構造部分 を介して、前記媒体中に安定的に分散している状態を言う。いずれの場合も、 媒体となる液体は総称して溶媒と呼ぶものとする。コロイ ド溶液は外見上懸 濁がなく透明なので溶液と似ているが、コロイ ド粒子が存在する場合は光散 乱の測定により確認される。 なお、 主成分とは、 後述の副剤や添加剤以外の組成成分を指す。 従って、 主成分は、乾燥後の焼鈍分離剤成分 (すなわち溶質あるいはコロイ ドを形成 する物質) 全体に対して、 約 65mass %以上、 好ましくは 75maS S %以上を占め る。 溶媒となる液体にとくに限定はなく、水でも有機溶剤でも使用可能である。 有機溶剤としては、 メタノール、 ィソプロパノール、 エチレンダリコール等 が一般的に使用されるが、 これらに限定するものではない。水を溶媒とした ものが、 コス トや前記化合物の選択の多様性の観点などからは好ましい。 こ の場合、液特性の調整等の目的で、水に約 50maS s %以下の有機溶剤を混合し ても良い。水を主溶媒とした前記の場合、水系焼鈍分離剤と呼ぶものとする。 Here, being in a solution state means a state in which the compound is dissolved in water or an organic solvent as a medium. Further, being in a colloid solution state means that particles of the compound having a size of about 100 nm or less are stably dispersed in the medium via a structural part such as a functional group having an affinity for the medium. Say state. In any case, the liquid serving as the medium is generically called a solvent. The colloid solution is similar to the solution because it is transparent without apparent suspension, but the presence of colloid particles is confirmed by light scattering measurements. Here, the main component refers to a composition component other than the below-described auxiliary agent and additive. Therefore, the main component accounts for about 65 mass% or more, preferably 75 ma SS % or more, based on the whole of the annealed separator component after drying (that is, the substance forming a solute or colloid). There is no particular limitation on the liquid serving as the solvent, and water or an organic solvent can be used. As the organic solvent, methanol, isopropanol, ethylene dalicol and the like are generally used, but not limited thereto. The use of water as a solvent is preferred from the viewpoint of cost and diversity of selection of the compound. This In this case, water may be mixed with an organic solvent of about 50 ma Ss % or less for the purpose of adjusting the liquid properties. In the above case where water is the main solvent, it is referred to as an aqueous annealing separator.
A1化合物および、上記の高温で安定な化合物は、従来の焼鈍分離剤に用い られる MgOのように地鉄と反応することは殆ど無いので、 フォルステラィ ト 質被膜のような打ち抜き加工性を著しく劣化させる被膜を形成しない。この ため、打ち抜き加工性に優れた方向性電磁鋼板を供給する場合非常に有効で ある。 The A1 compound and the compounds stable at high temperatures described above hardly react with the base iron unlike MgO used in conventional annealing separators, and thus significantly degrade punching workability such as forsterite coating. Does not form a coating. For this reason, it is very effective when supplying grain-oriented electrical steel sheets with excellent punching workability.
焼鈍分離剤の主成分として 2種類以上の化合物を使用したのは、高温で安 定な化合物による大きな焼鈍分離効果と、 溶液状あるいはコロイ ド状の A1 化合物による良好な造膜効果との、両方を得るためである。 この二つを複合 することで初めて、塗布性および塗布後の鋼板への密着性に優れた、鋼板用 の焼鈍分離剤として有効に機能し、とくに方向性電磁鋼板用の焼鈍分離剤に 求められる特性を満足する。  The use of two or more compounds as the main components of the annealing separator is due to both the large annealing separation effect of a stable compound at high temperature and the good film-forming effect of a solution or colloidal A1 compound. In order to get For the first time, the combination of the two functions effectively as an annealing separator for steel sheets with excellent applicability and adhesion to steel sheets after coating, and is particularly required for annealing separators for grain-oriented electrical steel sheets. Satisfies the characteristics.
A1化合物は、造膜機能を確保するために、水等の溶媒中でコロイ ドを形成 する化合物に限定される。 すなわち、 A1化合物はコロイ ド状態でないと造膜 作用を奏しないので、密着性が得られない。例えばアルミナをスラリーゃ懸 濁液として塗布した場合は造膜しない。 A1化合物コロイ ドの粒径は約 50mn 以下とすることが好ましい。 下限については好適な粒径限界はなく、分析限 界付近においても充分効果を奏する。 The A1 compound is limited to a compound that forms a colloid in a solvent such as water in order to secure a film forming function. That is, the A1 compound does not exhibit a film-forming effect unless it is in a colloidal state, so that adhesion cannot be obtained. For example, when alumina is applied as a slurry / suspension, no film is formed. The particle size of the A1 compound colloid is preferably about 50 mn or less. As for the lower limit, there is no suitable particle size limit, and the effect is sufficiently exhibited even near the analysis limit.
水系焼鈍分離剤の場合、 A1化合物は水酸基および有機酸基を有するアルミ ニゥム化合物および/またはその脱水反応物 (一部脱水でもよい。 以下同様) であることが好ましい。 さらに好ましくは、 Al、 水酸基および有機酸基から なるアルミニウム化合物および/またはその脱水反応物である。具体的には、 例えば、 塩基性酢酸アルミニウム、 塩基性ギ酸アルミニウム、 塩基性塩酸ァ ルミ二ゥム、 塩基性硝酸アルミ二ゥム、 塩基性シュゥ酸アルミ二ゥム、 塩基 性スルファミン酸アルミニウム、塩基性乳酸アルミニウム、塩基性クェン酸 アルミニゥムから選ばれる一種、またはこれらから選ばれる二種以上の混合 物が挙げられる。 このなかでも塩基性酢酸アルミニウムは Alx (0H) y (CH3C00) z、 (x, y, zは 1以上)の分子式で表されるもので、 特に Al2 (OH) 5 (CH3COO)が好ましい。 こ れは分子レベルでの溶解状態から数 n m程度のコロイ ド状態で存在でき、塗 液原料として好適に使用できる。熱分析するとおよそ 200〜230°Cで大きな脱 水反応のピークがあり、加熱によって脱水縮合による分子間のネットワーク を形成して膜を形成する。上記塩基性酢酸アルミニウム等は一部または全部 が脱水反応を生じていてもよい。 In the case of the aqueous annealing separating agent, the A1 compound is preferably an aluminum compound having a hydroxyl group and an organic acid group and / or a dehydration reaction product thereof (partially dehydration may be performed. The same applies hereinafter). More preferably, it is an aluminum compound comprising Al, a hydroxyl group and an organic acid group, and / or a dehydration product thereof. Specifically, for example, basic aluminum acetate, basic aluminum formate, basic aluminum hydrochloride, basic aluminum nitrate, basic aluminum oxalate, basic aluminum sulfamate, base Examples include one selected from basic aluminum lactate and basic aluminum citrate, or a mixture of two or more selected from these. Among them, basic aluminum acetate is represented by the molecular formula of Al x (0H) y (CH 3 C00) z , where x, y, and z are 1 or more, and in particular, Al 2 (OH) 5 (CH 3 COO) is preferred. It can exist from a dissolved state at the molecular level to a colloidal state of about several nm, and can be suitably used as a coating liquid material. Thermal analysis shows a large peak of the dehydration reaction at about 200 to 230 ° C, and heating forms a network between molecules by dehydration condensation to form a film. Part or all of the basic aluminum acetate and the like may have caused a dehydration reaction.
有機溶剤を溶媒とする場合も、好適な A1化合物として、水系焼鈍分離剤の 場合と同様のものが適用できる。 高温で安定な、 Mg0を除く化合物としては、 公知のものが使用でき、 特に 限定されるものではないが、 例えば Si化合物, Sr化合物, Ca化合物, Zr化合 物, Ti化合物, Ba化合物が挙げられる。具体的な化合物としては、 Si02, SrO,When an organic solvent is used as the solvent, the same A1 compound as that used in the case of the aqueous annealing separator can be used as a suitable A1 compound. High temperature stability, as the compound except the M g 0, can be used known ones, is not particularly limited, for example, Si compounds, Sr compounds, Ca compounds, Zr compounds, Ti compounds, Ba compounds No. Specific compounds, Si0 2, SrO,
Ti02, BaO, CaOといった酸化物が挙げられる。 Oxides such as TiO 2 , BaO, and CaO are mentioned.
なお、上記の高温で安定な化合物を溶液あるいはコロイ ド溶液として含有 させるためには、例えば水系焼鈍分離剤の場合は、水酸基等の親水性基を有 する形態に化学変化したものを用いることが好ましい。 しかし、高温で安定 な化合物の場合、他の方法として、溶媒中で既知の親水性の物質に表面を覆 われるような状態を作り出しても良い。有機溶剤を溶媒とする場合も親油性 基等を用いて同様の思想で設計すればよい。  In order to include the above-mentioned compound stable at high temperature as a solution or a colloid solution, for example, in the case of an aqueous annealing separating agent, it is necessary to use a chemical conversion to a form having a hydrophilic group such as a hydroxyl group. preferable. However, in the case of a compound that is stable at a high temperature, as another method, a state in which the surface is covered with a known hydrophilic substance in a solvent may be created. When an organic solvent is used as a solvent, it may be designed based on a similar concept using a lipophilic group or the like.
なお高温で安定な化合物という ときの高温とは、焼鈍温度を指すが、方向 性電磁鋼板用としては 1200°Cで安定であれば十分であり、 より好ましくは 1300°Cで安定であればよい。 これらの温度において、 当該化合物が、 それ自 身、 鋼板、 あるいは鋼板表面の酸化物等 (Si02、 Fe0、 Fe304、 Fe2Si04等) と実質的に反応しなければよい。 上記化合物はいずれも A1化合物との共存により、焼鈍分離剤の塗布性を改 善する効果が得られるが、 中でもと,くに Si化合物が、塗布性や焼鈍分離性能 等の観点から好適である。 Si化合物としてはコロイ ド状シリ力、すなわちい わゆるコロイダルシリ力が、アルミナゾルとの安定性が高い上にコストも比 較的安価であることから、 とくに好適である。 コロイダルシリカは Si02を主 成分とする無機コロイ ドであり、 アモルファス状であることが多い。 なお、 アルミナ粒子等の、 溶液 · コロイ ド溶液でない A1化合物 (非コロイ ド系 A1化合物と呼ぶものとする) も高温で安定ではあるものの、 溶液 'コロ ィ ド溶液状 A1化合物の塗布性改善の効果は小さい。 したがって、主成分の一 部としての非コロイ ド系 A1化合物の添加自体は禁止されないものの、非コロ ィ ド系 A1化合物以外の高温で安定な化合物を含有させることが好ましい。ま た非コロイ ド系 A1化合物は、後述の固形分比率の計算において考慮しないも のとする。 The high temperature when referring to a compound that is stable at high temperature refers to the annealing temperature, but for oriented magnetic steel sheets, 1200 ° C is sufficient if it is stable, and more preferably 1300 ° C. . At these temperatures, the compound, it themselves, steel, or an oxide such as a steel sheet surface (Si0 2, Fe0, Fe 3 0 4, Fe 2 Si0 4 , etc.) and may be substantially react. All of the above compounds have the effect of improving the applicability of the annealing separator in coexistence with the A1 compound. Among them, Si compounds are particularly preferable from the viewpoint of applicability, annealing separation performance, and the like. As a Si compound, colloidal silicon force, The so-called colloidal silicide is particularly suitable because it has high stability with alumina sol and relatively low cost. Colloidal silica is an inorganic colloids which mainly components Si0 2, it is often amorphous. A1 compounds that are not a solution or colloid solution (referred to as non-colloidal A1 compounds), such as alumina particles, are stable at high temperatures, but improve the applicability of the solution “colloid solution A1 compounds”. The effect is small. Therefore, although the addition of the non-colloidal A1 compound itself as a part of the main component is not prohibited, it is preferable to include a compound which is stable at a high temperature other than the non-colloidal A1 compound. Non-colloidal A1 compounds shall not be considered in the calculation of the solid content ratio described below.
A1化合物の固形分比率は、下記式(1)で表される固形分比率で 40〜95maS S% であることが好ましい。 The solid content ratio of the A1 compound is preferably 40 to 95 ma SS % in terms of the solid content ratio represented by the following formula (1).
A1化合物の固形分比率 = (A1化合物の固形分)/ { (A1化合物の固形分) + (高 温で安定な化合物の固形分(和)) } 式(1)  Solid content ratio of A1 compound = (solid content of A1 compound) / {(solid content of A1 compound) + (solid content of high-temperature stable compound (sum))} Formula (1)
ただし、 A1化合物の固形分は A1203に換算し、 前記高温で安定な化合物は 焼き付け後の主要化合物に換算するものとする。 例えばシリカゾルならば、 シリカすなわち Si02が主要化合物となり、チタニアゾルならばチタニアすな わち Ti02が主要化合物となる。 なお、焼き付け工程をとくに設けていない場 合であっても、焼き付け処理を施した場合に生成される主要化合物に換算す る。 However, the solid content of the A1 compounds in terms of A1 2 0 3, a stable compound wherein the elevated temperature is assumed to be converted to the main compound after baking. If for example a silica sol, silica i.e. Si0 2 is the main compound, Wachi Ti0 2 such to titania is the main compound if titania sol. Even if the baking step is not particularly provided, it is converted to the main compound generated when the baking treatment is performed.
固形分が実質的にこれらの化合物のみからなる場合は、 式(1)は、 式(3) に置き換えられる。  If the solids consist essentially of only these compounds, formula (1) is replaced by formula (3).
A1化合物の固形分比率 = (A1化合物の固形分)/ (全固形分) 式(3) ここで、 固形分は乾燥後の焼鈍分離剤成分に含まれる分量を指す。  Solid content ratio of A1 compound = (solid content of A1 compound) / (total solid content) Formula (3) Here, solid content refers to the amount contained in the annealing separator after drying.
A1化合物の固形分比率が 40mass°/。以下であると、 造膜成分である A1化合物 が不十分となり、 焼鈍分離剤の密着性が不十分となる。 また、 固形分比率が 95maS S/。を超えると、 反応性の高い A1化合物の量が多くなりすぎ、 塗液が安 定しない。 このため、 均一な被膜が形成できず、 製品の外観が不良となる。 A1化合物の固形分比率は、好ましくは、 50maSS%、より好ましくは、 60mass%、 さらに好ましくは 70mass%以上である。 高温で安定な化合物として、 Si化合物、 Sr化合物、 化合物、 Zr化合物、 Ti化合物おょぴ Ba化合物の群から選ばれる少なく とも 1種の化合物を用い る場合は、 A1化合物の固形分率は下記式(2) に置き換えられる。 The solid content ratio of the A1 compound is 40 mass ° /. If the ratio is less than the above, the amount of the A1 compound as a film forming component becomes insufficient, and the adhesion of the annealing separator becomes insufficient. The solid content ratio is 95 ma SS /. When the amount exceeds the limit, the amount of the highly reactive A1 compound becomes too large, Not determined. For this reason, a uniform film cannot be formed, and the appearance of the product becomes poor. Solid content of A1 compound is preferably, 50 mA SS%, more preferably, 60 mass%, more preferably at least 70 mass%. When at least one compound selected from the group of Si compound, Sr compound, compound, Zr compound, Ti compound and Ba compound is used as the compound stable at high temperature, the solid content of A1 compound is as follows. Replaced by equation (2).
A1化合物の固形分比率 = (A1化合物の固形分)/ { (A1化合物の固形分) + (前 記少なぐとも 1種の化合物の固形分(和)) } 式(2)  Solid content ratio of A1 compound = (solid content of A1 compound) / {(solid content of A1 compound) + (the solid content of at least one compound (sum))} formula (2)
ただし、各化合物の固形分は下記の各化合物の重量に換算された値を用い ることが好ましい。  However, the solid content of each compound is preferably a value converted to the weight of each compound described below.
A1化合物 · · ·Α1203、 Si化合物 '··5Ϊ02A1 Compound · · · Α1 2 0 3, Si compounds' ·· 5Ϊ0 2,
Sr化合物 ·'·3ι·0、 Ca化合物 ·'·ϋ3θ、 Sr compound · 330, Ca compound 化合物 3ϋ,
Zr化合物' · 'Zr02、 Ti化合物 · · · 02Zr compounds ',' Zr0 2, Ti compound · · · 0 2,
Ba化合物 - . 'Ba0。 高温で安定な化合物として Si化合物を採用した場合、 すなわち固形分が A1 化合物と Si化合物とを主成分とする場合は、 A1化合物と Si化合物との比率が A1203バ Al203 + Si02)に換算した値で 40〜95mass°/。とすることが好ましい。 焼鈍分離剤の粘度は 25 (mPa's)以下と規定する。 粘度が 25 (mPa's)を超え ると塗布性が著しく劣化し、鋼板に焼鈍分離剤を均一に塗布する妨げとなる。 また、 その結果として塗布されない部分が発生し、仕上げ焼鈍時に鋼板相互 の密着が発生する原因となる。 なお。本発明での粘度とは液温 における 焼鈍分離剤の粘度をォストヮルド粘度計によって測定した値である。 Ba compound-. 'Ba0. When employing a Si compound as a stable compound at a high temperature, that is, when the solids mainly composed of the A1 compound and the Si compound, the ratio of the A1 compound and Si compound A1 2 0 3 bar Al 2 0 3 + Si0 2) 40 to at the exchange value to 95 mass ° /. It is preferable that The viscosity of the annealing separator is specified to be 25 (mPa's) or less. If the viscosity exceeds 25 (mPa's), the applicability will be significantly degraded, hindering the uniform application of the annealing separator to the steel sheet. In addition, as a result, a portion that is not applied is generated, which causes the steel sheets to adhere to each other during the finish annealing. Note that. The viscosity in the present invention is a value obtained by measuring the viscosity of the annealing separator at the liquid temperature with an Ostwald viscometer.
なお、コロイ ド溶液でなくコロイ ドのスラリ一を用いた場合も塗布の均一 性が得られない。 これは、 粘度が適合しないことと、 スラリー内のコロイ ド の凝集により粘度変動が大きいことが一因と考えられる。 さらに上述した焼鈍分離剤中に副剤として S (単体) または Sを含有する 化合物 (以下両者を S含有化合物と総称する) とを添加させるとより、 方向 性電磁鋼板に安定的に良好な磁気特性を付与することが可能となる。この理 由は明らかではないが、バッチ焼鈍時に S含有化合物が分解されて Sが鋼中 に侵入し、 粒界に偏析しているものと考えられる。 すなわち、 偏析した Sに より粒成長が抑制され、その結果二次再結晶が安定化されているものと考え られる。 In addition, when using a colloid slurry instead of a colloid solution, uniformity of coating cannot be obtained. This is thought to be due to the inconsistency in viscosity and large fluctuations in viscosity due to aggregation of colloid in the slurry. Further, S (simple) or S is contained as an auxiliary agent in the above-mentioned annealing separator By adding a compound (both are hereinafter collectively referred to as an S-containing compound), it becomes possible to stably impart good magnetic properties to the grain-oriented electrical steel sheet. Although the reason for this is not clear, it is considered that the S-containing compound was decomposed during batch annealing, and S entered the steel and segregated at the grain boundaries. That is, it is considered that grain growth is suppressed by segregated S, and as a result, secondary recrystallization is stabilized.
なお、偏析する S量が過多になると、逆に二次再結晶不良を発生させる可 能性がある。 このような事態の回避を重視する場合は、 S含有化合物の添加 量は焼き付け後の焼鈍分離剤成分に対する固形分比率で約 25maS S°/。以下とす ることが好ましい。 なお、焼き付け工程をとくに設けていない場合であって も、焼き付け処理を施した場合に生成される S含有化合物の固形分比率で評 価する。 If the amount of S to be segregated is excessive, secondary recrystallization failure may occur. When avoiding such a situation is important, the amount of the S-containing compound to be added is about 25 ma SS ° / in solid content ratio to the annealing separator component after baking. It is preferable that: Even when the baking step is not particularly provided, the evaluation is made based on the solid content ratio of the S-containing compound generated when the baking treatment is performed.
S含有化合物としては、特に限定されるものではないが硫酸塩(亜硫酸塩 なども含む)、 金属硫化物などの無機 S化合物が好ましい。 具体的には、 硫 酸スト口ンチウム、硫酸マグネシウムおよび硫化マグネシウムといったもの が挙げられる。 焼鈍分離剤の塗布方法は一般工業的に用い れるロールコーター、フロー コーター, スプレー, ナイフコーター等種々の方法が適用可能である。 なお、 本発明の焼鈍分離剤は、 塗布の後、 加熱して焼き付け処理を施すこ とが好ま.しい。 焼き付け方法についても、 通常実施されるような、 熱風式, 赤外式, 誘導加熱式等の方法が適用可能である。 焼き付け処理の条件は種々 の事情に合わせて設定すればよいが、 通常は、 好適な温度が約 150~ 400°C、 好適な時間が約 1 ~ 300秒である。 なお、焼鈍分離剤の塗布性や鋼板への密着性といった性能を一層向上させ るために、界面活性剤や防鲭剤等の添加剤を配合してもよい。添加剤の含有 量は、焼鈍分離剤として十分な焼鈍分離効果を維持するために、 乾燥後の焼 鈍分離剤成分に対して iomas s %以下程度とすることが好ましい。 The S-containing compound is not particularly limited, but is preferably an inorganic S compound such as a sulfate (including a sulfite) and a metal sulfide. Specific examples include stotium sulfate, magnesium sulfate, and magnesium sulfide. Various methods, such as a roll coater, a flow coater, a spray, and a knife coater, which are generally used in industry, can be applied as a method of applying the annealing separating agent. It is preferable that the annealing separator of the present invention be heated and baked after application. As for the baking method, a method such as a hot air method, an infrared method, or an induction heating method, which is usually performed, can be applied. The conditions of the baking treatment may be set according to various circumstances, but usually, a preferable temperature is about 150 to 400 ° C and a preferable time is about 1 to 300 seconds. In order to further improve the performance such as the applicability of the annealing separator and the adhesion to the steel sheet, additives such as a surfactant and a heat-resistant agent may be blended. The content of the additive is preferably about iomass % or less based on the annealed separating agent component after drying in order to maintain a sufficient annealing separating effect as the annealing separating agent.
なお、 界面活性剤は、 市販の非イオン系、 ァニオン系、 カチオン系のいず れのものも適用できる。 Surfactants can be any of commercially available nonionic, anionic or cationic surfactants. These are also applicable.
防鲭剤も、 界面活性剤と同様、 種類はとくに限定されず、 市販のものを適 用できる。 本発明の焼鈍分離剤は、 方向性電磁鋼板への適用にとくに好適である力 他の鋼板への適用を禁じるものではない。  Like the surfactant, the type of the protective agent is not particularly limited, and a commercially available one can be used. The annealing separator of the present invention is particularly suitable for application to grain-oriented electrical steel sheets. The application to other steel sheets is not prohibited.
また、本発明の焼鈍分離剤は、 とくに鋼帯をコイル状に卷いたまま炉内に おいて加熱する際に有効であるが、他に、鋼板を積み重ねて熱処理する場合 などにも適用できる。 次に、本発明に従って方向性電磁鋼板を製造する上での好適条件を以下に 説明する。  Further, the annealing separator of the present invention is particularly effective when the steel strip is heated in a furnace while being wound in a coil shape, but can also be applied to a case where a steel sheet is stacked and subjected to a heat treatment. Next, preferred conditions for producing a grain-oriented electrical steel sheet according to the present invention will be described below.
製品板おょぴ出発素材 (溶鋼あるいは鋼スラブ) の成分組成については、 方向性電磁鋼板に好適であると知られているいずれの成分も適用可能であ る。 以下に代表的な成分系における好適な溶鋼成分について、各成分の限定 理由を説明する。  Regarding the composition of the starting material of the product sheet (molten steel or steel slab), any composition known to be suitable for grain-oriented electrical steel sheets can be applied. Hereinafter, the reasons for limiting the respective components of the preferred molten steel components in the typical component system will be described.
C : 0. 08mass %以下 C: 0.08 mass% or less
Cは、 その含有量が 0. 08mass %を超えると、 磁気時効の起こらない 50massPPm以下まで Cを低減することが、 製造工程中では達成が困難になる ので、 0. 08mass %以下とすることが好ましい。 とくに下限は不要である力 工業的には 5 massppm程度が低減の限界である。 If the content of C exceeds 0.08 mass%, it is difficult to reduce C to 50 mass PP or less, at which magnetic aging does not occur, during the manufacturing process.Therefore, the content of C is set to 0.08 mass% or less. Is preferred. In particular, a lower limit is not required. Industrially, about 5 massppm is the limit of reduction.
Si: 2. 0〜8. 0mass % Si: 2.0-8.0 mass%
Siは、鋼の電気抵抗を高め、 鉄損を改善するのに有効な元素であり、 その 効果を得るためには 2. 0mass %以上含有させることが好ましい。 一方、 8. 0mass %を超えると加工性や磁束密度が低下するので、上限は 8. 0mass %とす ることが好ましい。 したがって、 好ましい Siの含有量は、 2. 0〜8. 0mass%で ある。 Mn: 0. 005〜1. 0mass % Si is an element effective in increasing the electrical resistance of steel and improving iron loss. To obtain the effect, it is preferable to contain 2.0 mass% or more. On the other hand, if it exceeds 8.0 mass%, the workability and the magnetic flux density decrease, so the upper limit is preferably set to 8.0 mass%. Therefore, a preferable Si content is 2.0 to 8.0 mass%. Mn: 0.005 to 1.0 mass%
Mnは熱間加工性を良好にするために有効な元素であり、 0. 005mass %以上 の添加が好ましい。 他方、 過剰の Mnは製品板の磁束密度を低下させる。 この 観点から好ましい Mnの含有量は、 1. Omas s。/。以下である。 したがって、 好まし い Mnの含有量は、 0. 005〜1. 0 mass 。/。である。 方向性電磁鋼板の製造に際しては、二次再結晶に際してゴス方位を発達さ せるためにインヒ ビターを形成する元素 (ィンヒ ビター形成成分) を添加す ることが一般的である。 しかし、 鋼中不純物元素を低減することで、 ィンヒ ビターを用いることなく ゴス方位を発達させることも可能であることが近 年知られるようになっている。  Mn is an element effective for improving hot workability, and is preferably added at 0.005 mass% or more. On the other hand, excess Mn lowers the magnetic flux density of the product plate. From this viewpoint, the preferable content of Mn is 1. Omass. /. It is as follows. Therefore, the preferable content of Mn is 0.005 to 1.0 mass. /. It is. In the production of grain-oriented electrical steel sheets, it is common to add an element that forms an inhibitor (inhibitor-forming component) in order to develop the Goss orientation during secondary recrystallization. However, it has recently become known that it is also possible to develop the Goss orientation without using inhibitors by reducing the impurity elements in steel.
インヒビターを用いることなく ゴス方位結晶粒を二次再結晶により得る ためには、 A1を 150massppm以下、 N、 S、 Seについては 50masspPm以下に低 減することが好ましい。かかる成分は極力低減することが磁気特性の観点か ら望ましく、 例えば A1は lOOmassppm以下とすることが、 より好ましい。 しか し、かかる成分を低減するためにコスト高となる場合があることから上記範 囲内で残存させることは何ら問題ではない。現状では、低減コストから限定 される含有量の下限はいずれの元素も約 lOmassppm程度である。 To obtain a Goss orientation crystal grains by secondary recrystallization without using an inhibitor, 150Massppm the A1 below, N, S, it is preferable to lower reduced below 50massp P m for Se. It is desirable that such components be reduced as much as possible from the viewpoint of magnetic properties. For example, A1 is more preferably 100 ppm or less. However, there is a case where the cost is high in order to reduce such components, so that it is not a problem to leave them within the above range. At present, the lower limit of the content, which is limited by the reduction cost, is about lOmassppm for all elements.
なお、インヒビターを用いる場合は逆に、適用するィンヒビターに応じて これらの元素を添加する。 例えば、 インヒ ビターとして A1Nを用いる場合は A1: 0. 015〜0· 04mass。/。および N : 0. 005〜0. O lSmass。/。を、 BNを用いる場合は B : 0. 001〜0. 006mas s%および N: 0. 005〜0. 015mass0/oを、 MnSeおよび/また は MnSを用いる場合は Se、 Sの少なく ともいずれか一種類を 0. 005〜0. 06 mass%, それぞれ添加することが一般的である。 Conversely, when an inhibitor is used, these elements are added according to the inhibitor to be applied. For example, when A1N is used as the inhibitor, A1: 0.015 to 0.4 mass. /. And N: 0.005 to 0.00 OlSmass. /. The, when using BN B:. 0. 001~0 006mas s % and N:. 0. 005~0 the 015mass 0 / o, any MnSe and / or Se in the case of using the MnS, and least of S also It is common to add only one of them at 0.005 to 0.06 mass%.
なお、方向性電磁鋼板に Sbおよび/または Snを合計で 0. 005 ~ 0. 1mass%程 度添加することは、 磁気特性をさらに改善するので好ましい。  It is preferable to add Sb and / or Sn to the grain-oriented electrical steel sheet in a total amount of about 0.005 to 0.1 mass%, since the magnetic properties can be further improved.
その他、 Ge、 Mo、 Te、 Biはそれぞれ 0. lmass°/。以下、 P、 Cu、 Crはそれぞれ 0. 2mass%以下、 Niは 0. 5mas s。/。以下含有されていてもとくに問題はない。また、 残部は鉄おょぴ不可避的不純物であることが好ましい。 上記成分を有する溶鋼からは、通常の造塊法または連続鐯造法によって通 常の寸法のスラブを製造してもよいし、 ioomm以下の厚さの薄鐃片 (いわゆ る薄スラブ) を直接錶造法で製造してもよい。 スラブは通常の方法で再加熱 して熱間圧延するが、鎳造後加熱せずに直ちに熱間圧延してもよい。薄铸片 の場合には熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程 に進んでもよい。 熱間圧延された鋼板は、 次いで必要に応じて焼鈍 (熱延板焼鈍) を施され る。 とくに、 熱間圧延においてバンド組織が形成されるような場合には、 整 粒の一次再結晶組織を実現し、 よって二次再結晶の発達を促進するために、 熱延板焼鈍の実施が好ましい。 In addition, Ge, Mo, Te, and Bi are each 0.1 lmass ° /. Hereinafter, P, Cu, Cr 2 mass % , respectively 0.5 or less, Ni is 0. 5mas s. /. There is no particular problem even if it is contained below. In addition, the balance is preferably iron and inevitable impurities. From the molten steel having the above components, slabs of normal dimensions may be manufactured by a normal ingot-making method or a continuous sintering method, or a thin slab piece of ioo mm or less (a so-called thin slab). May be directly manufactured by a manufacturing method. The slab is re-heated and hot-rolled by an ordinary method, but may be immediately hot-rolled without heating after fabrication. In the case of a thin piece, hot rolling may be performed, or hot rolling may be omitted and the process may proceed to the subsequent steps. The hot-rolled steel sheet is then subjected to annealing (hot-rolled sheet annealing) as necessary. In particular, in the case where a band structure is formed in hot rolling, it is preferable to perform hot-rolled sheet annealing in order to realize a primary recrystallized structure of sized particles and thus promote the development of secondary recrystallization. .
前記バンド組織の解消のためには、 熱延板焼鈍温度は 800°C以上とするこ とが好ましい。 他方、 熱延板焼鈍によって粒径が粗大化しすぎることは、 整 粒の一次再結晶組織を実現する上で好ましくないので、 熱延板焼鈍温度は 1100°C以下とすることが好ましい。 したがって、製品板においてゴス組織を 高度に発達させるためには、 熱延板焼鈍温度は 800°C以上 1100°C以下とする ことが好適である。 なお、 熱延板焼鈍の好適な焼鈍時間は、 1〜 300秒であ る。 次いで、 1回以上の冷延を施して冷延鋼板とした後、再結晶焼鈍を行なう。 なお、 冷間圧延を 2回以上施す場合は、 各冷間圧延の間に中間焼鈍を挟む。 中間焼鈍は、 900〜1200°Cで 1〜300秒程度の時間施すのが好ましい。  In order to eliminate the band structure, the hot-rolled sheet annealing temperature is preferably set to 800 ° C. or higher. On the other hand, it is not preferable that the grain size is excessively coarsened by the hot-rolled sheet annealing in order to realize the primary recrystallized grain structure, and therefore the hot-rolled sheet annealing temperature is preferably 1100 ° C or less. Therefore, in order to highly develop the Goss structure in the product sheet, it is preferable that the hot-rolled sheet annealing temperature be 800 ° C or higher and 1100 ° C or lower. The preferred annealing time for hot-rolled sheet annealing is 1 to 300 seconds. Next, after performing cold rolling at least once to obtain a cold rolled steel sheet, recrystallization annealing is performed. When cold rolling is performed twice or more, intermediate annealing is interposed between each cold rolling. The intermediate annealing is preferably performed at 900 to 1200 ° C. for about 1 to 300 seconds.
なお、 さらにゴス組織を発達させるために、 冷間圧延の温度を 100で〜 250 に上昇させて行ってもよい。これは温間圧延と呼ばれることもある力 S、 本願では冷間圧延の 1種として扱う。 同様の目的で、 冷間圧延途中で 100〜 250°Cの範囲での時効処理を 1回または複数回行なってもよい。  In order to further develop the Goss structure, the cold rolling temperature may be increased by 100 to 250. This is treated as a type of cold rolling, called S, which is sometimes called warm rolling. For the same purpose, the aging treatment in the range of 100 to 250 ° C may be performed once or plural times during the cold rolling.
再結晶焼鈍は、主に一次再結晶組織を形成することを目的として、好まし くは連続焼鈍にて施される。再結晶焼鈍は、脱炭を必要とする場合には雰囲 気を湿潤雰囲気とする力 脱炭を必要としない場合は乾燥雰囲気で行っても 良い。 好ましい再結晶焼鈍条件は、 750〜1100°Cで、 1〜300秒程度である。 なお、 二次再結晶焼鈍 (仕上げ焼鈍、 あるいは仕上げ焼鈍を 2つのパッチ 焼鈍に分けた場合の 1回目のパッチ焼鈍) における鋼板中の C量を 100〜 250massppmに調整することは、とくにィンヒビターを含有しない方向性電磁 鋼板において、 磁束密度を向上させるために好適である。 C量の調整は、 再 結晶焼鈍によって行なっても、 その後に別途行なっても良い。 Recrystallization annealing is preferably performed by continuous annealing for the purpose of mainly forming a primary recrystallization structure. The recrystallization annealing may be performed in a dry atmosphere if decarburization is not required and the dehumidification is not required. Preferred recrystallization annealing conditions are 750 to 1100 ° C. for about 1 to 300 seconds. Adjusting the C content in the steel sheet to 100 to 250 massppm in the secondary recrystallization annealing (finish annealing or the first patch annealing when the final annealing is divided into two patch annealings) is particularly effective in containing inhibitors. This is suitable for improving the magnetic flux density in a non-oriented electrical steel sheet. The adjustment of the C content may be performed by recrystallization annealing or may be performed separately thereafter.
浸珪法によって Si量を増加させる技術を、例えば再結晶焼鈍後の鋼板に適 用してもよい。 本発明の焼鈍分離剤の塗布は再結晶焼鈍の前また後に実施する。  The technique of increasing the amount of Si by the siliconizing method may be applied to, for example, a steel sheet after recrystallization annealing. The application of the annealing separator of the present invention is performed before or after recrystallization annealing.
従来の焼鈍分離剤は、鋼板への密着性が悪いため、再結晶焼鈍前に焼鈍分 離剤を塗布することは再結晶焼鈍中の剥離によるライン汚染の観点からで きなかった。 これは、 被膜の形成に長時間の加熱を要する、 MgOを主成分と する焼鈍分離剤の場合でも同様である。 しかし、本発明の焼鈍分離剤は鋼板 への密着性が良好で、剥離によるライン汚染の懸念がないため再結晶焼鈍前 と後のどちらでも塗布が可能である。 本工程において、本発明の焼鈍分離剤の塗布量は、鋼板の密着防止効果を 発揮させるために 0. 005g/m2以上とすることが好ましい。 他方、 焼鈍分離剤 の密着性を確保するためには、 付着量を 5 g/m2以下とすることが好ましい。 したがって、 焼鈍分離剤の塗布量は 0. 005〜 5 g/m2の範囲内とすることが好 ましい。 より好ましい下限は 0. 05g/m2、 より好ましい上限は 2 g/m2である。 なお、 方向性電磁鋼板の製造における好適塗布量は上記の通りである力 各々の熱処理条件や要求品質に応じて、上記好適範囲外で使用することも可 能である。 Conventional annealing separators have poor adhesion to steel sheets, so applying an annealing separator before recrystallization annealing was not possible from the viewpoint of line contamination due to peeling during recrystallization annealing. The same applies to the case of an annealing separator containing MgO as a main component, which requires a long heating time to form a film. However, the annealing separator of the present invention has good adhesion to a steel sheet, and there is no fear of line contamination due to peeling, so that it can be applied before or after recrystallization annealing. In this step, the application amount of the annealing separator of the present invention is preferably 0.005 g / m 2 or more in order to exert the effect of preventing adhesion of the steel sheet. On the other hand, in order to ensure the adhesiveness of the annealing separator, the amount of adhesion is preferably 5 g / m 2 or less. Therefore, it is preferable that the application amount of the annealing separator be in the range of 0.005 to 5 g / m 2 . A more preferred lower limit is 0.05 g / m 2 and a more preferred upper limit is 2 g / m 2 . The preferable application amount in the production of the grain-oriented electrical steel sheet is as described above. Depending on the heat treatment conditions and required quality of each force, it can be used outside the above-mentioned preferred range.
焼鈍分離剤は、鋼板の片面だけに塗布しても両面に塗布しても良いが、両 面に塗布することが、効果を確実に得る上で好ましい。鋼板の表裏で焼鈍分 離剤の組成等を変更することを禁じるものではないが、工程上は両面に同じ 焼鈍分離剤を塗布することが好ましい。 フォルステラィ ト質被膜を有さない磁気特性おょぴ加工性に優れた方向 性電磁鋼板を製造する場合は、再結晶焼鈍およぴ本発明焼鈍分離剤の塗布の 後、仕上げ焼鈍をパッチ焼鈍にて実施する。 仕上げ焼鈍の目的は二次再結晶 の進行おょぴ不純物の低減 (純化) である。 焼鈍条件としてはこの目的を達 成する公知の条件を適用することができる。 好ましい仕上げ焼鈍温度は、約 750〜1300°Cであるが、 前半部を約 750〜1000°C、 後半部を約 900〜 1300°Cと してもよい。 ここで前半部では主に二次再結晶が、後半部では主に純化が促 進される。 好ましい仕上げ焼鈍時間は上記温度域での保持時間で 1〜300時 間程度である。 The annealing separator may be applied to only one side or both sides of the steel sheet, but is preferably applied to both sides in order to surely obtain the effect. It is not prohibited to change the composition of the annealing separator on the front and back of the steel sheet, but it is preferable to apply the same annealing separator on both sides in the process. Magnetic properties without forsterite coating In the case of manufacturing a magnetic steel sheet, after the recrystallization annealing and the application of the annealing separator of the present invention, the finish annealing is performed by patch annealing. The purpose of finish annealing is to reduce (purify) impurities during the secondary recrystallization. Known annealing conditions can be applied as the annealing conditions. The preferred finish annealing temperature is about 750-1300 ° C, but the first half may be about 750-1000 ° C and the second half may be about 900-1300 ° C. Here, secondary recrystallization is mainly promoted in the first half, and purification is mainly promoted in the second half. A preferable finish annealing time is about 1 to 300 hours as a holding time in the above temperature range.
なお、 MgOを主成分とする焼鈍分離剤を適用する従来の技術の場合、 厚い, 被膜が形成されるため、純化に要する時間は分離剤を適用しない場合に比べ 長時間化する。 しかし、本発明の焼鈍分離剤は A1化合物が造膜しているにも かかわらず、 純化を妨げないという効果が観察された。 磁気特性の向上を目的として Cを約 100〜250mas sppm含有させたまま仕上 げ焼鈍を行った場合は、 二次再結晶完了後に、 磁気時効が起こらない 50ppm 以下まで Cを低減することが好ましい。 Cの低減方法としては、仕上げ焼鈍 中に脱炭させる方法と仕上げ焼鈍後に脱炭工程を付加する方法がある。仕上 げ焼鈍中に脱炭させるためには、仕上げ焼鈍中、 とくに後半に水素を含んだ 雰囲気にて 1000°C以上の高温焼鈍を実施するとよい。  In the case of the conventional technology in which an annealing separator containing MgO as a main component is applied, a thicker film is formed, so that the time required for purification is longer than when no separator is used. However, an effect was observed in which the annealing separator of the present invention did not hinder purification even though the A1 compound formed a film. When the finish annealing is performed with the C content of about 100 to 250 mass ppm for the purpose of improving the magnetic properties, it is preferable to reduce the C to 50 ppm or less at which the magnetic aging does not occur after the completion of the secondary recrystallization. Methods for reducing C include a method of decarburizing during finish annealing and a method of adding a decarburization step after finish annealing. In order to decarburize during the finish annealing, it is recommended to perform high-temperature annealing at 1000 ° C or more during finish annealing, especially in the atmosphere containing hydrogen in the latter half.
一方、 仕上げ焼鈍後に付加する脱炭工程としては、 (1)酸化性雰囲気での 焼鈍(脱炭焼鈍)、 (2)表層のグラファイ トを機械的に除去する表面研削、 (3) '表層のグラフアイ トを化学的に除去する電解洗浄 ·化学研磨、 プラズマ照射 等が有効である。 なお、 手段(2)または(3)による脱炭が可能となる理由は、 Cが仕上げ焼鈍の終了までに、鋼板表層にグラフアイ トとして析出し、鋼中 の脱炭は完了しているためである。  On the other hand, decarburization processes added after finish annealing include (1) annealing in an oxidizing atmosphere (decarburizing annealing), (2) surface grinding to mechanically remove surface graphite, and (3) surface grinding of Electrolytic cleaning to remove the graphite chemically, chemical polishing, plasma irradiation, etc. are effective. The reason why decarburization by means (2) or (3) is possible is that C precipitates as graphite on the surface of the steel sheet by the end of finish annealing, and decarburization in the steel has been completed. It is.
このよ うにグラフアイ トが鋼板表層に析出する現象については、例えば以 下のような機構が考えられる。 Cは、鋼中では準安定なセメンタイ トを形成 する力 S、表面エネルギーが高い活性化した状態ではグラフアイ トを形成する。 このため、冷却中に Cは地鉄中にセメンタイ トとして析出する前に、表層に グラフアイ トとして析出する。 ところで、 純鉄での状態図から推測すると、 グラフアイ トの溶解度はセメンタイ トの溶解度よりも僅かに低い。したがつ て、表層の固溶 Cがグラフアイ トと平衡する濃度まで減少するため、表層の 固溶 Cと地鉄中との固溶 Cの濃度勾配が発生し、地鉄からの脱炭が進行する ものと推察している。 Regarding the phenomenon in which graphite is precipitated on the surface of a steel sheet, for example, the following mechanism can be considered. C forms a metastable cementite in steel, S, and forms graphite in an activated state with high surface energy. Therefore, during cooling, C precipitates as graphite on the surface layer before it precipitates as cementite in the base iron. By the way, guessing from the phase diagram of pure iron, The solubility of graphite is slightly lower than that of cementite. Therefore, the concentration of solid solution C in the surface layer decreases to a concentration that is in equilibrium with the graphite, causing a concentration gradient between solid solution C in the surface layer and solid solution C in the ground iron, and decarbonization from the ground iron. It is speculated that this will progress.
ただし、仕上げ焼鈍に際して表面に緻密あるいは強固な被膜層が形成され ると (たとえば MgOを主成分とする従来の焼鈍分離剤を適用した場合)、表面 活性化が阻害される結果、 グラフアイ トの鋼板表層析出も阻害される。 しか し、本発明の焼鈍分離剤により形成される被膜は密着性に優れるものの、理 由は不明ながらグラフアイ トの鋼板表層析出にも悪影響を与えず、好適に上 記脱炭方法が利用できる。 仕上げ焼鈍後は、平坦化焼鈍により、 張力を付加して形状を矯正すること が鉄損低減のために有効である。この平坦化焼鈍を湿潤雰囲気で行なうこと で、 同時に脱炭を行ってもよい (上記 (1) の方法の一種)。  However, if a dense or strong coating layer is formed on the surface during finish annealing (for example, when a conventional annealing separator containing MgO as a main component is applied), surface activation is hindered, and Precipitation of the steel sheet surface layer is also inhibited. However, although the film formed by the annealing separator of the present invention is excellent in adhesion, it does not adversely affect the precipitation of the graphite steel sheet surface for any unknown reason, and the above decarburization method can be suitably used. . After finish annealing, it is effective to correct the shape by applying tension by flattening annealing to reduce iron loss. By performing the flattening annealing in a humid atmosphere, decarburization may be performed at the same time (a type of the method (1)).
なお、仕上げ焼鈍後に浸珪法によって Si量を増加させる技術をさらに適用 してもよい。 この技術は鉄損をさらに低減させたい場合、 有効である。 鋼板を積層して鉄心などに使用する場合には、平坦化焼鈍後に鋼板表面に 絶縁被膜を施すことにより、積層体の鉄損を改善することが有効である。 と くに良好な打ち抜き性を確保するためには、絶縁被膜として、樹脂を含有す る有機系被膜が望まい。 他方、 溶接性を重視する場合には、 無機系被膜を絶 縁被膜として適用することが望ましい。  Note that a technique of increasing the amount of Si by the siliconizing method after the finish annealing may be further applied. This technology is effective for further reducing iron loss. When a steel sheet is laminated and used for an iron core or the like, it is effective to improve the core loss of the laminated body by applying an insulating coating to the surface of the steel sheet after flattening annealing. In order to ensure particularly good punchability, an organic coating containing a resin is desired as the insulating coating. On the other hand, when weldability is important, it is desirable to apply an inorganic coating as an insulating coating.
なお、 とくに焼鈍分離剤を除去するだけの工程は不要である。 フオルステライ ト質被膜特性およぴ磁気特性に優れた方向性電磁鋼板を 製造する場合は、再結晶焼鈍および本発明焼鈍分離剤の塗布の後、二次再結 晶を発現させるために 1回目のパツチ焼鈍を行なう。このときの焼鈍条件は 二次再結晶が進行する公知の焼鈍条件を適用することができる。好ましい条 件は約 750〜1100°Cで約 1〜300時間である。  It should be noted that a step of simply removing the annealing separator is unnecessary. When manufacturing a grain-oriented electrical steel sheet having excellent forsterite coating film properties and magnetic properties, the first recrystallization after the recrystallization annealing and the application of the annealing separator of the present invention are required to develop secondary recrystallization. Perform patch annealing. As annealing conditions at this time, known annealing conditions under which secondary recrystallization proceeds can be applied. Preferred conditions are about 750 to 1100 ° C for about 1 to 300 hours.
その後、 二回目のパッチ焼鈍でフォルステラィ ト質被膜を形成させるが、 その準備段階として、 まず連続焼鈍によるサブスケール形成を行なう。磁気 特性改善の目的で Cを所定量含有させたまま 1回目のバツチ焼鈍を行った 場合は、 このサブスケールを形成する連続焼鈍において、 同時に脱炭も行な うことが好ましい。 前記連続焼鈍の焼鈍条件 (時間,温度 ·雰囲気等) は、 後続のバッチ焼鈍でフォルステラィ ト質被膜の形成が容易にかつ安定的に 形成されるよう、 公知の焼鈍条件が適用できる。 好ましい焼鈍温度は約 750 〜1000¾、 好ましい焼鈍時間は約 1〜300秒、 好ましい雰囲気は水素ガスと 窒素ガスからなる酸化性雰囲気である。 After that, a forsterite coating is formed by the second patch annealing. As a preparation stage, first, a subscale is formed by continuous annealing. When the first batch annealing is performed with a predetermined amount of C contained for the purpose of improving the magnetic properties, it is preferable that decarburization is simultaneously performed in the continuous annealing for forming the subscale. Known annealing conditions can be applied to the annealing conditions (time, temperature, atmosphere, etc.) of the continuous annealing so that the forsterite coating can be easily and stably formed in the subsequent batch annealing. The preferred annealing temperature is about 750 to 1000 ° C., the preferred annealing time is about 1 to 300 seconds, and the preferred atmosphere is an oxidizing atmosphere consisting of hydrogen gas and nitrogen gas.
前記連続焼鈍の前に本発明の焼鈍分離剤を除去する工程は不要である。す なわち、本発明の焼鈍分離剤の上からフオルステライ ト質被膜を付与しても、 フォルステラィ ト質被膜の密着性は良好であるのみならず、本発明の焼鈍分 離剤の存在による純化の妨げも生じない。 次に MgOを主成分とする焼鈍分離剤を鋼板表面に塗布し、 二回目のバッチ 焼鈍を行なう。この二回目のバッチ焼鈍はフオルステライ ト質被膜の形成お よび不純物の純化を目的として行なうため、この 2つの目的が達成し得る公 知の焼鈍条件が適用することができる。好ましい焼鈍温度は約 900〜1300°C、 好ましい焼鈍時間は約 1〜300時間である。 なお、 MgOを主成分とする焼鈍分 離剤としては公知のものが適用可能である。 例えば、 固形分として、 好まし くは MgO:約 80〜99mass%、 必要に応じて残りを、 Ti02、 SrS04、 MgS04等か ら選ばれる 1種以上としたものが好適に用いられる。 The step of removing the annealing separator of the present invention before the continuous annealing is unnecessary. That is, even if a forsterite coating is applied over the annealing separator of the present invention, not only the adhesion of the forsterite coating is good, but also the purification due to the presence of the annealing separator of the present invention. There is no hindrance. Next, an annealing separator mainly composed of MgO is applied to the steel sheet surface, and a second batch annealing is performed. Since the second batch annealing is performed for the purpose of forming a forsterite coating and purifying impurities, known annealing conditions that can achieve the two purposes can be applied. The preferred annealing temperature is about 900-1300 ° C., and the preferred annealing time is about 1-300 hours. It should be noted that known annealing separators containing MgO as a main component can be used. For example, as a solid content, rather preferably the MgO: about 8 0 to 99 mass%, the remainder optionally used Ti0 2, SRS0 4, MgSO be preferably those with one or more selected 4 and the like or al Can be
二回目のパッチ焼鈍の後に、浸珪法によって Si量を増加させる技術をさら に適用してもよい。 そして最後に必要に応じて張力被膜を塗布し、 焼き付ける。 また、 平坦化 焼鈍により形状を整えることも可能であり、さらには張力被膜の焼付けを兼 ねた平坦化焼鈍を実施することもできる。 本発明における方向性電磁鋼板とは二次再結晶が発現した電磁鋼板を意 味する。 よって、 ゴス方位のみではなく Cube方位 ({ 100 } く 001 >方位もしく は { 100}く 011〉方位) が二次再結晶している場合も本特許の請求範囲とする。 Cube方位への集積は既知の方法が適用でき、例えば圧延集合組織の制御で行 なうことができるが、再結晶焼鈍以降の工程は、 ゴス方位が集積した二次再 結晶を発現させる場合と大筋で同じである。 After the second patch annealing, a technique to increase the amount of Si by the siliconizing method may be further applied. Finally, if necessary, a tension coating is applied and baked. In addition, the shape can be adjusted by flattening annealing, and further, flattening annealing that also serves as baking of a tension film can be performed. The grain-oriented electrical steel sheet in the present invention means an electrical steel sheet in which secondary recrystallization has developed. Therefore, not only the Goss direction but also the Cube direction ({100} The present invention also covers the case where (100) (011) orientation is secondary recrystallized. A known method can be applied to the accumulation in the Cube orientation, for example, it can be performed by controlling the rolling texture.However, the steps after recrystallization annealing are the same as the case where secondary recrystallization in which the Goss orientation is accumulated The same is true in the outline.
〔実施例〕 〔Example〕
(実施例 1)  (Example 1)
下記の方法により、フォルステラィ ト質被膜の特性おょぴ磁気特性に優れ た方向性電磁鋼板を作成した。  A grain-oriented electrical steel sheet with excellent forsterite coating properties and magnetic properties was prepared by the following method.
C : 0. 020mass %、 Si: 3. 35mass0/o、 Mn: 0. 050mass%およぴ Sb: 380 massppmを 含み、 さ らにィンヒ ビター形成成分と して Al : 320 massppmおょぴ N : 80 massppmを含み、 残部は鉄及ぴ不可避的不純物からなる鋼スラブを、 連続鎳 造法にて製造した。該鋼スラブを 1200°Cに加熱した後、熱間圧延により板厚 2. 0mmの熱延板に仕上げ、 1050°Cで 60秒の熱延板焼鈍を施した。 ついで、 冷 間圧延により板厚 0. 30mmの冷延板に仕上げ、 露点が- 45°Cの乾燥雰囲気中で 900°C、 10秒の条件で再結晶焼鈍を施した。 C: 0. 020mass%, Si: 3. 35mass 0 / o, Mn: 0. 050mass% Oyopi Sb: 380 comprises massppm, Al as a is et to Inhi Bitter forming component: 320 massppm Oyopi N : A steel slab containing 80 massppm, the balance being iron and unavoidable impurities was produced by a continuous production method. After the steel slab was heated to 1200 ° C, it was hot-rolled to finish a hot-rolled sheet having a thickness of 2.0 mm, and annealed at 1050 ° C for 60 seconds. Then, it was finished into a cold-rolled sheet having a thickness of 0.30 mm by cold rolling, and was subjected to recrystallization annealing in a dry atmosphere having a dew point of -45 ° C at 900 ° C for 10 seconds.
再結晶焼鈍の後、一回目のバッチ焼鈍を実施した。焼鈍分離剤は表 5に従 い、 再結晶焼鈍の前または後に塗布した。 焼鈍分離剤の塗布は、 ロールコー ターを用いて行い、 その後、 鋼板の到達温度 (板温) を 250°Cとする焼き付 け処理を施し、 放冷した。 焼き付けはプロパンガス直火焼き付けで行った。 一回目のパツチ焼鈍は窒素雰囲気中にて 850°C、 40時間保持する条件で実施 し、 二次再結晶を完了させた。  After recrystallization annealing, the first batch annealing was performed. The annealing separator was applied before or after recrystallization annealing according to Table 5. The annealing separator was applied using a roll coater, and then subjected to a baking treatment at an ultimate temperature of the steel sheet (sheet temperature) of 250 ° C and allowed to cool. The baking was performed by propane gas baking. The first patch annealing was carried out in a nitrogen atmosphere at 850 ° C for 40 hours to complete the secondary recrystallization.
その後、 焼鈍分離剤の塗布性、 乾燥後の焼鈍分離剤の密着性、 一回目のバ ツチ焼鈍後の焼鈍分離効果をそれぞれ調査し、これらの特性が良好であった サンプルについては、 後続の工程をさらに施し、 製品板とした。  After that, the applicability of the annealing separator, the adhesion of the annealing separator after drying, and the annealing separation effect after the first batch annealing were investigated, respectively. Was further applied to obtain a product plate.
後続の工程においては、 まず、良好なサブスケールを形成するための連続 焼鈍を実施し、 その後、 MgOを主成分とする焼鈍分離剤を塗布した。 一回目 のバツチ焼鈍は Cが 100〜150massppm残留したまま実施したので、 このサブ スケール形成のために行つた連続焼鈍では同時に脱炭も行った。連続焼鈍は 露点 55°Cの酸化性雰囲気にて 835°C、 120秒で行った。 二回 目 のバッチ焼鈍用の焼鈍分離剤は固形分と して MgO : 95as s%, Ti02 : 5nias s。/。を含有するものを使用した。 次いで二回目のパッチ焼鈍を乾水 素雰囲気中で 1200°C、 5時間保持する条件で実施した。 そして最後に張力被膜の塗布 ·焼き付けおよぴ歪取り焼鈍を行った。張力 被膜はリン酸、 ク口ム酸およぴコ口ィダルシリ力を含有するもの使用し、 800°Cの温度で焼き付けた。歪取り焼鈍については窒素雰囲気中で 800°C、 3 時間の条件で実施した。 表 5に焼鈍分離剤の成分おょぴ塗布条件を示す。 S i02、 A1203の粉末を主 成分とする焼鈍分離剤は No. 26を除き水スラリ一にて塗布し、 No. 26はアルコ ール中に固形分 5 mas s %となるように懸濁させてスプレーで塗布した。粉末 以外を主成分とするものは、塗布量によって希釈割合は異なるが、水で希釈 してコロイ ド溶液として塗布した。副剤として添加した硫酸ス ト口ンチウム、 硫酸マグネシウムおよび硫化マグネシウムはそれぞれ 3wt。/。添加した。表 5に 記した以外の固形分は添加されていないが、適宜、界面活性剤 (非ィオン系) などを 0. 5mass %以下添加した。 一回目のバッチ焼鈍に用いた焼鈍分離剤について、表 6に焼鈍分離剤塗布 工程の順序 (再結晶焼鈍の前か後かで区分)、 焼鈍分離剤の塗布性、 乾燥後 の焼鈍分離剤の密着性、および一回目のパッチ焼鈍後の焼鈍分離効果を示す。 In the subsequent steps, first, continuous annealing was performed to form a good subscale, and then an annealing separator containing MgO as a main component was applied. The first batch anneal was performed with 100 to 150 mass ppm of C remaining. Therefore, in the continuous anneal performed to form this subscale, decarburization was performed simultaneously. The continuous annealing was performed at 835 ° C for 120 seconds in an oxidizing atmosphere with a dew point of 55 ° C. Annealing separating agent for batch annealing of the second time with a solid content of MgO: 95as s%, Ti0 2 : 5nias s. /. Used was used. Next, a second patch annealing was performed in a dry hydrogen atmosphere at 1200 ° C for 5 hours. Finally, a tension coating was applied and baked and a strain relief annealing was performed. Tensile coatings containing phosphoric acid, coumic acid, and cinnamate were used and baked at a temperature of 800 ° C. The strain relief annealing was performed in a nitrogen atmosphere at 800 ° C for 3 hours. Table 5 shows the components of the annealing separator and the application conditions. S i0 2, the annealing separator composed A1 2 0 3 powder the main components was applied by the exception water slurry scratch No. 26, No. 26 is to be a solid 5 mas s% in alcohol And applied by spraying. The ratio of the main component other than powder was different depending on the amount of application, but was diluted with water and applied as a colloid solution. 3 wt% each of sodium sulfate, magnesium sulfate and magnesium sulfide added as adjuncts. /. Added. Solid contents other than those described in Table 5 were not added, but a surfactant (non-ion type) or the like was appropriately added at 0.5 mass% or less. Table 6 shows the order of the annealing separator application process (before or after recrystallization annealing), the coating properties of the annealing separator, and the annealing separator after drying. 5 shows the adhesion and the effect of annealing separation after the first patch annealing.
No. 14および 19は焼鈍分離剤の粘度が本発明範囲外であるために塗布性が 著しく悪く、 塗布できていない部分で鋼板の密着が発生した。 No. 12および 15は A1化合物と Si化合物の比率が本発明の好適範囲外で、 No. 12は造膜成分 である A1化合物が少ない為、 焼鈍分離剤の鋼板への密着性が劣る。 一方、 No. 15は反応性の高い A1化合物の量が多い為、 塗液が安定せず均一な被膜が 形成できなかった。 その結果、 外観不良となった。  In Nos. 14 and 19, since the viscosity of the annealing separator was out of the range of the present invention, the applicability was extremely poor, and adhesion of the steel sheet occurred in portions where the application was not possible. In Nos. 12 and 15, the ratio of the A1 compound to the Si compound is out of the preferred range of the present invention, and in No. 12, the adhesion of the annealing separator to the steel sheet is inferior because the amount of the A1 compound which is a film forming component is small. On the other hand, in No. 15, since the amount of the highly reactive A1 compound was large, the coating liquid was not stable and a uniform film could not be formed. As a result, the appearance was poor.
No. 1 ~ 4は、 焼鈍分離剤の主成分が本発明外のため、 鋼板への密着性が 不十分であった。 No . 5は、 焼鈍分離剤塗布量が不充分であるため、 仕上げ 焼鈍時に鋼板の密着が発生した。 N o . 17は焼鈍分離剤の塗布量が多すぎたた め、 鋼板への密着性が不十分で剥離が発生した。 Nos. 1 to 4 had insufficient adhesion to the steel sheet because the main component of the annealing separator was outside the present invention. In No. 5, adhesion of the steel sheet occurred at the time of finish annealing because the amount of the applied annealing separator was insufficient. No. 17 had too much applied amount of annealing separator Therefore, peeling occurred due to insufficient adhesion to the steel sheet.
No. 3、 4、 6、 7、 12および 26では焼鈍分離剤の塗布順序を再結晶焼鈍 の前と後との 2通り実施した。本発明の焼鈍分離剤は、焼鈍分離剤塗布工程 の順序に関係なく、 良好な焼鈍分離剤の塗布性、乾燥後の焼鈍分離剤の密着 性、 および一回目のバッチ焼鈍後の焼鈍分離効果が得られた。比較例である No. 3、 4および 26では、 焼鈍分離剤の塗布順序によって、 焼鈍分離効果に 違いが見られた。 これは、 再結晶焼鈍前に塗布した場合、 鋼板への密着性が 良くないこれらの焼鈍分離剤は再結晶焼鈍時に剥離し、その結果一回目のバ ツチ焼鈍時に鋼板に付着している焼鈍分離剤量が少なくなつたため、鋼板の 密着が発生したものと考えられる。 一方、 再結晶焼鈍後に塗布したものは、 剥離量が少なく鋼板の密着の防止に必要な量が鋼板に残留していたために 鋼板の密着が発生しなかったと考えられる。  In Nos. 3, 4, 6, 7, 12 and 26, the annealing separator was applied in two different order, before and after recrystallization annealing. Regardless of the sequence of the annealing separator application step, the annealing separator of the present invention has good applicability of the annealing separator, adhesion of the annealing separator after drying, and annealing separation effect after the first batch annealing. Obtained. In Comparative Examples Nos. 3, 4, and 26, the annealing separation effect was different depending on the application sequence of the annealing separating agent. This is because, when applied before recrystallization annealing, these annealing separation agents, which have poor adhesion to steel sheets, peel off during recrystallization annealing, and as a result, the annealing separation agent that adheres to steel sheets during the first batch annealing It is probable that the adhesion of the steel sheets occurred because the amount of the agent was reduced. On the other hand, it is probable that the steel sheet applied after recrystallization annealing did not adhere to the steel sheet because the amount of peeling was small and the amount required to prevent the steel sheet from adhering remained on the steel sheet.
表 7に、本発明の焼鈍分離剤を適用したサンプルに後続の工程を施して製 品板とした場合の、磁気特性、 フォルステラィ ト質被膜特性および二回目の バッチ焼鈍後の 1, (, 3,36含有量 (地鉄中、 すなわち鋼板表面の被膜を除 去して分析した結果) を示す。 フォルステラィ ト£被膜特性は、 歪み取り焼 鈍後のサンプルを円柱に卷き付け、被膜剥離を生じなかった最小曲げ半径で 評価した。 磁気特性は、 30 X 300mmのェプスタイン試験片を用い、 JIS C 2550 に従い測定した。 B 8は磁化力 800A/mにおける磁束密度(T)、 W 17/50は周波 数 50Hz、 最大磁束密度 1. 7Tにおける鉄損値 (W/kg)である。 Table 7 shows the magnetic properties, forsterite coating properties, and 1, (, 3) after the second batch annealing when the sample to which the annealing separator of the present invention was applied was subjected to subsequent steps to obtain a product plate. , 36 content (results of analysis after removing the coating in the base steel, that is, the surface of the steel sheet) Forsterite coating characteristics are as follows: the sample after strain relief annealing was wound around a cylinder to remove the coating. was evaluated by the minimum bend radius not occurred. magnetic properties, using Epusutain specimen 30 X 300 mm, was measured in accordance with JIS C 25 50. B 8 is magnetic flux density at a magnetizing force 800A / m (T), W 17 / 50 is the iron loss value (W / kg) at a frequency of 50 Hz and a maximum magnetic flux density of 1.7 T.
本発明の焼鈍分離剤を適用した場合、磁気特性とフオルステライ ト質被膜 特性の両立が達成されており、さらに不純物の純化も問題なく行われていた。 また、 Sを含有する化合物を副剤として焼鈍分離剤に添加した場合(No. 8、 10および 11)、 磁気特性のさらなる改善が見られた。 表 5 When the annealing separator of the present invention was applied, both the magnetic properties and the properties of the forsterite coating were achieved, and the purification of impurities was performed without any problem. Further, when a compound containing S was added to the annealing separator as a secondary agent (Nos. 8, 10 and 11), further improvement in magnetic properties was observed. Table 5
Figure imgf000033_0001
Figure imgf000033_0001
*:粘度 1. 6のアルコール中に懸濁させ、 スプレー塗布 6 *: Suspended in alcohol with a viscosity of 1.6, spray applied 6
焼鈍分離剤塗 Annealing separator coating
焼鈍  Annealing
布工程の順序 剥離量 焼鈍分離 剥離強度 Cloth process sequence Peeling amount Annealing Separation Peeling strength
塗布性 分離剤 備考 (再結晶焼鈍の (g/rr.2) 効果 (N)  Applicability Separating agent Remarks ((g / rr.2) effect of recrystallization annealing (N)
密着性  Adhesion
前/後)  Before / after)
後 O X 1.10 0 0 比較例 後 O X 1.05 0 0 比較例 前 o X 1.05 X 65 比較例 後 o X 1.10 o 0 比較例 刖 o X 1.10 Δ 50 比較例 後 o X 1.00 O 0 比較例 後 o 〇 0 X 90 比較例 前 o O 0 O 5 発明例 後 o O 0 O 5 発明例 前 o 〇 0 〇 2 発明例 後 o O 0 〇 3 発明例 後 o O 0 〇 2 発明例 後 o 〇 0 〇 0 発明例 後 o 〇 0 〇 0 発明例 後 o 〇 0 〇 0 発明例 前 o Δ 0.80 O 0 発明例 後 o △ 075 〇 0 発明例 後 o O 0 o 0 発明例 後 X 〇 0 厶 20 比較例 後 Δ O 0 〇 0 比較例 後 o O 0.15 〇 0 発明例 後 o Δ 1.5 〇 0 比較例 後 o O 0 〇 0 発明例 後 X O 0 Δ 40 比較例 後 o O 0 0 0 発明例 後 o O 0 〇 0 発明例 後 o O 0 O 0 発明例 後 o O 0 O 0 発明例 後 o O 0 O 0 発明例 後 o o 0 O 0 発明例  After OX 1.10 0 0 Comparative example After OX 1.05 0 0 Comparative example Before o X 1.05 X 65 Comparative example After o X 1.10 o 0 Comparative example 刖 o X 1.10 Δ50 Comparative example After o X 1.00 O 0 Comparative example After o 〇 0 X 90 Comparative Example Before o O 0 O 5 Invention Example After O O 0 O 5 Invention Example Before o 〇 0 〇 2 Invention Example After o O 0 〇 3 Invention Example After o O 0 〇 2 Invention Example After o 〇 0 〇 0 Invented example after o 〇 0 〇 0 Invented example after o 〇 0 〇 0 Invented example Before o Δ 0.80 O 0 Invented example after o △ 075 〇 0 Invented example after o O 0 o 0 Invented example after X 〇 0 m 20 Comparative example After Δ O 0 〇 0 Comparative Example After o O 0.15 〇 0 Invention Example After o Δ1.5 1.5 0 Comparative Example After o O 0 〇 0 Invention Example After XO 0 Δ 40 Comparative Example After o O 0 0 0 Invention Example After O O 0 〇 0 invention example after o O 0 O 0 invention example after o O 0 O 0 invention example after o O 0 O 0 invention example after oo 0 O 0 invention example
o X 1.0 X 70 比較例 後 o X 1.0 O 0 比較例 表 Ί o X 1.0 X 70 Comparative example After o X 1.0 O 0 Comparative example Table Ί
Figure imgf000035_0001
Figure imgf000035_0001
(実施例 2) (Example 2)
下記の方法により、フオルステライ ト質被膜の特性および磁気特性に優れ た方向性電磁鋼板を作成した。  A grain-oriented electrical steel sheet having excellent forsterite coating properties and magnetic properties was prepared by the following method.
C : 0. 019mass %、 Si: 3. 28mass%、 Mn: 0. 073mass0/0およぴ Sb : 330 massppm を含み、 さらに Al : 38 massppm、 N: 30 massppm、 S : 18 massppmおよひ Se : lO massppm未満 (分析限界値未満) にそれぞれ抑制した、 インヒ ビター形成 成分を含まない鋼スラブを連続鏡造法にて製造した。ここで残部は鉄および 不可避的不純物とした。該鋼スラブを 1200°Cに加熱した後、熱間圧延により 板厚 2. 0匪の熱延板に仕上げ、 1050°Cで 60秒の熱延板焼鈍を施した。 C: 0. 019mass%, Si: 3. 28mass%, Mn: 0. 073mass 0/0 Oyopi Sb: 330 comprises massppm, further Al: 38 massppm, N: 30 massppm, S: 18 massppm Oyohi Se: Steel slabs containing no inhibitor-forming components, each controlled to less than lO massppm (less than the analysis limit value), were manufactured by continuous mirror manufacturing. The balance was iron and inevitable impurities. After the steel slab was heated to 1200 ° C, it was hot-rolled to finish a hot-rolled sheet having a thickness of 2.0, and annealed at 1050 ° C for 60 seconds.
ついで、 冷間圧延によ り板厚 0. 30 の冷延板に仕上げ、 露点が- 45°Cの乾 燥雰囲気中で 900°C、 10秒の条件で再結晶焼鈍を施した。  Then, it was finished into a cold-rolled sheet with a thickness of 0.30 by cold rolling, and recrystallized and annealed at 900 ° C for 10 seconds in a dry atmosphere with a dew point of -45 ° C.
再結晶焼鈍の後、 一回目のパッチ焼鈍を実施した。 焼鈍分離剤は、 表 8に 従い再結晶焼鈍前または後に塗布した。 焼鈍分離剤の塗布は、 ロールコータ 一を用いて行い、 その後、 到達温度250°Cで焼き付け、 放冷した。 焼き付け はプロパン直火焼き付けで行った。一回目のパッチ焼鈍は窒素雰囲気中にて 865°C、 50時間保持する条件で実施し二次再結晶を完了させた。 After recrystallization annealing, the first patch annealing was performed. Table 8 shows the annealing separators. Accordingly, it was applied before or after recrystallization annealing. Application of annealing separator was performed using a roll coater primary, then baked at the ultimate temperature 2 50 ° C, and allowed to cool. Baking was carried out by baking with propane. The first patch annealing was performed in a nitrogen atmosphere at 865 ° C. for 50 hours to complete the secondary recrystallization.
その後、 焼鈍分離剤の塗布性、 乾燥後の焼鈍分離剤の密着性、 一回目のパ ツチ焼鈍後の焼鈍分離効果を調査し、結果が良好であったサンプルについて は、 後続の工程をさらに施し、 製品板とした。 後続の工程において'は、 まず、 良好なサブスケールを形成するための連続 焼鈍を実施し、 その後、 Mg0を主成分とする焼鈍分離剤を塗布した。 1回目 のバッチ焼鈍を Cが 100〜150massppm残留したまま実施したので、 このサブ スケール形成のために行った連続焼鈍では同時に脱炭も行つた。連続焼鈍は 露点 60°Cの酸化性雰囲気にて 850°C、 80秒で行った。 また、 焼鈍分離剤は固 形分として Mg0 : 92. 5 mas s %, Ti02 : 7. 5 mas s 。/。を含有するものを使用した。 次いで二回目のバツチ焼鈍を施した。本実施例の鋼組成ではィンヒビター 成分の純化に必要な 1200°C付近での高温焼鈍をする必要がなく、フオルステ ライ ト質被膜形成が可能な条件であればよい。 そこで、 二回目のバッチ焼鈍 では、従来よりも低温である 1100°Cにて 5時間保持し、 雰囲気は^水素とし た。 After that, the applicability of the annealing separator, the adhesion of the annealing separator after drying, and the annealing separation effect after the first patch annealing were investigated, and for samples with good results, the subsequent steps were further performed. , And product plate. 'In a subsequent step, first, they performed continuously annealed to form a good subscale, then coated with an annealing separator composed mainly of M g 0. Since the first batch annealing was performed with 100 to 150 mass ppm of C remaining, decarburization was performed simultaneously in the continuous annealing performed to form this subscale. The continuous annealing was performed at 850 ° C for 80 seconds in an oxidizing atmosphere with a dew point of 60 ° C. Further, annealing separator Mg0 as solid content: 92. 5 mas s%, Ti0 2: 7. 5 mas s. /. Used was used. Next, a second batch annealing was performed. In the steel composition of this embodiment, it is not necessary to perform high-temperature annealing at around 1200 ° C., which is necessary for purifying the inhibitor component, as long as the conditions permit formation of a forsterite coating. Therefore, in the second batch annealing, the temperature was kept at 1100 ° C, which is lower than before, for 5 hours, and the atmosphere was changed to hydrogen.
そして最後に張力被膜の塗布 ·焼き付けおよぴ歪取り焼鈍を行った。 張力 被膜はリン酸、 ク口ム酸おょぴコ口ィダルシリ力を含有するもの使用し、 800°Cの温度で焼き付けた。歪取り焼鈍については窒素雰囲気中で 800 、 3 時間の条件で実施した。焼鈍分離剤の成分および塗布条件としては、実施例 1 と同様に、 表 5に示す各 No.に対応する条件にて行った。 表 8に分離剤塗布工程の順序 (再結晶焼鈍前あるいは後)、 焼鈍分離剤の 塗布性、乾燥後の焼鈍分離剤の密着性、 および一回目のパッチ焼鈍後の焼鈍 分離効果を示す。 実施例 1 と同様に、本発明の方法により製造された鋼につ いては焼鈍分離剤塗布工程の順序に関係なく、 良好な焼鈍分離剤の塗布性、 乾燥後の焼鈍分離剤の密着性、および一回目のパッチ焼鈍後の焼鈍分離効果 が得られている。 これより、本発明の焼鈍分離剤がインヒビターを含まない 成分系に適用しても有効であることが分かる。 Finally, a tension coating was applied and baked and a strain relief annealing was performed. Tensile coatings containing phosphoric acid and oxalic acid were used and baked at 800 ° C. The strain relief annealing was performed in a nitrogen atmosphere at 800 for 3 hours. The components of the annealing separator and the application conditions were the same as in Example 1 under the conditions corresponding to each No. shown in Table 5. Table 8 shows the order of the separating agent application process (before or after recrystallization annealing), the applicability of the annealing separating agent, the adhesion of the annealing separating agent after drying, and the annealing separation effect after the first patch annealing. As in Example 1, for the steel produced by the method of the present invention, regardless of the sequence of the step of applying the annealing separator, good coatability of the annealing separator, adhesion of the annealing separator after drying, Separation effect after first and first patch annealing Is obtained. This shows that the annealing separator of the present invention is effective even when applied to a component system containing no inhibitor.
表 9に本発明の焼鈍分離剤を適用したサンプルに後続の工程を施して製 品板とした場合の、磁気特性、 フオルステライ ト質被膜特性および二回目の バッチ焼鈍後の Al,C, N,S,Se含有量を示す。 各特性の調査方法は実施例 1 と 同様とした。  Table 9 shows the magnetic properties, forsterite coating properties, and the Al, C, N, and B values after the second batch annealing when the sample to which the annealing separator of the present invention was applied was subjected to subsequent steps to obtain a product plate. Shows the S and Se contents. The method of investigating each characteristic was the same as in Example 1.
本発明範囲内の焼鈍分離剤を適用した場合、磁気特性とフオルステライ ト 質被膜特性の両立が達成されており、さらに不純物濃度も問題のないレベル であった。 When the annealing separator within the scope of the present invention was applied, both the magnetic properties and the forsterite coating properties were achieved, and the impurity concentration was at a level without any problem.
表 8 Table 8
焼鈍分離剤塗布 Annealing separation agent application
焼鈍 焼鈍  Annealing Annealing
工程の順序 剥離量  Process sequence Peeling amount
塗布性 分離剤 分離 備考 (再結晶焼鈍の (g/m2)  Coating properties Separation agent Separation Remarks (g / m2 of recrystallization annealing)
密着性 効果  Adhesion effect
前/後)  Before / after)
前 o X 1.15 Δ 45 比較例 後 〇 X 1.00 O 0 比較例 前 〇 X 1.00 △ 35 比較例 後 o X 1.00 o 0 比較例 後 o X 1.05 o 0 比較例 後 o X 1.15 〇 0 比較例 後 o O 0 X 60 比較例 後 o O 0 O 3 発明例 後 o 〇 0 〇 3 発明例 則 〇 〇 0 o 3 発明例 後 o 〇 0 〇 2 発明例 刖 o 〇 0 o 0 発明例 後 〇 〇 0 o 0 発明例 後 o 〇 0 o 0 発明例 後 o O 0 o 0 発明例 後 〇 厶 0.8 o 0 発明例 後 〇 o 0 〇 0 発明例 刖 X o 0 Δ 40 比較例 後 X o 0 A 25 比較例 後 厶 〇 0 〇 0 比較例 後 o o 0.2 O 0 発明例 後 o 厶 2 O 0 比較例 後 o 〇 0 O 0 発明例 後 X 〇 0 Δ 35 比較例 後 o o 0 O 0 発明例 後 o o 0 O 0 発明例 後 o 〇 0 O 0 発明例 後 o 〇 0 O 0 発明例 後 o o 0 O 0 発明例 後 o o 0 o 0 発明例 表 9 Before o X 1.15 Δ 45 comparative example after 〇 X 1.00 O 0 comparative example before 〇 X 1.00 △ 35 comparative example after o X 1.00 o 0 comparative example after o X 1.05 o 0 comparative example after o X 1.15 〇 0 comparative example after o O 0 X 60 Comparative example after o O 0 O 3 Invention example after o 〇 0 〇 3 Invention example rule 〇 〇 0 o 3 Invention example after o 〇 0 〇 2 Invention example 刖 o 〇 0 o 0 Invention example after 〇 0 o 0 invention example after o 〇 0 o 0 invention example after o O 0 o 0 invention example after 0.8 o 0 invention example after 〇 o 0 〇 0 invention example 刖 X o 0 Δ40 comparative example after X o 0 A 25 Comparative Example After 0 〇 0 Comparative Example After oo 0.2 O 0 Invention Example After Om 2 O 0 Comparative Example After o 〇 0 O 0 Invention Example After X 〇 0 Δ35 Comparative Example After oo 0 O 0 Invention Example After oo 0 O 0 Invention example after o o 0 O 0 Invention example after o 〇 0 O 0 Invention example after oo 0 O 0 Invention example after oo 0 o 0 Invention example Table 9
Figure imgf000039_0001
Figure imgf000039_0001
(実施例 3 ) (Example 3)
下記の方法により、 フオルステライ ト質被膜を有さない、磁気特性おょぴ 加工性に優れた方向性電磁鋼板を作成した。  A grain-oriented electrical steel sheet having no forsterite coating and excellent magnetic properties and workability was prepared by the following method.
C : 0. 020mas s %、 Si: 3. 31mass°/o Mn: 0. 060nmss%およぴ Sb : 450 mas sppm を含み、 さらにインヒビター形成成分と して A1 : 300 massppmおよび N:70 massppm含み、 残部は鉄及ぴ不可避的不純物からなる鋼スラブを連続鍀造法 にて製造した。該鋼スラブを 1200°Cに加熱した後、熱間圧延により板厚 1. 8mm の熱延板に仕上げ、 950 で 60秒の熱延板焼鈍を施した。 ついで、 冷間圧延 により板厚 0. 27mmの冷延板に仕上げ、 露点が- 45°Cの乾燥雰囲気下で 880°C、 10 sの条件で再結晶焼鈍を施し、 その後仕上げ焼鈍を実施した。 C: 0. 020mas s%, Si : 3. 31mass ° / o Mn: 0. 060nmss% Oyopi Sb: comprises 450 mas SPPM, as a further inhibitor-forming component A1: 3 00 massppm and N: 70 massppm Steel slabs containing iron and unavoidable impurities were manufactured by the continuous production method. After heating the steel slab to 1200 ° C., it was hot-rolled into a hot-rolled sheet having a thickness of 1.8 mm, and annealed at 950 for 60 seconds. Then, cold rolling was performed to form a cold rolled sheet with a thickness of 0.27 mm, recrystallization annealing was performed at 880 ° C for 10 s in a dry atmosphere with a dew point of -45 ° C, and then finish annealing was performed. .
焼鈍分離剤は、 表 10に従い再結晶焼鈍の前または後に塗布した。 塗布は、 ロールコーターを用いて行い、 到達板温 250°Cで焼き付けた後放冷した。 焼 き付けはプ口パン直火焼き付けで行つた。 仕上げ焼鈍においては 860°Cで 45 時間 N2雰囲気中で保持することにより二次再結晶させた後、 1200°Cで 5時 間 H2雰囲気中で保持することにより純化を行った。 焼鈍分離剤の成分およ ぴ塗布条件としては、実施例 1と同様に、表 5に示す各 No.に対応する条件に て行った。 The annealing separator was applied before or after recrystallization annealing according to Table 10. Coating was carried out using a roll coater, and was baked at an ultimate plate temperature of 250 ° C and then allowed to cool. The baking was done by baking bread over open fire. 45 at 860 ° C for finish annealing After secondary recrystallization by holding in an N 2 atmosphere for a period of time, purification was performed by holding in an H 2 atmosphere at 1200 ° C. for 5 hours. As in Example 1, the components of the annealing separator and the application conditions were set under the conditions corresponding to each No. shown in Table 5.
その後、 焼鈍分離剤の塗布性、 乾燥後の焼鈍分離剤の密着性、 仕上げ焼鈍 後の焼鈍分離効果をそれぞれ調査し、結果が良好であったサンプルについて は、 後続の工程をさらに施し、 製品板とした。  After that, the applicability of the annealing separator, the adhesion of the annealing separator after drying, and the annealing separation effect after finish annealing were investigated, and for samples with good results, the subsequent process was further performed. And
後続の工程においては、絶縁被膜の塗布 ·焼き付けおよぴ歪取り焼鈍を行 つた。絶縁被膜は一般に使用されている有機樹脂を含有したク口ム酸塩系の ものを使用し、 300°Cの温度で焼き付けた。 歪取り焼鈍については窒素雰囲 気中で 750°C、 2時間の条件で実施した。 表 10に焼鈍分離剤の塗布性、乾燥後の焼鈍分離剤の密着性、仕上げ焼鈍後 の焼鈍分離効果、磁気特性、絶縁被膜特性ぉょび仕上げ焼鈍後の 1,じ, 3,36 含有量を示す。 No. 14および 19は焼鈍分離剤の粘度が本発明範囲外であるた めに塗布性が著しく悪く、 塗布できていない部分で鋼板の密着が発生した。 No. 12および 15は Al化合物と Si化合物の比率が本発明の好適範囲外で、 No. 12 は造膜成分である A 1化合物が少ない為、焼鈍分離剤の鋼板への密着性が劣る。 一方、 No. 15は反応性の髙ぃ A1化合物の量が多多い為、 塗液が安定せず均一 な被膜が形成できなかった。 その結果、 外観不良となった。  In the subsequent steps, application and baking of the insulating film and annealing for strain relief were performed. The insulating coating used was a cuprate-based one containing a commonly used organic resin, and was baked at a temperature of 300 ° C. The strain relief annealing was performed in a nitrogen atmosphere at 750 ° C for 2 hours. Table 10 shows the applicability of the annealing separator, the adhesion of the annealing separator after drying, the annealing separation effect after finish annealing, the magnetic properties, the properties of the insulating coating, and the 1,2,3,36 content after finish annealing. Is shown. In Nos. 14 and 19, since the viscosity of the annealing separator was out of the range of the present invention, the applicability was extremely poor, and adhesion of the steel sheet occurred in portions where the application was not possible. In Nos. 12 and 15, the ratio of the Al compound to the Si compound was out of the preferred range of the present invention, and in No. 12, the adhesion of the annealing separator to the steel sheet was poor because the amount of the A1 compound, which is a film-forming component, was small. On the other hand, in No. 15, since the amount of the reactive 髙 ぃ A1 compound was large, the coating liquid was not stable and a uniform film could not be formed. As a result, the appearance was poor.
No. :!〜 4は、 焼鈍分離剤の主成分が本発明外のため、 鋼板への密着性が 不十分であった。 No. 5は、 焼鈍分離剤塗布量が不充分であるため、 仕上げ 焼鈍時に鋼板の密着が発生した。 N 0. 17は焼鈍分離剤の塗布量が多すぎたた め、 鋼板への密着性が不十分で剥離が発生した。 No. 1-1, 4-1, 5, 6- 1, 14およ ぴ 19は鋼板の密着により磁気特性およぴ耐曲げ剥離性の評価は不可能であ つた。  No .:! To 4 had insufficient adhesion to the steel sheet because the main component of the annealing separator was outside the present invention. In No. 5, the adhesion of the steel sheet occurred at the time of finish annealing because the amount of the applied annealing separator was insufficient. At N 0.17, the applied amount of the annealing separating agent was too large, so that the adhesion to the steel sheet was insufficient and peeling occurred. Nos. 1-1, 4-1, 5, 6-1, 14 and 19 were not able to evaluate the magnetic properties and flexural peel resistance due to the adhesion of the steel sheets.
No. 1 , 4 , 6, 11および 16は焼鈍分離剤の塗布順序を再結晶焼鈍の前と後 との 2通り実施した。本発明の焼鈍分離剤は焼鈍分離剤塗布工程の順序に関 係なく良好な分離剤の塗布性、 乾燥後の分離剤の密着性、 および仕上げ焼鈍 時の焼鈍分離効果が得られている。 比較例である No. 1および 4では焼鈍分離 剤の塗布順序によって、焼鈍分離効果に違いが見られた。 これは実施例 1 と 同様の理由で、仕上げ焼鈍時の焼鈍分離剤付着量の差異に起因しているもの と考えられる。 In Nos. 1, 4, 6, 11, and 16, the order of applying the annealing separator was two before and after recrystallization annealing. The annealing separator of the present invention has good coating properties of the separating agent, adhesion of the separating agent after drying, and finish annealing regardless of the sequence of the annealing separating agent application step. An annealing separation effect at the time is obtained. In Comparative Examples Nos. 1 and 4, there was a difference in the annealing separation effect depending on the application sequence of the annealing separating agent. This is considered to be due to the difference in the amount of the annealing separator attached during the final annealing for the same reason as in Example 1.
本発明に従う焼鈍分離剤を適用したものは良好な焼鈍分離剤の塗布性、乾 燥後の焼鈍分離剤の密着性、 仕上げ焼鈍後の焼鈍分離効果、 磁気特性、 絶縁 被膜特性および地鉄の不純物の純化を示していることが分かる。 特に、被膜 特性については実施例 1、 2に示したフォルステラィ ト質被膜より も良好な 特性を示した。 これより、 高温焼鈍による純化を要する、 インヒビターを利 用するタイプの方向性電磁鋼板においても、本発明の焼鈍分離剤が有利に適 用できることが分かる。 The one to which the annealing separator according to the present invention is applied has good applicability of the annealing separator, adhesion of the annealing separator after drying, annealing separation effect after finish annealing, magnetic properties, insulation coating properties, and impurities in the base iron. It can be seen that this indicates the purification of In particular, the film properties were better than those of the forsterite films shown in Examples 1 and 2. This shows that the annealing separator of the present invention can be advantageously applied to a grain-oriented electrical steel sheet that uses an inhibitor and requires purification by high-temperature annealing.
表 1 0 Table 10
Figure imgf000042_0001
(実施例 4 )
Figure imgf000042_0001
(Example 4)
下記の方法により、 フォルステラィ ト質被膜を有さない、磁気特性および 加工性に優れた方向性電磁鋼板を作成した。  A grain-oriented electrical steel sheet having no forsterite coating and excellent in magnetic properties and workability was prepared by the following method.
C : 0. 018mas s %、 Si: 3. 32mass0/o、 Mn: 0. 070mass%およぴ Sb : 300massppmを 含み、さらに Al : 40mas sppm、 N : 25massppm、 S : 15 massppmおょぴ Se : 10 massppm 未満にそれぞれ抑制した、インヒビター形成成分を含まない鋼スラブを連続 铸造法にて製造した。 ここで残部は鉄および不可避的不純物とした。該鋼ス ラブを 1200 に加熱した後、 熱間圧延により板厚 1. 8mmの熱延板に仕上げ、 950°Cで 6.0秒の熱延板焼鈍を施した。 ついで、 冷間圧延により板厚 0. 35mmの 冷延板に仕上げ、 露点が- 45°Cの乾燥雰囲気下で 880°C X 10sの条件で再結晶 焼鈍を施し、 その後仕上げ焼鈍を実施した。 C: 0. 018mas s%, Si : 3. 32mass 0 / o, Mn: 0. 070mass% Oyopi Sb: include 300Massppm, further Al: 40mas sppm, N: 25massppm , S: 15 massppm Oyopi Se : A steel slab containing no inhibitor-forming component, each of which was suppressed to less than 10 massppm, was produced by a continuous casting method. The balance was iron and inevitable impurities. After the steel slab was heated to 1200, it was hot-rolled into a hot-rolled sheet having a thickness of 1.8 mm, and annealed at 950 ° C for 6.0 seconds. Then, it was finished into a cold-rolled sheet having a thickness of 0.35 mm by cold rolling, and was subjected to recrystallization annealing under the conditions of 880 ° C for 10 s in a dry atmosphere with a dew point of -45 ° C, followed by finish annealing.
焼鈍分離剤は、 表 11に従い再結晶焼鈍前または後に塗布した。 塗布は、 口 一ルコーターを用いて行い、 到達板温 250°Cで焼き付けた後放冷した。 焼き 付けはプ口パン直火焼き付けで行った。 仕上げ焼鈍においては 875°Cで 45時 間 N2雰囲気中で保持することにより二次再結晶させ、 その後 1000°Cで 5時 間 Ar雰囲気中で保持した。 仕上げ焼鈍後、 酸化性雰囲気にて脱炭焼鈍を施 し、 地鉄中の C量を低減した。 その後、 焼鈍分離剤の成分および塗布条件としては、 実施例 1と同様に、 表 5に示す各 No.に対応する条件にて行った。その後、焼鈍分離剤の塗布性、 乾燥後の焼鈍分離剤の密着性、仕上げ焼鈍後の焼鈍分離効果をそれぞれ調査 し、 結果が良好であったサンプルについては、 後続の工程をさらに施し、 製 品板とした。 The annealing separator was applied before or after recrystallization annealing according to Table 11. The coating was performed using a mouth coater, and was baked at an ultimate plate temperature of 250 ° C and then allowed to cool. The baking was performed by baking bread directly on the fire. In the finish annealing is secondary recrystallization by holding at 87 5 ° C with 45 hours between the N 2 atmosphere and maintained at subsequent 1000 ° C in a 5:00 between Ar atmosphere. After finish annealing, decarburization annealing was performed in an oxidizing atmosphere to reduce the amount of C in the base steel. After that, as in Example 1, the components of the annealing separator and the application conditions were set under the conditions corresponding to each No. shown in Table 5. After that, the applicability of the annealing separator, the adhesion of the annealing separator after drying, and the annealing separation effect after finish annealing were examined, and for samples with good results, the subsequent steps were further performed. Board.
後続の工程においては、絶縁被膜の塗布 ·焼き付けおよび歪取り焼鈍を行 つた。絶縁被膜は一般に使用されている有機樹脂を含有したクロム酸塩系の ものを使用し、 300での温度で焼き付けた。 歪取り焼鈍については窒素雰囲 気中で 750°C、 2時間の条件で実施した。 表 11に焼鈍分離剤の塗布性、乾燥後の焼鈍分離剤の密着性、仕上げ焼鈍後 の焼鈍分離効果、磁気特性、絶縁被膜特性および仕上げ焼鈍後の Al, C, N, S, Se 含有量を示す。実施例 3と同様、本発明に従う焼鈍分離剤を適用した鋼では、 焼鈍分離剤塗布工程の順序に関係なく良好な結果が得られた。 In the subsequent steps, application and baking of the insulating coating and annealing for strain relief were performed. The insulating film used was a chromate-based material containing a commonly used organic resin, and was baked at a temperature of 300 ° C. The strain relief annealing was performed in a nitrogen atmosphere at 750 ° C for 2 hours. Table 11 shows the applicability of the annealing separator, the adhesion of the annealing separator after drying, the annealing separation effect after finish annealing, the magnetic properties, the insulating coating properties, and the Al, C, N, S, and Se after finish annealing. Shows the content. As in Example 3, good results were obtained with steel to which the annealing separator according to the present invention was applied irrespective of the sequence of the annealing separator applying step.
表 1 1 地鉄中の含有量 Table 11 1 Content in base steel
 Burning
焼 (仕上げ焼鈍後)  Annealing (after finish annealing)
s S鈍 備 g分 鈍 焼 (mass ppm)  s S blunt g g slow burning (mass ppm)
離 剥  Separation
分 鈍  Blunt
1 J 離 離 \ 1 J release \
離 M 分 B8 Release M Minute B 8
o. 布 強 o げ 明 ¾布 剤 m 離 (T) 剥 o.Strong cloth o Bright light Peeling agent m release (T)
Si 性 度 \ ί 例 密 3 効 離 比 ^程 (N) ? ョ 性 Al N C S Se 後の 着 果 3  Si density \ 例 Example Dense 3 Effective ratio ^ about (N)? Resulting after Al N C S Se 3
 Sex
 Foreword
1 後 O X 1.10 0 0 1.85 1.34 50 40 26 15 15 く 10 比較-1 前 o X 1.00 厶 15 ― ― 一 38 28 10 11 く 10 比較-2 後 o X 1.05 0 0 1.84 1.36 55 38 22 14 11 く 10 比較 1 after OX 1.10 0 0 1.85 1.34 50 40 26 15 15 ku 10 comparison-1 before o X 1.00 mm 15 ― ― 1 38 28 10 11 ku 10 comparison-2 after o X 1.05 0 0 1.84 1.36 55 38 22 14 11 ku 10 Compare
 one
-1 刖 o X 1.05 △ 20 ― ― ― 38 28 10 11 く 10 比較-2 後 〇 X 1.15 〇 0 1.88 1.29 45 41 24 18 15 く 10 比較-1 刖 o X 1.05 △ 20 ― ― ― 38 28 10 11 10 10 Compare -2 After 〇 X 1.15 〇 0 1.88 1.29 45 41 24 18 15 く 10 Compare
4 後 o X 1.00 〇 0 1.83 1.38 50 38 26 12 14 く 10 比較After 4 o X 1.00 〇 0 1.83 1.38 50 38 26 12 14 ku 10 Compare
5 後 〇 〇 0 X 80 ― ― 一 40 30 16 13 く 10 比較5 After 〇 〇 0 X 80 ― ― 1 40 30 16 13 ku 10 Compare
6 後 〇 〇 0 0 2 1.83 1.40 15 40 24 20 13 く 10 発明6 After 〇 0 0 0 2 1.83 1.40 15 40 24 20 13 ku 10 Invention
7 後 o 〇 0 O 4 1.82 1.34 20 41 22 17 10 く 10 発明-1 前 o 〇 0 〇 3 1.88 1.29 20 38 28 10 11 く 10 発明-2 後 o 〇 0 0 3 1.88 1.28 20 35 19 15 16 く 10 発明7 After o 〇 0 O 4 1.82 1.34 20 41 22 17 10 ku 10 Invention-1 Before o 〇 0 〇 3 1.88 1.29 20 38 28 10 11 ku 10 Invention-2 After o 〇 0 0 3 1.88 1.28 20 35 19 15 16 K 10 Invention
9 後 o O 0 0 3 1.84 1.25 20 39 28 19 20 く 10 発明-1 前 o 〇 0 0 0 1.88 1.30 15 38 28 10 11 く 10 発明-2 後 o 〇 0 〇 0 1.88 1.24 15 36 18 15 15 く 10 発明 1 後 o 〇 0 〇 0 1.88 1.25 20 36 18 15 16 く 10 発明-1 前 〇 厶 0.7 0 0 1.84 1.28 55 38 28 10 11 く 10 発明 -2 後 〇 Δ 0.5 0 0 1.87 1.26 45 40 26 21 15 く 10 発明 3 後 o O 0 0 0 1.85 1.39 15 41 19 26 11 く 10 発明 4 後 X 〇 0 厶 29 ― ― ― 40 24 16 13 く 10 比較 5 後 厶 〇 0 0 0 1.84 1.37 15 40 25 18 16 く 10 比較 6 後 o 〇 0 0 0 1.83 1.38 15 40 21 14 17 く 10 発明 7 後 〇 Δ 0.80 0 0 1.83 1.41 50 41 22 19 18 く 10 比較 8 後 〇 〇 0 〇 0 1.88 1.25 20 37 27 21 11 く 10 発明 9 後 X 〇 0 Δ 19 ― ― ― 40 23 16 16 く 10 比較 0 後 〇 〇 0 0 0 1.84 1.35 20 37 20 11 12 く 10 発明 1 後 〇 〇 0 〇 0 1.85 1.45 15 39 24 9 18 く 10 発明 2 後 〇 〇 0 〇 0 1.88 1.37 15 40 21 18 11 く 10 発明 3 後 〇 〇 0 〇 0 1.86 1.36 20 40 23 15 13 く 10 発明 4 後 〇 〇 0 〇 0 1.85 1.35 20 39 25 14 14 く 10 発例 5 後 〇 〇 0 〇 0 1.88 1.32 20 40 21 19 14 く 10 発明 (実施例 5 ) 9 After o O 0 0 3 1.84 1.25 20 39 28 19 20 ku 10 Invention-1 Before o 〇 0 0 0 1.88 1.30 15 38 28 10 11 ku 10 Invention-2 After o 〇 0 〇 0 1.88 1.24 15 36 18 15 15 1010 after invention 1 o 〇 0 〇 0 1.88 1.25 20 36 18 15 16 1010 invention-1 before room 0.7 0 0 1.84 1.28 55 38 28 10 11 1010 invention -2 after 〇0.5 0 0 1.87 1.26 45 40 26 21 15 ku 10 Invention 3 after o O 0 0 0 1.85 1.39 15 41 19 26 11 ku 10 Invention 4 after X 〇 0 um 29 ― ― ― 40 24 16 13 ku 10 Comparison 5 after 〇 0 0 0 1.84 1.37 15 40 25 18 16 ku 10 Compare 6 after o 〇 0 0 0 1.83 1.38 15 40 21 14 17 ku 10 Invention 7 〇 Δ 0.80 0 0 1.83 1.41 50 41 22 19 18 ku 10 Compare 8 after 〇 〇 0 〇 0 1.88 1.25 20 37 27 21 11 ku 10 Invention 9 after X 〇 0 Δ 19 ― ― ― 40 23 16 16 ku 10 Comparison 0 after 〇 〇 0 0 0 1.84 1.35 20 37 20 11 12 ku 10 Invention 1 after 〇 〇 0 〇 0 1.85 1.45 15 39 24 9 18 ku 10 Invention 2 after 〇 0 〇 0 1.88 1.37 15 40 21 18 11 ku 10 Invention 3 after 〇 〇 0 〇 0 1.86 1.36 20 40 23 15 13 ku 10 4 after O O 0 〇 0 1.85 1.35 20 39 25 14 14 ° 10 Hatsurei 5 after X X 0 〇 0 1.88 1.32 20 40 21 19 14 ° 10 invention (Example 5)
表 12に記載の焼鈍分離剤を適用して、方向性電磁鋼板を作成した。製造ェ 程は表 13に記載のとおりであり、 工程 Aおよび B (—回の仕上げ焼鈍による 方法) は実施例 3、 工程 Cおよび D (二回のパッチ焼鈍による方法) は実施 例 1の鋼スラブおよび製造条件を適用した。 焼鈍分離剤についても、主成分 以外の成分や塗布条件は実施例 1によった。 なお、 No. 6は光散乱法で実質 的に散乱が認識されず、 実質的に溶液と判断した。  A grain-oriented electrical steel sheet was prepared by applying the annealing separator shown in Table 12. The manufacturing process is as shown in Table 13. Steps A and B (the method using the final annealing) were performed in Example 3, and Steps C and D (the method using the two patch annealings) were performed according to Example 1. Slab and manufacturing conditions were applied. As for the annealing separator, the components other than the main components and the application conditions were the same as in Example 1. No. 6 was substantially recognized as a solution because no light scattering was recognized by the light scattering method.
結果を表 13に示すが、 本発明の焼鈍分離剤はいずれも優れた結果を示す。 中でも、高温で安定な化合物として、 Si化合物を含有する場合の焼鈍分離効 果が髙く、中でも Si化合物単独で高温で安定な化合物として用いることが好 適である。 すなわち、 表 1 3に示した No. 1 〜 5 、 7と塗布量および粘度が 同様で、 コロイ ド溶液状の Si化合物 (コロイダルシリカ) を単独で用いた実 施例 1 (表 6の No. 13) や実施例 3 (表 1 0の No. 13) が最も良好な特性を示 し、 表 1 3に示した本実施例の結果より良好であった。 表 1 2  The results are shown in Table 13, and all the annealing separators of the present invention show excellent results. Above all, as a compound that is stable at high temperatures, the effect of annealing separation is high when a Si compound is contained, and it is particularly preferable to use the Si compound alone as a compound that is stable at high temperatures. That is, the coating amount and the viscosity were the same as those of Nos. 1 to 5 and 7 shown in Table 13, and Example 1 (colloidal silica) alone using the colloid solution Si compound (colloidal silica) was used. 13) and Example 3 (No. 13 in Table 10) showed the best characteristics, and were better than the results of this example shown in Table 13. Table 1 2
AI化合物の 分離剤主成分 AI compound separation agent
.
Figure imgf000046_0001
粘度 固形分比率 (mass<½)
.
Figure imgf000046_0001
Viscosity Solid content ratio (mass <½)
|¾温 C安疋な (g/m2) (mPa - s) | ¾Temp C Naha (g / m 2 ) (mPa-s)
AI化合物 その他  AI compounds and others
化合物  Compound
コロイタ"ルシリカ、  Colloidal silica,
塩基性酢酸 AI  Basic acetic acid AI
1102微粉末 ― 1.2 1.8 AI203/(Al903+Si02+Ti02): 50 コロイタ'ルシリカ、 110 2 powder - 1.2 1.8 AI 2 0 3 / (Al90 3 + Si02 + Ti0 2): 50 Koroita 'Rushirika,
塩基性酢酸 AI 硫酸 Sr 1.2 1 .8 AI203/(AI203+Si02+Ti02): 50Basic acetate AI sulfate Sr 1.2 1 .8 AI 2 0 3 / (AI 2 03 + Si02 + Ti02): 50
02微粉末 0 2 Fine powder
コロイド状  Colloidal
塩基性酢酸 AI : 60  Basic acetic acid AI: 60
Ti02 ― 1.2 1.8 ΑΙ2Ο3/(ΑΙ2θ3+Τίθ9) コロ仆 '状 Ti02 ― 1.2 1.8 ΑΙ 2 Ο 3 / (ΑΙ 2 θ3 + Τίθ9)
塩基性酢酸 AI  Basic acetic acid AI
SrO、 BaO ― 1.2 1.8 AI203/(Al203+SrO+BaO): 70 塩基性酢酸 AI CaO微粉末 硫酸 Mg 1.2 1.8 AI2O3/(AI2O3+CaO) : 80 塩基性酢酸 AI コロイタ レシリカ ― 0.1 1.8 AI2O3/(AI2O3+SiO2) : 90 塩基性酢酸 AI Zr02微粉末 ― 1.2 1.8 Αΐ2〇3/(ΑΙ2Ο3+Ζ( 2) : 70 表 1 3 SrO, BaO - 1.2 1.8 AI 2 0 3 / (Al20 3 + SrO + BaO): 70 basic acetate AI CaO powder sulfate Mg 1.2 1.8 AI 2 O 3 / (AI 2 O 3 + CaO): 80 basic acetate AI colloidal resilica ― 0.1 1.8 AI 2 O 3 / (AI 2 O 3 + SiO 2 ): 90 Basic acetic acid AI Zr0 2 fine powder ― 1.2 1.8 Αΐ2〇3 / (ΑΙ 2 Ο 3 + Ζ (2): 70 Table 13
Figure imgf000047_0001
Figure imgf000047_0001
B : 焼鈍分離剤塗布→再結晶焼鈍→仕上げ焼鈍  B: Annealing separation agent application → Recrystallization annealing → Finish annealing
C : 再結晶焼鈍→焼鈍分離剤塗布→1回目のバッチ焼鈍→連続焼鈍〜 2回目のバ ツチ焼鈍  C: Recrystallization annealing → Application of annealing separator → First batch annealing → Continuous annealing ~ Second batch annealing
D : 焼鈍分離剤塗布→再結晶焼鈍→1回目のバッチ焼鈍→連続焼鈍〜 2回目のパ ッチ焼鈍  D: Application of annealing separator → Recrystallization annealing → First batch annealing → Continuous annealing ~ Second patch annealing
(実施例 6 ) (Example 6)
表 14に記載された成分の各鋼スラブを溶鋼より連続铸造法により製造し、 実施例 5と同様の要領で表 15の分類に従い、方向性電磁鋼板を作成した。 た だし、 No. 2については二次再結晶させる前の C量はとくに調整せず、 したが つて脱炭処理も省略した。 また、 No. 1および No. 7については再結晶焼鈍を 露点 30 °Cの酸化性雰囲気で行い、 二次再結晶焼鈍前の C量を 100〜 150mas sppmに調整した。  Each steel slab having the components described in Table 14 was manufactured from molten steel by a continuous casting method, and a grain-oriented electrical steel sheet was prepared in the same manner as in Example 5 according to the classification in Table 15. However, for No. 2, the C content before secondary recrystallization was not particularly adjusted, and therefore the decarburization treatment was omitted. For No. 1 and No. 7, recrystallization annealing was performed in an oxidizing atmosphere with a dew point of 30 ° C, and the C content before secondary recrystallization annealing was adjusted to 100 to 150 mass ppm.
焼鈍分離剤おょぴ塗布条件は、 表 5の No. 13に従った。  The conditions for applying the annealing separator were in accordance with No. 13 in Table 5.
結果を表 15に示す。磁気特性は鋼板の成分にも依存するが、 いずれも各成 分において期待される磁気特性を実現している。 表 1 4 Table 15 shows the results. The magnetic properties also depend on the composition of the steel sheet, but all achieve the expected magnetic properties for each component. Table 14
Figure imgf000048_0001
Figure imgf000048_0001
Figure imgf000048_0002
Figure imgf000048_0002
* A: 再結晶燁鈍→焼鈍分離剤塗布- '仕上げ焼鈍  * A: Recrystallization 燁 Annealing → Annealing separation agent applied-'' Finish annealing
B: 焼鈍分離剤塗布→再結晶焼鈍- '仕上げ焼鈍  B: Application of annealing separator → Recrystallization annealing-'Finish annealing
C: 再結晶焼鈍→焼鈍分離剤塗布- 1回目のパッチ焼鈍- ►連続焼鈍〜 2回目のパ ツチ焼鈍  C: Recrystallization annealing → application of annealing separator-1st patch annealing-►Continuous annealing ~ 2nd patch annealing
D: 焼鈍分離剤塗布→再結晶焼鈍- 1回目のパッチ焼鈍-►連続焼鈍〜 2回目のパ ッチ焼鈍 産業上の利用の可能性 D: Application of annealing separator → Recrystallization annealing-First patch annealing-Continuous annealing ~ Second patch annealing Industrial potential
本発明による方向性電磁鋼板用焼鈍分離剤は良好な塗布性および鋼板へ の密着性を有しており、焼鈍分離剤塗布過程およびそれ以後の工程において 安定的な操業を確保することができる。 また、 密着性を達成しながら、 純化 や脱炭の阻害も伴わなず、 しかも被膜除去作業も不要である、 などの優れた 操業性も有する。  INDUSTRIAL APPLICABILITY The annealing separator for grain-oriented electrical steel sheets according to the present invention has good coatability and adhesion to a steel sheet, and can secure a stable operation in the step of applying the annealing separator and the subsequent steps. It also has excellent operability, such as achieving adhesion, without impeding purification and decarburization, and eliminating the need for coating removal work.
この焼鈍分離剤を方向性電磁鋼板の製造工程に適用することにより、磁気 特性およぴフォルステライ ト被膜特性に優れた方向性電磁鋼板およぴフォ ルステラィ ト被膜を有さない磁気特性おょぴ加工性に優れた方向性電磁鋼 板の製造が容易に可能になる。  By applying this annealing separator to the manufacturing process of grain-oriented electrical steel sheet, it is possible to obtain a grain-oriented electrical steel sheet with excellent magnetic properties and forsterite coating properties and magnetic properties without a forsterite coating.方向 It becomes easy to manufacture directional electromagnetic steel sheets with excellent workability.

Claims

請求の範囲 The scope of the claims
1 . 鋼板に焼鈍分離剤を塗布し、 塗布された鋼板を焼鈍する、 方向性電磁 鋼板の焼鈍方法であって、 1. A method of annealing a grain-oriented electrical steel sheet, comprising applying an annealing separator to the steel sheet and annealing the coated steel sheet.
前記焼鈍分離剤が、  The annealing separator,
A1化合物を溶液またはコロイ ド溶液の状態で含有し、  A1 compound in the form of a solution or colloid solution,
さらに、髙温で安定な化合物を含有し、粘度が 25 (mPa - s)以下である、 方向性電磁鋼板の焼鈍方法。  A method for annealing a grain-oriented electrical steel sheet, further comprising a compound stable at high temperatures and having a viscosity of 25 (mPa-s) or less.
2 . 前記焼鈍分離剤が、 前記高温で安定な化合物を、 溶液またはコロイ ド 溶液の状態で含有する、 請求項 1に記載の方向性電磁鋼板の焼鈍方法。 2. The method for annealing a grain-oriented electrical steel sheet according to claim 1, wherein the annealing separating agent contains the compound stable at a high temperature in the form of a solution or a colloid solution.
3 . 前記 A1化合物の含有量が下記式(1)で表される固形分比率で 40〜 95mass。/。である、 請求項 1に記載の方向性電磁鋼板の焼鈍方法: 3. The content of the A1 compound is 40 to 95 mass in terms of a solid content ratio represented by the following formula (1). /. The method for annealing a grain-oriented electrical steel sheet according to claim 1, wherein:
A1化合物の固形分比率 = (前記 A1化合物の固形分)/ { (前記 A1化合物の固形 分) + (前記高温で安定な化合物の固形分(和)) } 式(1)  A1 compound solid content ratio = (solid content of the A1 compound) / {(solid content of the A1 compound) + (solid content (sum) of the high temperature stable compound)} Formula (1)
ただし、 前記 A1化合物の固形分は A1203に換算し、 前記高温で安定な化合 物は、前記焼鈍分離剤を塗布した後に焼き付けた場合に生成される主要化合 物に換算するものとする。 However, the solid content of the A1 compound is converted to A1 2 0 3, a stable compound wherein the elevated temperature is assumed to be converted into the primary compounds produced when baked after applying the annealing separator .
4 . 前記高温で安定な化合物が、 Si化合物、 Sr化合物、 Ca化合物、 Zr化合 物、 Ti化合物おょぴ Ba化合物の群から選ばれる少なく とも 1種の化合物から なり 4. The compound that is stable at high temperature is at least one compound selected from the group consisting of Si compound, Sr compound, Ca compound, Zr compound, Ti compound and Ba compound.
前記 A1化合物の含有量が下記式(2)で表される固形分比率で 40〜95maS S°/0 である、 請求項 1に記載の方向性電磁鋼板の焼鈍方法: The method for annealing a grain-oriented electrical steel sheet according to claim 1, wherein the content of the A1 compound is 40 to 95 ma SS ° / 0 at a solid content ratio represented by the following formula (2):
A1化合物の固形分比率 = (A1化合物の固形分)/ { (A1化合物の固形分) + (前 記少なく とも 1種の化合物の固形分(和)) } 式(2)  Solid content ratio of A1 compound = (solid content of A1 compound) / {(solid content of A1 compound) + (previously described solid content of at least one compound (sum))} Formula (2)
ここで各化合物の固形分は下記の各化合物の重量に換算された値:  Here, the solid content of each compound is a value converted into the weight of each of the following compounds:
A1化合物 ' · · Α1203、 Si化合物 ' · · 3ί02A1 compounds '· · Α1 2 0 3, Si compounds' · · 3ί0 2,
Sr化合物 ' ' ' SrC^ Ca化合物 · ' ·。3θ、 Zr化合物 · · ' Zr02、 Ti化合物 · · ' Ti02Sr compound '''SrC ^ Ca compound ·' ·. 3θ, Zr compound · · 'Zr0 2, Ti compound · ·' Ti0 2,
Ba化合物 · ' · Β30 。 Ba compound · '· Β 30 .
5 . 前記焼鈍分離剤が、 前記少なく とも 1種の化合物を、 溶液またはコロ ィ ド溶液の状態で含有する、 請求項 4に記載の方向性電磁鋼板の焼鈍方法。 5. The annealing method for a grain-oriented electrical steel sheet according to claim 4, wherein the annealing separating agent contains the at least one compound in the form of a solution or a roll solution.
6 . 鋼板に焼鈍分離剤を塗布し、 塗布された鋼板を焼鈍する、 方向性電磁鋼 板の焼鈍方法であって、 6. A method for annealing a directional electromagnetic steel sheet, comprising applying an annealing separator to the steel sheet and annealing the applied steel sheet,
前記焼鈍分離剤が、  The annealing separator,
A1化合物おょぴ Si化合物を主成分とし、 A1化合物と Si化合物との比率が Al203/ (A1203 + Si02)に換算した値で 40~ 95mass°/。であり、 粘度が 25mPa ' s以 下であり、 かつ、 溶液またはコロイ ド溶液の状態である、 方向性電磁鋼板の 焼鈍方法 A main component A1 compound Contact Yopi Si compound, 40 ~ 95 mass ° with the value ratio in terms of Al 2 0 3 / (A1 2 0 3 + Si0 2) of the A1 compound and Si compound /. The method for annealing grain-oriented electrical steel sheets that has a viscosity of 25 mPa's or less and is in a solution or colloid solution state
7 . 前記 A1化合物が、 水酸基および有機酸基を有する A1化合物、 および、 水酸基およぴ有機酸基を有する A1化合物の脱水反応物の、いずれか一方また は两方である、請求項 1〜 6のいずれかに記載の方向性電磁鋼板の焼鈍方法。 7. The A1 compound, wherein the A1 compound is one or both of an A1 compound having a hydroxyl group and an organic acid group, and a dehydration product of the A1 compound having a hydroxyl group and an organic acid group. 7. The method for annealing a grain-oriented electrical steel sheet according to any one of 6.
8 . 前記 A1化合物が、 塩基性酢酸 Al、 塩基性ギ酸 Al、 塩基性塩酸 Al、 塩基 性硝酸 Al、 塩基性シュゥ酸 Al、 塩基性スルファミン酸 Al、 塩基性乳酸 A1およ ぴ塩基性クェン酸 A1から選ばれる 1種または 2種以上の混合物である、請求 項 7に記載の方向性電磁鋼板の焼鈍方法。 8. The A1 compound is basic acetic acid Al, basic formic acid Al, basic hydrochloric acid Al, basic nitric acid Al, basic oxalic acid Al, basic sulfamic acid Al, basic lactic acid A1 and basic citrate 8. The method for annealing a grain-oriented electrical steel sheet according to claim 7, wherein the method is one or a mixture of two or more kinds selected from A1.
9 . 前記焼鈍分離剤が、 さらに Sまたは Sを含有する化合物を、 前記焼鈍 分離剤を塗布した後に焼き付けた場合について求められる固形分比率で 25masSy。以下含有する、 請求項 1〜 6のいずれかに記載の方向性電磁鋼板の 焼鈍方法。 9. The annealing separator further S or a compound containing S, 25Mas S y in solid content obtained for the case where baking after applying the annealing separator. The method for annealing a grain-oriented electrical steel sheet according to any one of claims 1 to 6, comprising:
10. 前記 Sまたは Sを含有する化合物が、 硫酸 Sr、 硫酸 Mgおよび硫化 Mg から選ばれる少なく とも 1種である、請求項 9に記載の方向性電磁鋼板の焼 鈍方法。 10. The method for annealing a grain-oriented electrical steel sheet according to claim 9, wherein the S or the compound containing S is at least one selected from Sr sulfate, Mg sulfate and Mg sulfide.
11. Al化合物を溶液またはコロイ ド溶液の状態で含有し、 かつ、 11. Contains Al compound in the form of solution or colloid solution, and
Si化合物、 Sr化合物、 Ca化合物、 Zr化合物、 Ti化合物おょぴ Ba化合物の 群から選ばれる少なく とも 1種の化合物をさらに含有する液体であって、 前記 A1化合物の含有量が下記式(2)で表される固形分比率で 40〜 A liquid further containing at least one compound selected from the group consisting of Si compounds, Sr compounds, Ca compounds, Zr compounds, Ti compounds and Ba compounds, wherein the content of the A1 compound is represented by the following formula (2 ) In the solid content ratio of 40 to
95mass0/0であり、 95mass 0/0,
かつ、 粘度が 25mPa's以下である液体の、 焼鈍分離剤としての使用 : A1化合物の固形分比率 = (A1化合物の固形分)/ { (A1化合物の固形分) + (前 記少なく とも 1種の化合物の固形分(和)) } 式(2)  Use of a liquid having a viscosity of 25 mPa's or less as an annealing separator: solid content ratio of A1 compound = (solid content of A1 compound) / {(solid content of A1 compound) + (at least one of Compound solids (sum)) Formula (2)
ここで各化合物の固形分は下記の各化合物の重量に換算された値:  Here, the solid content of each compound is a value converted into the weight of each of the following compounds:
A1化合物 · · ·Α1203、 Si化合物 · · ·Ξί02A1 compound ··· Α1 2 0 3 , Si compound ··· Ξί0 2 ,
Sr化合物 ·'·5:τ0、 Ca化合物 '''CaCKSr compound5 ': τ0, Ca compound' '' CaCK
Zr化合物 · ·'Ζι·02、 Ti化合物 · · 'Ti02Zr compound · · 'Ζι · 0 2, Ti compound · ·' Ti0 2,
Ba化合物 ·,·Β3θ 。 Ba compound ··· Β3θ.
12. 前記液体が、 前記少なく とも 1種の化合物を、 溶液またはコロイ ド溶 液の状態で含有する、 請求項 11に記載の液体の、 焼鈍分離剤としての使用。 12. The use of a liquid according to claim 11, wherein the liquid contains the at least one compound in the form of a solution or a colloid solution.
13. A1化合物おょぴ Si化合物を主成分とし、 A1化合物と Si化合物との比率 が Al203/(A1203 + Si02)に換算した値で 40〜95mass。/。であり、 粘度が 25mPa's 以下であり、 かつ、 溶液またはコロイ ド溶液の状態である液体の、 焼鈍分離 剤としての使用。 13. a main component A1 compound Contact Yopi Si compound, 40~95Mass a value ratio in terms of Al 2 0 3 / (A1 2 0 3 + Si0 2) of the A1 compound and Si compound. /. Use of a liquid having a viscosity of 25 mPa's or less and being in the form of a solution or a colloid solution as an annealing separator.
14. C : 0.08mass0/0以下、 Si: 2.0~8.0mass% Mn: 0.005〜: L.0mass0/0を含 む溶鋼から作成したスラブを最終板厚まで圧延して鋼板とする工程と、 前記鋼板に再結晶焼鈍を施す工程と、 14. C: 0.08mass 0/0 less, Si: 2.0 ~ 8.0mass% Mn : 0.005~: L.0mass 0/0 The process of the rolled to steel slabs created from including the molten steel to a final thickness and Subjecting the steel sheet to recrystallization annealing;
前記鋼板にバツチ焼鈍を請求項 1〜10のいずれかに記載の方法で施す 第 1のバッチ焼鈍工程と、  Applying batch annealing to the steel sheet by the method according to any one of claims 1 to 10, a first batch annealing step,
を有し、  Has,
ここで、第 1のバツチ焼鈍工程において焼鈍前に塗布する上記焼鈍分離 剤を第 1の焼鈍分離剤と呼ぶものとし、 かつ、 ここで前記再結晶焼鈍は、 前記第 1の焼鈍分離剤の塗布の前に施すか、 あるいは、前記第 1の焼鈍分離剤の塗布の後であって前記パッチ焼鈍の前に 施すかのいずれかであって、 かつ、 Here, the above-mentioned annealing separating agent applied before annealing in the first batch annealing step is referred to as a first annealing separating agent, and Here, the recrystallization annealing is performed either before the application of the first annealing separating agent or after the application of the first annealing separating agent and before the patch annealing. And, and
第 1の焼鈍分離剤の片面当りの塗布量を 0. 005〜5g/ni2とし、 The coating amount per one surface of the first annealing separator and 0. 005~5g / ni 2,
その後、 前記鋼板に連続焼鈍を施す工程と、  Thereafter, a step of performing continuous annealing on the steel sheet;
前記鋼板に MgOを含有する第 2の焼鈍分離剤を塗布し、 その後パッチ焼 鈍を施す第 2のパッチ焼鈍工程とを有する、  A second patch annealing step of applying a second annealing separator containing MgO to the steel sheet, and thereafter performing patch annealing.
方向性電磁鋼板の製造方法。  Manufacturing method of grain-oriented electrical steel sheet.
15. 前記スラブが、 A1を 150ppm以下、 N, S , Seを各々 50pPm以下に低減 した組成を有する溶鋼から作成したスラブである請求項 14に記載の方向性 電磁鋼板の製造方法。 15. The slab, 150 ppm of A1 below, N, S, the production method of the grain-oriented electrical steel sheet according to claim 14 is a slab made from molten steel having a composition having reduced respectively below 50p P m or Se.
16. スラブを最終板厚まで圧延して鋼板とする前記工程が、 16. Rolling the slab to the final thickness to form a steel plate,
前記 A1スラブを熱間圧延して熱延鋼板とする工程と、  Hot rolling the A1 slab into a hot rolled steel sheet,
必要に応じて前記熱延鋼板を焼鈍する熱延板焼鈍を施す工程と、  Performing a hot rolled sheet annealing to anneal the hot rolled steel sheet as necessary,
1回の冷間圧延、 もしくは、 中間焼鈍を挟む 2回以上の冷間圧延を施し て最終板厚とする工程と、  A process of performing cold rolling once or cold rolling two or more times with intermediate annealing to obtain a final thickness,
を有する、 請求項 14または 15に記載の方向性電磁鋼板の製造方法。  The method for producing a grain-oriented electrical steel sheet according to claim 14, comprising:
17. C : 0. 08mass0/0以下、 Si: 2. 0~ 8. 0mass%, Mn: 0. 005 ~ 1. 0mass%を含 む溶鋼から作成したスラブを最終板厚まで圧延して鋼板とする工程と、 前記鋼板に再結晶焼鈍を施す工程と、 17. C: 0. 08mass 0/0 less, Si: 2. 0 ~ 8. 0mass %, Mn: 0. 005 ~ 1. by rolling the 0Mass% slab made from including the molten steel to a final thickness steel And a step of performing recrystallization annealing on the steel sheet,
前記鋼板にパッチ焼鈍を請求項 1 ~ 10のいずれかに記載の方法で施す 仕上げ焼鈍工程と、  A finish annealing step in which the steel sheet is subjected to patch annealing by the method according to any one of claims 1 to 10,
を有し、  Has,
ここで前記再結晶焼鈍は、前記仕上げ焼鈍工程における焼鈍分離剤の塗 布の前に施すか、 あるいは、該焼鈍分離剤の塗布の後であって前記パッチ焼 鈍の前に施すかのいずれかであって、 かつ、  Here, the recrystallization annealing is performed either before the application of the annealing separating agent in the finish annealing step or after the application of the annealing separating agent and before the patch annealing. And, and
前記焼鈍分離剤の片面当りの塗布量を 0. 005〜5g/m2とする、 The coating amount per one side of the annealing separator and 0. 005~5g / m 2,
方向性電磁鋼板の製造方法。 Manufacturing method of grain-oriented electrical steel sheet.
18. 前記スラブが、 A1を 150ppm以下、 N, S, Seを各々 50pPm以下に低減 した組成を有する溶鋼から作成したスラブである請求項 17に記載の方向性 電磁鋼板の製造方法。 18. The slab, 150 ppm of A1 below, N, S, the production method of the grain-oriented electrical steel sheet according to claim 17 is a slab made from molten steel having a composition having reduced respectively below 50p P m or Se.
19. スラブを最終板厚まで圧延して鋼板とする前記工程が、 19. The process of rolling a slab to a final thickness to form a steel plate,
前記 A 1スラブを熱間圧延して熱延鋼板とする工程と、  Hot rolling the A1 slab into a hot rolled steel sheet,
必要に応じて前記熱延鋼板を焼鈍する熱延板焼鈍を施す工程と、 Performing a hot rolled sheet annealing to anneal the hot rolled steel sheet as necessary,
1回の冷間圧延、 もしくは、 中間焼鈍を挟む 2回以上の冷間圧延を施し て最終板厚とする工程と、 A process of performing cold rolling once or cold rolling two or more times with intermediate annealing to obtain a final thickness,
を有する、 請求項 17または 18に記載の方向性電磁鋼板の製造方法。  The method for producing a grain-oriented electrical steel sheet according to claim 17, comprising:
20. C : 0. 08mass%以下、 Si: 2. 0〜 8. 0mass%、 Mn: 0. 005〜: L . 0mass%を含 んだ溶鋼から作成したスラプを熱間圧延する工程と、 20. A step of hot rolling a slap made from molten steel containing C: 0.08 mass% or less, Si: 2.0 to 8.0 mass%, Mn: 0.005 to: L. 0 mass%,
次いで 1回の冷間圧延もしくは中間焼鈍を挟む 2回以上の冷間圧延を 施して最終板厚とする工程と、  Next, a step of performing a single cold rolling or two or more cold rollings sandwiching intermediate annealing to obtain a final thickness,
次いで再結晶焼鈍を施す工程と、  Next, a step of performing recrystallization annealing,
次いで請求項 6に記載の方法で仕上げ焼鈍を施す工程を有し、 かつ、前記仕上げ焼鈍において焼鈍前に塗布する焼鈍分離剤の塗布量を 片面当り 0. 005〜5g/m2とする、 方向性電磁鋼板の製造方法。 Then it has a step of applying finish annealing by the method according to claim 6, and the coating amount of the annealing separator to be applied to one surface per 0. 005~5g / m 2 before annealing in the final annealing, direction Manufacturing method of conductive electrical steel sheet.
21. C : 0. 08mass%以下、 Si: 2. 0〜8. 0mass%、 Mn: 0. 005~ 1 . 0mass%を含 み、 かつ A1を 150ppm以下おょぴ N , S , Seを各々 50ppm以下に低減した成分 組成を有する溶鋼から作成したスラブを熱間圧延する工程と、 21. C: 0.08 mass% or less, Si: 2.0 to 8.0 mass%, Mn: 0.005 to 1.0 mass%, and A1 is 150 ppm or less. N, S, Se Hot rolling a slab made from molten steel having a component composition reduced to 50 ppm or less,
次いで 1回の冷間圧延もしくは中間焼鈍を挟む 2回以上の冷間圧延を 施して最終板厚とする工程と、  Next, a step of performing a single cold rolling or two or more cold rollings sandwiching intermediate annealing to obtain a final thickness,
次いで再結晶焼鈍を施す工程と、  Next, a step of performing recrystallization annealing,
次いで請求項 6に記載の方法で仕上げ焼鈍を施す工程を有し、 かつ、前記仕上げ焼鈍において焼鈍前に塗布する焼鈍分離剤の塗布量を片面 当り 0. 005〜5g/m2とする、 方向性電磁鋼板の製造方法。 Then it has a step of applying finish annealing by the method according to claim 6, and the coating amount of the annealing separator to be applied to one surface per 0. 005~5g / m 2 before annealing in the final annealing, direction Manufacturing method of conductive electrical steel sheet.
PCT/JP2004/018431 2003-12-03 2004-12-03 Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet WO2005054523A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES04801652.1T ES2643750T3 (en) 2003-12-03 2004-12-03 Procedure for annealing a sheet of oriented grain electric steel
EP04801652.1A EP1698706B1 (en) 2003-12-03 2004-12-03 Method for annealing grain oriented magnetic steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003404520 2003-12-03
JP2003-404520 2003-12-03

Publications (1)

Publication Number Publication Date
WO2005054523A1 true WO2005054523A1 (en) 2005-06-16

Family

ID=34650139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018431 WO2005054523A1 (en) 2003-12-03 2004-12-03 Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet

Country Status (6)

Country Link
EP (2) EP2559775B1 (en)
KR (1) KR100774229B1 (en)
CN (1) CN100513597C (en)
ES (2) ES2673149T3 (en)
TW (1) TWI272311B (en)
WO (1) WO2005054523A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6323423B2 (en) * 2015-09-25 2018-05-16 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
KR101850133B1 (en) * 2016-10-26 2018-04-19 주식회사 포스코 Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
KR102231543B1 (en) * 2016-11-28 2021-03-23 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
KR101906962B1 (en) * 2016-12-22 2018-10-11 주식회사 포스코 Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
WO2020145316A1 (en) * 2019-01-08 2020-07-16 日本製鉄株式会社 Grain-oriented magnetic steel sheet, method for manufacturing grain-oriented magnetic steel sheet, and annealing separating agent used for manufacturing grain-oriented magnetic steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147887B2 (en) * 1978-11-28 1986-10-21 Nippon Steel Corp

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794520A (en) * 1967-11-06 1974-02-26 Westinghouse Electric Corp Nonreactive refractory separating coatings for electrical steels
US3785882A (en) * 1970-12-21 1974-01-15 Armco Steel Corp Cube-on-edge oriented silicon-iron having improved magnetic properties and method for making same
IT1127263B (en) 1978-11-28 1986-05-21 Nippon Steel Corp SEPARATION SUBSTANCE TO BE USED IN THE ANNEALING PHASE OF ORIENTED GRAINS OF SILICON STEEL
JP2674917B2 (en) 1991-12-06 1997-11-12 新日本製鐵株式会社 Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
DE69326792T2 (en) * 1992-04-07 2000-04-27 Nippon Steel Corp Grain-oriented silicon steel sheet with low iron losses and manufacturing processes
JPH06136448A (en) 1992-10-26 1994-05-17 Nippon Steel Corp Production of grain-oriented silicon steel sheet
JP2679944B2 (en) 1993-10-26 1997-11-19 新日本製鐵株式会社 Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH08134542A (en) 1994-11-08 1996-05-28 Sumitomo Metal Ind Ltd Production of grain oriented silicon steel sheet having excellent blanking property
JPH08188828A (en) * 1995-01-06 1996-07-23 Nippon Steel Corp Suspension for separating agent during annealing
JPH10121142A (en) 1996-10-11 1998-05-12 Sumitomo Metal Ind Ltd Separation agent for annealing and production of grain-oriented silicon steel sheet using it
JPH1161261A (en) * 1997-08-08 1999-03-05 Kawasaki Steel Corp Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JP3707268B2 (en) 1998-10-28 2005-10-19 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
EP1279747B1 (en) * 2001-07-24 2013-11-27 JFE Steel Corporation A method of manufacturing grain-oriented electrical steel sheets
US6676771B2 (en) * 2001-08-02 2004-01-13 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
JP4196550B2 (en) 2001-08-02 2008-12-17 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147887B2 (en) * 1978-11-28 1986-10-21 Nippon Steel Corp

Also Published As

Publication number Publication date
EP1698706B1 (en) 2017-08-16
EP2559775B1 (en) 2018-04-18
TW200525042A (en) 2005-08-01
TWI272311B (en) 2007-02-01
ES2673149T3 (en) 2018-06-20
CN100513597C (en) 2009-07-15
EP1698706A4 (en) 2007-05-30
KR100774229B1 (en) 2007-11-07
EP2559775A1 (en) 2013-02-20
CN1890390A (en) 2007-01-03
KR20060103517A (en) 2006-10-02
EP1698706A1 (en) 2006-09-06
ES2643750T3 (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6327364B2 (en) Oriented electrical steel sheet and manufacturing method thereof
WO2014047757A1 (en) Manufacturing method of common grain-oriented silicon steel with high magnetic induction
WO2006051923A1 (en) Grain oriented electromagnetic steel plate and method for producing the same
JP5040131B2 (en) Manufacturing method of unidirectional electrical steel sheet
KR101651431B1 (en) Method of manufacturing oriented electrical steels
CN113286901A (en) Method for producing grain-oriented electromagnetic steel sheet
KR101796751B1 (en) Annealing separating agent composition, method for manufacturing the same, and method for manufacturing steel sheet using the same
WO2005054523A1 (en) Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet
JP5418844B2 (en) Method for producing grain-oriented electrical steel sheet
JP6962471B2 (en) Original plate for grain-oriented electrical steel sheet, method for manufacturing grain-oriented silicon steel sheet used as material for grain-oriented electrical steel sheet, method for manufacturing grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
CN113272459A (en) Method for producing grain-oriented electromagnetic steel sheet
JP4569281B2 (en) Annealing separator for grain-oriented electrical steel sheet, method for annealing grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
KR101089303B1 (en) Method for making forsterite film of grain-oriented electrical steel sheets
JPH05263135A (en) Production of grain-oriented silicon steel sheet having metallic luster and excellent in magnetic property
JPH101779A (en) High tensile strength insulating coating film forming agent, its formation and grain oriented silicon steel sheet having high tensile strength insulating coating film
JP4119634B2 (en) Method for producing mirror-oriented electrical steel sheet with good iron loss
CN113302319A (en) Grain-oriented electrical steel sheet having excellent adhesion of insulating film without forsterite film
KR20210110865A (en) Method for manufacturing grain-oriented electrical steel sheet
CN113302317A (en) Method for producing grain-oriented electromagnetic steel sheet
JPH10121259A (en) Insulated coating agent excellent in coating characteristic and production of grain-oriented silicon steel sheet
JP4626155B2 (en) Oriented electrical steel sheet with low magnetic field magnetic properties and excellent stability over time and method for producing the same
JP2706039B2 (en) Method for manufacturing mirror-oriented silicon steel sheet
JPH0941153A (en) Separation agent at annealing, excellent in reactivity, and production of grain oriented silicon steel sheet using the same
JPH07126751A (en) Production of mirror finished grain oriented silicon steel sheet with superior film adhesion
JP2001192737A (en) Method for producing grain oriented silicon steel sheet excellent in glass film characteristic and magnetic property

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480035763.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

REEP Request for entry into the european phase

Ref document number: 2004801652

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004801652

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067010866

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2004801652

Country of ref document: EP