KR20010048860A - A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having no glass film - Google Patents

A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having no glass film Download PDF

Info

Publication number
KR20010048860A
KR20010048860A KR1019990053703A KR19990053703A KR20010048860A KR 20010048860 A KR20010048860 A KR 20010048860A KR 1019990053703 A KR1019990053703 A KR 1019990053703A KR 19990053703 A KR19990053703 A KR 19990053703A KR 20010048860 A KR20010048860 A KR 20010048860A
Authority
KR
South Korea
Prior art keywords
temperature
less
annealing
coating
steel sheet
Prior art date
Application number
KR1019990053703A
Other languages
Korean (ko)
Other versions
KR100435456B1 (en
Inventor
최규승
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1999-0053703A priority Critical patent/KR100435456B1/en
Publication of KR20010048860A publication Critical patent/KR20010048860A/en
Application granted granted Critical
Publication of KR100435456B1 publication Critical patent/KR100435456B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: A method for manufacturing a low temperature reheating oriented electrical steel sheet without a glass film is provided to obtain an oriented electrical steel sheet in which punching property is improved without glass film by using a composition in which alumina powder is added to an alumina sol a main constituent of as a fusion preventing agent. CONSTITUTION: In a method for manufacturing an oriented electrical steel sheet comprising the processes of hot rolling after low temperature reheating to a temperature of 1250 to 1340 deg.C a steel slab comprising 2.9 to 3.3 wt.% of Si, 0.025 to 0.045 wt.% of C, 0.015 wt.% or less of P, 0.08 to 0.020 wt.% of sol-Al, 0.0080 to 0.012 wt.% of N, 0.007 wt.% or less of S, 0.12 to 0.42 wt.% of Mn, 0.6 wt.% or less of Cu and a balance of Fe and other inevitable impurities; annealing the hot rolled steel slab at a temperature of 1000 deg.C or less; cold rolling the annealed steel slab, thereby adjusting to a final thickness by performing two times of cold rollings including decarburization annealing under the humid environment in the middle of the cold rollings; coiling to a large scale coil by coating the recovery annealed steel slab with a fusion preventing agent after recovery annealing the cold rolled steel slab under the dry environment of 600 deg.C or less; performing finishing high temperature annealing passing through the heat cycle steps of comprising maintaining a temperature increasing ratio of 15 deg.C/hr in the range of 700 to 1200 deg.C, uniformly heating the steel slab at the temperature of 1200±10 deg.C for more than 20 hours and cooling the steel slab; and coating a tension coating agent on the resulting steel slab, wherein the fusion preventing agent comprises solid contents of 10 to 25 wt.% of alumina sol and 5 to 20 wt.% of alumina powder, and coated in an amount of 3 to 7 g/m2.

Description

글라스피막이 없는 저온재가열 방향성 전기강판의 제조방법{A METHOD FOR MANUFACTURING LOW TEMPERATURE REHEATED GRAIN-ORIENTED ELECTRICAL STEEL SHEET HAVING NO GLASS FILM}A method for manufacturing low-temperature reoriented electrical steel without glass coating {A METHOD FOR MANUFACTURING LOW TEMPERATURE REHEATED GRAIN-ORIENTED ELECTRICAL STEEL SHEET HAVING NO GLASS FILM}

본 발명은 열간압연작업시 저온 슬라브가열법을 적용하여 생산하는 방향성 전기강판에 관한 것으로, 보다 상세하게는 알루미나졸을 주성분으로 하는 조성물을 융착방지제로 사용함으로써, 수요가에서의 가공작업시 타발성을 향상시키고 자성특성도 개선한 저온재가열 글라스피막이 없는 방향성 전기강판의 제조방법에 관한 것이다.The present invention relates to a grain-oriented electrical steel sheet produced by applying the low-temperature slab heating method during hot rolling operation, and more particularly, by using a composition mainly composed of alumina sol as a fusion preventive agent, The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet without a low-temperature reheated glass coating having improved magnetic properties and improved magnetic properties.

방향성 전기강판은 결정립의 방위가 (110)[001] 방향으로 정열된 집합조직을 가진 전기강판으로, 압연방향으로 극히 우수한 자기적 특성을 가지고 있어서 변압기, 전동기, 발전기 및 기타 전자기기 등의 철심재료로 사용된다.A grain-oriented electrical steel sheet is an electrical steel sheet having an aggregate structure in which the orientation of grains is aligned in the direction of (110) [001]. It has extremely excellent magnetic properties in the rolling direction, so that iron core materials such as transformers, electric motors, generators and other electronic devices are used. Used as

일반적으로 방향성 전기강판은, 2~4규소와 입성장 억제제로서 대부분 MnS나 AlN 등을 함유하여 제조된 강슬라브를, (재가열 및 열간압연)-(예비 소둔)-(중간소둔이 낀 1회의 냉간압연)-(탈탄소둔)-(융착방지제 도포)-(최종 마무리고온소둔) 등의 복잡한 공정을 통해 제조된다. 이러한 복잡한 제조공정중 가장 난문제를 안고 있는 공정은 고온열처리를 행하는 슬라브 재가열공정이다. 이 공정은 상기 강슬라브를 1400℃ 정도의 고온에서 5시간 정도 유지시킴에 의해, 입성장 억제제로 사용되는 MnS나 AlN 등의 석출물들을 완전히 고용 분산시킨 후 미세하게 석출시키는 공정이다. 이 때 고온의 슬라브 표면에는 파이어라이트(Fe2SiO4)라는 산화물이 생성되는데, 이것은 융점이 1340℃정도로 낮아 표면에서부터 녹아내리기 때문에, 일부는 바깥으로 흘러내리게 설계되어 있지만 대부분은 로상부의 내화물 등에 축척되어 작업이 종료와 동시에 완전 내부수리가 불가피해지는 문제를 유발한다.In general, a grain-oriented electrical steel sheet is a steel slab made of 2 to 4 silicon and mostly MnS or AlN as a grain growth inhibitor, (reheating and hot rolling)-(preliminary annealing)-(one cold annealed with intermediate annealing). It is manufactured through a complex process such as rolling)-(decarbonization annealing)-(application of anti-fusion agent)-(final finishing high temperature annealing). The most difficult process among these complex manufacturing processes is the slab reheating process that performs high temperature heat treatment. In this step, the steel slab is maintained at a high temperature of about 1400 ° C. for about 5 hours to completely disperse the precipitates such as MnS and AlN, which are used as grain growth inhibitors, and then deposit finely. At this time, an oxide called Pyrite (Fe 2 SiO 4 ) is formed on the surface of the hot slab. Since the melting point is about 1340 ° C. and it melts from the surface, some of them are designed to flow outward, but most of them are refractory parts of the furnace. Accumulation causes problems that complete internal repair is inevitable at the end of the work.

상기한 문제점을 해결하기 위해, 슬라브 재가열온도의 하향화를 위한 노력이 계속 진행되어 왔다. 그 결과, 한국특허출원 93-23751호에는 재래식 방향성전기강판을 1250~1340℃ 부근에서 열처리하여 열간압연을 행하도록 하는 성분계를 설정하고, 기존 제조공정에 추가적인 설비보완이나 신설없이도 작업가능한 제조방법에 관한 발명을 개시하였다. 또한, 94-21388, 94-21389,94-21390 및 94-21391호 등에는 부가적인 요소기술들을 개시하였다. 이들 발명은 저온재가열법을 이용한 것으로, 생산시 높은 실수율 및 우수한 자기적 특성을 갖는 제품을 생산할 수 있는 이점이 있으나, 상기와 같이 제조된 방향성 전기강판에는 글라스피막이 존재하기 때문에 변압기용 철심코아 등의 제작에 있어서 타발성이 좋지 않은 문제점이 있다.In order to solve the above problems, efforts have been made to lower the slab reheating temperature. As a result, Korean Patent Application No. 93-23751 sets up a component system for performing hot rolling by heating a conventional grain-oriented electrical steel sheet in the vicinity of 1250 ~ 1340 ° C, and in a manufacturing method that can work without additional equipment supplementation or establishment in the existing manufacturing process. The invention has been disclosed. Further elementary technologies have been disclosed in 94-21388, 94-21389, 94-21390, and 94-21391. These inventions have a low temperature reheating method, there is an advantage to produce a product having a high error rate and excellent magnetic properties during production, but because the glass film is present in the oriented electrical steel sheet manufactured as described above, such as iron core core for transformer There is a problem that punchability is not good in manufacturing.

즉, 상기와 같이 제조된 방향성 전기강판을 이용하여 변압기용 철심코아 등을 제작하는 경우, 실수요가들은 스리팅작업, 타발작업, 열처리 및 조립작업을 행하는데, 이 중 타발작업은 생산성향상 및 원가절감측면에서 제작과정중 가장 중요한 제작공정이 된다.That is, when manufacturing the iron core core for transformers using the directional electrical steel sheet manufactured as described above, the real yoga perform the slitting work, punching work, heat treatment and assembly work, among which the punching work is to improve productivity and cost In terms of savings, it is the most important manufacturing process.

수요가에서 방향성제품의 타발작업시 타발성은 소재자체의 경도, 1차 절연피막층인 글라스피막[Glass Film, 주성분은 Forsterite(2MgO·SiO2)임]층 및 2차 절연피막층인 장력코팅층의 세가지에 의해 대부분 결정된다. 상기 글라스피막층은 2차 재결정형성을 위한 고온소둔시 융착방지제로 사용하는 MgO와 소재표면의 SiO2계 산화물의 반응에 의해 소재표면에 형성되는 것으로, 방향성제품에 있어서 타발성을 개선하기 위해서는 절연피막층이 그라스피막층이 없는 장력코팅층만의 단일피막층인 것이 바람직하다. 이에 따라 그라스피막이 없는 방향성 전기강판의 제조에 관하여 많은 관심과 연구개발이 진행되어 왔다.When punching the directional product at demand, the punchability is divided into three materials: the hardness of the material itself, the glass film (the primary component is a Forsterite (2MgO · SiO 2 )) layer, and the tension coating layer (the second insulating film). Mostly determined by. The glass coating layer is formed on the surface of the material by reaction of MgO used as a fusion inhibitor during secondary annealing and SiO 2 based oxide on the surface of the material. In order to improve the punchability in the aromatic product, the insulating film layer It is preferable that it is a single coating layer only for the tension coating layer without this glass coating layer. Accordingly, much attention and research and development have been made regarding the manufacture of grain-oriented electrical steel sheets without a glass film.

이와 같은 노력은 크게 두가지 방향으로 추진되고 있다. 첫째는 종래방법과 동일하게 MgO를 융착방지제의 주성분으로 하고 여기에 Ca,Li,K,Na,Ba 등의 염화물을 첨가하여, 고온소둔중 이들 염화물이 소재표면과 반응하여 FeCl2피막을 형성하도록한 후 표면에서 증발하여 제거되게 함으로써, 글라스피막층의 형성자체를 차단하는 발명으로, 미국특허 4875947호가 대표적이다. 그러나 상기 발명에 의하면 도포작업성은 우수하나, 글라스피막을 완전히 제거하기 위한 산화물층의 엄격 제어관리가 어렵고, 염화물 과잉첨가에 의한 과에칭작용으로 인해 글라스피막층이 없어서 나타날 수 있는 철손의 개선효과가 줄어들 수 있다.Such efforts are being promoted in two directions. First, as in the conventional method, MgO is the main component of the fusion inhibitor, and chlorides such as Ca, Li, K, Na, and Ba are added thereto so that these chlorides react with the surface of the material to form a FeCl 2 film during high temperature annealing. After the evaporation is removed from the surface, the invention itself to block the formation of the glass film layer, US Patent 4875947 is representative. However, according to the present invention, the coating workability is excellent, but it is difficult to strictly control and control the oxide layer to completely remove the glass coating, and the improvement effect of iron loss that may be caused by the absence of the glass coating layer due to the overetching action by the chloride addition is reduced. Can be.

또 다른 방법으로, 소재표면의 산화물층과 반응성이 전혀 없는 Al2O3분말을 도포하는 방법이 있지만, 상기 Al2O3분말은 기계적으로 초미립자로 파쇄하여도 상업적으로는 통상 2~10㎛정도 밖에 미세화할 수 없고, 이 분말을 물과 분산상태로 유지시키는 것이 곤란한 문제가 있다. 이를 해결하기 위해, 일본특허 특개평6-136555호는 상기 Al2O3분말을 유기용제 등에 혼합하여 소재표면에 도포하는 방법을 개시하고 있으나, Al2O3분말을 유기용제에 완전 분산상태로 안정하게 존재하도록 하는 것이 불가능하고, 슬러리 건조시 유기용제의 휘발등으로 환경을 오염시키는 문제점을 갖고 있다. 따라서, 일본특허 특개평6-41642호에서는 정전도포법을 개시하고 있으나, 설비상의 제약등으로 인해 상업적 생산이 어려운 상태에 있다.As another method, there is a method of applying Al 2 O 3 powder which has no reactivity with the oxide layer on the surface of the material, but the Al 2 O 3 powder is usually about 2 to 10 μm commercially even when mechanically crushed into ultra fine particles There is a problem that it can only be miniaturized and it is difficult to keep this powder in a dispersed state with water. To solve this problem, the Japanese Patent Unexamined Patent 6-136555 discloses the Al 2 O 3 powder to the fully dispersed state by mixing Al 2 O 3 powder, but discloses a method of coating a material surface or the like organic solvent in an organic solvent It is impossible to make it exist stably, and there exists a problem which pollutes the environment by volatilization of the organic solvent, etc. at the time of slurry drying. Accordingly, Japanese Patent Laid-Open No. 6-41642 discloses an electrostatic coating method, but commercial production is difficult due to equipment restrictions.

이에, 본 발명자는 상기한 종래 기술들의 제반 문제점을 해결하기 위하여, 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은 방향성전기강판의 제조방법에 있어서 융착방지제로서 주성분이 알루미나졸이고 여기에 알루미나 분말이 첨가된 조성물을 이용함으로써, 글라스피막이 없어 타발특성이 향상된 방향성 전기강판을 얻을 수 있는, 저온재가열 방향성 전기강판의 제조방법을 제공하고자 하는데 그 목적이 있다.In order to solve the above problems of the prior arts, the present inventors conducted research and experiments, and proposed the present invention based on the results, and the present invention provides a fusion inhibitor in the method for producing a grain-oriented electrical steel sheet. It is an object of the present invention to provide a method for manufacturing a low-temperature reheating oriented electrical steel sheet, which can obtain a grain-oriented electrical steel sheet having improved punching characteristics without using a glass coating by using a composition containing alumina sol as the main component thereof.

본 발명은, 중량로 Si: 2.9~3.3, C: 0.025~0.045, P: 0.015이하, 용존 Al: 0.08~0.020, N: 0.0080~0.012, S: 0.007이하, Mn: 0.12~0.42, Cu: 0.6이하, 그리고 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 강슬라브를 1250~1340℃의 저온재가열 후 열간압연한 다음, 1000℃ 이하의 온도에서 열연판소둔하고, 중간에 습윤분위기에서의 탈탄소둔을 포함하는 2회 냉간압연을 행하여 최종두께로 조정한 다음, 600℃ 이하의 건조분위기에서 회복소둔한 후, 융착방지제를 도포하여 대형코일로 권취하고, 700~1200℃ 구간의 승온율은 15℃/hr 이상으로 유지하고 1200±10℃의 온도에서 20시간 이상 균열한 후 냉각하는 열사이클을 거치는 마무리고온소둔을 행하고, 장력코팅제를 도포하여 방향성 전기강판을 제조하는 방법에 있어서,In the present invention, Si: 2.9 to 3.3, C: 0.025 to 0.045, P: 0.015 or less, dissolved Al: 0.08 to 0.020, N: 0.0080 to 0.012, S: 0.007 or less, Mn: 0.12 to 0.42, Cu: 0.6 The steel slab composed of the remaining Fe and other unavoidable impurities is then hot-rolled after low-temperature reheating at 1250 to 1340 ° C, and then hot-rolled at an temperature of 1000 ° C or lower, followed by decarbonization in a wet atmosphere. After performing cold rolling twice to adjust the final thickness, and then recovering and annealing in a dry atmosphere of 600 ℃ or less, and then coated with a fusion inhibitor and wound with a large coil, the temperature increase rate of 700 ~ 1200 ℃ section is 15 ℃ In the method of producing a grain-oriented electrical steel sheet by maintaining a temperature of at least / hr, and after finishing for 20 hours at a temperature of 1200 ± 10 ° C, after finishing a high temperature annealing through cooling cycle, applying a tension coating agent,

상기 융착방지제의 도포는 고형분이 10~25인 알루미나졸과 5~20의 알루미나분말로 조성되는 융착방지제를 3~7g/㎡의 두께로 도포하여 이루어짐을 특징으로 하는 글라스피막이 없는 저온재가열 방향성 전기강판의 제조방법에 관한 것이다.The coating of the fusion inhibitor is a low-temperature reheat oriented electrical steel sheet without a glass coating, characterized in that the coating is made by applying a fusion inhibitor composed of alumina sol having a solid content of 10 to 25 and alumina powder of 5 to 20 to a thickness of 3 ~ 7g / ㎡ It relates to a manufacturing method of.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명자는 수용상태에서 분산성이 우수한 알루미나입자를 검토하던 중 알루미나졸은 극초립자의 콜로이드 상태의 분산물로 존재하기 때문에 액분산성이 극히 우수할 뿐 아니라, 적정 점성을 갖고 있어서 생산공장에서 코타롤에 의한 도포작업성이 우수함을 확인하여 본 발명을 완성하기에 이르렀다.The inventors of the present invention examined alumina particles having excellent dispersibility in a water-soluble state, and since alumina sol is present as a colloidal dispersion of ultrafine particles, not only has excellent liquid dispersibility, but also has an appropriate viscosity, thereby producing a cotarol in a production plant. It was confirmed that the coating workability by the excellent, and came to complete the present invention.

즉, 본 발명자는 수요가에서의 변압기용 철심코아의 가공-조립작업시 원가절감 및 생산성향상을 달성할 수 있는 타발성 향상방법으로, 글라스피막이 없는 방향성전기강판의 제조방법을 제공하기 위해, 융착도포제의 주성분으로서 알루미나졸을 이용한 것이다.That is, the present inventors, in order to provide a method of manufacturing a grain-oriented electrical steel sheet without a glass coating as a punching improvement method that can achieve cost reduction and productivity improvement during processing and assembling of iron core core for transformer at demand. Alumina sol is used as the main component of the coating agent.

통상 글라스피막층은 융착방지제로서 도포되는 MgO, 소재표면 산화물층인 SiO2및 Fe2SiO4와의 포스테라이트 형성반응(2MgO·SiO2)은 의해 형성되는 절연피막층이다. 따라서, 본 발명에서는 소재표면의 탈탄산화물층과의 반응성이 전혀없는 Al2O3를 융착방지제의 주성분으로 사용하였다.Usually, the glass coating layer is an insulating coating layer formed by a forsterite formation reaction (2MgO.SiO 2 ) with MgO applied as an fusion inhibitor and SiO 2 and Fe 2 SiO 4 which are material surface oxide layers. Therefore, in the present invention, Al 2 O 3 having no reactivity with the decarbonate layer on the material surface was used as the main component of the fusion inhibitor.

상기 Al2O3는 크기가 10~100mμ인 콜로이달 상태의 알루미나졸이, 용액분산성도 반영구적이고 액점도도 최소 50cps 이상을 갖아서 코타롤에 의한 도포를 가능하게 할 수 있기 때문에 바람직하다. 이러한 액안정성은, 콜로이달 상태의 Al2O3표면이 액 안정제로 사용되는 극미량의 염소이온이나 초산이온등에 의해 양전하를 띠기 때문에 가능하다. 이것은 제조상 비정질상태로 존재하지만, 결정상과 동일하게 소재 산화물층과의 화학반응이 없고, 자체 점성이 커서 소재표면상의 점착성을 충분히 확보하기 때문에, 도포량관리가 비교적 용이하다.The Al 2 O 3 is preferable because the colloidal alumina sol having a size of 10 to 100 mμ is semipermanent in solution dispersibility and has a liquid viscosity of at least 50 cps or more so that it can be applied by cotarol. Such liquid stability is possible because the Al 2 O 3 surface in the colloidal state is positively charged by a very small amount of chlorine ions or acetate ions used as a liquid stabilizer. It exists in an amorphous state in manufacturing, but similarly to the crystalline phase, there is no chemical reaction with the material oxide layer, and its viscosity is large to ensure sufficient adhesion on the material surface, so that the coating amount management is relatively easy.

이하, 본 발명강의 범위 한정이유에 대해 설명한다.Hereinafter, the reason for range limitation of the present invention steel will be described.

상기 C는 AlN석출물의 미세 고용분산, 압연조직형성, 냉간압연시 가공에너지부여 등의 역할을 하는 원소로, 가능한 한 상향관리하는 것이 유리하나, 이후 탈탄공정의 어려움을 고려하여 0.025~0.045까지로 설정하는 것이 바람직하다.The C is an element that plays a role of fine solid dispersion of AlN precipitate, rolling structure formation, imparting processing energy during cold rolling, etc., but it is advantageous to upwardly manage as much as possible, but to 0.025 ~ 0.045 considering the difficulty of decarburization process. It is desirable to set.

상기 Si은 비저항치를 증가시켜 철심손실을 낮추는 역할을 하는 원소로, 그 함량이 2.9이하이면 철손특성이 나빠지고, 과량 첨가되면 강이 취약해져 냉간압연성이 극히 나빠지므로 3.3이하로 설정하는 것이 바람직하다.The Si is an element that serves to lower the iron core loss by increasing the resistivity value, the iron loss characteristics are worse when the content is less than 2.9, the steel is vulnerable when the excessive amount is added, so the cold rolling property is extremely bad, it is preferably set to 3.3 or less Do.

상기 Mn은 재가열시 석출물의 고용온도를 낮추고, 열간압연시 소재의 양 끝부분에 생성되는 크랙을 방지하는 역할을 하는 원소로, 많이 첨가할수록 유리하나 0.42이상 첨가될 경우 Mn 산화물에 의해 철손을 악화시키므로 상한을 0.42로 한다.The Mn is an element that lowers the solid solution temperature of the precipitate upon reheating and prevents cracks formed at both ends of the material during hot rolling. It is advantageous to add more, but worsens iron loss by Mn oxide when more than 0.42 is added. The upper limit is 0.42.

상기 용존 Al은 N와 함께 AlN의 석출물을 형성하여 입성장억제력을 확보하는 중심원소이다. 그 함량이 0.008이하이면 2차 재결정에 필요한 충분한 억제력을 갖지 못해서 결정립크기가 작고 불완전한 미립자가 나타나며, 0.020이상 첨가되면 억제력이 너무 강해 2차 재결정 형성자체를 어렵게 하여 자기적 특성을 급격히 열화시키므로, 본 발명에서는 0.008~0.020로 한정하는 것이 바람직하다.The dissolved Al forms a precipitate of AlN together with N to secure the grain growth inhibitory power. If the content is less than 0.008, it does not have sufficient inhibitory power required for secondary recrystallization, and small grain size and incomplete fine particles appear. If added above 0.020, the inhibitory power is too strong, making the secondary recrystallization itself difficult and rapidly deteriorating magnetic properties. In this invention, it is preferable to limit to 0.008-0.020.

상기 N는 용존 Al과의 반응석출물을 형성하여 2차 재결정을 형성하는데 필수적 성분으로, 그 함량이 0.008이하이면 형성석출물이 부족하게 되고, 0.012이상이면 강판표면에 브리스터라는 결함을 유발하여 제품의 표면특성을 열화시키므로, 본 발명에서는 0.008~0.012로 설정한다.The N is an essential component for forming the secondary precipitates by forming reaction precipitates with dissolved Al. If the content is less than 0.008, the precipitates are insufficient, and if it is 0.012 or higher, a blister on the surface of the steel sheet causes defects. Since surface characteristics deteriorate, in the present invention, it is set to 0.008 to 0.012.

상기 Cu는 불순성분인 S과 결합하여 Cu2S석출물을 형성하고, 석출물중 가장 저온에서 고용되므로 가능한한 많이 첨가할수록 좋다. 그러나, 0.6이상 되면 탈탄소둔시 형성되는 산화물이 절연피막형성에 악영향을 끼치므로 상한을 0.6로 설정하는 것이 바람직하다.Cu combines with S, which is an impure component, to form a Cu 2 S precipitate, and it is better to add as much as possible because it is solid-solution at the lowest temperature among the precipitates. However, if it is more than 0.6, it is preferable to set the upper limit to 0.6 because the oxide formed during decarbonization annealing adversely affects the insulation film formation.

다음, 제조공정에 대하여 설명한다.Next, the manufacturing process will be described.

상기한 조성의 강슬라브는 자기적 특성의 확보가 가능하도록, 1250℃~슬라브용융 직전온도인 1340℃범위의 저온으로 재가열 하는 것이 바람직하다. 이후, 1000℃ 이하의 온도에서 열연판소둔을 행하고, 최종 냉연율이 46~69가 되도록 중간두께를 조정하면서, 1차 냉간압연을 실시한다.The steel slabs having the above-mentioned composition are preferably reheated to a low temperature in the range of 1,250 ° C. to 1340 ° C., which is a temperature just before slab melting, to ensure magnetic properties. Thereafter, hot-rolled sheet annealing is performed at a temperature of 1000 ° C. or lower, and primary cold rolling is performed while adjusting the intermediate thickness so that the final cold rolling rate is 46 to 69.

그 다음, 중간 탈탄소둔을 행하는데, 상기 탈탄소둔은 890~960℃범위의 습윤분위기에서 행하는 것이 바람직하다. 그 이유는 890℃ 이하에서는 탈탄성이 저조하고 960℃ 이상에서는 고온에 의한 과대한 구멍이 발생하기 때문이다.Then, an intermediate decarbonization annealing is performed, which is preferably performed in a humid atmosphere in the range of 890 to 960 ° C. The reason for this is that decarburization is poor at 890 ° C. or lower, and excessive holes due to high temperature occur at 960 ° C. or higher.

이어서 2차 냉간압연을 행하여 최종두께로 조정한 후, 600℃ 이하의 온도에서 회복소둔하고, 알루미나졸을 주성분으로 하고 알루미나 분말이 첨가된 융착방지제를 도포한다.Subsequently, secondary cold rolling is carried out to adjust the final thickness, followed by recovery annealing at a temperature of 600 ° C. or lower, and an fusion inhibitor containing alumina sol as a main component and alumina powder added thereto.

상기 알루미나졸은, 순수 알루미나졸을 사용할 경우, 7~10톤의 대단중코일의 고온소둔시 소재간의 적은 부분은 융착이 되어 이후 작업성에 큰 문제를 야기할 수 있기 때문에, 고형분이 함유된 것이 바람직하다. 상기 알루미나졸에 함유된 고형분이 10미만이면 점도가 낮아 도포량관리에 적절한 소재의 표면부착량, 즉, 3~7g/㎡를 유지하기 어렵고, 코타롤에 의한 도포작업성이 미흡하여 본발명에서 제외한다. 반면, 고형분이 25를 초과하는 경우 두께관리가 어렵고 액안정성에 문제가 있어서, 본 발명에서는 고형분을 10~25로 한정한다.When the alumina sol is pure alumina sol, a small portion between materials during high temperature annealing of 7 to 10 tons of heavy coil is fused, which may cause a big problem in later workability. Do. If the solids contained in the alumina sol is less than 10, the viscosity is low, so it is difficult to maintain the surface adhesion amount of the material suitable for coating amount management, that is, 3 to 7 g / m 2, and the coating workability by the cotalol is insufficient, and thus excluded from the present invention. . On the other hand, when the solid content exceeds 25, the thickness management is difficult and there is a problem in the liquid stability, in the present invention, the solid content is limited to 10 to 25.

또한, 상기한 바와 같이 융착방지제에 알루미나 분말을 포함시키는 이유는 다음과 같다. 즉, 상기 알루미나졸만에 의해서도 글라스피막이 없는 제품을 생산할 수 있지만, 적정 도포량관리에 의한 고온소둔시 판 에지부간의 붙음으로 인한 작업성 문제를 고려하면, 알루미늄분말을 추가 첨가하는 것이 바람직하기 때문이다. 특히, 상기 알루미나졸이 10미만의 고형분을 함유할 경우, 소재표면 도포량이 3g/㎡ 정도로 얇게 관리되면 고온소둔중 코일 에지(edge)부 쪽에 판간붙음현상이 나타나는 문제가 발생하는데, 이러한 결함들, 특히 대단중 코일의 에지부 판붙음방지에는 시중에서 쉽게 구입할 수 있는 2~10㎛크기의 알루미나분말을 5~20정도 첨가하면 완전히 방지할 수 있는 것이다. 상기 알루미나분말의 크기는 10㎛ 이하가 분산성 측면 등에서 유리하나 본 발명의 조건에서는 특별히 한정하지 않는다. 그 첨가량은 5~20로 정하는 것이 바람직한데, 5미만인 경우에는 도포량관리의 효과가 적고 고온소둔시 판붙음결함 등으로 작업성의 문제점이 야기될 가능성이 있고, 20를 초과하는 경우에는 도포성이 너무 좋아서 두께관리가 어렵기 때문이다.In addition, the reason for including the alumina powder in the fusion inhibitor as described above is as follows. That is, the alumina sol alone can produce a product without a glass coating, but considering the workability problem caused by sticking between the edges of the plate during high temperature annealing by proper coating amount management, it is preferable to add an aluminum powder. . In particular, when the alumina sol contains a solid content of less than 10, if the surface coating amount of the material is managed as thin as 3g / ㎡, the problem occurs that the plate adhesion phenomenon occurs on the coil edge side during high temperature annealing, such defects, In particular, the edge plate of the coil of the heavy end can be completely prevented by adding about 5 to 20 μm of alumina powder having a size of 2 to 10 μm that can be easily purchased on the market. The size of the alumina powder is advantageous in terms of dispersibility, such as 10㎛ or less, but is not particularly limited under the conditions of the present invention. The addition amount is preferably set to 5 to 20, but if it is less than 5, the effect of coating amount management is less effective, and there is a possibility that workability problems may occur due to plate defects at high temperature annealing. This is because the thickness is difficult to manage.

상기 본 발명의 융착방지제는 도포하는데 있어서, 도포량은 3~7g/㎡로 하는 것이 바람직하다. 그 이유는 3g/㎡이하에서는 판붙음결함이 나타날 수 있고, 7g/㎡ 이상에서는 특성의 향상효과가 적기 때문이다.In coating the fusion inhibitor of the present invention, the coating amount is preferably 3 to 7 g / m 2. The reason for this is that plate defects may appear at 3 g / m 2 or less, and the effect of improving characteristics is less at 7 g / m 2 or more.

그 다음, 권취하여 대형코일로 만든 다음 최종 마무리소둔을 하는데, 일례로 최종 마무리소둔은 전구간100수소분위기에서 700~1200℃ 구간의 승온율은 15℃/hr 이상으로 유지하고 1200±10℃의 온도에서 20시간 이상 균열한 후 냉각하는 열사이클을 거치는 식으로 행할 수 있다.Then, it is wound up and made into a large coil, followed by final finishing annealing. For example, the final finishing annealing is performed at a temperature of 1200 ± 10 ° C. at a temperature of 700 ° C. to 1200 ° C. at a temperature of 1200 ° C./hr in 100 hydrogen atmospheres. This can be carried out by undergoing a thermal cycle of cooling after cracking for 20 hours or longer at.

2차 재결정을 완료하고 산세처리하여 표면을 조정한 후, 최종적으로 장력코팅제를 도포하는데, 상기 장력코팅제의 조성물은 본 발명에서는 특별히 한정하지 않으며, 일례로 콜로이달실리카, 인산알미늄 및 무수크롬산으로 구성된 장력코팅제를 도포할 수 있다. 그 후, 900℃에서 건조하여 전기강판제품을 제조한다.After completion of the secondary recrystallization and pickling treatment to adjust the surface, and finally apply a tension coating agent, the composition of the tension coating agent is not particularly limited in the present invention, for example, consisting of colloidal silica, aluminum phosphate and chromic anhydride Tension coating agents can be applied. Then, it is dried at 900 ℃ to produce an electrical steel sheet product.

이하, 실시예를 통하여 설명한다.Hereinafter, it demonstrates through an Example.

(실시예1)Example 1

중량로 3.18i, 0.037, 0.013P, 0.012용존 Al, 0.0088, 0.007, 0.21Mn, 0.38u, 그리고 잔부 Fe로 구성된 조성의 성분을 이용하여 220mm두께의 슬라브를 만들었다. 이것을 1320℃의 온도에서 4시간 재가열후 열간압연을 행하여 2.0mm두께의 열연판을 만들었다. 이어 950℃에서 열연판소둔을 시행하고 산세후 0.65mm두께까지 1차 냉간압연을 한 후 중간탈탄소둔을 실시하였다. 탈탄소둔은 온도 910℃, 습윤분위기에서 4분간 행하였다. 이어서 2차 냉간압연하여 최종두께를 0.35mm로 조정하고, 600℃의 건조분위기에서 회복소둔을 한 다음 융착방지제를 도포하였다.A 220 mm thick slab was made using components of the composition consisting of 3.18i, 0.037, 0.013P, 0.012 dissolved Al, 0.0088, 0.007, 0.21Mn, 0.38u and the balance Fe by weight. This was reheated at a temperature of 1320 ° C. for 4 hours, followed by hot rolling to make a hot rolled sheet having a thickness of 2.0 mm. Subsequently, hot-rolled sheet annealing was performed at 950 ° C, followed by primary cold rolling to a thickness of 0.65 mm after pickling, followed by intermediate decarbonization annealing. Decarbonization annealing was performed for 4 minutes in a 910 degreeC temperature and wet atmosphere. Subsequently, secondary cold rolling was performed to adjust the final thickness to 0.35 mm, recovery annealing was performed at 600 ° C. in a dry atmosphere, and then a fusion inhibitor was applied.

이 때 융착방지제는 통상의 조성물인 MgO에 Ti02분말을 1.5첨가한 기본 조성물과 고형분 11의 알루미나졸에 알루미나 분말을 15첨가한 본 발명의 조성물로 하여 코타롤로 도포하되, 그 도포량을 4.2g/㎡으로 하였다. 이것을 직화건조로에서 600℃, 15초간 건조한 다음, 각각 권취하여 대형코일로 만들고, 다음 최종 마무리소둔공정을 행한다. 이 때 최종 마무리소둔은 전 구간 100수소분위기이고 700~1200℃구간의 승온율은 15℃/hr로 유지하면서 1200℃의 온도에서 25시간 균열한 후 냉각하는 열사이클을 거치는 식으로 행하고, 2차 재결정소둔을 완료하였다. 이후 표면의 미반응 융착방지제 제거를 위해 산세하고 최종적으로 인산알미늄, 콜로이달실리카 및 무수크롬산으로 구성된 장력코팅제를 3.5g/㎡기준으로 도포하여 방향성 전기강판을 제조하였다. 이들에 대한 그라스피막 형성상태, 자성 및 타발성을 측정하여 표1에 나타냈다. 자성은 단판측정기로 철손(W17/50) 및 자속밀도(B10)값을 조사하였고, 타발성은 10mmΦ의 동일 금형으로 작업가능한 타발수 즉, 금형으로 버(Burr)높이 0.05mm가 될때까지의 타발매수로 측정하였다.At this time, the anti-fusion agent was coated with cotarol as the composition of the present invention, in which the basic composition of Ti0 2 powder was added 1.5 to MgO, which is a conventional composition, and the alumina powder was added to the alumina sol of solid content 11, and the coating amount was 4.2 g / It was set to m <2>. This is dried in a direct-drying furnace at 600 ° C. for 15 seconds, then wound up to form a large coil, followed by the final finishing annealing process. At this time, the final finishing annealing is carried out by a thermal cycle of cooling after cracking at a temperature of 1200 ° C. for 25 hours while maintaining a temperature increase rate of 100 ° C. at a temperature of 700 ° C. to 1200 ° C. at 15 ° C./hr. Recrystallization annealing was completed. After pickling to remove the unreacted fusion inhibitor on the surface and finally applied a tension coating agent consisting of aluminum phosphate, colloidal silica and chromic anhydride based on 3.5g / ㎡ to produce a grain-oriented electrical steel sheet. The glass film formation state, magnetic properties and punchability of these were measured and shown in Table 1. The magnetic properties were measured by iron plate (W 17/50 ) and magnetic flux density (B 10 ) with a single plate measuring instrument, and the punching property was able to work with the same mold of 10mmΦ until the burr height was 0.05mm. It was measured by the number of punches.

시편Psalter 융착방지제Fusion inhibitor 글라스피막Glass coating 자성특성Magnetic properties 타말수(만타)Tamarisu (Manta) 자속밀도(T)Magnetic flux density (T) 철손(W/kg)Iron loss (W / kg) 종래재Conventional MgO + TiO2 MgO + TiO 2 형성됨Formed 1.881.88 1.191.19 1.11.1 발명재Invention 알루미나졸 + 알루미나 분말Alumina Sol + Alumina Powder 없음none 1.881.88 1.151.15 3.93.9

상기 표1에 나타난 바와 같이, 종래재에는 글라스피막이 형성되어 있어서, 타발수가 1.1만타에 불과했지만, 본 발명재에는 글라스피막이 전혀 형성되어 있지 않기 때문에, 철손이 3정도 낮은 우수한 자성특성을 나타내었고, 또한 타발수도 종래재 대비 3.5배 정도 우수한 것을 알 수 있다.As shown in Table 1 above, the glass coating was formed in the conventional material, and the punching number was only 100,000 shots. However, since the glass coating was not formed in the present invention, the iron loss was about 3, showing excellent magnetic properties. In addition, it can be seen that the punching water is about 3.5 times better than the conventional material.

(실시예2)Example 2

상기 실시예1의 2차 회복소둔판에, 융착방지제를 알루미나졸과 입자크기가 3~5㎛인 알루미나분말의 첨가량을 변화시킨 조성물로 하여 코타롤로 도포하고 550℃의 온도에서 건조한 후 권취하였다. 이후는 실시예1과 동일 방식으로 하여, 방향성 전기강판을 제조하였다. 이 때 융착방지제 조성물의 도포량을 5g/㎡로 일정하게 하고, 도포량관리의 용이성, 최종 고온소둔후 장력 코팅작업시의 판붙음 결함 발생율 을 조사한 후, 그 결과를 표2에 나타내었다.In the secondary recovery annealing plate of Example 1, the fusion inhibitor was applied as a composition in which the addition amount of the alumina sol and the alumina powder having a particle size of 3 to 5 μm was changed, and coated with cotarol and dried at a temperature of 550 ° C., followed by winding up. Thereafter, in the same manner as in Example 1, a grain-oriented electrical steel sheet was manufactured. At this time, the coating amount of the fusion inhibitor composition was kept constant at 5 g / m 2, the ease of coating amount management and the rate of occurrence of sheeting defects during tension coating after the final high temperature annealing were examined, and the results are shown in Table 2.

시편번호Psalm Number 알루미나 분말의 첨가량()Addition amount of alumina powder () 도포관리 용이성Ease of coating management 판붙음 결함율()Plate Defect Rate () 비교재1Comparative Material 1 00 다소 양호Somewhat good 4.24.2 발명재1Invention 1 55 양호Good 00 발명재2Invention 2 1212 양호Good 00 발명재3Invention 3 2020 양호Good 00 비교재2Comparative Material 2 3030 다소 두꺼움Rather thick 00

상기 표2에서 알 수 있는 바와 같이, 순 알루미나졸상태인 비교재(1)은 도포량이 적어서 적정 도포량관리가 어려웠고, 또한 고온소둔후 장력코팅시 코일 에지부에 판붙음결함이 나타났다. 반면, 알루미나 분말이 30로 과잉첨가된 비교재(2)는 도포량이 너무 많아 적정도포량관리의 어려움이 나타났다.As can be seen in Table 2, the comparative material (1) in the pure alumina sol state was difficult to manage the proper coating amount due to the small coating amount, and also appeared to be plate defects in the coil edge portion during tension coating after hot annealing. On the other hand, the comparative material (2) in which the alumina powder was over-added to 30, the coating amount was too large, it appeared difficult to manage the appropriate coating amount.

상술한 바와 같이, 본 발명에 따라 융착방지제를, 주성분이 알루미나졸이고 여기에 알루미나 분말을 첨가한 조성물로 하면, 고온의 슬라브 표면에 글라스피막이 없어서, 타발특성 및 자성특성이 우수한 방향성 전기강판을 얻을 수 있는 효과가 있다.As described above, according to the present invention, when the fusion inhibitor is a composition in which the main component is alumina sol and alumina powder is added thereto, there is no glass coating on the surface of the hot slab, and thus a grain-oriented electrical steel sheet having excellent punching characteristics and magnetic properties can be obtained. It has an effect.

Claims (1)

중량로 Si: 2.9~3.3, C: 0.025~0.045, P: 0.015이하, 용존 Al: 0.08~0.020, N: 0.0080~0.012, S: 0.007이하, Mn: 0.12~0.42, Cu: 0.6이하, 그리고 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 강슬라브를 1250~1340℃의 저온재가열 후 열간압연한 다음, 1000℃ 이하의 온도에서 열연판소둔하고, 중간에 습윤분위기에서의 탈탄소둔을 포함하는 2회 냉간압연을 행하여 최종두께로 조정한 다음, 600℃ 이하의 건조분위기에서 회복소둔한 후, 융착방지제를 도포하여 대형코일로 권취하고, 700~1200℃ 구간의 승온율은 15℃/hr 이상으로 유지하고 1200±10℃의 온도에서 20시간 이상 균열한 후 냉각하는 열사이클을 거치는 마무리고온소둔을 행하고, 장력코팅제를 도포하여 방향성 전기강판을 제조하는 방법에 있어서,By weight, Si: 2.9 to 3.3, C: 0.025 to 0.045, P: 0.015 or less, dissolved Al: 0.08 to 0.020, N: 0.0080 to 0.012, S: 0.007 or less, Mn: 0.12 to 0.42, Cu: 0.6 or less, and the balance Steel slab composed of Fe and other unavoidable impurities is hot-rolled after low-temperature reheating at 1250 ~ 1340 ° C, followed by hot rolled annealing at a temperature below 1000 ° C, and decarbonized annealing in a wet atmosphere. After cold rolling, adjust to final thickness, and then recover and anneal in a dry atmosphere of 600 ℃ or less, apply fusion inhibitor, wind up with large coil, and raise the temperature in 700 ~ 1200 ℃ section to 15 ℃ / hr or more. In the method of manufacturing a grain-oriented electrical steel sheet by holding a high temperature annealing, and then applying a tension coating agent after the crack is maintained for 20 hours or more at a temperature of 1200 ± 10 ° C., followed by cooling. 상기 융착방지제의 도포는 고형분이 10~25인 알루미나졸과 5~20의 알루미나분말로 조성되는 융착방지제를 3~7g/㎡의 양으로 도포하여 이루어짐을 특징으로 하는 글라스피막이 없는 저온재가열 방향성 전기강판의 제조방법The coating of the fusion inhibitor is a low-temperature reheat oriented electrical steel sheet without a glass coating, characterized in that the coating is made by applying an fusion inhibitor composed of alumina sol having a solid content of 10 to 25 and alumina powder of 5 to 20 in an amount of 3 to 7 g / m 2. Manufacturing Method
KR10-1999-0053703A 1999-11-30 1999-11-30 A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having no glass film KR100435456B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0053703A KR100435456B1 (en) 1999-11-30 1999-11-30 A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having no glass film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0053703A KR100435456B1 (en) 1999-11-30 1999-11-30 A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having no glass film

Publications (2)

Publication Number Publication Date
KR20010048860A true KR20010048860A (en) 2001-06-15
KR100435456B1 KR100435456B1 (en) 2004-06-10

Family

ID=19622595

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0053703A KR100435456B1 (en) 1999-11-30 1999-11-30 A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having no glass film

Country Status (1)

Country Link
KR (1) KR100435456B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113231485A (en) * 2021-05-07 2021-08-10 西安钢研功能材料股份有限公司 Preparation method of high-expansion alloy large coil weight strip without welding seam
US11225700B2 (en) 2016-10-26 2022-01-18 Posco Annealing separating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110244B1 (en) * 2004-10-13 2012-03-13 주식회사 포스코 Method for grain-oriented electrical steel sheet with a low iron loss by changing the structure of the annealing furnace

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573819A (en) * 1978-11-22 1980-06-03 Nippon Steel Corp Production of cold rolled non-directional electromagnetic steel plate of superior high magnetic field iron loss
JPH07118743A (en) * 1992-03-31 1995-05-09 Nippon Steel Corp Production of high magnetic flux density grain-oriented silicon steel sheet free from forsterite film
JP2688147B2 (en) * 1992-08-21 1997-12-08 新日本製鐵株式会社 Manufacturing method of low iron loss grain-oriented electrical steel sheet
JPH0718457A (en) * 1993-07-01 1995-01-20 Nippon Steel Corp Separation agent at annealing for grain oriented silicon steel sheet
JPH1046252A (en) * 1996-08-05 1998-02-17 Nippon Steel Corp Production of superlow core loss grain oriented magnetic steel sheet
JPH10110249A (en) * 1996-10-09 1998-04-28 Sumitomo Metal Ind Ltd Grain oriented silicon steel sheet and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11225700B2 (en) 2016-10-26 2022-01-18 Posco Annealing separating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
US11946114B2 (en) 2016-10-26 2024-04-02 Posco Co., Ltd Annealing separating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
CN113231485A (en) * 2021-05-07 2021-08-10 西安钢研功能材料股份有限公司 Preparation method of high-expansion alloy large coil weight strip without welding seam
CN113231485B (en) * 2021-05-07 2022-01-28 西安钢研功能材料股份有限公司 Preparation method of high-expansion alloy large coil weight strip without welding seam

Also Published As

Publication number Publication date
KR100435456B1 (en) 2004-06-10

Similar Documents

Publication Publication Date Title
US10648083B2 (en) Pre-coating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet comprising same, and manufacturing method therefor
CA2164466A1 (en) High magnetic density, low iron loss, grainoriented electromagnetic steel sheet and a method for making
JP2020050955A (en) Insulation film composition for grain-oriented electrical steel sheet, method for forming insulation film for grain-oriented electrical steel sheet using same, and grain-oriented electrical steel sheet
KR100435456B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having no glass film
JP3921806B2 (en) Method for producing grain-oriented silicon steel sheet
KR100526122B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet without glass film
KR102325750B1 (en) Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
KR100480001B1 (en) METHOD FOR MANUFACTURING GRAIN ORIENTED Si STEEL WITH SUPERIOR PUNCHABILITY
KR100479994B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having superior punching property
KR102080173B1 (en) Grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
KR100544615B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet without glass film
KR100435477B1 (en) A method for manufacturing grain-oriented electrical steel sheet having no surface defects and superior punching property
KR100241003B1 (en) The manufacturing method of oriented electric steelsheet with excellent magnetic and surface quality property
KR100481368B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having superior punching property
KR970007033B1 (en) Method for manufacturing oriented electrical steel sheet
KR100482205B1 (en) An insulation coating material with tacky resistant property for grain-oriented electrical steel sheet having high punching property
KR100900660B1 (en) Coating composition with superior powder coating and surface properties
KR100325534B1 (en) Method for manufacturing grain oriented silicon steel sheet
KR20000008646A (en) Process for preparing directional electrical sheet having a good magnetic property and productibilities by slab low temperature reheating
KR100946070B1 (en) Method for manufacturing high silicon electrical steel sheet
KR100276305B1 (en) The manufacturing method of oriented electric steel sheet with excellent cold rolling and annealing productivity
KR100435479B1 (en) A method for manufacturing low temperature slab reheating grain-oriented electrical steel sheet with superior film property
KR100905652B1 (en) Coating composition and method for manufacturing high silicon electrical steel sheet
KR920008691B1 (en) Heat treatment method for electric steel plates
KR20240098446A (en) Non-oriented electrical steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130603

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140530

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160530

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170530

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee