KR100481368B1 - A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having superior punching property - Google Patents

A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having superior punching property Download PDF

Info

Publication number
KR100481368B1
KR100481368B1 KR10-2000-0051453A KR20000051453A KR100481368B1 KR 100481368 B1 KR100481368 B1 KR 100481368B1 KR 20000051453 A KR20000051453 A KR 20000051453A KR 100481368 B1 KR100481368 B1 KR 100481368B1
Authority
KR
South Korea
Prior art keywords
temperature
steel sheet
oriented electrical
electrical steel
annealing
Prior art date
Application number
KR10-2000-0051453A
Other languages
Korean (ko)
Other versions
KR20020018229A (en
Inventor
최규승
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-2000-0051453A priority Critical patent/KR100481368B1/en
Publication of KR20020018229A publication Critical patent/KR20020018229A/en
Application granted granted Critical
Publication of KR100481368B1 publication Critical patent/KR100481368B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

본 발명은 열간압연작업시 저온 슬라브가열법을 적용하여 생산하는 방향성 전기강판에 관한 것으로, 방향성전기강판의 제조방법에 있어서 MgO와 SiO2를 혼합 첨가하여 염화물의 첨가를 최소화 한 소둔분리제를 사용함으로써, 도포작업성이 좋고 글라스피막이 없으며, 타발성이 우수한 방향성 전기강판의 제조방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a grain-oriented electrical steel sheet produced by applying the low-temperature slab heating method during hot rolling operation, in the manufacturing method of the grain-oriented electrical steel sheet by using a mixed annealing separator that minimizes the addition of chloride by mixing MgO and SiO 2 Thus, to provide a method for producing a grain-oriented electrical steel sheet having excellent coating workability, no glass coating, and excellent punchability, which has an object.

본 발명은 중량%로, Si: 2.9~3.4%, C:0.045~0.062%, P:0.015~0.035%, 용존Al:0.022~0.032%, N:0.006~0.009%, S:0.004~0.010%, Mn:0.008~0.012%, Cu:0.012~0.021%, 그리고 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성된 강 슬라브를 1150~1200℃의 온도에서 저온재가열한 후 열간압연하고, 1100℃ 이하의 온도에서 열연판소둔을 하고, 산세 및 최종두께로 냉간압연한 다음, 암모니아가스가 포함된 수소 및 질소혼합의 습윤분위기하 840~890℃ 부근에서 동시 탈탄질화처리를 행하고, 소둔분리제를 도포하여 700℃ 이하의 온도에서 건조한 후 대형코일로 권취한 다음, 700~1200℃ 구간의 승온율을 15℃/hr 이상 유지하면서 1190~1210℃ 의 온도에서 20시간 이상 균열한 후 냉각하는 마무리고온소둔을 행하고, 장력코팅제를 도포하여 방향성 전기강판을 제조하는 방법에 있어서, In the present invention, in terms of weight%, Si: 2.9 to 3.4%, C: 0.045 to 0.062%, P: 0.015 to 0.035%, dissolved Al: 0.022 to 0.032%, N: 0.006 to 0.009%, S: 0.004 to 0.010%, Steel slab composed of Mn: 0.008 ~ 0.012%, Cu: 0.012 ~ 0.021%, and balance Fe and other unavoidable impurities are re-heated at a temperature of 1150 ~ 1200 ℃ and hot rolled, and the temperature is below 1100 ℃. Hot-rolled sheet annealing, cold-rolled to pickling and final thickness, and then subjected to simultaneous decarbonation treatment in the wet atmosphere of hydrogen and nitrogen mixture containing ammonia gas in the vicinity of 840 ~ 890 ℃, coated with annealing separator 700 After drying at a temperature of less than ℃ ℃ wound with a large coil, while maintaining the temperature rising rate of 700 ~ 1200 ℃ section 15 ℃ / hr or more while cracking at a temperature of 1190 ~ 1210 ℃ for more than 20 hours to perform a high-temperature finish annealing In the method for producing a grain-oriented electrical steel sheet by applying a tension coating agent,

상기 소둔분리제의 도포는 MgO와 이 MgO에 대해 미립 SiO2 분말 또는 콜로이달 상태의 SiO2를 고형분 기준으로 5~20%, CuCl2, MgCl2, 및 NiCl2로 이루어진 그룹에서 선택된 1종이 0.008×탈탄판 표면 총 산소량(ppm)±0.2 로 첨가되는 것을 특징으로 하는 타발특성이 우수한 저온재가열 방향성 전기강판의 제조방법에 관한 것을, 그 기술적 요지로 한다.The application of the annealing separator is selected from the group consisting of MgO and 5 to 20% of fine SiO 2 powder or colo SiO 2 of the month state for a MgO based on solids, CuCl 2, MgCl 2, and NiCl 2 1 paper 0.008 The technical gist of the present invention relates to a method for producing a low-temperature reheat oriented electrical steel sheet having excellent punching characteristics, which is added at a total oxygen content (ppm) ± 0.2 of the decarburized plate surface.

Description

타발특성이 우수한 저온재가열 방향성 전기강판의 제조방법{A METHOD FOR MANUFACTURING LOW TEMPERATURE REHEATED GRAIN-ORIENTED ELECTRICAL STEEL SHEET HAVING SUPERIOR PUNCHING PROPERTY}Method for manufacturing low-temperature reheating oriented electrical steel with excellent punching characteristics {A METHOD FOR MANUFACTURING LOW TEMPERATURE REHEATED GRAIN-ORIENTED ELECTRICAL STEEL SHEET HAVING SUPERIOR PUNCHING PROPERTY}

본 발명은 열간압연시 저온 슬라브가열법을 적용하여 생산하는 방향성 전기강판의 제조방법에 관한 것으로, 보다 상세하게는 MgO, SiO2 및 금속염화물로 조성되는 소둔분리제를 도포하여, 가공작업시 타발성을 향상시키고 자성특성도 개선한 타발성이 우수한 방향성 전기강판의 제조방법에 관한 것이다.The present invention relates to a method for producing a grain-oriented electrical steel sheet produced by applying a low-temperature slab heating method during hot rolling, and more particularly, by applying an annealing separator composed of MgO, SiO 2 and metal chloride, The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent punching property with improved vocalization and improved magnetic properties.

방향성 전기강판은, 결정립의 방위가 (110)[001] 방향으로 정열된 집합조직을 가진 전기강판으로서, 압연방향으로 극히 우수한 자기적 특성을 가지고 있어서 변압기, 전동기, 발전기 및 기타 전자기기 등의 철심재료로 사용된다.A grain-oriented electrical steel sheet is an electrical steel sheet having an aggregate structure in which the grain orientation is aligned in the (110) [001] direction. The grain-oriented electrical steel sheet has extremely excellent magnetic properties in the rolling direction, so that cores of transformers, electric motors, generators, and other electronic devices are used. Used as a material.

일반적으로 방향성 전기강판은, 2~4%규소와 입성장 억제제로서 대부분 MnS나 AlN 등을 함유하여 제조된 강슬라브를, (재가열 및 열간압연)-(예비 소둔)-(중간소둔이 낀 1회의 냉간압연)-(탈탄소둔)-(소둔분리제 도포)-(최종 마무리고온소둔) 등의 복잡한 공정을 통해 제조된다. 이러한 복잡한 제조공정중 가장 난문제를 안고 있는 공정은 고온열처리를 행하는 슬라브 재가열공정이다. 이 공정은 상기 강슬라브를 1400℃ 정도의 고온에서 5시간 정도 유지시킴에 의해, 입성장 억제제로 사용되는 MnS나 AlN 등의 석출물들을 완전히 고용 분산시킨 후 미세하게 석출시키는 공정이다. 이 때 고온의 슬라브 표면에는 파이어라이트(Fe2SiO4)라는 산화물이 생성되는데, 이것은 융점이 1340℃정도로 낮아 표면에서부터 녹아내리기 때문에, 일부는 바깥으로 흘러내리게 설계되어 있지만 대부분은 로상부의 내화물 등에 축척되어 작업이 종료되고 내부수리도 불가피해지는 문제를 유발한다.In general, a grain-oriented electrical steel sheet is a steel slab made of 2-4% silicon and MnS, AlN, etc., mostly as a grain growth inhibitor, and is subjected to one time with (reheating and hot rolling)-(preliminary annealing)-(intermediate annealing). Cold rolling)-(Decarbon annealing)-(Annealing separator application)-(final finishing high temperature annealing) The most difficult process among these complex manufacturing processes is the slab reheating process that performs high temperature heat treatment. In this step, the steel slab is maintained at a high temperature of about 1400 ° C. for about 5 hours to completely disperse the precipitates such as MnS and AlN, which are used as grain growth inhibitors, and then deposit finely. At this time, an oxide called Pyrite (Fe 2 SiO 4 ) is formed on the surface of the hot slab. Since the melting point is about 1340 ° C. and it melts from the surface, some of them are designed to flow outward, but most of them are refractory parts of the furnace. Accumulation causes work to be terminated and internal repairs are inevitable.

상기한 문제점을 해결하기 위해, 슬라브 재가열온도의 햐향화를 위한 노력이 계속 진행되어 왔다. 그 결과, 한국특허출원 93-23751호에는 재래식 방향성전기강판을 1250~1340℃ 부근에서 열처리하여 열간압연을 행하도록 하는 성분계를 설정하고, 기존 제조공정에 추가적인 설비보완이나 신설없이도 작업가능한 제조방법에 관한 발명을 개시하였다. 또한, 한국특허출원97-37247호, 한국특허출원 97-28305, 및 한국출원공고 90-7447호 등에서는 1200℃ 이하에서 처리가능한 것을 개시하여, 현재 우수한 자성특성 및 표면품질특성을 가진 제품을 생산하고 있다.In order to solve the above problems, efforts have been made to improve the slab reheating temperature. As a result, Korean Patent Application No. 93-23751 sets up a component system for performing hot rolling by heating a conventional grain-oriented electrical steel sheet in the vicinity of 1250 ~ 1340 ° C, and in a manufacturing method that can work without additional equipment supplementation or establishment in the existing manufacturing process. The invention has been disclosed. In addition, Korean Patent Application No. 97-37247, Korean Patent Application No. 97-28305, and Korean Application Publication No. 90-7447 disclose that they can be processed at 1200 ° C or lower, and currently produce products having excellent magnetic and surface quality characteristics. Doing.

그러나, 상기와 같이 제조된 방향성 전기강판에는 글라스피막이 존재하기 때문에 변압기용 철심코아 등의 제작에 있어서 타발성이 좋지 않은 문제점이 있다.즉, 상기와 같이 제조된 방향성 전기강판을 이용하여 변압기용 철심코아 등을 제작하는 경우, 실수요가들은 스리팅작업, 타발작업, 열처리 및 조립작업을 행하는데, 이 중 타발작업은 생산성향상 및 원가절감측면에서 제작과정중 가장 중요한 제작공정이 된다. 수요가에서 방향성제품의 타발작업시 타발성은 소재자체의 경도, 1차 절연피막층인 글라스피막[Glass Film, 주성분은 Forsterite(2MgO·SiO2)임]층 및 2차 절연피막층인 장력코팅층의 세가지에 의해 대부분 결정된다. 상기 글라스피막층은, 2차 재결정형성을 위한 고온소둔시 소둔분리제로 사용하는 MgO와 소재표면의 SiO2계 산화물의 반응에 의해 소재표면에 형성되는 것으로, 방향성제품에 있어서 타발성을 개선하기 위해서는 글라스피막층이 없는 장력코팅층만의 단일피막층인 것이 바람직하다. 이에 따라 글라스피막이 없는 방향성 전기강판의 제조에 관하여 많은 관심과 연구개발이 진행되어 왔다.However, there is a problem that the punchability is not good in the production of the iron core core for the transformer because the glass coating is present in the oriented electrical steel sheet manufactured as described above. That is, the iron core for transformer using the oriented electrical steel sheet manufactured as described above In the case of manufacturing cores, real users perform slitting, punching, heat treatment and assembly, among which punching is the most important manufacturing process in terms of productivity and cost reduction. When punching the directional product at demand, the punchability is divided into three materials: the hardness of the material itself, the glass film (the primary component is a Forsterite (2MgO · SiO 2 )) layer, and the tension coating layer (the second insulating film). Mostly determined by. The glass coating layer is formed on the surface of the material by reaction between MgO used as an annealing separator during high temperature annealing for secondary recrystallization and SiO 2 oxide on the surface of the material. It is preferable that it is a single coating layer only of the tension coating layer without a coating layer. Accordingly, much attention and research and development have been made regarding the manufacture of oriented electrical steel sheet without glass film.

이와 같은 노력은 크게 두가지 방향으로 추진되고 있다. 첫째는, 종래방법과 동일하게 MgO를 소둔분리제의 주성분으로 하고 여기에 Ca,Li,K,Na,Ba 등의 염화물을 첨가하여, 고온소둔중 이들 염화물이 소재표면과 반응하여 FeCl2 피막을 형성하도록한 후 표면에서 증발하여 제거되게 함으로써, 글라스피막층의 형성자체를 차단하는 발명으로, 미국특허 4875947호가 대표적이다. 그러나, 상기 발명에 의하면 도포작업성은 우수하나, 글라스피막을 완전히 제거하기 위한 산화물층의 엄격 제어관리가 어렵고, 염화물 과잉첨가에 의한 과에칭작용으로 인해 오히려 글라스피막층이 형성되어 있는 제품에 비해 철손이 열화한 문제가 있다.Such efforts are being promoted in two directions. First, MgO is used as the main component of the annealing separator in the same manner as the conventional method, and chlorides such as Ca, Li, K, Na, and Ba are added thereto, and these chlorides react with the surface of the material during high temperature annealing to form a FeCl 2 film. After the evaporation is removed from the surface by forming, the US Pat. No. 4875947 is representative of the invention which blocks the formation of the glass coating layer itself. However, according to the present invention, the coating workability is excellent, but it is difficult to strictly control and control the oxide layer to completely remove the glass coating, and iron loss is more severe than that of the product where the glass coating layer is formed due to the overetching action due to the chloride addition. There is a deteriorated problem.

또 다른 방법으로, 소재표면의 산화물층과 반응성이 전혀 없는 Al2O3분말을 소둔분리제로서 도포하는 방법이 있지만, 상기 Al2O3분말은, 기계적으로 초미립자로 파쇄하여도 상업적으로는 통상 2~10㎛정도 밖에 미세화할 수 없고, 이 분말을 물과 분산상태로 유지시키는 것이 곤란한 문제가 있다. 이를 해결하기 위해, 일본공개특허공보(평)6-136555호는 상기 Al2O3분말을 유기용제 등에 혼합하여 소재표면에 도포하는 방법을 개시하고 있으나, Al2O3분말을 유기용제에 완전 분산상태로 안정하게 존재하도록 하는 것이 불가능하고, 슬러리 건조시 유기용제의 휘발등으로 환경을 오염시키는 문제점을 갖고 있다. 따라서, 일본특허 특개평6-41642호에서는 정전도포법을 개시하고 있으나, 설비상의 제약 등으로 인해 상업적 생산이 어려운 상태에 있다.As another method, there is a method of applying Al 2 O 3 powder which has no reactivity with the oxide layer on the surface of the material as an annealing separator, but the Al 2 O 3 powder is commercially commercially crushed into ultra fine particles. Only about 2 to 10 µm can be refined, and there is a problem that it is difficult to keep this powder in a dispersed state with water. In order to solve this problem, Japanese Patent Laid-Open No. 6-136555 discloses a method of applying Al 2 O 3 powder to an organic solvent by mixing the Al 2 O 3 powder with an organic solvent or the like. It is impossible to stably exist in a dispersed state, and has a problem of polluting the environment by volatilization of an organic solvent during drying of the slurry. Therefore, Japanese Patent Laid-Open No. 6-41642 discloses an electrostatic coating method, but commercial production is difficult due to equipment limitations.

이에, 본 발명자는 상기한 종래 기술들의 제반 문제점을 해결하기 위하여, 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은 방향성전기강판의 제조방법에 있어서 고온소둔시 소둔분리제로서 MgO와 반응성이 우수한 SiO2를 혼합 첨가하여 염화물의 첨가를 최소화한 소둔분리제를 사용함으로써, 도포작업성이 좋고 글라스피막이 없으며 타발성이 우수한 방향성 전기강판의 제조방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors have conducted research and experiments in order to solve the above-mentioned problems of the prior arts, and based on the results, the present invention proposes the present invention at the time of high temperature annealing in the method of manufacturing a grain-oriented electrical steel sheet. By using annealing separator that minimizes the addition of chlorides by mixing and adding SiO 2 which is highly reactive with MgO as annealing separator, it is intended to provide a method for producing a grain-oriented electrical steel sheet having good coating workability and no glass coating and excellent punchability. , Its purpose is.

상기 목적을 달성하기 위한 본 발명은 중량%로, Si: 2.9~3.4%, C:0.045~0.062%, P:0.015~0.035%, 용존Al:0.022~0.032%, N:0.006~0.009%, S:0.004~0.010%, Mn:0.008~0.012%, Cu:0.012~0.021%, 그리고 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성된 강 슬라브를 1150~1200℃의 온도에서 저온재가열한 후 열간압연하고, 1100℃ 이하의 온도에서 열연판소둔을 하고, 산세 및 최종두께로 냉간압연한 다음, 암모니아가스가 포함된 수소 및 질소혼합의 습윤분위기하 840~890℃ 부근에서 동시 탈탄질화처리를 행하고, 소둔분리제를 도포하여 700℃ 이하의 온도에서 건조한 후 대형코일로 권취한 다음, 700~1200℃ 구간의 승온율을 15℃/hr 이상 유지하면서 1190~1210℃ 의 온도에서 20시간 이상 균열한 후 냉각하는 마무리고온소둔을 행하고, 장력코팅제를 도포하여 방향성 전기강판을 제조하는 방법에 있어서, The present invention for achieving the above object by weight, Si: 2.9 ~ 3.4%, C: 0.045 ~ 0.062%, P: 0.015 ~ 0.035%, dissolved Al: 0.022 ~ 0.032%, N: 0.006 ~ 0.009%, S : 0.004 ~ 0.010%, Mn: 0.008 ~ 0.012%, Cu: 0.012 ~ 0.021%, and steel slabs composed of the balance Fe and other inevitable impurities are reheated at a temperature of 1150 ~ 1200 ℃ and hot rolled. , Hot-rolled sheet annealing at a temperature of 1100 ℃ or less, cold rolling to pickling and final thickness, and then subjected to simultaneous decarbonation treatment in a wet atmosphere of hydrogen and nitrogen mixture containing ammonia gas in the vicinity of 840 ~ 890 ℃, annealing After applying the separating agent and drying at a temperature of 700 ℃ or less and winding it with a large coil, it is cooled after cracking for 20 hours at a temperature of 1190 ~ 1210 ℃ while maintaining the temperature rising rate of 700 ~ 1200 ℃ over 15 ℃ / hr. In the method of producing a grain-oriented electrical steel sheet by performing a high temperature annealing, applying a tension coating agent

상기 소둔분리제의 도포는 MgO와 이 MgO에 대해 미립 SiO2 분말 또는 콜로이달 상태의 SiO2를 고형분 기준으로 5~20%, CuCl2, MgCl2, 및 NiCl2로 이루어진 그룹에서 선택된 1종이 0.008×탈탄판 표면 총 산소량(ppm)±0.2로 첨가되는 것을 특징으로 하는 타발특성이 우수한 저온재가열 방향성 전기강판의 제조방법에 관한 것이다.The application of the annealing separator is selected from the group consisting of MgO and 5 to 20% of fine SiO 2 powder or colo SiO 2 of the month state for a MgO based on solids, CuCl 2, MgCl 2, and NiCl 2 1 paper 0.008 The present invention relates to a method for producing a low-temperature reheat oriented electrical steel sheet having excellent punching characteristics, which is added at a total oxygen content (ppm) ± 0.2 of the decarburized plate surface.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

수요가에서의 변압기용 철심코아의 가공-조립작업시, 원가절감 및 생산성 향상을 위해 가장 요구되는 특성인 타발성은, 동일 금형으로 작업 가능한 타발수, 즉 한 금형으로 통상의 버(Burr)가 50㎛까지의 타발매수로 평가된다. 이러한 타발성의 향상을 위해 여러가지 방법을 채택 적용하고 있는데, 그중 처음부터 그라스 피막이 없는 방향성 전기강판 제품을 사용하는 것이 아주 효과적인 방법임을 확인하였다.When machining and assembling the core core for transformer at the demand price, the punching property, which is the most required characteristic for cost reduction and productivity improvement, is known as a punching machine capable of working with the same mold, that is, a conventional burr with one mold. It is evaluated by the number of punches up to 50 m. In order to improve the punchability, various methods have been adopted and applied. Among them, it has been found that the use of a grain-oriented electrical steel sheet product without a glass coating is a very effective method.

상기 그라스피막은, 포스테라이트 형성반응(2MgO·SiO2)에 의해 형성되는 절연피막층의 일종으로, 소둔분리제의 주성분으로 도포하는 MgO가 소재 표면의 산화물층인 SiO2 및 FeSiO4 등과 반응하여 형성되는데, 이를 화학반응적으로 설명한다.The glass film is a type of insulating film formed by a forsterite formation reaction (2MgO.SiO 2 ), and MgO applied as a main component of the annealing separator reacts with SiO 2 and FeSiO 4 , which are oxide layers on the material surface. Formed, which is explained chemically.

고온소둔시 250~650℃의 온도구간에서는, 하기 반응식 1과 같이 MgCl2 분해반응이 일어나 HCl가스를 발생한다.In the temperature range of 250 ~ 650 ℃ during high temperature annealing, MgCl 2 decomposition reaction occurs as shown in Scheme 1 to generate HCl gas.

MgCl2·6H2O→MgO + 2HCl↑+ 5H2O MgCl 2 6H 2 O → MgO + 2HCl ↑ + 5H 2 O

이때 분해된 HCl 가스는, 하기 반응식 2와 같이 Fe와 반응한다.At this time, the decomposed HCl gas reacts with Fe as in Scheme 2 below.

Fe + HCl → FeCl2 Fe + HCl → FeCl 2

다음, 950~1150℃의 온도구간에서는, 하기 반응식 3의 반응을 통해 그라스피막을 형성한다.Next, in the temperature range of 950 ~ 1150 ℃, the glass film is formed through the reaction of Scheme 3.

소재표면 산화층중의 SiO2+ MgO → 2MgO·SiO2 The surface oxide layer of the material SiO 2 + MgO → 2MgO · SiO 2

이 때, 상기 반응식 2에 따라 소재표면에 형성되어 있던 FeCl2는, 1150~1200℃의 온도구간에서 상층부에 있는 그라스 피막층과 함께 용융 비산되어, 그라스 피막층을 제거하는 것으로 추정된다.At this time, FeCl 2 formed on the surface of the raw material according to the reaction formula 2 is melted and scattered together with the glass coating layer in the upper portion at a temperature section of 1150 to 1200 ° C, and it is estimated that the glass coating layer is removed.

그러나, 염화물을 첨가한다해도 근본적으로 불균일하게 형성되어 있는 그라스피막 반응물을 완벽하게 제거하기는 어렵기 때문에, 과잉의 염화물 첨가가 불가피하게 된다. 이와 같은 염화물의 과잉 첨가는, 표면층의 과잉 비산제거를 유발하여 표면을 거칠게 하고 동시에 자성을 악화시키는 것이다.However, even if the chloride is added, it is difficult to completely remove the glass film reactant formed essentially unevenly, so that the addition of excess chloride is inevitable. This excess addition of chloride causes excessive scattering of the surface layer to roughen the surface and at the same time deteriorate the magnetism.

이에, 본 발명자는, MgO 중 반응물 제거제로 작용하는 금속의 염화물의 첨가량을 최소화 하기 위한 방법에 대하여 연구하던 중, MgO와의 반응성이 우수한 초미립의 SiO2 입자를 소둔분리제중에 혼합 첨가하면, 고온소둔중 MgO와 소재 표면의 SiO2와의 그라스피막 형성반응을 억제하거나 방해하여, 금속 염화물의 첨가량을 최소화 할 수 있다는 것을 알아내고, 본 발명을 완성하기에 이르렀다.Thus, the present inventors, while studying a method for minimizing the amount of chloride of the metal acting as a reactant remover in MgO, when the ultra-fine SiO 2 particles having excellent reactivity with MgO is mixed and added to the annealing separator, It has been found that the addition of metal chlorides can be minimized by inhibiting or inhibiting the glass film formation reaction between MgO and SiO 2 on the surface of the material during annealing, and thus, the present invention has been completed.

즉, 상기 MgO는 혼합물에 있는 미립 SiO2 및 소재 표면 산화물층의 SiO2와 동시에 반응할 수 있는데, 산화물층의 SiO2는 비정질이고 혼합 첨가된 미립 분말 SiO2는 결정질이기 때문에 자체의 상호반응속도는 산화물층의 SiO2가 다소 빠르다. 그러나, 혼합 첨가된 미립 SiO2는 상대적으로 양이 많고 MgO 가까이에 존재하기 때문에, MgO가 산화물층의 SiO2와 반응해 그라스 피막을 형성하는 것을 억제할 수 있는 것이다. 이에 따라, 초기 소둔분리제중의 염화물 첨가량을 다소 줄일 수 있기 때문에, 최종제품에서 표면 에칭이 감소되어 표면조도가 개선되고 철손향상효과가 우수하며, 그라스 피막이 없는 제품을 얻을 수 있다.That is, the MgO is there and particulate SiO 2 and the material SiO 2 in the surface oxide layer in the mixture to react at the same time, of the self cross-reaction rate since the SiO 2 in the oxide layer is an amorphous and fine-grain powder SiO 2 mixed addition of crystalline SiO 2 of the oxide layer is rather fast. However, since the mixed-added fine SiO 2 is relatively large and exists near MgO, it is possible to suppress MgO from reacting with SiO 2 in the oxide layer to form a glass film. Accordingly, since the amount of chloride added in the initial annealing separator can be somewhat reduced, the surface etching is reduced in the final product, thereby improving the surface roughness and improving the iron damage effect, and can obtain a product without the glass coating.

상기 소둔분리제 조성물 중 계면 반응 억제제로 작용하는 미립 분말 또는 콜로이달 상태의 SiO2는, 고형분 기준으로 5~20%인 것이 바람직하다. 그 이유는, 상기 SiO2가 5% 미만으로 첨가되면 효과가 적고, 20%보다 과다 첨가되면 도포작업성이 나빠지기 때문이다. 또한, 상기 미립 SiO2분말 또는 콜로이달 상태의 SiO2는 자체 점성을 갖고 있어서, 슬러리 용액의 액 안정성 확보에도 효과적이다.In the annealing separator composition, the fine powder or the colloidal SiO 2 serving as an interfacial reaction inhibitor is preferably 5 to 20% based on the solid content. This is because, when the SiO 2 is added in less than 5%, the effect is less, and when added in excess of 20%, the coating workability is worse. Further, the fine SiO 2 powder or colo SiO 2 is effective, even in the state of the month has its own viscosity, and ensuring stability of the liquid slurry.

한편, 그라스피막의 반응물제거제로 사용되는 금속 염화물은, 대부분 반응 차단능력은 갖고 있지만, 주 성분인 MgO와의 상용성이 우수한 CuCl2, NiCl2, 및 MgCl2중 1종을 사용하는 것이 바람직하다. 이 때 적정첨가량은, 상기 그라스피막이 MgO와 소재표면의 SiO2량과의 반응생성물임을 고려해, 표면에 존재하는 SiO2량에 비례하여 첨가함으로써 과잉 첨가에 따른 철손 열화현상을 최소한 억제하여야 한다.그러나, 표면 산화물층 중의 SiO2함량은 정량분석하기 어렵고, 또 분석에 장시간 소요되므로, 간편한 분석이 가능한 총산소량을 분석하여 적용하였다. 이와 같은 방식으로 하여도, 소둔로의 로황이 안정된 상태에서는 큰 차이가 없음을 확인했다.On the other hand, metal chlorides used as the reactant remover of the glass film have a reaction blocking ability, but it is preferable to use one of CuCl 2 , NiCl 2 , and MgCl 2 having excellent compatibility with MgO as a main component. At this time, considering that the glass film is a reaction product between MgO and SiO 2 content on the surface of the material, it should be added in proportion to the amount of SiO 2 present on the surface to minimize iron loss deterioration due to excessive addition. The SiO 2 content in the surface oxide layer is difficult to quantitatively analyze, and it takes a long time to analyze, and thus, the total oxygen amount that can be easily analyzed is analyzed and applied. Even in this way, it was confirmed that there was no significant difference in the stable state of the furnace sulfur in the annealing furnace.

이에 따라, 본 발명자는 소재표면의 총산소량과 적정 염화물량과의 관계를 조사하여 하기 관계식 1을 유도하게 된 것이다.Accordingly, the inventor of the present invention is to investigate the relationship between the total amount of oxygen on the surface of the material and the appropriate amount of chloride to derive the following equation 1.

[관계식 1][Relationship 1]

염화물 첨가량(%) = 0.008 ×소재표면 총산소량(ppm) ±0.2Chloride Addition (%) = 0.008 × Material Surface Total Oxygen (ppm) ± 0.2

상기 관계식 1에 나타난 바와 같이, 염화물은 최소 0.2% 되는 것을 알 수 있는데, 이것은 도포 슬러리의 액점도 유지를 위해서도 필요한 최소량임과 동시에 고온소둔중에서 추가 형성될 수 있는 Fe 및 Si계 산화피막량을 고려한 최소량이기도 하다. 또한, 이 정도의 첨가량에서는 철손 열화현상이 거의 없음을 확인하였다.As shown in Equation 1, it can be seen that the chloride is at least 0.2%, which is the minimum amount necessary for maintaining the liquid viscosity of the coating slurry and at the same time considering the amount of Fe and Si-based oxide film that may be additionally formed during high temperature annealing. It is also the minimum amount. In addition, it was confirmed that there was almost no iron loss deterioration at this amount.

따라서, 본 발명은, MgO에 반응억제제인 분말 또는 콜로이달 상태의 SiO2를 혼합 첨가하고, 반응물 제거제인 CuCl2, MgCl2, 및 NiCl2중 1종을 상기 관계식 1에 따라 첨가한 소둔분리제를 코타롤에 의해 도포함으로써, 이후 고온소둔중에 전혀 그라스피막이 없는 방향성 제품을 생산할 수 있는 것이다.Accordingly, the present invention provides an annealing separator in which MgO is mixed with SiO 2 in a powder or colloidal state as a reaction inhibitor, and one of reactants remover CuCl 2 , MgCl 2 , and NiCl 2 is added according to Equation 1 above. By coating with a co-tarol, it is possible to produce an aromatic product having no glass film during the hot annealing thereafter.

이하, 본 발명강의 범위 한정이유에 대해 설명한다.Hereinafter, the reason for range limitation of the present invention steel will be described.

상기 C는 AlN석출물의 미세 고용분산, 압연조직형성, 냉간압연시 가공에너지부여 등의 역할을 하는 원소로서 0.045% 이상으로, 가능한 한 상향관리하는 것이 유리하나, 이후 탈탄공정의 어려움을 고려하여 0.045~0.062%로 첨가하는 것이 바람직하다.The C is an element that plays a role of fine solid dispersion of AlN precipitates, rolled structure formation, imparting processing energy during cold rolling, etc., which is advantageously up to 0.045% or more, but it is advantageous to upwardly manage as much as possible. It is preferable to add at 0.062%.

상기 Si은 비저항치를 증가시켜 철심손실을 낮추는 역할을 하는 원소로, 그 함량이 2.9% 미만이면 철손특성이 나빠지고, 3.4% 보다 많이 첨가되면 강이 취약해져 냉간압연성이 극히 나빠지므로, 2.9~3.4%로 첨가하는 것이 바람직하다.The Si is an element that serves to lower the iron core loss by increasing the resistivity value, the iron loss characteristics are worse when the content is less than 2.9%, the steel is vulnerable if added more than 3.4%, cold rolling is extremely bad, 2.9 ~ Preference is given to adding at 3.4%.

상기 Mn은 재가열시 석출물의 고용온도를 낮추고, 열간압연시 소재의 양 끝부분에 생성되는 크랙을 방지하는 역할을 하는 원소로, 최소 0.008%로 첨가해야 하지만 0.012%보다 많이 첨가될 경우 Mn 산화물에 의해 철손을 악화시키므로 상한을 0.012%로 한다.The Mn is an element that lowers the solid solution temperature of the precipitate upon reheating and prevents cracks formed at both ends of the material during hot rolling, and should be added at least 0.008% but is added to the Mn oxide when more than 0.012% is added. This makes iron loss worse, so the upper limit is made 0.012%.

상기 용존 Al은 N와 함께 AlN의 석출물을 형성하여 입성장억제력을 확보하는 중심원소이다. 그 함량이 0.022% 미만이면 2차 재결정에 필요한 충분한 억제력을 갖지 못해서 결정립크기가 작고 불완전한 미립자가 나타나며, 0.032% 보다 많이 첨가되면 억제력이 너무 강해 2차 재결정 형성자체를 어렵게 하여 자기적 특성을 급격히 열화시키므로, 본 발명에서는 0.022~0.032%로 한정하는 것이 바람직하다.The dissolved Al forms a precipitate of AlN together with N to secure the grain growth inhibitory power. If the content is less than 0.022%, it does not have sufficient inhibitory power required for secondary recrystallization, resulting in small grain size and incomplete fine particles.If more than 0.032% is added, the inhibitory power is too strong, making secondary recrystallization itself difficult and rapidly deteriorating magnetic properties. In this invention, it is preferable to limit the amount to 0.022 to 0.032%.

상기 N는 용존 Al과의 반응석출물을 형성하여 2차 재결정을 형성하는데 필수적 성분으로, 그 함량은 형성석출물을 고려하여 하한은 0.006%로 하고, 추후 침질을 고려하여 상한은 0.009%로 설정하는 것이 바람직하다.The N is an essential component for forming the secondary precipitates by forming reaction precipitates with dissolved Al, the content of which is set to the lower limit of 0.006% in consideration of the formed precipitate, and to set the upper limit to 0.009% in consideration of the subsequent sedimentation. desirable.

상기 Cu는 불순성분인 S과 결합하여 Cu2S석출물을 형성하고, 석출물중 가장 저온에서 고용되는 원소로, 최소 0.012% 이상이 필요하다. 그러나, 0.021% 보다 많이 첨가되면 탈탄소둔시 형성되는 산화물이 절연피막형성에 악영향을 끼치므로 상한을 0.021%로 설정하는 것이 바람직하다.Cu is combined with S, an impurity component, to form a Cu 2 S precipitate, and at least 0.012% of the solid solution is dissolved at the lowest temperature of the precipitate. However, when more than 0.021% is added, it is preferable to set the upper limit to 0.021% because the oxide formed during decarbonization annealing adversely affects the insulation film formation.

다음, 제조공정에 대하여 설명한다.Next, the manufacturing process will be described.

상기한 조성의 강슬라브는, 열간압연성과 자기적 특성확보 측면을 고려하여 1150℃~1200℃의 범위내에서 저온재가열한 후 열간압연하여 열간압연판을 만든다. 이후, 1100℃ 이하의 온도에서 열연판소둔을 행하고, 산세 및 냉간압연하여 최종두께로 만든 다음, 이후 암모니아가스가 포함된 수소 및 질소혼합의 습윤분위기하 840~890℃부근에서 동시 탈탄질화처리를 행한다. 그 다음, 융착도포제로서 MgO, SiO2 및 염화물로 구성된 슬러리 혼합물을 코타롤로 도포한다.The steel slab having the above-described composition is hot-rolled after hot reheating in the range of 1150 ° C. to 1200 ° C. in consideration of hot rolling and magnetic properties to secure the hot rolled sheet. Thereafter, hot-rolled sheet annealing is performed at a temperature of 1100 ° C. or lower, pickled and cold rolled to a final thickness, and then subjected to simultaneous decarbonation treatment near 840 to 890 ° C. under a wet atmosphere of hydrogen and nitrogen mixture containing ammonia gas. Do it. Then, as a fusion coating agent, a slurry mixture composed of MgO, SiO 2 and chloride is applied with cotarrol.

그 다음, 700℃ 이하에서 권취하여 대형코일로 만든 다음 최종 마무리소둔을 행한다. 예를 들어, 상기 최종 마무리소둔은, 700~1200℃ 구간의 승온율을 15℃/hr 이상 유지하면서 1190~1210℃ 의 온도에서 20시간 이상 균열한 후 냉각하는 식으로 행하는데, 이 때 1200℃ 까지의 승온구간은 25% 이하의 질소함유 수소분위기로 하고, 1200℃의 균열구간 및 이후 냉각을 100% 수소분위기에서 행한다. Then, it is wound up to 700 ° C or less, made into a large coil, and then subjected to final finishing annealing. For example, the final finishing annealing is performed by cooling after cracking for 20 hours or more at a temperature of 1190 to 1210 ° C. while maintaining a temperature rising rate of 700 ° C. to 1200 ° C. or more at 15 ° C./hr or more, at this time, 1200 ° C. The temperature range up to is a hydrogen atmosphere containing 25% or less, and the crack section at 1200 ° C. and subsequent cooling are performed in a 100% hydrogen atmosphere.

상기와 같이, 최종 마무리 고온소둔을 실시하여 2차 재결정을 완료하고 산세처리하여 표면을 조정한 후, 최종적으로 장력코팅제를 도포하는데, 상기 장력코팅제의 조성물은 본 발명에서는 특별히 한정하지 않으며, 일례로 인산염, 콜로이달실리카 및 무수크롬산으로 구성된 장력코팅제를 도포할 수 있다. 그 후, 건조하여 전기강판제품을 제조한다.As described above, the final finishing high temperature annealing is performed to complete the secondary recrystallization and pickling treatment to adjust the surface, and finally apply a tension coating agent, the composition of the tension coating agent is not particularly limited in the present invention, for example A tension coating agent consisting of phosphate, colloidal silica and chromic anhydride can be applied. Then, it is dried to manufacture an electrical steel sheet product.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예1)Example 1

중량%로 3.15%Si, 0.052%C, 0.015%P, 0.028%용존 Al, 0.0069%N, 0.005%S, 0.012%Mn, 0.015%Cu, 그리고 잔부 Fe로 조성된 강 슬라브를 1150℃에서 저온 재가열한 후, 1100℃ 이하의 온도에서 열연판소둔을 하고, 산세 및 냉간압연하여 최종두께를 0.35mm로 하였다. 이후 암모니아가스 0.5%가 함유된 25%수소+75%질소가스의 습윤분위기하 875℃ 온도에서 동시 탈탄질화처리를 행하여 잔류탄소 및 소재질소량을 조정함과 동시에, 소재표면의 총산소량이 600ppm인 탈탄소둔판을 얻었다. 이어서 소둔분리제를 도포하였는데, 종래재는 MgO에 TiO2 2.5%를 첨가한 조성물을, 비교재 및 발명재는 하기 표1과 같이 염화물의 종류를 달리하여 4.8%를 첨가하고 여기에 미립 SiO2 분말을 15% 첨가한 조성물을 슬러리상태로 하여 코타롤로 도포하였다. 그 다음, 700℃ 이하의 온도에서 건조 및 권취하여 대형코일로 제조한 후, 최종 마무리 고온소둔을 실시하였다. 최종 마무리 고온소둔은, 1200℃까지의 승온구간은 25% 이하의 질소함유 수소분위기로 하고, 1200℃ 균열구간 및 이후 냉각은 100% 수소분위기로 하며, 700~1200℃ 구간의 승온율을 15℃/hr 이상 유지하면서 1200℃의 온도에서 20시간 이상 균열한 후 냉각하는 열싸이클로 하였다. 최종적으로 인산염, 콜로이달실리카 및 무수크롬산으로 구성된 장력코팅제를 도포하여 방향성 전기강판을 제조하였다.Reheat the steel slab consisting of 3.15% Si, 0.052% C, 0.015% P, 0.028% dissolved Al, 0.0069% N, 0.005% S, 0.012% Mn, 0.015% Cu, and balance Fe by weight at 1150 ° C After that, hot-rolled sheet annealing was performed at a temperature of 1100 ° C. or lower, followed by pickling and cold rolling to obtain a final thickness of 0.35 mm. Thereafter, simultaneous decarbonation treatment was performed at a temperature of 875 ° C under a humid atmosphere of 25% hydrogen + 75% nitrogen gas containing 0.5% ammonia gas to adjust the amount of residual carbon and nitrogen and at the same time, the total oxygen content of the surface was 600 ppm. An annealing plate was obtained. Subsequently, the annealing separator was applied. The conventional material is a composition in which TiO 2 2.5% is added to MgO, and the comparative material and the invention material are added 4.8% by varying the type of chloride as shown in Table 1 below, and fine SiO 2 powder is added thereto. The composition added 15% was slurry-coated and applied with cotarrol. Then, after drying and winding at a temperature of 700 ℃ or less to produce a large coil, the final finishing high temperature annealing was performed. Final finishing high temperature annealing, the temperature range up to 1200 ℃ is the nitrogen-containing hydrogen atmosphere of 25% or less, the 1200 ℃ crack section and the subsequent cooling is 100% hydrogen atmosphere, the temperature increase rate of 700 ~ 1200 ℃ section 15 ℃ It was set as the heat cycle to cool after cracking for 20 hours or more at the temperature of 1200 degreeC, maintaining more than / hr. Finally, a tension coating agent composed of phosphate, colloidal silica and chromic anhydride was applied to prepare a grain-oriented electrical steel sheet.

이들에 대한 그라스피막의 형성상태, 자성 및 타발성을 측정하고, 그 결과를 하기 표1에 나타내었다. 글라스피막의 형성상태는 육안으로 관찰하였고, 자기특성은 단판측정기로 철손(W17/50) 및 자속밀도(B10)값을 조사하여 평가하였으며, 타발성은 10mmΦ의 금형으로 버(Burr)높이 0.05mm가 될때까지의 타발매수로 측정하여 평가하였다.The formation state, magnetic properties and punchability of the glass film were measured for these, and the results are shown in Table 1 below. Formation state of the glass film was visually observed, and magnetic properties were evaluated by measuring iron loss (W 17/50 ) and magnetic flux density (B 10 ) with a single plate measuring instrument. It evaluated by measuring by the number of punches until it became 0.05 mm.

구분division 염화물의종류Type of chloride 그라스피막형성량(g/㎡)Glass film formation amount (g / ㎡) 표면외관Surface appearance 자성magnetism 타발수(만타)Punching (manta) 자속밀도(T)Magnetic flux density (T) 철손(W/kg)Iron loss (W / kg) 종래재1Conventional Materials 1 4.34.3 회색,균일함Gray, uniform 1.911.91 1.111.11 1.21.2 발명재1Invention 1 CuCl2 CuCl 2 00 밝음,균일함Bright, uniform 1.911.91 1.081.08 3.73.7 발명재2Invention 2 MgCl2 MgCl 2 00 밝음,균일함Bright, uniform 1.921.92 1.091.09 3.63.6 발명재3Invention 3 NiCl2 NiCl 2 00 밝음,균일함Bright, uniform 1.911.91 1.081.08 3.63.6 비교재1Comparative Material 1 CaCl2 CaCl 2 2.82.8 밝음,얼룩Bright, stain 1.911.91 1.101.10 2.12.1

상기 표1에 나타난 바와 같이, 종래재(1)에는 그라스피막이 형성되어 있어서, 타발수가 1.2만타로 적고, 또한 철손도 높은 것을 알 수 있다. 그러나, 본 발명(1)~(3)은 타발성도 우수할 뿐 아니라, 자성도 상대적으로 우수하였다.As shown in Table 1, the glass material is formed in the conventional material (1), it can be seen that the number of punches is less than 120,000 strokes, and the iron loss is also high. However, the present inventions (1) to (3) were not only excellent in punchability but also relatively good in magnetism.

염화물로서 CaCl2를 사용한 비교재(1)은, 그라스피막이 약간 형성되어 타발수가 본 발명재 대비 적은 값을 나타내었다.In Comparative Material (1) using CaCl 2 as chloride, the glass film was slightly formed, and the punching number was smaller than that of the present invention.

(실시예2)Example 2

상기 실시예1의 1차 소둔판에 대하여 탈탄-질화소둔시간을 조정하여 소재표면의 총산소량을 각각 450ppm, 600ppm으로 하였다. 이어서, 고온소둔 소둔분리제로서, MgO분말에 콜로이달상태의 SiO2를 고형분 기준으로 12% 첨가하고 여기에 CuCl2의 첨가량을 하기 표2와 같이 변화시킨 조성물을 슬러리상태로 하여 코타롤로 도포하고, 700℃ 이하의 온도에서 건조한 다음 대형코일로 권취하였다. 그 후, 실시예1의 최종고온소둔을 행하고 장력코팅제를 도포하여 방향성 전기강판을 제조하였다. 이들에 대한 글라스피막의 형성상태, 자기특성 및 타발성을 측정하여 그 결과를 하기 표2에 나타내었다.The decarburization-nitride annealing time was adjusted with respect to the primary annealing plate of Example 1 to obtain total oxygen on the material surface of 450 ppm and 600 ppm, respectively. Subsequently, as a high-temperature annealing annealing agent, 12% of colloidal SiO 2 was added to MgO powder based on solid content, and the composition in which the amount of CuCl 2 was changed as shown in Table 2 below was applied as a slurry and coated with cotarol. , And dried at a temperature of 700 ℃ or less and wound up with a large coil. Thereafter, the final high temperature annealing of Example 1 was performed and a tension coating agent was applied to produce a grain-oriented electrical steel sheet. Formation state, magnetic properties and punchability of the glass coating were measured for these results, and the results are shown in Table 2 below.

구분division 총산소량(ppm)Total oxygen (ppm) CuCl2 첨가량(%)CuCl 2 addition amount (%) 표면외관Surface appearance 자성magnetism 타발수(만타)Punching (manta) 자속밀도(T)Magnetic flux density (T) 철손(W/kg)Iron loss (W / kg) 비교재2Comparative Material 2 450450 부분피막 잔존Partial film remaining 1.921.92 1.121.12 2.12.1 발명재4Invention 4 3.53.5 밝고 균일Bright and uniform 1.921.92 1.081.08 3.63.6 비교재3Comparative Material 3 4.54.5 밝고 균일Bright and uniform 1.911.91 1.131.13 3.53.5 비교재4Comparative Material 4 600600 3.33.3 표면얼룩Surface stain 1.911.91 1.101.10 3.23.2 발명재5Invention 5 4.84.8 밝고 균일Bright and uniform 1.921.92 1.081.08 3.83.8 비교재5Comparative Material 5 5.85.8 밝고 균일Bright and uniform 1.921.92 1.121.12 3.73.7

상기 표2에 나타난 바와 같이, 비교재(2)는 소재 표면의 총산소량이 450ppm인 염화물이 첨가되지 않아서 그라스피막이 잔존하고 자성 및 타발성도 발명재 대비 열화하였다. 반면에, 염화물이 과다하게 첨가된 비교재(3)은 과에칭현상으로 인해, 철손이 열화하였다. As shown in Table 2, the comparative material (2) was not added to the chloride content of 450ppm total oxygen on the surface of the material, the glass film remained and magnetic and punchability also deteriorated compared to the invention material. On the other hand, the comparative material (3) in which the chloride was added excessively deteriorated due to the overetching phenomenon.

비교재(4)는 염화물 첨가량이 적어 표면에 얼룩이 남고 타발성도 본 발명재 대비 낮은 값을 나타내었다. 반면에, 비교재(5)는 염화물이 과다하게 첨가되어 철손이 높아서, 자성특성이 열화하였다. Comparative material (4) showed a small value of the addition of chloride to leave stains on the surface and the punchability is lower than the present invention. On the other hand, the comparative material 5 had excessive iron loss due to the excessive addition of chloride, and deteriorated magnetic properties.

한편, 본 발명의 발명재(5),(6)은 그라스피막이 형성되지 않아 표면이 밝고 균일하였고, 자성 및 타발성도 우수하였다.On the other hand, the invention materials (5) and (6) of the present invention had no glass film formed, the surface was bright and uniform, and had excellent magnetic and punching properties.

실시예 3Example 3

상기 실시예1의 1차 소둔판에 대하여 고온소둔 소둔분리제로서 MgCl2를 4.8% 첨가하고 여기에 SiO2의 종류 및 첨가량을 하기 표3과 같이 변화시켜 혼합 첨가한 조성물을 슬러리상태로 하여 코타롤로 도포하고, 700℃ 이하의 온도에서 건조한 다음 대형코일로 권취하였다. 그 후, 실시예1의 최종고온소둔을 행하고 장력코팅제를 도포하여 방향성 전기강판을 제조하였다. 이들에 대한 글라스피막의 형성상태, 자기특성 및 타발성을 측정하여 그 결과를 하기 표3에 나타내었다.4.8% of MgCl 2 was added as a high-temperature annealing annealing agent with respect to the first annealing plate of Example 1, and the composition and the amount of SiO 2 were changed as shown in Table 3 below. It was applied with a roll, dried at a temperature of 700 ° C. or lower, and then wound with a large coil. Thereafter, the final high temperature annealing of Example 1 was performed and a tension coating agent was applied to produce a grain-oriented electrical steel sheet. Formation state, magnetic properties and punchability of the glass coating were measured for these and the results are shown in Table 3 below.

구분division SiO2 SiO 2 표면외관Surface appearance 자성magnetism 타발수(만타)Punching (manta) 종류Kinds 첨가량(%)Addition amount (%) 자속밀도(T)Magnetic flux density (T) 철손(W/kg)Iron loss (W / kg) 종래재2Conventional material 2 00 피막잔존,얼룩Remaining film 1.911.91 1.111.11 2.52.5 비교재6Comparative Material 6 미립분말Fine powder 22 부분얼룩Partial stain 1.911.91 1.081.08 3.13.1 발명재7Invention 7 미립분말Fine powder 77 밝고 균일Bright and uniform 1.921.92 1.091.09 3.63.6 발명재8Invention Material 8 콜로이달Colloidal 1010 밝고 균일Bright and uniform 1.921.92 1.081.08 3.63.6 발명재9Invention 9 콜로이달Colloidal 1515 밝고 균일Bright and uniform 1.911.91 1.091.09 3.73.7 비교재7Comparative Material7 미립분말Fine powder 3030 표면불균일Surface irregularity 1.921.92 1.101.10 3.33.3

상기 표3에 나타난 바와 같이, 반응억제제가 전혀 첨가되지 않은 종래재(2)와 첨가량이 적은 비교재(6)은 표면외관 및 타발성이 좋지 않은 것을 알 수 있다. 반면에, 미립분말의 SiO2가 과잉 첨가된 비교재(7)은 외관색상이 불균일하고 타발성도 본 발명재 대비 열화하였다.As shown in Table 3, it can be seen that the conventional material (2) to which no reaction inhibitor is added and the comparative material (6) having a small amount of addition do not have good surface appearance and punchability. On the other hand, the comparative material 7 in which the fine powder of SiO 2 was excessively added was uneven in appearance color and also inferior in punchability compared to the present invention.

한편, 본 발명의 발명재(7)~(9)는 외관이나 자성 및 타발성 모두 양호하였다.On the other hand, the invention materials (7) to (9) of the present invention had good appearance, magnetic properties, and punchability.

상술한 바와 같이, 본 발명에 따라 소둔분리제를, MgO, SiO2, 및 염화물의 혼합 슬러리로 함으로써, 고온의 슬라브표면에 글라스피막이 없어 타발특성 및 자성특성이 우수한, 방향성 전기강판을 얻을 수 있는 효과가 있다.As described above, by using the annealing separator as a mixed slurry of MgO, SiO 2 , and chloride according to the present invention, there is no glass coating on the surface of the hot slab, thereby obtaining a grain-oriented electrical steel sheet having excellent punching and magnetic properties. It works.

Claims (1)

중량%로, Si: 2.9~3.4%, C:0.045~0.062%, P:0.015~0.035%, 용존Al:0.022~0.032%, N:0.006~0.009%, S:0.004~0.010%, Mn:0.008~0.012%, Cu:0.012~0.021%, 그리고 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성된 강 슬라브를 1150~1190℃의 온도에서 저온재가열한 후 열간압연하고, 1100℃ 이하의 온도에서 열연판소둔을 하고, 산세 및 최종두께로 냉간압연한 다음, 암모니아가스가 포함된 수소 및 질소혼합의 습윤분위기하 840~890℃ 부근에서 동시 탈탄질화처리를 행하고, 소둔분리제를 도포하여 700℃ 이하의 온도에서 건조한 후 대형코일로 권취한 다음, 700~1200℃ 구간의 승온율을 15℃/hr 이상 유지하면서 1190~1210℃ 의 온도에서 20시간 이상 균열한 후 냉각하는 마무리고온소둔을 행하고, 장력코팅제를 도포하여 방향성 전기강판을 제조하는 방법에 있어서, By weight, Si: 2.9-3.4%, C: 0.045-0.062%, P: 0.015-0.035%, dissolved Al: 0.022-0.032%, N: 0.006-0.009%, S: 0.004-0.010%, Mn: 0.008 Steel slab composed of ~ 0.012%, Cu: 0.012 ~ 0.021%, and the remaining Fe and other unavoidable impurities are reheated at a temperature of 1150 to 1190 ° C., and hot rolled, and hot rolled at a temperature of 1100 ° C. or less. After annealing and cold rolling to pickling and final thickness, simultaneous decarbonation treatment is carried out in the wet atmosphere of hydrogen and nitrogen mixture containing ammonia gas in the vicinity of 840 ~ 890 ℃, and the annealing separator is applied to below 700 ℃ After drying at a temperature, wound with a large coil, followed by finishing high temperature annealing to cool after cracking at a temperature of 1190 to 1210 ° C for at least 20 hours while maintaining a temperature rising rate of 700 to 1200 ° C over 15 ° C / hr. In the method for producing a grain-oriented electrical steel sheet by applying, 상기 소둔분리제의 도포는 MgO와 이 MgO에 대해 미립 SiO2 분말 또는 콜로이달 상태의 SiO2를 고형분 기준으로 5~20%, CuCl2, MgCl2, 및 NiCl2로 이루어진 그룹에서 선택된 1종이 0.008×탈탄판 표면 총 산소량(ppm)±0.2 로 첨가되는 것을 특징으로 하는 타발특성이 우수한 저온재가열 방향성 전기강판의 제조방법.The application of the annealing separator is selected from the group consisting of MgO and 5 to 20% of fine SiO 2 powder or colo SiO 2 of the month state for a MgO based on solids, CuCl 2, MgCl 2, and NiCl 2 1 paper 0.008 A method for producing a low-temperature reheat oriented electrical steel sheet having excellent punching characteristics, which is added at a total oxygen content (ppm) ± 0.2 of the decarburized plate surface.
KR10-2000-0051453A 2000-09-01 2000-09-01 A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having superior punching property KR100481368B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0051453A KR100481368B1 (en) 2000-09-01 2000-09-01 A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having superior punching property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0051453A KR100481368B1 (en) 2000-09-01 2000-09-01 A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having superior punching property

Publications (2)

Publication Number Publication Date
KR20020018229A KR20020018229A (en) 2002-03-08
KR100481368B1 true KR100481368B1 (en) 2005-04-07

Family

ID=19686682

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0051453A KR100481368B1 (en) 2000-09-01 2000-09-01 A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having superior punching property

Country Status (1)

Country Link
KR (1) KR100481368B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337823A (en) * 1995-06-08 1996-12-24 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in blankability and magnetic property
JPH108141A (en) * 1996-06-19 1998-01-13 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in punchability and magnetic property
JPH1171617A (en) * 1997-06-27 1999-03-16 Sumitomo Metal Ind Ltd Manufacture of separation agent for annealing and silicon steel sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337823A (en) * 1995-06-08 1996-12-24 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in blankability and magnetic property
JPH108141A (en) * 1996-06-19 1998-01-13 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in punchability and magnetic property
JPH1171617A (en) * 1997-06-27 1999-03-16 Sumitomo Metal Ind Ltd Manufacture of separation agent for annealing and silicon steel sheet

Also Published As

Publication number Publication date
KR20020018229A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
EP1464712A1 (en) Method for producing grain-oriented silicon steel plate with mirror surface
KR950005793B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
CN113302336B (en) Method for producing grain-oriented electrical steel sheet
KR100526122B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet without glass film
KR101796751B1 (en) Annealing separating agent composition, method for manufacturing the same, and method for manufacturing steel sheet using the same
US7435304B2 (en) Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof
KR100481368B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having superior punching property
KR100435478B1 (en) A method for manufacturing grain oriented electrical steel sheet with high magnetic induction using low temperature slab reheating process
KR100479994B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having superior punching property
KR100480001B1 (en) METHOD FOR MANUFACTURING GRAIN ORIENTED Si STEEL WITH SUPERIOR PUNCHABILITY
KR100435456B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having no glass film
KR100544615B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet without glass film
KR100435477B1 (en) A method for manufacturing grain-oriented electrical steel sheet having no surface defects and superior punching property
KR100957930B1 (en) Method for manufacturing high silicon non-oriented electrical steel sheet with superior magnetic properties
KR100544535B1 (en) chromium-free Insulation coating material for grain-oriented electrical steel sheet having no glass film and method for manufacturing grain-oriented electrical steel sheet by using it
KR102268494B1 (en) Grain oreinted electrical steel sheet and manufacturing method of the same
KR100946069B1 (en) Method for manufacturing high silicon grain-oriented electrical steel sheet with superior magnetic properties
KR100340506B1 (en) A Method of spraying MgO agent on Oriented Electrical Steel Sheet for Preventing Sticking of its edge parts
KR970007033B1 (en) Method for manufacturing oriented electrical steel sheet
KR100482205B1 (en) An insulation coating material with tacky resistant property for grain-oriented electrical steel sheet having high punching property
KR100241003B1 (en) The manufacturing method of oriented electric steelsheet with excellent magnetic and surface quality property
KR100946070B1 (en) Method for manufacturing high silicon electrical steel sheet
KR100900660B1 (en) Coating composition with superior powder coating and surface properties
KR101059216B1 (en) Method for manufacturing oriented electrical steel sheet with excellent glass coating properties
KR970007031B1 (en) Method for manufacturing orient electrical steel sheet having excellent magnetic properties

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee