WO2017183625A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2017183625A1
WO2017183625A1 PCT/JP2017/015537 JP2017015537W WO2017183625A1 WO 2017183625 A1 WO2017183625 A1 WO 2017183625A1 JP 2017015537 W JP2017015537 W JP 2017015537W WO 2017183625 A1 WO2017183625 A1 WO 2017183625A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
atom
substituent
Prior art date
Application number
PCT/JP2017/015537
Other languages
English (en)
French (fr)
Inventor
紀昌 横山
秀一 林
直朗 樺澤
剛史 山本
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Priority to EP17785963.4A priority Critical patent/EP3432688B1/en
Priority to KR1020187025474A priority patent/KR20180134331A/ko
Priority to US16/094,695 priority patent/US11056653B2/en
Priority to JP2018513181A priority patent/JPWO2017183625A1/ja
Priority to CN201780021933.0A priority patent/CN109076658A/zh
Publication of WO2017183625A1 publication Critical patent/WO2017183625A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/16Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • C07D249/18Benzotriazoles
    • C07D249/20Benzotriazoles with aryl radicals directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D263/57Aryl or substituted aryl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • C07D277/66Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2 with aromatic rings or ring systems directly attached in position 2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to an organic electroluminescence element (hereinafter abbreviated as an organic EL element) which is a self-luminous element suitable for various display devices, and more particularly to an organic EL element using a specific arylamine compound.
  • the present invention relates to an organic EL element having significantly improved light resistance.
  • the organic EL element is a self-luminous element, it has been actively researched because it is brighter and more visible than a liquid crystal element and can be clearly displayed.
  • a light emitting element having a top emission structure in which a metal having a high work function is used for an anode and light is emitted from the upper part has been used.
  • a light emitting element having a bottom emission structure in which the area of the light emitting part is limited by the pixel circuit, a light emitting element having a top emission structure has an advantage that a wide light emitting part can be obtained.
  • a semitransparent electrode such as LiF / Al / Ag (for example, see Non-Patent Document 2), Ca / Mg (for example, see Non-Patent Document 3), LiF / MgAg, or the like is used as a cathode.
  • the effect of the capping layer in the light emitting device having the top emission structure is that a light emitting device using Ir (ppy) 3 as a light emitting material has a current efficiency of 38 cd / A when there is no capping layer.
  • a light emitting device using Ir (ppy) 3 has a current efficiency of 38 cd / A when there is no capping layer.
  • an efficiency improvement of about 1.7 times as 64 cd / A was recognized.
  • the maximum point of transmittance and the maximum point of efficiency of the translucent electrode and the capping layer do not necessarily coincide with each other, and the maximum point of light extraction efficiency is determined by the interference effect. (For example, refer nonpatent literature 3).
  • a metal mask with high definition for the formation of the capping layer, but such a metal mask has a problem that the alignment accuracy is deteriorated due to thermal distortion. That is, ZnSe has a high melting point of 1100 ° C. or higher (see, for example, Non-Patent Document 3), and cannot be deposited at an accurate position with a high-definition mask. Many inorganic substances have high deposition temperatures and are not suitable for use with high-definition masks, and may damage the light-emitting elements themselves. Further, in the film formation by the sputtering method, the light emitting element is damaged, and therefore a capping layer containing an inorganic material cannot be used.
  • Alq 3 is a green light-emitting material or electron transport.
  • organic EL material generally used as a material, it has weak absorption in the vicinity of 450 nm used for a blue light emitting element. Therefore, in the case of a blue light emitting element, there is a problem that both the color purity is lowered and the light extraction efficiency is lowered.
  • the organic EL device In order to improve the device characteristics of the organic EL device, in particular, to absorb light of sunlight having a wavelength of 400 nm to 410 nm so as not to affect the material inside the device and to greatly improve the light extraction efficiency.
  • a material for the capping layer a material having a high extinction coefficient, a high refractive index, and excellent thin film stability, durability, and light resistance is required.
  • JP-A-8-048656 Japanese Patent No. 3194657 WO2013-038627
  • An object of the present invention is to improve the device characteristics of an organic EL device, in particular, to absorb light having a wavelength of sunlight from 400 nm to 410 nm so as not to affect the material inside the device, and to improve the light extraction efficiency. Constructed from materials that have a high extinction coefficient, a high refractive index, excellent thin film stability, durability, and light resistance, as well as no absorption in the blue, green, and red wavelength regions for significant improvement An object of the present invention is to provide an organic EL device having a capping layer.
  • the physical properties of the capping layer material suitable for the present invention are: (1) high extinction coefficient, (2) high refractive index, (3) vapor deposition is possible and no thermal decomposition, (4) It can be mentioned that the thin film state is stable and (5) the glass transition temperature is high.
  • the physical characteristics of the element suitable for the present invention include (1) absorption of light from 400 nm to 410 nm, (2) high light extraction efficiency, and (3) no reduction in color purity. (4) Transmitting light without changing over time, (5) Long life.
  • the present inventors pay attention to the fact that the arylamine-based material is excellent in the stability and durability of the thin film, and the concentration of a specific arylamine compound having a high refractive index is 10 ⁇ 5.
  • the concentration of a specific arylamine compound having a high refractive index is 10 ⁇ 5.
  • the following organic EL elements are provided.
  • an organic electroluminescence device having at least an anode electrode, a hole transport layer, a light emitting layer, an electron transport layer, a cathode electrode, and a capping layer in this order, the extinction coefficient of the material of the capping layer is 0.000 at a wavelength of 400 nm to 410 nm.
  • An organic electroluminescence device comprising a material having an absorbance of 0.2 or more at a wavelength of 400 nm to 410 nm in an absorption spectrum of 3 or more and a concentration of 10 ⁇ 5 mol / l.
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 may be the same or different from each other, and are substituted or unsubstituted aromatic hydrocarbon groups, substituted or unsubstituted aromatic heterocyclic groups, or substituted or Represents an unsubstituted condensed polycyclic aromatic group, and n represents an integer of 0 to 4.
  • n represents an integer of 0 to 4.
  • at least one of Ar 1 , Ar 2 , Ar 3 , and Ar 4 is represented by the following structural formula (B). Or a monovalent group as a substituent.
  • R 1 , R 2 , R 3 and R 4 may be the same or different from each other, and may be a linking group, or a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group, substituent.
  • Ar 5 represents a linking group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted condensed group.
  • Ar 6 and Ar 7 may be the same as or different from each other, a linking group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, Or A substituted or unsubstituted condensed polycyclic aromatic group, Y is an oxygen atom or a sulfur atom,, Y is assumed to no Ar 7, X and Y are nitrogen atom, Ar 5 , Ar 6 , Ar 7 is a linking group or a substituent, and when X is a nitrogen atom and Y is a carbon atom, X does not have Ar 6.
  • Ar 8 is A substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group, provided that R 1 , R 2 , R 3 , R 4 , Ar 5 , Ar 6 , Ar 7 is a linking group, except that X is a nitrogen atom and Y is an oxygen atom or a sulfur atom.
  • R 1 , R 2 , R 3 and R 4 may be the same or different from each other and have a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group or substituent.
  • An optionally substituted linear or branched alkyl group having 1 to 6 carbon atoms, an optionally substituted cycloalkyl group having 5 to 10 carbon atoms, and an optionally substituted carbon A linear or branched alkenyl group having 2 to 6 atoms, an optionally substituted linear or branched alkyloxy group having 1 to 6 carbon atoms, or a substituent.
  • R 1 , R 3 and R 4 may be the same or different from each other, and may have a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group or substituent.
  • R 3 and R 4 is a single bond, a substituted or unsubstituted methylene group, an oxygen atom, through a sulfur atom or N-Ar 8 may be bonded to each other to form a ring .
  • Ar 6, Ar 8 May be the same or different from each other, and each represents a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group.
  • R 1 , R 2 , R 3 and R 4 may be the same or different from each other and have a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group or substituent.
  • An optionally substituted linear or branched alkyl group having 1 to 6 carbon atoms, an optionally substituted cycloalkyl group having 5 to 10 carbon atoms, and an optionally substituted carbon A linear or branched alkenyl group having 2 to 6 atoms, an optionally substituted linear or branched alkyloxy group having 1 to 6 carbon atoms, or a substituent.
  • R 1 , R 2 , R 3 and R 4 may be the same or different from each other and have a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group or substituent.
  • An optionally substituted linear or branched alkyl group having 1 to 6 carbon atoms, an optionally substituted cycloalkyl group having 5 to 10 carbon atoms, and an optionally substituted carbon A linear or branched alkenyl group having 2 to 6 atoms, an optionally substituted linear or branched alkyloxy group having 1 to 6 carbon atoms, or a substituent.
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 may be the same or different from each other, and may be a linking group, or a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group.
  • Ar 8 to having no 6 represents a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , Ar 5 , Ar 6 , Ar 7 only one is a linking group, X is a nitrogen atom, and Y is an oxygen Except for atoms or sulfur atoms.
  • any two of Ar 1 , Ar 2 , Ar 3 , Ar 4 are a monovalent group represented by the structural formula (B), or substituted for the monovalent group
  • the organic EL device according to 1) which is a group.
  • Ar 1 and Ar 4 are a monovalent group represented by the structural formula (B) or have the monovalent group as a substituent.
  • the organic EL element of description is a monovalent group represented by the structural formula (B) or have the monovalent group as a substituent.
  • aromatic hydrocarbon group aromatic heterocyclic group or “fused polycyclic aromatic group” in the “ring aromatic group”
  • phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group Group phenanthryl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, pyridyl group, furyl group, pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, Indolyl group, carb
  • Ar 1 and Ar 2 , or Ar 3 and Ar 4 may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom, a sulfur atom, or N—Ar 8 to form a ring.
  • N in “N—Ar 8 ” represents a nitrogen atom
  • Ar 8 represents “substituted or unsubstituted aromatic hydrocarbon group”, “substituted or unsubstituted aromatic heterocyclic group” or Examples of the “substituted or unsubstituted condensed polycyclic aromatic group” include the same groups as those exemplified above, and the substituents that these groups may have are also exemplified below. Substituents can be mentioned.
  • substituted aromatic hydrocarbon group “substituted aromatic heterocyclic group” or “substituted condensed polycyclic aromatic group” represented by Ar 1 to Ar 4 in the general formula (1), Specifically, deuterium atom, trifluoromethyl group, cyano group, nitro group; halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; methyl group, ethyl group, n-propyl group, isopropyl group, a linear or branched alkyl group having 1 to 6 carbon atoms such as n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group; methyloxy group A linear or branched alkyloxy group having 1 to 6 carbon atoms such as ethyloxy group
  • N—Ar 8 means “substituted or unsubstituted aromatic hydrocarbon group” represented by Ar 1 to Ar 4 in the above general formula (1), “substituted or unsubstituted aromatic complex”. It means the same as “N—Ar 8 ” defined for “ring group” or “substituted or unsubstituted condensed polycyclic aromatic group”.
  • R 1 to R 8 A linear or branched alkyl group having 1 to 6 carbon atoms which may have ", a" cycloalkyl group having 5 to 10 carbon atoms which may have a substituent "or" a substituent.
  • “Straight or branched alkenyl group having 2 to 6 carbon atoms” which may have “straight or branched alkyl group having 1 to 6 carbon atoms”, “5 to 10 carbon atoms”
  • Specific examples of the cycloalkyl group or the linear or branched alkenyl group having 2 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, Isobutyl group, tert-butyl group, n-pentyl group, isopentyl group , Neopentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, vinyl group, allyl group, isopropenyl group and 2-butenyl group.
  • N—Ar 8 means “substituted or unsubstituted aromatic hydrocarbon group” represented by Ar 1 to Ar 4 in the above general formula (1), “substituted or unsubstituted aromatic complex”. It means the same as “N—Ar 8 ” defined for “ring group” or “substituted or unsubstituted condensed polycyclic aromatic group”.
  • “substituents” are represented by R 1 to R 8. Having a straight or branched alkyl group having 1 to 6 carbon atoms "," a cycloalkyl group having 5 to 10 carbon atoms having a substituent "or” straight chain having 2 to 6 carbon atoms having a substituent "
  • the “substituent” in the “like or branched alkenyl group” is the “substituted aromatic hydrocarbon group” or “substituted aromatic heterocyclic group” represented by Ar 1 to Ar 4 in the general formula (1).
  • lifted, and the aspect which can be taken can also mention the same thing.
  • “substituents” are represented by R 1 to R 8.
  • Specific examples of the “linear or branched alkyloxy group having 1 to 6 atoms” or “cycloalkyloxy group having 5 to 10 carbon atoms” specifically include a methyloxy group, an ethyloxy group, and an n-propyloxy group.
  • N—Ar 8 means “substituted or unsubstituted aromatic hydrocarbon group” represented by Ar 1 to Ar 4 in the above general formula (1), “substituted or unsubstituted aromatic complex”. It means the same as “N—Ar 8 ” defined for “ring group” or “substituted or unsubstituted condensed polycyclic aromatic group”.
  • “substituents” are represented by R 1 to R 8.
  • the “substituent” in the “straight-chain or branched alkyloxy group having 1 to 6 carbon atoms” or “cycloalkyloxy group having 5 to 10 carbon atoms having a substituent” includes the above general formula (1
  • R 1 to R 8 Represented by R 1 to R 8 in the structural formulas (B), (B-1), (B-2), (B-3), (B-4), (B ′), "Aromatic hydrocarbon group”, “Aromatic heterocyclic group” in “Substituted aromatic hydrocarbon group”, “Substituted or unsubstituted aromatic heterocyclic group” or “Substituted or unsubstituted condensed polycyclic aromatic group”
  • a “condensed polycyclic aromatic group” is a “substituted or unsubstituted aromatic hydrocarbon group” represented by Ar 1 to Ar 4 in the general formula (1), “substituted or unsubstituted aromatic group”
  • Ar 1 to Ar 4 in the general formula (1)
  • the “substituent” in the “hydrocarbon group”, “substituted aromatic heterocyclic group” or “substituted condensed polycyclic aromatic group” is the “substituted” represented by Ar 1 to Ar 4 in the above general formula (1).
  • the “aryloxy group” in the “substituted aryloxy group” specifically includes phenyloxy group, tolyloxy group, biphenylyloxy group, terphenylyloxy group, naphthyloxy group, anthryloxy group, phenanthryloxy group.
  • N—Ar 8 means “substituted or unsubstituted aromatic hydrocarbon group” represented by Ar 1 to Ar 4 in the above general formula (1), “substituted or unsubstituted aromatic complex”. It means the same as “N—Ar 8 ” defined for “ring group” or “substituted or unsubstituted condensed polycyclic aromatic group”.
  • Substituted aryloxy represented by R 1 to R 8 in the structural formulas (B), (B-1), (B-2), (B-3), (B-4), and (B ′)
  • the “substituent” in the “group” is the “substituted aromatic hydrocarbon group”, “substituted aromatic heterocyclic group” or “substituted condensed polycycle” represented by Ar 1 to Ar 4 in the general formula (1).
  • n represents an integer of 0 to 4, and n is preferably 0, 1 or 2, and more preferably 0 or 1.
  • at least one of Ar 1 , Ar 2 , Ar 3 , Ar 4 is the structural formula (B), or at least one of Ar 1 , Ar 2 , Ar 3 , Ar 4 is the structure
  • An embodiment having the formula (B) as a substituent, or at least one of Ar 1 , Ar 2 , Ar 3 , Ar 4 is the structural formula (B), and Ar 1 , Ar 2 , Ar 3 , Ar 4
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 Or at least one of Ar 1 , Ar 2 , Ar 3 , Ar 4 is the above-described structural formula (B), or Ar 1 , Ar 2 , Ar 3 , or Ar 4 has the structural formula (B) as a substituent, or any one of Ar 1 , Ar 2 , Ar 3 , Ar 4 is the structural formula (B)
  • Ar 1 and Ar 4 have the structural formula (B-1), (B-3) or (B-4) as a substituent.
  • the embodiment or the embodiment represented by the structural formula (B-2) is more preferable.
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 in the general formula (1) include an aromatic hydrocarbon group, a condensed polycyclic aromatic group, the structural formula (B), a thienyl group, a benzothienyl group, and a dibenzofura.
  • Nyl group and dibenzothienyl group are preferable, and phenyl group, biphenylyl group, terphenylyl group, naphthyl group, phenanthryl group, fluorenyl group, the structural formula (B), thienyl group, benzothienyl group, dibenzofuranyl group, dibenzothienyl group are More preferred are a phenyl group, a biphenylyl group, a fluorenyl group, the structural formula (B), a dibenzofuranyl group, and a dibenzothienyl group.
  • Ar 6 in Structural Formula (B-2), Ar 5 , Ar 6 , and Ar 7 in Structural Formulas (B) and (B ′) are an aromatic hydrocarbon group, a condensed polycyclic aromatic group, a thienyl group.
  • Benzothienyl group, dibenzofuranyl group and dibenzothienyl group are preferable, and phenyl group, biphenylyl group, terphenylyl group, naphthyl group, phenanthryl group, fluorenyl group, thienyl group, benzothienyl group, dibenzofuranyl group, dibenzothienyl group More preferred.
  • R 1 , R 2 , R 3 , R 4 , Ar 5 , Ar 6 , Ar 7 is a linking group.
  • X represents a carbon atom or a nitrogen atom
  • Y represents a carbon atom, an oxygen atom, a sulfur atom, or a nitrogen atom.
  • Y when Y is an oxygen atom or a sulfur atom, Y has no Ar 7 linking group or substituent (Ar 7 does not exist), and when X and Y are nitrogen atoms, Any one of Ar 5 , Ar 6 , Ar 7 is a linking group or a substituent (no two of Ar 5 , Ar 6 , Ar 7 exist), X is a nitrogen atom and Y is a carbon atom In this case, any one of Ar 5 and Ar 6 is a linking group or a substituent (any of Ar 5 and Ar 6 does not exist).
  • Y when X is a nitrogen atom, Y is preferably a nitrogen atom.
  • the linking group of Ar 5 , Ar 6 or Ar 7 is Ar 1 , It is bonded to the carbon atom of Ar 2 , Ar 3 , Ar 4 (the structural formula (B) or (B ′) becomes a substituent of Ar 1 , Ar 2 , Ar 3 or Ar 4 ).
  • the structural formulas (B) and (B ′) when X is a carbon atom, Y is preferably a carbon atom, an oxygen atom, or a sulfur atom, and more preferably an oxygen atom or a sulfur atom.
  • the case where X is a nitrogen atom and Y is an oxygen atom or a sulfur atom is excluded from the present invention.
  • the extinction coefficient of the capping layer is preferably 0.30 or more and preferably 0.40 or more when the wavelength of light transmitted through the capping layer is in the range of 400 nm to 410 nm. It is more preferable.
  • the arylamine compound represented by the general formula (1) that is preferably used in the organic EL device of the present invention is a hole injection layer, a hole transport layer, a light emitting layer, an electron blocking layer, or a capping layer of the organic EL device. It can be used as a constituent material.
  • the thickness of the capping layer is preferably in the range of 30 nm to 120 nm, and more preferably in the range of 40 nm to 80 nm.
  • the refractive index of the capping layer is 1.85 or more when the wavelength of light transmitted through the capping layer is in the range of 450 nm to 750 nm. More preferably.
  • the capping layer may be produced by laminating two or more different constituent materials.
  • the organic EL element of the present invention has a capping layer having a refractive index higher than that of the semi-transparent electrode provided outside the transparent or semi-transparent electrode, an organic EL element capable of greatly improving the light extraction efficiency is provided. can get.
  • the arylamine compound represented by the general formula (1) for the capping layer a film can be formed at a temperature of 400 ° C. or lower, so that the light emitting element is not damaged.
  • the light extraction efficiency of each color can be optimized using the fine mask, and can be suitably applied to a full color display, and a clear and bright image with good color purity can be displayed.
  • the organic EL element of the present invention uses a material for an organic EL element that has a high extinction coefficient, a high refractive index, excellent thin film stability, durability, and light resistance as a material for the capping layer. Compared to the organic EL element, it is not affected by sunlight, can maintain color purity, and can greatly improve the light extraction efficiency. Furthermore, it has become possible to realize an organic EL element with high efficiency and long life.
  • the arylamine compound represented by the general formula (1) that is suitably used in the organic EL device of the present invention is a novel compound, and these compounds can be synthesized, for example, as follows.
  • a 2-aminoarylazobenzene derivative is synthesized from a 1,2-diaminobenzene derivative and a nitroaryl derivative by a known method, and an oxidative cyclization reaction with bis (acetato-O) phenyliodine is performed.
  • a benzotriazole derivative having a group can be synthesized (see, for example, Non-Patent Document 4).
  • a bromo-substituted product of a benzotriazole derivative having an aryl group can be synthesized.
  • an arylamine compound represented by the general formula (1) of the present invention can be synthesized by performing a condensation reaction such as an Ullmann reaction or a Buchwald-Hartwig reaction between the bromo-substituted product and diarylamine. .
  • the brominated benzotriazole derivative can also be synthesized by brominating the synthesized benzotriazole derivative having an aryl group with N-bromosuccinimide or the like.
  • bromo-substituted products having different substitution positions can be obtained by changing the bromination reagent and conditions.
  • the arylamine compound represented by General formula (1) of this invention is compoundable by performing the same reaction.
  • Suzuki coupling of a boronic acid or a boronic acid ester derivative see, for example, Non-Patent Document 5 synthesized by reacting various aryl halides with pinacol borane or bis (pinacolato) diboron, for this bromo-substituted product.
  • the arylamine compound represented by the general formula (1) of the present invention can also be synthesized by performing a cross coupling reaction such as (see, for example, Non-Patent Document 6). Further, a boronic acid or a boronic acid ester (for example, see Non-Patent Document 5) derivative is synthesized from the bromo-substituted product, and a cross-coupling reaction such as Suzuki coupling with an aryl halide having various diarylamino groups (for example, The arylamine compound represented by the general formula (1) of the present invention can also be synthesized by performing Non-Patent Document 6).
  • a cross coupling reaction such as (see, for example, Non-Patent Document 6).
  • a boronic acid or a boronic acid ester for example, see Non-Patent Document 5
  • a cross-coupling reaction such as Suzuki coupling with an aryl halide having various diarylamino groups
  • a benzothiazole group, a benzothiazole group, a benzothiazole derivative, a benzoxazole derivative, or a bromo substituent of an indole derivative having a corresponding substituent, or a bromo substituent after bromination An arylamine compound represented by the general formula (1) of the present invention having a benzoxazole group or an indole group can be synthesized.
  • Tg glass transition point
  • refractive index is an index for improving the light extraction efficiency.
  • the glass transition point (Tg) was measured with a high sensitivity differential scanning calorimeter (manufactured by Bruker AXS, DSC3100S) using powder.
  • the refractive index and extinction coefficient were measured using a spectrophotometer (F10-RT-UV, manufactured by Filmetrics Co., Ltd.) by preparing a thin film of 80 nm on a silicon substrate.
  • the absorbance is adjusted to a concentration of 10 -5 mol / l with a toluene solution, and the extinction coefficient is 5 ⁇ 10 -6 mol / l, 1 ⁇ 10 -5 mol / l, 1.5 ⁇ 10 -5 mol / l with a toluene solution.
  • the concentration was adjusted to four concentrations of l and 2.0 ⁇ 10 ⁇ 5 mol / l, and the measurement was performed using an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation, V-650).
  • the structure of the organic EL device of the present invention is a light emitting device having a top emission structure, and is sequentially formed on a glass substrate with a metal anode, a hole transport layer, a light emitting layer, an electron transport layer, a translucent cathode, and a capping.
  • a metal anode a hole transport layer between the anode and the hole transport layer, one having an electron blocking layer between the hole transport layer and the light emitting layer, and between the light emitting layer and the electron transport layer
  • Examples thereof include those having a hole blocking layer and those having an electron injection layer between the electron transport layer and the cathode.
  • each layer of the organic EL element is preferably about 200 nm to 750 nm, and more preferably about 350 nm to 600 nm.
  • the film thickness of the capping layer is preferably 30 nm to 120 nm, for example, and more preferably 40 nm to 80 nm. In this case, good light extraction efficiency can be obtained. Note that the thickness of the capping layer can be changed as appropriate depending on the type of the light emitting material used for the light emitting element, the thickness of the organic EL element other than the capping layer, and the like.
  • an electrode material having a large work function such as ITO or gold is used.
  • an arylamine compound having a structure in which three or more triphenylamine structures are connected by a divalent group not containing a single bond or a hetero atom in the molecule for example, starburst Materials such as triphenylamine derivatives of various types, various triphenylamine tetramers, porphyrin compounds represented by copper phthalocyanine, acceptor heterocyclic compounds such as hexacyanoazatriphenylene, and coating-type polymer materials are used. be able to.
  • These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used.
  • These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • N, N′-diphenyl-N, N′-di (m-tolyl) benzidine hereinafter abbreviated as TPD
  • NPD N, N′-diphenyl- N, N'-di ( ⁇ -naphthyl) benzidine
  • TAPC 1,1-bis [4- (di-4-tolylamino) phenyl] cyclohexane
  • N, N, N ′, N′-tetrabiphenylylbenzidine especially two triphenylamine structures in the molecule
  • an arylamine compound having a structure in which a single bond or a divalent group not containing a hetero atom is connected, for example, N, N, N ′, N′-tetrabiphenylylbenzidine.
  • arylamine compounds having a structure in which three or more triphenylamine structures in the molecule are linked by a divalent group not containing a single bond or a hetero atom such as various triphenylamine trimers and tetramers Is preferably used.
  • These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used.
  • These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • the material usually used for the layer is further P-doped with trisbromophenylamine hexachloroantimony or the structure of a benzidine derivative such as TPD.
  • TPD a benzidine derivative
  • TCTA N-carbazolyl triphenylamine
  • mCP 1,3-bis (carbazol-9-yl) benzene
  • Ad-Cz 2,2-bis (4-carbazol-9-ylphenyl) adamantane
  • Carbazole derivatives such as 9- [4- (carbazol-9-yl) phenyl] -9- [4- (triphenylsilyl) phenyl] -9H-fluorene and triarylamine structures
  • a compound having an electron-blocking action such as a compound having an electron can be used.
  • These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used.
  • These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • the light emitting layer of the organic EL device of the present invention metal complexes of quinolinol derivatives such as Alq 3 , various metal complexes, anthracene derivatives, bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, polyparaphenylene vinylene derivatives, and the like are used. be able to.
  • the light-emitting layer may be composed of a host material and a dopant material.
  • a thiazole derivative, a benzimidazole derivative, a polydialkylfluorene derivative, or the like can be used in addition to the light-emitting material.
  • quinacridone coumarin, rubrene, perylene, and derivatives thereof
  • benzopyran derivatives rhodamine derivatives, aminostyryl derivatives, and the like
  • These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used.
  • a phosphorescent material can be used as the light emitting material.
  • a phosphorescent emitter of a metal complex such as iridium or platinum can be used.
  • Green phosphorescent emitters such as Ir (ppy) 3
  • blue phosphorescent emitters such as FIrpic and FIr6, red phosphorescent emitters such as Btp 2 Ir (acac), and the like are used as the host material.
  • carbazole derivatives such as 4,4′-di (N-carbazolyl) biphenyl (CBP), TCTA, and mCP can be used.
  • p-bis (triphenylsilyl) benzene (UGH2) and 2,2 ′, 2 ′′-(1,3,5-phenylene) -tris (1-phenyl-1H-benzimidazole) ) (TPBI) or the like, and a high-performance organic EL element can be manufactured.
  • the phosphorescent light-emitting material into the host material by co-evaporation in the range of 1 to 30 weight percent with respect to the entire light-emitting layer.
  • Non-Patent Document 7 a material that emits delayed fluorescence such as CDCB derivatives such as PIC-TRZ, CC2TA, PXZ-TRZ, and 4CzIPN as a light emitting material.
  • CDCB derivatives such as PIC-TRZ, CC2TA, PXZ-TRZ, and 4CzIPN
  • These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • a phenanthroline derivative such as bathocuproine (BCP) or aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate (hereinafter abbreviated as BAlq).
  • BCP bathocuproine
  • BAlq aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate
  • BAlq aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate
  • BAlq aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate
  • BAlq aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate
  • BAlq aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate
  • BAlq aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate
  • BAlq aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate
  • metal complexes of quinolinol derivatives such as Alq 3 and BAlq, various metal complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, thiadiazole derivatives, pyridoindole derivatives, carbodiimides Derivatives, quinoxaline derivatives, phenanthroline derivatives, silole derivatives, and the like can be used.
  • quinolinol derivatives such as Alq 3 and BAlq
  • various metal complexes such as Alq 3 and BAlq
  • triazole derivatives triazine derivatives
  • oxadiazole derivatives oxadiazole derivatives
  • thiadiazole derivatives pyridoindole derivatives
  • carbodiimides Derivatives quinoxaline derivatives, phenanthroline derivatives, silole derivatives, and the like
  • These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone,
  • an alkali metal salt such as lithium fluoride and cesium fluoride
  • an alkaline earth metal salt such as magnesium fluoride
  • a metal oxide such as aluminum oxide
  • a material usually used for the layer and further doped with a metal such as cesium can be used.
  • an electrode material having a low work function such as aluminum, an alloy having a lower work function such as a magnesium silver alloy, a magnesium calcium alloy, a magnesium indium alloy, an aluminum magnesium alloy, ITO, IZO or the like is used as an electrode material.
  • an arylamine compound represented by the general formula (1) may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used. These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • the organic EL element having the top emission structure has been described.
  • the present invention is not limited to this, and the organic EL element having the bottom emission structure or the dual emission structure that emits light from both the top and bottom directions is used.
  • organic EL elements In these cases, an electrode in a direction in which light is extracted from the light emitting element to the outside needs to be transparent or translucent.
  • the refractive index of the material constituting the capping layer is preferably larger than the refractive index of the adjacent electrode.
  • the refractive index of the material constituting the capping layer is preferably larger than the refractive index of the adjacent electrode, and the refractive index may be 1.70 or more, more preferably 1.80 or more, and 1.85. The above is particularly preferable.
  • the glass transition point was calculated
  • the compound of the present invention has a glass transition point of 100 ° C. or higher. This indicates that the thin film state is stable in the compound of the present invention.
  • a deposited film having a film thickness of 80 nm is formed on a silicon substrate, and a refractive index n at wavelengths of 400 nm and 410 nm using a spectroscopic measurement device (F10-RT-UV, manufactured by Filmetrics).
  • the extinction coefficient k was measured.
  • the comparative compounds (2-1) and (2-2) having the following structural formulas were also measured (for example, see Patent Document 3). The measurement results are summarized in Table 1.
  • the compound of the present invention has a value equal to or higher than the refractive index of the comparative compounds (2-1) and (2-2), which is expected to improve the light extraction efficiency in the organic EL device. it can.
  • the extinction coefficients at wavelengths from 400 nm to 410 nm are 0.3 or less for the comparative compounds (2-1) and (2-2), whereas the compound of the present invention has a large value. This means that the sunlight having a wavelength of 400 nm to 410 nm is well absorbed and does not affect the material inside the element.
  • the absorbance was adjusted to a concentration of 10 ⁇ 5 mol / l with a toluene solution and the absorbance at wavelengths of 400 nm and 410 nm was measured, and the extinction coefficient was 5 ⁇ 10 ⁇ 6 mol / l with a toluene solution. Adjusted to four concentrations of 1 ⁇ 10 -5 mol / l, 1.5 ⁇ 10 -5 mol / l, 2.0 ⁇ 10 -5 mol / l, an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO, V The extinction coefficient was calculated from the calibration curve. For comparison, the comparative compound (2-2) having the above structural formula was also measured. The measurement results are summarized in Table 2.
  • the absorbance at a wavelength of 400 nm to 410 nm is 0.1 or less for the comparative compound (2-2), whereas the compound of the present invention has a large value of 0.2 or more.
  • Both the compounds of the present invention have a large value with respect to the absorption coefficient 48856 of the comparative compound (2-2) with respect to the light absorption wavelength of 400 nm to 410 nm. If it is, it will show that light will be absorbed well, and also about the thin film, it will show that it absorbs light so that it is thick, and it is the material excellent in light resistance.
  • the organic EL element has a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport on a glass substrate 1 on which a reflective ITO electrode is previously formed as a metal anode 2.
  • the layer 6, the electron injection layer 7, the cathode 8, and the capping layer 9 were deposited in this order.
  • the glass substrate 1 on which ITO with a film thickness of 50 nm, a reflective film of a silver alloy with a film thickness of 100 nm, and ITO with a film thickness of 5 nm were sequentially formed was performed. Drying was performed for 10 minutes on a hot plate heated to 250 ° C. Then, after performing UV ozone treatment for 2 minutes, this glass substrate with ITO was attached in a vacuum evaporation machine, and pressure was reduced to 0.001 Pa or less.
  • an electron acceptor (Acceptor-1) having the following structural formula and a compound (3-1) having the following structural formula are formed as the hole injection layer 3 so as to cover the transparent anode 2, and the deposition rate ratio is Acceptor-1: compound.
  • a compound (3-1) having the following structural formula was formed as the hole transport layer 4 so as to have a film thickness of 140 nm.
  • a compound (3-2) having the following structural formula and a compound (3-3) having the following structural formula are formed as the light emitting layer 5 with a deposition rate ratio of (3-2) :( 3- 3) Dual vapor deposition was performed at a vapor deposition rate of 5:95 to form a film thickness of 20 nm.
  • lithium fluoride was formed as the electron injection layer 7 so as to have a film thickness of 1 nm.
  • a magnesium silver alloy was formed as a cathode 8 so as to have a film thickness of 12 nm.
  • the compound (1-22) of Example 3 was formed to a thickness of 60 nm as the capping layer 9.
  • the characteristic measurement was performed at normal temperature in air
  • Example 10 the organic layer was formed under the same conditions except that the compound (1-23) of Example 4 was formed to a thickness of 60 nm instead of the compound (1-22) of Example 3 as the capping layer 9.
  • An EL element was produced. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Example 10 For comparison, in Example 10, except that the capping layer 9 was formed by replacing the compound (1-23) of Example 4 with a comparative compound (2-2) having the above structural formula so as to have a film thickness of 60 nm.
  • An organic EL element was produced under the same conditions. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Table 3 summarizes the results of measuring the element lifetime using the organic EL elements produced in Example 10, Example 11 and Comparative Example 1.
  • the lifetime of the element was measured as the time to decay to 95% attenuation when the constant current drive of 10 mA / cm 2 was performed and the initial luminance was 100%.
  • the driving voltage at a current density of 10 mA / cm 2 is almost the same for the device of Comparative Example 1 using Comparative Compound (2-2) and the devices of Example 10 and Example 11.
  • the devices of Example 10 and Example 11 were improved over the device of Comparative Example 1 using Comparative Compound (2-2). This indicates that the light extraction efficiency can be significantly improved by including a material having a high refractive index suitable for the organic EL device of the present invention in the capping layer.
  • the arylamine compound represented by the general formula (1) suitably used in the organic EL device of the present invention has a high absorption coefficient, a high refractive index, and can greatly improve the light extraction efficiency. Since the thin film state is stable, it is excellent as a compound for an organic EL device. By producing an organic EL device using the compound, high efficiency can be obtained, and durability and light resistance are improved so that sunlight is absorbed and the material inside the device is not affected. be able to.
  • the use of the compound having no absorption in each of the blue, green, and red wavelength regions is particularly suitable for displaying a clear and bright image with good color purity. For example, it has become possible to develop home appliances and lighting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

【課題】 有機エレクトロルミネッセンス素子の素子特性を改善させるために、特に、太陽光の波長400nmから410nmの光を吸光し素子内部の材料に影響を与えないように、また光の取出し効率を大幅に改善させるために、吸光係数が高く、屈折率が高く、薄膜の安定性や耐久性や耐光性に優れているとともに、青、緑および赤それぞれの波長領域において吸収を持たない材料から構成されるキャッピング層を備えた有機EL素子を提供すること。 【解決手段】 少なくとも陽極電極、正孔輸送層、発光層、電子輸送層、陰極電極およびキャッピング層をこの順に有する有機エレクトロルミネッセンス素子において、前記キャッピング層の材料の消衰係数が波長400nmから410nmで0.3以上であり、かつ、濃度10-5mol/lの吸収スペクトルにおいて波長400nmから410nmにおける吸光度が0.2以上である材料を含む、有機エレクトロルミネッセンス素子。

Description

有機エレクトロルミネッセンス素子
 本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子(以下、有機EL素子と略称する)に関するものであリ、詳しくは特定のアリールアミン化合物を用いた有機EL素子に関するものであり、特に、耐光性が大幅に改善された有機EL素子に関するものである。
 有機EL素子は自己発光性素子であるため、液晶素子に比べて明るく視認性に優れ、鮮明な表示が可能であることから、活発な研究がなされてきた。
 1987年にイーストマン・コダック社のC.W.Tangらは各種の役割を各材料に分担した積層構造素子を開発することにより有機材料を用いた有機EL素子を実用的なものにした。彼らは電子を輸送することのできる蛍光体と正孔を輸送することのできる有機物とを積層し、両方の電荷を蛍光体の層の中に注入して発光させることにより、10V以下の電圧で1000cd/m以上の高輝度が得られるようになった(例えば、特許文献1および特許文献2参照)。
 現在まで、有機EL素子の実用化のために多くの改良がなされ、積層構造の各種の役割をさらに細分化して、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を設けた電界発光素子において、高効率と耐久性が、底部から発光するボトムエミッション構造の発光素子によって達成されるようになってきた(例えば、非特許文献1参照)。
 近年、高い仕事関数を持った金属を陽極に用い、上部から発光するトップエミッション構造の発光素子が用いられるようになってきた。画素回路によって発光部の面積が制限されてしまうボトムエミッション構造の発光素子とは違い、トップエミッション構造の発光素子では、発光部を広くとれるという利点がある。トップエミッション構造の発光素子では、陰極にLiF/Al/Ag(例えば、非特許文献2参照)、Ca/Mg(例えば、非特許文献3参照)、LiF/MgAgなどの半透明電極が用いられる。
 このような発光素子では、発光層で発光した光が他の膜に入射する場合に、ある角度以上で入射すると、発光層と他の膜との界面で全反射されてしまう。このため、発光した光の一部しか利用できていなかった。近年、光の取出し効率を向上させるために、屈折率の低い半透明電極の外側に、屈折率の高い「キャッピング層」を設けた発光素子が提案されている(例えば、非特許文献2および3参照)。
 トップエミッション構造の発光素子におけるキャッピング層の効果は、Ir(ppy)を発光材料に用いた発光素子において、キャッピング層がない場合は電流効率が38cd/Aであったものが、キャッピング層として膜厚60nmのZnSeを使用した発光素子では、64cd/Aと約1.7倍の効率向上が認められた。また、半透明電極とキャッピング層の透過率の極大点と効率の極大点とが必ずしも一致しないことが示されており、光の取出し効率の最大点は干渉効果によって決められることが示されている(例えば、非特許文献3参照)。
 キャッピング層の形成には、精細度の高いメタルマスクを用いることが提案されているが、かかるメタルマスクでは、熱による歪みによって位置合わせ精度が悪くなるという問題点があった。すなわち、ZnSeは、融点が1100℃以上と高く(例えば、非特許文献3参照)、精細度の高いマスクでは正確な位置に蒸着することができない。無機物の多くは蒸着温度が高く、精細度の高いマスクの使用には適さず、発光素子そのものにもダメージを与える可能性がある。さらに、スパッタ法による成膜では、発光素子にダメージを与えてしまうため、無機物を構成材料とするキャッピング層は使用することができない。
 屈折率を調整するキャッピング層として、トリス(8-ヒドロキシキノリン)アルミニウム(以後、Alqと略称する)を使用する場合(例えば、非特許文献2参照)、Alqは緑の発光材料または電子輸送材料として一般的に使用される有機EL材料として知られているが、青色発光素子に使用される450nm付近に弱い吸収を持つ。そのために、青色発光素子の場合、色純度の低下と、光の取出し効率がともに低下するという問題点もあった。
 また、従来のキャッピング層で作製した素子では太陽光の波長400nmから410nmの光が通光し、素子内部の材料に影響を与え、色純度の低下と光の取出し効率がともに低下するという問題点もあった。
 有機EL素子の素子特性を改善させるために、特に、太陽光の波長400nmから410nmの光を吸光し、素子内部の材料に影響を与えないように、また光の取出し効率を大幅に改善させるために、キャッピング層の材料として、吸光係数が高く、屈折率が高く、薄膜の安定性や耐久性や耐光性に優れた材料が求められている。
特開平8-048656号公報 特許第3194657号公報 WO2013-038627号
応用物理学会第9回講習会予稿集55~61ページ(2001) Appl.Phys.Lett.,78,544(2001) Appl.Phys.Lett.,82,466(2003) Aust.J.Chem.,45,371(1992) J.Org.Chem.,60,7508(1995) Synth.Commun.,11,513(1981) Appl.Phys.Let.,98,083302(2011)
 本発明の目的は、有機EL素子の素子特性を改善させるために、特に、太陽光の波長400nmから410nmの光を吸光し素子内部の材料に影響を与えないように、また光の取出し効率を大幅に改善させるために、吸光係数が高く、屈折率が高く、薄膜の安定性や耐久性や耐光性に優れているとともに、青、緑および赤それぞれの波長領域において吸収を持たない材料から構成されるキャッピング層を備えた有機EL素子を提供することにある。
 本発明に適したキャッピング層の材料における物理的な特性としては、(1)吸光係数が高いこと、(2)屈折率が高いこと、(3)蒸着が可能で熱分解しないこと、(4)薄膜状態が安定であること、(5)ガラス転移温度が高いことをあげることができる。また、本発明に適した素子の物理的な特性としては、(1)400nmから410nmの光を吸収すること、(2)光の取出し効率が高いこと、(3)色純度の低下がないこと、(4)経時変化することなく光を透過すること、(5)長寿命であることをあげることができる。
 本発明者らは上記の目的を達成するために、アリールアミン系材料が薄膜の安定性や耐久性に優れていることに着目して、屈折率が高い特定のアリールアミン化合物を濃度10-5mol/lの吸収スペクトルにおいて波長400nmから410nmにおける吸光度が高い材料を選別し、キャッピング層を構成する材料として用いた有機EL素子を作製し、素子の特性評価を鋭意行った結果、本発明を完成するに至った。
 すなわち、本発明によれば、以下の有機EL素子が提供される。
 1)少なくとも陽極電極、正孔輸送層、発光層、電子輸送層、陰極電極およびキャッピング層をこの順に有する有機エレクトロルミネッセンス素子において、前記キャッピング層の材料の消衰係数が波長400nmから410nmで0.3以上であり、かつ、濃度10-5mol/lの吸収スペクトルにおいて波長400nmから410nmにおける吸光度が0.2以上である材料を含む、有機エレクトロルミネッセンス素子。
 2)前記キャッピング層の材料の消衰係数が波長410nmから430nmで0.1以上である上記1)記載の有機エレクトロルミネッセンス素子。
 3)前記キャッピング層が下記一般式(1)で表されるアリールアミン化合物を含む、上記1)記載の有機EL素子。
Figure JPOXMLDOC01-appb-C000008
                         (1)
 (式中、Ar、Ar、Ar、Arは相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表し、nは0~4の整数を表す。ここで、Ar、Ar、Ar、Arの少なくとも1つは、下記構造式(B)で示される1価基であるか、もしくは、該1価基を置換基として有するものとする。)
Figure JPOXMLDOC01-appb-C000009
                         (B)
 (式中、R、R、R、Rは相互に同一でも異なってもよく、連結基、もしくは水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、または置換もしくは無置換のアリールオキシ基であって、単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成していてもよい。Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。Xは炭素原子または窒素原子を表し、Yは炭素原子、酸素原子、硫黄原子、または窒素原子を表し、Arは連結基、または、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表し、Ar、Arは相互に同一でも異なってもよく、連結基、または、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基であって、Yが酸素原子、もしくは硫黄原子である場合、YはArを有さないものとし、XおよびYが窒素原子である場合、Ar、Ar、Arのいずれかひとつが連結基、もしくは置換基であるものとし、Xが窒素原子かつYが炭素原子である場合、XはArを有さないものとする。Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。但し、R、R、R、R、Ar、Ar、Arのいずれか1つのみが連結基であるものとし、Xが窒素原子、かつYが酸素原子、もしくは硫黄原子である場合を除く。)
 4)前記構造式(B)が下記構造式(B-1)で示される1価基である、上記1)記載の有機EL素子。
Figure JPOXMLDOC01-appb-C000010
                         (B-1)
 (式中、R、R、R、Rは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、または置換もしくは無置換のアリールオキシ基であって、単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成してもよい。Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。)
 5)前記構造式(B)が下記構造式(B-2)で示される1価基である、上記1)記載の有機EL素子。
Figure JPOXMLDOC01-appb-C000011
                         (B-2)
 (式中、R、R、Rは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、または置換もしくは無置換のアリールオキシ基であって、RとRは単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成してもよい。Ar、Arは相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。)
 6)前記構造式(B)が下記構造式(B-3)で示される1価基である、上記1)記載の有機EL素子。
Figure JPOXMLDOC01-appb-C000012
                         (B-3)
 (式中、R、R、R、Rは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、または置換もしくは無置換のアリールオキシ基であって、単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成してもよい。Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。)
 7)前記構造式(B)が下記構造式(B-4)で示される1価基である、上記1)記載の有機EL素子。
Figure JPOXMLDOC01-appb-C000013
                         (B-4)
 (式中、R、R、R、Rは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、または置換もしくは無置換のアリールオキシ基であって、単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成してもよい。Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。)
 8)前記構造式(B)が下記構造式(B’)で示される1価基である、上記1)記載の有機EL素子。
Figure JPOXMLDOC01-appb-C000014
                         (B’)
 (式中、R、R、R、R、R、Rは相互に同一でも異なってもよく、連結基、もしくは水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、または置換もしくは無置換のアリールオキシ基であって、単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成していてもよい。Xは炭素原子または窒素原子を表し、Yは炭素原子、酸素原子、硫黄原子、または窒素原子を表し、Arは連結基、もしくは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表し、Ar、Arは相互に同一でも異なってもよく、連結基、または、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基であって、Yが酸素原子、もしくは硫黄原子である場合、YはArを有さないものとし、XおよびYが窒素原子である場合、Ar、Ar、Arのいずれかひとつが連結基、もしくは置換基であるものとし、Xが窒素原子かつYが炭素原子である場合、XはArを有さないものとする。Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。但し、R、R、R、R、R、R、Ar、Ar、Arのいずれか1つのみが連結基であるものとし、Xが窒素原子、かつYが酸素原子、もしくは硫黄原子である場合を除く。)
 9)前記一般式(1)において、nが0である、上記1)記載の有機EL素子。
 10)前記一般式(1)において、nが1である、上記1)記載の有機EL素子。
 11)前記一般式(1)において、nが2である、上記1)記載の有機EL素子。
 12)前記一般式(1)において、Ar、Ar、Ar、Arのいずれか2つが、前記構造式(B)で示される1価基であるか、もしくは該1価基を置換基として有するものである、上記1)記載の有機EL素子。
 13)前記一般式(1)において、ArおよびArが、前記構造式(B)で示される1価基であるか、もしくは該1価基を置換基として有するものである、上記12)記載の有機EL素子。
 14)前記キャッピング層の厚さが、30nm~120nmの範囲内である、上記1)記載の有機EL素子。
 15)前記キャッピング層の屈折率が、該キャッピング層を透過する光の波長が400nm~750nmの範囲内において、1.85以上である、上記1)記載の有機EL素子。
 16)前記一般式(1)で表される化合物を有機エレクトロルミネッセンス素子のキャッピング層に用いる方法。
 一般式(1)中のAr~Arで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾトリアゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、およびカルボリニル基などをあげることができる。また、ArとAr、もしくはArとArは単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成していてもよい。ここで、「N-Ar」の「N」は窒素原子を表し、「Ar」は「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」であって、前記例示した基と同様の基をあげることができ、これらの基が有していてよい置換基も、同様に下記に例示した置換基をあげることができる。
 一般式(1)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」としては、具体的に、重水素原子、トリフルオロメチル基、シアノ基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基;アリル基などのアルケニル基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基もしくは縮合多環芳香族基;ピリジル基、フリル基、チエニル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾトリアゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの芳香族複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基もしくは縮合多環芳香族基で置換されたジ置換アミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;ジピリジルアミノ基、ジチエニルアミノ基などの芳香族複素環基で置換されたジ置換アミノ基;ジアリルアミノ基などのジアルケニルアミノ基;アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基、芳香族複素環基またはアルケニル基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基は、さらに前記例示した置換基が置換していてもよい。
 また、これらの置換基同士が単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成していてもよい。ここで、「N-Ar」は、上記一般式(1)中のAr~Arで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」に関して規定した「N-Ar」と同じものを意味する。
 構造式(B)、(B-1)、(B-2)、(B-3)、(B-4)、(B’)中のR~Rで表される、「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基」または「置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」における「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「炭素原子数5ないし10のシクロアルキル基」または「炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル基、アリル基、イソプロペニル基および2-ブテニル基などをあげることができ、これらの基同士が単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成していてもよい。ここで、「N-Ar」は、上記一般式(1)中のAr~Arで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」に関して規定した「N-Ar」と同じものを意味する。
 構造式(B)、(B-1)、(B-2)、(B-3)、(B-4)、(B’)中のR~Rで表される、「置換基を有する炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」または「置換基を有する炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」における「置換基」としては、上記一般式(1)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 構造式(B)、(B-1)、(B-2)、(B-3)、(B-4)、(B’)中のR~Rで表される、「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基」または「置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基」における「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基」または「炭素原子数5ないし10のシクロアルキルオキシ基」としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基および2-アダマンチルオキシ基などをあげることができ、これらの基同士が単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成していてもよい。ここで、「N-Ar」は、上記一般式(1)中のAr~Arで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」に関して規定した「N-Ar」と同じものを意味する。
 構造式(B)、(B-1)、(B-2)、(B-3)、(B-4)、(B’)中のR~Rで表される、「置換基を有する炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基」または「置換基を有する炭素原子数5ないし10のシクロアルキルオキシ基」における「置換基」としては、上記一般式(1)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 構造式(B)、(B-1)、(B-2)、(B-3)、(B-4)、(B’)中のR~Rで表される、「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、上記一般式(1)中のAr~Arで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 構造式(B)、(B-1)、(B-2)、(B-3)、(B-4)、(B’)中のR~Rで表される、「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」としては、上記一般式(1)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 構造式(B)、(B-1)、(B-2)、(B-3)、(B-4)、(B’)中のR~Rで表される、「置換もしくは無置換のアリールオキシ基」における「アリールオキシ基」としては、具体的に、フェニルオキシ基、トリルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などをあげることができ、これらの基同士が単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成していてもよい。ここで、「N-Ar」は、上記一般式(1)中のAr~Arで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」に関して規定した「N-Ar」と同じものを意味する。
 構造式(B)、(B-1)、(B-2)、(B-3)、(B-4)、(B’)中のR~Rで表される、「置換アリールオキシ基」における「置換基」としては、上記一般式(1)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 構造式(B-2)中のAr、構造式(B)、(B’)中のAr、Ar、Arで表される、「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、上記一般式(1)中のAr~Arで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 構造式(B-2)中のAr、構造式(B)、(B’)中のAr、Ar、Arで表される、「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」としては、上記一般式(1)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(1)において、nは0~4の整数を表し、nは0、1または2であることが好ましく、0または1であることがより好ましい。
 一般式(1)において、Ar、Ar、Ar、Arの少なくとも1つが前記構造式(B)である態様か、Ar、Ar、Ar、Arの少なくとも1つが前記構造式(B)をその置換基として有する態様、もしくは、Ar、Ar、Ar、Arの少なくとも1つが前記構造式(B)であり、かつAr、Ar、Ar、Arの少なくとも1つが前記構造式(B)をその置換基として有する態様であるものとし、Ar、Ar、Ar、Arのいずれか2つが前記構造式(B)である態様か、Ar、Ar、Ar、Arのいずれか2つが前記構造式(B)をその置換基として有する態様、もしくは、Ar、Ar、Ar、Arのいずれか1つが前記構造式(B)であり、かつ前記構造式(B)ではないAr、Ar、Ar、Arのいずれか1つが前記構造式(B)をその置換基として有する態様であることが好ましく、ArおよびArが前記構造式(B)である態様か、ArおよびArが前記構造式(B)をその置換基として有する態様、もしくは、Arが前記構造式(B)であり、Arが前記構造式(B)をその置換基として有する態様であることがより好ましく、ArおよびArが前記構造式(B-1)、(B-3)または(B-4)を置換基として有する態様、もしくは、前記構造式(B-2)である態様がより好ましい。
 一般式(1)中のAr、Ar、Ar、Arとしては、芳香族炭化水素基、縮合多環芳香族基、前記構造式(B)、チエニル基、ベンゾチエニル基、ジベンゾフラニル基、ジベンゾチエニル基が好ましく、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、フェナントリル基、フルオレニル基、前記構造式(B)、チエニル基、ベンゾチエニル基、ジベンゾフラニル基、ジベンゾチエニル基がより好ましく、フェニル基、ビフェニリル基、フルオレニル基、前記構造式(B)、ジベンゾフラニル基、ジベンゾチエニル基が特に好ましい。
 構造式(B-2)中のAr、構造式(B)、(B’)中のAr、Ar、Arとしては、芳香族炭化水素基、縮合多環芳香族基、チエニル基、ベンゾチエニル基、ジベンゾフラニル基、ジベンゾチエニル基が好ましく、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、フェナントリル基、フルオレニル基、チエニル基、ベンゾチエニル基、ジベンゾフラニル基、ジベンゾチエニル基がより好ましい。
 一般式(1)において、R、R、R、R、Ar、Ar、Arのいずれか1つのみが連結基であるものとする。
 構造式(B)、(B’)において、Xは炭素原子または窒素原子を表し、Yは炭素原子、酸素原子、硫黄原子、または窒素原子を表す。ここで、Yが酸素原子、もしくは硫黄原子である場合、YはArの連結基、もしくは置換基を有さない(Arが存在しない)ものとし、XおよびYが窒素原子である場合、Ar、Ar、Arのいずれかひとつが連結基、もしくは置換基である(Ar、Ar、Arのいずれかふたつが存在しない)ものとし、Xが窒素原子かつYが炭素原子である場合、Ar、Arのいずれかが連結基、もしくは置換基である(Ar、Arのいずれかが存在しない)ものとする。
 構造式(B)、(B’)において、Xが窒素原子である場合、Yは窒素原子であることが好ましく、この場合において、Ar、ArもしくはArの連結基は、Ar、Ar、Ar、Arの炭素原子と結合する(構造式(B)もしくは(B’)が、Ar、Ar、ArもしくはArの置換基となる)のが、化合物の安定性の観点から好ましい。
 構造式(B)、(B’)において、Xが炭素原子である場合、Yは炭素原子、酸素原子、または硫黄原子であることが好ましく、酸素原子、または硫黄原子であることがより好ましい。
 構造式(B)、(B’)において、Xが窒素原子、かつYが酸素原子もしくは硫黄原子である場合は本発明から除かれる。
 本発明の有機EL素子において、前記キャッピング層を透過する光の波長が400nm~410nmの範囲内における、該キャッピング層の消衰係数が0.30以上であることが好ましく、0.40以上であることがより好ましい。
 本発明の有機EL素子に好適に用いられる、前記一般式(1)で表されるアリールアミン化合物は、有機EL素子の正孔注入層、正孔輸送層、発光層、電子阻止層またはキャッピング層の構成材料として使用することができる。
 また、本発明の有機EL素子において、前記キャッピング層の厚さは、30nm~120nmの範囲であることが好ましく、40nm~80nmの範囲であることがより好ましい。
 また、本発明の有機EL素子において、前記キャッピング層を透過する光の波長が450nm~750nmの範囲内における、該キャッピング層の屈折率が1.85以上であることが好ましく、1.90以上であることがより好ましい。
 また、本発明の有機EL素子において、前記キャッピング層を2種以上の異なる構成材料を積層することによって作製してもよい。
 本発明の有機EL素子は、透明または半透明電極の外側に設けた、半透明電極よりも屈折率の高いキャッピング層を有するため、光の取出し効率を大幅に向上することができる有機EL素子が得られる。また、キャッピング層に、前記一般式(1)で表されるアリールアミン化合物を使用することによって、400℃以下の温度で成膜することができるので、発光素子にダメージを与えることなく、また高精細マスクを用いて各色の光の取出し効率を最適化することができるとともに、フルカラーディスプレイに好適に適用でき、色純度がよく鮮明で明るい画像を表示することができる。
 本発明の有機EL素子は、キャッピング層の材料として、吸光係数が高く、屈折率が高く、薄膜の安定性や耐久性や耐光性に優れた有機EL素子用の材料を用いているため、従来の有機EL素子に比べて、太陽光の影響を受けず、色純度を保持し、光の取出し効率を大幅に向上することができる。さらに、高効率、長寿命の有機EL素子を実現することが可能となった。
実施例10、比較例1の有機EL素子構成を示した図である。
 本発明の有機EL素子に好適に用いられる、前記一般式(1)で表されるアリールアミン化合物は新規な化合物であり、これらの化合物は例えば、以下のように合成できる。例えば、1,2-ジアミノベンゼン誘導体とニトロアリール誘導体より、既知の方法によって、2-アミノアリールアゾベンゼン誘導体を合成し、ビス(アセタト-O)フェニルイオジンによる酸化的環化反応を行うことによってアリール基を有するベンゾトリアゾール誘導体を合成することができる(例えば、非特許文献4参照)。
 ここでハロゲン原子、例えばブロモ原子を置換基として有する、1,2-ジアミノベンゼン誘導体もしくはニトロアリール誘導体を用いることによって、アリール基を有するベンゾトリアゾール誘導体のブロモ置換体を合成することができる。続いて、このブロモ置換体とジアリールアミンとのウルマン反応、ブッフバルド・ハートウィッグ反応などによる縮合反応を行うことによって、本発明の一般式(1)で表されるアリールアミン化合物を合成することができる。
 また、前記合成したアリール基を有するベンゾトリアゾール誘導体に対して、N-ブロモコハク酸イミドなどによるブロモ化を行うことによっても、ブロモ化されたベンゾトリアゾール誘導体を合成することができる。ここで、ブロモ化の試薬、条件を変更することによって、置換位置の異なるブロモ置換体を得ることができる。そして、同様の反応を行うことによって、本発明の一般式(1)で表されるアリールアミン化合物を合成することができる。
 また、このブロモ置換体に対し、種々のアリールハライドとピナコールボランやビス(ピナコラート)ジボロンとの反応で合成されたボロン酸またはボロン酸エステル誘導体(例えば、非特許文献5参照)とをSuzukiカップリングなどのクロスカップリング反応(例えば、非特許文献6参照)を行うことによっても、本発明の一般式(1)で表されるアリールアミン化合物を合成することができる。
 また、前記ブロモ置換体からボロン酸またはボロン酸エステル(例えば、非特許文献5参照)誘導体を合成し、種々のジアリールアミノ基を有するアリールハライドとのSuzukiカップリングなどのクロスカップリング反応(例えば、非特許文献6参照)を行うことによっても、本発明の一般式(1)で表されるアリールアミン化合物を合成することができる。
 ここで、相当する置換基を有するベンゾチアゾール誘導体、ベンゾオキサゾール誘導体、もしくはインドール誘導体のブロモ置換体、もしくはブロモ化を行った後のブロモ置換体に対し、同様の反応を行うことによって、ベンゾチアゾール基、ベンゾオキサゾール基、もしくはインドール基を有する本発明の一般式(1)で表されるアリールアミン化合物を合成することができる。
 本発明の有機EL素子に好適に用いられる、前記一般式(1)で表されるアリールアミン化合物の中で、特に好ましい化合物の具体例を以下に示すが、これらの化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000015
                         (1-1)
Figure JPOXMLDOC01-appb-C000016
                         (1-2)
Figure JPOXMLDOC01-appb-C000017
                         (1-3)
Figure JPOXMLDOC01-appb-C000018
                         (1-4)
Figure JPOXMLDOC01-appb-C000019
                         (1-5)
Figure JPOXMLDOC01-appb-C000020
                         (1-6)
Figure JPOXMLDOC01-appb-C000021
                         (1-7)
Figure JPOXMLDOC01-appb-C000022
                         (1-8)
Figure JPOXMLDOC01-appb-C000023
                         (1-9)
Figure JPOXMLDOC01-appb-C000024
                         (1-10)
Figure JPOXMLDOC01-appb-C000025
                         (1-11)
Figure JPOXMLDOC01-appb-C000026
                         (1-12)
Figure JPOXMLDOC01-appb-C000027
                         (1-13)
Figure JPOXMLDOC01-appb-C000028
                         (1-14)
Figure JPOXMLDOC01-appb-C000029
                         (1-15)
Figure JPOXMLDOC01-appb-C000030
                         (1-16)
Figure JPOXMLDOC01-appb-C000031
                         (1-17)
Figure JPOXMLDOC01-appb-C000032
                         (1-18)
Figure JPOXMLDOC01-appb-C000033
                         (1-19)
Figure JPOXMLDOC01-appb-C000034
                         (1-20)
Figure JPOXMLDOC01-appb-C000035
                         (1-21)
Figure JPOXMLDOC01-appb-C000036
                         (1-22)
Figure JPOXMLDOC01-appb-C000037
                         (1-23)
Figure JPOXMLDOC01-appb-C000038
                         (1-24)
Figure JPOXMLDOC01-appb-C000039
                         (1-25)
Figure JPOXMLDOC01-appb-C000040
                         (1-26)
Figure JPOXMLDOC01-appb-C000041
                         (1-27)
Figure JPOXMLDOC01-appb-C000042
                         (1-28)
Figure JPOXMLDOC01-appb-C000043
                         (1-29)
Figure JPOXMLDOC01-appb-C000044
                         (1-30)
Figure JPOXMLDOC01-appb-C000045
                         (1-31)
Figure JPOXMLDOC01-appb-C000046
                         (1-32)
Figure JPOXMLDOC01-appb-C000047
                         (1-33)
Figure JPOXMLDOC01-appb-C000048
                         (1-34)
Figure JPOXMLDOC01-appb-C000049
                         (1-35)
Figure JPOXMLDOC01-appb-C000050
                         (1-36)
Figure JPOXMLDOC01-appb-C000051
                         (1-37)
Figure JPOXMLDOC01-appb-C000052
                         (1-38)
Figure JPOXMLDOC01-appb-C000053
                         (1-39)
Figure JPOXMLDOC01-appb-C000054
                         (1-40)
Figure JPOXMLDOC01-appb-C000055
                         (1-41)
Figure JPOXMLDOC01-appb-C000056
                         (1-42)
Figure JPOXMLDOC01-appb-C000057
                         (1-43)
Figure JPOXMLDOC01-appb-C000058
                         (1-44)
Figure JPOXMLDOC01-appb-C000059
                         (1-45)
Figure JPOXMLDOC01-appb-C000060
                         (1-46)
Figure JPOXMLDOC01-appb-C000061
                         (1-47)
Figure JPOXMLDOC01-appb-C000062
                         (1-48)
Figure JPOXMLDOC01-appb-C000063
                         (1-49)
Figure JPOXMLDOC01-appb-C000064
                         (1-50)
Figure JPOXMLDOC01-appb-C000065
                         (1-51)
Figure JPOXMLDOC01-appb-C000066
                         (1-52)
Figure JPOXMLDOC01-appb-C000067
                         (1-53)
Figure JPOXMLDOC01-appb-C000068
                         (1-54)
Figure JPOXMLDOC01-appb-C000069
                         (1-55)
Figure JPOXMLDOC01-appb-C000070
                         (1-56)
 これらの化合物の精製はカラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土などによる吸着精製、溶媒による再結晶や晶析法などによって行い、最終的には、昇華精製などによる精製を行った。物性値として、ガラス転移点(Tg)と屈折率の測定を行った。ガラス転移点(Tg)は薄膜状態の安定性の指標となるものであり、屈折率は光の取出し効率の向上に関する指標となるものである。
 ガラス転移点(Tg)は、粉体を用いて高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100S)によって測定した。
 屈折率と消衰係数は、シリコン基板の上に80nmの薄膜を作製して、分光測定装置(フィルメトリクス社製、F10-RT-UV)を用いて測定した。
 吸光度は、トルエン溶液で濃度10-5mol/lに調節して、吸光係数はトルエン溶液で濃度5×10-6mol/l、1×10-5mol/l、1.5×10-5mol/l、2.0×10-5mol/lの4種類の濃度に調節して、紫外可視近赤外分光光度計(日本分光製、V-650)を用いて測定した。
 本発明の有機EL素子の構造としては、トップエミッション構造の発光素子であって、ガラス基板上に順次に、金属からなる陽極、正孔輸送層、発光層、電子輸送層、半透明陰極およびキャッピング層からなるもの、また、陽極と正孔輸送層の間に正孔注入層を有するもの、正孔輸送層と発光層の間に電子阻止層を有するもの、発光層と電子輸送層の間に正孔阻止層を有するもの、電子輸送層と陰極の間に電子注入層を有するものがあげられる。これらの多層構造においては有機層を何層か省略あるいは兼ねることが可能であり、例えば正孔輸送層と電子阻止層を兼ねた構成、電子輸送層と正孔阻止層を兼ねた構成とすることもできる。有機EL素子の各層の膜厚の合計は、200nm~750nm程度が好ましく、350nm~600nm程度がより好ましい。また、キャッピング層の膜厚は、例えば、30nm~120nmが好ましく、40nm~80nmがより好ましい。この場合、良好な光の取出し効率が得られる。なお、キャッピング層の膜厚は、発光素子に使用する発光材料の種類、キャッピング層以外の有機EL素子の厚さなどに応じて、適宜変更することができる。
 本発明の有機EL素子の陽極としては、ITOや金のような仕事関数の大きな電極材料が用いられる。
 本発明の有機EL素子の正孔注入層として、分子中にトリフェニルアミン構造を3個以上、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、例えば、スターバースト型のトリフェニルアミン誘導体、種々のトリフェニルアミン4量体などの材料や銅フタロシアニンに代表されるポルフィリン化合物、ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物や塗布型の高分子材料などを用いることができる。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の正孔輸送層として、例えば、N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン(以後、TPDと略称する)、N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(NPD)や1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]シクロヘキサン(TAPC)、特に、分子中にトリフェニルアミン構造を2個、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、例えば、N,N,N’,N’-テトラビフェニリルベンジジンなどを用いるのが好ましい。また、分子中にトリフェニルアミン構造を3個以上、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、例えば、種々のトリフェニルアミン3量体および4量体などを用いるのが好ましい。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 また、正孔注入層あるいは正孔輸送層において、該層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモンなどをPドーピングしたものや、TPDなどのベンジジン誘導体の構造をその部分構造に有する高分子化合物などを用いることができる。
 本発明の有機EL素子の電子阻止層として、4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン(以後、TCTAと略称する)、9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレン、1,3-ビス(カルバゾール-9-イル)ベンゼン(以後、mCPと略称する)、2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン(Ad-Cz)などのカルバゾール誘導体、9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(トリフェニルシリル)フェニル]-9H-フルオレンに代表されるトリフェニルシリル基とトリアリールアミン構造を有する化合物などの電子阻止作用を有する化合物を用いることができる。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の発光層として、Alqをはじめとするキノリノール誘導体の金属錯体、各種の金属錯体、アントラセン誘導体、ビススチリルベンゼン誘導体、ピレン誘導体、オキサゾール誘導体、ポリパラフェニレンビニレン誘導体などを用いることができる。また、発光層をホスト材料とドーパント材料とで構成してもよく、ホスト材料として、前記発光材料に加え、チアゾール誘導体、ベンズイミダゾール誘導体、ポリジアルキルフルオレン誘導体などを用いることができる。またドーパント材料としては、キナクリドン、クマリン、ルブレン、ペリレンおよびそれらの誘導体、ベンゾピラン誘導体、ローダミン誘導体、アミノスチリル誘導体などを用いることができる。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。
 また、発光材料として燐光発光材料を使用することも可能である。燐光発光体としては、イリジウムや白金などの金属錯体の燐光発光体を使用することができる。Ir(ppy)などの緑色の燐光発光体、FIrpic、FIr6などの青色の燐光発光体、BtpIr(acac)などの赤色の燐光発光体などが用いられ、このときのホスト材料としては正孔注入・輸送性のホスト材料として4,4’-ジ(N-カルバゾリル)ビフェニル(CBP)やTCTA、mCPなどのカルバゾール誘導体などを用いることができる。電子輸送性のホスト材料として、p-ビス(トリフェニルシリル)ベンゼン(UGH2)や2,2’,2’’-(1,3,5-フェニレン)-トリス(1-フェニル-1H-ベンズイミダゾール)(TPBI)などを用いることができ、高性能の有機EL素子を作製することができる。
 燐光性の発光材料のホスト材料へのドープは濃度消光を避けるため、発光層全体に対して1~30重量パーセントの範囲で、共蒸着によってドープすることが好ましい。
 また、発光材料としてPIC-TRZ、CC2TA、PXZ-TRZ、4CzIPNなどのCDCB誘導体などの遅延蛍光を放射する材料を使用することも可能である(例えば、非特許文献7参照)。
 これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の正孔阻止層として、バソクプロイン(BCP)などのフェナントロリン誘導体や、アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(以後、BAlqと略称する)などのキノリノール誘導体の金属錯体、各種の希土類錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体など、正孔阻止作用を有する化合物を用いることができる。これらの材料は電子輸送層の材料を兼ねてもよい。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の電子輸送層として、Alq、BAlqをはじめとするキノリノール誘導体の金属錯体、各種金属錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、ピリドインドール誘導体、カルボジイミド誘導体、キノキサリン誘導体、フェナントロリン誘導体、シロール誘導体などを用いることができる。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の電子注入層として、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、酸化アルミニウムなどの金属酸化物などを用いることができるが、電子輸送層と陰極の好ましい選択においては、これを省略することができる。
 さらに、電子注入層あるいは電子輸送層において、該層に通常使用される材料に対し、さらにセシウムなどの金属をNドーピングしたものを用いることができる。
 本発明の有機EL素子の半透明陰極として、アルミニウムのような仕事関数の低い電極材料や、マグネシウム銀合金、マグネシウムカルシウム合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金のような、より仕事関数の低い合金やITO、IZOなどが電極材料として用いられる。
 本発明の有機EL素子のキャッピング層として、前記一般式(1)で表されるアリールアミン化合物などを用いるのが好ましい。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 なお、上記では、トップエミッション構造の有機EL素子について説明したが、本発明はこれに限定されるものではなく、ボトムエミッション構造の有機EL素子や、上部および底部の両方向から発光するデュアルエミッション構造の有機EL素子についても、同様に適用することができる。これらの場合、光が発光素子から外部に取出される方向にある電極は、透明又は半透明である必要がある。
 キャッピング層を構成する材料の屈折率は、隣接する電極の屈折率よりも大きいことが好ましい。すなわち、キャッピング層によって、有機EL素子における光の取出し効率は向上するが、その効果は、キャッピング層と、キャッピング層に接している材料との界面での反射率が大きい方が、光干渉の効果が大きいために有効である。そのため、キャッピング層を構成する材料の屈折率は、隣接する電極の屈折率よりも大きい方が好ましく、屈折率が1.70以上であればよいが、1.80以上がより好ましく、1.85以上であることが特に好ましい。
 以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 <N,N’-ビス{4-(2H-ベンゾ[1,2,3]トリアゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニル(化合物(1-1))の合成>
 窒素置換した反応容器に、2-(4-ブロモフェニル)-2H-ベンゾ[1,2,3]トリアゾール4.2g、N,N’-ジフェニルベンジジン2.3g、tert-ブトキシナトリウム2.0g、トルエン50mlを加え、30分間超音波を照射しながら窒素ガスを通気した。酢酸パラジウム62.0mg、トリ-tert-ブチルホスフィン0.2mlを加えて加熱し、91℃で5時間攪拌した。室温まで冷却した後、トルエン50mlを加え、抽出操作を行うことによって有機層を採取した。有機層を濃縮した後、カラムクロマトグラフ(担体:NHシリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、さらに、n-ヘキサン100mlを用いた分散洗浄を行うことによって、N,N’-ビス{4-(2H-ベンゾ[1,2,3]トリアゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニル(化合物(1-1))の黄色粉体3.3g(収率66%)を得た。
 得られた黄色粉体についてNMRを使用して構造を同定した。
 H-NMR(THF-d)で以下の34個の水素のシグナルを検出した。
 δ(ppm)=8.26(4H)、7.89(4H)、7.60(4H)、7.39(4H)、7.33(4H)、7.24(4H)、7.21(8H)、7.10(2H)。
 <N,N’-ビス{4-(2H-ベンゾ[1,2,3]トリアゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’’-ジアミノ-1,1’:4’,1’’-ターフェニル(化合物(1-2))の合成>
 窒素置換した反応容器に、4,4’’-ジヨード-1,1’:4’,1’’-ターフェニル14.0g、{4-(2H-ベンゾ[1,2,3]トリアゾール-2-イル)フェニル}フェニルアミン18.3g、炭酸カリウム13.2g、銅粉0.3g、亜硫酸水素ナトリウム0.9g、3,5-ジ-tert-ブチルサリチル酸0.7g、ドデシルベンゼン30mlを加えて加熱し、210℃で44時間撹拌した。室温まで放冷した後、トルエン50mlを加え、析出物をろ過によって採取した。析出物に1,2-ジクロロベンゼン230mlを加え、加熱することによって溶解し、熱時ろ過によって不溶物を除去した。ろ液を濃縮し、1,2-ジクロロベンゼンを用いた晶析精製を行った後、メタノールを用いた分散洗浄を行うことによって、N,N’-ビス{4-(2H-ベンゾ[1,2,3]トリアゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’’-ジアミノ-1,1’:4’,1’’-ターフェニル(化合物(1-2))の黄色粉体22.2g(収率96%)を得た。
 得られた黄色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)で以下の38個の水素のシグナルを検出した。
 δ(ppm)=8.24(4H)、7.99-7.92(4H)、7.72-7.58(7H)、7.50-7.12(23H)。
 <N,N’-ビス{4-(ベンゾオキサゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’’-ジアミノ-1,1’:4’,1’’-ターフェニル(化合物(1-22))の合成>
 実施例1において、{4-(2H-ベンゾ[1,2,3]トリアゾール-2-イル)フェニル}フェニルアミンに代えて、{4-(ベンゾオキサゾール-2-イル)フェニル}フェニルアミンを用い、同様の条件で反応を行うことによって、N,N’-ビス{4-(ベンゾオキサゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’’-ジアミノ-1,1’:4’,1’’-ターフェニル(化合物(1-22))の黄色粉体12.4g(収率47%)を得た。
 得られた黄色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)で以下の38個の水素のシグナルを検出した。
 δ(ppm)=8.13(4H)、7.80-7.55(11H)、7.50-7.16(23H)。
 <N,N’-ビス{4-(ベンゾオキサゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニル(化合物(1-23))の合成>
 実施例1において、2-(4-ブロモフェニル)-2H-ベンゾ[1,2,3]トリアゾールに代えて、2-(4-ブロモフェニル)-ベンゾオキサゾールを用い、同様の条件で反応を行うことによって、N,N’-ビス{4-(ベンゾオキサゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニル(化合物(1-23))の淡黄色粉体8.8g(収率54%)を得た。
 得られた淡黄色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)で以下の34個の水素のシグナルを検出した。
 δ(ppm)=8.12(4H)、7.80-7.72(2H)、7.60-7.53(5H)、7.41-7.14(23H)。
 <N,N’-ビス{4-(ベンゾチアゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニル(化合物(1-25))の合成>
 実施例1において、2-(4-ブロモフェニル)-2H-ベンゾ[1,2,3]トリアゾールに代えて、2-(4-ブロモフェニル)-ベンゾチアゾールを用い、同様の条件で反応を行うことによって、N,N’-ビス{4-(ベンゾチアゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニル(化合物(1-25))の淡黄色粉体9.3g(収率62%)を得た。
 得られた淡黄色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)で以下の34個の水素のシグナルを検出した。
 δ(ppm)=8.10-7.88(8H)、7.60-7.13(26H)。
 <N,N’-ビス{4-(ベンゾチアゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’’-ジアミノ-1,1’:4’,1’’-ターフェニル(化合物(1-27))の合成>
 窒素置換した反応容器に、N-{4-(ベンゾチアゾール-2-イル)フェニル}フェニルアミン9.3g、4,4’’-ジヨード-1,1’:4’,1’’-ターフェニル7.1g、tert-ブトキシナトリウム4.6g、トルエン140mlを加え、30分間超音波を照射しながら窒素を通気した。酢酸パラジウム0.20g、tert-ブチルホスフィンの50%(v/v)トルエン溶液0.5gを加えて加熱し、攪拌しながら3時間加熱還流した。室温まで冷却し、ろ過によって析出物を採取した後、1,2-ジクロロベンゼン/メタノールの混合溶媒を用いた晶析精製を繰り返すことによって、N,N’-ビス{4-(ベンゾチアゾール-2-イル)フェニル}-N,N’-ジフェニル-4,4’’-ジアミノ-1,1’:4’,1’’-ターフェニル(化合物(1-27))の黄色粉体7.0g(収率58%)を得た。
 得られた黄色粉体についてNMRを使用して構造を同定した。
 H-NMR(THF-d)で以下の38個の水素のシグナルを検出した。
 δ(ppm)=8.07-7.88(8H)、7.70-7.60(8H)、7.54-7.46(2H)、7.40-7.15(20H)。
 本発明の化合物について、高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100S)によってガラス転移点を求めた。
                 ガラス転移点
  例示化合物(1-1)      125℃
  例示化合物(1-2)      135℃
  例示化合物(1-22)     137℃
  例示化合物(1-23)     128℃
  例示化合物(1-25)     127℃
  例示化合物(1-27)     137℃
 本発明の化合物は100℃以上のガラス転移点を有している。このことは、本発明の化合物において薄膜状態が安定であることを示すものである。
 本発明の化合物を用いて、シリコン基板の上に膜厚80nmの蒸着膜を作製して、分光測定装置(フィルメトリクス社製、F10-RT-UV)を用いて波長400nm、410nmにおける屈折率nと消衰係数kを測定した。比較のために、下記構造式の比較化合物(2-1)、(2-2)についても測定した(例えば、特許文献3参照)。測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000071
                         (2-1)
Figure JPOXMLDOC01-appb-C000072
                         (2-2)
Figure JPOXMLDOC01-appb-T000073
 このように本発明の化合物は比較化合物(2-1)、(2-2)の屈折率と同等以上の値を有しており、このことは有機EL素子における光の取出し効率の向上が期待できる。また、波長400nmから410nmでの消衰係数が比較化合物(2-1)、(2-2)は0.3以下であるのに対し、本発明の化合物は大きな値を有しており、このことは太陽光の波長400nmから410nmの光をよく吸光し素子内部の材料に影響を与えないことを示すものである。
 本発明の化合物を用いて、吸光度はトルエン溶液で濃度10-5mol/lに調節して波長400nm、410nmにおける吸光度を測定し、吸光係数はトルエン溶液で濃度5×10-6mol/l、1×10-5mol/l、1.5×10-5mol/l、2.0×10-5mol/lの4種類の濃度に調節して、紫外可視近赤外分光光度計(日本分光製、V-650)を用いて測定し検量線から吸光係数を算出した。比較のために、上記構造式の比較化合物(2-2)についても測定した。測定結果を表2にまとめて示した。
Figure JPOXMLDOC01-appb-T000074
 このように波長400nmから410nmでの吸光度が比較化合物(2-2)は0.1以下であるのに対し、本発明の化合物は0.2以上の大きな値を有しており、このことは太陽光の波長400nmから410nmの光をよく吸光し、また、吸光係数に関しても比較化合物(2-2)の48856に対し、本発明の化合物はいずれも大きな値を有しており、同じ濃度条件であればよく光を吸光することを示し、薄膜に関しても膜厚において厚膜化するほどよく吸光し、耐光性に優れた材料であることを示している。
 有機EL素子は、図1に示すように、ガラス基板1上に金属陽極2として反射ITO電極をあらかじめ形成したものの上に、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7、陰極8、キャッピング層9の順に蒸着して作製した。
 具体的には、膜厚50nmのITO、膜厚100nmの銀合金の反射膜、膜厚5nmのITOを順に成膜したガラス基板1をイソプロピルアルコール中にて超音波洗浄を20分間行った後、250℃に加熱したホットプレート上にて10分間乾燥を行った。その後、UVオゾン処理を2分間行った後、このITO付きガラス基板を真空蒸着機内に取り付け、0.001Pa以下まで減圧した。続いて、透明陽極2を覆うように正孔注入層3として、下記構造式の電子アクセプター(Acceptor-1)と下記構造式の化合物(3-1)を、蒸着速度比がAcceptor-1:化合物(3-1)=3:97となる蒸着速度で二元蒸着を行い、膜厚10nmとなるように形成した。この正孔注入層3の上に、正孔輸送層4として下記構造式の化合物(3-1)を膜厚140nmとなるように形成した。この正孔輸送層4の上に、発光層5として下記構造式の化合物(3-2)と下記構造式の化合物(3-3)を、蒸着速度比が(3-2):(3-3)=5:95となる蒸着速度で二元蒸着を行い、膜厚20nmとなるように形成した。この発光層5の上に、電子輸送層6として下記構造式の化合物(3-4)と下記構造式の化合物(3-5)を、蒸着速度比が(3-4):(3-5)=50:50となる蒸着速度で二元蒸着を行い、膜厚30nmとなるように形成した。この電子輸送層6の上に、電子注入層7としてフッ化リチウムを膜厚1nmとなるように形成した。
 この電子注入層7の上に、陰極8としてマグネシウム銀合金を膜厚12nmとなるように形成した。最後に、キャッピング層9として実施例3の化合物(1-22)を膜厚60nmとなるように形成した。作製した有機EL素子について、大気中、常温で特性測定を行った。
 作製した有機EL素子に直流電圧を印加した発光特性の測定結果を表3にまとめて示した。
Figure JPOXMLDOC01-appb-C000075
                         (Acceptor-1)
Figure JPOXMLDOC01-appb-C000076
                         (3-1)
Figure JPOXMLDOC01-appb-C000077
                         (3-2)
Figure JPOXMLDOC01-appb-C000078
                         (3-3)
Figure JPOXMLDOC01-appb-C000079
                         (3-4)
Figure JPOXMLDOC01-appb-C000080
                         (3-5)
 実施例10において、キャッピング層9として実施例3の化合物(1-22)に代えて実施例4の化合物(1-23)を膜厚60nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加した発光特性の測定結果を表3にまとめて示した。
[比較例1]
 比較のために、実施例10において、キャッピング層9として実施例4の化合物(1-23)に代えて上記構造式の比較化合物(2-2)を膜厚60nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加した発光特性の測定結果を表3にまとめて示した。
 実施例10と実施例11および比較例1で作製した有機EL素子を用いて、素子寿命を測定した結果を表3にまとめて示した。素子寿命は、10mA/cmの定電流駆動を行った時、初期輝度を100%とした時の95%減衰に減衰するまでの時間として測定した。
Figure JPOXMLDOC01-appb-T000081
 表3に示すように、電流密度10mA/cm時における駆動電圧は、比較化合物(2-2)を用いた比較例1の素子と実施例10と実施例11の素子ではほぼ同等であるのに対し、輝度、発光効率、電力効率、寿命においては、比較化合物(2-2)を用いた比較例1の素子に対し実施例10と実施例11の素子はいずれも向上した。このことは、キャッピング層に屈折率の高い、本発明の有機EL素子に好適に用いられる材料を含むことにより、光の取出し効率を大幅に改善できることを示している。
 以上のように、本発明の有機EL素子に好適に用いられる、一般式(1)で表されるアリールアミン化合物は、吸光係数が高く、屈折率が高く、光の取出し効率を大幅に改善でき、薄膜状態が安定であるため、有機EL素子用の化合物として優れている。該化合物を用いて有機EL素子を作製することにより、高い効率を得ることができるとともに、太陽光の光を吸光し素子内部の材料に影響を与えないように、耐久性や耐光性を改善させることができる。また、青、緑および赤それぞれの波長領域において吸収を持たない該化合物を用いることにより、色純度がよく鮮明で明るい画像を表示したい場合に、特に好適である。例えば、家庭電化製品や照明の用途への展開が可能となった。
 1  ガラス基板
 2  金属陽極
 3  正孔注入層
 4  正孔輸送層
 5  発光層
 6  電子輸送層
 7  電子注入層
 8  陰極
 9  キャッピング層

Claims (16)

  1.  少なくとも陽極電極、正孔輸送層、発光層、電子輸送層、陰極電極およびキャッピング層をこの順に有する有機エレクトロルミネッセンス素子において、前記キャッピング層の材料の消衰係数が波長400nmから410nmで0.3以上であり、かつ、濃度10-5mol/lの吸収スペクトルにおいて波長400nmから410nmにおける吸光度が0.2以上である材料を含む、有機エレクトロルミネッセンス素子。
  2.  前記キャッピング層の材料の消衰係数が波長410nmから430nmで0.1以上である請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記キャッピング層が下記一般式(1)で表されるアリールアミン化合物を含む、請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
                             (1)
    (式中、Ar、Ar、Ar、Arは相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表し、nは0~4の整数を表す。ここで、Ar、Ar、Ar、Arの少なくとも1つは、下記構造式(B)で示される1価基であるか、もしくは、該1価基を置換基として有するものとする。)
    Figure JPOXMLDOC01-appb-C000002
                             (B)
    (式中、R、R、R、Rは相互に同一でも異なってもよく、連結基、もしくは水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、または置換もしくは無置換のアリールオキシ基であって、単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成していてもよい。Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。Xは炭素原子または窒素原子を表し、Yは炭素原子、酸素原子、硫黄原子、または窒素原子を表し、Arは連結基、または、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表し、Ar、Arは相互に同一でも異なってもよく、連結基、または、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基であって、Yが酸素原子、もしくは硫黄原子である場合、YはArを有さないものとし、XおよびYが窒素原子である場合、Ar、Ar、Arのいずれかひとつが連結基、もしくは置換基であるものとし、Xが窒素原子かつYが炭素原子である場合、XはArを有さないものとする。Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。但し、R、R、R、R、Ar、Ar、Arのいずれか1つのみが連結基であるものとし、Xが窒素原子、かつYが酸素原子、もしくは硫黄原子である場合を除く。)
  4.  前記構造式(B)が下記構造式(B-1)で示される1価基である、請求項1記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003
                             (B-1)
    (式中、R、R、R、Rは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、または置換もしくは無置換のアリールオキシ基であって、単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成してもよい。Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。)
  5.  前記構造式(B)が下記構造式(B-2)で示される1価基である、請求項1記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
                             (B-2)
    (式中、R、R、Rは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、または置換もしくは無置換のアリールオキシ基であって、RとRは単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成してもよい。Ar、Arは相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。)
  6.  前記構造式(B)が下記構造式(B-3)で示される1価基である、請求項1記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
                             (B-3)
    (式中、R、R、R、Rは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、または置換もしくは無置換のアリールオキシ基であって、単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成してもよい。Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。)
  7.  前記構造式(B)が下記構造式(B-4)で示される1価基である、請求項1記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006
                             (B-4)
    (式中、R、R、R、Rは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、または置換もしくは無置換のアリールオキシ基であって、単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成してもよい。Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。)
  8.  前記構造式(B)が下記構造式(B’)で示される1価基である、請求項1記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000007
                             (B’)
    (式中、R、R、R、R、R、Rは相互に同一でも異なってもよく、連結基、もしくは水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、または置換もしくは無置換のアリールオキシ基であって、単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはN-Arを介して互いに結合して環を形成していてもよい。Xは炭素原子または窒素原子を表し、Yは炭素原子、酸素原子、硫黄原子、または窒素原子を表し、Arは連結基、または、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表し、Ar、Arは相互に同一でも異なってもよく、連結基、または、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基であって、Yが酸素原子、もしくは硫黄原子である場合、YはArを有さないものとし、XおよびYが窒素原子である場合、Ar、Ar、Arのいずれかひとつが連結基、もしくは置換基であるものとし、Xが窒素原子かつYが炭素原子である場合、XはArを有さないものとする。Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。但し、R、R、R、R、R、R、Ar、Ar、Arのいずれか1つのみが連結基であるものとし、Xが窒素原子、かつYが酸素原子、もしくは硫黄原子である場合を除く。)
  9.  前記一般式(1)において、nが0である、請求項1記載の有機エレクトロルミネッセンス素子。
  10.  前記一般式(1)において、nが1である、請求項1記載の有機エレクトロルミネッセンス素子。
  11.  前記一般式(1)において、nが2である、請求項1記載の有機エレクトロルミネッセンス素子。
  12.  前記一般式(1)において、Ar、Ar、Ar、Arのいずれか2つが、前記構造式(B)で示される1価基であるか、もしくは、該1価基を置換基として有するものである、請求項1記載の有機エレクトロルミネッセンス素子。
  13.  前記一般式(1)において、ArおよびArが、前記構造式(B)で示される1価基であるか、もしくは、該1価基を置換基として有するものである、請求項1記載の有機エレクトロルミネッセンス素子。
  14.  前記キャッピング層の厚さが、30nm~120nmの範囲内である、請求項1記載の有機エレクトロルミネッセンス素子。
  15.  前記キャッピング層の屈折率が、該キャッピング層を透過する光の波長が400nm~750nmの範囲内において、1.85以上である、請求項1記載の有機エレクトロルミネッセンス素子。
  16.  前記一般式(1)で表される化合物を有機エレクトロルミネッセンス素子のキャッピング層に用いる方法。
PCT/JP2017/015537 2016-04-22 2017-04-18 有機エレクトロルミネッセンス素子 WO2017183625A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17785963.4A EP3432688B1 (en) 2016-04-22 2017-04-18 Organic electroluminescence element
KR1020187025474A KR20180134331A (ko) 2016-04-22 2017-04-18 유기 일렉트로 루미네센스 소자
US16/094,695 US11056653B2 (en) 2016-04-22 2017-04-18 Organic electroluminescence device
JP2018513181A JPWO2017183625A1 (ja) 2016-04-22 2017-04-18 有機エレクトロルミネッセンス素子
CN201780021933.0A CN109076658A (zh) 2016-04-22 2017-04-18 有机电致发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-086422 2016-04-22
JP2016086422 2016-04-22

Publications (1)

Publication Number Publication Date
WO2017183625A1 true WO2017183625A1 (ja) 2017-10-26

Family

ID=60116079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015537 WO2017183625A1 (ja) 2016-04-22 2017-04-18 有機エレクトロルミネッセンス素子

Country Status (6)

Country Link
US (1) US11056653B2 (ja)
EP (1) EP3432688B1 (ja)
JP (1) JPWO2017183625A1 (ja)
KR (1) KR20180134331A (ja)
CN (1) CN109076658A (ja)
WO (1) WO2017183625A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124550A1 (ja) * 2017-12-21 2019-06-27 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子およびその製造方法
WO2019139065A1 (ja) * 2018-01-10 2019-07-18 保土谷化学工業株式会社 有機el素子、ベンゾアゾール環構造を有するアミン化合物、およびそれを有機el素子のキャッピング層に用いる方法
WO2020017552A1 (ja) * 2018-07-17 2020-01-23 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
CN111205313A (zh) * 2018-11-21 2020-05-29 Sfc株式会社 吲哚并咔唑衍生物和使用其的有机电致发光器件
KR20200060243A (ko) * 2018-11-21 2020-05-29 에스에프씨 주식회사 인돌로카바졸 유도체 및 이를 이용한 유기발광소자
JPWO2020137724A1 (ja) * 2018-12-25 2020-07-02
WO2020184219A1 (ja) * 2019-03-11 2020-09-17 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
CN111834537A (zh) * 2019-07-18 2020-10-27 广州华睿光电材料有限公司 一种包含光取出层的有机电致发光器件
US10818215B2 (en) 2018-12-29 2020-10-27 Wuhan Tianma Micro-Electronics Co., Ltd. Display panel and display apparatus
JP2021046389A (ja) * 2019-09-16 2021-03-25 長春海譜潤斯科技股フン有限公司 複素環化合物、および有機エレクトロルミネッセンス素子
JP2022510318A (ja) * 2018-11-30 2022-01-26 エスエフシー カンパニー リミテッド 多環芳香族誘導体化合物を用いた有機発光素子
TWI839340B (zh) 2018-01-10 2024-04-21 日商保土谷化學工業股份有限公司 有機el元件、具有苯并唑環結構之胺化合物、及將其用於有機el元件之覆蓋層之方法
US11985891B2 (en) 2018-11-30 2024-05-14 Sfc Co., Ltd. Polycyclic aromatic compounds and organic electroluminescent devices using the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117677263A (zh) * 2017-03-28 2024-03-08 保土谷化学工业株式会社 有机电致发光元件
CN113382993A (zh) * 2019-02-22 2021-09-10 保土谷化学工业株式会社 具有苯并唑环结构的芳基胺化合物及有机电致发光元件
CN111755618B (zh) * 2019-03-28 2022-09-09 江苏三月科技股份有限公司 一种含有覆盖层的有机电致发光装置及用途
KR102191018B1 (ko) * 2019-06-12 2020-12-14 에스에프씨 주식회사 유기발광소자
CN110283143B (zh) * 2019-07-10 2022-01-04 吉林奥来德光电材料股份有限公司 芳胺类化合物及包含该化合物的有机发光器件
CN111039888B (zh) * 2019-12-23 2020-10-13 长春海谱润斯科技有限公司 一种有机电致发光器件用化合物及其有机电致发光器件
CN111153809B (zh) * 2020-01-15 2023-06-06 吉林奥来德光电材料股份有限公司 一种芳胺类化合物及其制备方法和应用
CN114824146B (zh) * 2022-06-23 2022-10-14 浙江华显光电科技有限公司 有机电致发光器件、显示器装置、光源装置及电子产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JP2006302878A (ja) * 2005-03-24 2006-11-02 Kyocera Corp 発光素子、その発光素子を備えた発光装置及びその製造方法
WO2011043083A1 (ja) * 2009-10-09 2011-04-14 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2013038627A1 (ja) 2011-09-12 2013-03-21 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2015001726A1 (ja) * 2013-07-03 2015-01-08 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883306B1 (ko) 2005-03-24 2009-02-11 쿄세라 코포레이션 발광 소자, 그 발광 소자를 구비한 발광 장치 및 그 제조방법
EP3156402B1 (en) 2014-06-11 2021-11-10 Hodogaya Chemical Co., Ltd. Pyrimidine derivative and organic electroluminescent element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JP2006302878A (ja) * 2005-03-24 2006-11-02 Kyocera Corp 発光素子、その発光素子を備えた発光装置及びその製造方法
WO2011043083A1 (ja) * 2009-10-09 2011-04-14 出光興産株式会社 有機エレクトロルミネッセンス素子
EP2487991A1 (en) 2009-10-09 2012-08-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
WO2013038627A1 (ja) 2011-09-12 2013-03-21 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
EP2757860A1 (en) 2011-09-12 2014-07-23 Hodogaya Chemical Co., Ltd. Organic electroluminescence element
WO2015001726A1 (ja) * 2013-07-03 2015-01-08 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
APPL.PHYS.LET., vol. 98, 2011, pages 083302
APPL.PHYS.LETT., vol. 78, 2001, pages 544
APPL.PHYS.LETT., vol. 82, 2003, pages 466
AUST.J.CHEM., vol. 45, 1992, pages 371
J.ORG.CHEM., vol. 60, 1995, pages 7508
See also references of EP3432688A4
SYNTH.COMMUN., vol. 11, 1981, pages 513
THE JAPAN SOCIETY OF APPLIED PHYSICS 9TH LECTURE PREPRINTS, 2001, pages 55 - 61

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020149977A (ja) * 2017-12-21 2020-09-17 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子およびその製造方法
JP7299194B2 (ja) 2017-12-21 2023-06-27 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子およびその製造方法
US11706943B2 (en) 2017-12-21 2023-07-18 Hodogaya Chemical Co., Ltd. Organic electroluminescent element and method for producing same
WO2019124550A1 (ja) * 2017-12-21 2019-06-27 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子およびその製造方法
CN111869326B (zh) * 2017-12-21 2023-09-26 保土谷化学工业株式会社 有机电致发光元件及其制造方法
TWI718456B (zh) * 2017-12-21 2021-02-11 日商保土谷化學工業股份有限公司 有機電致發光元件
US11997870B2 (en) 2017-12-21 2024-05-28 Hodogaya Chemical Co., Ltd. Organic electroluminescent element and method for producing same
CN111869326A (zh) * 2017-12-21 2020-10-30 保土谷化学工业株式会社 有机电致发光元件及其制造方法
JPWO2019124550A1 (ja) * 2017-12-21 2020-08-06 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子およびその製造方法
US20200365809A1 (en) * 2018-01-10 2020-11-19 Hodogaya Chemical Co., Ltd. Organic el device, amine compound having benzazole ring structure, and method in which said amine compound is used in capping layer of organic el device
CN111567141B (zh) * 2018-01-10 2023-06-13 保土谷化学工业株式会社 有机el元件、具有苯并唑环结构的胺化合物及在有机el元件的封盖层中使用其的方法
JP7285221B2 (ja) 2018-01-10 2023-06-01 保土谷化学工業株式会社 有機el素子、ベンゾアゾール環構造を有するアミン化合物、およびそれを有機el素子のキャッピング層に用いる方法
CN111567141A (zh) * 2018-01-10 2020-08-21 保土谷化学工业株式会社 有机el元件、具有苯并唑环结构的胺化合物及在有机el元件的封盖层中使用其的方法
TWI839340B (zh) 2018-01-10 2024-04-21 日商保土谷化學工業股份有限公司 有機el元件、具有苯并唑環結構之胺化合物、及將其用於有機el元件之覆蓋層之方法
EP3740036A4 (en) * 2018-01-10 2021-10-13 Hodogaya Chemical Co., Ltd. ORGANIC EL ELEMENT, AMINE COMPOUND WITH BENZOAZOLE RING STRUCTURE AND METHOD IN WHICH THE AMINE COMPOUND IS USED IN THE TOP LAYER OF AN ORGANIC EL ELEMENT
WO2019139065A1 (ja) * 2018-01-10 2019-07-18 保土谷化学工業株式会社 有機el素子、ベンゾアゾール環構造を有するアミン化合物、およびそれを有機el素子のキャッピング層に用いる方法
US11974499B2 (en) * 2018-01-10 2024-04-30 Hodogaya Chemical Co., Ltd. Organic EL device, amine compound having benzazole ring structure, and method in which said amine compound is used in capping layer of organic EL device
JPWO2019139065A1 (ja) * 2018-01-10 2021-01-14 保土谷化学工業株式会社 有機el素子、ベンゾアゾール環構造を有するアミン化合物、およびそれを有機el素子のキャッピング層に用いる方法
WO2020017552A1 (ja) * 2018-07-17 2020-01-23 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
CN112119675A (zh) * 2018-07-17 2020-12-22 保土谷化学工业株式会社 有机电致发光元件
JPWO2020017552A1 (ja) * 2018-07-17 2021-08-12 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
EP3826430A4 (en) * 2018-07-17 2022-04-06 Hodogaya Chemical Co., Ltd. ORGANIC ELECTROLUMINESCENT ELEMENT
JP7366899B2 (ja) 2018-07-17 2023-10-23 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2020084189A (ja) * 2018-11-21 2020-06-04 エスエフシー カンパニー リミテッド インドロカルバゾール誘導体及びこれを用いた有機発光素子
CN111205313A (zh) * 2018-11-21 2020-05-29 Sfc株式会社 吲哚并咔唑衍生物和使用其的有机电致发光器件
KR20200060243A (ko) * 2018-11-21 2020-05-29 에스에프씨 주식회사 인돌로카바졸 유도체 및 이를 이용한 유기발광소자
KR102202111B1 (ko) * 2018-11-21 2021-01-12 에스에프씨 주식회사 인돌로카바졸 유도체 및 이를 이용한 유기발광소자
US11456428B2 (en) 2018-11-21 2022-09-27 Sfc Co., Ltd. Indolocarbazole derivatives and organic electroluminescent devices using the same
CN111205313B (zh) * 2018-11-21 2024-04-30 Sfc株式会社 吲哚并咔唑衍生物和使用其的有机电致发光器件
JP7285002B2 (ja) 2018-11-21 2023-06-01 エスエフシー カンパニー リミテッド インドロカルバゾール誘導体及びこれを用いた有機発光素子
JP7344292B2 (ja) 2018-11-30 2023-09-13 エスエフシー カンパニー リミテッド 多環芳香族誘導体化合物を用いた有機発光素子
JP2022510318A (ja) * 2018-11-30 2022-01-26 エスエフシー カンパニー リミテッド 多環芳香族誘導体化合物を用いた有機発光素子
US11985891B2 (en) 2018-11-30 2024-05-14 Sfc Co., Ltd. Polycyclic aromatic compounds and organic electroluminescent devices using the same
CN113195679A (zh) * 2018-12-25 2021-07-30 保土谷化学工业株式会社 有机电致发光元件
JP7397005B2 (ja) 2018-12-25 2023-12-12 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JPWO2020137724A1 (ja) * 2018-12-25 2020-07-02
WO2020137724A1 (ja) * 2018-12-25 2020-07-02 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
EP3904487A4 (en) * 2018-12-25 2022-08-24 Hodogaya Chemical Co., Ltd. ORGANIC ELECTROLUMINESCENT ELEMENT
US10818215B2 (en) 2018-12-29 2020-10-27 Wuhan Tianma Micro-Electronics Co., Ltd. Display panel and display apparatus
WO2020184219A1 (ja) * 2019-03-11 2020-09-17 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP7418404B2 (ja) 2019-03-11 2024-01-19 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JPWO2020184219A1 (ja) * 2019-03-11 2020-09-17
US11980092B2 (en) 2019-03-11 2024-05-07 Hodogaya Chemical Co., Ltd. Organic electroluminescence element
CN113424657A (zh) * 2019-03-11 2021-09-21 保土谷化学工业株式会社 有机电致发光元件
US20220149291A1 (en) * 2019-03-11 2022-05-12 Hodogaya Chemical Co., Ltd. Organic electroluminescence element
CN111834537A (zh) * 2019-07-18 2020-10-27 广州华睿光电材料有限公司 一种包含光取出层的有机电致发光器件
JP2021046389A (ja) * 2019-09-16 2021-03-25 長春海譜潤斯科技股フン有限公司 複素環化合物、および有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
US20200328353A1 (en) 2020-10-15
CN109076658A (zh) 2018-12-21
EP3432688B1 (en) 2023-12-20
KR20180134331A (ko) 2018-12-18
EP3432688A1 (en) 2019-01-23
EP3432688A4 (en) 2019-11-27
US11056653B2 (en) 2021-07-06
JPWO2017183625A1 (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6375004B2 (ja) 有機エレクトロルミネッセンス素子
WO2017183625A1 (ja) 有機エレクトロルミネッセンス素子
JP6731126B2 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP6338374B2 (ja) 有機エレクトロルミネッセンス素子
WO2020184219A1 (ja) 有機エレクトロルミネッセンス素子
JP7285221B2 (ja) 有機el素子、ベンゾアゾール環構造を有するアミン化合物、およびそれを有機el素子のキャッピング層に用いる方法
WO2021140896A1 (ja) 有機エレクトロルミネッセンス素子
WO2021166935A1 (ja) 有機エレクトロルミネッセンス素子
WO2022264974A1 (ja) アザベンゾオキサゾール環構造を有するアミン化合物およびそれを用いた有機エレクトロルミネッセンス素子
WO2022004555A1 (ja) 有機エレクトロルミネッセンス素子
JP2016086147A (ja) 有機エレクトロルミネッセンス素子
JP7397005B2 (ja) 有機エレクトロルミネッセンス素子
WO2023022186A1 (ja) 有機エレクトロルミネッセンス素子及びその化合物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018513181

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187025474

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017785963

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017785963

Country of ref document: EP

Effective date: 20181017

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785963

Country of ref document: EP

Kind code of ref document: A1