WO2017175426A1 - 電力用半導体装置 - Google Patents

電力用半導体装置 Download PDF

Info

Publication number
WO2017175426A1
WO2017175426A1 PCT/JP2016/088173 JP2016088173W WO2017175426A1 WO 2017175426 A1 WO2017175426 A1 WO 2017175426A1 JP 2016088173 W JP2016088173 W JP 2016088173W WO 2017175426 A1 WO2017175426 A1 WO 2017175426A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
semiconductor device
power semiconductor
layer
emitter electrode
Prior art date
Application number
PCT/JP2016/088173
Other languages
English (en)
French (fr)
Inventor
敦文 井上
岡 誠次
川上 剛史
古川 彰彦
時岡 秀忠
睦 津田
藤岡 靖
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/081,140 priority Critical patent/US10559659B2/en
Priority to CN201680083795.4A priority patent/CN109075198B/zh
Priority to JP2018510227A priority patent/JP6448852B2/ja
Priority to DE112016006717.8T priority patent/DE112016006717T5/de
Publication of WO2017175426A1 publication Critical patent/WO2017175426A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to a power semiconductor device.
  • a power semiconductor module is composed of an IGBT (Insulated Gate Bipolar Transistor) power device that controls switching of a large current and a diode that blocks a reverse current generated during switching. It is used in a wide range of fields such as vehicles.
  • IGBT Insulated Gate Bipolar Transistor
  • the environment in which power semiconductor modules are used has become severe.
  • the environment in which the power semiconductor module is used has become hot or the current to be controlled has increased.
  • the power semiconductor device such as an IGBT power device has high reliability that can ensure a normal operation over a long period of time in a use environment with a large temperature change.
  • high heat resistance is required to withstand high temperature of the power semiconductor device due to an increase in the amount of heat generated from the semiconductor chip constituting the power semiconductor device with energization of a large current.
  • a die bond agent which is a bonding material containing solder or metal particles is used.
  • a technique for dissipating heat from a semiconductor substrate from the back side through a lead frame is disclosed (for example, see Patent Document 1).
  • a surface electrode formed on the surface of the bare chip, a laminated metal layer composed of an Ni plating layer and an Au plating layer formed on the surface electrode by an electroless plating method, and formed on the side surface of the surface electrode
  • a technology that includes a peripheral breakdown voltage structure and performs heat dissipation from the surface of the bare chip through a laminated metal layer (for example, see Patent Document 2).
  • JP 2013-16580 A Japanese Patent No. 5494559 JP2015-126158A
  • the heat capacity can be increased by increasing the thickness of the Ni plating layer and the Au plating layer.
  • the stress also increases and warping occurs and the substrate breaks. Therefore, it is difficult to stack thickly.
  • Patent Document 2 it is assumed that an electroless plating film is formed, but the deposition rate of the plating film is low.
  • Ni has low thermal conductivity compared to metal materials such as solder. Since the short-circuit withstand capability of the IGBT is a short time scale of about 10 ⁇ s, sufficient heat dissipation cannot be obtained due to low thermal conductivity, and the effect of heat dissipation due to thick lamination is limited.
  • the short-circuit tolerance refers to a time during which a device (for example, IGBT) is not broken even if it is turned on in a short-circuit state. Further, if the substrate is thinned for the purpose of reducing the conduction loss and the turn-off loss of the IGBT, the short-circuit withstand capability is lowered due to a decrease in the heat capacity of the substrate.
  • Patent Document 3 discloses a bump structure made of sintered metal and solder on an electrode. However, since the heat radiation from the surface electrode is insufficient in the structure, the effect of increasing the short-circuit resistance is small. Moreover, in patent document 3, although the solder is formed on an electrode, the adhesion
  • the present invention has been made to solve such a problem, and an object thereof is to provide a power semiconductor device capable of improving heat dissipation and adhesion.
  • a power semiconductor device includes a surface electrode that is formed on a semiconductor substrate and through which a main current flows, a first metal layer that is formed on the surface electrode and is not a sintered body, A second metal layer that is a sintered body formed on the first metal layer, the second metal layer has a size that covers the entire surface electrode in plan view, and the first metal layer Higher thermal conductivity than metal layers.
  • a power semiconductor device includes a surface electrode that is formed on a semiconductor substrate and through which a main current flows, a first metal layer that is not a sintered body formed on the surface electrode, and a first metal layer.
  • a second metal layer that is a formed sintered body, the second metal layer has a size that covers the entire surface electrode in plan view, and is more thermally conductive than the first metal layer. Therefore, it is possible to improve heat dissipation and adhesion.
  • FIG. 3 is a plan view showing a positional relationship among an emitter electrode, a polyimide layer, a sintered metal layer, and a solder layer in the power semiconductor device according to the first embodiment of the present invention. It is sectional drawing which shows an example of the manufacturing process of the power semiconductor device by Embodiment 1 of this invention. It is sectional drawing which shows an example of the manufacturing process of the power semiconductor device by Embodiment 1 of this invention. It is sectional drawing which shows an example of the manufacturing process of the power semiconductor device by Embodiment 1 of this invention. It is sectional drawing which shows an example of the manufacturing process of the power semiconductor device by Embodiment 1 of this invention.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a power semiconductor device 1 according to the first embodiment of the present invention.
  • a power semiconductor device 1 is formed on a semiconductor substrate 2 so as to cover an emitter electrode 3 that is a surface electrode through which a main current flows, and a part of the semiconductor substrate 2 and the emitter electrode 3.
  • the first metal layer hereinafter referred to as the conductive layer 5
  • a second metal layer hereinafter referred to as a sintered metal layer 7 that covers the entire emitter electrode 3 and has a size larger than that of the emitter electrode 3, and a sintered metal layer 7 on the conductive layer 5.
  • the plan view means that the power semiconductor device 1 is viewed from the upper side to the lower side in FIG. 1, specifically, from the bus bar 9 side to the semiconductor substrate 2 side.
  • FIG. 2 is a plan view of the power semiconductor device 1 shown in FIG. 2, illustration of the semiconductor substrate 2, the insulating layer 4, the conductive layer 5, and the bus bar 9 shown in FIG. 1 is omitted, and the emitter electrode 3 is not shown in a plan view but is shown by a broken line so that the positional relationship can be seen.
  • . 2 shows the positional relationship of the emitter electrode 3, the polyimide layer 6, the sintered metal layer 7, and the solder layer 8, the emitter electrode 3, the polyimide layer 6, the sintered metal layer 7, and the solder layer.
  • the size and shape of 8 are not limited to this.
  • the sintered metal layer 7 covers the entire emitter electrode 3 and is larger than the emitter electrode 3 includes the case where the sintered metal layer 7 covers only the upper part of the emitter electrode 3.
  • 3 to 6 are cross-sectional views showing an example of the manufacturing process of the power semiconductor device 1.
  • the semiconductor substrate 2 includes an active region (not shown) in which impurities are implanted in a predetermined region on the surface of the semiconductor substrate 2, and an impurity in a region surrounding the active region. It is assumed that a termination region (not shown) into which is implanted is formed.
  • the emitter electrode 3 is formed on the active region of the semiconductor substrate 2.
  • the insulating layer 4 is formed so as to cover a part of the emitter electrode 3 and the termination region of the semiconductor substrate 2.
  • the emitter electrode 3 may be Al, for example.
  • the insulating layer 4 may be, for example, SiN formed by CVD (Chemical Vapor Deposition) or the like.
  • a conductive layer 5 is formed on the active region of the emitter electrode 3 and the insulating layer 4.
  • the active region of the emitter electrode 3 refers to a region of the emitter electrode 3 corresponding to the active region of the semiconductor substrate 2.
  • the conductive layer 5 has a size that covers the entire emitter electrode 3 in a plan view and protrudes from the end of the emitter electrode 3.
  • a polyimide layer 6 is formed on the conductive layer 5 at a position that does not overlap the emitter electrode 3 in plan view. That is, the polyimide layer 6 is formed in a terminal region of the semiconductor substrate 2 at a position away from the conductive paste 10 that is formed on the conductive layer 5 later.
  • the conductive layer 5 may be Ni, Au, Ni alloy, or Au alloy formed by sputtering or vapor deposition, for example.
  • the conductive layer 5 does not become a sintered body by firing in a later step, that is, a metal other than the sintered body.
  • the conductive layer 5 is a dense layer, and the porosity (also referred to as porosity or void ratio) per unit area is desirably 1% or less. Ni prevents the sintered metal, which is a sintered body, from diffusing into the emitter electrode 3 (for example, Al).
  • the bonding between the emitter electrode 3 and solder may be insufficiently adhered depending on the formation conditions, but by forming Ni between the emitter electrode and the solder, Ni And the emitter electrode are in close contact with each other, and an alloy of Ni and solder is formed so that Ni and solder are in close contact. Thereby, the adhesiveness of the emitter electrode 3 and the solder layer 8, and the sintered metal layer 7 and the emitter electrode 3 can be improved.
  • Au has oxidation resistance and can prevent rust even when exposed to the atmosphere.
  • the polyimide layer 6, the sintered metal layer 7, and the solder layer 8 cover the conductive layer 5.
  • the possibility of touching is low.
  • the solder layer 8 is corroded due to deterioration over time or the like, the conductive layer 5 previously covered by the solder layer 8 is exposed to the atmosphere and rust is generated, and the power semiconductor device 1 may be further deteriorated. There is sex. Therefore, it is desirable that the portion of the surface of the conductive layer 5 where the conductive layer 5 and the solder layer 8 are directly joined is Au.
  • the thickness of the conductive layer 5 does not need to be increased, and may be, for example, 1 ⁇ m or less.
  • the conductive paste 10 is formed on the conductive layer 5 so that the end of the emitter electrode 3 protrudes in a plan view, covers the emitter electrode 3 with a size larger than that, and does not contact the polyimide layer 6.
  • a solder layer 8 is formed so as to cover a part of the conductive paste 10, the conductive layer 5, and the polyimide layer 6.
  • the solder layer 8 may be formed so as to cover the entire polyimide layer 6.
  • a metal such as Cu or Ag may be used.
  • the conductive paste 10 is fired in a later step to become the sintered metal layer 7.
  • Sintered metal has high thermal conductivity and can be formed thick because of low stress, and heat capacity is added, so that the heat dissipation of the element surface can be improved.
  • the sintered metal layer 7 so as to completely cover the emitter electrode 3 in a plan view, it is possible to improve transient heat dissipation, and until an overcurrent flows due to thermal runaway when the power semiconductor device 1 is short-circuited. It is possible to extend the short-circuit withstand time which is
  • the transient heat dissipation means that heat is dissipated during the time until overcurrent flows due to thermal runaway when the power semiconductor device 1 is short-circuited.
  • FIG. 8 is a diagram showing the relationship between the thickness of the metal layer laminated on the emitter electrode 3 and the short-circuit tolerance, and is a graph of the results of the computer simulation.
  • air heat capacity: 0.01 J / cm 3 ⁇ K, thermal conductivity 0.0003 W / cm ⁇ K
  • a sintered metal layer of Cu heat capacity: 2.71 J / cm 3 ⁇ K, thermal conductivity 1.8 W / cm ⁇ K
  • a metal layer made of NiP (heat capacity: 3 .42 J / cm 3 ⁇ K, thermal conductivity 0.05 W / cm ⁇ K) and solder on the emitter electrode 3 (heat capacity: 1.74 J / cm 3 ⁇ K, thermal conductivity 0.64 W / (cm ⁇ K).
  • stacked on the emitter electrode 3 is 20 micrometers and 40 micrometers.
  • the Cu sintered metal layer refers to a sintered metal layer formed by firing a conductive paste 10 made of Cu.
  • the sintered metal layer of Cu is also referred to as a Cu sintered body.
  • NiP is an example of a plating metal.
  • the short-circuit withstand capability is 4.5 ⁇ s.
  • the short-circuit withstand capability is 5.5 ⁇ s for solder, and 6.0 ⁇ s for a sintered metal layer and a metal layer made of NiP. Therefore, the short-circuit withstand capability when a 20 ⁇ m sintered metal layer or a NiP metal layer is laminated on the emitter electrode 3 is larger than that of air or solder.
  • the short-circuit resistance when a 40 ⁇ m metal is laminated on the emitter electrode 3 is 6.5 ⁇ s for NiP and solder, and 7.5 ⁇ s for sintered Cu. Therefore, the short-circuit withstand capability when 40 ⁇ m sintered Cu is laminated on the emitter electrode 3 is larger than that of air, solder, or NiP.
  • the effect obtained by laminating the metal layer made of NiP on the emitter electrode 3 by plating is reduced when the thickness exceeds 20 ⁇ m.
  • the power semiconductor device 1 according to the first embodiment is Cu. It can be seen that the short-circuit resistance is increased by laminating the sintered metal layer 7.
  • a Cu sintered metal layer has been described as an example, an Ag sintered metal layer (heat capacity: 2.00 J / cm 3 ⁇ K, thermal conductivity 2.4 W / cm ⁇ K) may be used. The same effect as above can be obtained.
  • the Ag sintered metal layer refers to a sintered metal layer obtained by firing the conductive paste 10 made of Ag.
  • the sintered metal layer of Ag is also referred to as an Ag sintered body.
  • the conductive paste 10 is fired to become the sintered metal layer 7.
  • the power semiconductor device 1 shown in FIG. 1 is completed.
  • FIG. 7 is a cross-sectional view showing an example of the configuration of the IGBT 11.
  • the IGBT 11 can be mounted on the power semiconductor device 1 (AA portion in FIG. 3).
  • a p collector layer 13, an n buffer layer 14 (the n buffer layer 14 may be a part of the n drift layer 15), an n drift layer 15, a p-type impurity layer.
  • a p base layer 16 and an n emitter layer 17 which is a high-concentration n-type impurity layer are sequentially stacked.
  • the p collector layer 13, the n buffer layer 14, and the n drift layer 15 are made of Si.
  • a trench gate 19 whose periphery is covered with a gate oxide film 18 is formed so as to penetrate the n emitter layer 17 and the p base layer 16 to reach the n drift layer 15.
  • the trench gate 19 is made of, for example, polysilicon.
  • the upper surfaces (surfaces) of the trench gate 19 and the gate oxide film 18 are covered with an interlayer insulating film 20 such as silicon oxide.
  • Emitter electrode 3 is formed to cover p base layer 16, n emitter layer 17, and interlayer insulating film 20.
  • the power semiconductor device 1 on which the IGBT 11 is mounted is manufactured, first, the IGBT 11 shown in FIG. 7 is formed, and then the manufacturing steps in the order shown in FIGS. 3 to 6 are performed, whereby the power semiconductor device 1 shown in FIG. Can be obtained.
  • power semiconductor device 1 mounts IGBT 11 emitter electrode 3 and gate electrode (not shown) are formed in plan view.
  • the present invention is directed to the emitter electrode 3 having a larger area among the emitter electrode 3 and the gate electrode.
  • the sintered metal layer 7 has high thermal conductivity and can be formed thick because of low stress, and heat capacity is added. Can be improved.
  • the conductive layer 5 between the emitter electrode 3 and the solder layer 8 the adhesion between the emitter electrode 3 and the solder layer 8, and the sintered metal layer 7 and the emitter electrode 3 can be enhanced.
  • the sintered metal layer 7 is formed so as to cover the emitter electrode 3 in a plan view, heat dissipation (transient heat dissipation) at the time of a short circuit can be improved.
  • FIG. 10 is a cross-sectional view showing an example of the configuration of the power semiconductor device 21 according to the second embodiment of the present invention.
  • the power semiconductor device 21 includes a conductive layer 22 that is a first metal layer made of Cu and a second formed by baking a conductive paste made of Cu. It is characterized by comprising a sintered metal layer 23 which is a metal layer and a wire 24 made of Cu bonded on the sintered metal layer 23. Since other configurations are the same as those of the power semiconductor device 1 according to the first embodiment (see FIG. 1), detailed description thereof is omitted here.
  • the wire 24 is directly connected to the high-strength sintered metal layer 23. Further, in order to secure the adhesion between the sintered metal layer 23 and the base and enhance the reliability, the conductive layer 22 is formed as the base of the sintered metal layer 23.
  • the conductive layer 22 may be formed by screen printing or plating, for example. Further, the thickness of the conductive layer 22 does not need to be increased, and may be, for example, 1 ⁇ m or less.
  • the sintered metal layer 23 has high thermal conductivity and can be formed thick because of low stress, and heat capacity is added, so that the heat dissipation of the element surface can be improved.
  • the effect of forming the sintered metal layer 23 on the emitter electrode 3 is as described in the first embodiment (FIG. 5).
  • the short-circuit withstand capability is limited to the location where the thermal runaway of current occurs most quickly, in order to improve the short-circuit withstand capability with certainty, it is just above the active region of the emitter electrode 3 indicated by CC in FIG. It is desirable to laminate the sintered metal layer 23 on the entire surface.
  • the power semiconductor device 21 can mount the IGBT 11 (see FIG. 7).
  • the sintered metal layer 23 has high thermal conductivity and can be formed thick because of low stress, and heat capacity is added. Can be improved.
  • the conductive layer 22 between the emitter electrode 3 and the sintered metal layer 23 the adhesion between the emitter electrode 3 and the sintered metal layer 23 can be enhanced.
  • the sintered metal layer 23 is formed so as to cover the emitter electrode 3 in a plan view, it is possible to improve heat dissipation during short-circuit (that is, transient heat dissipation).
  • the conductive paste As described in the first and second embodiments, it is desirable to form the conductive paste so as to cover the emitter electrode in plan view. However, depending on the pattern of the power semiconductor device or the manufacturing method, the conductive paste is directly above the end of the emitter electrode 3. There is a possibility that the conductive paste cannot be formed. Further, if the conductive layer and the sintered metal layer are formed with the same width, for example, the screen can be formed by repeating screen printing twice in the manufacturing process, which facilitates manufacturing. In the third embodiment, a power semiconductor device capable of improving heat dissipation and ensuring short circuit tolerance even in such a case will be described.
  • FIG. 11 is a cross-sectional view showing an example of the configuration of the power semiconductor device 25 according to the third embodiment of the present invention.
  • the power semiconductor device 25 according to the third embodiment is different from the first embodiment in the positions where the polyimide layer 6, the conductive layer 26, and the sintered metal layer 27 are formed. Since other configurations are the same as those of the first embodiment, detailed description thereof is omitted here.
  • a region indicated by DD indicates an active region of the emitter electrode 3.
  • a region indicated by E1-E2 indicates a region where the conductive layer 26 and the sintered metal layer 27 are not formed in the active region of the emitter electrode 3.
  • E1 indicates the boundary position between the active region and the termination region, and E2 indicates the position of the end portions of the conductive layer 26 and the sintered metal layer 27 stacked on the emitter electrode 3.
  • the heat dissipation is reduced, and the thermal runaway of current may occur earlier than other regions in the DD region, and the short-circuit withstand capability may be reduced.
  • the heat generated in the E1-E2 region diffuses to a region having high thermal conductivity, but since the polyimide layer 6 having low heat dissipation is formed immediately above the E1-E2 region, the heat generated in the E1-E2 region is It diffuses outside through the surface of the E1-E2 region.
  • the surface of the E1-E2 region continues to the conductive layer 26 and the sintered metal layer 27 laminated on the emitter electrode 3 and the termination region, but the conductive layer 26 and the sintered metal layer 27 whose thermal conductivity is metal.
  • the position of E1 which is the farthest part from the conductive layer 26 and the sintered metal layer 27 in the E1-E2 region, is used in order to allow the heat radiation to be in time within the transition time from the start of the short circuit to the occurrence of thermal runaway. It is only necessary to allow the heat generated in step S2 to reach the position E2 where the sintered metal layer 27 is formed within the transition time with high heat dissipation (that is, high thermal conductivity and large heat capacity).
  • the three metal layers laminated on the emitter electrode 3 have a thickness increased from 0 ⁇ m to 40 ⁇ m and an increase in short-circuit resistance. This is because the heat dissipation path is extended by increasing the thickness. This indicates that the transient heat dissipation effect has also increased.
  • the short-circuit resistance also increases stepwise.
  • the thermal conductivity of Al forming the emitter electrode 3 is about 2.36 W / cm ⁇ K, which is 40 times that of NiP, and is a sintered metal layer formed by firing a conductive paste made of Cu. 80% or more. Therefore, by increasing the thickness of the emitter electrode 3 and the sintered metal layer 27 from at least 0 ⁇ m to 40 ⁇ m, a transient 40 ⁇ m heat dissipation path can be secured.
  • the emitter electrode 3 and the insulating layer 4 are formed on the surface of the semiconductor substrate 2.
  • a conductive layer 26 having a size that covers the active region (DD region) of the emitter electrode 3 in plan view is formed on the emitter electrode 3.
  • a polyimide layer 6 is formed so as to cover the insulating layer 4 and the region (E1-E2 region) where the conductive layer 26 is not formed, which is the active region of the emitter electrode 3.
  • a conductive paste having the same width as that of the conductive layer 26 in plan view is formed on the conductive layer 26.
  • a solder layer 8 is formed so as to cover the conductive paste and a part of the polyimide layer 6.
  • the solder layer 8 may be formed so as to cover the entire polyimide layer 6.
  • the end portion of the conductive layer 26 and the end portion of the conductive paste correspond to a position spaced from the E1 position to the DD region side by a distance equal to or smaller than the thickness of the conductive paste (that is, the E2 position) in plan view. To do.
  • the bus bar 9 is joined on the solder layer 8. Thereafter, pressure treatment and overheat treatment are performed. At this time, the conductive paste is baked to become the sintered metal layer 27. Through the above-described steps, the power semiconductor device 25 shown in FIG. 11 is completed.
  • FIG. 12 shows a power semiconductor device 28 having a structure in which a sintered metal layer is formed by laminating and sintering a conductive paste over the entire active region.
  • the solder layer 8 and the bus bar 9 are provided.
  • the present invention is not limited to this.
  • the power semiconductor device 29 may have a configuration in which a wire 30 is connected to the sintered metal layer 27 by wire bonding.
  • the sintered metal layer 27 is formed by firing a conductive paste made of Cu
  • the conductive layer 26 made of Cu is formed by, for example, screen printing or plating
  • the wire 30 made of Cu is sufficient.
  • the power semiconductor devices 25, 28, and 29 can mount the IGBT 11 (see FIG. 7).
  • the effect of forming the sintered metal layer 27 on the emitter electrode 3 is as described in the first embodiment (FIG. 5).
  • the margin of the position where the conductive layer 26 is formed can be freely set within a range not exceeding the thickness of the sintered metal layer 27.
  • the conductive layer 26 and the sintered metal layer 27 having the same width can be formed. Therefore, it is easier to manufacture the power semiconductor device than in the first embodiment. Furthermore, even if the sintered metal layer cannot be formed immediately above the end of the emitter electrode 3 depending on the pattern of the power semiconductor device or the manufacturing method, the effect of improving the short-circuit resistance can be obtained.
  • FIG. 14 is a cross-sectional view showing an example of the configuration of the power semiconductor device 31 according to the fourth embodiment of the present invention.
  • a region indicated by FF hereinafter referred to as FF region indicates an active region of the emitter electrode 3.
  • the power semiconductor device 31 according to the fourth embodiment uses the sintered metal layer 7 of the power semiconductor device 1 according to the first embodiment as two sintered metal layers 32 and 33. It is characterized by that. Since other configurations are the same as those of the power semiconductor device 1 according to the first embodiment (see FIG. 1), detailed description thereof is omitted here.
  • the sintered metal layer 32 has a lower porosity than the sintered metal layer 33.
  • the porosity means the ratio of the number of pores per unit volume in the sintered metal layer. Low porosity means that the density per unit volume of pores in the sintered metal layer is small. High porosity means that the density per unit volume of pores in the sintered metal layer is large.
  • the sintered metal layer is less likely to warp compared to a film formed by, for example, plating or sputtering, but warpage may occur when the thickness is, for example, about 100 ⁇ m.
  • the sintered metal layer in contact with the conductive layer 5 desirably has high adhesion in order to obtain high reliability.
  • the sintered metal layer 32 in contact with the conductive layer 5 is a layer having high adhesion and a low porosity, and there is no void on the sintered metal layer 32.
  • a sintered metal layer 33 having a high rate is formed. In this way, by adopting a configuration in which the two sintered metal layers 32 and 33 are laminated, adhesion with the conductive layer 5 can be secured, and the sintered metal layers 32 and 33 are laminated thickly. Is also low stress.
  • the emitter electrode 3 and the insulating layer 4 are formed on the surface of the semiconductor substrate 2. At this time, the emitter electrode 3 is formed on the active region of the semiconductor substrate 2. The insulating layer 4 is formed on the termination region of the semiconductor substrate 2.
  • a conductive layer 5 made of Ni or Au is formed on the active region of the emitter electrode 3 and the insulating layer 4.
  • a polyimide layer 6 is formed on the conductive layer 5 at a position that does not overlap the emitter electrode 3 in plan view.
  • the conductive layer 5 is made of a metal having a low porosity so that the end of the emitter electrode 3 protrudes in a plan view, covers with a size larger than that of the emitter electrode 3, and does not contact the polyimide layer 6.
  • a conductive paste and a conductive paste made of a metal having a high porosity are sequentially stacked.
  • Each conductive paste may be formed by screen printing or the like using a metal such as Cu or Ag.
  • the thickness of the conductive paste made of a metal having a low porosity does not need to be increased, and may be, for example, 1 ⁇ m or less.
  • solder layer 8 is formed so as to cover each conductive paste, the conductive layer 5, and a part of the polyimide layer 6.
  • the solder layer 8 may be formed so as to cover the entire polyimide layer 6.
  • each conductive paste is fired to become a sintered metal layer.
  • the conductive paste composed of a metal with a low porosity is fired to form a sintered metal layer 32
  • the conductive paste composed of a metal with a high porosity is fired to a sintered metal layer 33. become.
  • the solder layer 8 dissolves and penetrates in the direction of lamination of the conductive paste composed of a metal having a high porosity, so that the firing formed after the pressure treatment and heat treatment is performed.
  • a portion of the binder metal layer 33 adjacent to the solder layer 8 has an alloy structure of the solder layer 8 and a conductive paste made of a metal having a high porosity.
  • the power semiconductor device 31 can mount the IGBT 11 (see FIG. 7).
  • FIG. 15 is a diagram showing the relationship between the thickness of the metal layer laminated on the emitter electrode 3 and the short-circuit tolerance, and is a graph of the results of the computer simulation.
  • air heat capacity: 0.01 J / cm 3 ⁇ K, thermal conductivity 0.0003 W / cm ⁇ K
  • an Ag sintered metal layer heat capacity: 2.00 J / cm 3 ⁇ K, thermal conductivity 2.4 W / cm ⁇ K
  • a sintered metal layer heat conductivity: 1.1 W / cm ⁇ K
  • solder heat capacity: 1 .74 J / cm 3 ⁇ K, thermal conductivity 0.64 W / cm ⁇ K.
  • the short-circuit withstand capability is 4.5 ⁇ s, and when each metal layer is laminated on the emitter electrode 3, As the thickness of each metal layer increases, the short-circuit resistance improves.
  • the Ag sintered metal layer with a porosity of 28% has a low short-circuit tolerance even when the thickness is increased, compared with an Ag sintered metal layer with a porosity of 19%.
  • the Ag sintered metal layer having a porosity of 28% has the same short-circuit resistance when the thickness is 60 ⁇ m or less, but has a high short-circuit resistance when the thickness is 80 ⁇ m and 100 ⁇ m.
  • the stress can be made lower than when laminating a metal with a low porosity, Since low stress can be maintained even if a metal having a high porosity is laminated thicker, the effect of increasing the short-circuit resistance is great.
  • the Ag sintered metal layer has been described as an example, but the same effect can be obtained with a Cu sintered metal layer. Therefore, the stress can be kept small by laminating a metal layer with a high porosity after forming a metal layer with a low porosity. In addition, a metal layer having a high porosity can be formed thick, and an effect of extending the short-circuit resistance can be obtained.
  • the present invention is not limited to this. Even when three or more sintered metal layers are laminated, the short-circuit tolerance is improved by laminating sintered metal layers having different porosity from the side closer to the conductive layer in ascending order of porosity. be able to.
  • the structure in which the plurality of sintered metal layers described above are laminated is not limited to the first embodiment (see FIG. 1), but also the power semiconductor devices 21, 25, 28, and 29 according to the second and third embodiments (FIG. 10). , 11, 12, 13).
  • the sintered metal layer 32 having a low porosity is formed, and the sintered metal layer 33 having a high porosity is formed on the sintered metal layer 32. Therefore, adhesion between the sintered metal layer 32 and the conductive layer 5 is ensured. Moreover, since the low stress is maintained even if the sintered metal layer 33 is formed thick, a sufficient heat capacity can be ensured and the heat dissipation can be improved. By forming the sintered metal layers 32 and 33 so as to completely cover the emitter electrode 3 in plan view, transient heat dissipation can be improved, and an overcurrent is generated due to thermal runaway when the power semiconductor device 1 is short-circuited.
  • Short circuit tolerance which is time until it can flow can be extended. Since the short-circuit withstand capability is limited to the location where the current thermal runaway occurs most quickly, in order to improve the short-circuit withstand capability with certainty, it is just above the active region of the emitter electrode 3 shown by the FF region in FIG. It is desirable to laminate the sintered metal layers 32 and 33 on the entire surface.
  • the semiconductor device mounted on the power semiconductor device may be a MOSFET other than IGBT, and the semiconductor substrate may be SiC or GaN other than Si.
  • wide gap semiconductors such as SiC or GaN are required to operate at a higher temperature than Si, so that the transient heat dissipation effect by laminating the sintered metal layer on the emitter electrode is greater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本発明は、放熱性および密着性を向上させることが可能な電力用半導体装置を提供することを目的とする。本発明による電力用半導体装置(1)は、半導体基板(2)上に形成され主電流が流れるエミッタ電極(3)と、エミッタ電極(3)上に形成された焼結体でない導電層(5)と、導電層(5)上に形成された焼結体である焼結金属層(7)とを備え、焼結金属層(7)は、平面視においてエミッタ電極(3)の全体を覆う大きさを有し、かつ導電層(5)よりも熱伝導性が高い。

Description

電力用半導体装置
 本発明は、電力用半導体装置に関する。
 パワー半導体モジュールは、大電流をスイッチング制御するIGBT(Insulated Gate Bipolar Transistor)パワーデバイスと、スイッチング時に発生する逆電流を遮断するダイオードとから構成されており、電力変換器の主要な構成部品として家電あるいは車両用等の幅広い分野で使用されている。
 近年、パワー半導体モジュールが使用される環境が厳しくなっており、例えば使用環境が高温化したり、制御する電流が増加したりしている。このような厳しい環境下で使用するために、IGBTパワーデバイス等のパワー半導体装置の性能としては、温度変化が大きい使用環境下で長期間に渡って正常な動作を確保することができる高い信頼性、および大電流の通電に伴ってパワー半導体装置を構成する半導体チップからの発熱量増大によるパワー半導体装置の高温化に耐える高い耐熱性が求められる。
 特に、耐熱性を確保するために、従来では、はんだまたは金属粒子を含む接合材であるダイボンド剤が用いられている。例えば、半導体基板の放熱を裏面側からリードフレームを介して行う技術が開示されている(例えば、特許文献1参照)。
 また、ベアチップの表面に形成された表面電極(Al電極)と、表面電極上に無電解めっき法で成膜されたNiめっき層およびAuめっき層からなる積層金属層と、表面電極の側面に形成された周辺耐圧構造とを備え、ベアチップの表面からの放熱を積層金属層を介して行う技術が開示されている(例えば、特許文献2参照)。
 また、電極上に焼結金属とはんだとからなるバンプ構造が開示されている(例えば、特許文献3参照)。
特開2013-16580号公報 特許第5494559号公報 特開2015-126158号公報
 車載用など小型化が要求されるパワー半導体モジュールは、発熱量が大きくなるため、放熱性能のさらなる向上が求められる。また、SiCのようなワイドバンドギャップ半導体を用いたパワー半導体モジュールは、使用可能な温度範囲が広がるため、例えば-40℃~250℃程度の範囲における信頼性が求められる。このような条件下でパワー半導体モジュールを動作させるためには、パワー半導体装置の裏面からの放熱では不十分である。
 特許文献2では、Niめっき層およびAuめっき層の厚みを増やすことによって熱容量を増やすことができるが、Niめっき層およびAuめっき層の厚みを増やすと応力も増すため反りが発生し、基板が割れるなどして信頼性が低下するため、厚く積層することは困難である。また、特許文献2では、無電解めっき膜の形成を想定しているが、めっき膜の成膜レートは低く、厚く積層すると生産性が低下してしまう。
 Niは、例えばはんだ等の金属材料と比較して熱伝導性が低い。IGBTの短絡耐量は、10μs程度の短い時間スケールであるため、熱伝導性が低いことによって十分な放熱性が得られず、厚く積層することによる放熱の効果は限定される。ここで、短絡耐量とは、短絡状態で素子(例えば、IGBT)がオンしても破壊しない時間のことをいう。また、IGBTの通電損失およびターンオフ損失の低減を目的として基板を薄くすると、基板における熱容量が下がることによって短絡耐量が低下してしまう。
 特許文献3では、電極上に焼結金属とはんだとからなるバンプ構造が開示されているが、当該構造では表面電極からの放熱が不十分であるため、短絡耐量が増えるという効果は小さい。また、特許文献3では、電極上にはんだを形成しているが、電極とはんだとの接合は形成条件によっては密着が不十分になることがある。
 本発明は、このような問題を解決するためになされたものであり、放熱性および密着性を向上させることが可能な電力用半導体装置を提供することを目的とする。
 上記の課題を解決するために、本発明による電力用半導体装置は、半導体基板上に形成され主電流が流れる表面電極と、表面電極上に形成された焼結体でない第1の金属層と、第1の金属層上に形成された焼結体である第2の金属層とを備え、第2の金属層は、平面視において表面電極の全体を覆う大きさを有し、かつ第1の金属層よりも熱伝導性が高い。
 本発明によると、電力用半導体装置は、半導体基板上に形成され主電流が流れる表面電極と、表面電極上に形成された焼結体でない第1の金属層と、第1の金属層上に形成された焼結体である第2の金属層とを備え、第2の金属層は、平面視において表面電極の全体を覆う大きさを有し、かつ第1の金属層よりも熱伝導性が高いため、放熱性および密着性を向上させることが可能となる。
 本発明の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態1による電力用半導体装置の構成の一例を示す断面図である。 本発明の実施の形態1による電力用半導体装置において、エミッタ電極、ポリイミド層、焼結金属層、およびはんだ層の位置関係を示す平面図である。 本発明の実施の形態1による電力用半導体装置の製造工程の一例を示す断面図である。 本発明の実施の形態1による電力用半導体装置の製造工程の一例を示す断面図である。 本発明の実施の形態1による電力用半導体装置の製造工程の一例を示す断面図である。 本発明の実施の形態1による電力用半導体装置の製造工程の一例を示す断面図である。 本発明の実施の形態1によるIGBTの構成の一例を示す断面図である。 本発明の実施の形態1によるエミッタ電極上に積層した金属層の厚みと短絡耐量との関係を示す図である。 比較例による電力用半導体装置の構成の一例を示す断面図である。 本発明の実施の形態2による電力用半導体装置の構成の一例を示す断面図である。 本発明の実施の形態3による電力用半導体装置の構成の一例を示す断面図である。 本発明の実施の形態3による電力用半導体装置の構成の一例を示す断面図である。 本発明の実施の形態3による電力用半導体装置の構成の一例を示す断面図である。 本発明の実施の形態4による電力用半導体装置の構成の一例を示す断面図である。 本発明の実施の形態4によるエミッタ電極上に積層した金属層の厚みと短絡耐量との関係を示す図である。
 本発明の実施の形態について、図面に基づいて以下に説明する。なお、本発明は、以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。以下で説明する図面は、理解の容易のために、各部材の縮尺が実際とは異なる場合がある。また、各図面間においても同様である。
 <実施の形態1>
 図1は、本発明の実施の形態1による電力用半導体装置1の構成の一例を示す断面図である。
 図1に示すように、電力用半導体装置1は、半導体基板2上に形成され主電流が流れる表面電極であるエミッタ電極3と、半導体基板2とエミッタ電極3の一部とを覆うように形成された絶縁層4と、エミッタ電極3および絶縁層4を覆うように形成された焼結体でない第1の金属層(以下、導電層5という)と、導電層5上に形成され平面視においてエミッタ電極3の全体を覆い、かつエミッタ電極3以上の大きさを有する焼結体である第2の金属層(以下、焼結金属層7という)と、導電層5上に焼結金属層7と離間して形成されたポリイミド層6と、ポリイミド層6の一部、焼結金属層7、および導電層5を覆うように形成されたはんだ層8と、はんだ層8上に接合されたバスバー9とを備えている。ここで、平面視とは、電力用半導体装置1を図1の上側から下側に向かって、具体的にはバスバー9側から半導体基板2側に向かって見ることをいう。
 図2は、図1に示す電力用半導体装置1を平面視したときにおける平面図である。図2において、図1に示す半導体基板2、絶縁層4、導電層5、およびバスバー9の図示を省略し、エミッタ電極3は平面視では見えないが位置関係が分かるように破線で示している。なお、図2は、エミッタ電極3、ポリイミド層6、焼結金属層7、およびはんだ層8の位置関係を示しているが、エミッタ電極3、ポリイミド層6、焼結金属層7、およびはんだ層8の大きさおよび形はこれに限定されるものではない。また、焼結金属層7がエミッタ電極3の全体を覆い、かつエミッタ電極3よりも大きいとは、焼結金属層7がエミッタ電極3の上部のみを覆う場合を含む。
 図3~6は、電力用半導体装置1の製造工程の一例を示す断面図である。
 なお、図3に示す工程の前において、半導体基板2には、半導体基板2の表面の予め定められた領域に不純物が注入された活性領域(図示せず)と、活性領域を囲む領域に不純物が注入された終端領域(図示せず)とが形成されているものとする。
 図3において、半導体基板2の活性領域上にエミッタ電極3を形成する。次いで、エミッタ電極3の一部および半導体基板2の終端領域を覆うように絶縁層4を形成する。エミッタ電極3としては、例えばAlであってもよい。絶縁層4は、例えばCVD(Chemical Vapor Deposition)等によって形成したSiN等であってもよい。
 図4において、エミッタ電極3の活性領域、および絶縁層4上に導電層5を形成する。ここで、エミッタ電極3の活性領域とは、半導体基板2の活性領域に対応するエミッタ電極3の領域のことをいう。導電層5は、平面視においてエミッタ電極3の全体を覆い、かつエミッタ電極3の端部をはみ出す大きさを有している。次いで、導電層5上であってエミッタ電極3と平面視で重ならない位置にポリイミド層6を形成する。すなわち、ポリイミド層6は、半導体基板2の終端領域において、後に導電層5上に形成される導電ペースト10と離間する位置に形成されている。
 導電層5としては、例えばスパッタまたは蒸着等によって形成したNi、Au、Ni合金、またはAu合金であってもよい。ここで、導電層5は、後の工程で焼成して焼結体とならない、すなわち、焼結体以外の金属である。導電層5は、緻密な層であり、単位面積あたりの空孔率(空隙率またはボイド率ともいう)は1%以下であることが望ましい。Niは、焼結体である焼結金属がエミッタ電極3(例えばAl)に拡散することを防止する。また、エミッタ電極3とはんだ(後述するはんだ層8)との接合は、形成条件によっては密着が不十分になることがあるが、Niをエミッタ電極とはんだとの間に形成することによって、Niとエミッタ電極が強く密着し、かつNiとはんだとの合金が形成されてNiとはんだとが強く密着する。これにより、エミッタ電極3とはんだ層8、および焼結金属層7とエミッタ電極3との密着性を高めることができる。
 Auは、酸化耐性を有しており、大気に触れた場合であっても錆の発生を防ぐことができる。本実施の形態では、導電層5としてNiを単独で使用した場合であっても、ポリイミド層6、焼結金属層7、およびはんだ層8が導電層5を覆うため、導電層5が空気に触れる可能性は低い。しかし、経年劣化等ではんだ層8に腐食が生じた場合は、それまではんだ層8が覆っていた導電層5が大気に触れて錆が発生し、電力用半導体装置1の劣化が進行する可能性がある。従って、導電層5の表面のうち、導電層5とはんだ層8とが直接接合する部分は、Auであることが望ましい。導電層5の厚みは、厚くする必要はなく、例えば1μmかそれ以下であってもよい。
 図5において、導電層5上に、平面視においてエミッタ電極3の端部をはみ出し、エミッタ電極3以上の大きさで覆い、かつポリイミド層6と接しないように導電ペースト10を形成する。次いで、導電ペースト10、導電層5、およびポリイミド層6の一部を覆うようにはんだ層8を形成する。なお、はんだ層8は、ポリイミド層6の全部を覆うように形成してもよい。導電ペースト10は、例えばCuまたはAg等の金属を用いればよい。
 導電ペースト10は、後の工程で焼成されて焼結金属層7となる。焼結金属は、熱伝導性が高く、かつ低応力のため厚く形成することができて熱容量付加となるため、素子表面の放熱性を向上させることができる。焼結金属層7を平面視でエミッタ電極3を完全に覆うように形成することによって、過渡的な放熱性を高めることができ、電力用半導体装置1の短絡時に熱暴走によって過電流が流れるまでの時間である短絡耐量を延ばすことができる。ここで、過渡的な放熱とは、電力用半導体装置1の短絡時に熱暴走によって過電流が流れるまでの時間に放熱することをいう。
 図8は、エミッタ電極3上に積層した金属層の厚みと短絡耐量との関係を示す図であり、計算機シミュレーションの結果をグラフ化したものである。図8では、エミッタ電極3上に積層する金属層がない一例として空気(熱容量:0.01J/cm・K、熱伝導率0.0003W/cm・K)とした場合と、エミッタ電極3上にCuの焼結金属層(熱容量:2.71J/cm・K、熱伝導率1.8W/cm・K)を形成した場合と、エミッタ電極3上にNiPからなる金属層(熱容量:3.42J/cm・K、熱伝導率0.05W/cm・K)を形成した場合と、エミッタ電極3上にはんだ(熱容量:1.74J/cm・K、熱伝導率0.64W/cm・K)を形成した場合とについて示している。また、エミッタ電極3に積層する金属層の厚みは、20μmと40μmとしている。なお、Cuの焼結金属層とは、Cuからなる導電ペースト10を焼成して形成された焼結金属層のことをいう。Cuの焼結金属層は、Cu焼結体ともいう。NiPは、めっき金属の一例である。
 図8に示すように、エミッタ電極3上に積層する金属層がない場合(ここでは空気の場合)の短絡耐量は4.5μsである。エミッタ電極3上に20μmの金属層を積層した場合の短絡耐量は、はんだの場合は5.5μs、焼結金属層およびNiPからなる金属層の場合は6.0μsである。従って、エミッタ電極3上に20μmの焼結金属層またはNiPからなる金属層を積層した場合における短絡耐量は、空気またははんだよりも延びが大きい。
 また、エミッタ電極3上に40μmの金属を積層した場合の短絡耐量は、NiPおよびはんだの場合は6.5μs、焼結Cuの場合は7.5μsである。従って、エミッタ電極3上に40μmの焼結Cuを積層した場合における短絡耐量は、空気、はんだ、またはNiPよりも延びが大きい。
 上記より、エミッタ電極3上にめっきによってNiPからなる金属層を積層することによる効果は、20μmを超えると小さくなる。また、図9に示すようなバスバー9と導電層5との間にはんだ単体を積層する電力用半導体装置と比較して、本実施の形態1による電力用半導体装置1(図1参照)はCuの焼結金属層7を積層することによって短絡耐量が増加することが分かる。なお、ここではCuの焼結金属層を一例として説明したが、Agの焼結金属層(熱容量:2.00J/cm・K、熱伝導率2.4W/cm・K)を用いても上記と同様の効果が得られる。このように、短絡耐量を増やすために厚い金属層を積層する場合は、焼結金属層を用いればより効果的であることが分かる。なお、短絡耐量は、電流の熱暴走が最も早く発生する箇所に律速されるため、短絡耐量を確実に向上させるためには、図5のB-Bで示すエミッタ電極3の活性領域の直上の全面に焼結金属層を積層することが望ましい。なお、Agの焼結金属層とは、Agからなる導電ペースト10を焼成した焼結金属層のことをいう。Agの焼結金属層は、Ag焼結体ともいう。
 電力用半導体装置1の製造工程の説明に戻り、図6において、はんだ層8上にバスバー9を接合した後、加圧処理および過熱処理を行う。このとき、導電ペースト10は焼成されて焼結金属層7になる。上記の各工程を経て、図1に示す電力用半導体装置1が完成する。
 図7は、IGBT11の構成の一例を示す断面図である。IGBT11は、電力用半導体装置1(図3のA-A部分)に実装可能である。
 図7に示すように、コレクタ電極12上には、pコレクタ層13、nバッファ層14(nバッファ層14は、nドリフト層15の一部でもよい)、nドリフト層15、p型不純物層であるpベース層16、および高濃度のn型不純物層であるnエミッタ層17が順に積層されている。pコレクタ層13、nバッファ層14、およびnドリフト層15は、Siで形成されている。
 また、nエミッタ層17およびpベース層16を貫通してnドリフト層15に至るように、周囲がゲート酸化膜18で覆われたトレンチゲート19が形成されている。トレンチゲート19は、例えばポリシリコンからなる。トレンチゲート19およびゲート酸化膜18の上面(表面)は、酸化シリコン等の層間絶縁膜20で覆われている。pベース層16、nエミッタ層17、および層間絶縁膜20を覆うようにエミッタ電極3が形成されている。
 IGBT11を実装した電力用半導体装置1を製造する場合は、まず図7に示すIGBT11を作成した後に、図3~6に示す順の製造工程を経ることによって、図1に示す電力用半導体装置1を得ることができる。なお、電力用半導体装置1がIGBT11を実装する場合は、平面視においてエミッタ電極3とゲート電極(図示せず)とが形成されている。本発明は、エミッタ電極3およびゲート電極のうち、より面積が広いエミッタ電極3を対象としている。
 以上のことから、本実施の形態1によれば、焼結金属層7は、熱伝導性が高く、かつ低応力のため厚く形成することができて熱容量付加となるため、素子表面の放熱性を向上させることができる。導電層5をエミッタ電極3とはんだ層8との間に形成することによって、エミッタ電極3とはんだ層8、および焼結金属層7とエミッタ電極3との密着性を高めることができる。さらに、焼結金属層7は、エミッタ電極3を平面視で覆うように形成されているため、短絡時の放熱性(過渡的な放熱性)を高めることができる。
 <実施の形態2>
 図10は、本発明の実施の形態2による電力用半導体装置21の構成の一例を示す断面図である。
 図10に示すように、本実施の形態2による電力用半導体装置21は、Cuからなる第1の金属層である導電層22と、Cuからなる導電ペーストを焼成して形成された第2の金属層である焼結金属層23と、焼結金属層23上にボンディングされたCuからなるワイヤー24とを備えることを特徴としている。その他の構成は、実施の形態1による電力用半導体装置1(図1参照)と同様であるため、ここでは詳細な説明を省略する。
 ワイヤーボンディングは、ワイヤーを接続する対象物に一定の強度が必要とされる。従って、本実施の形態2では、ワイヤー24を高強度の焼結金属層23に直接接続している。また、焼結金属層23と下地との密着性を確保して信頼性を高めるために、焼結金属層23の下地として導電層22を形成している。
 導電層22は、例えば、スクリーン印刷またはめっき等によって形成すればよい。また、導電層22の厚みは、厚くする必要はなく、例えば1μmかそれ以下であってもよい。
 焼結金属層23は、熱伝導性が高く、かつ低応力のため厚く形成することができて熱容量付加となるため、素子表面の放熱性を向上させることができる。エミッタ電極3上に焼結金属層23を形成することによる効果は、実施の形態1(図5)で説明した通りである。
 なお、短絡耐量は、電流の熱暴走が最も早く発生する箇所に律速されるため、短絡耐量を確実に向上させるためには、図10のC-Cで示すエミッタ電極3の活性領域の直上の全面に焼結金属層23を積層することが望ましい。
 実施の形態1と同様、電力用半導体装置21は、IGBT11(図7参照)を実装することが可能である。
 以上のことから、本実施の形態2によれば、焼結金属層23は、熱伝導性が高く、かつ低応力のため厚く形成することができて熱容量付加となるため、素子表面の放熱性を向上させることができる。導電層22をエミッタ電極3と焼結金属層23との間に形成することによって、エミッタ電極3と焼結金属層23との密着性を高めることができる。さらに、焼結金属層23は、エミッタ電極3を平面視で覆うように形成されているため、短絡時の放熱性(すなわち、過渡的な放熱性)を高めることができる。
 <実施の形態3>
 実施の形態1,2で説明したように、導電ペーストはエミッタ電極を平面視で覆うように形成することが望ましいが、電力用半導体装置のパターンまたは製造方法によってはエミッタ電極3の端部の直上に導電ペーストを形成することができない可能性がある。また、導電層および焼結金属層を同じ幅で形成すれば、製造工程における例えばスクリーン印刷を2回繰り返すことによって形成することができるため、製造が容易となる。本実施の形態3では、このような場合であっても放熱性を向上させて短絡耐量を確保することが可能な電力用半導体装置について説明する。
 図11は、本発明の実施の形態3による電力用半導体装置25の構成の一例を示す断面図である。
 本実施の形態3による電力用半導体装置25は、ポリイミド層6、導電層26、および焼結金属層27の形成箇所が実施の形態1と異なっている。その他の構成は、実施の形態1と同様であるため、ここでは詳細な説明を省略する。
 図11において、D-Dで示す領域(以下、D-D領域という)は、エミッタ電極3の活性領域を示している。E1-E2で示す領域(以下、E1-E2領域という)は、エミッタ電極3の活性領域のうち導電層26および焼結金属層27が形成されていない領域を示している。E1は、活性領域と終端領域との境界位置を示し、E2は、エミッタ電極3上に積層する導電層26および焼結金属層27の端部の位置を示している。
 E1-E2領域が大きい場合は放熱性が下がり、D-D領域における他の領域よりも早く電流の熱暴走が発生して短絡耐量が低下する可能性がある。E1-E2領域で発生した熱は熱伝導性が高い領域に拡散するが、E1-E2領域の直上は放熱性が低いポリイミド層6が形成されているため、E1-E2領域で発生した熱は当該E1-E2領域の表面を通って外部に拡散することになる。E1-E2領域の表面は、エミッタ電極3上に積層された導電層26および焼結金属層27、および終端領域へと続くが、熱伝導性が金属である導電層26および焼結金属層27からの放熱が支配的であると考えられる。短絡が始まってから熱暴走が発生するまでの過渡時間内に放熱が間に合うようにするためには、E1-E2領域のうち導電層26および焼結金属層27から最も遠い箇所であるE1の位置で発生した熱が、過渡時間内に放熱性が高い(すなわち、熱伝導性が高くかつ熱容量が大きい)焼結金属層27の形成位置であるE2の位置まで到達できるようにすればよい。
 図8に示すように、エミッタ電極3上に積層する金属層は、3種類とも厚みが0μmから40μmに増すとともに短絡耐量が増加しており、このことは厚みが増加したことによって放熱経路が延びて、過渡的な放熱効果も増加したことを示している。
 また、図8には示していないが、エミッタ電極3上に積層する金属層の厚みを0μmから40μmへと段階的に厚くすると、短絡耐量も段階的に増加する。エミッタ電極3を形成するAlの熱伝導率は2.36W/cm・K程度であり、これはNiPの40倍以上であり、Cuからなる導電ペーストを焼成して形成された焼結金属層の80%以上である。従って、エミッタ電極3および焼結金属層27の厚みを少なくとも0μmから40μmに増やすことによって、過渡的な40μmの放熱経路を確保することができる。すなわち、E1-E2領域の距離が、D-D領域内であってE1-E2領域を除く領域に積層する金属層の厚み以内であれば、積層する金属層による短絡耐量が向上するという効果に寄与する。
 次に、電力用半導体装置25の製造工程について説明する。
 半導体基板2の表面上に、エミッタ電極3および絶縁層4を形成する。次いで、エミッタ電極3上に、平面視においてエミッタ電極3の活性領域(D-D領域)を覆う大きさを有する導電層26を形成する。
 次いで、絶縁層4と、エミッタ電極3の活性領域であって導電層26が形成されていない領域(E1-E2領域)とを覆うようにポリイミド層6を形成する。
 次いで、導電層26上に、平面視において導電層26と同じ幅の導電ペーストを形成する。次いで、導電ペーストと、ポリイミド層6の一部とを覆うようにはんだ層8を形成する。なお、はんだ層8は、ポリイミド層6の全部を覆うように形成してもよい。このとき、導電層26の端部および導電ペーストの端部は、平面視においてE1の位置からD-D領域側に導電ペーストの厚み以下の距離を空けた位置(すなわち、E2の位置)に対応する。
 最後に、はんだ層8上にバスバー9を接合する。その後、加圧処理および過熱処理を行う。このとき、導電ペーストは焼成されて焼結金属層27になる。上記の各工程を経て、図11に示す電力用半導体装置25が完成する。
 なお、図11に示す電力用半導体装置25の構造に限らず、導電ペーストを活性領域の全面に積層する構造、あるいは、導電ペーストを活性領域からはみ出して終端領域の一部または全部を覆うように積層する構造であっても、短絡耐量を向上させる効果が得られることはいうまでもない。一例として、活性領域の全面に導電ペーストを積層して焼結することによって焼結金属層を形成した構造を有する電力用半導体装置28を図12に示す。
 上記では、はんだ層8およびバスバー9を備える場合について説明したが、これに限るものではない。例えば、図13に示すように、電力用半導体装置29は、焼結金属層27にワイヤー30をワイヤーボンディングによって接続した構成としてもよい。この場合、実施の形態2と同様、焼結金属層27をCuからなる導電ペーストを焼成して形成し、Cuからなる導電層26を例えばスクリーン印刷またはめっき等によって形成し、Cuからなるワイヤー30とすればよい。
 実施の形態1と同様、電力用半導体装置25,28,29は、IGBT11(図7参照)を実装することが可能である。エミッタ電極3上に焼結金属層27を形成することによる効果は、実施の形態1(図5)で説明した通りである。
 以上のことから、本実施の形態3によれば、導電層26を形成する位置のマージンとして、焼結金属層27の厚みを超えない範囲内で自由に設定することができる。また、スクリーン印刷を2回繰り返すことによって、同じ幅の導電層26および焼結金属層27を形成することができるため、実施の形態1よりも電力用半導体装置の製造が容易となる。さらに、電力用半導体装置のパターンまたは製造方法によってはエミッタ電極3の端部の直上に焼結金属層を形成することができない場合であっても、短絡耐量を向上させる効果を得ることができる。
 <実施の形態4>
 図14は、本発明の実施の形態4による電力用半導体装置31の構成の一例を示す断面図である。なお、図14において、F-Fで示す領域(以下、F-F領域という)は、エミッタ電極3の活性領域を示している。
 図14に示すように、本実施の形態4による電力用半導体装置31は、実施の形態1による電力用半導体装置1の焼結金属層7を、2層の焼結金属層32,33としていることを特徴としている。その他の構成は、実施の形態1による電力用半導体装置1(図1参照)と同様であるため、ここでは詳細な説明を省略する。
 焼結金属層32は、焼結金属層33よりも空孔率が低い。ここで、空孔率とは、焼結金属層における単位体積当たりの空孔の数の割合のことをいう。空孔率が低いとは、焼結金属層における空孔の単位体積当たりの密度が小さいことをいう。空孔率が高いとは、焼結金属層における空孔の単位体積当たりの密度が大きいことをいう。
 焼結金属層は、例えばめっきまたはスパッタ等によって形成された膜と比較して反りが発生しにくいが、例えば100μm程度の厚みとした場合は反りが発生する可能性がある。一方、導電層5と接する焼結金属層は、高い信頼性を得るために、密着性を高くすることが望ましい。これらの条件を満足するために、本実施の形態4では、導電層5と接する焼結金属層32は高い密着性を有する空孔率が低い層とし、焼結金属層32上には空孔率が高い焼結金属層33を形成している。このように、2層の焼結金属層32,33を積層する構成とすることによって、導電層5との密着性を確保することができ、かつ焼結金属層32,33を厚く積層しても低応力である。
 次に、電力用半導体装置31の製造方法について説明する。
 半導体基板2の表面上に、エミッタ電極3および絶縁層4を形成する。このとき、エミッタ電極3は、半導体基板2の活性領域上に形成される。また、絶縁層4は、半導体基板2の終端領域上に形成される。
 次いで、エミッタ電極3の活性領域、および絶縁層4上にNiまたはAuからなる導電層5を形成する。次いで、導電層5上であってエミッタ電極3と平面視で重ならない位置にポリイミド層6を形成する。
 次いで、導電層5上に、平面視においてエミッタ電極3の端部をはみ出し、エミッタ電極3以上の大きさで覆い、かつポリイミド層6と接しないように、空孔率が低い金属で構成された導電ペーストと、空孔率が高い金属で構成された導電ペーストとを順に積層する。各導電ペーストは、例えばCuまたはAg等の金属を用いて、スクリーン印刷等によって形成すればよい。空孔率が低い金属で構成された導電ペーストの厚みは、厚くする必要はなく、例えば1μmかそれ以下であってもよい。
 次いで、各導電ペースト、導電層5、およびポリイミド層6の一部を覆うようにはんだ層8を形成する。なお、はんだ層8は、ポリイミド層6の全部を覆うように形成してもよい。
 最後に、はんだ層8上にバスバー9を接合する。その後、加圧処理および加熱処理を行う。このとき、各導電ペーストは焼成されて焼結金属層になる。具体的には、空孔率が低い金属で構成された導電ペーストは焼成されて焼結金属層32になり、空孔率が高い金属で構成された導電ペーストは焼成されて焼結金属層33になる。加圧処理および加熱処理のとき、はんだ層8が溶解して空孔率が高い金属で構成された導電ペーストの積層の方向にしみ込むことになるため、加圧処理および加熱処理後に形成された焼結金属層33のうちのはんだ層8に近接する部分は、はんだ層8と空孔率が高い金属で構成された導電ペーストとの合金構造となる。上記の各工程を経て、図14に示す電力用半導体装置31が完成する。
 なお、実施の形態1と同様、電力用半導体装置31は、IGBT11(図7参照)を実装することが可能である。
 次に、本実施の形態4による電力用半導体装置31の効果について説明する。
 図15は、エミッタ電極3上に積層した金属層の厚みと短絡耐量との関係を示す図であり、計算機シミュレーションの結果をグラフ化したものである。図15では、エミッタ電極3上に積層する金属層がない一例として空気(熱容量:0.01J/cm・K、熱伝導率0.0003W/cm・K)とした場合と、エミッタ電極3上に空孔率が19%のAgの焼結金属層(熱容量:2.00J/cm・K、熱伝導率2.4W/cm・K)を形成した場合と、エミッタ電極3上に空孔率が28%のAgの焼結金属層(熱容量:1.78J/cm・K、熱伝導率1.1W/cm・K)を形成した場合と、エミッタ電極3上にはんだ(熱容量:1.74J/cm・K、熱伝導率0.64W/cm・K)を形成した場合とについて示している。また、エミッタ電極3に積層する金属層の厚みは、20μm、40μm、60μm、80μm、および100μmとしている。
 図15に示すように、エミッタ電極3上に積層する金属層がない場合(ここでは空気の場合)の短絡耐量は4.5μsであり、エミッタ電極3上に各金属層を積層した場合は、各金属層の厚みが厚いほど短絡耐量が向上する。
 空孔率が28%のAgの焼結金属層は、空孔率が19%のAgの焼結金属層と比較すると、厚みを厚くしても短絡耐量が低い。一方、空孔率が28%のAgの焼結金属層は、はんだと比較すると、厚みが60μm以下では短絡耐量は同等であるが、厚みが80μmおよび100μmでは短絡耐量が高い。従って、空孔率が低い金属を薄く積層した上に空孔率の高い金属を順次に積層することによって、空孔率が低い金属を単独で積層するよりも低応力とすることができ、さらに空孔率の高い金属をより厚く積層しても低応力を維持することができるため、短絡耐量の増大効果は大きい。
 また、空孔率が異なる2層のAgの焼結金属層を積層する場合と、1層のAgの焼結金属層上にはんだを積層する場合とでは、前者の方が金属の種類が類似しているため反りが小さい。つまり、空孔率が19%のAgの焼結金属層上に空孔率が28%のAgの焼結金属層を積層した構造は、空孔率が19%のAgの焼結金属層上にはんだを積層した構造よりも短絡耐量が高くなることが分かる。
 なお、上記では、Agの焼結金属層を一例として説明したが、Cuの焼結金属層についても同様の効果が得られる。従って、空孔率が低い金属層を薄く形成した上に空孔率が高い金属層を積層することによって、応力を小さく抑えることができる。また、空孔率が高い金属層を厚く形成することができ、短絡耐量を延ばす効果が得られる。
 上記では、2層の焼結金属層を積層する場合について説明したが、これに限られるものではない。3層以上の焼結金属層を積層する場合であっても、空孔率が異なる焼結金属層を、導電層に近い側から空孔率が低い順に積層することによって、短絡耐量を向上させることができる。
 上記で説明した複数の焼結金属層を積層する構造は、実施の形態1(図1参照)だけでなく、実施の形態2,3による電力用半導体装置21,25,28,29(図10,11,12,13)にも適用可能である。
 焼結金属層に用いるCuおよびAgは、熱伝導性が高く低応力である。本実施の形態4では、空孔率が低い焼結金属層32を形成しており、焼結金属層32上に空孔率が高い焼結金属層33を形成している。従って、焼結金属層32と導電層5との密着性を確保する。また、焼結金属層33を厚く形成しても低応力が維持されるため、十分な熱容量を確保することができ、放熱性を向上させることができる。焼結金属層32,33を平面視でエミッタ電極3を完全に覆うように形成することによって、過渡的な放熱性を高めることができ、電力用半導体装置1の短絡時に熱暴走によって過電流が流れるまでの時間である短絡耐量を延ばすことができる。なお、短絡耐量は、電流の熱暴走が最も早く発生する箇所に律速されるため、短絡耐量を確実に向上させるためには、図14のF-F領域で示すエミッタ電極3の活性領域の直上の全面に焼結金属層32,33を積層することが望ましい。
 上記では、本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。例えば、電力用半導体装置に実装する半導体装置はIGBT以外のMOSFETなどでもよく、半導体基板はSi以外のSiCまたはGaNなどでもよい。特に、SiCまたはGaNなどのワイドギャップ半導体は、Siよりも高温動作が要求されるため、エミッタ電極上に焼結金属層を積層することによる過渡的な放熱効果はより大きくなる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 本発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1 電力用半導体装置、2 半導体基板、3 エミッタ電極、4 絶縁層、5 導電層、6 ポリイミド層、7 焼結金属層、8 はんだ層、9 バスバー、10 導電ペースト、11 IGBT、12 コレクタ電極、13 pコレクタ層、14 nバッファ層、15 nドリフト層、16 pベース層、17 nエミッタ層、18 ゲート酸化膜、19 トレンチゲート、20 層間絶縁膜、21 電力用半導体装置、22 導電層、23 焼結金属層、24 ワイヤー、25 電力用半導体装置、26 導電層、27 焼結金属層、28 電力用半導体装置、29 電力用半導体装置、30 ワイヤー、31 電力用半導体装置、32,33 焼結金属層。

Claims (15)

  1.  半導体基板上に形成され主電流が流れる表面電極と、
     前記表面電極上に形成された焼結体でない第1の金属層と、
     前記第1の金属層上に形成された焼結体である第2の金属層と、
    を備え、
     前記第2の金属層は、平面視において前記表面電極の全体を覆う大きさを有し、かつ前記第1の金属層よりも熱伝導性が高いことを特徴とする、電力用半導体装置。
  2.  前記第2の金属層は、平面視において前記表面電極の端部をはみ出す大きさを有することを特徴とする、請求項1に記載の電力用半導体装置。
  3.  前記第1の金属層は、平面視において前記表面電極の全体を覆い、かつ前記表面電極の端部をはみ出す大きさを有することを特徴とする、請求項1または2に記載の電力用半導体装置。
  4.  前記半導体基板は、前記半導体基板の表面に形成された活性領域と、前記活性領域を囲むように形成された終端領域とを有し、
     前記半導体基板の前記終端領域において前記第1の金属層上に形成されたポリイミド層をさらに備え、
     前記ポリイミド層は、前記第2の金属層と離間して形成されていることを特徴とする、請求項1から3のいずれか1項に記載の電力用半導体装置。
  5.  前記第2の金属層を覆うように形成されたはんだをさらに備え、
     前記はんだは、前記第1の金属層とも接合されていることを特徴とする、請求項1から4のいずれか1項に記載の電力用半導体装置。
  6.  前記第1の金属層は、少なくとも前記はんだとの接合部分がAuであることを特徴とする、請求項5に記載の電力用半導体装置。
  7.  前記第2の金属層上に一端が接合された金属ワイヤーをさらに備えることを特徴とする、請求項1から4のいずれか1項に記載の電力用半導体装置。
  8.  半導体基板上に形成され主電流が流れる表面電極と、
     前記表面電極上に形成された焼結体でない第1の金属層と、
     前記第1の金属層上に形成された焼結体である第2の金属層と、
    を備え、
     前記半導体基板は、前記半導体基板の表面に形成された活性領域と、前記活性領域を囲むように形成された終端領域とを有し、
     前記第1の金属層および前記第2の金属層は、平面視において前記活性領域を覆う大きさを有することを特徴とする、電力用半導体装置。
  9.  半導体基板上に形成され主電流が流れる表面電極と、
     前記表面電極上に形成された焼結体でない第1の金属層と、
     前記第1の金属層上に形成された焼結体である第2の金属層と、
    を備え、
     前記半導体基板は、前記半導体基板の表面に形成された活性領域と、前記活性領域を囲むように形成された終端領域とを有し、
     前記第1の金属層の端部および前記第2の金属層の端部は、平面視において前記活性領域と前記終端領域との境界位置から前記活性領域側に前記第2の金属層の厚み以下の距離を空けた位置に対応することを特徴とする、電力用半導体装置。
  10.  前記第1の金属層および前記第2の金属層は、平面視において同じ幅であることを特徴とする、請求項8または9に記載の電力用半導体装置。
  11.  平面視において前記活性領域と前記終端領域との境界位置から前記活性領域側に前記第2の金属層の厚さ以下の距離を空けた位置までの前記活性領域上に形成されたポリイミド層をさらに備えることを特徴とする、請求項8から10のいずれか1項に記載の電力用半導体装置。
  12.  前記第2の金属層を覆うように形成されたはんだをさらに備えることを特徴とする、請求項8から11のいずれか1項に記載の電力用半導体装置。
  13.  前記第2の金属層上に一端が接合された金属ワイヤーをさらに備えることを特徴とする、請求項8から11のいずれか1項に記載の電力用半導体装置。
  14.  前記第1の金属層は、Ni、Au、Niの合金、またはAuの合金からなり、
     前記第2の金属層は、Ag焼結体またはCu焼結体からなることを特徴とする、請求項1から13のいずれか1項に記載の電力用半導体装置。
  15.  前記第2の金属層は、複数存在し、
     各前記第2の金属層は、互いに空孔の単位体積当たりの密度が異なり、かつ前記第1の金属層上に前記空孔の単位体積当たりの密度が小さい順に積層して形成されることを特徴とする、請求項1から14のいずれか1項に記載の電力用半導体装置。
PCT/JP2016/088173 2016-04-06 2016-12-21 電力用半導体装置 WO2017175426A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/081,140 US10559659B2 (en) 2016-04-06 2016-12-21 Power semiconductor device
CN201680083795.4A CN109075198B (zh) 2016-04-06 2016-12-21 电力用半导体装置
JP2018510227A JP6448852B2 (ja) 2016-04-06 2016-12-21 電力用半導体装置
DE112016006717.8T DE112016006717T5 (de) 2016-04-06 2016-12-21 Leistungs-halbleitereinheit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016076360 2016-04-06
JP2016-076360 2016-04-06

Publications (1)

Publication Number Publication Date
WO2017175426A1 true WO2017175426A1 (ja) 2017-10-12

Family

ID=60000956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088173 WO2017175426A1 (ja) 2016-04-06 2016-12-21 電力用半導体装置

Country Status (5)

Country Link
US (1) US10559659B2 (ja)
JP (1) JP6448852B2 (ja)
CN (1) CN109075198B (ja)
DE (1) DE112016006717T5 (ja)
WO (1) WO2017175426A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047045A (ja) * 2017-09-05 2019-03-22 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2020027878A (ja) * 2018-08-10 2020-02-20 株式会社豊田中央研究所 半導体装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079462A (ja) * 2003-09-02 2005-03-24 Renesas Technology Corp 半導体装置およびその製造方法
JP2005116702A (ja) * 2003-10-06 2005-04-28 Fuji Electric Holdings Co Ltd パワー半導体モジュール
JP2007110002A (ja) * 2005-10-17 2007-04-26 Fuji Electric Device Technology Co Ltd 半導体装置
JP2007201247A (ja) * 2006-01-27 2007-08-09 Mitsubishi Electric Corp 高耐圧半導体装置
JP2013098266A (ja) * 2011-10-31 2013-05-20 Hitachi Ltd 半導体装置及びその製造方法
JP2015146368A (ja) * 2014-02-03 2015-08-13 株式会社東芝 半導体装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992001B1 (en) * 2003-05-08 2006-01-31 Kulicke And Soffa Industries, Inc. Screen print under-bump metalization (UBM) to produce low cost flip chip substrate
JP2005303218A (ja) * 2004-04-16 2005-10-27 Renesas Technology Corp 半導体装置およびその製造方法
WO2007102369A1 (ja) * 2006-03-07 2007-09-13 Kyocera Corporation セラミック部材の製造方法、並びにセラミック部材、ガスセンサ素子、燃料電池素子、積層型圧電素子、噴射装置、及び燃料噴射システム
JP2009194357A (ja) 2008-01-17 2009-08-27 Toshiba Corp 半導体装置およびその製造方法
JP2010272711A (ja) 2009-05-22 2010-12-02 Mitsubishi Electric Corp 半導体デバイスとその製造方法
JP5494559B2 (ja) 2011-04-21 2014-05-14 富士電機株式会社 半導体装置およびその製造方法
JP2013016580A (ja) 2011-07-01 2013-01-24 Panasonic Corp 半導体装置及びその製造方法
JP2013115223A (ja) * 2011-11-29 2013-06-10 Toyota Motor Corp 半導体装置
WO2013122126A1 (ja) * 2012-02-14 2013-08-22 三菱マテリアル株式会社 はんだ接合構造、パワーモジュール、ヒートシンク付パワーモジュール用基板及びそれらの製造方法、並びにはんだ下地層形成用ペースト
US8643150B1 (en) * 2012-02-15 2014-02-04 Maxim Integrated Products, Inc. Wafer-level package device having solder bump assemblies that include an inner pillar structure
DE102012207652A1 (de) * 2012-05-08 2013-11-14 Robert Bosch Gmbh Zweistufiges Verfahren zum Fügen eines Halbleiters auf ein Substrat mit Verbindungsmaterial auf Silberbasis
US8716864B2 (en) * 2012-06-07 2014-05-06 Ixys Corporation Solderless die attach to a direct bonded aluminum substrate
KR101998340B1 (ko) * 2012-07-18 2019-07-09 삼성전자주식회사 전력 소자 모듈 및 그 제조 방법
JP5686128B2 (ja) * 2012-11-29 2015-03-18 トヨタ自動車株式会社 半導体装置
CN103035604B (zh) * 2012-12-17 2014-07-16 矽力杰半导体技术(杭州)有限公司 一种倒装芯片封装结构及其制作工艺
EP2960930A4 (en) * 2013-02-22 2017-07-12 Furukawa Electric Co., Ltd. Connecting structure, and semiconductor device
CN104253154A (zh) * 2013-06-28 2014-12-31 无锡华润上华半导体有限公司 一种具有内置二极管的igbt及其制造方法
JP6226233B2 (ja) 2013-12-27 2017-11-08 三菱マテリアル株式会社 有芯構造はんだバンプ及びその製造方法
JP2015216160A (ja) * 2014-05-08 2015-12-03 三菱電機株式会社 電力用半導体装置および電力用半導体装置の製造方法
JP2016004877A (ja) * 2014-06-16 2016-01-12 ルネサスエレクトロニクス株式会社 半導体装置および電子装置
JP6294784B2 (ja) * 2014-07-31 2018-03-14 古河電気工業株式会社 接続構造体およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079462A (ja) * 2003-09-02 2005-03-24 Renesas Technology Corp 半導体装置およびその製造方法
JP2005116702A (ja) * 2003-10-06 2005-04-28 Fuji Electric Holdings Co Ltd パワー半導体モジュール
JP2007110002A (ja) * 2005-10-17 2007-04-26 Fuji Electric Device Technology Co Ltd 半導体装置
JP2007201247A (ja) * 2006-01-27 2007-08-09 Mitsubishi Electric Corp 高耐圧半導体装置
JP2013098266A (ja) * 2011-10-31 2013-05-20 Hitachi Ltd 半導体装置及びその製造方法
JP2015146368A (ja) * 2014-02-03 2015-08-13 株式会社東芝 半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047045A (ja) * 2017-09-05 2019-03-22 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP7013735B2 (ja) 2017-09-05 2022-02-01 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2020027878A (ja) * 2018-08-10 2020-02-20 株式会社豊田中央研究所 半導体装置

Also Published As

Publication number Publication date
JP6448852B2 (ja) 2019-01-09
CN109075198A (zh) 2018-12-21
DE112016006717T5 (de) 2019-01-03
US10559659B2 (en) 2020-02-11
US20190058037A1 (en) 2019-02-21
JPWO2017175426A1 (ja) 2018-08-09
CN109075198B (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
JP5605095B2 (ja) 半導体装置
JP7160797B2 (ja) 電子部品および半導体装置
US10418359B2 (en) Semiconductor device and manufacturing method
JPWO2005024941A1 (ja) 半導体装置
JP6347309B2 (ja) 半導体装置および半導体装置の製造方法
JP2011258833A (ja) 半導体装置および半導体装置の製造方法
US20160118314A1 (en) Power module and method of packaging the same
JP2016058466A (ja) 炭化珪素半導体装置
JP2009071059A (ja) 半導体装置
JP6456494B2 (ja) 半導体装置の製造方法
JP6448852B2 (ja) 電力用半導体装置
JP2015222743A (ja) 半導体装置
US20180158762A1 (en) Semiconductor device
JP6617546B2 (ja) 半導体装置および半導体装置の製造方法
JP6317178B2 (ja) 回路基板および電子装置
JP2021097113A (ja) 半導体装置
JP6590336B2 (ja) 高耐熱ハンダ接合半導体装置及びその製造方法
JP7509849B2 (ja) 半導体装置
JP2019110280A (ja) 半導体装置の製造方法
JP4962409B2 (ja) 半導体装置及びその製法
JP2010056228A (ja) 半導体装置およびその製造方法
JP2017005100A (ja) 半導体チップ、半導体装置およびそれらの製造方法
TW201608692A (zh) 半導體晶片及電子組件
JP2020068331A (ja) 半導体装置
JP2020115532A (ja) 半導体モジュール

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510227

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897978

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897978

Country of ref document: EP

Kind code of ref document: A1