WO2017170438A1 - マスク一体型表面保護テープ - Google Patents

マスク一体型表面保護テープ Download PDF

Info

Publication number
WO2017170438A1
WO2017170438A1 PCT/JP2017/012457 JP2017012457W WO2017170438A1 WO 2017170438 A1 WO2017170438 A1 WO 2017170438A1 JP 2017012457 W JP2017012457 W JP 2017012457W WO 2017170438 A1 WO2017170438 A1 WO 2017170438A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
material layer
mask material
sensitive adhesive
pressure
Prior art date
Application number
PCT/JP2017/012457
Other languages
English (en)
French (fr)
Inventor
裕介 五島
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020187025435A priority Critical patent/KR102155028B1/ko
Priority to CN201780014632.5A priority patent/CN108713240B/zh
Priority to JP2018508008A priority patent/JP6800213B2/ja
Priority to SG11201808400VA priority patent/SG11201808400VA/en
Priority to MYPI2018703491A priority patent/MY181934A/en
Priority to EP17774975.1A priority patent/EP3439022A4/en
Publication of WO2017170438A1 publication Critical patent/WO2017170438A1/ja
Priority to US16/144,489 priority patent/US11056388B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02016Backside treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02076Cleaning after the substrates have been singulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling

Definitions

  • the present invention relates to a mask-integrated surface protection tape.
  • These semiconductor chips are obtained by thinning a semiconductor wafer into a predetermined thickness in a back grinding process, an etching process, etc., and then dividing it into individual chips through a dicing process.
  • a blade dicing method in which cutting is performed by a dicing blade has been used.
  • cutting resistance by the blade is directly applied to the semiconductor wafer during cutting. For this reason, the chipping may occur in the semiconductor chip due to this cutting resistance.
  • the occurrence of chipping not only impairs the appearance of the semiconductor chip, but also may cause chip damage during pick-up due to insufficient bending strength, possibly leading to damage to the circuit pattern on the chip.
  • the width of the kerf also referred to as a scribe line or street
  • the width of the kerf cannot be made narrower than the blade width having a large thickness.
  • the number (yield) of chips that can be taken from one wafer is reduced.
  • the wafer processing time is also a problem.
  • various methods are used for the dicing process. For example, considering the difficulty of dicing after thinning the wafer, grooves are first formed in the wafer by a predetermined thickness, and then grinding is performed to reduce the thickness and divide into chips. There is a DBG (first dicing) method that is performed simultaneously. According to this method, the kerf width is the same as that of the blade dicing process, but there is an advantage that the chip bending strength is increased and the chip breakage can be suppressed.
  • DBG first dicing
  • the laser dicing method can increase the processing speed compared to the blade dicing method. However, there is no change in processing one line at a time, and it takes time to manufacture a very small chip.
  • a modified layer is formed by a predetermined thickness before thinning, and after that, grinding is performed from the back side to reduce the thickness of the chip and separate the chips.
  • the plasma dicing method is a method of dividing a semiconductor wafer by selectively etching a portion not covered with a mask with plasma.
  • the chip can be selectively divided, and even if the scribe line is bent, it can be divided without any problem.
  • the etching rate is very high, it has been regarded as one of the most suitable processes for chip cutting in recent years.
  • a fluorine-based gas having a very high reactivity with a wafer such as sulfur hexafluoride (SF 6 ) or carbon tetrafluoride (CF 4 ), is used as a plasma generating gas. From the rate, it is essential to protect the non-etched surface with a mask, and a mask must be formed in advance.
  • SF 6 sulfur hexafluoride
  • CF 4 carbon tetrafluoride
  • Patent Document 1 For this mask formation, as described in Patent Document 1, a technique is generally used in which a resist is applied to the surface of a wafer and then a portion corresponding to the street is removed by a photolithography process to form a mask. Therefore, in order to perform the plasma dicing, a photolithographic process facility other than the plasma dicing facility is necessary, and there is a problem that the chip cost increases. In addition, since the mask (resist film) remains after plasma etching, it is necessary to use a large amount of solvent for removing the mask, and the mask may not be completely removed, resulting in defective chips. It was. Furthermore, since the resist masking process is performed, there is a disadvantage that the entire processing process becomes long.
  • the thickness of semiconductor chips tends to become thinner, and even when the back surface of the semiconductor wafer is thinned like this, it is necessary to adhere to the pattern surface of the semiconductor wafer and protect the pattern surface effectively. There is.
  • the mask-integrated surface protection tape only the mask material (layer) from the mask-integrated surface protection tape is left on the pattern surface of the semiconductor wafer after the backside grinding of the semiconductor wafer. Since it peels in between, this peeling must be easy and can be peeled without adhesive residue.
  • it is necessary that the mask material layer can be easily exposed on the wafer surface, and it is necessary to dice the wafer into chips more reliably and with high accuracy by SF 6 plasma. Further, after plasma dicing (after dividing the wafer), it is necessary to more reliably remove the mask material of the mask material layer by O 2 plasma and to highly suppress the generation of defective chips.
  • the present invention is for the plasma dicing method, and the protective property of the pattern surface of the semiconductor wafer in the back grinding process where the degree of thinning is large, the peelability from the mask material layer of the surface protective tape, It is an object of the present invention to provide a mask-integrated surface protection tape that is excellent in reattachability of a mask material and removability of the mask material, has little adhesive residue, has few defective chips, and does not require a photolithography process. In addition to this, it is an object of the present invention to provide a mask-integrated surface protection tape that can highly suppress the generation of defective chips, have high productivity, have a short processing process, and can be manufactured at low cost. To do.
  • a mask-integrated surface protection tape used for manufacturing a semiconductor chip including the following steps (a) to (d):
  • the mask-integrated surface protective tape has a radiation curable pressure-sensitive adhesive layer and a radiation curable mask material layer in this order on a base film, and in the following step (b), before the radiation irradiation, A mask-integrated surface protective tape, wherein the mask material layer is peeled off and the mask material layer and the pattern surface are peeled off after radiation radiation.
  • Steps (a) to (d)] (A) With the mask-integrated surface protection tape bonded to the pattern surface side of the semiconductor wafer, the back surface of the semiconductor wafer is ground, and the wafer fixing tape is bonded to the back surface of the ground semiconductor wafer and supported by a ring frame.
  • the mask material layer corresponds to a street of a semiconductor wafer Cutting the part to be cut with a laser to open the street of the semiconductor wafer, (C) a plasma dicing process in which a semiconductor wafer is divided at the streets by SF 6 plasma and separated into semiconductor chips, and (D) Ashing step of removing the mask material layer with O 2 plasma [2]
  • the adhesion between the mask material layer and the pressure-sensitive adhesive layer before being cured by radiation irradiation is 2.0 N / 25 mm or less.
  • the mask-integrated surface protection tape according to [1].
  • Each of the mask material layer and the pressure-sensitive adhesive layer has a (meth) acrylic copolymer and a bifunctional or trifunctional or higher functional radiation polymerizable functional group, and has a mass average molecular weight of 2,000 to
  • the glass transition point (Tg) of the (meth) acrylic copolymer contained in the mask material layer and the (meth) acrylic copolymer contained in the adhesive layer are both -25.
  • the curing agent used in the mask material layer and the pressure-sensitive adhesive layer is an epoxy-based curing agent.
  • the protection of the pattern surface of the semiconductor wafer in the back grinding process where the degree of thinning is large, the peelability from the mask material layer of the surface protection tape, the mask material on the semiconductor wafer thus, it is possible to provide a mask-integrated surface protection tape that is excellent in reattachability and removability of the mask material, has little adhesive residue, has few defective chips, and does not require a photolithography process. In addition to this, it is possible to provide a mask-integrated surface protection tape that can suppress the generation of defective chips at a high level, has high productivity, has a short processing process, and can be manufactured at low cost. became.
  • FIG. 1 is a schematic cross-sectional view of a mask-integrated surface protective tape of the present invention.
  • FIG. 2 is a schematic cross-sectional view for explaining steps up to bonding of the surface protective tape to the semiconductor wafer using the mask-integrated surface protective tape of the present invention.
  • FIG. 2 (a) shows a semiconductor wafer
  • FIG. 2 (b) shows a state in which a mask-integrated surface protection tape is bonded
  • FIG. 2 (c) indicates that a mask-integrated surface protection tape is bonded.
  • 1 shows a semiconductor wafer.
  • FIG. 3 is a schematic cross-sectional view for explaining steps up to thinning and fixing of a semiconductor wafer using the mask-integrated surface protective tape of the present invention.
  • FIG. 3 is a schematic cross-sectional view for explaining steps up to thinning and fixing of a semiconductor wafer using the mask-integrated surface protective tape of the present invention.
  • FIG. 4 is a schematic cross-sectional view illustrating steps up to mask formation using the mask-integrated surface protective tape of the present invention, and FIG. 4 (a) shows a mask material layer left from the mask-integrated surface protective tape.
  • FIG. 4 (b) shows a state in which the mask material layer of the mask-integrated surface protection tape is exposed, and
  • FIG. 4 (c) shows a mask corresponding to the street with a laser. The process of excising a material layer is shown.
  • FIG. 4 is a schematic cross-sectional view illustrating steps up to mask formation using the mask-integrated surface protective tape of the present invention
  • FIG. 4 (a) shows a mask material layer left from the mask-integrated surface protective tape.
  • FIG. 4 (b) shows a state in which the mask material layer of the mask-integrated surface protection tape is exposed
  • FIG. 4 (c) shows a mask corresponding to the street with a laser. The process of excising a material layer is shown.
  • FIG. 4 is a schematic cross
  • FIG. 5 is a schematic sectional view for explaining the steps of plasma dicing and plasma ashing using the mask-integrated surface protective tape of the present invention
  • FIG. 5 (a) shows the state of performing plasma dicing.
  • (B) shows a state of being divided into chips
  • FIG. 5 (c) shows how plasma ashing is performed.
  • FIG. 6 is a schematic cross-sectional view for explaining a process up to picking up a chip using the mask-integrated surface protection tape of the present invention, and FIG. 6 (a) shows a state in which the mask material layer is removed, FIG. 6B shows a state where the chip is picked up.
  • FIG. 6 is a schematic cross-sectional view for explaining a process up to picking up a chip using the mask-integrated surface protection tape of the present invention
  • FIG. 6 (a) shows a state in which the mask material layer is removed
  • FIG. 6B shows a state where the chip is picked up.
  • FIG. 7 is a schematic cross-sectional view for explaining the process of re-attaching the mask material layer using the mask-integrated surface protective tape of the present invention.
  • FIG. 7 (a) FIG.
  • the body surface protection tape is bonded to the semiconductor wafer, leaving only the mask material layer as shown in FIG. 7B, and the surface protection tape is re-applied to reattach the mask material layer as shown in FIG. 7C. It shows a state in which the mask material layer is peeled off as shown in FIG.
  • the mask-integrated surface protection tape of the present invention is used in a method for obtaining a semiconductor chip by dividing a semiconductor wafer by plasma dicing and dividing it into individual pieces.
  • a photolithography process prior to the plasma dicing process is not required, and the manufacturing cost of a semiconductor chip or a semiconductor product can be significantly reduced.
  • the mask material (layer) on the pattern surface can be completely peeled off without any adhesive residue.
  • the mask-integrated surface protective tape 3 of the present invention has a radiation curable pressure-sensitive adhesive layer 3ab on a base film 3aa and a mask material layer on the pressure-sensitive adhesive layer. Is the radiation curable mask material layer 3b.
  • the portion having the radiation curable pressure-sensitive adhesive layer 3ab on the base film 3aa is the surface protection tape 3a.
  • the mask-integrated surface protective tape of the present invention is a mask-integrated surface protective tape for the dicing method used in the plasma dicing method as described above, that is, a mask-integrated surface protective tape for the plasma dicing method. More specifically, when a semiconductor chip is obtained from a semiconductor wafer, it is used in the manufacture of a semiconductor chip including a step of dividing the wafer into pieces by plasma dicing. Moreover, as described above, the mask-integrated surface protection tape does not require a photolithography process.
  • the mask-integrated surface protective tape of the present invention is used for processing a semiconductor wafer, and is bonded to the pattern surface in order to protect the pattern surface (front surface) when grinding the back surface of the semiconductor wafer.
  • both the pressure-sensitive adhesive layer and the mask material layer are of a radiation irradiation type.
  • the mask material layer and the pressure-sensitive adhesive layer are peeled off in the peeling step before curing by radiation irradiation, and the mask material (layer) bonded to the pattern surface needs to be pasted once.
  • radiation such as ultraviolet rays is irradiated from the pressure-sensitive adhesive layer side as shown in FIG. 7 (c), and on the pattern surface as shown in FIG. 7 (d).
  • the mask material (layer) can be completely peeled without any adhesive residue.
  • both the pressure-sensitive adhesive layer and the mask material layer are cross-linked, so that it is substantially integrated and peeling between the pressure-sensitive adhesive layer and the mask material layer becomes difficult.
  • the step shown in FIG. 7B may be omitted.
  • the mask-integrated surface protection tape of the present invention is more preferably used for the production of a semiconductor chip including at least the following steps (a) to (d). That is, the mask-integrated surface protective tape of the present invention is a mask-integrated surface protective tape for manufacturing a semiconductor chip including the following steps (a) to (d).
  • Steps (a) to (d)] (A) With the mask-integrated surface protection tape bonded to the pattern surface side of the semiconductor wafer, the back surface of the semiconductor wafer is ground, and the wafer fixing tape is bonded to the back surface of the ground semiconductor wafer and supported by a ring frame.
  • the method for manufacturing a semiconductor chip to which the mask-integrated surface protection tape of the present invention is applied preferably includes the following step (e) after the step (d). Moreover, when the following process (e) is included, it is preferable that the following process (f) is further included after this process (e).
  • the mask-integrated surface protective tape of the present invention includes a base film, a radiation curable pressure-sensitive adhesive layer provided on the base film, and a radiation curable mask material layer provided on the pressure-sensitive adhesive layer.
  • the laminated body which consists of a base film and the adhesive layer provided on this base film may be called a surface protection tape (surface protection tape 3a), as shown in FIG. That is, the mask-integrated surface protective tape of the present invention is a tape having a laminated structure in which a mask material layer is further provided on the adhesive layer of the surface protective tape.
  • the pressure-sensitive adhesive layer and the mask material layer are radiation-curable (that is, have a property of being cured by radiation irradiation).
  • the substrate film and the pressure-sensitive adhesive layer are integrally peeled off from the mask-integrated surface protective tape without irradiating with radiation.
  • a step of exposing the material layer to the surface By curing the pressure-sensitive adhesive layer and the mask material (layer) by radiation irradiation, the interlayer adhesion between the mask material layer and the pressure-sensitive adhesive layer is improved.
  • the masking material (layer) can be removed by attaching the surface protection tape again on the masking material exposed on the semiconductor wafer and irradiating with radiation.
  • a preferred embodiment of a semiconductor chip manufacturing method using the mask-integrated surface protective tape of the present invention (hereinafter simply referred to as “manufacturing method to which the present invention is applied”) will be described below with reference to the drawings. To do. However, the present invention is not limited to the following embodiment, except as defined in the present invention.
  • the form shown in each drawing is a schematic diagram for facilitating the understanding of the present invention, and the size, thickness, or relative size relationship of each member may be changed for convenience of explanation. Yes, it does not show the actual relationship as it is. Moreover, it is not limited to the external shape and shape shown by these drawings except the matter prescribed
  • the apparatus, material, etc. which are conventionally used for the processing of a semiconductor wafer can be used for the apparatus, material, etc. which are used for the following embodiment,
  • the use conditions are also normal. It can be appropriately set and optimized according to the purpose within the range of the method of use.
  • duplicate descriptions of materials, structures, methods, effects, and the like common to the embodiments are omitted.
  • the semiconductor wafer 1 has a pattern surface 2 on which a circuit of a semiconductor element and the like are formed on the surface S (see FIG. 2 (a)).
  • the mask-integrated surface protective tape 3 of the present invention in which the mask material layer 3b is further provided on the adhesive layer 3ab of the surface protective tape 3a in which the adhesive layer 3ab is provided on the base film 3aa. Bonding (see FIG. 2 (b)) to obtain the semiconductor wafer 1 having the pattern surface 2 covered with the mask-integrated surface protection tape 3 of the present invention (see FIG. 2 (c)).
  • the back surface B of the semiconductor wafer 1 is ground by the wafer grinding apparatus M1 to reduce the thickness of the semiconductor wafer 1 (see FIG. 3 (a)).
  • a wafer fixing tape 4 is bonded to the ground back surface B (see FIG. 3B) and supported and fixed to the ring frame F (see FIG. 3C).
  • the surface protection tape 3a of the mask-integrated surface protection tape 3 is peeled off from the semiconductor wafer 1 and the mask material layer 3b is left on the semiconductor wafer 1 (see FIG. 4A) to expose the mask material layer 3b. (See FIG. 4 (b)). Then, a CO 2 laser L is irradiated to a plurality of streets (not shown) appropriately formed in a lattice shape or the like on the pattern surface 2 from the surface S side, and a portion corresponding to the streets of the mask material layer 3b is applied. The semiconductor wafer is removed and the streets of the semiconductor wafer are opened (see FIG. 4C).
  • the semiconductor wafer 1 exposed at the street portion is etched from the surface S side by the SF 6 gas plasma P1 (see FIG. 5 (a)), and divided into individual chips 7 to obtain individual pieces. Then, the ashing is performed by the plasma P2 of O 2 gas (see FIG. 5C), and the mask material layer 3b remaining on the surface S is removed (see FIG. 6A). )reference). Finally, the separated chip 7 is pushed up by the pin M2 and sucked by the collet M3 to be picked up (see FIG. 6B).
  • the Si etching process of the semiconductor wafer using SF 6 gas is also referred to as a BOSCH process, and the exposed Si reacts with F atoms generated by converting SF 6 into plasma to produce silicon tetrafluoride (SiF 4 ) And is also called reactive ion etching (RIE).
  • RIE reactive ion etching
  • the removal by O 2 plasma is also used as a plasma cleaner in the semiconductor manufacturing process and is called ashing (ashing), and is one of the methods for removing organic matter. This is performed in order to clean the organic residue remaining on the surface of the semiconductor device.
  • the material used for the mask-integrated surface protection tape 3 and the material used in the above process will be described.
  • the materials used in the above steps are not limited to those described below.
  • the semiconductor wafer 1 is a silicon wafer or the like having a pattern surface 2 on which a semiconductor element circuit or the like is formed on one side.
  • the pattern surface 2 is a surface on which a semiconductor element circuit or the like is formed, and is a street in plan view.
  • the mask-integrated surface protective tape 3 of the present invention has a configuration in which an adhesive layer 3ab is provided on a base film 3aa, and a mask material layer 3b is provided on the adhesive layer 3ab. It has a function of protecting the formed semiconductor element. That is, in the wafer thinning process (back surface grinding process), which is a subsequent process, the semiconductor wafer 1 is supported by the pattern surface 2 and the back surface of the semiconductor wafer is ground. It is necessary to endure. Therefore, the mask-integrated surface protection tape 3 is different from a mere resist film and the like, has a thickness sufficient to cover the elements formed on the pattern surface, has a low pressing resistance, and is free from dust and grinding water during grinding. In order to prevent the intrusion of the element, the adhesion is high enough to allow the elements to be in close contact with each other.
  • the base film 3aa is made of plastic, rubber or the like, for example, polyolefin resin such as polyethylene, polypropylene, ethylene-propylene copolymer, polybutene-1, poly-4-methylpentene.
  • ⁇ -olefins such as ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ionomer, or mixtures thereof, polyethylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, poly Etherimide, polyimide, polycarbonate, polymethylmethacrylate, polyurethane, styrene-ethylene-butene- or pentene copolymer, etc., or a mixture of two or more, and other resins And filler, the resin composition additives is blended can be exemplified as the material can be arbitrarily selected depending on the required characteristics.
  • ⁇ -olefins such as ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ionomer, or mixtures thereof, polyethylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, poly Etherimide, polyimide, poly
  • the base film 3aa preferably has a layer made of a polyolefin resin.
  • the base film 3aa may be a single layer made of a polyolefin resin layer, or may have a multilayer structure of two or more layers made of a polyolefin resin layer and another resin layer.
  • a laminate of low-density polyethylene and ethylene vinyl acetate copolymer, a laminate of polypropylene and polyethylene terephthalate, polyethylene terephthalate, and polyethylene naphthalate are one of suitable materials.
  • These base film 3aa can be manufactured using a general extrusion method.
  • the base film 3aa is obtained by laminating various resins, it is manufactured by a coextrusion method, a lamination method, or the like.
  • an adhesive layer may be provided between the resins, as is usually done in the ordinary laminate film manufacturing method.
  • the thickness of the base film 3aa is preferably 20 to 200 ⁇ m from the viewpoints of strength / elongation characteristics and radiation transparency.
  • the pressure-sensitive adhesive layer 3ab plays a role of protecting the pattern surface together with the mask material by absorbing the irregularities of the elements formed on the pattern surface to improve the adhesion with the pattern surface.
  • the adhesive layer 3ab has high adhesion to the mask material layer 3b or the base film 3aa in the wafer thinning process. preferable.
  • the adhesion with the mask material layer is low (high peelability is preferred).
  • the pressure-sensitive adhesive layer 3ab and the mask material layer 3b of the mask material-integrated surface protective tape of the present invention are of a radiation curable type.
  • the pressure-sensitive adhesive layer 3ab and the mask material 3b are three-dimensionally reticulated by irradiation, and the adhesion is improved. It is possible to easily peel the mask material layer from the pattern surface.
  • “radiation” is used to mean both light rays such as ultraviolet rays and ionizing radiations such as electron beams.
  • the radiation is preferably ultraviolet rays.
  • the pressure-sensitive adhesive layer 3ab contains a (meth) acrylic copolymer.
  • the phrase that the pressure-sensitive adhesive layer 3ab contains a (meth) acrylic copolymer means that the (meth) acrylic copolymer is present in a state of reacting with a curing agent described later.
  • (meth) acrylic the parenthesis of “(meth)” means that this may or may not be present.
  • (meth) acrylic is acrylic, methacrylic or Any of these may be used.
  • the (meth) acrylic copolymer includes, for example, a copolymer having (meth) acrylic acid ester as a constituent component, or a mixture of these copolymers.
  • the weight average molecular weight of these polymers is usually about 300,000 to 1,000,000.
  • the proportion of the (meth) acrylic acid ester component is preferably 70 mol% or more, more preferably 80 mol% or more, and further preferably 90 mol% or more.
  • the proportion of the (meth) acrylic acid ester component is not 100 mol% in the total monomer components of the (meth) acrylic copolymer, the remaining monomer component is polymerized using a (meth) acryloyl group as a polymerizable group
  • the proportion of the (meth) acrylic acid ester component having a functional group (for example, a hydroxy group) that reacts with the curing agent described later is preferably 1 mol% or more. 2 mol% or more is more preferable, 5 mol% or more is more preferable, and 10 mol% or more is more preferable. Further, the proportion of the (meth) acrylic acid ester component is preferably 35 mol% or less, and more preferably 25 mol% or less.
  • the (meth) acrylic acid ester component may be a (meth) acrylic acid alkyl ester (also referred to as an alkyl (meth) acrylate).
  • the alkyl group constituting the (meth) acrylic acid alkyl ester preferably has 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 12 carbon atoms.
  • the content of the (meth) acrylic copolymer in the pressure-sensitive adhesive layer 3ab is preferably 80% by mass or more, more preferably 90% by mass or more, and 95 to 95%. 99.9 mass% is more preferable.
  • the pressure-sensitive adhesive layer 3ab is composed of a radiation-curable pressure-sensitive adhesive
  • a pressure-sensitive adhesive containing an acrylic pressure-sensitive adhesive and a radiation polymerizable compound can be suitably used.
  • the acrylic pressure-sensitive adhesive is a (meth) acrylic copolymer or a mixture of a (meth) acrylic copolymer and a curing agent.
  • curing agent is used in order to make it react with the functional group which a (meth) acrylic-type copolymer has, and to adjust adhesive force and cohesion force.
  • Epoxy compounds having two or more epoxy groups in the molecule such as benzene, N, N, N, N′-tetraglycidyl-m-xylenediamine, ethylene glycol diglycidyl ether, terephthalic acid diglycidyl ester acrylate, etc.
  • epoxy curing agent also referred to as “epoxy curing agent”), 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4,4′-diisocyanate , Hexamethylene diisocyanate, isophorone diisocyanate And isocyanate compounds having two or more isocyanate groups in the molecule such as adduct type (hereinafter also referred to as “isocyanate curing agent”), tetramethylol-tri- ⁇ -aziridinyl propionate, trimethylol.
  • isocyanate curing agent tetramethylol-tri- ⁇ -aziridinyl propionate, trimethylol.
  • the addition amount of the curing agent may be adjusted according to the desired adhesive strength, and 0.1 to 5.0 parts by mass is appropriate for 100 parts by mass of the (meth) acrylic copolymer.
  • the curing agent is in a state of reacting with the (meth) acrylic copolymer.
  • the radiation polymerizable compound a low molecular weight compound having at least two photopolymerizable carbon-carbon double bonds in a molecule that can be three-dimensionally reticulated by irradiation with radiation is widely used.
  • Urethane acrylate oligomers include polyester compounds or polyether compounds such as polyol compounds and polyisocyanate compounds (for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diene).
  • an acrylate or methacrylate having a hydroxy group for example, 2-hydroxyethyl
  • the range of the mass average molecular weight of the radiation polymerizable compound is preferably 2,000 to 20,000, more preferably 2,300 to 10,000, and still more preferably 2 from the viewpoint of compatibility with the acrylic pressure-sensitive adhesive. , 500 to 5,000.
  • the mass average molecular weight is obtained by standard polystyrene conversion by gel permeation chromatography (GPC).
  • the blending ratio of the acrylic pressure-sensitive adhesive and the radiation-polymerizable compound in the radiation-curable pressure-sensitive adhesive is 50 to 200 parts by weight, preferably 50 to 150 parts by weight of the radiation-polymerizable compound with respect to 100 parts by weight of the acrylic pressure-sensitive adhesive. It is desirable to blend in the range of parts. When the blending ratio is in this range, the adhesion with the mask material layer can be improved after irradiation.
  • the radiation-polymerizable (meth) acrylic copolymer in which the (meth) acrylic copolymer itself is radiation-polymerizable as the radiation-curable pressure-sensitive adhesive used for the pressure-sensitive adhesive layer 3ab.
  • the radiation curable pressure-sensitive adhesive may contain a curing agent.
  • the radiation-polymerizable (meth) acrylic copolymer is a copolymer having a reactive group capable of undergoing a polymerization reaction upon irradiation with radiation, particularly ultraviolet rays, in the copolymer molecule.
  • an ethylenically unsaturated group that is, a group having a carbon-carbon double bond (ethylenically unsaturated bond) is preferable.
  • groups include vinyl groups, allyl groups, styryl groups, (meth) acryloyloxy groups, (meth) acryloylamino groups, and the like.
  • the introduction of the reactive group into the copolymer includes, for example, a copolymer having a hydroxy group and a compound having a group that reacts with the hydroxy group (for example, an isocyanate group) and having the reactive group [ (Typically, it can be carried out by reacting with 2- (meth) acryloyloxyethyl isocyanate).
  • the monomer component constituting the (meth) acrylic copolymer having an ethylenically unsaturated bond in the side chain constituting the pressure-sensitive adhesive layer 3ab of the mask-integrated surface protective tape of the present invention has 8 to 8 carbon atoms. Twelve (meth) acrylic acid alkyl ester components are preferably included. The proportion of the (meth) acrylic acid alkyl ester component having 8 to 12 carbon atoms in the monomer component constituting the (meth) acrylic copolymer having an ethylenically unsaturated bond in the side chain is 45 to 85 mol%. Preferably, 50 to 80 mol% is more preferable.
  • a photopolymerization initiator such as isopropyl benzoin ether, isobutyl benzoin ether, benzophenone, Michler's ketone, chlorothioxanthone, benzyl methyl ketal, ⁇ -hydroxycyclohexyl phenyl ketone, 2- Hydroxymethylphenylpropane or the like can be used.
  • a photopolymerization initiator such as isopropyl benzoin ether, isobutyl benzoin ether, benzophenone, Michler's ketone, chlorothioxanthone, benzyl methyl ketal, ⁇ -hydroxycyclohexyl phenyl ketone, 2- Hydroxymethylphenylpropane or the like can be used.
  • the pressure-sensitive adhesive layer 3ab may further contain a photosensitizer, a conventionally known tackifier, softener, antioxidant and the like.
  • the thickness of the pressure-sensitive adhesive layer 3ab is preferably 5 to 30 ⁇ m from the viewpoint of further enhancing the protective ability of the elements formed on the pattern surface 2 and further improving the adhesion to the pattern surface.
  • the unevenness of the pattern surface is about several ⁇ m to 15 ⁇ m.
  • the mask material layer 3b contains a (meth) acrylic copolymer.
  • that the (meth) acrylic copolymer is contained in the mask material layer 3b means that the (meth) acrylic copolymer is present in a state of reacting with the curing agent.
  • a radiation curable adhesive is suitably used for the mask material layer 3b.
  • the radiation curable pressure-sensitive adhesive the above-mentioned mixture of (meth) acrylic copolymer and curing agent can be suitably used. If both the mask material layer 3b and the pressure-sensitive adhesive layer 3ab are radiation-curable pressure-sensitive adhesives, three-dimensional cross-linking is performed between the mask material layer and the pressure-sensitive adhesive layer after irradiation, improving adhesion, and on the pattern surface. When the exposed mask material is peeled off again, it can be easily peeled off.
  • the thickness of the mask material layer 3b is preferably 5 to 15 ⁇ m, more preferably 5 to 10 ⁇ m, from the viewpoint of the removal rate by plasma
  • the mass average molecular weight of the (meth) acrylic copolymer used in the pressure-sensitive adhesive layer 3ab is the mask material layer 3b. It is preferable that it is larger than the mass average molecular weight of the (meth) acrylic copolymer used in 1.
  • the mass average molecular weight of the (meth) acrylic copolymer used in the pressure-sensitive adhesive layer 3ab is 200,000 or more larger than the mass average molecular weight of the (meth) acrylic copolymer used in the mask material layer 3b.
  • the case is preferable, the case of 230,000 or more is more preferable, and the case of 250,000 or more is more preferable.
  • the curing agent used for forming the adhesive layer 3ab and the curing agent used for forming the mask material layer 3b are the same type.
  • the same kind of curing agent adhesion between the mask material layer and the pressure-sensitive adhesive layer before curing by radiation is secured, and it is possible to withstand thin film grinding.
  • curing agent it is preferable to use an isocyanate type hardening
  • the glass transition temperature (Tg) of the (meth) acrylic copolymer forming the pressure-sensitive adhesive layer 3ab and the (meth) acrylic copolymer forming the mask material layer 3b is In any case, the temperature is preferably -25 ° C to -5 ° C. The higher the glass transition temperature, the lower the interlaminar adhesive force, so that it can be easily peeled between the mask material and the pressure-sensitive adhesive.
  • the difference in glass transition temperature (Tg) between the (meth) acrylic copolymer forming the pressure-sensitive adhesive layer 3ab and the (meth) acrylic copolymer forming the mask material layer 3b (absolute chain)
  • the value is preferably 8 to 20 ° C, more preferably 8 to 15 ° C.
  • the Tg of the (meth) acrylic copolymer forming the pressure-sensitive adhesive layer 3ab and the Tg of the (meth) acrylic copolymer forming the mask material layer 3b both react with the curing agent. It means Tg of the (meth) acrylic copolymer in the previous state.
  • Tg can be measured using a differential scanning calorimeter (DSC-60, manufactured by Shimadzu Corporation). More specifically, the temperature is increased from ⁇ 100 ° C. to 100 ° C. at a rate of temperature increase of 5 ° C./min, and the extrapolated glass transition start temperature of JIS K 7121 “Method for measuring plastic transition temperature” is Tg.
  • DSC-60 differential scanning calorimeter
  • the acid value of either the (meth) acrylic polymer contained in the pressure-sensitive adhesive layer or the mask material layer is preferably 0 to 10 mgKOH / g, more preferably 0 to 7 mgKOH / g, and 0 to 5 mgKOH. / G is more preferable.
  • the difference in acid value (absolute chain value) between the (meth) acrylic copolymer forming the pressure-sensitive adhesive layer 3ab and the (meth) acrylic copolymer forming the mask material layer 3b is 1. 0.0 to 10 mgKOH / g is preferable, and 2.5 to 10 mgKOH / g is more preferable.
  • the acid value is the milligram number of potassium hydroxide required to neutralize the free acid contained in 1 g of the (meth) acrylic acid ester polymer.
  • the acid value of the (meth) acrylic polymer is within the above range, so that the adhesion between the surface protective tape and the mask material layer is controlled, and the mask material layer and the adhesive layer of the surface protective tape can be easily used even when Tg is close. Can be peeled off.
  • Acid groups are not covalent bonds like hardeners, but they form pseudo-crosslinks between acid groups, so they are included in both the pressure-sensitive adhesive layer and the mask material layer, so the adhesiveness between the pressure-sensitive adhesive layer and the mask material layer As a result, it becomes difficult to peel the mask material from the surface protection tape.
  • Adjustment of an acid value can be suitably adjusted by adjusting the compounding quantity of acrylic acid at the time of superposing
  • the adhesive force between the mask material layer 3b and the adhesive layer 3ab is preferably 2.0 N / 25 mm or less before radiation irradiation.
  • the “adhesion strength” (unit: N / 25 mm) is measured using a tensilon tester (AG-10kNI (trade name) manufactured by Shimadzu Corporation) and a mask-integrated surface protection tape having a width of 5 mm with a cutter. After cutting, the mask material layer is pulled and peeled at 180 ° direction at a peel rate of 300 mm / min, and the stress (peel strength) at that time is measured.
  • the ultraviolet irradiation condition means that the entire surface of the mask-integrated surface protective tape is irradiated with ultraviolet rays from the side of the base film so that the cumulative irradiation amount is 500 mJ / cm 2 .
  • a high-pressure mercury lamp is used for ultraviolet irradiation.
  • the wafer fixing tape 4 needs to have a plasma resistance that holds the semiconductor wafer 1 and can withstand even if it is exposed to a plasma dicing process. Further, in the pick-up process, good pick-up properties and, in some cases, expandability and the like are also required.
  • the wafer fixing tape 4 the same tape as the surface protective tape 3a can be used.
  • the well-known dicing tape utilized with the conventional plasma dicing system generally called a dicing tape can be used.
  • a dicing die bonding tape in which a die bonding adhesive is laminated between the pressure-sensitive adhesive layer and the base film can also be used.
  • a laser irradiation apparatus for irradiating ultraviolet or infrared laser light can be used.
  • a laser irradiation unit is arranged so as to be movable along the street of the semiconductor wafer 1 and can irradiate a laser with an appropriately controlled output in order to remove the mask material layer 3b.
  • the CO 2 laser can obtain a large output of several W to several tens W, and can be suitably used in the present invention.
  • a plasma etching apparatus can be used to perform plasma dicing and plasma ashing.
  • the plasma etching apparatus is an apparatus capable of performing dry etching on the semiconductor wafer 1.
  • the plasma etching apparatus creates a sealed processing space in the vacuum chamber, the semiconductor wafer 1 is placed on the high frequency side electrode, and faces the high frequency side electrode.
  • the gas for generating plasma is supplied from the gas supply electrode provided. If a high-frequency voltage is applied to the high-frequency side electrode, plasma is generated between the gas supply electrode and the high-frequency side electrode, and this plasma is used.
  • a refrigerant is circulated in the heat generating high frequency electrode to prevent the temperature of the semiconductor wafer 1 from being raised by the heat of the plasma.
  • the resist used in the conventional plasma dicing process can be obtained by providing the surface protection tape for protecting the pattern surface with a mask function in plasma dicing.
  • a photolithographic process or the like for providing is unnecessary.
  • a surface protection tape is used, a technique that requires high-level alignment such as printing and transfer is not required for forming a mask, and it can be easily bonded to the surface of a semiconductor wafer, and a mask can be easily formed by a laser device.
  • the mask material layer 3b can be removed by O 2 plasma, the mask portion can be removed by the same apparatus as that for plasma dicing.
  • plasma dicing is performed from the pattern surface 2 side (surface S side), it is not necessary to invert the chip upside down before the picking operation.
  • Example 1 Production of mask-integrated surface protective tape, production of semiconductor chip ⁇ Manufacture of mask-integrated surface protective tape> (Meth) having a weight average molecular weight of 650,000, an acid value of 0 mg KOH / g, and a Tg of -15 ° C. by mixing 44 mol% of butyl acrylate, 50 mol% of lauryl acrylate and 6.0 mol% of 2-hydroxyethyl acrylate and polymerizing in solution. An acrylic copolymer solution was obtained.
  • urethane acrylate oligomer 100 parts by mass and trifunctional of hexafunctional mass-average molecular weight 3,500 urethane acrylate oligomer [manufactured by Shin-Nakamura Chemical Co., Ltd.] as an ultraviolet-reactive resin with respect to 100 parts by mass of the obtained (meth) acrylic copolymer.
  • urethane acrylate oligomer manufactured by Shin-Nakamura Chemical Co., Ltd.
  • Coronate L manufactured by Nippon Polyurethane Industry Co., Ltd.
  • Irgacure 184 10 parts by mass of BASF
  • Acrylic copolymer (mass average molecular weight: 400,000, hydroxyl value: 0 mgKOH / g, acid value: 9.) is prepared by mixing 20 mol% of acrylic acid, 70 mol% of butyl acrylate and 10 mol% of methyl acrylate and polymerizing in solution. 8 mg KOH / g, Tg: ⁇ 23 ° C.) was synthesized. 50 parts by mass and trifunctional urethane acrylate of hexafunctional mass-average molecular weight 3,000 urethane acrylate oligomer [manufactured by Shin-Nakamura Chemical Co., Ltd.] as an ultraviolet reactive resin with respect to 100 parts by mass of the obtained acrylic copolymer.
  • an adhesive composition B 50 parts by mass of oligomer (manufactured by Shin-Nakamura Chemical Co., Ltd.), 4.0 parts by mass of Coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd.) as a curing agent, and Irgacure 184 (manufactured by BASF) as a photopolymerization initiator ) was mixed with 10 parts by mass to obtain an adhesive composition B.
  • the pressure-sensitive adhesive composition A is applied onto a release liner as a mask material layer forming composition, and the formed pressure-sensitive adhesive layer is bonded to a 100 ⁇ m-thick LDPE (low density polyethylene) film, and the radiation is 130 ⁇ m thick.
  • a curable surface protective tape 3a was obtained.
  • the pressure-sensitive adhesive composition B is coated on the release liner so that the thickness after drying becomes 5 ⁇ m, and the release liner of the radiation curable surface protection tape 3a is peeled off and bonded to the exposed pressure-sensitive adhesive layer surface.
  • a radiation curable mask material-integrated surface protective tape 3 having a total thickness of 135 ⁇ m was obtained.
  • the ground wafer is mounted on a wafer fixing tape (radiation curable dicing tape) from the back side of the wafer using RAD-2700F (trade name: manufactured by Lintec Co., Ltd.) and supported and fixed by a ring frame. did. Thereafter, only the surface protection tape 3a was peeled off, leaving only the mask material layer 3b on the wafer. Here, since only the surface protection tape 3a can be peeled leaving the mask material layer 3b, it can be seen that the adhesion between the mask material layer and the adhesive layer is lower than the adhesion between the mask material layer and the wafer. It was.
  • the mask material on the scribe line was removed with a CO 2 laser, and the scribe line was opened. Thereafter, SF 6 gas was used as a plasma generating gas, and the silicon wafer was irradiated with plasma from the mask material layer side at an etching rate of 15 ⁇ m / min for 5 minutes. The wafer was cut by this plasma dicing and divided into individual chips. Next, O 2 gas was used as a plasma generating gas, and ashing was performed at an etching rate of 1.5 ⁇ m / min for 10 minutes to remove the mask material. Thereafter, ultraviolet rays were irradiated from the wafer fixing tape side (irradiation amount 200 mJ / cm 2 ) to reduce the adhesive force of the wafer fixing tape and pick up the chip.
  • SF 6 gas was used as a plasma generating gas
  • O 2 gas was used as a plasma generating gas
  • ashing was performed at an etching rate of 1.5 ⁇ m / min for 10 minutes to remove the mask material.
  • Example 1 a mask-integrated surface protective tape having a width of 25 mm was bonded to stainless steel as a model semiconductor wafer, as shown in FIG. 7 (a). Thereafter, when the adhesion force was measured at a peeling angle of 90 ° and a peeling speed of 300 mm / min, at 2.0 N / 25 mm, as shown in FIG. 7B, between the mask material layer and the adhesive layer. Peeling was confirmed.
  • the pressure-sensitive adhesive layer is bonded again to the mask material layer exposed on the wafer as shown in FIG. 7C, irradiated with ultraviolet rays (500 mJ / cm 2 ), and a peeling rate of 90
  • the adhesive force was measured at 0 ° C. and a peeling speed of 300 mm / min
  • re-peeling was confirmed between the mask material layer and the stainless steel as shown in FIG. 7 (d).
  • the re-peeling test was performed 10 times, and re-peeling was confirmed in all 10 times. For this reason, in Table 1 below, the removability of the mask material layer is “ ⁇ ”.
  • Example 2 Production of mask-integrated surface protective tape, production of semiconductor chip ⁇ Manufacture of mask-integrated surface protective tape> Methacrylic acid 1.5 mol%, methyl methacrylate 40.5 mol%, 2-hydroxyethyl acrylate 1.5 mol% were mixed and polymerized in solution to obtain a mass average molecular weight of 170,000, an acid value of 11 mgKOH / g, and Tg. : A (meth) acrylic copolymer solution at ⁇ 10 ° C. was obtained.
  • a hexafunctional urethane acrylate oligomer [manufactured by Shin-Nakamura Chemical Co., Ltd.] as an ultraviolet-reactive resin is 100 parts by mass and trifunctional and has a molecular weight of 5000.
  • an adhesive composition C 50 parts by mass of a certain urethane acrylate oligomer [manufactured by Shin-Nakamura Chemical Co., Ltd.], 4.0 parts by mass of Coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd.) as a curing agent, and Irgacure 184 (BASF Corporation) as a photopolymerization initiator 10 parts by mass of the product (manufactured) was blended to obtain an adhesive composition C.
  • the pressure-sensitive adhesive composition B obtained in Example 1 was applied onto a release liner as a pressure-sensitive adhesive layer forming composition, and the formed pressure-sensitive adhesive layer was bonded to an LDPE (low density polyethylene) film having a thickness of 100 ⁇ m.
  • LDPE low density polyethylene
  • a radiation curable surface protective tape 3a having a thickness of 140 ⁇ m was obtained. Further, the pressure-sensitive adhesive composition C was applied to the release liner as a mask material layer forming composition so that the thickness after drying was 15 ⁇ m, and the release liner of the radiation-curable surface protection tape was peeled off. A radiation-curable mask-integrated surface protection tape 3 having a total thickness of 155 ⁇ m was obtained by laminating on the layer.
  • the ground wafer with the mask material is mounted on a wafer fixing tape (radiation curable dicing tape) from the back side of the wafer using RAD-2700F (trade name: manufactured by Lintec Corporation) and mounted on a ring frame. And fixed. Further, only the surface protection tape 3a was peeled off, leaving only the mask material layer 3b on the wafer. Thereafter, in the same manner as in Example 1, that is, in the same manner as in Example 1, a scribe line was opened, plasma dicing and ashing were performed, and a chip was picked up.
  • RAD-2700F radio frequency curable dicing tape
  • Example 2 a mask-integrated surface protective tape having a width of 25 mm was bonded to stainless steel as a model semiconductor wafer, as shown in FIG. 7 (a). Then, when the adhesion force was measured at a peeling angle of 90 ° and a peeling speed of 300 mm / min, as shown in FIG. 7B, peeling between the mask material layer and the adhesive layer at 2.0 N / 25 mm. was confirmed.
  • the pressure-sensitive adhesive layer is bonded again to the mask material layer exposed on the wafer as shown in FIG. 7C, irradiated with ultraviolet rays (500 mJ / cm 2 ), and a peeling rate of 90
  • the adhesive force was measured at 0 ° C. and a peeling speed of 300 mm / min
  • re-peeling was confirmed between the mask material layer and the stainless steel at 0.4 N / 25 mm as shown in FIG. 7 (d).
  • the re-peeling test was performed 10 times, and re-peeling was confirmed 9 times. For this reason, in the following Table 1, the removability of the mask material layer is “ ⁇ ”.
  • Example 3 Production of mask-integrated surface protective tape, production of semiconductor chip ⁇ Manufacture of mask-integrated surface protective tape> Methacrylic acid 1.0 mol%, butyl acrylate 23 mol%, lauryl acrylate 68 mol%, 2-hydroxyethyl acrylate 9.0 mol% were mixed and polymerized in solution to obtain a mass average molecular weight of 650,000, an acid value of 5.0 mgKOH / g, A (meth) acrylic copolymer solution having a Tg of ⁇ 10 ° C. was obtained.
  • urethane acrylate oligomer manufactured by Shin-Nakamura Chemical Co., Ltd.
  • Tetrad C (trade name: manufactured by Mitsubishi Gas Chemical Co., Ltd .; 1,3-bis (N, N-diglycidyl) as a curing agent] 2.0 parts by mass of aminomethyl) cyclohexanone] and 10 parts by mass of Irgacure 184 (manufactured by BASF) as a photopolymerization initiator were blended to obtain an adhesive composition D.
  • the pressure-sensitive adhesive composition D is coated on a release liner, and the formed pressure-sensitive adhesive layer is a 100 ⁇ m thick PET (polyethylene terephthalate) and LDPE (low density polyethylene) laminated film (layer structure 25 ⁇ m: 75 ⁇ m) LDPE layer Then, a radiation curable surface protective tape 3a having a thickness of 105 ⁇ m was obtained.
  • PET polyethylene terephthalate
  • LDPE low density polyethylene laminated film
  • the curing agent of the pressure-sensitive adhesive composition B of Example 1 was changed to TetradC [(trade name: manufactured by Mitsubishi Gas Chemical Company, Inc .; 1,3-bis (N, N-diglycidylaminomethyl) cyclohexanone], and then A pressure-sensitive adhesive composition E produced in the same manner was obtained.
  • the pressure-sensitive adhesive composition E was applied on the release liner as a mask material layer forming composition so that the thickness after drying was 5 ⁇ m, and the release liner of the radiation-curable surface protective tape was peeled off to expose the pressure-sensitive adhesive.
  • a radiation-curing mask material-integrated surface protective tape 3 having a total thickness of 110 ⁇ m was obtained.
  • the ground wafer is mounted on a wafer fixing tape (radiation curable dicing tape) from the back side of the wafer using RAD-2700F (trade name: manufactured by Lintec Co., Ltd.) and supported and fixed by a ring frame. did. Further, only the surface protection tape 3a was peeled off, leaving only the mask material layer 3b on the wafer. Here, since only the surface protective tape 3a can be peeled leaving the mask material layer 3b, the adhesion between the mask material layer and the adhesive layer is more than the adhesion between the mask material layer and the wafer before the ultraviolet irradiation. Was found to be low. Thereafter, in the same manner as in Example 1, a scribe line was opened, plasma dicing and ashing were performed, ultraviolet rays were irradiated, and then a chip was picked up.
  • RAD-2700F radio frequency curable dicing tape
  • Example 3 a mask-integrated surface protective tape having a width of 25 mm was bonded to stainless steel as a model semiconductor wafer, as shown in FIG. 7 (a). Thereafter, when the adhesion force was measured at a peeling angle of 180 ° and a peeling speed of 300 mm / min, at 1.9 N / 25 mm, as shown in FIG. 7B, between the mask material layer and the adhesive layer. Peeling was confirmed.
  • the pressure-sensitive adhesive layer was bonded again to the mask material exposed on the wafer, irradiated with ultraviolet rays (500 mJ / cm 2 ), and the adhesion was measured at a peeling speed of 90 ° C. and a peeling speed of 300 mm / min.
  • re-peeling was confirmed between the mask material layer and the stainless steel at 1.3 N / 25 mm, as shown in FIG. 7B.
  • the re-peeling test was performed 10 times, and re-peeling was confirmed 9 times. For this reason, in the following Table 1, the removability of the mask material layer is “ ⁇ ”.
  • N, N, N ′, N′-tetraglycidyl-1,3-benzenedi (methanamine) [manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: TETRAD-X] was used as the epoxy curing agent. .
  • the pressure-sensitive adhesive composition F is coated on a release liner, and the formed pressure-sensitive adhesive layer is formed of a 100 ⁇ m thick PET (polyethylene terephthalate) and LDPE (low density polyethylene) laminated film (layer structure 25 ⁇ m: 75 ⁇ m) LDPE layer.
  • a pressure-sensitive curable surface protective tape 3a having a thickness of 130 ⁇ m was obtained.
  • the pressure-sensitive curable surface protective tape was peeled off by coating the pressure-sensitive adhesive composition B prepared in Example 1 as a mask material layer forming composition on the release liner so that the thickness after drying was 5 ⁇ m. By peeling off the liner and pasting it on the surface of the pressure-sensitive adhesive layer exposed, a radiation-curing mask material-integrated surface protective tape 3 having a total thickness of 135 ⁇ m was obtained.
  • the ground wafer is mounted on a wafer fixing tape (radiation curable dicing tape) from the back side of the wafer using RAD-2700F (trade name: manufactured by Lintec Co., Ltd.) and supported and fixed by a ring frame. did. Furthermore, only the surface protective tape 3a was peeled off and only the mask material layer 3b was left on the wafer, but only the surface protective tape 3a could not be peeled leaving the mask material layer 3b. It was found that the adhesion between the layer and the pressure-sensitive adhesive layer was higher than the adhesion between the mask material layer and the wafer.
  • the pressure-sensitive adhesive composition F produced in Comparative Example 1 was coated on a release liner, and the formed pressure-sensitive adhesive layer was formed of a 100 ⁇ m thick PET (polyethylene terephthalate) and LDPE (low density polyethylene) laminated film (layer structure 25 ⁇ m: 75 ⁇ m) to obtain a pressure-sensitive curable surface protection tape 3a having a thickness of 130 ⁇ m. Further, the pressure-sensitive adhesive composition F was applied as a mask material layer forming composition on the release liner so that the thickness after drying was 10 ⁇ m, and the release liner of the pressure-sensitive curable surface protection tape was peeled off to be exposed. By sticking on the surface of the pressure-sensitive adhesive layer, a pressure-sensitive curable mask material-integrated surface protective tape 3 having a total thickness of 140 ⁇ m was obtained.
  • the ground wafer is mounted on a wafer fixing tape (radiation curable dicing tape) from the back side of the wafer using RAD-2700F (trade name: manufactured by Lintec Co., Ltd.) and supported and fixed by a ring frame. did. Furthermore, only the surface protective tape 3a was peeled off and only the mask material layer 3b was left on the wafer, but only the surface protective tape 3a could not be peeled leaving the mask material layer 3b. It was found that the adhesion between the layer and the pressure-sensitive adhesive layer was higher than the adhesion between the mask material layer and the wafer.
  • Test Example 1 Evaluation of Adhesiveness between Mask Material Layer and Adhesive Layer Three test pieces having a width of 25 mm and a length of 300 mm were collected from the mask-integrated surface protective tape according to Examples and Comparative Examples. Each test piece was pressed on a SUS steel plate (model semiconductor wafer) with a thickness of 2.0 mm specified by JIS G 4305, finished with 280 No. 280 water-resistant abrasive paper specified by JIS R 6253, by reciprocating a 2 kg rubber roller three times. After standing for 1 hour, the adhesive strength at 23 ° C. was measured using a tensile tester conforming to JIS B 7721 whose measured value was in the range of 15 to 85% of its capacity. The measurement was performed by a 180-degree peeling method, and the tensile speed at this time was 300 mm / min.
  • Test Examples 1 to 3 are summarized in Table 1 below. “-” Indicates that the evaluation could not be performed.
  • the mask-integrated surface protective tape is attached to the pattern surface of the semiconductor wafer by using the mask-integrated surface protective tape of the present invention.
  • the mask-integrated surface protective tape of the present invention By simply peeling off the surface protection tape from the affixed mask-integrated surface protection tape, it was possible to easily form a mask without producing adhesive residue. Furthermore, it was found that this mask material can be more reliably removed by O 2 plasma, and generation of defective chips can be highly suppressed. It was also found that the mask material layer can be easily peeled from the pattern surface by attaching the pressure-sensitive adhesive layer again to the mask material layer and irradiating with ultraviolet rays.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dicing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Adhesive Tapes (AREA)

Abstract

下記工程(a)~(d)を含む半導体チップの製造に用いられるマスク一体型表面保護テープであって、マスク一体型表面保護テープが、基材フィルム上に放射線硬化型粘着剤層および放射線硬化型マスク材層をこの順に有し、下記工程(b)において、放射線照射前は粘着剤層とマスク材層間が剥離し、放射線放射後はマスク材層とパターン面が剥離するマスク一体型表面保護テープ。 〔工程(a)~(d)〕 (a)マスク一体型表面保護テープを半導体ウェハのパターン面側に貼り合せた状態で、半導体ウェハの裏面を研削し、研削した半導体ウェハの裏面にウェハ固定テープを貼り合わせ、リングフレームで支持固定する工程、 (b)マスク一体型表面保護テープから基材フィルムと前記粘着剤層を一体に剥離してマスク材層を表面に露出させた後、マスク材層のうち半導体ウェハのストリートに相当する部分をレーザーにより切断して半導体ウェハのストリートを開口する工程、 (c)SFプラズマにより半導体ウェハを前記ストリートで分断して半導体チップに個片化するプラズマダイシング工程、 (d)Oプラズマにより前記マスク材層を除去するアッシング工程

Description

マスク一体型表面保護テープ
 本発明は、マスク一体型表面保護テープに関する。
 最近の半導体チップの薄膜化・小チップ化への進化はめざましく、特に、メモリカードやスマートカードのような半導体ICチップが内蔵されたICカードでは薄膜化が要求され、また、LED・LCD駆動用デバイスなどでは小チップ化が要求されている。今後これらの需要が増えるにつれ半導体チップの薄膜化・小チップ化のニーズはより一層高まるものと考えられる。
 これらの半導体チップは、半導体ウェハをバックグラインド工程やエッチング工程等において所定厚みに薄膜化した後、ダイシング工程を経て個々のチップに分割することにより得られる。このダイシング工程においては、ダイシングブレードにより切断されるブレードダイシング方式が用いられてきた。ブレードダイシング方式では切断時にブレードによる切削抵抗が半導体ウェハに直接かかる。このため、この切削抵抗によって半導体チップに微小な欠け(チッピング)が発生することがある。チッピング発生は半導体チップの外観を損なうだけでなく、場合によっては抗折強度不足によるピックアップ時のチップ破損を招き、チップ上の回路パターンまで破損する可能性がある。また、ブレードによる物理的なダイシング工程では、チップ同士の間隔であるカーフ(スクライブライン、ストリートともいう)の幅を厚みのあるブレード幅よりも狭小化することができない。この結果、一枚のウェハから取ることができるチップの数(収率)は少なくなる。さらにウェハの加工時間が長いことも問題であった。
 ブレードダイシング方式以外にもダイシング工程には様々な方式が利用されている。
 例えば、ウェハを薄膜化した後にダイシングを行う難しさに鑑みて、先に所定の厚み分だけウェハに溝を形成しておき、その後に研削加工を行って薄膜化とチップへの個片化を同時に行うDBG(先ダイシング)方式がある。この方式によれば、カーフ幅はブレードダイシング工程と同様だが、チップの抗折強度がアップしチップの破損を抑えることができるというメリットがある。
 また、ダイシングをレーザーで行うレーザーダイシング方式がある。
 レーザーダイシング方式によればカーフ幅を狭くでき、またドライプロセスとなるメリットもある。しかしながら、レーザーによる切断時の昇華物でウェハ表面が汚れるという不都合があり、所定の液状保護材でウェハ表面を保護する前処理を要する場合がある。また、ドライプロセスといっても完全なドライプロセスを実現するには至っていない。なお、レーザーダイシング方式はブレードダイシング方式よりも処理速度を高速化できる。しかしながら、1ラインずつ加工することには変わりはなく、極小チップの製造にはそれなりに時間がかかる。
 さらに、ダイシングを水圧で行うウオータージェット方式などのウェットプロセスを用いる方式もある。
 この方式では、MEMSデバイスやCMOSセンサーなど表面汚染を高度に抑える必要がある材料において問題が起きる可能性がある。また、カーフ幅の狭小化には制約があり、得られるチップの収率も低いものとなる。
 また、ウェハの厚み方向にレーザーで改質層を形成し、エキスパンドして分断し個片化するステルスダイシング方式も知られている。
 この方式は、カーフ幅をゼロにでき、ドライで加工できるというメリットがある。しかしながら、改質層形成時の熱履歴によりチップ抗折強度が低下する傾向があり、また、エキスパンドして分断する際にシリコン屑が発生する場合がある。さらに、隣接チップとのぶつかりが抗折強度不足を引き起こす可能性がある。
 さらに、ステルスダイシングと先ダイシングを併せた方式として、薄膜化の前に先に所定の厚み分だけ改質層を形成しておき、その後に裏面から研削加工を行って薄膜化とチップへの個片化を同時に行う狭スクライブ幅対応チップ個片化方式がある。
 この技術は、上記プロセスのデメリットを改善したものであり、ウェハ裏面研削加工中に応力でシリコンの改質層が劈開し個片化するため、カーフ幅がゼロでありチップ収率は高く、抗折強度もアップするというメリットがある。しかしながら、裏面研削加工中に個片化されるため、チップ端面が隣接チップとぶつかってチップコーナーが欠ける現象が見られる場合がある。
 これに加えて、プラズマダイシング方式がある(例えば、特許文献1参照)。
 プラズマダイシング方式は、マスクで覆っていない箇所をプラズマで選択的にエッチングすることで、半導体ウェハを分割する方法である。このダイシング方法を用いると、選択的にチップの分断が可能であり、スクライブラインが曲がっていても問題なく分断できる。また、エッチングレートが非常に高いことから近年ではチップの分断に最適なプロセスの1つとされてきた。
特開2007-19385号公報
 プラズマダイシング方式では、六フッ化硫黄(SF)や四フッ化炭素(CF)など、ウェハとの反応性が非常に高いフッ素系のガスをプラズマ発生用ガスとして用いており、その高いエッチングレートから、エッチングしない面に対してマスクによる保護が必須であり、事前にマスク形成が必要となる。
 このマスク形成には、特許文献1に記載のように、ウェハの表面にレジストを塗布した後、ストリートに相当する部分をフォトリソグラフィプロセスで除去してマスクとする技術が一般的に用いられる。そのため、プラズマダイシングを行うためには、プラズマダイシング設備以外のフォトリソ工程設備が必要で、チップコストが上昇するという問題がある。
 また、プラズマエッチング後にマスク(レジスト膜)が残った状態であるため、マスク除去のために大量の溶剤を用いる必要があり、それでもマスクを完全に除去できないこともあり、不良チップが生じる場合があった。
 さらに、レジストによるマスキング工程を経るため、全体の処理プロセスが長くなるという不都合もあった。
 半導体チップの厚さは、近年ますます薄くなる傾向にあり、半導体ウェハ裏面をこの様に薄く裏面研削した場合でも、半導体ウェハのパターン面に良好に密着してパターン面を効果的に保護する必要がある。
 しかも、マスク一体型表面保護テープでは、半導体ウェハの裏面研削後に、マスク一体型表面保護テープからマスク材(層)のみを半導体ウェハのパターン面上に残すため、粘着剤層とマスク材層との間で剥離するため、この剥離が容易、かつ糊残りなく剥離できなければならない。
 上記の剥離では、マスク材層をウェハ表面に簡単に露出させることができることが必要で、SFプラズマによってウェハをチップへとより確実に、高精度にダイシングする必要がある。さらにプラズマダイシング後(ウェハの分割後)においてはOプラズマによってマスク材層のマスク材をより確実に除去し、不良チップの発生を高度に抑える必要がある。
 しかしながら、上記の工程において、パターン面に貼り合わせたマスク材(層)を貼り直す必要が生じることがある。
 この場合、本発明者らの検討によれば、パターン面上のマスク材(層)を糊残りなく、完全に剥離できることが重要となるが、従来技術では、必ずしも満足できるレベルではなかった。
 従って、本発明は、プラズマダイシング方式用であって、薄膜化の程度が大きい裏面研削工程での半導体ウェハのパターン面の保護性、表面保護テープのマスク材層からの剥離性、半導体ウェハ上のマスク材の貼り直し性およびマスク材の除去性に優れ、糊残りが少なく、不良チップの発生が少なく、かつフォトリソグラフィプロセス不要のマスク一体型表面保護テープを提供することを課題とする。
 これに加えて、このようにして、不良チップの発生を高度に抑え、かつ生産性が高く、加工プロセスが短く、安価に製造できることが可能なマスク一体型表面保護テープを提供することを課題とする。
 本発明の上記課題は以下の手段によって解決される。
〔1〕下記工程(a)~(d)を含む半導体チップの製造に用いられるマスク一体型表面保護テープであって、
 前記マスク一体型表面保護テープが、基材フィルム上に放射線硬化型粘着剤層および放射線硬化型マスク材層をこの順に有し、下記工程(b)において、放射線照射前は該粘着剤層と該マスク材層間が剥離し、放射線放射後は該マスク材層とパターン面が剥離することを特徴とするマスク一体型表面保護テープ。
〔工程(a)~(d)〕
(a)マスク一体型表面保護テープを半導体ウェハのパターン面側に貼り合せた状態で、該半導体ウェハの裏面を研削し、研削した半導体ウェハの裏面にウェハ固定テープを貼り合わせ、リングフレームで支持固定する工程、
(b)前記マスク一体型表面保護テープから前記基材フィルムと前記粘着剤層を一体に剥離して前記マスク材層を表面に露出させた後、該マスク材層のうち半導体ウェハのストリートに相当する部分をレーザーにより切断して半導体ウェハのストリートを開口する工程、
(c)SFプラズマにより半導体ウェハを前記ストリートで分断して半導体チップに個片化するプラズマダイシング工程、および、
(d)Oプラズマにより前記マスク材層を除去するアッシング工程
〔2〕放射線照射による硬化前の前記マスク材層と前記粘着剤層との間の密着力が、2.0N/25mm以下であることを特徴とする〔1〕に記載のマスク一体型表面保護テープ。
〔3〕前記マスク材層および前記粘着剤層が、いずれも(メタ)アクリル系共重合体、および、2官能または3官能以上の放射線重合性官能基を有し質量平均分子量が2,000~20,000の範囲である放射線重合性化合物を含有することを特徴とする〔1〕または〔2〕に記載のマスク一体型表面保護テープ。
〔4〕前記マスク材層に含まれる前記(メタ)アクリル系共重合体と、前記粘着剤層に含まれる前記(メタ)アクリル系共重合体のガラス転移点(Tg)が、いずれも-25~-5℃であって、該(メタ)アクリル系共重合体の少なくとも一方の酸価が、0~10mgKOH/gであることを特徴とする〔3〕に記載のマスク一体型表面保護テープ。
〔5〕前記マスク材層および前記粘着剤層に用いられている硬化剤が、いずれもイソシア系硬化剤であることを特徴とする〔1〕~〔4〕のいずれか1項に記載のマスク一体型表面保護テープ。
〔6〕前記マスク材層および前記粘着剤層に用いられている硬化剤が、いずれもエポキシ系硬化剤であることを特徴とする〔1〕~〔5〕のいずれか1項に記載のマスク一体型表面保護テープ。
 本発明により、プラズマダイシング方式用であって、薄膜化の程度が大きい裏面研削工程での半導体ウェハのパターン面の保護性、表面保護テープのマスク材層からの剥離性、半導体ウェハ上のマスク材の貼り直し性およびマスク材の除去性に優れ、糊残りが少なく、不良チップの発生が少なく、かつフォトリソグラフィプロセス不要のマスク一体型表面保護テープを提供することが可能となった。
 これに加えて、このようにして、不良チップの発生を高度に抑え、かつ生産性が高く、加工プロセスが短く、安価に製造できることが可能なマスク一体型表面保護テープを提供することが可能となった。
 本発明の上記および他の特徴および利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明のマスク一体型表面保護テープの模式的な概略断面図である。 図2は、本発明のマスク一体型表面保護テープを使用する半導体ウェハへの表面保護テープ貼合までの工程を説明する概略断面図である。分図2(a)は半導体ウェハを示し、分図2(b)はマスク一体型表面保護テープを貼合する様子を示し、分図2(c)はマスク一体型表面保護テープを貼合した半導体ウェハを示す。 図3は、本発明のマスク一体型表面保護テープを使用する半導体ウェハの薄膜化と固定までの工程を説明する概略断面図である。分図3(a)は半導体ウェハの薄膜化処理を示し、分図3(b)はウェハ固定テープを貼合する様子を示し、分図3(c)は半導体ウェハをリングフレームに固定した状態を示す。 図4は、本発明のマスク一体型表面保護テープを使用するマスク形成までの工程を説明する概略断面図であり、分図4(a)はマスク一体型表面保護テープからマスク材層を残して表面保護テープを引き剥がす様子を示し、分図4(b)はマスク一体型表面保護テープのマスク材層が剥き出しになった状態を示し、分図4(c)はレーザーでストリートに相当するマスク材層を切除する工程を示す。 図5は、本発明のマスク一体型表面保護テープを使用するプラズマダイシングとプラズマアッシングの工程を説明する概略断面図であり、分図5(a)はプラズマダイシングを行う様子を示し、分図5(b)はチップに個片化された状態を示し、分図5(c)はプラズマアッシングを行う様子を示す。 図6は、本発明のマスク一体型表面保護テープを使用するチップをピックアップするまでの工程を説明する概略断面図であり、分図6(a)はマスク材層が除去された状態を示し、分図6(b)はチップをピックアップする様子を示す。 図7は、本発明のマスク一体型表面保護テープを使用して、マスク材層の貼り直しを行う工程を説明する概略断面図であり、分図7(a)のように本発明のマスク一体型表面保護テープを半導体ウェハに貼合して、分図7(b)のようにマスク材層のみ残し、分図7(c)のようにマスク材層の貼り直しのため表面保護テープを再貼合し、粘着剤層から紫外線照射して、分図7(d)のようにマスク材層を剥離する様子を示す。
 本発明のマスク一体型表面保護テープは、半導体ウェハをプラズマダイシングにより分割、個片化して半導体チップを得る方法に用いられる。
 以下に説明するように、本発明のマスク一体型表面保護テープを用いることにより、プラズマダイシング工程に先立つフォトリソグラフィプロセスが不要となり、半導体チップないし半導体製品の製造コストを大幅に抑えることができる。
 しかも、一度、パターン面に貼り合わせたマスク材(層)を貼り直す必要が生じる場合、パターン面上のマスク材(層)を糊残りなく、完全に剥離できることが可能となった。
 本発明のマスク一体型表面保護テープ3は、図1に示すように、基材フィルム3aa上に放射線硬化型粘着剤層3abおよびこの粘着剤層上にマスク材層を有し、このマスク材層が放射線硬化型マスク材層3bである。
 ここで、基材フィルム3aa上に放射線硬化型粘着剤層3abを有する部分が、表面保護テープ3aである。
 本発明のマスク一体型表面保護テープは、ダイシング方式が、上記のように、プラズマダイシング方式に使用されるもの、すなわち、プラズマダイシング方式用のマスク一体型表面保護テープである。
 より具体的には、半導体ウェハから半導体チップを得るに際し、プラズマダイシングによりウェハを分割、個片化する工程を含む半導体チップの製造で使用される。
 しかも、上記のように、フォトリソグラフィプロセス不要のマスク一体型表面保護テープである。
 本発明のマスク一体型表面保護テープは、半導体ウェハの加工に用いられ、半導体ウェハの裏面研削の際に、パターン面(表面)を保護するために、当該パターン面に貼り合わせて用いられる。
 本発明のマスク一体型表面保護テープは、粘着剤層とマスク材層が、ともに、放射線照射型である。
 このため、分図7(a)のように放射線照射による硬化前の剥離工程ではマスク材層と粘着剤層が剥離し、一度、パターン面に貼り合わせたマスク材(層)を貼り直す必要が生じる場合、マスク材層が放射線照射型であるため、分図7(c)のように、粘着剤層側から紫外線などの放射線を照射し、分図7(d)のように、パターン面上のマスク材(層)を糊残りなく、完全に剥離できることが可能となった。また、粘着剤層が放射線照射型であるため、粘着剤層とマスク材層がともに架橋するため、実質一体となって、粘着剤層とマスク材層の間の剥離が困難になる。
 なお、本発明では、分図7(b)の工程が省略されていてもよい。
 以下、本発明のマスク一体型表面保護テープを、半導体チップの製造工程(半導体ウェハの加工工程)とともに、詳細に説明する。
 本発明のマスク一体型表面保護テープは、さらに好ましくは、少なくとも下記工程(a)~(d)を含む半導体チップの製造に用いられる。
 すなわち、本発明のマスク一体型表面保護テープは、下記工程(a)~(d)を含む半導体チップの製造用のマスク一体型表面保護テープである。
〔工程(a)~(d)〕
(a)マスク一体型表面保護テープを半導体ウェハのパターン面側に貼り合せた状態で、該半導体ウェハの裏面を研削し、研削した半導体ウェハの裏面にウェハ固定テープを貼り合わせ、リングフレームで支持固定する工程、
(b)前記マスク一体型表面保護テープから前記基材フィルムと前記粘着剤層を一体に剥離して(すなわち、マスク一体型表面保護テープから表面保護テープを剥離して)前記マスク材層を表面に露出させた後、該マスク材層のうち半導体ウェハのストリートに相当する部分をレーザーにより切断して半導体ウェハのストリートを開口する工程、
(c)SFプラズマにより半導体ウェハを前記ストリートで分断して半導体チップに個片化するプラズマダイシング工程、および、
(d)Oプラズマにより前記マスク材層を除去するアッシング工程
 本発明のマスク一体型表面保護テープが適用される上記半導体チップの製造方法は、上記工程(d)の後、下記工程(e)を含むことが好ましい。また下記工程(e)を含む場合、この工程(e)の後に、さらに下記工程(f)を含むことが好ましい。
(e)ウェハ固定テープから半導体チップをピックアップする工程
(f)ピックアップした半導体チップをダイボンディング工程に移行する工程
 本発明のマスク一体型表面保護テープは、上述の通り、基材フィルム、この基材フィルム上に設けられた放射線硬化型粘着剤層およびこの粘着剤層上に設けられた放射線硬化型マスク材層を有する。本発明において、基材フィルムと、この基材フィルム上に設けられた粘着剤層とからなる積層体を、図1に示すように、表面保護テープ(表面保護テープ3a)と呼ぶことがある。すなわち、本発明のマスク一体型表面保護テープは、表面保護テープの粘着剤層上に、さらにマスク材層が設けられた積層構造のテープである。
 本発明のマスク一体型表面保護テープは、粘着剤層およびマスク材層が放射線硬化型であること(すなわち、放射線照射により硬化する特性を有すること)である。
 本発明のマスク一体型表面保護テープの場合、上記工程(b)において、放射線を照射せずに、上記マスク一体型表面保護テープから上記基材フィルムと上記粘着剤層を一体に剥離してマスク材層を表面に露出させる工程を含む。
 粘着剤層およびマスク材(層)を放射線照射によって硬化させることにより、マスク材層と粘着剤層との層間密着性が向上するため、半導体ウェハにマスク材を貼り直す必要がある際には、表面保護テープを半導体ウェハ上に露出したマスク材上に再び貼り合せ、放射線を照射し、マスク材(層)を取り除くことができる。
 以下に、本発明のマスク一体型表面保護テープが使用される用途としての導体チップの製造方法に適用される工程(a)~(d)を含め、詳細に説明する。
 本発明のマスク一体型表面保護テープを用いた半導体チップの製造方法(以下、単に「本発明が適用される製造方法」という。)について、その好ましい実施形態を、図面を参照して以下に説明する。ただし、本発明は、本発明で規定されること以外は下記実施形態に限定されるものではない。また、各図面に示される形態は、本発明の理解を容易にするための模式図であり、各部材のサイズ、厚み、ないしは相対的な大小関係等は説明の便宜上大小を変えている場合があり、実際の関係をそのまま示すものではない。また、本発明で規定する事項以外はこれらの図面に示された外形、形状に限定されるものでもない。
 なお、下記の実施形態に用いる装置および材料等は、特に断りのない限り、従来から半導体ウェハの加工に用いられている通常の装置および材料等を使用することができ、その使用条件も通常の使用方法の範囲内で目的に応じて適宜に設定、好適化することができる。また、各実施形態で共通する材質、構造、方法、効果などについては重複記載を省略する。
 本発明マスク一体型表面保護テープが適用される製造方法を図2~図6を参照して説明する。
 半導体ウェハ1は、その表面Sに半導体素子の回路などが形成されたパターン面2を有している(分図2(a)参照)。このパターン面2には、基材フィルム3aaに粘着剤層3abを設けた表面保護テープ3aの粘着剤層3ab上に、さらにマスク材層3bを設けた本発明のマスク一体型表面保護テープ3を貼合し(分図2(b)参照)、パターン面2が本発明のマスク一体型表面保護テープ3で被覆された半導体ウェハ1を得る(分図2(c)参照)。
 次に、半導体ウェハ1の裏面Bをウェハ研削装置M1で研削し、半導体ウェハ1の厚みを薄くする(分図3(a)参照)。その研削した裏面Bにはウェハ固定テープ4を貼り合わせて(分図3(b)参照)、リングフレームFに支持固定する(分図3(c)参照)。
 半導体ウェハ1からマスク一体型表面保護テープ3の表面保護テープ3aを剥離するとともにそのマスク材層3bは半導体ウェハ1に残して(分図4(a)参照)、マスク材層3bを剥き出しにする(分図4(b)参照)。そして、表面Sの側からパターン面2に格子状等に適宜形成された複数のストリート(図示せず)に対してCOレーザーLを照射して、マスク材層3bのストリートに相当する部分を除去し、半導体ウェハのストリートを開口する(分図4(c)参照)。
 次に、表面S側からSFガスのプラズマP1による処理を行いストリート部分で剥き出しになった半導体ウェハ1をエッチングし(分図5(a)参照)、個々のチップ7に分割して個片化する(分図5(b)参照)、次いでOガスのプラズマP2によってアッシングを行い(分図5(c)参照)、表面Sに残ったマスク材層3bを取り除く(分図6(a)参照)。そして最後に個片化されたチップ7をピンM2により突き上げコレットM3により吸着してピックアップする(分図6(b)参照)。
 ここで、SFガスを用いた半導体ウェハのSiのエッチングプロセスはBOSCHプロセスとも呼ばれ、露出したSiと、SFをプラズマ化して生成したF原子とを反応させ、四フッ化ケイ素(SiF)として除去するものであり、リアクティブイオンエッチング(RIE)とも呼ばれる。一方、Oプラズマによる除去は、半導体製造プロセス中ではプラズマクリーナーとしても用いられる方法でアッシング(灰化)とも呼ばれ、対有機物除去の手法の一つである。半導体デバイス表面に残った有機物残渣をクリーニングするために行われる。
 次に、マスク一体型表面保護テープ3で使用する材料および上記工程で使用する材料について説明する。
 なお、マスク一体型表面保護テープ3で使用する材料以外に上記工程で使用する材料は、下記に説明するものに限定されるものではない。
 半導体ウェハ1は、片面に半導体素子の回路などが形成されたパターン面2を有するシリコンウェハなどであり、パターン面2は、半導体素子の回路などが形成された面であって、平面視においてストリートを有する。
 本発明のマスク一体型表面保護テープ3は、基材フィルム3aa上に粘着剤層3abが設けられ、さらに粘着剤層3ab上にマスク材層3bが設けられた構成を有し、パターン面2に形成された半導体素子を保護する機能を有する。すなわち、後工程のウェハ薄膜化工程(裏面研削工程)ではパターン面2で半導体ウェハ1を支持して半導体ウェハの裏面が研削されるために、マスク一体型表面保護テープ3はこの研削時の負荷に耐える必要がある。そのため、マスク一体型表面保護テープ3は単なるレジスト膜等とは異なり、パターン面に形成される素子を被覆するだけの厚みがあって、その押圧抵抗は低く、また研削時のダストや研削水などの浸入が起こらないように素子を密着できるだけの密着性が高いものである。
 本発明のマスク一体型表面保護テープ3のうち基材フィルム3aaはプラスチックやゴム等からなり、例えばポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン樹脂、ポリブテン-1、ポリ-4-メチルペンテン-1、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、アイオノマー等のα-オレフィンの単独重合体または共重合体、あるいはこれらの混合物、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリフェニレンサルファイド、ポリエーテルイミド、ポリイミド、ポリカーボネート、ポリメチルメタクリレート、ポリウレタン、スチレン-エチレン-ブテン-もしくはペンテン系共重合体等の単体もしくは2種以上を混合させたもの、さらにこれらにこれら以外の樹脂や充填材、添加剤等が配合された樹脂組成物をその材質として挙げることができ、要求特性に応じて任意に選ぶことができる。
 基材フィルム3aaはポリオレフィン樹脂からなる層を有することが好ましい。この場合において、基材フィルム3aaはポリオレフィン樹脂層からなる単層でもよいし、ポリオレフィン樹脂層と他の樹脂層とからなる2層またはそれ以上の複層構造であってもよい。また、低密度ポリエチレンとエチレン酢酸ビニル共重合体の積層体や、ポリプロピレンとポリエチレンテレフタレートの積層体、ポリエチレンテレフタレート、ポリエチレンナフタレートは好適な材質の一つである。
 これらの基材フィルム3aaは、一般的な押出し法を用いて製造できる。基材フィルム3aaを種々の樹脂を積層して得る場合には、共押出し法、ラミネート法などで製造される。この際、通常のラミネートフィルムの製法に於いて普通に行われている様に、樹脂と樹脂の間に接着層を設けてもよい。このような基材フィルム3aaの厚さは、強・伸度特性、放射線透過性の観点から20~200μmが好ましい。
 粘着剤層3abは、マスク材と共に、パターン面に形成される素子の凹凸を吸収してパターン面との密着性を高め、パターン面を保護する役割を担う。マスク一体型表面保護テープをウェハ薄膜化工程の負荷に耐えるものとするために、粘着剤層3abは、ウェハ薄膜化工程においてはマスク材層3bないし基材フィルム3aaとの密着性が高いことが好ましい。一方、ウェハ薄膜化工程後においては、基材フィルム3aaと一体となってマスク材層と剥離されるために、マスク材層との密着性は低いことが好ましい(剥離性が高いことが好ましい)。また、半導体ウェハのパターン面上のマスク材を張り直す必要がある際には、該マスク材(層)上に再び貼った表面保護テープの粘着剤層との密着性が高いことが好ましい。かかる特性をより高いレベルで実現するために、本発明のマスク材一体型表面保護テープの粘着剤層3abおよびマスク材層3bは放射線硬化型である。粘着剤層3abおよびマスク材3bを放射線硬化型とすることにより、放射線照射によって粘着剤層とマスク材層が三次元網状化して密着力が向上するため、一度マスク材を剥離した表面保護テープを用いて、マスク材層をパターン面から簡単に剥離することが可能となる。
 なお、本発明において「放射線」とは紫外線のような光線や電子線のような電離性放射線の双方を含む意味に用いる。本発明では、放射線は紫外線が好ましい。
 本発明のマスク一体型表面保護テープにおいて、粘着剤層3abは(メタ)アクリル系共重合体を含有する。ここで、粘着剤層3abが(メタ)アクリル系共重合体を含有するとは、(メタ)アクリル系共重合体が後述する硬化剤と反応した状態で存在する形態を含む意味である。
 ここで、(メタ)アクリル系のように、「(メタ)」の括弧部分は、これがあってもなくてもよいことを意味し、例えば、(メタ)アクリル系は、アクリル系、メタクリル系もしくはこれらを含む場合のいずれでも構わない。
 本発明において(メタ)アクリル系共重合体とは、例えば(メタ)アクリル酸エステルを構成成分として有する共重合体、あるいはこれらの共重合体の混合物等が挙げられる。
 これらの重合体の質量平均分子量は、通常は30万~100万程度である。
 上記(メタ)アクリル系共重合体の全モノマー成分中、(メタ)アクリル酸エステル成分の割合は70モル%以上が好ましく、80モル%以上がより好ましく、90モル%以上がさらに好ましい。また、(メタ)アクリル系共重合体の全モノマー成分中、(メタ)アクリル酸エステル成分の割合が100モル%でない場合、残部のモノマー成分は(メタ)アクリロイル基を重合性基として重合した形態で存在するモノマー成分〔(メタ)アクリル酸等〕であることが好ましい。
 また、(メタ)アクリル系共重合体の全モノマー成分中、後述する硬化剤と反応する官能基(例えばヒドロキシ基)を有する(メタ)アクリル酸エステル成分の割合は、1モル%以上が好ましく、2モル%以上がより好ましく、5モル%以上がより好ましく、10モル%以上がより好ましい。また当該(メタ)アクリル酸エステル成分の割合は35モル%以下が好ましく、25モル%以下がより好ましい。
 上記(メタ)アクリル酸エステル成分は、(メタ)アクリル酸アルキルエステル(アルキル(メタ)アクリレートともいう)であってもよい。この場合、(メタ)アクリル酸アルキルエステルを構成するアルキル基の炭素数は、1~20が好ましく、1~15がより好ましく、1~12がさらに好ましい。
 粘着剤層3ab中の(メタ)アクリル系共重合体の含有量(硬化剤と反応する前の状態に換算した含有量)は80質量%以上が好ましく、90質量%以上がより好ましく、95~99.9質量%がより好ましい。
 粘着剤層3abが放射線硬化型粘着剤で構成される場合、アクリル系粘着剤と放射線重合性化合物とを含有してなる粘着剤を好適に用いることができる。
 アクリル系粘着剤は、(メタ)アクリル系共重合体、あるいは(メタ)アクリル系共重合体と硬化剤との混合物である。
 硬化剤は、(メタ)アクリル系共重合体が有する官能基と反応させて粘着力および凝集力を調整するために用いられるものである。
 例えば、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3-ビス(N,N-ジグリシジルアミノメチル)トルエン、1,3-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、N,N,N,N’-テトラグリシジル-m-キシレンジアミン、エチレングリコールジグリシジルエーテル、テレフタル酸ジグリシジルエステルアクリレートなどの分子中に2個以上のエポキシ基を有するエポキシ化合物(以下、「エポキシ系硬化剤」ともいう。)、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート及びこれらのアダクトタイプなどの分子中に2個以上のイソシアネート基を有するイソシアネート化合物(以下、「イソシアネート系硬化剤」ともいう。)、テトラメチロール-トリ-β-アジリジニルプロピオネート、トリメチロール-トリ-β-アジリジニルプロピオネート、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、トリメチロールプロパン-トリ-β-(2-メチルアジリジン)プロピオネート、トリス-2,4,6-(1-アジリジニル)-1,3,5-トリアジン、トリス〔1-(2-メチル)-アジリジニル〕ホスフィンオキシド、ヘキサ〔1-(2-メチル)-アジリジニル〕トリホスファトリアジンなどの分子中に2個以上のアジリジニル基を有するアジリジン化合物(アジリジン系硬化剤)等が挙げられる。
 硬化剤の添加量は、所望の粘着力に応じて調整すればよく、(メタ)アクリル系共重合体100質量部に対して0.1~5.0質量部が適当である。本発明のマスク一体型表面保護テープの粘着剤層において、硬化剤は(メタ)アクリル系共重合体と反応した状態にある。
 上記放射線重合性化合物としては、放射線の照射によって三次元網状化しうる、分子内に光重合性炭素-炭素二重結合を少なくとも2個以上有する低分子量化合物が広く用いられる。
 具体的には、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、1,4-ブチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ポリエチレングリコールジアクリレートや、オリゴエステルアクリレート等のアクリレート系化合物を広く適用可能である。
 また、上記アクリレート系化合物の他に、ウレタンアクリレート系オリゴマーを用いることもできる。
 ウレタンアクリレート系オリゴマーは、ポリエステル型またはポリエーテル型などのポリオール化合物と、多価イソシアナート化合物(例えば、2,4-トリレンジイソシアナート、2,6-トリレンジイソシアナート、1,3-キシリレンジイソシアナート、1,4-キシリレンジイソシアナート、ジフェニルメタン4,4-ジイソシアナートなど)を反応させて得られる末端イソシアナートウレタンプレポリマーに、ヒドロキシ基を有するアクリレートあるいはメタクリレート(例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、ポリエチレングリコールアクリレート、ポリエチレングリコールメタクリレートなど)を反応させて得られる。
 上記放射線重合性化合物の質量平均分子量の範囲は、アクリル系粘着剤との相溶性の点から、好ましくは2,000~20,000、より好ましくは2,300~10,000、さらに好ましくは2,500~5,000の範囲である。
 ここで、本発明では、質量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により、標準ポリスチレン換算して得られたものである。
 放射線硬化型粘着剤中のアクリル系粘着剤と放射線重合性化合物との配合比としては、アクリル系粘着剤100質量部に対して放射線重合性化合物を50~200質量部、好ましくは50~150質量部の範囲で配合されるのが望ましい。この配合比の範囲である場合、放射線照射後にマスク材層との密着性を向上させることが可能となる。
 また、粘着剤層3abに用いる放射線硬化型粘着剤として、上記(メタ)アクリル系共重合体自体を放射線重合性とした、放射線重合性(メタ)アクリル系共重合体を用いることも好ましい。
 この場合において、放射線硬化型粘着剤は硬化剤を含んでいてもよい。
 放射線重合性(メタ)アクリル系共重合体は、共重合体の分子中に、放射線、特に紫外線照射で重合反応することが可能な反応性の基を有する共重合体である。
 このような反応性の基としては、エチレン性不飽和基すなわち、炭素-炭素二重結合(エチレン性不飽和結合)を有する基が好ましい。かかる基の例として、ビニル基、アリル基、スチリル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基などが挙げられる。
 上記反応性基の共重合体中への導入は、例えば、ヒドロキシ基を有する共重合体と、ヒドロキシ基と反応する基(例えば、イソシアネート基)を有し、かつ上記反応性基を有する化合物〔(代表的には、2-(メタ)アクリロイルオキシエチルイソシアネート〕とを反応させることにより行うことができる。
 本発明のマスク一体型表面保護テープの粘着剤層3abを構成する、側鎖にエチレン性不飽和結合を有する(メタ)アクリル系共重合体を構成するモノマー成分中には、炭素数が8~12の(メタ)アクリル酸アルキルエステル成分が含まれることが好ましい。側鎖にエチレン性不飽和結合を有する(メタ)アクリル系共重合体を構成するモノマー成分中、炭素数が8~12の(メタ)アクリル酸アルキルエステル成分の割合は、45~85モル%が好ましく、50~80モル%がより好ましい。
 また、放射線により粘着剤層3abを重合硬化させる場合には、光重合開始剤、例えばイソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、ベンゾフェノン、ミヒラーズケトン、クロロチオキサントン、ベンジルメチルケタール、α-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシメチルフェニルプロパン等を用いることが出来る。これらのうち少なくとも1種類を粘着剤層に添加することにより、効率よく重合反応を進行させることができる。
 上記粘着剤層3abは、さらに光増感剤、従来公知の粘着付与剤、軟化剤、酸化防止剤等を含有していてもよい。
 上記粘着剤層3abとして、特開2014-192204号公報の段落番号0036~0055に記載されている形態を採用することも好ましい。
 粘着剤層3abの厚さは、パターン面2に形成された素子等の保護能をより高め、またパターン面への密着性をより高める観点から、5~30μmが好ましい。なお、デバイスの種類にもよるが、パターン表面の凹凸は概ね数μm~15μm程度である。
 マスク材層3bには、(メタ)アクリル系共重合体が含有される。
 ここで、マスク材層3bに(メタ)アクリル系共重合体が含有されるとは、(メタ)アクリル系共重合体が硬化剤と反応した状態で存在する形態を含む意味である。
 マスク材層3bには、放射線硬化型である粘着剤が好適に用いられる。この放射線硬化型の粘着剤としては、上述した、(メタ)アクリル系共重合体と硬化剤との混合物を好適に用いることができる。
 マスク材層3bおよび粘着剤層3abがともに放射線硬化型粘着剤であれば、放射線照射後にマスク材層と粘着剤層の間で3次元架橋が行われ、密着性が向上し、パターン面上に露光したマスク材を再剥離する際には容易に剥離することが可能となる。
 マスク材層3bの厚みは、プラズマアッシングでの除去速度の観点から、5~15μmが好ましく、5~10μmがより好ましい。
 マスク材層3bおよび粘着剤層3abがいずれも(メタ)アクリル系共重合体である場合、粘着剤層3abで使用される(メタ)アクリル系共重合体の質量平均分子量は、マスク材層3bで使用される(メタ)アクリル系共重合体の質量平均分子量より大きいことが好ましい。このうち、粘着剤層3abで使用される(メタ)アクリル系共重合体の質量平均分子量はマスク材層3bで使用される(メタ)アクリル系共重合体の質量平均分子量より、20万以上大きい場合が好ましく、23万以上大きい場案がより好ましく、25万以上大きい場合がさらに好ましい。
 本発明のマスク一体型表面保護テープは、粘着剤層3abの形成に用いる硬化剤と、マスク材層3bの形成に用いる硬化剤の種類が同種であることが好ましい。同種の硬化剤を用いることにより、放射線による硬化前のマスク材層と粘着剤層との間の密着性が確保され、薄膜研削加工に耐えることが可能となる。
 なかでも、粘着剤層3ab、および、マスク材層3bの形成に用いる硬化剤としてイソシアネート系硬化剤を用いることが好ましい。エポキシ系硬化剤よりも密着力の制御を容易に行えるため、かかる構成とすることにより、マスク材層のみを半導体ウェハ上に残すことが容易となる。
 本発明のマスク一体型表面保護テープにおいて、粘着剤層3abを形成する(メタ)アクリル系共重合体とマスク材層3bを形成する(メタ)アクリル系共重合体のガラス転移温度(Tg)は、いずれも-25℃~-5℃であることが好ましい。ガラス転移温度が高くなるほど、層間接着力が低下するため、マスク材と粘着剤の間で容易に剥離することができる。
 また、本発明では、粘着剤層3abを形成する(メタ)アクリル系共重合体とマスク材層3bを形成する(メタ)アクリル系共重合体のガラス転移温度(Tg)の差(鎖の絶対値)は8~20℃が好ましく、8~15℃がさらに好ましい。
 ここで、上記の粘着剤層3abを形成する(メタ)アクリル系共重合体のTgおよびマスク材層3bを形成する(メタ)アクリル系共重合体のTgとは、いずれも硬化剤と反応する前の状態における(メタ)アクリル系共重合体のTgを意味する。
 Tgは、示差走査型熱量分析装置〔(株)島津製作所製、DSC-60〕を用いて測定することができる。より詳細には、-100℃~100℃まで昇温速度5℃/分で昇温し、JIS K 7121「プラスチックの転移温度測定方法」の、補外ガラス転移開始温度をTgとする。
〔(メタ)アクリル系ポリマーの酸価〕
 本発明において、粘着剤層、またはマスク材層に含まれる(メタ)アクリル系ポリマーのいずれか一方の酸価は、0~10mgKOH/gが好ましく、0~7mgKOH/gがより好ましく、0~5mgKOH/gがさらに好ましい。
 また、本発明では、粘着剤層3abを形成する(メタ)アクリル系共重合体とマスク材層3bを形成する(メタ)アクリル系共重合体の酸価の差(鎖の絶対値)は1.0~10mgKOH/gが好ましく、が好ましく、2.5~10mgKOH/gがさらに好ましい。
 なお、本発明において酸価とは、(メタ)アクリル酸エステルポリマー1g中に含まれる遊離酸を中和するのに要する水酸化カリウムのミリグラム数である。
 (メタ)アクリル系ポリマーの酸価が上記範囲内にあることで、表面保護テープとマスク材層における密着力を制御し、Tgが近くてもマスク材層と表面保護テープの粘着剤層を容易に剥離することができる。
 酸基は硬化剤のような共有結合ではないが、酸基同士で疑似架橋を構成するため、粘着剤層およびマスク材層の両方に含まれることで、粘着剤層とマスク材層の密着性が向上し、マスク材を表面保護テープから剥離することが困難となる。
 酸価の調整は、例えば、(メタ)アクリル系重合体を重合する際のアクリル酸の配合量を調整することで適宜調整することができる。
 本発明のマスク一体型表面保護テープは、放射線照射前において、マスク材層3bと粘着剤層3abとの間の密着力は2.0N/25mm以下であることが好ましい。このような密着力を有することにより、研削加工後の薄くなった半導体ウェハから表面保護テープを剥離するとき、半導体ウェハの破損等なく剥離することが可能となる。
 本発明において「密着力」(単位:N/25mm)は、テンシロンテスター〔(株)島津製作所製AG-10kNI(商品名)〕を使用して、マスク一体型表面保護テープをカッターで5mm幅の切り込みを入れた後、マスク材層をピール速度300mm/minで180°方向に引っ張って引き剥がし、その際の応力(ピール強度)を測ることで求められる。
 上記密着力の測定において、紫外線照射条件は、紫外線を積算照射量500mJ/cmとなるように、マスク一体型表面保護テープ全体に、該テープの基材フィルム側から照射することをいう。紫外線照射には高圧水銀灯を用いる。
 ウェハ固定テープ4は、半導体ウェハ1を保持し、プラズマダイシング工程にさらされても耐えうるプラズマ耐性が必要である。またピックアップ工程においては良好なピックアップ性や場合によってはエキスパンド性等も要求されるものである。
 こうしたウェハ固定テープ4には、上記表面保護テープ3aと同様のテープを用いることができる。また一般的にダイシングテープと称される従来のプラズマダイシング方式で利用される公知のダイシングテープを用いることができる。また、ピックアップ後のダイボンディング工程への移行を容易にするために、粘着剤層と基材フィルムとの間にダイボンディング用接着剤を積層したダイシングダイボンディングテープを用いることもできる。
 マスク材層3bを切断するレーザー照射には、紫外線または赤外線のレーザー光を照射するレーザー照射装置を用いることができる。このレーザー光照射装置は、半導体ウェハ1のストリートに沿って移動自在にレーザー照射部が配設されており、マスク材層3bを除去するために適切に制御された出力のレーザーを照射できる。なかでもCOレーザーは数W~数十Wの大出力を得ることが可能であり、本発明に好適に利用できる。
 プラズマダイシングおよびプラズマアッシングを行うにはプラズマエッチング装置を用いることができる。プラズマエッチング装置は、半導体ウェハ1に対してドライエッチングを行い得る装置であって、真空チャンバ内に密閉処理空間をつくり、高周波側電極に半導体ウェハ1が載置され、その高周波側電極に対向して設けられたガス供給電極側からプラズマ発生用ガスが供給されるものである。高周波側電極に高周波電圧が印加されればガス供給電極と高周波側電極との間にプラズマが発生するため、このプラズマを利用する。発熱する高周波電極内には冷媒を循環させて、プラズマの熱による半導体ウェハ1の昇温を防止している。
 上記半導体チップの製造方法(半導体ウェハの処理方法)によれば、パターン面を保護する表面保護テープにプラズマダイシングにおけるマスク機能を持たせたことで、従来のプラズマダイシングプロセスで用いられていたレジストを設けるためのフォトリソ工程等が不要となる。特に表面保護テープを用いたため、マスクの形成に印刷や転写等の高度な位置合わせが要求される技術が不要で簡単に半導体ウェハ表面に貼合でき、レーザー装置により簡単にマスクを形成できる。
 また、マスク材層3bをOプラズマで除去できるため、プラズマダイシングを行う装置と同じ装置でマスク部分の除去ができる。加えてパターン面2側(表面S側)からプラズマダイシングを行うため、ピッキング作業前にチップの上下を反転させる必要がない。
 これらの理由から設備を簡易化でき、プロセスコストを大幅に抑えることができる。
 以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものでない。
[実施例1] マスク一体型表面保護テープの作製、半導体チップの製造
<マスク一体型表面保護テープの作製>
 ブチルアクリレート44mol%、ラウリルアクリレート50mol%、2-ヒドロキシエチルアクリレート6.0mol%を混合し、溶液中で重合することにより質量平均分子量65万、酸価0mgKOH/g、Tg-15℃の(メタ)アクリル系共重合体溶液を得た。
 得られた(メタ)アクリル共重合体100質量部に対し紫外線反応性樹脂として6官能の質量平均分子量3,500ウレタンアクリレートオリゴマー〔新中村化学工業(株)社製〕を100質量部および3官能のウレタンアクリレートオリゴマー〔新中村化学工業(株)社製〕を50質量部、硬化剤としてコロネートL〔日本ポリウレタン工業(株)社製〕を4.0質量部、光重合開始剤としてイルガキュア184(BASF社製)を10質量部配合し、粘着剤組成物Aを得た。
 アクリル酸20mol%、ブチルアクリレート70mol%、メチルアクリレート10mol%を混合し、溶液中で重合することによりアクリル系共重合体(質量平均分子量:40万、水酸基価:0mgKOH/g、酸価:9.8mgKOH/g、Tg:-23℃)を合成した。
 得られたアクリル共重合体100質量部に対し紫外線反応性樹脂として6官能の質量平均分子量3,000ウレタンアクリレートオリゴマー〔新中村化学工業(株)社製〕を50質量部および3官能のウレタンアクリレートオリゴマー〔新中村化学工業(株)社製〕を50質量部、硬化剤としてコロネートL〔日本ポリウレタン工業(株)社製〕を4.0質量部、光重合開始剤としてイルガキュア184(BASF社製)を10質量部配合し、粘着剤組成物Bを得た。
 上記粘着剤組成物Aをマスク材層形成用組成物として剥離ライナー上に塗工し、形成された粘着剤層を厚さ100μmのLDPE(低密度ポリエチレン)フィルムに貼り合せ、厚さ130μmの放射線硬化型表面保護テープ3aを得た。
 さらに粘着剤組成物Bを剥離ライナー上に乾燥後の厚みが5μm厚となるように塗工し、放射線硬化型表面保護テープ3aの剥離ライナーを剥がして露出させた粘着剤層表面に貼り合せることで、総厚135μmの放射線硬化型のマスク材一体型表面保護テープ3を得た。
<半導体チップの製造>
 ラミネータDR8500III〔商品名:日東精機(株)社製〕を用いて、スクライブライン(ストリート)付シリコンウェハ(直径8インチ)表面に、上記で得られた放射線硬化型のマスク一体型表面保護テープを貼り合わせた。
 その後、DGP8760〔商品名:ディスコ(株)社製〕を用いて、前記マスク一体型表面保護テープを貼り合わせた面とは反対の面(ウェハの裏面)を、ウェハの厚さが50μmになるまで研削した。研削後のウェハを、RAD-2700F〔商品名:リンテック(株)社製〕を用いて、ウェハ裏面側からウェハ固定テープ(放射線硬化型のダイシングテープ)上にマウントし、リングフレームにて支持固定した。その後、表面保護テープ3aのみを剥離し、ウェハ上にマスク材層3bのみを残した。ここで、マスク材層3bを残して表面保護テープ3aのみを剥離できていることから、マスク材層と粘着剤層の密着力が、マスク材層とウェハ間の密着力よりも低いことがわかった。
 次にCOレーザーでスクライブライン上のマスク材を除去し、スクライブラインを開口した。
 その後、プラズマ発生用ガスとしてSFガスを用い、シリコンウェハを15μm/分のエッチング速度で5分間、マスク材層側からプラズマ照射した。このプラズマダイシングによりウェハを切断して個々のチップに分割した。次いでプラズマ発生用ガスとしてOガスを用い、1.5μm/分のエッチング速度で10分間アッシングを行い、マスク材を除去した。その後、ウェハ固定テープ側から紫外線を照射し(照射量200mJ/cm)、ウェハ固定テープの粘着力を低減させ、チップをピックアップした。
 上記実施例1において、幅25mmのマスク一体型表面保護テープを、分図7(a)に示すように、モデル半導体ウェハとしてのステンレス鋼に貼合した。その後、剥離角度90°、剥離速度300mm/minで密着力を測定したところ、2.0N/25mmにおいて、分図7(b)に示すように、マスク材層と粘着剤層との間での剥離が確認された。
 上記評価の後、ウェハ上に露出しているマスク材層に粘着剤層を、分図7(c)に示すように、再び貼り合わせ、紫外線を照射し(500mJ/cm)、剥離速度90℃、剥離速度300mm/minで密着力を測定したところ、分図7(d)に示すように、マスク材層とステンレス鋼との間で再剥離が確認された。この再剥離試験の再現性を確認するため、再剥離試験を10回行い、10回とも再剥離が確認された。このため、下記表1では、マスク材層の再剥離性が「◎」である。
[実施例2] マスク一体型表面保護テープの作製、半導体チップの製造
<マスク一体型表面保護テープの作製>
 メタクリル酸1.5mol%、メタクリル酸メチル40.5mol%、2-ヒドロキシエチルアクリレート1.5mol%を混合し、溶液中で重合することにより質量平均分子量:17万、酸価:11mgKOH/g、Tg:-10℃の(メタ)アクリル系共重合体溶液を得た。
 得られた(メタ)アクリル共重合体100質量部に対し、紫外線反応性樹脂として6官能のウレタンアクリレートオリゴマー〔新中村化学工業(株)社製〕を100質量部および3官能で分子量が5000であるウレタンアクリレートオリゴマー〔新中村化学工業(株)社製〕を50質量部、硬化剤としてコロネートL(日本ポリウレタン工業株式会社製)を4.0質量部、光重合開始剤としてイルガキュア184(BASF社製)を10質量部配合し、粘着剤組成物Cを得た。
 実施例1で得られた粘着剤組成物Bを粘着剤層形成用組成物として剥離ライナー上に塗工し、形成された粘着剤層を厚さ100μmのLDPE(低密度ポリエチレン)フィルムに貼り合せ、厚さ140μmの放射線硬化型の表面保護テープ3aを得た。
 更に粘着剤組成物Cをマスク材層形成用組成物として剥離ライナー上に乾燥後の厚みが15μm厚となるように塗工し、上記放射線硬化型の表面保護テープの剥離ライナーを剥がした粘着剤層上に貼り合せることで総厚155μmの放射線硬化型のマスク一体型表面保護テープ3を得た。
<半導体チップの製造>
 ラミネータDR8500III〔商品名:日東精機(株)社製〕を用いて、スクライブライン付シリコンウェハ(直径8インチ)表面に上記で得られた放射線硬化型のマスク一体型表面保護テープを貼り合わせた。
 その後、DGP8760〔商品名:ディスコ(株)社製〕を用いて、前記マスク一体型表面保護テープを貼り合わせた面とは反対の面(ウェハの裏面)を、ウェハの厚さが50μmになるまで研削した。研削後の前記マスク材付ウェハをRAD-2700F〔商品名:リンテック(株)社製〕を用いて、ウェハ裏面側からウェハ固定テープ(放射線硬化型のダイシングテープ)上にマウントし、リングフレームにて支持固定した。更に表面保護テープ3aのみを剥離し、ウェハ上にマスク材層3bのみを残した。その後、実施例1と同様にして、すなわち実施例1と同様にしてスクライブラインを開口し、プラズマダイシング、アッシングを行い、チップをピックアップした。
 上記実施例2において、幅25mmのマスク一体型表面保護テープを、分図7(a)に示すように、モデル半導体ウェハとしてのステンレス鋼に貼合した。その後、剥離角度90°、剥離速度300mm/minで密着力を測定したところ、分図7(b)に示すように、2.0N/25mmにおいてマスク材層と粘着剤層との間での剥離が確認された。
 上記評価の後、ウェハ上に露出しているマスク材層に粘着剤層を、分図7(c)に示すように、再び貼り合わせ、紫外線を照射し(500mJ/cm)、剥離速度90℃、剥離速度300mm/minで密着力を測定したところ、0.4N/25mmにおいて、分図7(d)に示すように、マスク材層とステンレス鋼との間で再剥離が確認された。この再剥離試験の再現性を確認するため、再剥離試験を10回行い、9回再剥離が確認された。このため、下記表1では、マスク材層の再剥離性が「○」である。
[実施例3] マスク一体型表面保護テープの作製、半導体チップの製造
<マスク一体型表面保護テープの作製>
 メタクリル酸1.0mol%、ブチルアクリレート23mol%、ラウリルアクリレート68mol%、2-ヒドロキシエチルアクリレート9.0mol%を混合し、溶液中で重合することにより、質量平均分子量65万、酸価5.0mgKOH/g、Tg-10℃の(メタ)アクリル系共重合体溶液を得た。
 得られた(メタ)アクリル共重合体100質量部に対し紫外線反応性樹脂として5官能で分子量が1500であるウレタンアクリレートオリゴマー〔新中村化学工業(株)社製〕を100質量部および3官能のウレタンアクリレートオリゴマー〔新中村化学工業(株)社製〕を50質量部、硬化剤としてTetrad C〔(商品名:三菱瓦斯化学(株)社製;1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサノン〕を2.0質量部、光重合開始剤としてイルガキュア184(BASF社製)を10質量部配合し、粘着剤組成物Dを得た。
 上記粘着剤組成物Dを剥離ライナー上に塗工し、形成された粘着剤層を厚さ100μmのPET(ポリエチレンテレフタレート)とLDPE(低密度ポリエチレン)積層フィルム(層構成25μm:75μm)のLDPE層上に貼り合せ、厚さ105μmの放射線硬化型表面保護テープ3aを得た。
 上記実施例1の粘着剤組成物Bの硬化剤をTetradC〔(商品名:三菱瓦斯化学(株)社製;1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサノン〕に変え、その後同様に作製した粘着剤組成物Eを得た。
 粘着剤組成物Eをマスク材層形成用組成物として剥離ライナー上に乾燥後の厚みが5μm厚となるように塗工し、当該放射線硬化型表面保護テープの剥離ライナーを剥がして露出させた粘着剤層表面に貼り合せることで、総厚110μmの放射線硬化型のマスク材一体型表面保護テープ3を得た。
<半導体チップの製造>
 ラミネータDR8500III〔商品名:日東精機(株)社製〕を用いて、スクライブライン付シリコンウェハ(直径8インチ)表面に、上記で得られた放射線硬化型のマスク一体型表面保護テープを貼り合わせた。
 その後、DGP8760〔商品名:ディスコ(株)社製〕を用いて、前記マスク一体型表面保護テープを貼り合わせた面とは反対の面(ウェハの裏面)を、ウェハの厚さが50μmまで研削した。研削後のウェハを、RAD-2700F〔商品名:リンテック(株)社製〕を用いて、ウェハ裏面側からウェハ固定テープ(放射線硬化型のダイシングテープ)上にマウントし、リングフレームにて支持固定した。更に表面保護テープ3aのみ剥離し、ウェハ上にマスク材層3bのみを残した。ここで、マスク材層3bを残して表面保護テープ3aのみを剥離できていることから、紫外線照射前において、マスク材層と粘着剤層の密着力が、マスク材層とウェハ間の密着力よりも低いことがわかった。
 その後、実施例1と同様にして、スクライブラインを開口し、プラズマダイシング、アッシングを行い、紫外線を照射した後、チップをピックアップした。
 上記実施例3において、幅25mmのマスク一体型表面保護テープを、分図7(a)に示すように、モデル半導体ウェハとしてのステンレス鋼に貼合した。その後、剥離角度180°、剥離速度300mm/minで密着力を測定したところ、1.9N/25mmにおいて、分図7(b)に示すように、マスク材層と粘着剤層との間での剥離が確認された。
 上記評価の後、ウェハ上に露出しているマスク材に粘着剤層を再び貼り合わせ、紫外線を照射し(500mJ/cm)、剥離速度90℃、剥離速度300mm/minで密着力を測定したところ、1.3N/25mmにおいて、分図7(b)に示すように、マスク材層とステンレス鋼との間で再剥離が確認された。この再剥離試験の再現性を確認するため、再剥離試験を10回行い、9回再剥離が確認された。このため、下記表1では、マスク材層の再剥離性が「○」である。
[比較例1] マスク一体型表面保護テープの作製、半導体チップの製造
<マスク一体型表面保護テープの作製>
 メタクリル酸1mol%、メタクリル酸メチル35.0mol%、2-エチルヘキシルアクリレート60mol%、2-ヒドロキシエチルアクリレート2.0mol%を混合し、溶液中で重合することにより質量平均分子量20万、酸価6.0mgKOH/g、Tg-30℃の(メタ)アクリル系共重合体溶液を得た。
 得られた(メタ)アクリル共重合体100質量部に対して、エポキシ硬化剤を2.0質量部配合し、粘着剤Fを得た。
 ここで、上記エポキシ硬化剤は、N,N,N’,N’-テトラグリシジル-1,3-ベンゼンジ(メタンアミン)〔三菱瓦斯化学(株)社製、商品名:TETRAD-X〕を用いた。
 上記粘着剤組成物Fを剥離ライナー上に塗工し、形成された粘着剤層を厚さ100μmのPET(ポリエチレンテレフタレート)とLDPE(低密度ポリエチレン)積層フィルム(層構成25μm:75μm)のLDPE層上に貼り合せ、厚さ130μmの感圧硬化型表面保護テープ3aを得た。
 さらに上記実施例1で調製した粘着剤組成物Bをマスク材層形成用組成物として剥離ライナー上に乾燥後の厚みが5μm厚となるように塗工し、感圧硬化型表面保護テープの剥離ライナーを剥がして露出させた粘着剤層表面に貼り合せることで、総厚135μmの放射線硬化型のマスク材一体型表面保護テープ3を得た。
<半導体チップの製造>
 ラミネータDR8500III〔商品名:日東精機(株)社製〕を用いて、スクライブライン付シリコンウェハ(直径8インチ)表面に、上記で得られたマスク一体型表面保護テープを貼り合わせた。
 その後、DGP8760〔商品名:ディスコ(株)社製〕を用いて、前記マスク一体型表面保護テープを貼り合わせた面とは反対の面(ウェハの裏面)を、ウェハの厚さが50μmまで研削した。研削後のウェハを、RAD-2700F〔商品名:リンテック(株)社製〕を用いて、ウェハ裏面側からウェハ固定テープ(放射線硬化型のダイシングテープ)上にマウントし、リングフレームにて支持固定した。さらに表面保護テープ3aのみ剥離し、ウェハ上にマスク材層3bのみを残そうとしたが、マスク材層3bを残して表面保護テープ3aのみを剥離できていないことから、放射線照射前のマスク材層と粘着剤層の密着力が、マスク材層とウェハ間の密着力よりも高いことがわかった。
 なお、マスク材のみを残して剥離できていないことから、マスク材層の再剥離性、以下の試験例3のマスク材層の除去性および試験例3のスクライブライン上の糊残りは評価できなかった。
[比較例2] マスク一体型表面保護テープの作製、半導体チップの製造
<マスク一体型表面保護テープの作製>
 比較例1で作製した粘着剤組成物Fを剥離ライナー上に塗工し、形成された粘着剤層を厚さ100μmのPET(ポリエチレンテレフタレート)とLDPE(低密度ポリエチレン)積層フィルム(層構成25μm:75μm)のLDPE層上に貼り合せ、厚さ130μmの感圧硬化型表面保護テープ3aを得た。
 さらに上記粘着剤組成物Fをマスク材層形成用組成物として剥離ライナー上に乾燥後の厚みが10μm厚となるように塗工し、感圧硬化型表面保護テープの剥離ライナーを剥がして露出させた粘着剤層表面に貼り合せることで、総厚140μmの感圧硬化型のマスク材一体型表面保護テープ3を得た。
<半導体チップの製造>
 ラミネータDR8500III〔商品名:日東精機(株)社製〕を用いて、スクライブライン付シリコンウェハ(直径8インチ)表面に、上記で得られたマスク一体型表面保護テープを貼り合わせた。
 その後、DGP8760〔商品名:ディスコ(株)社製〕を用いて、前記マスク一体型表面保護テープを貼り合わせた面とは反対の面(ウェハの裏面)を、ウェハの厚さが50μmまで研削した。研削後のウェハを、RAD-2700F〔商品名:リンテック(株)社製〕を用いて、ウェハ裏面側からウェハ固定テープ(放射線硬化型のダイシングテープ)上にマウントし、リングフレームにて支持固定した。さらに表面保護テープ3aのみ剥離し、ウェハ上にマスク材層3bのみを残そうとしたが、マスク材層3bを残して表面保護テープ3aのみを剥離できていないことから、放射線照射前のマスク材層と粘着剤層の密着力が、マスク材層とウェハ間の密着力よりも高いことがわかった。
 なお、マスク材のみを残して剥離できていないことから、マスク材層の再剥離性、以下の試験例3のマスク材層の除去性および試験例3のスクライブライン上の糊残りは評価できなかった。
[試験例1] マスク材層と粘着剤層の密着性評価
 実施例および比較例に係るマスク一体型表面保護テープから幅25mm×長さ300mmの試験片を3点採取した。JIS R 6253に規定する280番の耐水研磨紙で仕上げたJIS G 4305に規定する厚み2.0mmのSUS鋼板(モデル半導体ウェハ)上に、各試験片を2kgのゴムローラを3往復かけて圧着し、1時間放置後、測定値がその容量の15~85%の範囲に入るJIS B 7721に適合する引張試験機を用いて23℃での粘着力を測定した。測定は、180度引きはがし法によるものとし、この時の引張速さは300mm/minとした。
[試験例2] 表面保護テープの剥離性評価
 上記各実施例および比較例の<半導体チップの製造>において、表面保護テープを剥離した際に要した力(剥離性)を下記評価基準により評価した。なお、表面保護テープの剥離はRAD-2700F〔商品名:リンテック(株)社製〕を用いて行った。
-表面保護テープの剥離性の評価基準-
 ◎:弱い力で簡単に表面保護テープのみを剥離することができた。
 ○:剥離するのにやや強い力を要したが、表面保護テープのみを剥離することができた。
 ×:剥離することができなかったか、または、マスク材層ごと剥離されてしまった。
[試験例3] Oプラズマアッシングによるマスク材層の除去性評価
 上記各実施例の<半導体チップの製造>において、Oプラズマアッシング(1.5μm/分のエッチング速度で10分間アッシング)後のマスク材の残留の有無を、レーザー顕微鏡を用いて調べた。
-マスク材層の除去性の評価基準-
 ○:マスク材層の残留が無い。
 ×:マスク材層の残留が有る。
[試験例4] スクライブライン上の糊残りの評価
 上記各実施例の<半導体チップの製造>において、表面保護テープを剥離した後、ウェハ表面を顕微鏡で観察し、スクライブライン上の糊残りの有無を調べた。
-スクライブライン上の糊残りの評価基準-
 ○:糊残りが無い。
 ×:糊残りが有る。
 試験例1~3で得られた結果を、下記表1にまとめて示す。
 なお、「-」は評価できなかったことを示す。
Figure JPOXMLDOC01-appb-T000001
 上記各試験例の結果から、半導体ウェハを加工して半導体チップを製造するに際し、本発明のマスク一体型表面保護テープを用いることにより、半導体ウェハのパターン面にマスク一体型表面保護テープを貼り付け、この貼り付けたマスク一体型表面保護テープから表面保護テープを剥離するだけで、糊残りを生じずに簡単にマスクを形成することができた。さらに、このマスク材はOプラズマによってより確実に除去することができ、不良チップの発生を高度に抑制できることがわかった。また、粘着剤層をマスク材層に再び張り合わせ、紫外線を照射することで、マスク材層をパターン面から容易に剥離できることがわかった。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2016年3月31日に日本国で特許出願された特願2016-073262に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
 1 半導体ウェハ
 2 パターン面
 3 マスク一体型表面保護テープ
  3a 表面保護テープ
   3aa 基材フィルム
   3ab 放射線硬化型粘着剤層
  3b  放射線硬化型マスク材層
 4 ウェハ固定テープ
  4a 粘着剤層または接着剤層
  4b 基材フィルム
 7 チップ
  S 表面
  B 裏面
  M1 ウェハ研削装置
  M2 ピン
  M3 コレット
  F リングフレーム
  L レーザー(COレーザー)
  P1 SFガスのプラズマ
  P2 Oガスのプラズマ
  P2 Oガスのプラズマ

Claims (6)

  1.  下記工程(a)~(d)を含む半導体チップの製造に用いられるマスク一体型表面保護テープであって、
     前記マスク一体型表面保護テープが、基材フィルム上に放射線硬化型粘着剤層および放射線硬化型マスク材層をこの順に有し、下記工程(b)において、放射線照射前は該粘着剤層と該マスク材層間が剥離し、放射線放射後は該マスク材層とパターン面が剥離することを特徴とするマスク一体型表面保護テープ。
    〔工程(a)~(d)〕
    (a)マスク一体型表面保護テープを半導体ウェハのパターン面側に貼り合せた状態で、該半導体ウェハの裏面を研削し、研削した半導体ウェハの裏面にウェハ固定テープを貼り合わせ、リングフレームで支持固定する工程、
    (b)前記マスク一体型表面保護テープから前記基材フィルムと前記粘着剤層を一体に剥離して前記マスク材層を表面に露出させた後、該マスク材層のうち半導体ウェハのストリートに相当する部分をレーザーにより切断して半導体ウェハのストリートを開口する工程、
    (c)SFプラズマにより半導体ウェハを前記ストリートで分断して半導体チップに個片化するプラズマダイシング工程、および、
    (d)Oプラズマにより前記マスク材層を除去するアッシング工程
  2.  放射線照射による硬化前の前記マスク材層と前記粘着剤層との間の密着力が、2.0N/25mm以下であることを特徴とする請求項1に記載のマスク一体型表面保護テープ。
  3.  前記マスク材層および前記粘着剤層が、いずれも(メタ)アクリル系共重合体、および、2官能または3官能以上の放射線重合性官能基を有し質量平均分子量が2,000~20,000の範囲である放射線重合性化合物を含有することを特徴とする請求項1または2に記載のマスク一体型表面保護テープ。
  4.  前記マスク材層に含まれる前記(メタ)アクリル系共重合体と、前記粘着剤層に含まれる前記(メタ)アクリル系共重合体のガラス転移点(Tg)が、いずれも-25~-5℃であって、該(メタ)アクリル系共重合体の少なくとも一方の酸価が、0~10mgKOH/gであることを特徴とする請求項3に記載のマスク一体型表面保護テープ。
  5.  前記マスク材層および前記粘着剤層に用いられている硬化剤が、いずれもイソシア系硬化剤であることを特徴とする請求項1~4のいずれか1項に記載のマスク一体型表面保護テープ。
  6.  前記マスク材層および前記粘着剤層に用いられている硬化剤が、いずれもエポキシ系硬化剤であることを特徴とする請求項1~5のいずれか1項に記載のマスク一体型表面保護テープ。
PCT/JP2017/012457 2016-03-31 2017-03-27 マスク一体型表面保護テープ WO2017170438A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020187025435A KR102155028B1 (ko) 2016-03-31 2017-03-27 마스크 일체형 표면 보호 테이프
CN201780014632.5A CN108713240B (zh) 2016-03-31 2017-03-27 掩模一体型表面保护带
JP2018508008A JP6800213B2 (ja) 2016-03-31 2017-03-27 マスク一体型表面保護テープ
SG11201808400VA SG11201808400VA (en) 2016-03-31 2017-03-27 Mask-integrated surface protective tape
MYPI2018703491A MY181934A (en) 2016-03-31 2017-03-27 Mask-integrated surface protective tape
EP17774975.1A EP3439022A4 (en) 2016-03-31 2017-03-27 MASK INTEGRATED SURFACE TAPE
US16/144,489 US11056388B2 (en) 2016-03-31 2018-09-27 Mask-integrated surface protective tape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-073262 2016-03-31
JP2016073262 2016-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/144,489 Continuation US11056388B2 (en) 2016-03-31 2018-09-27 Mask-integrated surface protective tape

Publications (1)

Publication Number Publication Date
WO2017170438A1 true WO2017170438A1 (ja) 2017-10-05

Family

ID=59965714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012457 WO2017170438A1 (ja) 2016-03-31 2017-03-27 マスク一体型表面保護テープ

Country Status (9)

Country Link
US (1) US11056388B2 (ja)
EP (1) EP3439022A4 (ja)
JP (1) JP6800213B2 (ja)
KR (1) KR102155028B1 (ja)
CN (1) CN108713240B (ja)
MY (1) MY181934A (ja)
SG (1) SG11201808400VA (ja)
TW (1) TWI649798B (ja)
WO (1) WO2017170438A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078153A1 (ja) * 2017-10-18 2019-04-25 古河電気工業株式会社 プラズマダイシング用マスク材、マスク一体型表面保護テープおよび半導体チップの製造方法
JP2019134091A (ja) * 2018-01-31 2019-08-08 古河電気工業株式会社 マスク一体型表面保護テープおよびマスク一体型表面保護テープを用いる半導体チップの製造方法
JP2020068342A (ja) * 2018-10-26 2020-04-30 株式会社ディスコ ウェーハの加工方法
EP3709338A4 (en) * 2017-11-09 2021-08-11 Furukawa Electric Co., Ltd. SEMICONDUCTOR CHIPS PRODUCTION PROCESS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117066977B (zh) * 2023-09-28 2024-02-23 浙江睿兆芯半导体科技有限公司 一种芯片超薄研磨切割方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322853A (ja) * 2004-05-11 2005-11-17 Lintec Corp 接着剤層付き半導体チップの製造方法
JP2007019385A (ja) 2005-07-11 2007-01-25 Matsushita Electric Ind Co Ltd 半導体チップの製造方法
JP2008098228A (ja) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd 半導体チップの製造方法
JP2008193034A (ja) * 2007-02-08 2008-08-21 Matsushita Electric Ind Co Ltd 半導体チップの製造方法
JP2009033155A (ja) * 2006-12-05 2009-02-12 Furukawa Electric Co Ltd:The 半導体ウェハの処理方法
WO2014080918A1 (ja) * 2012-11-20 2014-05-30 古河電気工業株式会社 半導体チップの製造方法およびそれに用いる薄膜研削用表面保護テープ
JP2014523116A (ja) * 2011-06-15 2014-09-08 アプライド マテリアルズ インコーポレイテッド 物理的に除去可能なマスクを用いたレーザ・プラズマエッチングウェハダイシング
JP2014192204A (ja) 2013-03-26 2014-10-06 Furukawa Electric Co Ltd:The 半導体ウエハ表面保護用粘着テープ及び半導体ウエハの加工方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3906962B2 (ja) * 2000-08-31 2007-04-18 リンテック株式会社 半導体装置の製造方法
US7190058B2 (en) * 2004-04-01 2007-03-13 Chippac, Inc. Spacer die structure and method for attaching
JP2008063436A (ja) * 2006-09-07 2008-03-21 Mitsubishi Rayon Co Ltd (メタ)アクリル酸エステル共重合体、塗料用樹脂組成物、塗料、および塗膜、並びに(メタ)アクリル酸エステル共重合体溶液の製造方法
US7659140B2 (en) * 2007-03-30 2010-02-09 Stats Chippac Ltd. Integrated circuit system with a debris trapping system
JP4488037B2 (ja) * 2007-07-24 2010-06-23 パナソニック株式会社 半導体ウェハの処理方法
JP2010165963A (ja) * 2009-01-19 2010-07-29 Furukawa Electric Co Ltd:The 半導体ウェハの処理方法
US8513363B2 (en) * 2010-10-29 2013-08-20 Cheil Industries, Inc. Adhesive composition
JP5901422B2 (ja) * 2012-05-15 2016-04-13 古河電気工業株式会社 半導体ウェハのダイシング方法およびこれに用いる半導体加工用ダイシングテープ
JP2014029921A (ja) * 2012-07-31 2014-02-13 Sony Corp 半導体基板の処理方法及び半導体基板処理品
JP2014096449A (ja) * 2012-11-08 2014-05-22 Nitto Denko Corp ウエハの加工方法および該ウエハの加工方法により得られたウエハ
JP6502026B2 (ja) * 2014-05-13 2019-04-17 日東電工株式会社 シート状樹脂組成物、積層シート及び半導体装置の製造方法
JP6522998B2 (ja) * 2015-03-13 2019-05-29 古河電気工業株式会社 半導体ウェハの処理方法、半導体チップおよび半導体ウェハ処理用表面保護テープ。
KR20170122185A (ko) * 2015-11-09 2017-11-03 후루카와 덴키 고교 가부시키가이샤 반도체 칩의 제조방법 및 이것에 이용하는 마스크 일체형 표면 보호 테이프
US10816710B2 (en) * 2016-03-18 2020-10-27 Samsung Sdi Co., Ltd. Polarizing plate for light emitting display device and light emitting display device including same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322853A (ja) * 2004-05-11 2005-11-17 Lintec Corp 接着剤層付き半導体チップの製造方法
JP2007019385A (ja) 2005-07-11 2007-01-25 Matsushita Electric Ind Co Ltd 半導体チップの製造方法
JP2008098228A (ja) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd 半導体チップの製造方法
JP2009033155A (ja) * 2006-12-05 2009-02-12 Furukawa Electric Co Ltd:The 半導体ウェハの処理方法
JP2008193034A (ja) * 2007-02-08 2008-08-21 Matsushita Electric Ind Co Ltd 半導体チップの製造方法
JP2014523116A (ja) * 2011-06-15 2014-09-08 アプライド マテリアルズ インコーポレイテッド 物理的に除去可能なマスクを用いたレーザ・プラズマエッチングウェハダイシング
WO2014080918A1 (ja) * 2012-11-20 2014-05-30 古河電気工業株式会社 半導体チップの製造方法およびそれに用いる薄膜研削用表面保護テープ
JP2014192204A (ja) 2013-03-26 2014-10-06 Furukawa Electric Co Ltd:The 半導体ウエハ表面保護用粘着テープ及び半導体ウエハの加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3439022A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078153A1 (ja) * 2017-10-18 2019-04-25 古河電気工業株式会社 プラズマダイシング用マスク材、マスク一体型表面保護テープおよび半導体チップの製造方法
KR20190051000A (ko) * 2017-10-18 2019-05-14 후루카와 덴키 고교 가부시키가이샤 플라즈마 다이싱용 마스크재, 마스크 일체형 표면 보호 테이프 및 반도체 칩의 제조 방법
JP2019075512A (ja) * 2017-10-18 2019-05-16 古河電気工業株式会社 プラズマダイシング用マスク材、マスク一体型表面保護テープおよび半導体チップの製造方法
CN109937469A (zh) * 2017-10-18 2019-06-25 古河电气工业株式会社 等离子体切割用掩模材料、掩模一体型表面保护带和半导体芯片的制造方法
TWI689000B (zh) * 2017-10-18 2020-03-21 日商古河電氣工業股份有限公司 電漿切割用遮罩材、遮罩一體型表面保護帶及半導體晶片之製造方法
KR102339492B1 (ko) * 2017-10-18 2021-12-15 후루카와 덴키 고교 가부시키가이샤 플라즈마 다이싱용 마스크재, 마스크 일체형 표면 보호 테이프 및 반도체 칩의 제조 방법
US11437243B2 (en) 2017-10-18 2022-09-06 Furukawa Electric Co., Ltd. Mask material for plasma dicing, mask-integrated surface protective tape and method of producing semiconductor chip
CN109937469B (zh) * 2017-10-18 2023-09-08 古河电气工业株式会社 等离子体切割用掩模材料、掩模一体型表面保护带和半导体芯片的制造方法
EP3709338A4 (en) * 2017-11-09 2021-08-11 Furukawa Electric Co., Ltd. SEMICONDUCTOR CHIPS PRODUCTION PROCESS
JP2019134091A (ja) * 2018-01-31 2019-08-08 古河電気工業株式会社 マスク一体型表面保護テープおよびマスク一体型表面保護テープを用いる半導体チップの製造方法
JP2020068342A (ja) * 2018-10-26 2020-04-30 株式会社ディスコ ウェーハの加工方法
JP7214309B2 (ja) 2018-10-26 2023-01-30 株式会社ディスコ ウェーハの加工方法

Also Published As

Publication number Publication date
EP3439022A4 (en) 2020-03-18
TW201801162A (zh) 2018-01-01
JP6800213B2 (ja) 2020-12-16
JPWO2017170438A1 (ja) 2019-02-07
CN108713240B (zh) 2023-08-11
EP3439022A1 (en) 2019-02-06
MY181934A (en) 2021-01-14
SG11201808400VA (en) 2018-10-30
KR20180132620A (ko) 2018-12-12
US20190109047A1 (en) 2019-04-11
CN108713240A (zh) 2018-10-26
KR102155028B1 (ko) 2020-09-11
TWI649798B (zh) 2019-02-01
US11056388B2 (en) 2021-07-06

Similar Documents

Publication Publication Date Title
JP6469854B2 (ja) 半導体チップの製造方法及びこれに用いるマスク一体型表面保護テープ
JP6738591B2 (ja) 半導体ウェハの処理方法、半導体チップおよび表面保護テープ
JP6522998B2 (ja) 半導体ウェハの処理方法、半導体チップおよび半導体ウェハ処理用表面保護テープ。
JP6845134B2 (ja) マスク一体型表面保護テープ
WO2017170438A1 (ja) マスク一体型表面保護テープ
JP6845135B2 (ja) マスク一体型表面保護フィルム
JP6667489B2 (ja) 半導体チップの製造方法
US11282736B2 (en) Mask-integrated surface protective tape with release liner
US10971387B2 (en) Mask-integrated surface protective tape
JP6647267B2 (ja) 半導体チップの製造方法
JP2019134091A (ja) マスク一体型表面保護テープおよびマスク一体型表面保護テープを用いる半導体チップの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508008

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201780014632.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20187025435

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201808400V

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017774975

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774975

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774975

Country of ref document: EP

Kind code of ref document: A1