WO2014080918A1 - 半導体チップの製造方法およびそれに用いる薄膜研削用表面保護テープ - Google Patents

半導体チップの製造方法およびそれに用いる薄膜研削用表面保護テープ Download PDF

Info

Publication number
WO2014080918A1
WO2014080918A1 PCT/JP2013/081205 JP2013081205W WO2014080918A1 WO 2014080918 A1 WO2014080918 A1 WO 2014080918A1 JP 2013081205 W JP2013081205 W JP 2013081205W WO 2014080918 A1 WO2014080918 A1 WO 2014080918A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
tape
film
grinding
semiconductor
Prior art date
Application number
PCT/JP2013/081205
Other languages
English (en)
French (fr)
Inventor
啓時 横井
祥文 岡
真沙美 青山
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2014505420A priority Critical patent/JPWO2014080918A1/ja
Priority to CN201380058726.4A priority patent/CN104781912A/zh
Publication of WO2014080918A1 publication Critical patent/WO2014080918A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/241Polyolefin, e.g.rubber
    • C09J7/243Ethylene or propylene polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68336Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding involving stretching of the auxiliary support post dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer

Definitions

  • the present invention relates to a method for manufacturing a semiconductor chip and a surface protection tape for thin film grinding used therefor.
  • a manufacturing method by a process called a tip dicing method which is a method specialized in the manufacture of thin film chips (see Patent Document 1 and Patent Document 2), a pressure-sensitive adhesive sheet dedicated to the manufacturing process (see Patent Document 3), a normal process Even so, a special pressure-sensitive adhesive sheet for thin-film grinding (see Patent Document 4), a dicing die-bond sheet (see Patent Document 5), or a tape having an adhesive layer made of a specific resin (see Patent Document 6) is used. This makes it possible to manufacture inexpensive and high-performance flash memories and the like.
  • Flip chip mounting has been attracting attention as a method for mounting a semiconductor element in a minimum area in response to recent downsizing and higher density of electronic devices.
  • Bumps are formed on the electrodes of the semiconductor element used for the flip chip mounting, and the bumps are electrically joined to the wiring on the circuit board.
  • solder or gold is mainly used as the composition of these bumps.
  • the solder bump or gold bump is formed on an exposed aluminum terminal connected to the internal wiring of the chip by vapor deposition or plating.
  • Bumped wafers have large irregularities on the surface, so thin film processing is difficult.
  • wafer cracking may occur or the thickness accuracy of the wafer may deteriorate. To do.
  • the bumped wafer is ground using a specially designed surface protection tape (see Patent Document 7).
  • the finished thickness of the chip that has been flip-chip mounted so far has a certain thickness of 200 ⁇ m or more, and has been able to be peeled off because of its rigidity.
  • the wafer finish thickness has become a thin film, and the bump density has increased, which has caused a problem that the tape cannot be easily peeled off.
  • the adhesion is insufficient, which causes infiltration of grinding water and adhesive residue during back grinding.
  • the adhesive adheres to the wafer surface, organic matter is easily contaminated, and the adhesion of the underfill is also deteriorated, and the yield is not improved when packaging.
  • the electrode of the connection portion is exposed to the air, and the difference in coefficient of thermal expansion between the chip and the substrate is large. Due to the thermal history of the post-process, a large stress was applied to the bump connection part, and there was a problem in mounting reliability.
  • the gap between the semiconductor element and the substrate is filled with a resin such as underfill or NCP (Non Conductive Paste) in order to improve the reliability of the bonded portion.
  • NCP Non Conductive Paste
  • a semiconductor element that performs flip-chip mounting has a large number of electrodes, and the electrodes are arranged around the semiconductor element due to problems in circuit design. For this reason, when filling the resin paste as an underfill, if the liquid resin is poured from between the electrodes of these semiconductor elements by capillary action, the resin does not spread sufficiently and unfilled parts are easily formed, and the operation of the semiconductor elements becomes unstable. As a result, there have been problems such as malfunction and low moisture resistance reliability. Further, when the chip size is reduced, the substrate is contaminated by the overflow of the liquid resin, and when the pitch between the electrodes is narrowed, it is difficult to pour the resin.
  • NCF Non Conductive Film
  • the present invention provides an underfill in the manufacture of a semiconductor chip in which backside grinding of a semiconductor wafer having a bump electrode used in a flip chip mounting process is performed, and at the same time or in a subsequent process, chips are formed (individualized). It is an object of the present invention to provide a method for manufacturing a semiconductor chip with high accuracy and ease without using NCP or NCP. Moreover, this invention makes it another subject to provide the surface protection tape for thin film grinding used for the said method.
  • a bumped wafer circuit substrate having a height of 100 ⁇ m or less is 200 ⁇ m or less, particularly 50 ⁇ m or less.
  • a modified layer wafer surface provided in advance corresponding to the position where the wafer is divided into chips in the wafer with bumps
  • a layer including a modified portion having a predetermined depth, and the strength of the modified portion is lower than that of an unmodified wafer around the modified portion, and then an adhesive film and an adhesive tape are formed.
  • a modified layer is formed in a wafer with bumps having bumps as electrodes on a semiconductor wafer on which a semiconductor circuit is formed, and then the back surface of the semiconductor wafer is ground and divided into individual chips at once.
  • a method for manufacturing a semiconductor chip comprising: Thin film grinding in which an adhesive film is laminated on an adhesive layer of an adhesive tape having an adhesive layer on a base film after forming the modified layer and before grinding the back surface of the semiconductor wafer Attaching the surface protective tape for the semiconductor film to the side on which the semiconductor circuit is formed on the adhesive film side, A method of manufacturing a semiconductor chip, comprising the step of bringing only the adhesive film into a state of being bonded to the chip when the semiconductor wafer is picked up after being ground or transferred onto a pickup tape. . (2) (1) characterized in that the step of making only the adhesive film adhered to the chip is a step of directly picking up from the surface protection tape without using a transfer film (pickup tape). The manufacturing method of the semiconductor chip of description.
  • a surface protective tape for thin film grinding comprising a single layer or a plurality of layers containing one kind as an adhesive.
  • Protective tape (8)
  • the surface free energy of the adhesive film is 25 to 45 mN / m, and the saturated moisture absorption is 1.5% by volume or less.
  • the surface protective tape for thin film grinding as described.
  • the adhesive film includes an epoxy resin, and the epoxy resin is at least one resin selected from the group consisting of a glycidyl ether epoxy resin, a glycidyl amine epoxy resin, a glycidyl ester epoxy resin, and an alicyclic epoxy resin.
  • the bisphenol-based resin is at least one selected from the group consisting of a bisphenol F diglycidyl ether resin and a bisphenol A diglycidyl ether resin.
  • the adhesive film contains an inorganic filler, and the content thereof is less than 60 parts by mass with respect to 100 parts by mass of the resin component in the adhesive film.
  • the modified layer refers to a layer including a modified portion having a predetermined depth on the wafer surface provided corresponding to a position to be divided at the time of chip formation.
  • the strength is lower than that of the unmodified wafer.
  • the “pressure-sensitive adhesive” means an agent that enables peeling by being subjected to a treatment such as curing after the pressure-sensitive adhesive, whereas the “adhesive” is an agent that enables bonding exclusively.
  • the “radiation curable pressure sensitive adhesive” means a pressure sensitive adhesive that is cured by being irradiated with radiation such as ultraviolet rays after being applied to a wafer or the like and can be peeled off.
  • the thinning is performed by the back grinding process, and at the same time or the subsequent process, the process of manufacturing the semiconductor chip to be divided into chips is performed.
  • a highly accurate and simple manufacturing method is provided.
  • the surface protection tape for thin film grinding used suitably for the said semiconductor chip manufacturing method is provided.
  • the surface protective tape for thin film grinding of the present invention (hereinafter also simply referred to as “surface protective tape”) is an adhesive film (adhesive layer) on an adhesive layer of an adhesive tape having an adhesive layer on a base film.
  • a surface protection tape for thin film grinding is composed of an adhesive tape for protecting the wafer surface (its circuit) and an adhesive film for bonding the chip.
  • the thickness of the base film is not particularly specified, but is preferably 10 to 200 ⁇ m from the viewpoint of manufacturability. In consideration of warpage during grinding, 25 to 150 ⁇ m is more preferable. If the base film is too thin, the rigidity as a tape is lost, so that deflection is likely to occur, which leads to arm contact due to deflection when the cassette is stored. On the other hand, if the base film is too thick, warping may easily occur due to the release of residual stress during film formation.
  • Materials for the base film of the present invention include polyolefins such as polyethylene, polypropylene and polybutene, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer and ethylene- (meth) acrylic acid ester copolymer Polymeric materials such as ethylene copolymers such as coalesced, soft polyvinyl chloride, polyethylene terephthalate, polyethylene naphthalate, semi-rigid polyvinyl chloride, polyester, polyurethane, polyamide, polyimide, natural rubber and synthetic rubber are preferred.
  • the base film can be used as a single layer film or a multilayer film in which two or more films are laminated.
  • the base film is preferably visible light transmissive, and more preferably radiation transmissive.
  • the base film can be a rigid base film.
  • a synthetic resin film is preferably used from the viewpoint of water resistance, heat resistance, rigidity and the like.
  • rigid substrates include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyamide, polyacetal, polycarbonate, modified polyphenylene oxide, polyphenylene sulfide, polysulfone, wholly aromatic polyester, polyether ketone, polyimide.
  • biaxially oriented polypropylene or the like is used.
  • the rigid base film may be a single-layer product or a laminated product of the various films described above.
  • the rigid substrate those that do not adversely affect the wafer such as ion contamination are preferable, and specifically, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, biaxially oriented polypropylene, polyimide, and polyamide. Is particularly preferred.
  • the rigid base film By using the rigid base film, it is possible to give a correction force to the warpage of the wafer and suppress the warpage.
  • the thickness of the rigid base film is preferably 25 to 100 ⁇ m from the viewpoint of the warp correction force and the peelability. If it is too thin, the correction force may be weak and the suppression of warping may be insufficient. If it is too thick, the tape may not be bent when the tape is peeled off and a load is applied to the wafer, which may cause wafer cracking.
  • the base film is preferably selected from polyolefin and polyvinyl chloride. More preferred is polyolefin. This is because polyvinyl chloride is affected by contamination caused by bleeding such as plasticizer.
  • the wafer is divided by transmitting the tensile stress to the expanded surface protection tape for thin film grinding to the wafer. Therefore, the following characteristics can be considered as the characteristics of the surface protection tape necessary for dividing the wafer by expanding. 1) Can maintain rigidity even when deformed by the expand 2) Transmit the stress applied by the expand to the wafer without loss 3) The surface protection tape should not break during deformation by the expand
  • polystyrene resin examples include polyethylene, polypropylene, ethylene-propylene copolymer, polybutene-1, poly-4-methylpentene-1, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene -Methyl (meth) acrylate copolymer, ethylene- (meth) acrylic acid copolymer, homopolymer or copolymer of ⁇ -olefin such as ionomer, or a mixture thereof.
  • the divided chip intervals can be made uniform when division by expansion is performed.
  • the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer is preferably a (meth) acrylic copolymer.
  • the pressure-sensitive adhesive is not limited to this, and the pressure-sensitive adhesive layer can be formed of various pressure-sensitive adhesives.
  • an adhesive for example, an adhesive having a base polymer such as rubber, silicone, or polyvinyl ether can be used.
  • a crosslinking agent can be blended to add cohesive force to these base polymers.
  • the crosslinking agent include an isocyanate-based crosslinking agent, an epoxy-based crosslinking agent, a metal chelate-based crosslinking agent, an aziridine-based crosslinking agent, and an amine resin corresponding to the base polymer.
  • the pressure-sensitive adhesive can contain various additive components as desired within the range in which the object of the present invention is not impaired.
  • a radiation curing type or heat foaming type pressure-sensitive adhesive can be used.
  • a pressure-sensitive adhesive that is cured by ultraviolet rays, an electron beam, or the like and easily peels at the time of peeling can be used.
  • a heat-foaming pressure-sensitive adhesive a pressure-sensitive adhesive that can be easily peeled off by a foaming agent or an expansion agent by heating can be used.
  • the radiation curable pressure-sensitive adhesive for example, those described in JP-B-1-56112, JP-A-7-135189 and the like are preferably used, but are not limited thereto. In the present invention, it is preferable to use an ultraviolet curable adhesive.
  • a compound comprising a low molecular weight compound having a polymerizable carbon-carbon double bond (ethylenic double bond) (hereinafter referred to as a photopolymerizable compound) and a photopolymerization initiator is used.
  • the above rubber-based or (meth) acrylic base resins are rubber polymers such as natural rubber and various synthetic rubbers, or poly (meth) acrylic acid alkyl esters, (meth) acrylic acid alkyl esters and copolymers thereof. (Meth) acrylic polymers such as copolymers with possible other unsaturated monomers are used.
  • the initial adhesive strength can be set to an arbitrary value by mixing an isocyanate curing agent in the above-mentioned pressure-sensitive adhesive.
  • curing agents include polyvalent isocyanate compounds such as 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane.
  • an ultraviolet curable pressure-sensitive adhesive by mixing a photopolymerization initiator in the pressure-sensitive adhesive, it is possible to reduce the polymerization curing time and the amount of ultraviolet irradiation by ultraviolet irradiation.
  • a photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, dibenzyl, diacetyl, ⁇ -chloranthraquinone and the like can be mentioned.
  • the (meth) acrylic pressure-sensitive adhesive include (meth) acrylic polymers, preferably those containing a (meth) acrylic polymer as a main component.
  • the (meth) acrylic polymer component is at least 50% by mass or more, preferably 80% by mass or more (100% by mass or less).
  • the (meth) acrylic polymer has a photopolymerizable carbon-carbon double bond (ethylenic double bond) at least in the side chain, so that it can be cured by irradiation, and further has a functional group such as an epoxy group or a carboxyl group. It may have a group.
  • the (meth) acrylic polymer having a photopolymerizable carbon-carbon double bond in the side chain may be produced by any method.
  • (meth) acrylic having a functional group ( ⁇ ) in the side chain
  • Functional group having a photopolymerizable carbon-carbon double bond such as a (meth) acryloyl group and capable of reacting with the side chain functional group ( ⁇ ) of the (meth) acrylic polymer What was obtained by making it react with the compound which has group ((beta)) is preferable.
  • the group having a photopolymerizable carbon-carbon double bond may be any group as long as it has a non-aromatic ethylenic double bond, but a (meth) acryloyl group, a (meth) acryloyloxy group, (Meth) acryloylamino group, allyl group, 1-propenyl group and vinyl group (including styrene or substituted styrene) are preferable, and (meth) acryloyl group and (meth) acryloyloxy group are more preferable.
  • Examples of the functional groups ( ⁇ ) and ( ⁇ ) include a carboxyl group, a hydroxyl group, an amino group, a mercapto group, a cyclic acid anhydride group, an epoxy group, and an isocyanate group (—N ⁇ C ⁇ O).
  • one functional group of the functional group ( ⁇ ) and the functional group ( ⁇ ) is a carboxyl group, a hydroxyl group, an amino group, a mercapto group, or a cyclic acid anhydride group
  • the other functional group is , An epoxy group, and an isocyanate group.
  • one functional group is a cyclic acid anhydride group
  • the other functional group includes a carboxyl group, a hydroxyl group, an amino group, and a mercapto group.
  • one functional group is an epoxy group
  • the other functional group may be an epoxy group.
  • the (meth) acrylic polymer having a functional group ( ⁇ ) in the side chain is a (meth) acrylic monomer having a functional group ( ⁇ ), preferably a (meth) acrylic ester [(particularly, a functional group in the alcohol part). It can be obtained by using (having ( ⁇ )) as a monomer component.
  • the (meth) acrylic polymer having a functional group ( ⁇ ) in the side chain is preferably a copolymer, and this copolymerization component is a (meth) acrylic acid alkyl ester, in particular, a functional group ( ⁇ ) and (meth) acrylic acid alkyl esters in which the group having a photopolymerizable carbon-carbon double bond is not substituted are preferred.
  • (Meth) acrylic acid esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, n-pentyl acrylate, n-hexyl acrylate, n-octyl acrylate, isooctyl acrylate, 2-ethylhexyl Acrylate, dodecyl acrylate, decyl acrylate hexyl acrylate, and the corresponding methacrylates.
  • the (meth) acrylic acid ester may be one type or two or more types, but it is preferable to use one having an alcohol part having 5 or less carbon atoms and one having 6 to 12 carbon atoms.
  • a glass transition point becomes so low that a monomer with a large carbon number of an alcohol part is used, the thing of a desired glass transition point can be produced.
  • a low molecular compound having a carbon-carbon double bond such as vinyl acetate, styrene or acrylonitrile for the purpose of improving compatibility and various performances.
  • the content of is preferably in the range of 5% by mass or less.
  • Examples of (meth) acrylic monomers having a functional group ( ⁇ ) include acrylic acid, methacrylic acid, cinnamic acid, itaconic acid, fumaric acid, phthalic acid, 2-hydroxyalkyl acrylates, 2-hydroxyalkyl methacrylates, glycol Monoacrylates, glycol monomethacrylates, N-methylolacrylamide, N-methylolmethacrylamide, allyl alcohol, N-alkylaminoethyl acrylates, N-alkylaminoethyl methacrylates, acrylamides, methacrylamides, maleic anhydride, Some of the isocyanate groups of itaconic anhydride, fumaric anhydride, phthalic anhydride, glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, polyisocyanate compounds Bokishiru group and photopolymerizable carbon - like those urethanization a monomer having a
  • acrylic acid, methacrylic acid, 2-hydroxyalkyl acrylates, 2-hydroxyalkyl methacrylates, glycidyl acrylate, and glycidyl methacrylate are preferable.
  • Acrylic acid, methacrylic acid, 2-hydroxyalkyl acrylates, 2-hydroxyalkyl methacrylate Are more preferable, and 2-hydroxyalkyl acrylates and 2-hydroxyalkyl methacrylates are more preferable.
  • the functional group ( ⁇ ) in the compound having a photopolymerizable carbon-carbon double bond and a functional group ( ⁇ ) is preferably an isocyanate group.
  • the alcohol group has an isocyanate (—N ⁇ C ⁇ O) group
  • examples include (meth) acrylic acid esters, and (meth) acrylic acid alkyl esters substituted with an isocyanate (—N ⁇ C ⁇ O) group are particularly preferable.
  • examples of such a monomer include 2-isocyanatoethyl methacrylate and 2-isocyanatoethyl acrylate.
  • the compound illustrated with the (meth) acrylic-type monomer which has a functional group ((alpha)) as a preferable compound in case a functional group ((beta)) is other than an isocyanate group is mentioned.
  • the compound having a photopolymerizable carbon-carbon double bond and a functional group ( ⁇ ) is added to the side chain functional group ( ⁇ ) in addition to the (meth) acrylic polymer having the functional group ( ⁇ ) in the side chain. ), Preferably by reacting with a hydroxyl group, a polymerizable group can be incorporated into the copolymer, and the adhesive strength after irradiation can be reduced.
  • ketone, ester, alcohol, and aromatic solvents can be used, among which toluene, Generally, it is a good solvent for a (meth) acrylic polymer such as ethyl acetate, isopropyl alcohol, benzene methyl cellosolve, ethyl cellosolve, acetone, methyl ethyl ketone, and a solvent having a boiling point of 60 to 120 ° C. is preferable.
  • a radical generator such as an azobis type such as ⁇ , ⁇ '-azobisisobutylnitrile or an organic peroxide type such as benzoberperoxide is usually used.
  • a catalyst and a polymerization inhibitor can be used in combination, and a (meth) acrylic copolymer having a desired molecular weight can be obtained by adjusting the polymerization temperature and the polymerization time.
  • a solvent such as mercaptan or carbon tetrachloride. This reaction is not limited to solution polymerization, and other methods such as bulk polymerization and suspension polymerization may be used.
  • the molecular weight of the (meth) acrylic copolymer is preferably about 300,000 to 1,000,000. If the molecular weight is too small, the cohesive force of radiation irradiation becomes small, and pick-up failure or transfer failure tends to occur during pick-up or transfer to a pick-up tape. On the other hand, if the molecular weight is too large, the adhesive film is peeled off or displaced from the adhesive tape.
  • the molecular weight in this invention means the weight average molecular weight of polystyrene conversion by a conventional method.
  • the introduction amount of the photopolymerizable carbon-carbon double bond in the (meth) acrylic copolymer is preferably 0.5 to 2.0 meq / g, more preferably 0.8 to 1.5 meq. / G. If the amount of double bonds is too small, the effect of reducing the adhesive strength after irradiation is reduced. If the amount of double bonds is too large, the flowability of the adhesive after irradiation is not sufficient, the gap between the elements after stretching is insufficient, and there is a problem that image recognition of each element becomes difficult at the time of pickup. . Furthermore, the (meth) acrylic copolymer itself lacks stability, making it difficult to produce.
  • the gel fraction before hardening of an adhesive can be adjusted with the average molecular weight of a (meth) acrylic-type copolymer and a hardening
  • the gel fraction is too small, the cohesive force becomes low, so that the risk of generating adhesive residue on the circuit on the wafer surface increases.
  • the (meth) acrylic copolymer has an OH group having a hydroxyl value of 5 to 100 because the risk of pick-up mistakes can be further reduced by reducing the adhesive strength after irradiation.
  • the (meth) acrylic copolymer has a COOH group having an acid value of 0.5 to 30, it can facilitate the use of a used tape storage type mechanism by improving the tape restoration property. It is preferable because it is possible.
  • the hydroxyl value of the (meth) acrylic copolymer is too low, the effect of reducing the adhesive strength after irradiation is not sufficient, and if it is too high, the fluidity of the adhesive after irradiation is impaired.
  • the acid value is too low, the effect of improving the tape restoring property is not sufficient, and if it is too high, the fluidity of the pressure-sensitive adhesive is impaired.
  • a photopolymerization initiator such as isopropyl benzoin ether, isobutyl benzoin ether, benzophenone, Michler's ketone, chlorothioxanthone, dodecyl thioxanthone, dimethyl is used as necessary.
  • Thioxanthone, diethylthioxanthone, benzyldimethyl ketal, ⁇ -hydroxycyclohexyl phenyl ketone, 2-hydroxymethylphenylpropane, and the like can be used.
  • the blending amount of these photopolymerization initiators is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the (meth) acrylic copolymer. If the blending amount is too small, the reaction is insufficient, and if the blending amount is too large, the low molecular components increase, thereby affecting the contamination.
  • the pressure-sensitive adhesive layer in the surface protective tape for thin film grinding of the present invention preferably has a gel fraction of 80% or more.
  • the gel fraction is more preferably 85 to 95%. If the gel fraction is too low, the problem of adhesive residue is likely to occur. If the gel fraction is too high, the fluidity is lost and the adhesive properties cannot be exhibited.
  • the gel fraction can be measured as follows. Two test pieces of 100 mm ⁇ 120 mm are cut out from the pressure-sensitive adhesive tape before lamination with the adhesive film, and the mass of the pressure-sensitive adhesive tape is measured as the mass of the pressure-sensitive adhesive layer after separating the separator. After fixing the tape in a polypropylene container with a diameter to accommodate the test piece with a pin with the adhesive face up, 500 ml of toluene is placed in the container so that the test piece is immersed in the solution, and then the solvent Cover to prevent volatilization and leave in a 25 ° C. environment for 24 hours.
  • the solvent in the container was discarded while being filtered through a metal mesh having a mesh diameter of # 150, and then dried in a 25 ° C. environment for 24 hours with the tape placed in the container.
  • the mass of the tape was measured with a balance. The value calculated by the following formula is defined as the gel fraction.
  • the mass of the base film is measured before making the adhesive tape, or after making the adhesive tape, the adhesive layer is peeled off and removed with a solvent or the like.
  • the adhesive layer of the present invention is obtained by previously forming a film of an adhesive, and is also referred to as an adhesive film in this document.
  • any polyimide resin, polyamide resin, polyetherimide resin, polyamideimide resin, polyester resin, polyesterimide resin, phenoxy resin, polysulfone resin, polyethersulfone resin, polyphenylene sulfide resin, polyether ketone used for adhesives Resins, chlorinated polypropylene resins, (meth) acrylic resins, polyurethane resins, epoxy resins, poly (meth) acrylamide resins, melamine resins, and the like and mixtures thereof can be used.
  • a (meth) acrylic resin ⁇ (meth) acrylic copolymer ⁇ or a phenoxy resin is particularly preferable.
  • Polyimide resin is very good in terms of mounting reliability, but because of its high glass transition temperature, it is often unable to obtain sufficient fluidity during bonding, and is not suitable for following bumps and other irregularities. , Air entrainment is likely to occur during bonding.
  • the (meth) acrylic copolymer and the phenoxy resin can ensure the fluidity at the time of bonding and ensure the reliability at the time of mounting.
  • the polymerization method of the (meth) acrylic copolymer is not particularly limited, and examples thereof include pearl polymerization, solution polymerization, suspension polymerization, and the like, and the copolymer can be obtained by these methods. Suspension polymerization is preferred because of its excellent heat resistance. Examples of such a (meth) acrylic copolymer include Paracron W-197C (trade name, manufactured by Negami Kogyo Co., Ltd.).
  • the (meth) acrylic copolymer preferably contains acrylonitrile.
  • the content of acrylonitrile is preferably 10 to 50% by mass, more preferably 20 to 40% by mass, based on the (meth) acrylic copolymer.
  • the (meth) acrylic copolymer containing acrylonitrile as a component is preferably synthesized by suspension polymerization.
  • (Meth) acrylic copolymer may have a functional group in order to improve adhesion.
  • a functional group For example, an amino group, a urethane group, an imide group, a hydroxyl group, a carboxyl group, a glycidyl group etc. are mentioned, Especially, a glycidyl group is preferable.
  • the glycidyl group has good reactivity with the epoxy resin, which is a thermosetting resin, and hardly reacts with the pressure-sensitive adhesive layer as compared with a hydroxyl group or the like, so that the change in surface free energy hardly occurs.
  • Examples of the (meth) acrylic copolymer having a glycidyl group include a glycidyl ether (meth) acrylic copolymer, a glycidylamine (meth) acrylic copolymer, and a glycidyl ester (meth) acrylic copolymer. These preferably contain at least one, and more preferably contain two or more.
  • the phenoxy resin examples include a resin obtained by reacting a bifunctional phenol and epihalohydrin to a high molecular weight or by polyaddition of a bifunctional epoxy resin and a bifunctional phenol. More specifically, the phenoxy resin can be obtained by reacting, for example, a bifunctional phenol and epihalohydrin in a non-reactive solvent at a temperature of 40 to 120 ° C. in the presence of a catalyst such as an alkali metal hydroxide. it can.
  • phenoxy resins are bifunctional epoxy resins and bifunctional phenols in the presence of catalysts such as alkali metal compounds, organophosphorus compounds, cyclic amine compounds, amides, ethers, and ketones having a boiling point of 120 ° C or higher. It can be obtained by polyaddition reaction by heating to 50 to 200 ° C. in an organic solvent such as lactone or alcohol under the condition that the reaction solid content is 50 parts by mass or less.
  • a phenoxy resin may be used independently and may be used in combination of 2 or more type.
  • an epoxy resin in the component of an adhesive bond layer.
  • a glycidyl group or a group having a partial structure in which an epoxy ring is condensed to an alicyclic ring is preferable.
  • glycidyl ether epoxy resin, glycidyl amine epoxy resin, glycidyl ester epoxy resin and alicyclic epoxy resin are more preferable.
  • a resin in which either a glycidyl group or a group having a partial structure in which an epoxy ring is condensed to an alicyclic ring is substituted with a hydroxyl group (phenolic hydroxyl group) of a bisphenol-based resin is preferable.
  • bisphenol-based epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, and bisphenol S type epoxy resins.
  • bisphenol F glycidyl ether resin and bisphenol A glycidyl ether resin are preferable.
  • the present invention it is particularly preferable to use a combination of two or more bisphenol epoxy resins having different structures, and it is most preferable to use a combination of bisphenol F glycidyl ether resin and bisphenol A glycidyl ether resin.
  • two or more types of epoxy resins, particularly bisphenol-based epoxy resins having different structures it is possible to achieve both fluidity for embedding bumps and other irregularities and curability for bonding reliability.
  • the compounding amount of the epoxy resin in the adhesive layer is preferably 15 to 35% by mass of the whole resin.
  • the adhesive layer may contain an inorganic filler. If the added amount is large, the fluidity is lowered and the adhesiveness is lowered. Therefore, the content of the inorganic filler is preferably less than 60 parts by weight, more preferably 50 parts by weight or less, even more preferably, with respect to 100 parts by weight of the resin component. 30 parts by mass or less. Moreover, since the unevenness
  • an inorganic filler it is practical that it is 0.003 micrometer or more.
  • an inorganic filler what is necessary is just to have insulation and thermal conductivity, for example, nitrogen compounds (boron nitride, aluminum nitride, silicon nitride, carbon nitride, titanium nitride, etc.), carbon compounds (silicon carbide, fluorine carbide, Boron carbide, titanium carbide, tungsten carbide, diamond, etc.), metal oxides (silica, alumina, magnesium oxide, zinc oxide, beryllium oxide, etc.) and the like.
  • nitrogen compounds boron nitride, aluminum nitride, silicon nitride, carbon nitride, titanium nitride, etc.
  • carbon compounds silicon carbide, fluorine carbide, Boron carbide, titanium carbide, tungsten carbide, diamond, etc.
  • metal oxides silicon, alumina, magnesium oxide, zinc oxide, beryllium oxide, etc.
  • Adhesive layer is a surface for wafer processing that has an adhesive layer with sufficient adhesiveness even after it has been once bonded to the adhesive layer and then peeled by controlling the surface free energy difference It can be a protective tape.
  • the surface free energy of the adhesive layer is preferably 25 to 45 mN / m. If the surface free energy is too small, the wettability is insufficient and voids are likely to be generated, and the mounting reliability is deteriorated. On the other hand, if it is too large, it will adhere firmly to the adhesive tape, making it impossible to transfer to the pickup tape, or causing a pickup failure.
  • the surface free energy of the adhesive layer is more preferably 30 to 40 mN / m, still more preferably the surface free energy is 30 to 40 mN / m and the difference in surface free energy from the pressure-sensitive adhesive layer is within 10 mN / m.
  • the surface heavy energy can be adjusted by changing the structure, type, and blending amount of the resin that is the main component of the adhesive film. Moreover, it can adjust also by adding additives, such as drying conditions and surfactant, in the case of coating.
  • the surface free energy can be measured as follows.
  • the surface free energy of the adhesive layer is preferably 25 to 45 mN / m as described above.
  • the surface free energy of the adhesive layer can be determined by measuring the contact angle ⁇ using a contact angle meter, for example, FACE contact angle meter CA-S150 (trade name) manufactured by Kyowa Chemical Co., Ltd.
  • the evaluation conditions at that time are: droplet volume: 2 ⁇ L of water, 3 ⁇ L of diiodomethane, reading time: 30 seconds after dropping.
  • the surface free energy is calculated by substituting the value of the contact angle into the following equation.
  • the molecular weight means the weight average molecular weight, and is measured using a standard polystyrene calibration curve by gel permeation chromatography (GPC) method.
  • the acid value is measured according to JIS K 5407 11.1.
  • A Reagent, bromothymol blue indicator, 0.01N potassium hydroxide-ethanol solution, acetone reagent grade 1
  • B Operation Weigh approximately 10 g of sample accurately into an Erlenmeyer flask, dissolve in 50 ml of acetone, and bromothymol Add 3-4 drops of blue indicator. This is titrated with a 0.01N potassium hydroxide-ethanol solution.
  • C Calculation The acid value is obtained by the following formula.
  • V Titration volume of 0.01N potassium hydroxide-ethanol solution (ml)
  • f Factor of 0.01N potassium hydroxide-ethanol solution
  • S Amount of sample collected
  • hydroxyl value The hydroxyl value is measured according to JIS K 0070.
  • A Reagent / acetylating reagent (acetic anhydride-pyridine) -N / 2 potassium hydroxide-ethanol solution
  • B Operation After acetylating the sample with an acetylating reagent, excess acetic acid is titrated with N / 2 potassium hydroxide-ethanol solution.
  • C Calculation The hydroxyl value is determined by the following formula.
  • V titration of N / 2 potassium hydroxide-ethanol solution in this test
  • VB titration of blank test
  • F Factor of N / 2 potassium hydroxide-ethanol solution
  • S Sampling amount
  • AV Acid value of the sample (mgKOH / g)
  • the adhesive layer can improve the adhesion to an uneven surface such as a bump by controlling the elastic modulus.
  • the elastic modulus at 25 ° C. after curing of the adhesive layer is preferably in the range of 1 to 1000 MPa, more preferably 1 MPa to 10 MPa.
  • the elastic modulus of the adhesive layer at 250 ° C. is preferably in the range of 1 to 1000 MPa.
  • the ratio of the elastic modulus at 25 ° C. to the elastic modulus at 250 ° C. of the adhesive layer is preferably 100 or less.
  • (elastic modulus after curing) / (elastic modulus before curing) is 100 or less. Since the adhesive film needs to be excellent in embedding property before bonding, the adhesive film has low elasticity. Next, it is hardened at the time of adhesion to the substrate, but if the elastic modulus is too high at that time, the warpage is large and causes the warpage of the chip. When the elastic modulus is too low, it is not sufficiently cured, and mounting reliability is lacking. In most cases, a reflow heat treatment is performed for packaging after bonding the chip and the substrate.
  • the elastic modulus is equivalent even at the reflow heating temperature, and it is preferable that the change in elastic modulus is small before and after heating. More preferably, the change (absolute value of the difference) between the elastic modulus at 25 ° C. and the elastic modulus at 250 ° C. is 100 or less.
  • the elastic modulus can be measured as follows.
  • the elastic modulus is measured using a viscoelasticity measuring device ARES (trade name) manufactured by Rheometrics Scientific F.E.
  • the measuring plate is a plate having a diameter of 8 mm ⁇ , and the film adhesive is laminated and punched out with a punch of 8 mm ⁇ having a thickness of about 1 mm.
  • Measurement conditions are set to room temperature of 25 ° C. and 250 ° C., and a frequency of 1 Hz.
  • the temperature rising conditions at the time of measuring at 250 degreeC are performed at 10 degree-C / min.
  • the saturated moisture absorption rate of the adhesive layer is preferably 1.5% by volume or less, and more preferably 1.0% by volume or less. Although there is no restriction
  • the saturated moisture absorption measurement method is as follows. A circular film-like adhesive layer (adhesive film) having a diameter of 100 mm is used as a sample, the sample is dried in a vacuum dryer at 120 ° C. for 3 hours, allowed to cool in a desiccator, and then the dry mass is measured to be M1. The sample is taken out after absorbing moisture in a constant temperature and humidity chamber at 85 ° C. and 85% RH, and weighed quickly. When the measured value becomes constant, the mass is M2. From the density (d) of the adhesive (the film adhesive layer), the dry mass (M1), and the hygroscopic mass (M2), the saturated moisture absorption rate (volume%) is calculated by the following formula.
  • the adhesive layer preferably contains a compound having a functional group that crosslinks with an isocyanate curing agent or an epoxy curing agent and having a flux function as a curing agent.
  • the flux is a material generally used for increasing the wettability of the bump, and a rosin-based material is generally preferably used as a material having a flux function.
  • a rosin-based material is generally preferably used as a material having a flux function.
  • a compound having both a carboxyl group and a phenol hydroxyl group is more preferably used as a curing agent.
  • Examples of the compound having a flux activity having a phenolic hydroxyl group include phenols, and specifically, for example, phenol, o-cresol, 2,6-xylenol, p-cresol, m-cresol, o-ethylphenol.
  • the curing agent having a flux function examples include epoxy resin curing agents, aliphatic dicarboxylic acids, and aromatic dicarboxylic acids. More specifically, the curing agent having a flux function includes, for example, two or more phenolic hydroxyl groups that can be added to an epoxy resin in one molecule, and an aromatic that exhibits a flux action (reduction action). And compounds having one or more directly bonded carboxyl groups.
  • Curing agents having such flux activity include 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, gentisic acid (2,5-dihydroxybenzoic acid), 2,6-dihydroxybenzoic acid, 3, Benzoic acid derivatives such as 4-dihydroxybenzoic acid and gallic acid (3,4,5-trihydroxybenzoic acid); 1,4-dihydroxy-2-naphthoic acid, 3,5-dihydroxy-2-naphthoic acid, 3, Examples thereof include naphthoic acid derivatives such as 7-dihydroxy-2-naphthoic acid; phenolphthaline; and diphenolic acid. These may be used alone or in combination of two or more.
  • the blending amount of the curing agent having a flux activity is preferably 0.5 to 30 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the resin component of the adhesive layer.
  • a modified layer is formed in a wafer with bumps having bumps as electrodes on a semiconductor wafer on which a semiconductor circuit is formed, and then the back surface of the semiconductor wafer is ground to obtain individual chips.
  • a method of manufacturing a semiconductor chip that performs a batch division into Thin film grinding in which an adhesive film is laminated on an adhesive layer of an adhesive tape having an adhesive layer on a base film after forming the modified layer and before grinding the back surface of the semiconductor wafer
  • a step of attaching a surface protective tape for a semiconductor also simply referred to as a surface protective tape) to the side on which the semiconductor circuit of the semiconductor wafer is formed on the adhesive film side;
  • the step of bringing only the above-mentioned adhesive film into the chip is a step of directly picking up from the surface protective tape without using a transfer film (pickup tape).
  • only the adhesive film of the surface protection tape for thin film grinding is divided by a laser after batch cutting of chips by backside grinding of the semiconductor wafer.
  • FIG. 1 schematically shows the first half of the process of a preferred embodiment of the method for manufacturing a semiconductor chip of the present invention.
  • the method undergoes a process of transferring to the above-mentioned pickup tape and the transfer to this pickup tape is not performed. It is the first half process that is common to both methods that go through the process.
  • FIG. 2 is an example of the latter half of the process after the process (4) in FIG. 1 in the method through the process of transferring to the pickup tape
  • FIG. 3 is the method in FIG. 1 in the method through the process of not transferring to the pickup tape. It is an example of the latter half process performed after the process of (4).
  • the modified layer (2) is formed by laser (7) from the surface (1A) of the semiconductor wafer (1).
  • this is a step of forming a modified region ⁇ modified portion (2A) ⁇ inside the semiconductor wafer by multi-photon absorption by irradiating the laser wafer to the part to be divided of the semiconductor wafer. Irradiation with laser light causes a phenomenon of optical damage due to multiphoton absorption, and this optical damage induces thermal strain inside the semiconductor wafer, which causes a modified region (crack region) (inside the semiconductor wafer) 2A) is formed.
  • Examples of laser light (laser beam) used in this case include Nd: YAG laser, Nd: YVO laser, Nd: YLF laser, and titanium sapphire laser that generate pulsed laser light.
  • the thickness of the modified layer (2) is preferably 20 ⁇ m to 40 ⁇ m.
  • the modified layer is preferably provided, for example, on the final ground thickness of 10 ⁇ m to 50 ⁇ m. This is because when the modified portion is included in the chip, the bending strength of the portion may be lowered. Further, by providing the modified layer above the final ground thickness, the chip can be divided by an impact when the modified layer is ground.
  • the surface protective tape for thin film grinding (surface protective tape) of the present invention is bonded to the semiconductor wafer surface (1A).
  • the adhesive layer (adhesive film) (6) side of the surface protective tape for thin film grinding is stuck on the side of the semiconductor wafer (1) where the modified layer (2) is formed.
  • the surface protection tape of this invention has an adhesive layer (5) on a base film (4) as mentioned above, and has an adhesive layer (adhesive film) (6) on the adhesive layer.
  • the tape which has an adhesive layer (5) on a base film (4) is also called adhesive tape (3).
  • the surface (back surface) (1B) opposite to the surface of the semiconductor wafer on which the surface protective tape for thin film grinding is bonded is ground.
  • 8 is a grinder
  • 9 is a wafer being back ground.
  • the back surface grinding is finished in a state where the grinding can be performed to the target thickness.
  • reference numeral 10 denotes a wafer whose back surface is ground.
  • a pickup tape (11) is attached to the back surface (grind surface) of the semiconductor wafer and fixed to the ring frame (12). Since the pickup tape is required to have good pickup properties and expandability in the pickup process, it is preferable to use a dicing tape.
  • a pressure-sensitive adhesive for the pressure-sensitive adhesive layer of the dicing tape a general pressure-sensitive adhesive used for a dicing tape can be used, and an adhesive that is cured by irradiation with ultraviolet rays is preferably used.
  • the ring frame one used in a general semiconductor wafer processing step can be used.
  • (7-1) Expand the pickup tape.
  • (7-1A) the adhesive film (adhesive layer) and the semiconductor wafer are divided or (7-1B) the adhesive film (adhesive) after dividing only the semiconductor wafer.
  • the layer) is cut with a laser (14).
  • the above (7-1A) and (7-1B) can be adjusted by changing the expanding conditions. That is, when the adhesive film is divided into expanded portions (7-1A), a certain amount of expansion is required, so that the amount of expansion can be made larger than usual and divided simultaneously with the chip. On the other hand, in the case of an expand with only a chip (7-1B), since the chip is a rigid body, the amount of expansion may be small.
  • the state of (7-1A) or (7-1B) can be obtained by arbitrarily adjusting the amount of expansion.
  • 6A indicates a divided adhesive layer (adhesive film)
  • 10A indicates a divided wafer.
  • Reference numeral 11A denotes an expanded pickup tape
  • reference numeral 13 denotes an expander.
  • the divided semiconductor wafer (10A) becomes individual chips (17) with an individualized adhesive film (adhesive layer) (6A), which is converted into an adhesive film (adhesive layer) (6A).
  • reference numeral 15 denotes a pickup needle
  • 16 denotes a pickup collet.
  • the chip (17) is peeled off from the pickup tape (11A) and picked up.
  • the modified layer (2) is formed from the surface (1A) of the semiconductor wafer (1) by a laser (7).
  • the surface protective tape for thin film grinding (surface protective tape) of the present invention is bonded to the surface of the semiconductor wafer.
  • the adhesive layer (adhesive film) (6) side of the surface protective tape for thin film grinding is stuck on the side of the semiconductor wafer (1) where the modified layer (2) is formed.
  • the surface (back surface) (1B) opposite to the surface of the semiconductor wafer on which the surface protective tape for thin film grinding is bonded is ground. (4) The back surface grinding is finished in the state (10) where the grinding can be performed to the target thickness.
  • (5-2) Affixing a fixing tape (21) on the base film (4) side of the surface protection tape surface for thin film grinding, and fixing to the ring frame (22).
  • the fixing tape (21) is substantially the same as the dicing tape (pickup tape (11)).
  • the divided semiconductor wafer (10A) becomes individual chips (27) with an individualized adhesive film (adhesive layer) (6A), which is converted into an adhesive film (adhesive layer) (6A).
  • 25 indicates a pickup needle
  • 26 indicates a pickup collet.
  • the chip (27) is peeled off from the adhesive layer (5) of the adhesive film (3) and picked up.
  • an ultraviolet curable adhesive is used as the pressure-sensitive adhesive
  • the state in which the chip (27) is peeled from the pressure-sensitive adhesive layer (5) after ultraviolet irradiation (not shown) is shown.
  • the manufacturing method using the surface protective tape for thin film grinding of the present invention exhibits a remarkable effect when thinly grinding a wafer having bumps and other irregularities as electrodes.
  • the surface protective tape for thin film grinding of the present invention it is possible to omit the step of pouring underfill, and therefore, resin leakage due to underfill does not occur and the yield is improved.
  • Chip bending strength is an important performance in thinning the chip.
  • the dicing method after back grinding which is a general method, is a process that damages a thin semiconductor wafer, whether it is blade dicing or laser dicing, so that the resulting chip remains damaged. It is easy, chipping occurs, and in the worst case, the chip breaks.
  • the manufacturing method of the present invention it is possible to minimize damage to the semiconductor chip and increase the bending strength of the chip. It can be secured.
  • chip cracking is very likely to occur because a thin film semiconductor chip with bumps and other irregularities is pressed.
  • chip mounting can be suppressed because the semiconductor chip is mounted with the adhesive film (adhesive layer) adhered thereto.
  • the manufacturing time can be shortened.
  • the semiconductor device may be transferred to a pickup tape after being formed into a chip, and the semiconductor device may be manufactured in a separate process only for the pickup (the process shown in FIGS. 1 and 2). Step 3) is preferred.
  • the wafer after thin film grinding may be divided into chips by pressing a roll (not shown), or divided by pushing a push blade from above the modified layer (not shown). 2), or by dividing the chip by expanding (step (7-1A) in FIG. 2 and step (6-2) in FIG. 3). Since no external stress is applied, a method of dividing by expanding is preferable.
  • Example 1 Production of surface protective tape for thin film grinding An ultraviolet curable (meth) acrylic pressure-sensitive adhesive layer is provided on a base film made of an ethylene-acrylic acid copolymer having a thickness of 100 ⁇ m, and on the pressure-sensitive adhesive layer, The adhesive layer which consists of a (meth) acrylic-type copolymer containing an epoxy resin was provided, and the surface protection tape for thin film grinding of this invention was produced.
  • An ultraviolet curable (meth) acrylic pressure-sensitive adhesive layer is provided on a base film made of an ethylene-acrylic acid copolymer having a thickness of 100 ⁇ m, and on the pressure-sensitive adhesive layer, The adhesive layer which consists of a (meth) acrylic-type copolymer containing an epoxy resin was provided, and the surface protection tape for thin film grinding of this invention was produced.
  • a copolymer having a weight average molecular weight of 700,000 is obtained by blending 78 mol% 2-ethylhexyl acrylate, 21 mol% 2-hydroxyethyl acrylate and 1 mol% methacrylic acid and copolymerizing them in an ethyl acetate solution. A solution was obtained. To 100 parts by mass of this copolymer, 5.0 parts by mass of 2-methacryloyloxyethyl isocyanate (trade name, Karenz MOI manufactured by Showa Denko KK) was mixed in a solution and reacted in this solution to cause hydroxyl in the copolymer side chain.
  • 2-methacryloyloxyethyl isocyanate trade name, Karenz MOI manufactured by Showa Denko KK
  • An acrylic copolymer polymer having a double bond-containing group was synthesized by adding a double bond-containing group derived from the isocyanate to the group.
  • a double bond-containing group derived from the isocyanate was synthesized by adding a double bond-containing group derived from the isocyanate to the group.
  • To 100 parts by mass of the acrylic copolymer polymer having a double bond-containing group 6.0 parts by mass of Coronate L (trade name, manufactured by Nippon Polyurethane Industry Co., Ltd.) as a curing agent, and Irgacure 184 (product) as a photoreaction initiator Name, manufactured by BASF) was blended in an amount of 5.0 parts by mass to obtain an adhesive composition.
  • Coronate L trade name, manufactured by Nippon Polyurethane Industry Co., Ltd.
  • Irgacure 184 product
  • a photoreaction initiator Name manufactured by BASF
  • the obtained pressure-sensitive adhesive composition was coated on a release liner so that the thickness of the pressure-sensitive adhesive layer was 20 ⁇ m, and on this pressure-sensitive adhesive layer side, a 100 ⁇ m-thick ethylene-based ionomer resin (trade name, Mitsui DuPont Poly)
  • a pressure sensitive adhesive tape was obtained by laminating a 100 ⁇ m-thick substrate film made of Himiran (Chemical Co., Ltd.).
  • a phenoxy resin was obtained by blending 35 mol% of bisphenol A type epoxy resin, 35 mol% of bisphenol A type phenoxy resin and 30 mol% of bisphenol A diglycidyl ether and copolymerizing them. 30 parts by mass of the obtained acrylic resin, 50 parts by mass of the cured epoxy resin, and 20 parts by mass of the phenoxy resin were blended and mixed in an ethyl acetate solution. With respect to 100 parts by mass of the obtained mixed resin, 5 parts by mass of silica particles having an average particle diameter of 5 ⁇ m were blended in this solution as an inorganic filler to obtain an adhesive composition.
  • the obtained adhesive composition was applied onto a release liner so that the thickness of the adhesive layer was 70 ⁇ m, and on this adhesive layer side, the adhesive layer side of the adhesive tape from which the release liner was peeled off was attached.
  • a surface protective tape for thin film grinding was obtained. In the following use, this release liner was peeled off and used.
  • FIGS. (1) A wafer with bumps having a diameter of 300 mm (about 12 inches) by irradiating a laser beam (7) from the back surface (1A) of the semiconductor wafer (1) using DAL7360 (trade name, stealth dicing apparatus manufactured by DISCO Corporation) A modified layer (2) was formed on the substrate.
  • the size and pitch of the bumps are as follows. Bump height: 80 ⁇ m, Pitch: 160 ⁇ m, Bump type: Solder Modified layer ⁇ Modified part (2A) ⁇ thickness: 30 ⁇ m
  • the surface protective tape for thin film grinding produced above was bonded to the surface (1A) provided with the modified layer of the semiconductor wafer on the adhesive layer (6) side.
  • a pickup tape (11) was attached to the back surface (grinding surface) of the semiconductor wafer (10) and fixed to the ring frame (12).
  • the pickup tape (11) was a dicing tape having a base film made of polyolefin and a thickness of 110 ⁇ m.
  • the dicing tape has an adhesive layer made of an ultraviolet curable acrylic copolymer on the base film.
  • Example 2 Same as Example 1 except that the surface protection tape for thin film grinding prepared in Example 1 was used and the process (6) in Example 1 was changed to the following processes (6-1) to (6-2). Thus, a semiconductor chip was manufactured.
  • Example 3 A semiconductor chip was manufactured by the process shown in FIGS. After performing the processes (1) to (3) in Example 1 using the surface protection tape for thin film grinding produced in Example 1, the following process (4A) was performed instead of (4) to (7). A semiconductor chip was manufactured by performing (6A).
  • Expanding tape (11) (fixing tape (21)) similar to Example 1 was applied to the base film (4) side of the surface protective tape for thin film grinding, and fixed to the ring frame (22). .
  • the expanding tape (11) (fixing tape (21)) has an adhesive layer made of an ultraviolet curable acrylic copolymer on a base film made of an ethylene ionomer resin.
  • the fixing tape (21) was expanded under the conditions of a speed of 1 mm / second and an expansion amount of 20 mm, and the adhesive film (adhesive layer) (6) and the semiconductor wafer were divided on the adhesive film (3). .
  • the divided semiconductor wafer (10A) becomes individual chips (27) with an individualized adhesive film (adhesive layer) (6A), and after UV irradiation, the adhesive layer (5) to chips ( 27) was picked up together with an adhesive film (adhesive layer) (6A).
  • Comparative Example 1 (I) A conventional method for producing a surface protection tape for bumps 20 mol% methacrylic acid, 30 mol% 2-ethylhexyl acrylate, 10 mol% 2-hydroxyethyl acrylate, 40 mol% methyl acrylate are mixed in an ethyl acetate solution. By polymerization, a copolymer solution having a weight average molecular weight of 600,000 was obtained.
  • a pentafunctional urethane acrylate oligomer as a UV reactive resin 10 parts by mass of a trifunctional urethane acrylate oligomer and 30 parts by mass of a bifunctional urethane acrylate oligomer, and a curing agent.
  • Coronate L (trade name, manufactured by Nippon Polyurethane Industry Co., Ltd.) 4.0 parts by mass, Irgacure 184 (trade name, manufactured by BASF) 5 parts by mass as a photoinitiator, and Ebecryl 350 (trade name, Daicel) 0.5 parts by mass of Ornex Co., Ltd.) was blended to obtain an adhesive composition.
  • the obtained pressure-sensitive adhesive composition is coated on a release liner so that the thickness of the pressure-sensitive adhesive layer is 130 ⁇ m, and is bonded to a 100 ⁇ m-thick LDPE (low density polyethylene) film to protect the surface for conventional bumps having a thickness of 230 ⁇ m. I got a tape. In the following use, this release liner is peeled off and used.
  • LDPE low density polyethylene
  • the surface protection tape for bumps was peeled off from the surface of a 12-inch wafer with solder bumps having a height of 80 ⁇ m and a pitch of 160 ⁇ m, and the release liner was peeled off and bonded on the adhesive layer side.
  • the back surface of the wafer was ground using a disco back surface grinding device manufactured by DISCO Corporation. This back surface grinding was performed to a wafer thickness of 75 ⁇ m after grinding. Thereafter, the wafer with bump surface protection tape was mounted on a 110 ⁇ m thick polyolefin dicing tape, and the bump surface protection tape was peeled off after UV irradiation.
  • Dicing was performed using DFD6361 (trade name, blade dicing machine manufactured by DISCO Corporation), and pickup was performed using DB800-HL (trade name, pickup die bonder manufactured by Hitachi High-Technologies Corporation).
  • U8443 (trade name, underfill agent for flip chip manufactured by NAMICS Co., Ltd.) was applied as an adhesive (NCP) to the substrate, and the chip picked up from the substrate was bonded to the substrate and sealed.
  • Comparative Example 2 The same surface protective tape for bump grinding as that prepared in Comparative Example 1 was peeled off from the surface of a 12-inch wafer with solder bumps having a height of 80 ⁇ m and a pitch of 160 ⁇ m. The wafer back surface was ground using a product name, Disco Corporation back surface grinding apparatus. This back surface grinding was performed to a thickness of 75 ⁇ m after grinding. Thereafter, the wafer with bump surface protection tape was mounted on a 110 ⁇ m thick polyolefin dicing tape, and the bump surface protection tape was peeled off after UV irradiation.
  • Dicing was performed using DFL7160 (trade name, laser dicing machine manufactured by DISCO Corporation), and pickup was performed using DB800-HL (trade name, pickup die bonder manufactured by Hitachi High-Technologies Corporation).
  • the picked-up chip was joined to the substrate, and sealing was performed by pouring U8443 (trade name, underfill agent for flip chip manufactured by NAMICS Co., Ltd.) from the side as an underfill agent.
  • the semiconductor chip manufacturing method of Examples 1 to 3 completely fills bump bumps and bumps with an adhesive layer. Exhibits good grindability without generating, can omit the dicing process after back grinding, and can eliminate the process of pouring underfill by using surface protection tape for thin film grinding, Further, since the resin leakage due to underfill is eliminated, the yield is improved. In addition, by using the manufacturing method of the present invention, it is possible to minimize damage to the semiconductor chip and increase the bending strength of the chip, and chip cracking is less likely to occur. It can be secured.
  • Example 3 since the pick-up is performed without transferring, the adhesive tape peeling step can be omitted, and the stress on the semiconductor chip can be further reduced since the stress is eliminated during peeling.
  • Comparative Examples 1 and 2 the adhesive protruded from the chip, and an adhesive burr was generated.
  • the amount of protrusion was large.
  • Comparative Examples 1 and 2 since dicing with a blade and a laser was performed, chipping occurred on the side surface of the chip. In particular, in the blade dicing method, chip chipping and chip cracking occurred.
  • the gel fraction of the pressure-sensitive adhesive layer was 80% or more.
  • the cohesive force is low, and thus adhesive residue is generated on the circuit on the wafer surface, which is inferior. Result.
  • the adhesive film had an elastic modulus at 250 ° C. of 10 MPa or less and a saturated moisture absorption of 1.5% by volume or less.
  • the elastic modulus at 250 ° C. of the adhesive film exceeds 10 MPa and / or the saturated moisture absorption exceeds 1.5% by volume, these comparative examples show large warpage and chip warpage. It may occur or cause problems such as poor appearance and insufficient adhesion, all of which are inferior.
  • the surface free energy of the adhesive film was 25 to 45 mN / m.
  • the surface free energy of the adhesive film is less than 25 mN / m or exceeds 45 mN / m, voids are generated in these comparative examples due to insufficient wettability, or mounting. Inferior in reliability, both results inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesive Tapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Inorganic Chemistry (AREA)

Abstract

【課題】フリップチップ実装工程に用いられるバンプ電極を有する半導体ウェハの裏面研削を行い、同時に、またはその後の工程で、チップ化を行う半導体チップの製造において、アンダーフィルを用いることなく、高精度でかつ簡便に半導体チップを製造する方法と、前記方法に用いられる薄膜研削用表面保護テープを提供すること。 【解決手段】半導体回路が形成された半導体ウェハに、電極としてバンプを有するバンプ付ウェハ内に改質層を形成した後、該半導体ウェハの裏面を研削し、個々のチップへ一括して分割を行う半導体チップの製造方法であって、該改質層を形成した後であって、かつ該半導体ウェハの裏面を研削する前に、基材フィルム上に粘着剤層を有する粘着テープの粘着剤層上に接着フィルムが積層された薄膜研削用表面保護テープを、半導体ウェハの半導体回路が形成された側に前記接着フィルム側で貼り付ける工程、該半導体ウェハの裏面研削後にピックアップされる際に、又はピックアップ用のテープに転写される際に、該接着フィルムのみチップに接着された状態とする工程を有する半導体チップの製造方法、及びそれに用いる薄膜研削用表面保護テープ。

Description

半導体チップの製造方法およびそれに用いる薄膜研削用表面保護テープ
 本発明は、半導体チップの製造方法およびそれに用いる薄膜研削用表面保護テープに関する。
 近年、ICカードの普及やUSBメモリの急激な容量アップが進み、チップを重ねる枚数の増加に伴い、さらなる薄型化が望まれている。このため、従来は厚さが200μm~350μm程度であった半導体チップを、厚さ50~100μmあるいはそれ以下まで薄くする必要が生じている。このようなチップの薄型化を達成する方法として、特殊なテープを用いて通常の工程で薄膜化研削をする方法や、先ダイシングと呼ばれるウェハの表面側から所定深さの溝を形成した後、この裏面側から研削を行う半導体チップの製造方法が知られている。この方法は、ウェハの裏面研削と個々のチップへの分割を同時に行うことにより、薄型チップを効率よく製造することができる。また、チップへの研削応力を低減させることにより、チップの抗析強度を向上させる効果があり、特に100μm以下の薄膜に研削するデバイスへの適用が検討されている。
 半導体ウェハの薄膜化に加えて大径化の流れは、特に、NAND型やNOR型が存在するフラッシュメモリの分野や、揮発性メモリであるDRAMなどの分野で、顕著な傾向を示している。現在では12インチのウェハを100μm厚以下に研削されることが標準となってきている。
 メモリ系デバイスは、チップを重ねることにより性能向上させているため、薄膜研削が必須となる。そのため薄膜チップの製造に特化させた工法である先ダイシング法と呼ばれる工程による製造方法や(特許文献1、特許文献2参照)その製造工程専用の粘着シート(特許文献3参照)、通常の工程であっても薄膜研削用の特殊な粘着シート(特許文献4参照)、ダイシング・ダイボンドシート(特許文献5参照)や特定の樹脂からなる粘接着層を有するテープ(特許文献6参照)を用いることにより安価で高性能なフラッシュメモリなどを製造することが可能となってきている。
 一方、近年、スマートフォンの普及や携帯電話の性能向上および音楽プレーヤの小型化、かつ性能向上などに伴い、対衝撃性などを考慮した電極付ウェハを用いたフリップチップ実装に用いるウェハについても薄膜化の要求が増えてきている。またバンプ付ウェハについても100μm以下の薄膜研削をする必要が出てきている。フリップチップ接続されるためのバンプは、転送速度向上のため高密度化されてきており、バンプの高さが低くなってきており、それに伴ってバンプ間距離が短くなってきている。また近年ではDRAMにもフリップチップ接続が実施されてきているためウェハの薄膜化が加速している。
 フリップチップ実装は、近年の電子機器の小型化、高密度化に対して半導体素子を最小の面積で実装できる方法として注目されてきた。このフリップチップ実装に使用される半導体素子の電極上にはバンプが形成されており、バンプと回路基板上の配線とを電気的に接合する。これらのバンプの組成としては、主に半田や金が使用されている。この半田バンプや金バンプは、蒸着やメッキで、チップの内部配線につながる露出したアルミ端子上などに形成する。
 バンプ付ウェハは、その表面に大きな凹凸を有しているため薄膜加工が難しく、通常のテープを用いて裏面研削を行うとウェハ割れが発生してしまったり、ウェハの厚み精度の悪化をおこしたりする。そのため、バンプ付ウェハの研削には、特別に設計された表面保護用テープを用いて加工がされている(特許文献7参照)。
 しかしながら、これらのテープはバンプを十分に吸収して研削性を確保しているため剥離性との両立が非常に難しい。これまでのフリップチップ実装されてきたチップの仕上げ厚みは200μm厚以上とある程度の厚みがあり、剛性を保てたため何とか剥離できてきた。しかし、最近ウェハ仕上げ厚みが薄膜となり、バンプ密度も高くなってきているためテープ剥離が容易にできないといった問題を発生させてしまっている。また、剥離性を確保すると密着が不十分であり、裏面研削時に研削水の浸入や糊残りを引き起こしてしまっている。また、粘着剤がウェハ表面に接着するため、有機物の汚染が発生しやすくアンダーフィルの密着性も悪化してしまい、パッケージングを行う際に歩留まりが向上しないといった問題も抱えている。
 一方、フリップチップ接続された半導体装置は、パッケージングする際にそのままで使用すると接続部の電極が空気中に露出しており、チップと基板の熱膨張係数の差が大きいため、半田リフローなどの後工程の熱履歴によりバンプの接続部分に大きな応力がかかり、実装信頼性に問題があった。
 これらの問題を解決するため、バンプと基板とを接続した後、接合部分の信頼性を向上させるために、半導体素子と基板の間隙を、アンダーフィルまたはNCP(Non Conductive Paste)等の樹脂で埋めて硬化させて半導体素子と基板とを固定する方法が採用されている。
 ところが、一般にフリップチップ実装を行うような半導体素子は電極数が多く、また回路設計上の問題から電極は半導体素子の周辺に配置されている。このため、アンダーフィルとして樹脂ペーストの充填時にはこれらの半導体素子の電極間から液状樹脂を毛細管現象で流し込みを行うと樹脂が十分に行き渡らず未充填部が出来やすく、半導体素子の動作が不安定になるなどのため、動作不良や耐湿信頼性が低いといった問題があった。更に、チップサイズが小さくなると液状樹脂のはみ出しにより基板を汚染したり、電極間のピッチが狭くなると樹脂の流し込みが困難となったりする。また、フリップチップ接続した半導体素子1つ1つに樹脂を充填するにはあまりにも時間がかかるため、生産性にも課題がある。一方、フィルム状の接着剤(NCF:Non Conductive Film)を一括で熱圧着した後にウェハチップを個片化する方法では、樹脂ペースト充填に比べて工程が簡略化され有利である。しかし、ウェハ厚さが薄くなるに従って熱圧着時にウェハ損傷を生じやすくなるため、厚いウェハにフィルム状の接着剤(NCF)を熱圧着した後でウェハ裏面を研削することが必要になっている。このため、工程数が増えてしまい効率的ではない。
 これに対し、従来の裏面研削用粘着テープ(基材フィルム上に粘着剤層を有するテープ)と接着フィルム(接着剤層)の組み合わせでは、粘着剤層と接着剤層(粘着テープと接着フィルム)との親和性が高く、ウェハ裏面研削後にウェハから前記粘着テープ(粘着剤層)を剥離する為の剥離力が上昇しやすく、剥離工程でのウェハ損傷を生じやすいという問題を抱えている。また、接着フィルムの凹凸基板への埋め込み性を上げて接着信頼性を高めるためには、加熱貼合時の溶融粘度を落とすことが必要となるが、加熱貼合により粘着テープからの剥離力は上昇する傾向にあり加熱貼合後の粘着テープからの剥離が難しくなるという問題を抱えている。
 これらの問題に対する検討(特許文献8、9参照)も行われているが、近年の薄膜化及び大口径化に伴い、従来の半導体チップの製造方法ではクラック等の不良が発生しやすく、最悪の場合はウェハ割れが発生してしまうため歩留まりが悪いといった問題が発生している。特にウェハ厚みが100μm厚以下での研削では特に歩留まりの悪化が激しく、安定的に製造できない場合もある。また、通常の裏面研削及びダイシングによるチップ化では抗折強度が上がりにくく、パッケージングの際に不良を発生させてしまうことが多く発生していた。
特開2008-251934号公報 特開2009-27054号公報 特開2004-331743号公報 特開2000-150432号公報 特開2007-227575号公報 特開平10-8001号公報 特開2004-235395号公報 特開2006-49482号公報 特開2002-118147号公報
 そこで、本発明は、フリップチップ実装工程に用いられるバンプ電極を有する半導体ウェハの裏面研削を行い、同時に、またはその後の工程で、チップ化(個片化)を行う半導体チップの製造において、アンダーフィルやNCP又はNCFを用いることなく、高精度でかつ簡便に半導体チップを製造する方法を提供することを課題としている。
 また、本発明は、前記方法に用いられる薄膜研削用表面保護テープを提供することを別の課題としている。
 本発明者らはこのようなフリップチップ実装工程における問題点を克服する目的で種々検討した結果、100μm高さ以下のバンプ付ウェハ回路基板を200μm厚以下、特に50μm高さ以下のバンプ付ウェハ回路基板を100μm厚以下の薄膜に研削し、かつチップ化する過程において、バンプ付ウェハ内に事前に改質層(ウェハをチップ化する際に分割される位置に対応して設けられた、ウェハ表面から所定の深さの改質部を含む層であって、この改質部ではその周囲の改質されていないウェハよりも強度が低い。)を形成しておき、その後に接着フィルムと粘着テープを積層した表面保護テープを貼合し、該ウェハの裏面研削をすることで薄膜化とチップ化を一括で行い、転写用のピックアップテープへの貼合やピックアップする際に接着フィルムのみをチップに接着して転写又はピックアップすることで容易にフリップチップ実装することができ、従来の工程に比べて実装信頼性の向上及び工程の短縮化が可能であることを見出し、この知見に基づき本発明を成すに至った。
 すなわち、本発明によれば、以下の手段が提供される。
(1)半導体回路が形成された半導体ウェハに、電極としてバンプを有するバンプ付ウェハ内に改質層を形成した後、該半導体ウェハの裏面を研削し、個々のチップへ一括して分割を行う半導体チップの製造方法であって、
 該改質層を形成した後であって、かつ該半導体ウェハの裏面を研削する前に、基材フィルム上に粘着剤層を有する粘着テープの粘着剤層上に接着フィルムが積層された薄膜研削用表面保護テープを、半導体ウェハの半導体回路が形成された側に前記接着フィルム側で貼り付ける工程、
 該半導体ウェハの裏面研削後にピックアップされる際に、またはピックアップ用のテープに転写される際に、該接着フィルムのみチップに接着された状態とする工程
を有することを特徴とする半導体チップの製造方法。
(2)前記接着フィルムのみチップに接着された状態とする工程が、転写フィルム(ピックアップテープ)を使用することなく、前記表面保護テープから直接ピックアップする工程であることを特徴とする(1)に記載の半導体チップの製造方法。
(3)前記薄膜研削用表面保護テープをエキスパンドすることにより、前記接着フィルムとチップを同時に分割する工程を含むことを特徴とする(1)または(2)に記載の半導体チップの製造方法。
(4)前記半導体ウェハの裏面研削によるチップの一括分断の後、前記薄膜研削用表面保護テープの前記接着フィルムのみをレーザーによって分割することを特徴とする(1)または(2)に記載の半導体チップの製造方法。
(5)基材フィルム上に粘着剤層を有する粘着テープの粘着剤層上に接着フィルムが積層されてなる薄膜研削用表面保護テープであって、
 前記接着フィルムが、250℃における弾性率が10MPa以下であり、飽和吸湿率が1.5容量%以下であって、かつ(メタ)アクリル系共重合体及びフェノキシ系樹脂からなる群から選ばれる少なくとも1種を接着剤として含む単一もしくは複数の層からなることを特徴とする薄膜研削用表面保護テープ。
(6)前記粘着剤層が、紫外線硬化型であることを特徴とする(5)に記載の薄膜研削用表面保護テープ。
(7)前記粘着剤層が、(メタ)アクリル系共重合体を主成分とし、ゲル分率が80%以上であることを特徴とする(5)または(6)に記載の薄膜研削用表面保護テープ。
(8)前記接着フィルムの表面自由エネルギーが、25~45mN/mであり、飽和吸湿率が1.5容量%以下であることを特徴とする(5)~(7)のいずれか1項に記載の薄膜研削用表面保護テープ。
(9)前記接着フィルムがエポキシ樹脂を含み、該エポキシ樹脂が、グリシジルエーテルエポキシ樹脂、グリシジルアミンエポキシ樹脂、グリシジルエステルエポキシ樹脂および脂環式エポキシ樹脂からなる群から選択される少なくとも1つの樹脂であることを特徴とする(5)~(8)のいずれか1項に記載の薄膜研削用表面保護テープ。
(10)前記接着フィルムがビスフェノール系樹脂を含有することを特徴とする(5)~(9)のいずれか1項に記載の薄膜研削用表面保護テープ。
(11)前記ビスフェノール系樹脂が、ビスフェノールFジグリシジルエーテル樹脂及びビスフェノールAジグリシジルエーテル樹脂からなる群から選ばれた少なくとも1つであることを特徴とする(10)に記載の薄膜研削用表面保護テープ。
(12)前記接着フィルムが無機フィラーを含み、かつその含有量が、該接着フィルム中の樹脂成分100質量部に対し、60質量部未満であることを特徴とする(5)~(11)のいずれか1項に記載の薄膜研削用表面保護テープ。
(13)前記接着フィルムが、イソシアネート硬化剤またはエポキシ系硬化剤と架橋する官能基を有し、かつフラックス活性を示す化合物を含むことを特徴とする(5)~(12)のいずれか1項に記載の薄膜研削用表面保護テープ。
 本発明において、改質層とは、チップ化の際に分割される位置に対応して設けられたウェハ表面の所定の深さの改質部を含む層をいい、この改質部ではその周囲の改質されていないウェハよりも強度が低い。
 また、「粘着剤」とは、「接着剤」が専ら接着を可能にする剤であるのに対し、粘着後に硬化等の処理に付すことにより剥離を可能にする剤を意味する。例えば「放射線硬化型粘着剤」とは、ウェハ等への適用後に紫外線等の放射線を照射することによって硬化し剥離を可能にする粘着剤を意味する。
 本発明によれば、半導体ウェハ内に改質層を形成した後、バックグラインド工程によって極薄化を行い、同時にまたはその後の工程で、チップに分割を行う半導体チップを製造する工程を行うことにより、高精度でかつ簡便な製造方法が提供される。
 また、本発明によれば、前記半導体チップ製造方法に好適に用いられる薄膜研削用表面保護テープが提供される。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
本発明の半導体チップの製造方法の好ましい一態様のプロセスの前半の模式図である。 本発明の半導体チップの製造方法の前記好ましい一態様のプロセスの後半の工程の内、ピックアップテープに転写する場合の一例を示す模式図である。 本発明の半導体チップの製造方法の前記好ましい一態様のプロセスの後半の工程の内、転写しない場合の一例を示す模式図である。
<<薄膜研削用表面保護テープ>>
 本発明の薄膜研削用表面保護テープ(以下、単に「表面保護テープ」ともいう。)は、基材フィルム上に粘着剤層を有する粘着テープの粘着剤層上に、接着フィルム(接着剤層)が積層された薄膜研削用の表面保護テープであって、ウェハ表面(その回路)の保護を目的とする粘着テープとチップの接着を目的とする接着フィルムとによって構成される。
<基材フィルム>
 基材フィルムの厚みは特に指定するものではないが、製造性の点から10~200μmが好ましい。また、研削時の反りを考えると25~150μmが更に好ましい。基材フィルムが薄すぎるとテープとしての剛性がなくなるためたわみが発生しやすくカセット収納時にたわみによるアーム接触に繋がる。一方、基材フィルムが厚すぎると製膜時の残留応力の開放により反りが発生しやすくなる場合がある。
 本発明の基材フィルムの材料としては、ポリエチレン、ポリプロピレンおよびポリブテンのようなポリオレフィン、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体およびエチレン-(メタ)アクリル酸エステル共重合体のようなエチレン系共重合体、軟質ポリ塩化ビニル、ポリエチレンテレフタレート、ポリエチレンナフタレート、半硬質ポリ塩化ビニル、ポリエステル、ポリウレタン、ポリアミド、ポリイミド、天然ゴムならびに合成ゴムなどの高分子材料が好ましい。また基材フィルムは単層フィルムまたは二層以上のフィルムを積層した複層フィルムとして用いることができる。
 また基材フィルムは、可視光透過性であるものが好ましく、さらに放射線透過性であるものが好ましい。
 裏面研削後にエキスパンド分割用のピックアップテープに転写する工程を含む場合、基材フィルムは剛性基材フィルムにすることができる。剛性基材フィルムとしては、耐水性、耐熱性、剛性等の点から、合成樹脂フィルムが好ましく用いられる。このような剛性基材としては、具体的には、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリスルホン、全芳香族ポリエステル、ポリエーテルケトン、ポリイミド、または二軸延伸ポリプロピレンなどが用いられる。剛性基材フィルムは、上記した各種フィルムの単層品であってもよく積層品であってもよい。上記のうちでも、剛性基材としては、ウェハにイオン汚染等の悪影響を与えないものが好ましく、具体的には、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、二軸延伸ポリプロピレン、ポリイミド、およびポリアミドが特に好ましい。剛性基材フィルムを用いることにより、ウェハの反りに対して矯正力を持たせることができ、反りを抑制することができる。
 剛性基材フィルムの厚みは反りの矯正力と剥離性の点から、25~100μmが好ましい。薄すぎると矯正力が弱く反りの抑制が不十分となってしまう場合がある。厚すぎるとテープ剥離の際にテープが曲がらずウェハに負荷がかかってしまうためウェハ割れを引き起こす場合がある。
 裏面研削後にエキスパンド分割用のピックアップテープに転写する工程を含まず、そのままエキスパンド分割する工程を含む場合、基材フィルムはポリオレフィン及びポリ塩化ビニルから選択されることが好ましい。更に好ましくはポリオレフィンである。ポリ塩化ビニルは可塑剤などのブリードによる汚染などの影響があるためである。
 エキスパンドによるウェハの個片化工程では、エキスパンドされた薄膜研削用表面保護テープへの引張応力がウェハに伝わることで分割される。従って、エキスパンドによるウェハ分割を行うために必要な表面保護テープの特性としては、以下が考えられる。
 1)エキスパンドによって変形されても剛性を保てること
 2)エキスパンドで与えられた応力を損失せずウェハに伝えること
 3)エキスパンドによる変形時に表面保護テープが破断しないこと
 上記ポリオレフィンとしては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリブテン-1、ポリ-4-メチルペンテン-1、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸エチル共重合体、エチレン-(メタ)アクリル酸メチル共重合体、エチレン-(メタ)アクリル酸共重合体、アイオノマーなどのα-オレフィンの単独重合体または共重合体あるいはこれらの混合物などが挙げられる。
 特に、アイオノマーが用いられた基材フィルムの場合、降伏点が存在せず、表面保護テープの繰り出し方向と幅方向に対して均一な物性を獲得することができる。従って、エキスパンドでの分割が行われる場合に個片化されたチップ間隔を均一にできる。
<粘着剤層>
 粘着剤層に用いる粘着剤としては、(メタ)アクリル系共重合体が好ましい。本発明において粘着剤は、これに限定されることはなく、種々の粘着剤により粘着剤層が形成され得る。このような粘着剤としては、例えばゴム系、シリコーン系、ポリビニルエーテル系等をベースポリマーとした粘着剤を用いることも可能である。
 これらのベースポリマーに凝集力を付加するために架橋剤を配合することができる。架橋剤としては、ベースポリマーに対応して、例えばイソシアネート系架橋剤、エポキシ系架橋剤、金属キレート系架橋剤、アジリジン系架橋剤、アミン樹脂などが挙げられる。さらに粘着剤には、本発明の目的が損なわれない範囲で、所望により、各種添加成分を含有させることができる。
 粘着剤として、放射線硬化型や加熱発泡型の粘着剤を用いることができる。放射線硬化型の粘着剤としては、紫外線、電子線等で硬化し、剥離時には剥離しやすくなる粘着剤を使用することができる。加熱発泡型の粘着剤としては、加熱により発泡剤や膨張剤により剥離しやすくなる粘着剤を使用することができる。放射線硬化型粘着剤としては、例えば特公平1-56112号公報、特開平7-135189号公報等に記載のものが好ましく使用されるがこれらに限定されることはない。本発明においては、紫外線硬化型粘着剤を用いることが好ましい。この場合、放射線により硬化し三次元網状化する性質を有すればよく、例えば通常のゴム系あるいは(メタ)アクリル系の感圧性ベース樹脂(ポリマー)に対して、分子中に少なくとも2個の光重合性炭素-炭素二重結合(エチレン性二重結合)を有する低分子量化合物(以下、光重合性化合物という)および光重合開始剤が配合されてなるものが使用される。
 上記のゴム系あるいは(メタ)アクリル系のベース樹脂は、天然ゴム、各種の合成ゴムなどのゴム系ポリマー、あるいはポリ(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アルキルエステルとこれと共重合可能な他の不飽和単量体との共重合物などの(メタ)アクリル系ポリマーが使用される。
 また上記の粘着剤中に、イソシアネート系硬化剤を混合することにより、初期の接着力を任意の値に設定することができる。このような硬化剤としては、具体的には多価イソシアネート化合物、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシレンジイソシアネート、1,4-キシレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、3-メチルジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、リジンイソシアネートなどが用いられる。
 紫外線硬化型粘着剤の場合には、粘着剤中に光重合開始剤を混入することにより、紫外線照射による重合硬化時間ならびに紫外線照射量を少なくなることができる。このような光重合開始剤としては、具体的には、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ジベンジル、ジアセチル、β-クロールアンスラキノンなどが挙げられる。
 (メタ)アクリル系粘着剤として特に好ましいものとして、(メタ)アクリル系重合体、好ましくは(メタ)アクリル系重合体を主成分として含むものを挙げることができる。
 (メタ)アクリル系重合体を主成分とするとは、(メタ)アクリル系重合体成分が少なくとも50質量%以上であり、好ましくは80質量%以上(100質量%以下)である。
 (メタ)アクリル系重合体は、少なくとも側鎖に光重合性炭素-炭素二重結合(エチレン性二重結合)を有することで放射線照射で硬化が可能となり、さらにエポキシ基やカルボキシル基などの官能基を有してもよい。
 側鎖に光重合性炭素-炭素二重結合を有する(メタ)アクリル重合体は、どのようにして製造されたものでもよいが、例えば、側鎖に官能基(α)を有する(メタ)アクリル系重合体と、(メタ)アクリルロイル基などの光重合性炭素-炭素二重結合を有し、かつ、この(メタ)アクリル系重合体の側鎖の官能基(α)と反応し得る官能基(β)をもつ化合物とを反応させて得たものが好ましい。
 光重合性炭素-炭素二重結合を有する基は、非芳香族性のエチレン性二重結合を有すればどのような基でも構わないが、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、アリル基、1-プロペニル基、ビニル基(スチレンもしくは置換スチレンを含む)が好ましく、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基がより好ましい。
 官能基(α)、(β)としては、カルボキシル基、水酸基、アミノ基、メルカプト基、環状酸無水基、エポキシ基、イソシアネート基(-N=C=O)等が挙げられる。
 ここで、官能基(α)と官能基(β)のうちの一方の官能基が、カルボキシル基、水酸基、アミノ基、メルカプト基、または環状酸無水基である場合には、他方の官能基は、エポキシ基、イソシアネート基が挙げられ、一方の官能基が環状酸無水基の場合、他方の官能基はカルボキシル基、水酸基、アミノ基、メルカプト基が挙げられる。なお、一方の官能基が、エポキシ基である場合は、他方の官能基はエポキシ基であってもよい。
 官能基(α)としては、カルボキシル基、水酸基が好ましく、水酸基が特に好ましい。
 側鎖に官能基(α)を有する(メタ)アクリル系重合体は、官能基(α)を有する(メタ)アクリル系モノマー、好ましくは(メタ)アクリル酸エステル〔(特に、アルコール部に官能基(α)を有するもの〕をモノマー成分に使用することで得ることができる。
 側鎖に官能基(α)を有する(メタ)アクリル系重合体は、共重合体である場合が好ましく、この共重合成分は、(メタ)アクリル酸アルキルエステル、なかでもアルコール部に官能基(α)や光重合性炭素-炭素二重結合を有する基が置換していない(メタ)アクリル酸アルキルエステルが好ましい。
 (メタ)アクリル酸エステルとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、n-ペンチルアクリレート、n-ヘキシルアクリレート、n-オクチルアクリレート、イソオクチルアクリレート、2-エチルヘキシルアクリレート、ドデシルアクリレート、デシルアクリレートヘキシルアクリレート、およびこれらに対応するメタクリレートが挙げられる。
 (メタ)アクリル酸エステルは1種でも2種以上でも構わないが、アルコール部の炭素数が5以下のものと炭素数が6~12のものを併用することが好ましい。
 なお、アルコール部の炭素数の大きなモノマーを使用するほどガラス転移点(Tg)は低くなるので、所望のガラス転移点のものを作製することができる。また、ガラス転移点の他、相溶性と各種性能を上げる目的で酢酸ビニル、スチレン、アクリロニトリルなどの炭素-炭素二重結合をもつ低分子化合物を配合することも好ましく、この場合、これらのモノマー成分の含有量は5質量%以下の範囲内が好ましい。
 官能基(α)を有する(メタ)アクリル系モノマーとしては、アクリル酸、メタクリル酸、けい皮酸、イタコン酸、フマル酸、フタル酸、2-ヒドロキシアルキルアクリレート類、2-ヒドロキシアルキルメタクリレート類、グリコールモノアクリレート類、グリコールモノメタクリレート類、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、アリルアルコール、N-アルキルアミノエチルアクリレート類、N-アルキルアミノエチルメタクリレート類、アクリルアミド類、メタクリルアミド類、無水マレイン酸、無水イタコン酸、無水フマル酸、無水フタル酸、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、ポリイソシアネート化合物のイソシアネート基の一部を水酸基またはカルボキシル基および光重合性炭素-炭素二重結合を有する単量体でウレタン化したものなどが挙げられる。
 これらの中でも、アクリル酸、メタクリル酸、2-ヒドロキシアルキルアクリレート類、2-ヒドロキシアルキルメタクリレート類、グリシジルアクリレート、グリシジルメタクリレートが好ましく、アクリル酸、メタクリル酸、2-ヒドロキシアルキルアクリレート類、2-ヒドロキシアルキルメタクリレート類がより好ましく、2-ヒドロキシアルキルアクリレート類、2-ヒドロキシアルキルメタクリレート類がさらに好ましい。
 光重合性炭素-炭素二重結合と官能基(β)を有する化合物における官能基(β)としては、イソシアネート基が好ましく、例えば、アルコール部にイソシアネート(-N=C=O)基を有する(メタ)アクリル酸エステルが挙げられ、なかでもイソシアネート(-N=C=O)基で置換された(メタ)アクリル酸アルキルエステルが好ましい。このようなモノマーとしては、例えば、2-イソシアナトエチルメタクリレート、2-イソシアナトエチルアクリレート等が挙げられる。
 また、官能基(β)がイソシアネート基以外の場合の好ましい化合物は、官能基(α)を有する(メタ)アクリル系モノマーで例示した化合物が挙げられる。
 光重合性炭素-炭素二重結合と官能基(β)を有する化合物は、側鎖に官能基(α)を有する(メタ)アクリル系重合体に加えて重合体の側鎖の官能基(α)、好ましくは水酸基と反応することで共重合体に重合性基を組み込むことができ、放射線照射後の粘着力を低下させることができる。
 (メタ)アクリル系共重合体の合成において、反応を溶液重合で行う場合の有機溶剤としては、ケトン系、エステル系、アルコール系、芳香族系のものを使用することができるが、中でもトルエン、酢酸エチル、イソプロピルアルコール、ベンゼンメチルセロソルブ、エチルセロソルブ、アセトン、メチルエチルケトンなどの、一般に(メタ)アクリル系ポリマーの良溶媒で、沸点60~120℃の溶剤が好ましい。重合開始剤としては、α,α’-アゾビスイソブチルニトリルなどのアゾビス系、ベンゾベルペルオキシドなどの有機過酸化物系などのラジカル発生剤を通常用いる。この際、必要に応じて触媒、重合禁止剤を併用することができ、重合温度および重合時間を調節することにより、所望の分子量の(メタ)アクリル系共重合体を得ることができる。また、分子量を調節することに関しては、メルカプタン、四塩化炭素等の溶剤を用いることが好ましい。なお、この反応は溶液重合に限定されるものではなく、塊状重合、懸濁重合など別の方法でもさしつかえない。
 以上のようにして、(メタ)アクリル系共重合体を得ることができるが、本発明において、(メタ)アクリル系共重合体の分子量は、30万~100万程度が好ましい。分子量が小さすぎると、放射線照射の凝集力が小さくなって、ピックアップ時やピックアップテープへの転写の際に、ピックアップ不良や転写不良が生じやすくなってしまう。また分子量が大きすぎると接着フィルムが粘着テープから剥がれたりずれたりしてしまう。
 なお、本発明における分子量とは、常法によるポリスチレン換算の重量平均分子量をいう。
 また、本発明において、(メタ)アクリル系共重合体の光重合性炭素-炭素二重結合の導入量は好ましくは0.5~2.0meq/g、さらに好ましくは0.8~1.5meq/gである。二重結合量が少なすぎると、放射線照射後の粘着力の低減効果が小さくなる。二重結合量が多すぎると、放射線照射後の粘着剤の流動性が十分ではなく、延伸後の素子間隙が不十分であり、ピックアップ時に各素子の画像認識が困難になるという問題が発生する。さらに、(メタ)アクリル系共重合体そのものが安定性に欠け、製造が困難となる。
 さらに、本発明において、粘着剤の硬化前のゲル分率は、(メタ)アクリル系共重合体の平均分子量、硬化剤配合量により調整することが可能であるが、60%以上であることが好ましく、80~100%がさらに好ましい。ゲル分率が小さすぎる場合には、凝集力が低くなってしまうためウェハ表面の回路上に糊残りを発生させてしまうリスクが高まる。さらに、(メタ)アクリル系共重合体が、水酸基価5~100のOH基を有すると放射線照射後の粘着力を減少することによりピックアップミスの危険性をさらに低減することができるので好ましい。また、(メタ)アクリル系共重合体が、酸価0.5~30のCOOH基を有するとテープ復元性を改善することにより、使用済テープ収納型の機構への対応を容易とすることができるので好ましい。ここで、(メタ)アクリル系共重合体の水酸基価が低すぎると、放射線照射後の粘着力の低減効果が十分でなく、高すぎると、放射線照射後の粘着剤の流動性を損なう。また酸価が低すぎると、テープ復元性の改善効果が十分でなく、高すぎると粘着剤の流動性を損なう。
 なお、本発明の放射線硬化性粘着剤を紫外線照射によって硬化させる場合には、必要に応じて、光重合開始剤、例えばイソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、ベンゾフェノン、ミヒラーズケトン、クロロチオキサントン、ドデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、α-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシメチルフェニルプロパン等を使用することができる。これら光重合開始剤の配合量は(メタ)アクリル系共重合体100質量部に対して0.1~10質量部が好ましい。配合量が少なすぎると反応が不十分であり、配合量が多すぎると低分子成分が増加することで汚染性に影響を与えることになる。
(ゲル分率)
 本発明の薄膜研削用表面保護テープにおける粘着剤層は、ゲル分率が80%以上であることが好ましい。ゲル分率はより好ましくは85~95%である。
 ゲル分率が低すぎると糊残りの問題を発生し易く、ゲル分率が高すぎると流動性を失ってしまい粘着特性を発揮できなくなってしまう。
 ゲル分率は以下のようにして測定できる。
 接着フィルムと積層する前の粘着テープから100mm×120mmの試験片を2片切り出し、セパレータ剥離後に粘着材層の質量として該粘着テープの質量を測定する。試験片が入る直径のポリプロピレン製容器内にテープを、粘着剤面を上にしてピンで固定し、500mlのトルエンを試験片が溶液中に浸漬されるように容器内に入れた後、溶媒の揮発を防ぐため蓋をして、25℃環境下に24時間放置する。
 24時間後、容器内の溶媒をメッシュ径#150の金属製メッシュでろ過しつつ廃棄し、その後容器内にテープを載置した状態で、25℃環境下に24時間乾燥させ、24時間後に電子天秤でテープの質量を測定した。以下に示す計算式で算出した値をゲル分率とする。
 なお、基材フィルムの質量は粘着テープとする前に測定するか、粘着テープとした後に粘着剤層を溶媒などで剥離・除去して測定する。
ゲル分率[%]={(溶媒抽出後粘着テープ質量-基材フィルム質量)/(溶媒抽出前粘着テープ質量-基材フィルム質量)}×100
<接着剤層>
 本発明の接着剤層は、接着剤を予めフィルム化したものであり、本書においては接着フィルムともいう。例えば、接着剤に使用される任意のポリイミド樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂、ポリエステルイミド樹脂、フェノキシ樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルケトン樹脂、塩素化ポリプロピレン樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリ(メタ)アクリルアミド樹脂、メラミン樹脂等やその混合物を使用することができる。
 接着剤の主成分として、(メタ)アクリル樹脂{(メタ)アクリル系共重合体}やフェノキシ系樹脂が特に好ましい。ポリイミド系樹脂は実装信頼性については非常に優れているが、ガラス転移温度が高いため、貼合時に十分な流動性を得られないことが多く、バンプなどの凹凸の追従にはむいておらず、貼合時にエアー巻き込みが起こりやすくなってしまう。一方、(メタ)アクリル系共重合体やフェノキシ系樹脂は貼合時の流動性を確保しつつ、実装時の信頼性を確保することが可能である。
 (メタ)アクリル系共重合体の重合方法は特に制限がなく、例えば、パール重合、溶液重合、懸濁重合等が挙げられ、これらの方法により共重合体が得られる。耐熱性が優れるため懸濁重合が好ましく、このような(メタ)アクリル系共重合体としては、例えば、パラクロンW-197C(根上工業株式会社製、商品名)が挙げられる。
 また、(メタ)アクリル系共重合体はアクリロニトリルを含むことが好ましい。アクリロニトリルの含有量は、(メタ)アクリル系共重合体に対し、好ましくは10~50質量%、より好ましくは20~40質量%である。アクリロニトリルが10質量%以上であることで、接着剤層のTgを上げ、接着性を向上させることができる。多すぎると、接着剤層の流動性が悪くなり、接着性が低下する場合がある。アクリロニトリルを成分として含む(メタ)アクリル系共重合体は、懸濁重合で合成することが好ましい。
 (メタ)アクリル系共重合体は接着性を向上させるため、官能基を有していてもよい。官能基としては、特に限定されるものではないが、例えば、アミノ基、ウレタン基、イミド基、水酸基、カルボキシル基、グリシジル基等が挙げられ、なかでも、グリシジル基が好ましい。グリシジル基は、熱硬化樹脂であるエポキシ樹脂との反応性がよく、水酸基などと比較すると粘着剤層とは反応しにくいため、表面自由エネルギーの変化が起こりにくい。グリシジル基を有する(メタ)アクリル系共重合体としては、グリシジルエーテル(メタ)アクリル系共重合体、グリシジルアミン(メタ)アクリル系共重合体、グリシジルエステル(メタ)アクリル系共重合体が挙げられ、これらを少なくとも1種類含むことが好ましく、2種以上含むことが更に好ましい。
 フェノキシ樹脂としては、例えば、2官能フェノール類とエピハロヒドリンを高分子量まで反応させるか、又は2官能エポキシ樹脂と2官能フェノール類を重付加させることにより得られる樹脂が挙げられる。より具体的には、フェノキシ樹脂は、例えば2官能フェノール類とエピハロヒドリンとをアルカリ金属水酸化物等の触媒の存在下、非反応性溶媒中40~120℃の温度で反応させることにより得ることができる。また、フェノキシ樹脂は、2官能エポキシ樹脂と2官能フェノール類とをアルカリ金属化合物、有機リン系化合物、環状アミン系化合物等の触媒存在下、沸点が120℃以上のアミド系、エーテル系、ケトン系、ラクトン系、アルコール系等の有機溶剤中で、反応固形分が50質量部以下の条件で50~200℃に加熱して重付加反応させて得ることができる。フェノキシ樹脂は、単独で用いてもよいし2種以上を組み合わせて用いてもよい。
 本発明では、接着剤層の成分に、エポキシ樹脂を含有することが好ましい。このような好ましいエポキシ樹脂としては、グリシジル基や、脂環にエポキシ環が縮環した部分構造を有する基が好ましい。特に、グリシジルエーテルエポキシ樹脂、グリシジルアミンエポキシ樹脂、グリシジルエステルエポキシ樹脂および脂環式エポキシ樹脂がより好ましい。
 なかでも、グリシジル基や、あるいは脂環にエポキシ環が縮環した部分構造を有する基のいずれかが、ビスフェノール系樹脂の水酸基(フェノール性水酸基)に置換した樹脂が好ましい。
 このようなビスフェノール系エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等が挙げられる。
 これらのビスフェノール系エポキシ樹脂のなかでも、ビスフェノールFグリシジルエーテル樹脂とビスフェノールAグリシジルエーテル樹脂が好ましい。
 本発明では、特に、構造の異なったビスフェノール系エポキシ樹脂を2種以上組み合わせて使用することが好ましく、ビスフェノールFグリシジルエーテル樹脂とビスフェノールAグリシジルエーテル樹脂を組み合わせて使用することが最も好ましい。
 エポキシ樹脂、なかでも、構造の異なるビスフェノール系エポキシ樹脂を2種類以上用いることにより、バンプ等の凹凸を埋めこむための流動性と接合信頼性のための硬化性を両立することができる。
 エポキシ樹脂の接着剤層中への配合量は、樹脂全体の15~35質量%であることが好ましい。
 接着剤層は無機フィラーを含有してもよい。添加量が多いと流動性が低下し、接着性が下がるため無機フィラーの含有量は樹脂成分100質量部に対し、60質量部未満が好ましく、より好ましくは50質量部以下であり、更に好ましくは30質量部以下である。また、粒径が大きいと接着面の表面に凹凸が生じ、接着性が低下するため、無機フィラーの平均粒径は1μm未満が好ましく、より好ましくは0.5μm未満、更に好ましくは0.1μm未満である。無機フィラーの粒径の下限に特に制限はないが、0.003μm以上であるのが実際的である。無機フィラーとしては、絶縁性及び熱伝導性を有していればよく、例えば、窒素化合物(窒化ホウ素、窒化アルミニウム、窒化ケイ素、窒化炭素、窒化チタンなど)、炭素化合物(炭化ケイ素、炭化フッ素、炭化ホウ素、炭化チタン、炭化タングステン、ダイヤモンドなど)、金属酸化物(シリカ、アルミナ、酸化マグネシウム、酸化亜鉛、酸化ベリリウムなど)などが挙げられる。
 接着剤層は表面自由エネルギー差を制御することで、粘着剤層に一度貼り合わされた後に剥離させた後の面であっても、十分な接着性を持つ接着剤層を有するウェハ加工用の表面保護テープとすることができる。
 また、本発明の薄膜研削用表面保護テープでは、接着剤層の表面自由エネルギーが25~45mN/mであることが好ましい。表面自由エネルギーが小さすぎると濡れ性が不十分のためボイドが発生しやすく実装信頼性を悪化させてしまう。一方、大きすぎると粘着テープにしっかりと接着してしまうためピックアップテープへ転写できなくなってしまったり、ピックアップ不良を発生させてしまったりする。
 接着剤層の表面自由エネルギーは30~40mN/mがより好ましく、更に好ましくは表面自由エネルギーが30~40mN/mでありかつ粘着剤層との表面自由エネルギーの差が10mN/m以内である。
 表面重エネルギーは、接着フィルムの主成分である樹脂の構造や種類、配合量を変更することで調整することができる。また、塗工の際、乾燥条件や界面活性剤のような添加剤を加えることによっても調整することができる。
 表面自由エネルギーは以下のようにして測定することができる。
(表面自由エネルギーの測定)
 本発明において、接着剤層の表面自由エネルギーは、前記のとおり25~45mN/mであることが好ましい。接着剤層の表面自由エネルギーは、接触角θを接触角計、例えば、協和化学(株)製FACE接触角計CA-S150型(商品名)を用いて測定することで求めることができる。その際の評価条件は、液滴容量:水2μL、ジヨードメタン3μL、読み取り時間:滴下30秒後である。接触角の値を以下の式に代入することで表面自由エネルギーを計算して求められる。
Figure JPOXMLDOC01-appb-M000001
(分子量)
 本書において、分子量とは重量平均分子量のことを言い、ゲルパーミエーションクロマトグラフィー(GPC)法により標準ポリスチレンによる検量線を用いて測定したものとする。
[GPC法による測定条件]
 使用機器:高速液体クロマトグラフィーLC-20AD[株式会社島津製作所製、商品名]
 カラム:Shodex Column GPC KF-805[株式会社島津製作所製、商品名]
 溶離液:クロロホルム
 測定温度:45℃
 流量:3.0ml/分
 RI検出器:示差屈折率検出器RID-10A[株式会社島津製作所製、商品名]
(酸価)
 酸価の測定は、JIS K 5407の11.1に準じて行なう。
 (a)試薬
・ブロムチモールブルー指示薬
・0.01N水酸化カリウム-エタノール溶液
・アセトン試薬1級
 (b)操作
 約10gの試料を正確に三角フラスコに秤り取り、アセトン50mlに溶解し、ブロムチモールブルー指示薬を3~4滴加える。これを0.01N水酸化カリウム-エタノール溶液で滴定する。
 (c)計算
 次式によって酸価を求める。
Figure JPOXMLDOC01-appb-M000002
 V:0.01N水酸化カリウム-エタノール溶液の滴定量(ml)
 f:0.01N水酸化カリウム-エタノール溶液のファクター
 S:試料採取量
(水酸基価)
 水酸基価の測定は、JIS K 0070に準拠して行う。
 (a)試薬
・アセチル化試薬(無水酢酸-ピリジン)
・N/2水酸化カリウム-エタノール溶液
 (b)操作
 試料をアセチル化試薬でアセチル化した後、過剰の酢酸をN/2水酸化カリウム-エタノール溶液で滴定する。
 (c)計算
 次式によって水酸基価を求める。
Figure JPOXMLDOC01-appb-M000003
V :本試験のN/2水酸化カリウム-エタノール溶液の滴定量(ml)
VB:空試験のN/2水酸化カリウム-エタノール溶液の滴定量(ml)
F :N/2水酸化カリウム-エタノール溶液のファクター
S :試料採取量(g)
AV:試料の酸価(mgKOH/g)
(弾性率)
 接着剤層は弾性率を制御することでバンプなどの凹凸面に対する密着性を向上させることができる。本発明の薄膜研削用表面保護テープでは、接着剤層の硬化後における25℃における弾性率が1~1000MPaの範囲であることが好ましく、さらに好ましくは1MPa以上10MPa以下である。また、接着剤層の250℃における弾性率が1~1000MPaの範囲であることが好まし。さらに、接着剤層の25℃における弾性率と250℃における弾性率の比が100以下であることが好ましい。すなわち、硬化により弾性率が増加したとしても、(硬化後の弾性率)÷(硬化前の弾性率)が100以下になることが好ましい。接着フィルムは、貼合前は埋めこみ性に優れる必要があるため低弾性としている。次いで、基盤との接着の際に硬化されるが、その際に弾性率が高すぎる場合は反りが大きくチップの反りの原因になってしまう。弾性率が低すぎる場合は十分に硬化していないため、実装信頼性に欠ける。また、チップと基盤の接着後にパッケージングのためにリフロー加熱処理されることがほとんどである。従ってリフロー加熱温度に於いても同等の弾性率となることが好ましく、また加熱前後で弾性率の変化が小さいことが好ましい。より好ましくは25℃における弾性率と250℃における弾性率の変化(差の絶対値)が100以下である。
 弾性率は以下のようにして測定できる。
 弾性率測定はレオメトリックス・サイエンティフィック・エフ・イー株式会社製粘弾性測定装置ARES(商品名)を用いて測定する。測定プレートは直径8mmφのプレート、フィルム状接着剤はラミネートして厚み1mm程度ものを8mmφのポンチで打ち抜いて用いる。測定条件は常温である25℃、および250℃、周波数1Hzに設定する。また、250℃で測定する際の昇温条件は10℃/分で行う。
(飽和吸湿率)
 接着剤層の飽和吸湿率は1.5容量%以下であることが好ましく、更に好ましくは1.0容量%以下である。飽和吸湿率の下限値には特に制限はないが、通常0容量%以上である。硬化剤にイソシアネート系硬化剤を使用すると、水分と反応し架橋構造が変化する可能性があり、また吸水した接着剤層を加熱による硬化(キュア)を行うと水分の蒸発による気泡などが発生し、外観不良や接着力不足などの問題を発生させてしまうためである。
 飽和吸湿率測定方法は、以下の通りである。
 直径100mmの円形フィルム状の接着剤層(接着フィルム)をサンプルとし、サンプルを真空乾燥機中で、120℃、3時間乾燥させ、デシケータ中で放冷後、乾燥質量を測定しM1とする。サンプルを85℃、85%RHの恒温恒湿槽中で吸湿してから取り出し、すばやく秤量して秤量値が一定になったとき、その質量をM2とする。
 接着剤(前記フィルム状接着剤層)の密度(d)とこの乾燥質量(M1)と吸湿質量(M2)から、下記式により、飽和吸湿率(容量%)を算出する。
  飽和吸湿率(容量%)=[(M2-M1)/(M1/d)]×100
 接着剤層はイソシアネート系硬化剤またはエポキシ系硬化剤と架橋する官能基を有し、フラックス機能を有する化合物を硬化剤として含むことが好ましい。
 フラックスとは、一般的にバンプの濡れ性を上げるために用いられる材料であり、フラックス機能を有する材料としては一般的にロジン系の材料が好ましく使用されている。
 本発明においては、半田表面の酸化膜を除去する働きがあれば、特に限定されるものではないが、カルボキシル基またはフェノール性水酸基のいずれか、あるいは、カルボキシル基およびフェノール水酸基の両方を備える化合物が好ましく、カルボキシル基およびフェノール水酸基の両方を備える化合物を硬化剤として用いることが更に好ましい。
 フェノール性水酸基を備えるフラックス活性を有する化合物としては、フェノール類が挙げられ、具体的には、例えば、フェノール、o-クレゾール、2,6-キシレノール、p-クレゾール、m-クレゾール、o-エチルフェノール、2,4-キシレノール、2,5キシレノール、m-エチルフェノール、2,3-キシレノール、メジトール、3,5-キシレノール、p-ターシャリブチルフェノール、カテコール、p-ターシャリアミルフェノール、レゾルシノール、p-オクチルフェノール、p-フェニルフェノール、ビスフェノールA、ビスフェノールF、ビスフェノールAF、ビフェノール、ジアリルビスフェノールF、ジアリルビスフェノールA、トリスフェノール、テトラキスフェノール等のフェノール性水酸基を含有するモノマー類等が挙げられる。
 フラックス機能を有する硬化剤としては、エポキシ樹脂の硬化剤や脂肪族ジカルボン酸、芳香族ジカルボン酸が挙げられる。
 フラックス機能を有する硬化剤としては、より具体的には、例えば、1分子中に、エポキシ樹脂に付加することができる2つ以上のフェノール性水酸基と、フラックス作用(還元作用)を示す芳香族に直接結合した1つ以上のカルボキシル基とを備える化合物が挙げられる。このようなフラックス活性を有する硬化剤としては、2,3-ジヒドロキシ安息香酸、2,4-ジヒドロキシ安息香酸、ゲンチジン酸(2,5-ジヒドロキシ安息香酸)、2,6-ジヒドロキシ安息香酸、3,4-ジヒドロキシ安息香酸、没食子酸(3,4,5-トリヒドロキシ安息香酸)等の安息香酸誘導体;1,4-ジヒドロキシ-2-ナフトエ酸、3,5-ジヒドロキシ-2-ナフトエ酸、3,7-ジヒドロキシ-2-ナフトエ酸等のナフトエ酸誘導体;フェノールフタリン;およびジフェノール酸等が挙げられ、これらは1種単独または2種以上を組み合わせて用いることができる。
 フラックス活性を有する硬化剤(架橋剤)の配合量は、接着剤層の樹脂成分100質量部に対して0.5~30質量部が好ましく、1~10質量部がより好ましい。
<<半導体チップの製造方法>>
 以下に、本発明の薄膜研削用表面保護テープを用いた半導体チップの製造方法を説明する。
 本発明の半導体チップの製造方法は、半導体回路が形成された半導体ウェハに、電極としてバンプを有するバンプ付ウェハ内に改質層を形成した後、該半導体ウェハの裏面を研削し、個々のチップへ一括して分割を行う半導体チップの製造方法であって、
 該改質層を形成した後であって、かつ該半導体ウェハの裏面を研削する前に、基材フィルム上に粘着剤層を有する粘着テープの粘着剤層上に接着フィルムが積層された薄膜研削用表面保護テープ(単に表面保護テープとも称す)を、半導体ウェハの半導体回路が形成され側に前記接着フィルム側で貼り付ける工程、
 該半導体ウェハの裏面研削後にピックアップされる際に、またはピックアップ用のテープに転写される際に、該接着フィルムのみチップに接着された状態とする工程、を有する。
 本発明においては、上記の接着フィルムのみチップに接着された状態とする工程が、転写フィルム(ピックアップテープ)を使用することなく、前記表面保護テープから直接ピックアップする工程であることが好ましい。
 また、薄膜研削用表面保護テープをエキスパンドすることにより、前記接着フィルムとチップを同時に分割する工程を含むことが好ましい。
 さらに、半導体ウェハの裏面研削によるチップの一括分断の後、薄膜研削用表面保護テープの前記接着フィルムのみをレーザーによって分割することが好ましい。
 以下、図を用いて説明することで、より好ましい本発明の半導体チップの製造方法を説明する。各図において同一の符号は同一の部材を示す。
 半導体チップの製造方法には、ピックアップテープに転写するプロセスを経る方法とこのピックアップテープへの転写を行わないプロセスを経る方法がある。
 図1は、本発明の半導体チップの製造方法の好ましい一態様のプロセスの前半を模式的に示すものであり、上記のピックアップテープに転写するプロセスを経る方法とこのピックアップテープへの転写を行わないプロセスを経る方法のいずれにも共通の前半プロセスである。
 図2はピックアップテープに転写するプロセスを経る方法における図1の(4)のプロセス後に行う後半のプロセスの一例であり、図3はピックアップテープへの転写を行わないプロセスを経る方法における図1の(4)のプロセス後に行う後半のプロセスの一例である。
〔I〕ピックアップテープに転写するプロセス
 以下、図1および図2を用いて説明する。
(1)まず、半導体ウェハ(1)の表面(1A)からレーザー(7)により改質層(2)を形成する。
 半導体ウェハを半導体チップに分割するために、半導体ウェハの分割予定部分にレーザー光照射で、多光子吸収によって改質領域{改質部(2A)}を半導体ウェハ内部に形成するステップである。
 レーザー光の照射によって、多光子吸収による光学的損傷という現象が発生し、この光学的損傷により半導体ウェハの内部に熱ひずみが誘起され、これにより半導体ウェハの内部に改質領域(クラック領域)(2A)が形成される。この場合に用いるレーザー光(レーザー光線)としては、パルスレーザー光を発生するNd:YAGレーザー、Nd:YVOレーザー、Nd:YLFレーザー、チタンサファイアレーザー等がある。
 改質層(2)の厚さは、20μm~40μmとすることがこのましい。また、改質層は、例えば、最終研削厚みの10μm~50μm上に設けるのが好ましい。改質部がチップに含まれる場合、その部分の抗折強度が落ちる可能性があるためである。また、最終研削厚みよりも上に改質層が設けられることにより、その改質層を研削した際の衝撃でチップを分断することができる。
(2)半導体ウェハ表面(1A)に、本発明の薄膜研削用表面保護テープ(表面保護テープ)を貼り合わせる。
 このとき、薄膜研削用表面保護テープの接着剤層(接着フィルム)(6)側を、半導体ウェハ(1)の改質層(2)を形成した側に貼る。本発明の表面保護テープは、前記説明の通り、基材フィルム(4)上に粘着剤層(5)を有し、その粘着剤層上に接着剤層(接着フィルム)(6)を有する。この内、基材フィルム(4)上に粘着剤層(5)を有するテープを粘着テープ(3)ともいう。
(3)半導体ウェハの、薄膜研削用表面保護テープを貼り合わせた面と反対側の面(裏面)(1B)を研削する。図中、8はグラインダー、9は裏面研削中のウェハである。
(4)目的とする厚みに研削ができた状態で裏面研削を終了する。図中、10は裏面が研削された状態のウェハである。
(5-1)半導体ウェハの裏面(研削面)に、ピックアップテープ(11)を貼り付け、リングフレーム(12)に固定する。
 ピックアップテープは、ピックアップ工程において良好なピックアップ性とエキスパンド性を求められるため、ダイシングテープを用いるのが好ましい。
 ダイシングテープの粘着剤層の粘着剤には、ダイシングテープに用いられる一般的な粘着剤を用いることが可能であり、好ましくは、紫外線の照射により硬化する接着剤を用いる。
 リングフレームは、一般的な半導体ウェハの処理工程において用いられるものを用いることができる。
(6-1)薄膜研削用表面保護テープの粘着テープ(3)(基材フィルム(4)と粘着剤層(5))のみを剥離させ、接着フィルム(6)のみをウェハ表面に残す。図では、粘着剤として紫外線硬化型のものを用いた場合の例として、紫外線照射(図示せず)後に粘着テープ(3)を剥離した状態を示した。
(7-1)ピックアップテープをエキスパンドする。
 このとき、2つのエキスバンド方法があり、(7-1A)接着フィルム(接着剤層)と半導体ウェハが分割される、あるいは、(7-1B)半導体ウェハのみ分割した後、接着フィルム(接着剤層)をレーザー(14)により切断する。
 上記(7-1A)や(7-1B)のようにするには、エキスパンド条件を変更することで調整できる。
 すなわち、接着フィルムをエキスパンド分割する場合(7-1A)には、ある程度のエキスパンド量が必要であるため、通常よりもエキスパンド量を大きくすることでチップと同時に分割することができる。一方、チップのみのエキスパンドの場合(7-1B)は、チップは剛体であるためエキスパンド量は小さくてもよい。このようにエキスパンド量を任意に調整することで、(7-1A)や(7-1B)の状態とすることができる。
 図中、6Aは分割された接着剤層(接着フィルム)を、10Aは分割されたウェハを示す。また、11Aはエキスパンドされたピックアップテープを、13はエキスパンダーを示す。
(8-1)分割された半導体ウェハ(10A)は個片化された接着フィルム(接着剤層)(6A)付の個々のチップ(17)となり、それを接着フィルム(接着剤層)(6A)とともにピックアップする。図中、15はピックアップ用ニードルを、16はピックアップ用コレットを示す。チップ(17)は、ピックアップテープ(11A)から剥離されてピックアップされる。
〔II〕ピックアップテープへの転写を行わないプロセス
 以下、図1および図3を用いて説明する。なお、(1)~(4)までは上記のピックアップテープに転写するプロセス〔I〕と同じである。
(1)まず、半導体ウェハ(1)の表面(1A)からレーザー(7)により改質層(2)を形成させる。
(2)半導体ウェハ表面に、本発明の薄膜研削用表面保護テープ(表面保護テープ)を貼り合わせる。このとき、薄膜研削用表面保護テープの接着剤層(接着フィルム)(6)側を、半導体ウェハ(1)の改質層(2)を形成した側に貼る。
(3)半導体ウェハの、薄膜研削用表面保護テープを貼り合わせた面と反対側の面(裏面)(1B)を研削する。
(4)目的とする厚みに研削ができた状態(10)で裏面研削を終了する。
(5-2)薄膜研削用表面保護テープ面の基材フィルム(4)側に固定用テープ(21)を貼り付け、リングフレーム(22)に固定する。
 ここで、固定用テープ(21)は、上記のダイシングテープ(ピックアップテープ(11)と実質同じものである。
(6-2)固定用テープ(21)をエキスパンドする。この時、粘着フィルム(3)上で、接着フィルム(接着剤層)(6)と半導体ウェハ(1)とが両方とも分割される。
 エキスパンドは速度0.5~5mm/秒、エキスパンド量5~20mmが好ましい。
 図中、6Aは分割された接着剤層(接着フィルム)を、10Aは分割されたウェハを示す。また、21Aはエキスパンドされた固定用テープを、23はエキスパンダーを示す。
(7-2)分割された半導体ウェハ(10A)は個片化された接着フィルム(接着剤層)(6A)付の個々のチップ(27)となり、それを接着フィルム(接着剤層)(6A)とともにピックアップする。図中、25はピックアップ用ニードルを、26はピックアップ用コレットを示す。チップ(27)は、粘着フィルム(3)の粘着剤層(5)から剥離されてピックアップされる。図では、粘着剤として紫外線硬化型のものを用いた場合の例として、紫外線照射(図示せず)後に粘着剤層(5)からチップ(27)を剥離する様子を示した。
 本発明の薄膜研削用表面保護テープを用いた製造方法は、電極としてバンプなどの凹凸を有するウェハを薄膜研削する場合に顕著な効果を発揮する。
 本発明の製造方法を用いることで、裏面研削後のダイシング工程を省くことが可能である。また、本発明の薄膜研削用表面保護テープを用いることによりアンダーフィルを流し込む工程を省くことが可能となり、この為、アンダーフィルによる樹脂漏れが起こることがなく、歩留まりが向上する。
 チップの薄膜化において重要な性能としてチップの抗折強度が挙げられる。一般的な方法である裏面研削後にダイシングする方法では、ブレードによるダイシングであってもレーザーによるダイシングであっても薄膜とされた半導体ウェハにダメージを与える工程であるため、得られるチップにダメージが残りやすく、チッピングが発生したり、最悪の場合はチップが割れてしまったりする。一方、本発明の製造方法を用いることで半導体チップへのダメージを最小限に抑えることが可能となりチップの抗折強度を上げることができ、チップ割れが発生しにくいため、パッケージの実装信頼性を確保できることとなる。
 半導体チップを基盤に実装する際、特にバンプのような凹凸の付いた薄膜半導体チップを圧着するためチップ割れが非常に発生し易い。一方、本発明の製造方法を用いることで、半導体チップに接着フィルム(接着剤層)が接着された状態で実装されるためチップ割れの発生を抑えることができる。また、実装と同時に接着フィルム(接着剤)による接着もできるため製造時間を短縮することが可能となる。
 本発明では半導体のチップ化後にピックアップテープに転写して、ピックアップのみ別工程にて半導体装置を製造(図1、2の工程)してもよいが、転写することなくピックアップすること(図1、3の工程)が好ましい。転写することなくピックアップすることで粘着テープの剥離工程を省略でき、また剥離時にかかるストレスから開放されるため半導体チップへのダメージも軽減することが可能となる。
 本発明では、薄膜研削後のウェハを、ロールを押し当てることによってチップ分割を行って(図示せず)もよく、押し刃を改質層の上から押し込むことによってチップ分割を行って(図示せず)もよく、エキスパンドによってチップ分割を行って(図2の工程(7-1A)、図3の工程(6-2))も良い。外部からのストレスがかからないため、エキスパンドによって分割する方法が好ましい。
 以下、実施例に基づき、本発明をさらに詳細に説明するが、本発明はこれに限定されるものでない。
実施例1
(I)薄膜研削用表面保護テープの作製
 厚み100μmのエチレン-アクリル酸共重合体からなる基材フィルム上に、紫外線硬化型(メタ)アクリル系粘着剤層を設け、該粘着剤層上に、エポキシ樹脂を含有する(メタ)アクリル系共重合体からなる接着剤層を設け、本発明の薄膜研削用表面保護テープを作製した。
(1)粘着テープの製造方法
 2-エチルヘキシルアクリレートを78mol%、2-ヒドロキシエチルアクリレートを21mol%、メタクリル酸を1mol%配合し、酢酸エチル溶液中で共重合させることにより重量平均分子量70万のコポリマー溶液を得た。このコポリマー100質量部に対して2-メタクリロイルオキシエチルイソシアネート(商品名、昭和電工株式会社製カレンズMOI)5.0質量部を溶液中で混合し、この溶液中で反応させてコポリマー側鎖のヒドロキシル基に前記イソシアネートに由来する二重結合含有基を付加させることで二重結合含有基を有するアクリル共重合体ポリマーを合成した。
 この二重結合含有基を有するアクリル共重合体ポリマー100質量部に、硬化剤としてコロネートL(商品名、日本ポリウレタン工業株式会社製)を6.0質量部、光反応開始剤としてイルガキュア184(商品名、BASF社製)を5.0質量部配合し、粘着剤組成物を得た。
 得られた粘着剤組成物を粘着剤層の厚みが20μm厚になるように剥離ライナー上に塗工し、この粘着剤層側で、100μm厚のエチレン系アイオノマー樹脂(商品名、三井・デュポンポリケミカル株式会社製ハイミラン)をフィルム化した厚さ100μmの基材フィルムに貼り合わせて粘着テープを得た。
(2)接着剤層と表面保護テープの製造方法
 ブチルアクリレートを40mol%、エチルアクリレートを30mol%、アクリロニトリル30mol%を酢酸エチル及びトルエンの混合溶液中で共重合させることで、アクリル樹脂を得た。
 ジシアンジアミド50mol%、ビスフェノールF型エポキシ樹脂50mol%を酢酸エチル及びトルエンの混合溶液中で配合し、共重合させることで、硬化エポキシ樹脂を得た。
 ビスフェノールA型エポキシ樹脂35mol%、ビスフェノールA型フェノキシ樹脂35mol%、ビスフェノールAジグリシジルエーテル30mol%を配合し、共重合させることで、フェノキシ樹脂を得た。
 得られたアクリル樹脂を30質量部、硬化エポキシ樹脂を50質量部、フェノキシ樹脂を20質量部配合し、酢酸エチル溶液中で混合した。得られた混合樹脂100質量部に対して、無機フィラーとして平均粒径5μmのシリカ粒子5質量部をこの溶液中で配合し接着剤組成物を得た。
 得られた接着剤組成物を接着剤層の厚みが70μm厚となるように剥離ライナー上に塗工し、この接着剤層側で、前記剥離ライナーを剥離した前記粘着テープの粘着層側と貼り合わせることで、薄膜研削用表面保護テープを得た。以下の使用時には、この剥離ライナーを剥離して用いた。
(II)半導体チップの製造
 図1および図2のプロセスで半導体チップを作製した。
(1)DAL7360(商品名、株式会社ディスコ製ステルスダイシング装置)を用いて半導体ウェハ(1)の裏面(1A)からレーザー光(7)を照射し、直径300mm(約12インチ)のバンプ付ウェハに改質層(2)を形成した。バンプの大きさ、ピッチは以下である。
  バンプ高さ:80μm、ピッチ:160μm、バンプの種類:ソルダー
  改質層{改質部(2A)}の厚さ:30μm
(2)半導体ウェハの改質層を設けた表面(1A)に、上記で作製した薄膜研削用表面保護テープを接着層(6)側で貼り合わせた。
(3)半導体ウェハの、薄膜研削用表面保護テープを貼り合わせた面と反対側の面(裏面)(1B)を、DGP8761(商品名、株式会社ディスコ製裏面研削装置)を用いて、研削後の厚み75μmまで研削した。
(4)研削後、半導体ウェハ(10)の裏面(研削面)に、ピックアップテープ(11)を貼り付け、リングフレーム(12)に固定した。
 なお、ピックアップテープ(11)は、基材フィルムがポリオレフィンからなり、厚み110μmのダイシングテープを使用した。ダイシングテープは、この基材フィルム上に、紫外線硬化型アクリル共重合体からなる粘着剤層を有する。
(5)紫外線照射後に、薄膜研削用表面保護テープから粘着テープ(3)(基材フィルム(4)と粘着剤層(5))のみを剥離させ、接着フィルム(接着剤層)(6)のみを半導体ウェハ表面に残した。
(6)接着フィルム(接着剤層)および研削後の半導体ウェハが分割されるように、速度1mm/秒、エキスパンド量20mmの条件にてピックアップテープ(11)をエキスパンドした。{図2に示した工程(7-1A)。}
(7)分割された半導体ウェハ(10A)は個片化された接着フィルム(接着剤層)(6A)付の個々のチップ(17)となり、それを接着フィルム(接着剤層)(6A)とともにピックアップした。
実施例2
 実施例1で作製した薄膜研削用表面保護テープを使用し、実施例1における(6)のプロセスを下記(6-1)~(6-2)のプロセスに変更した以外は実施例1と同様にして半導体チップを製造した。
(6-1)半導体ウェハのみ分割するように速度1mm/秒、エキスパンド量8mmの条件にてピックアップテープ(11)をエキスパンドした。
(6-2)上記エキスパンド後に、接着フィルム(接着剤層)(6)をレーザー光(14)により切断した。{図2に示した工程(7-1B)。}
実施例3
 図1および図3のプロセスで半導体チップを作製した。
 実施例1で作製した薄膜研削用表面保護テープを使用し、実施例1における(1)~(3)のプロセスを行った後、(4)~(7)に代えて以下のプロセス(4A)~(6A)を行って半導体チップを製造した。
(4A)薄膜研削用表面保護テープの基材フィルム(4)側に実施例1と同様のエキスパンド用テープ(11)(固定用テープ(21))を貼り付け、リングフレーム(22)に固定した。エキスパンド用テープ(11)(固定用テープ(21))は、エチレン系アイオノマー樹脂からなる基材フィルム上に、紫外線硬化型アクリル共重合体からなる粘着剤層を有する。
(5A)上記固定用テープ(21)を速度1mm/秒、エキスパンド量20mmの条件にてエキスパンドし、粘着フィルム(3)上で、接着フィルム(接着剤層)(6)と半導体ウェハを分割した。
(6A)分割された半導体ウェハ(10A)は個片化された接着フィルム(接着剤層)(6A)付の個々のチップ(27)となり、紫外線照射後に、粘着剤層(5)からチップ(27)を接着フィルム(接着剤層)(6A)とともにピックアップした。
比較例1
(I)従来のバンプ用表面保護テープの製造方法
 メタクリル酸を20mol%、2-エチルヘキシルアクリレートを30mol%、2-ヒドロキシエチルアクリレートを10mol%、メチルアクリレートを40mol%配合し、酢酸エチル溶液中で共重合させることにより、重量平均分子量60万のコポリマー溶液を得た。
 当該コポリマー溶液に、コポリマー100質量部に対して、UV反応性樹脂として5官能のウレタンアクリレートオリゴマー100質量部、3官能のウレタンアクリレートオリゴマー10質量部及び2官能のウレタンアクリレートオリゴマー30質量部、硬化剤としてコロネートL(商品名、日本ポリウレタン工業株式会社製)4.0質量部、光反応開始剤としてイルガキュア184(商品名、BASF社製)5質量部、添加剤としてEbecryl 350(商品名、ダイセル・オルネクス株式会社製)0.5質量部を配合し、粘着剤組成物を得た。
 得られた粘着剤組成物を粘着剤層の厚みが130μm厚になるように剥離ライナー上に塗工し、100μm厚のLDPE(低密度ポリエチレン)フィルムに貼り合せ230μm厚の従来のバンプ用表面保護テープを得た。以下の使用時には、この剥離ライナーを剥離して用いる。
(II)半導体チップの製造
 高さ80μm、ピッチ160μmのソルダーバンプ付12インチウェハの表面に前記バンプ用表面保護テープを剥離ライナーを剥離して粘着剤層側で貼合し、DGP8761(商品名、株式会社ディスコ製裏面研削装置)を用いて、ウェハ裏面を研削した。この裏面研削は、研削後のウェハ厚み75μmまで行った。
 その後、バンプ用表面保護テープ付ウェハを110μm厚のポリオレフィン製ダイシングテープにマウントを行い、紫外線照射後に、バンプ用表面保護テープを剥離した。
 DFD6361(商品名、株式会社ディスコ製ブレードダイシング装置)を用いてダイシングを行い、DB800-HL(商品名、株式会社日立ハイテクノロジーズ製ピックアップダイボンダ)を用いてピックアップを行った。
 基盤に接着剤(NCP)としてU8443(商品名、ナミックス株式会社製フリップチップ用アンダーフィル剤)を塗布し、その上からピックアップしたチップを基盤に接合するとともに封止を行った。
比較例2
 高さ80μm、ピッチ160μmのソルダーバンプ付12インチウェハの表面に前記比較例1で調製したのと同じバンプ研削用表面保護テープを剥離ライナーを剥離して粘着剤層側で貼合し、DGP8761(商品名、株式会社ディスコ製裏面研削装置)を用いて、ウェハ裏面を研削した。この裏面研削は、研削後の厚み75μm厚まで行った。
 その後、バンプ用表面保護テープ付ウェハを110μm厚のポリオレフィン製ダイシングテープにマウントを行い、紫外線照射後に、バンプ用表面保護テープを剥離した。
 DFL7160(商品名、株式会社ディスコ製レーザーダイシング装置)を用いてダイシングを行い、DB800-HL(商品名、株式会社日立ハイテクノロジーズ製ピックアップダイボンダ)を用いてピックアップを行った。
 ピックアップしたチップを基盤に接合を行い、アンダーフィル剤としてU8443(商品名、ナミックス株式会社製フリップチップ用アンダーフィル剤)を横から流し込んで封止を行った。
 前記各実施例および比較例で得られた半導体チップについて、以下の特性を評価した。
(1)チップ割れの有無
 前記エキスパンド時にチップに割れが生じるかどうかを目視で観察し、以下の基準で評価した。
 ○(良):チップ割れが認められない。
 △(不良):若干のチップ割れが認められる。
 ×(特に不良):顕著なチップ割れが認められる。
(2)接着バリ発生の有無
 前記エキスパンド時およびピックアップ時に接着バリが発生するかどうかを目視で観察し、以下の基準で評価した。
 無し(良):接着バリが認められない。
 有り(不良):接着バリが認められる。
 以上の結果を、アンダーフィル工程の有無とともに表1に示す。
Figure JPOXMLDOC01-appb-T000004
 上記のように、実施例1~3の半導体チップの製造方法は、接着剤層によりバンプの凹凸を完全に埋めこむため、電極としてバンプなどの凹凸を有するウェハを薄膜研削する場合に割れなどを発生させることなく良好な研削性を発揮し、また、裏面研削後のダイシング工程を省くことが可能であり、薄膜研削用表面保護テープを用いることによりアンダーフィルを流し込む工程を省くことが可能となり、またアンダーフィルによる樹脂漏れもなくなるため歩留まりが向上する。
 しかも、本発明の製造方法を用いることで半導体チップへのダメージを最小限に抑えることが可能となりチップの抗折強度を上げることができ、チップ割れが発生しにくいため、パッケージの実装信頼性を確保できる。
 さらに、半導体チップに接着フィルム(接着剤層)が接着された状態で実装されるためチップ割れの発生を抑えることができ、実装と同時に接着剤による接着もできるため製造時間を短縮することが可能となる。
 また、実施例3では、転写することなくピックアップすることから、粘着テープの剥離工程を省略でき、また剥離時にかかるストレスから開放されるため半導体チップへのダメージをさらに軽減することが可能となる。
 一方、比較例1および2では接着剤がチップからはみ出してしまっており接着バリが発生した。特にUF(アンダーフィル)方式では、はみ出し量が多かった。
 比較例1および2ではそれぞれブレードおよびレーザーによるダイシングを行ったため、チップ側面でのチッピングが発生し、特にブレードダイシング方ではチップ欠けやチップ割れまで発生する結果となった。
 実施例1~3では、粘着剤層のゲル分率が80%以上であった。
 一方、別の比較例として、粘着剤層のゲル分率が80%未満である場合、この比較例では凝集力が低くなってしまうためウェハ表面の回路上に糊残りを発生させてしまい、劣った結果となる。
 実施例1~3では、接着フィルムの250℃における弾性率が10MPa以下であり、飽和吸湿率が1.5容量%以下であった。
 一方、別の比較例として、接着フィルムの250℃における弾性率が10MPaを超えるか、および/または飽和吸湿率が1.5容量%を超える場合、これらの比較例は反りが大きくチップの反りを生じるか、あるいは外観不良や接着力不足などの問題を発生させてしまい、いずれも劣った結果となる。
 実施例1~3では、接着フィルムの表面自由エネルギーが、25~45mN/mであった。
 一方、別の比較例として、接着フィルムの表面自由エネルギーが25mN/m未満であるかあるいは45mN/mを超える場合、これらの比較例では濡れ性が不十分のためボイドが発生するか、あるいは実装信頼性に劣り、いずれも劣った結果となる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2012年11月20日に日本国で特許出願された特願2012-254703に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
 1 ウェハ
  1A ウェハ表面
  1B ウェハ裏面
 2 改質層
  2A 改質部
 3 粘着テープ
  4 基材フィルム
  5 粘着剤層
 6 接着剤層(接着フィルム)
  6A 分割された接着剤層(接着フィルム)
 9 裏面研削中のウェハ
10 裏面が研削された状態のウェハ
 10A 分割されたウェハ
11 ピックアップテープ
 11A エキスパンドされたピックアップテープ
12 リングフレーム
17 個片化された接着剤付チップ
21 固定用テープ
 21A エキスパンドされた固定用テープ
22 リングフレーム
27 個片化された接着剤付チップ

Claims (13)

  1.  半導体回路が形成された半導体ウェハに、電極としてバンプを有するバンプ付ウェハ内に改質層を形成した後、該半導体ウェハの裏面を研削し、個々のチップへ一括して分割を行う半導体チップの製造方法であって、
     該改質層を形成した後であって、かつ該半導体ウェハの裏面を研削する前に、基材フィルム上に粘着剤層を有する粘着テープの粘着剤層上に接着フィルムが積層された薄膜研削用表面保護テープを、半導体ウェハの半導体回路が形成された側に前記接着フィルム側で貼り付ける工程、
     該半導体ウェハの裏面研削後にピックアップされる際に、またはピックアップ用のテープに転写される際に、該接着フィルムのみチップに接着された状態とする工程
    を有することを特徴とする半導体チップの製造方法。
  2.  前記接着フィルムのみチップに接着された状態とする工程が、転写フィルムを使用することなく、前記表面保護テープから直接ピックアップする工程であることを特徴とする請求項1に記載の半導体チップの製造方法。
  3.  前記薄膜研削用表面保護テープをエキスパンドすることにより、前記接着フィルムとチップを同時に分割する工程を含むことを特徴とする請求項1または2に記載の半導体チップの製造方法。
  4.  前記半導体ウェハの裏面研削によるチップの一括分断の後、前記薄膜研削用表面保護テープの前記接着フィルムのみをレーザーによって分割することを特徴とする請求項1または2に記載の半導体チップの製造方法。
  5.  基材フィルム上に粘着剤層を有する粘着テープの粘着剤層上に接着フィルムが積層されてなる薄膜研削用表面保護テープであって、
     前記接着フィルムが、250℃における弾性率が10MPa以下であり、飽和吸湿率が1.5容量%以下であって、かつ(メタ)アクリル系共重合体及びフェノキシ系樹脂からなる群から選ばれる少なくとも1種を接着剤として含む単一もしくは複数の層からなることを特徴とする薄膜研削用表面保護テープ。
  6.  前記粘着剤層が、紫外線硬化型であることを特徴とする請求項5に記載の薄膜研削用表面保護テープ。
  7.  前記粘着剤層が、(メタ)アクリル系共重合体を主成分とし、ゲル分率が80%以上であることを特徴とする請求項5または6に記載の薄膜研削用表面保護テープ。
  8.  前記接着フィルムの表面自由エネルギーが、25~45mN/mであり、飽和吸湿率が1.5容量%以下であることを特徴とする請求項5~7のいずれか1項に記載の薄膜研削用表面保護テープ。
  9.  前記接着フィルムがエポキシ樹脂を含み、該エポキシ樹脂が、グリシジルエーテルエポキシ樹脂、グリシジルアミンエポキシ樹脂、グリシジルエステルエポキシ樹脂および脂環式エポキシ樹脂からなる群から選択される少なくとも1つの樹脂であることを特徴とする請求項5~8のいずれか1項に記載の薄膜研削用表面保護テープ。
  10.  前記接着フィルムがビスフェノール系樹脂を含有することを特徴とする請求項5~9のいずれか1項に記載の薄膜研削用表面保護テープ。
  11.  前記ビスフェノール系樹脂が、ビスフェノールFジグリシジルエーテル樹脂及びビスフェノールAジグリシジルエーテル樹脂からなる群から選ばれた少なくとも1つであることを特徴とする請求項10に記載の薄膜研削用表面保護テープ。
  12.  前記接着フィルムが無機フィラーを含み、かつその含有量が、該接着フィルム中の樹脂成分100質量部に対し、60質量部未満であることを特徴とする請求項5~11のいずれか1項に記載の薄膜研削用表面保護テープ。
  13.  前記接着フィルムが、イソシアネート硬化剤またはエポキシ系硬化剤と架橋する官能基を有し、かつフラックス活性を示す化合物を含むことを特徴とする請求項5~12のいずれか1項に記載の薄膜研削用表面保護テープ。
PCT/JP2013/081205 2012-11-20 2013-11-19 半導体チップの製造方法およびそれに用いる薄膜研削用表面保護テープ WO2014080918A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014505420A JPWO2014080918A1 (ja) 2012-11-20 2013-11-19 半導体チップの製造方法およびそれに用いる薄膜研削用表面保護テープ
CN201380058726.4A CN104781912A (zh) 2012-11-20 2013-11-19 半导体芯片的制造方法及使用于该方法的薄膜研磨用表面保护带

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-254703 2012-11-20
JP2012254703 2012-11-20

Publications (1)

Publication Number Publication Date
WO2014080918A1 true WO2014080918A1 (ja) 2014-05-30

Family

ID=50776098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081205 WO2014080918A1 (ja) 2012-11-20 2013-11-19 半導体チップの製造方法およびそれに用いる薄膜研削用表面保護テープ

Country Status (5)

Country Link
JP (1) JPWO2014080918A1 (ja)
KR (1) KR20150087222A (ja)
CN (1) CN104781912A (ja)
TW (1) TW201430930A (ja)
WO (1) WO2014080918A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035963A (ja) * 2014-08-01 2016-03-17 リンテック株式会社 個片体製造方法
WO2016071788A1 (en) * 2014-11-07 2016-05-12 International Business Machines Corporation Low temperature adhesive resins for wafer bonding
WO2016125683A1 (ja) * 2015-02-06 2016-08-11 リンテック株式会社 粘着シートおよび半導体装置の製造方法
CN106298651A (zh) * 2015-06-23 2017-01-04 株式会社迪思科 晶片的加工方法
JP2017050443A (ja) * 2015-09-03 2017-03-09 株式会社ディスコ ウエーハの加工方法
WO2017082212A1 (ja) * 2015-11-09 2017-05-18 古河電気工業株式会社 マスク一体型表面保護テープ
JP2017098331A (ja) * 2015-11-19 2017-06-01 日東電工株式会社 シート状樹脂組成物、積層シート及び半導体装置の製造方法
WO2017170438A1 (ja) * 2016-03-31 2017-10-05 古河電気工業株式会社 マスク一体型表面保護テープ
JP2017224782A (ja) * 2016-06-17 2017-12-21 リンテック株式会社 樹脂膜形成用フィルムの切断方法、半導体装置の製造方法及び積層構造体
WO2018043391A1 (ja) * 2016-08-29 2018-03-08 古河電気工業株式会社 マスク一体型表面保護テープ
JP2018056289A (ja) * 2016-09-28 2018-04-05 日東電工株式会社 ダイシングダイボンディングテープおよび半導体装置の製造方法
WO2018105613A1 (ja) * 2016-12-07 2018-06-14 古河電気工業株式会社 半導体加工用テープ
JP2019161031A (ja) * 2018-03-14 2019-09-19 マクセルホールディングス株式会社 バックグラインド用粘着テープ
KR20220048018A (ko) 2019-08-23 2022-04-19 도쿄엘렉트론가부시키가이샤 접합 장치, 접합 시스템 및 접합 방법
WO2022131904A1 (en) * 2020-12-17 2022-06-23 Inari Technology Sdn Bhd A method for fabricating semiconductor articles and system thereof
WO2022190914A1 (ja) * 2021-03-09 2022-09-15 東京エレクトロン株式会社 半導体チップの製造方法、及び基板処理装置
US11466178B2 (en) 2018-03-23 2022-10-11 Lg Chem, Ltd. Back-grinding tape

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5718515B1 (ja) * 2014-01-23 2015-05-13 古河電気工業株式会社 半導体ウエハ表面保護用粘着テープおよび半導体ウエハの加工方法
KR102244966B1 (ko) 2015-06-19 2021-04-28 현대모비스 주식회사 핫멜트 접착제 조성물의 제조방법 및, 이에 의해 제조된 핫멜트 접착제 조성물
JP2017038030A (ja) * 2015-08-14 2017-02-16 株式会社ディスコ ウエーハの加工方法及び電子デバイス
JP6265954B2 (ja) * 2015-09-16 2018-01-24 古河電気工業株式会社 半導体裏面用フィルム
KR20170122185A (ko) * 2015-11-09 2017-11-03 후루카와 덴키 고교 가부시키가이샤 반도체 칩의 제조방법 및 이것에 이용하는 마스크 일체형 표면 보호 테이프
CN105842611B (zh) * 2016-03-31 2018-11-30 工业和信息化部电子第五研究所 倒装芯片检测样品的制备方法
JP6651257B2 (ja) * 2016-06-03 2020-02-19 株式会社ディスコ 被加工物の検査方法、検査装置、レーザー加工装置、及び拡張装置
KR101676025B1 (ko) 2016-06-30 2016-11-15 (주) 화인테크놀리지 반도체 웨이퍼의 하프커팅 후 이면 연삭 가공용 자외선 경화형 점착시트
CN106995673A (zh) * 2017-04-14 2017-08-01 广东工业大学 一种低比重复合导热绝缘胶及其制备方法
JP2019057575A (ja) * 2017-09-20 2019-04-11 東芝メモリ株式会社 半導体装置の製造方法および半導体装置
CN109909623A (zh) * 2017-12-12 2019-06-21 中芯国际集成电路制造(北京)有限公司 用于晶圆的切割方法
WO2020053981A1 (ja) * 2018-09-12 2020-03-19 リンテック株式会社 ワーク加工用シートおよび加工済みワークの製造方法
KR20210075965A (ko) * 2018-10-22 2021-06-23 린텍 가부시키가이샤 반도체 장치의 제조 방법
KR102452862B1 (ko) * 2019-01-25 2022-10-12 후루카와 덴키 고교 가부시키가이샤 반도체 웨이퍼 가공용 자외선 경화형 점착 테이프 및 반도체 칩의 제조 방법과 이 테이프의 사용 방법
WO2020158766A1 (ja) * 2019-01-31 2020-08-06 リンテック株式会社 エキスパンド方法及び半導体装置の製造方法
KR102677755B1 (ko) * 2021-08-12 2024-06-24 (주)이녹스첨단소재 웨이퍼 이면 연삭용 점착 필름

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158276A (ja) * 2000-11-20 2002-05-31 Hitachi Chem Co Ltd ウエハ貼着用粘着シートおよび半導体装置
JP2006049482A (ja) * 2004-08-03 2006-02-16 Furukawa Electric Co Ltd:The 半導体装置製造方法およびウエハ加工用テープ
JP2007053325A (ja) * 2005-07-20 2007-03-01 Furukawa Electric Co Ltd:The ダイシングダイボンドテープおよびダイシングテープ
JP2008244463A (ja) * 2007-03-01 2008-10-09 Nitto Denko Corp 熱硬化型ダイボンドフィルム
JP2009135512A (ja) * 2009-01-23 2009-06-18 Mitsubishi Chemicals Corp 窒化物系半導体素子の製造方法
JP2009212300A (ja) * 2008-03-04 2009-09-17 Hitachi Chem Co Ltd 半導体ウエハのバックグラインド方法、半導体ウエハのダイシング方法、及び半導体チップの実装方法
JP2009231779A (ja) * 2008-03-25 2009-10-08 Lintec Corp 半導体装置の製造方法
JP2009239138A (ja) * 2008-03-28 2009-10-15 Sumitomo Bakelite Co Ltd 半導体用フィルム、半導体装置の製造方法および半導体装置
JP2011122100A (ja) * 2009-12-11 2011-06-23 Lintec Corp 電子部品加工用粘着シート

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158276A (ja) * 2000-11-20 2002-05-31 Hitachi Chem Co Ltd ウエハ貼着用粘着シートおよび半導体装置
JP2006049482A (ja) * 2004-08-03 2006-02-16 Furukawa Electric Co Ltd:The 半導体装置製造方法およびウエハ加工用テープ
JP2007053325A (ja) * 2005-07-20 2007-03-01 Furukawa Electric Co Ltd:The ダイシングダイボンドテープおよびダイシングテープ
JP2008244463A (ja) * 2007-03-01 2008-10-09 Nitto Denko Corp 熱硬化型ダイボンドフィルム
JP2009212300A (ja) * 2008-03-04 2009-09-17 Hitachi Chem Co Ltd 半導体ウエハのバックグラインド方法、半導体ウエハのダイシング方法、及び半導体チップの実装方法
JP2009231779A (ja) * 2008-03-25 2009-10-08 Lintec Corp 半導体装置の製造方法
JP2009239138A (ja) * 2008-03-28 2009-10-15 Sumitomo Bakelite Co Ltd 半導体用フィルム、半導体装置の製造方法および半導体装置
JP2009135512A (ja) * 2009-01-23 2009-06-18 Mitsubishi Chemicals Corp 窒化物系半導体素子の製造方法
JP2011122100A (ja) * 2009-12-11 2011-06-23 Lintec Corp 電子部品加工用粘着シート

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035963A (ja) * 2014-08-01 2016-03-17 リンテック株式会社 個片体製造方法
GB2548726A (en) * 2014-11-07 2017-09-27 Ibm Low temperature adhesive resins for wafer bonding
WO2016071788A1 (en) * 2014-11-07 2016-05-12 International Business Machines Corporation Low temperature adhesive resins for wafer bonding
US9601364B2 (en) 2014-11-07 2017-03-21 International Business Machines Corporation Low temperature adhesive resins for wafer bonding
JP2017539082A (ja) * 2014-11-07 2017-12-28 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation ウェハ接合用の低温接着性樹脂
US9748131B2 (en) 2014-11-07 2017-08-29 International Business Machines Corporation Low temperature adhesive resins for wafer bonding
WO2016125683A1 (ja) * 2015-02-06 2016-08-11 リンテック株式会社 粘着シートおよび半導体装置の製造方法
JPWO2016125683A1 (ja) * 2015-02-06 2017-11-16 リンテック株式会社 粘着シートおよび半導体装置の製造方法
CN106298651A (zh) * 2015-06-23 2017-01-04 株式会社迪思科 晶片的加工方法
JP2017011119A (ja) * 2015-06-23 2017-01-12 株式会社ディスコ ウエーハの加工方法
JP2017050443A (ja) * 2015-09-03 2017-03-09 株式会社ディスコ ウエーハの加工方法
WO2017082212A1 (ja) * 2015-11-09 2017-05-18 古河電気工業株式会社 マスク一体型表面保護テープ
KR20180021672A (ko) * 2015-11-09 2018-03-05 후루카와 덴키 고교 가부시키가이샤 마스크 일체형 표면 보호 테이프
KR102042538B1 (ko) 2015-11-09 2019-11-08 후루카와 덴키 고교 가부시키가이샤 마스크 일체형 표면 보호 테이프
US11707804B2 (en) 2015-11-09 2023-07-25 Furukawa Electric Co., Ltd. Mask-integrated surface protective tape
JPWO2017082212A1 (ja) * 2015-11-09 2018-08-30 古河電気工業株式会社 マスク一体型表面保護テープ
JP2017098331A (ja) * 2015-11-19 2017-06-01 日東電工株式会社 シート状樹脂組成物、積層シート及び半導体装置の製造方法
WO2017170438A1 (ja) * 2016-03-31 2017-10-05 古河電気工業株式会社 マスク一体型表面保護テープ
US11056388B2 (en) 2016-03-31 2021-07-06 Furukawa Electric Co., Ltd. Mask-integrated surface protective tape
TWI649798B (zh) * 2016-03-31 2019-02-01 古河電氣工業股份有限公司 Mask integrated surface protection tape
JPWO2017170438A1 (ja) * 2016-03-31 2019-02-07 古河電気工業株式会社 マスク一体型表面保護テープ
JP2017224782A (ja) * 2016-06-17 2017-12-21 リンテック株式会社 樹脂膜形成用フィルムの切断方法、半導体装置の製造方法及び積層構造体
WO2018043391A1 (ja) * 2016-08-29 2018-03-08 古河電気工業株式会社 マスク一体型表面保護テープ
JPWO2018043391A1 (ja) * 2016-08-29 2019-06-24 古河電気工業株式会社 マスク一体型表面保護テープ
US10971387B2 (en) 2016-08-29 2021-04-06 Furukawa Electric Co., Ltd. Mask-integrated surface protective tape
JP2018056289A (ja) * 2016-09-28 2018-04-05 日東電工株式会社 ダイシングダイボンディングテープおよび半導体装置の製造方法
JPWO2018105613A1 (ja) * 2016-12-07 2019-10-24 古河電気工業株式会社 半導体加工用テープ
WO2018105613A1 (ja) * 2016-12-07 2018-06-14 古河電気工業株式会社 半導体加工用テープ
US11901211B2 (en) 2016-12-07 2024-02-13 Furukawa Electric Co., Ltd. Semiconductor-processing tape
JP2019161031A (ja) * 2018-03-14 2019-09-19 マクセルホールディングス株式会社 バックグラインド用粘着テープ
JP7092526B2 (ja) 2018-03-14 2022-06-28 マクセル株式会社 バックグラインド用粘着テープ
US11466178B2 (en) 2018-03-23 2022-10-11 Lg Chem, Ltd. Back-grinding tape
KR20220048018A (ko) 2019-08-23 2022-04-19 도쿄엘렉트론가부시키가이샤 접합 장치, 접합 시스템 및 접합 방법
WO2022131904A1 (en) * 2020-12-17 2022-06-23 Inari Technology Sdn Bhd A method for fabricating semiconductor articles and system thereof
WO2022190914A1 (ja) * 2021-03-09 2022-09-15 東京エレクトロン株式会社 半導体チップの製造方法、及び基板処理装置

Also Published As

Publication number Publication date
CN104781912A (zh) 2015-07-15
TW201430930A (zh) 2014-08-01
JPWO2014080918A1 (ja) 2017-01-05
KR20150087222A (ko) 2015-07-29

Similar Documents

Publication Publication Date Title
WO2014080918A1 (ja) 半導体チップの製造方法およびそれに用いる薄膜研削用表面保護テープ
JP6422462B2 (ja) 電子デバイスパッケージ用テープ
JP5089560B2 (ja) 半導体チップ積層体および半導体チップ積層用接着剤組成物
TWI643929B (zh) Tape for electronic device packaging
JP6670156B2 (ja) 回路部材接続用シートおよび半導体装置の製造方法
JP2011018805A (ja) 半導体用フィルムおよび半導体装置の製造方法
KR20140036308A (ko) 다이싱 테이프 일체형 접착 시트, 반도체 장치, 다층 회로 기판 및 전자 부품
JP2010010368A (ja) 半導体装置および半導体装置の製造方法
JP6109220B2 (ja) 半導体ウエハ表面保護用粘着テープ
JP2015218287A (ja) 薄膜研削用粘接着フィルム一体型表面保護テープおよび半導体チップの製造方法
WO2017168820A1 (ja) 電子デバイスパッケージ用テープ
WO2014061767A1 (ja) 樹脂組成物、接着シート、ダイシングテープ一体型接着シート、バックグラインドテープ一体型接着シート、バックグラインドテープ兼ダイシングテープ一体型接着シート、及び電子装置
WO2017168829A1 (ja) 電子デバイスパッケージ用テープ
TWI624885B (zh) Tape for electronic device packaging
JP2015220377A (ja) 粘接着フィルム一体型表面保護テープおよび粘接着フィルム一体型表面保護テープを用いた半導体チップの製造方法
WO2017168824A1 (ja) 電子デバイスパッケージ、電子デバイスパッケージの製造方法、および電子デバイスパッケージ用テープ
JP2011155191A (ja) 半導体装置の製造方法及び回路部材接続用接着シート
JP2020053451A (ja) 電子デバイスパッケージ用テープ
JP2020053453A (ja) 電子デバイスパッケージ用テープ
JP6440657B2 (ja) 電子デバイス用テープ
JP5846232B2 (ja) ウエハ加工用粘着シート一体型接着シート、および電子装置
JP5406995B2 (ja) 半導体装置の製造方法に用いられる接着剤
JP2012060037A (ja) 半導体用フィルム、半導体ウエハーの個片化方法および半導体装置の製造方法
JP2011035075A (ja) 半導体用フィルムの製造方法および半導体用フィルム
TW201512380A (zh) 底部填充材、積層片及半導體裝置之製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014505420

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157012438

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856197

Country of ref document: EP

Kind code of ref document: A1