WO2017164344A1 - 耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板およびターボチャージャー部品と、排気部品用オーステナイト系ステンレス鋼板の製造方法 - Google Patents

耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板およびターボチャージャー部品と、排気部品用オーステナイト系ステンレス鋼板の製造方法 Download PDF

Info

Publication number
WO2017164344A1
WO2017164344A1 PCT/JP2017/011872 JP2017011872W WO2017164344A1 WO 2017164344 A1 WO2017164344 A1 WO 2017164344A1 JP 2017011872 W JP2017011872 W JP 2017011872W WO 2017164344 A1 WO2017164344 A1 WO 2017164344A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
austenitic stainless
steel sheet
less
workability
Prior art date
Application number
PCT/JP2017/011872
Other languages
English (en)
French (fr)
Inventor
濱田 純一
睦子 多久島
敦久 矢川
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to CN201780017038.1A priority Critical patent/CN108779532B/zh
Priority to PL17770384T priority patent/PL3441494T3/pl
Priority to KR1020187026674A priority patent/KR102165108B1/ko
Priority to JP2018507422A priority patent/JP6541869B2/ja
Priority to EP17770384.0A priority patent/EP3441494B1/en
Priority to US16/087,337 priority patent/US10894995B2/en
Priority to MX2018011505A priority patent/MX2018011505A/es
Publication of WO2017164344A1 publication Critical patent/WO2017164344A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support

Definitions

  • the present invention relates to an austenitic stainless steel sheet as a material for heat-resistant parts that require heat resistance and workability, and is particularly applicable to automobile exhaust hold, converter, and turbocharger parts.
  • the present invention relates to materials suitable for internal precision parts and housings such as nozzle mounts, nozzle plates, vanes, and back plates of turbochargers mounted on gasoline vehicles and diesel vehicles.
  • Environment-friendly parts for automobile exhaust manifold, front pipe, center pipe, muffler and exhaust gas purification have high heat resistance such as oxidation resistance, high temperature strength, thermal fatigue characteristics, etc. in order to allow high temperature exhaust gas to flow stably. Excellent material is used. Moreover, since it is also a condensed water corrosive environment, it is also required to have excellent corrosion resistance.
  • Stainless steel is often used for these parts from the viewpoints of stricter exhaust gas regulations, improved engine performance, and lighter body weight.
  • exhaust gas regulations have been further strengthened, and the exhaust gas temperature flowing through the exhaust manifold directly below the engine has been on the rise due to improvements in fuel efficiency and downsizing.
  • turbochargers and other turbochargers are often installed, and stainless steel used in exhaust manifolds and turbochargers is required to have further improved heat resistance.
  • the rise in the exhaust gas temperature it is expected that the exhaust gas temperature, which was conventionally about 900 ° C., will rise to about 1000 ° C.
  • Patent Document 1 discloses a high Cr, Mo-added steel. Further, Patent Document 2 discloses an exhaust guide part of a nozzle vane type turbocharger using austenitic stainless steel added with 2 to 4% of Si.
  • Patent Document 2 Although steel components are defined in consideration of hot workability at the time of steel production, it cannot be said that the high temperature characteristics required for the above parts are sufficiently satisfied. In addition, it is important to maintain the hole expansion workability of the punched holes, but sufficient hole expandability could not be obtained with the steel components specified from the hot workability. In addition, caster stainless steel is used for the turbocharger housing, but there is a need to reduce the thickness and weight due to the large thickness.
  • Patent Document 3 the optimum range of the content of Nb, V, C, N, Al, Ti is determined, and the high temperature strength and creep characteristics of the heat-resistant austenitic stainless steel sheet are improved by optimizing the manufacturing process. Is disclosed.
  • the technical problem of the invention disclosed in Patent Document 3 is to improve the high-temperature strength and creep characteristics at 800 ° C., and the invention disclosed in Patent Document 3 can cope with exhaust gas exceeding 900 ° C. Is insufficient.
  • Patent Document 4 discloses a heat-resistant austenitic stainless steel having a hardness of 40 HRC or more at room temperature after heat treatment at 700 ° C. for 400 hours by optimizing the material composition and processing conditions.
  • the subject of the invention disclosed in Patent Document 4 is to have a high temperature strength that can withstand a use environment of 550 ° C. or higher, and Patent Document 4 merely shows a high temperature strength at 700 ° C.
  • the heat-resistant austenitic stainless steel according to the invention disclosed in Patent Document 4 is insufficient to cope with exhaust gas exceeding 900 ° C.
  • Patent Document 5 discloses that by controlling the low ⁇ CSL grain boundary frequency, the average crystal grain size, and the like, it is possible to improve the intergranular corrosion resistance and the high temperature strength with a material having a small grain size. Has been.
  • the “high temperature strength” in Patent Document 5 is a high temperature strength in water, and no specific solution means for achieving strength against exhaust gas exceeding 900 ° C. is disclosed.
  • Patent Document 6 is characterized by ensuring excellent intergranular corrosion resistance in high-temperature water by increasing the twin grain boundary ratio in the steel.
  • Patent Document 6 does not disclose the high-temperature strength of the nuclear stainless steel, and Patent Document 6 discloses a specific means for achieving strength against exhaust gas exceeding 900 ° C. Not disclosed.
  • the corrosion-resistant austenitic alloy disclosed in Patent Document 7 is formed by subjecting the austenitic alloy to cold working and heat treatment exceeding 30% to form twin boundaries in the austenitic crystal grains, and to austenite grain boundaries. And / or formed by dispersing precipitates on twin boundaries. Due to the above feature, grain boundary sliding is suppressed and the grain boundary strength is increased, so that the corrosion resistant austenitic alloy has higher stress corrosion cracking resistance.
  • the resistance to stress corrosion cracking shown in Patent Document 7 is a characteristic in high-temperature water, and Patent Document 7 discloses a specific means for achieving strength against exhaust gas exceeding 900 ° C. Not disclosed.
  • An object of the present invention is to provide an austenitic stainless steel sheet that solves the above-described problems and that is particularly required for heat-resisting and workability suitable for turbocharger parts among automotive exhaust parts, particularly as a housing. is there.
  • the parts that are the subject of the problem to be solved by the present application are all the parts that constitute the turbocharger.
  • the housing that forms the outer frame of the turbocharger, the precision components inside the nozzle vane turbocharger for example, the so-called back plate, oil deflector, compressor wheel, nozzle mount, nozzle plate, nozzle vane, drive ring, drive lever.
  • the parts are suitable for housings where the highest temperature strength is required and moldability is important.
  • the present inventors conducted a detailed study on the relationship between the metal structure of the austenitic stainless steel sheet, the high temperature characteristics and the room temperature workability.
  • parts that are exposed to extremely harsh thermal environments, such as turbochargers have heat resistance due to the steel components, and have a grain boundary character in the metal structure.
  • a remarkably excellent characteristic in high temperature strength can be obtained.
  • the steel components as described in Patent Document 2 are not satisfied alone, and they have succeeded in coexisting with high-temperature strength by controlling the above-mentioned grain boundary character.
  • the gist of the present invention for solving the above problems is as follows. (1) By mass%, C: 0.005 to 0.2%, Si: 0.1 to 4%, Mn: 0.1 to 10%, Ni: 2 to 25%, Cr: 15 to 30%, N: 0.01 to less than 0.4%, Al: 0.001 to 1%, Cu: 0.05 to 4%, Mo: 0.02 to 3%, V: 0.02 to 1%, P: Exhaust parts with excellent heat resistance, characterized by containing 0.05% or less, S: 0.01% or less, the balance being Fe and inevitable impurities, and the frequency of annealing twins being 40% or more Austenitic stainless steel sheet.
  • the steel sheet further includes, by mass%, N: more than 0.04%, less than 0.4% and / or Si: more than 1.0% to less than 3.5%.
  • An austenitic stainless steel sheet for exhaust parts having excellent heat resistance and workability as described in (1).
  • the steel sheet further contains, in mass%, N: more than 0.15% and less than 0.4%, in heat resistance and workability according to (1) or (2) Excellent austenitic stainless steel sheet for exhaust parts.
  • the steel sheet further contains, by mass%, Ti: more than 0.03% to 0.3% and / or Nb: 0.005 to 0.05%
  • An austenitic stainless steel sheet for exhaust parts with excellent heat resistance and workability characterized by a rate of less than 10 ° C / sec, a heating rate of 900 ° C or higher at 10 ° C / sec or higher, and a maximum temperature of 1000-1200 ° C Manufacturing method.
  • the austenite according to any one of (1) to (6), wherein the austenite is used for at least one of a housing constituting an outer frame of the turbocharger and / or a precision component inside the nozzle vane type turbocharger.
  • Stainless steel sheet
  • an austenitic stainless steel sheet having excellent formability at room temperature and excellent high-temperature characteristics.
  • weight reduction and high exhaust temperature can be achieved.
  • High temperature strength is important as a characteristic of an austenitic stainless steel sheet used for heat-resistant applications, but workability is also extremely important particularly when considering application to a turbocharger housing as described above.
  • the turbocharger housing has a complicated shape, and excessive deformation in a high temperature environment may cause contact between components and poor gas flow, resulting in damage and reduced thermal efficiency. This leads to a decrease in reliability of component performance. Therefore, in order to ensure these reliability, the inventors have earnestly conducted microscopic studies on the grain boundary structure of austenitic stainless steel, and obtained the following knowledge.
  • annealing twins are formed after cold rolling and annealing in austenitic stainless steel.
  • An annealing twin is a twin formed when a metal structure is recrystallized by a cold rolling process and an annealing process.
  • the adjacent crystal grains in the relationship of annealing twins have a relative misorientation, and the grain interface between the crystal grains (hereinafter simply referred to as “twin interface”) is approximately about the ⁇ 111> axis.
  • twin interface grain interface between the crystal grains
  • the annealing twin is related to the stacking fault energy, and a material having a low stacking fault energy generates many twins. However, it is unclear how this twin interface affects high temperature deformation and strength.
  • the twin interface is observed as a twin boundary in the cross section of the material.
  • the “frequency of annealing twins” is the ratio of the twin boundary length of the annealing twins to the total length of the grain boundaries existing within the range of the cross section of the observed material.
  • an area of about 300 ⁇ m thickness ⁇ about 100 ⁇ m width is obtained in the range from the thickness center of the material to about 1/4 by using EBSP (Electron Back-Sccetering Difraction Pattern).
  • a crystal orientation analysis was performed to measure the total length of the grain boundaries existing within the observed range and to determine the relative orientation difference between the crystal grain boundaries.
  • the ratio of twin lengths of twins having an interface with a relative orientation difference of 60 ° ⁇ 8 ° around the ⁇ 111> axis with respect to the total length of the crystal grain boundaries was calculated.
  • FIG. 1 shows the high-temperature strength when an austenitic stainless steel sheet having various annealing twinning frequencies is subjected to a high-temperature tensile test at 900 ° C.
  • the higher the annealing twinning frequency, the higher the high-temperature strength at 900 ° C., and the higher the strength of the annealing twinning is 40% or more and 70 MPa or more.
  • the material temperature of the turbocharger housing is estimated to be about 900 ° C. in a gasoline vehicle, and its structure requires a pressure of 70 MPa or more with a 0.2% proof stress.
  • the high temperature strength is improved by increasing the frequency of annealing twins, and it is considered that the twin interface has a low grain boundary energy as a factor. That is, the twin boundary has a lower grain boundary energy than the grain boundary in a multi-directional relationship, and therefore the interface movement in a high temperature environment is slow.
  • the present inventor has found that the normal grain boundary is fast moving and is likely to be coarsened, but the twin interface is slow to move. For this reason, it was found that the unique morphology was left behind in the process of coarsening the crystal grains and exhibited a high temperature environment.
  • a material having many twin interfaces exhibits a strengthening similar to a strengthening by a kind of grain refinement at a high temperature due to the twin interface left behind from the coarsening process.
  • C has a lower limit of 0.005% in order to form an austenite structure and ensure high temperature strength.
  • excessive addition leads to hardening, corrosion resistance due to Cr carbide formation, especially degradation of intergranular corrosion of welds, degradation of high-temperature slidability due to carbides, grain boundaries during pickling of cold-rolled annealed plates
  • the surface roughness becomes rough due to the formation of erosion grooves.
  • C increases the stacking fault energy and decreases the frequency of annealing twins, so the upper limit is made 0.2%.
  • the C content is preferably 0.008% or more and 0.15% or less.
  • Si may be added as a deoxidizing element, and also provides oxidation resistance, high-temperature slidability improvement due to internal oxidation of Si, and improvement in high-temperature strength due to an increase in the frequency of annealing twinning. Add at least%. On the other hand, the addition of 4.0% or more hardens the material, and coarse Si-based oxides are produced, so that the processing accuracy of the parts is remarkably lowered. Therefore, the upper limit is made 4%. In consideration of the manufacturing cost, pickling property at the time of manufacturing the steel sheet, and solidification cracking property at the time of welding, the Si content is desirably 0.4% or more and 3.5% or less. From the viewpoint of stacking fault energy, it is desirable that the lower limit is more than 1.0% and the upper limit is less than 3.5%. Furthermore, if considering the high temperature slidability, 2.0% or more and less than 3.5% is desirable.
  • Mn is used as a deoxidizing element, and also ensures austenite structure formation and scale adhesion. Further, in order to lower the stacking fault energy and increase the frequency of annealing twins, 0.1% or more is added. On the other hand, the addition of more than 10% significantly deteriorates the inclusion cleanliness and lowers the hole expansibility, and the pickling property is significantly deteriorated and the product surface becomes rough, so the upper limit is made 10%. Moreover, in the steel of the present invention, if the content exceeds 10%, the frequency of annealing twins is reduced.
  • the Mn content is desirably 0.2% or more and 5% or less, and more preferably 0.2% or more and 3% or less from the viewpoint of abnormal oxidation characteristics. It is.
  • Ni is an element that forms an austenite structure and also ensures corrosion resistance and oxidation resistance. If it is less than 2%, coarsening of the crystal grains occurs remarkably, so 2% or more is added. Moreover, 2% or more is necessary to sufficiently generate twins. On the other hand, excessive addition causes an increase in cost and a decrease in the frequency of annealing twins, so the upper limit is made 25%. Furthermore, considering the manufacturability, room temperature ductility and corrosion resistance, the Ni content is preferably 7% or more and 20% or less.
  • Cr is an element that improves corrosion resistance, oxidation resistance, and high-temperature slidability, and is a necessary element from the viewpoint of suppressing abnormal oxidation in consideration of the exhaust part environment. Further, 15% or more is necessary to sufficiently generate twins. On the other hand, excessive addition becomes hard and deteriorates moldability, and also leads to an increase in cost, so the upper limit was made 30%. Furthermore, considering the manufacturing cost, steel plate manufacturability and workability, the Cr content is desirably 17% or more and 25.5% or less.
  • N is an effective element for austenite structure formation, high temperature strength and high temperature slidability. Although known as a solid solution strengthening element with respect to high-temperature strength, N is also effective in twinning. In the present application, 0.01% or more is added in consideration of the high temperature strength due to cluster formation with Cr in addition to the effect of N alone. On the other hand, addition of more than 0.4% remarkably hardens the normal temperature material and deteriorates the cold workability at the steel plate manufacturing stage, and also deteriorates the formability and part accuracy during part processing. And In view of softening, suppressing pinholes during welding, and suppressing intergranular corrosion of welds, the N content is preferably 0.02% or more and 0.35% or less.
  • the content be more than 0.04% and less than 0.4%. Further, from the viewpoint of creep characteristics, the N content is preferably more than 0.15% and less than 0.4%.
  • Al is added as a deoxidizing element and improves the hole expandability by improving the cleanliness of inclusions.
  • the upper limit is 1%.
  • the Al content is preferably 0.007% or more and 0.5% or less, and more preferably 0.01% or more and 0.1% or less from the viewpoint of weldability.
  • Cu is an effective element for stabilizing and softening the austenite phase, and is added at 0.05% or more.
  • the upper limit is made 4.0%.
  • the content exceeds 4.0%, the frequency of annealing twins is reduced.
  • the Cu content is preferably 0.3% or more and 1% or less.
  • Mo is an element that improves corrosion resistance and contributes to the improvement of high-temperature strength.
  • the improvement in high-temperature strength is mainly solid solution strengthening, but contributes to fine precipitation strengthening at the twin interface because it is a precipitation promoting element such as ⁇ phase.
  • the lower limit is made 0.02%.
  • the upper limit is made 3%.
  • the Mo content is desirably 0.4% or more and 1.6% or less, and exhibits abnormal oxidation characteristics. Considering 0.4% or more and 1.0% or less is more preferable.
  • V is an element that improves the corrosion resistance, and is added in an amount of 0.02% or more in order to promote the formation of V carbide and ⁇ phase and improve the high temperature strength.
  • excessive addition causes an increase in alloy cost and a decrease in abnormal oxidation limit temperature, so the upper limit is made 1%.
  • the V content is preferably 0.1% or more and 0.5% or less.
  • P is an impurity and is an element that promotes hot workability and solidification cracking at the time of manufacture.
  • the P content is preferably 0.02% or more and 0.04% or less.
  • S is an impurity, and is an element that lowers hot workability during production and deteriorates corrosion resistance. Further, when coarse sulfides (MnS) are formed, the cleanliness is remarkably deteriorated and the normal temperature ductility is deteriorated, so 0.01% may be contained as the upper limit. On the other hand, excessive reduction leads to an increase in refining cost, so 0.0001% may be contained as a lower limit. Furthermore, considering the manufacturing cost and oxidation resistance, the S content is preferably 0.0005% or more and 0.0050% or less.
  • the austenitic stainless steel plate for exhaust parts of the invention may contain the following components in addition to the elements described above.
  • Ti is an element added to combine with C and N to improve corrosion resistance and intergranular corrosion resistance. Since the C and N fixing action starts from 0.005%, the lower limit may be 0.005% and may be added as necessary. Further, addition of more than 0.3% tends to cause nozzle clogging at the casting stage, which significantly deteriorates manufacturability and causes ductile deterioration due to coarse Ti carbonitride, so the upper limit is 0.3%. And Furthermore, considering the high-temperature strength, the intergranular corrosion properties of the weld and the alloy cost, the Ti content is preferably 0.01% or more and 0.2% or less. From the viewpoint of creep characteristics, the Ti content is preferably more than 0.03% and 0.3% or less.
  • Nb is an element that combines with C and N in the same manner as Ti to improve corrosion resistance and intergranular corrosion resistance, and also improves high-temperature strength.
  • high temperature strengthening by solid solution Nb and strengthening by twin interface precipitation of the Laves phase are manifested from 0.005%, so the lower limit is added to 0.005% as necessary You may do it.
  • Addition of more than 0.3% significantly deteriorates hot workability in the steel plate manufacturing stage and causes ductile deterioration due to coarse Nb carbonitride, so the upper limit is made 0.3%.
  • the Nb content is preferably 0.01 or more and 0.20% or less. Further, from the viewpoint of creep characteristics, the Nb content is preferably more than 0.005% and 0.05% or less.
  • B is an element that improves the hot workability in the steel plate production stage, and may be added as necessary in an amount of 0.0002% or more.
  • the strengthening due to the twin interface segregation of B also acts.
  • excessive addition causes a decrease in cleanliness and ductility and deterioration of intergranular corrosion due to the formation of borocarbides, so the upper limit was made 0.005%.
  • the content of B is preferably 0.0003% or more and 0.003% or less.
  • the Ca content is preferably 0.0010% or more and 0.0030% or less.
  • the W contributes to improvement of corrosion resistance and high-temperature strength, so 0.1% or more may be added if necessary. Addition of over 3% leads to hardening, toughness deterioration during steel plate production, and cost increase, so the upper limit is made 3%. Furthermore, considering the refining cost and manufacturability, the W content is preferably 0.1% or more and 2% or less, and more preferably 0.1% or more and 1.5% or less in view of abnormal oxidation characteristics.
  • Zr may combine with C or N to improve the intergranular corrosion resistance and oxidation resistance of the weld, and may be added in an amount of 0.05% or more as necessary. However, the addition of more than 0.3% increases the cost and significantly degrades manufacturability and hole expandability, so the upper limit is set to 0.3%. Furthermore, considering refining costs and manufacturability, the Zr content is preferably 0.05% or more and 0.1% or less.
  • Sn contributes to the improvement of corrosion resistance and high-temperature strength, so 0.01% or more may be added as necessary. The effect becomes remarkable at 0.03% or more, and becomes more remarkable at 0.05% or more. Since addition of more than 0.5% may cause slab cracking during steel sheet production, the upper limit is made 0.5%. Furthermore, in consideration of refining costs and manufacturability, the Sn content is preferably 0.05% or more and 0.3% or less.
  • Co contributes to improving the high-temperature strength, and may be added by 0.03% or more as necessary. Addition of over 0.3% leads to hardening, toughness deterioration during steel plate manufacturing, and cost increase, so the upper limit is made 0.3%. Furthermore, considering the refining cost and manufacturability, the Co content is preferably 0.03% or more and 0.1% or less.
  • Mg is an element that may be added as a deoxidizing element and contributes to improving the cleanliness of inclusions and refining the structure by refining and dispersing oxides in the slab structure. Since this is expressed from 0.0002% or more, the lower limit may be 0.0002% and may be added as necessary. However, excessive addition leads to deterioration of weldability and corrosion resistance, and deterioration of hole expandability due to coarse inclusions, so the upper limit was made 0.01%. Considering the refining cost, the Mg content is preferably 0.0003% or more and 0.005% or less.
  • Sb is an element that acts to increase the high-temperature strength by segregating at the grain boundaries. In order to obtain the effect of addition, 0.005% or more may be added as necessary. However, if it exceeds 0.3%, Sb segregation occurs and cracks occur during welding, so the upper limit is made 0.3%. Considering the high temperature characteristics, production cost, and toughness, the Sb content is preferably 0.03% or more and 0.3% or less, and more preferably 0.05% or more and 0.2% or less.
  • REM rare earth element
  • Sc scandium soot
  • Y yttrium soot
  • 15 elements lanthanoids
  • Ga may be added in an amount of 0.3% or less as necessary for improving corrosion resistance and suppressing hydrogen embrittlement. However, addition of more than 0.3% produces coarse sulfides and deteriorates the r value. .
  • the lower limit is made 0.0002% from the viewpoint of sulfide and hydride formation. Furthermore, 0.002% or more is more preferable from the viewpoint of manufacturability and cost.
  • Ta and Hf may be added in an amount of 0.01% or more and 1.0% or less in order to improve the high temperature strength.
  • Bi may be contained in an amount of 0.001 to 0.02% as necessary. Note that it is desirable to reduce general harmful elements and impurity elements such as As and Pb as much as possible.
  • the method for producing a steel sheet of the present invention comprises steelmaking-hot rolling-annealing / pickling-cold rolling-annealing / pickling.
  • a method in which the steel containing the essential components and components added as necessary is melted in an electric furnace or in a converter, followed by secondary refining is preferable.
  • the molten steel is made into a slab according to a known casting method (continuous casting), and according to a known hot rolling method, the slab is heated to a predetermined temperature and hot rolled to a predetermined plate thickness by continuous rolling.
  • a known casting method continuous casting
  • a known hot rolling method the slab is heated to a predetermined temperature and hot rolled to a predetermined plate thickness by continuous rolling.
  • the hot-rolled steel sheet is subjected to hot-rolled sheet annealing and pickling treatment, and then cold-rolled at a reduction rate of 60% or less. This is because when the rolling reduction exceeds 60%, recrystallization proceeds excessively in the subsequent annealing step, the random grain boundaries increase, and the formation of annealing twins is inhibited.
  • the rolling reduction is preferably 2 to 30%.
  • the present inventors have found a new annealing method for increasing twin interfaces when a cold-rolled steel sheet having a predetermined thickness is annealed.
  • the heating rate up to 900 ° C. is less than 10 ° C./sec
  • the heating rate of 900 ° C. or more is 10 ° C./sec or more
  • the maximum temperature is 1000 to 1200 ° C. Is.
  • the heating rate low in the temperature range up to 900 ° C.
  • the generation of twin interfaces is increased in the temperature range where recrystallization does not occur, and by rapid heating in the temperature range above 900 ° C., the metal structure of the steel sheet A recrystallized structure is formed.
  • the recrystallization grain boundary can be easily moved and the twin interface can be prevented from being eroded by the recrystallization interface.
  • the crystal grain size is coarse, so the maximum temperature is 1000 to 1200 ° C. Further, the maximum temperature is desirably 1030 to 1130 ° C.
  • the holding time at the maximum temperature is preferably 30 sec or less.
  • a smooth surface is further obtained by performing cold rolling after hot-rolled sheet annealing / pickling and then performing cold-rolled sheet annealing / pickling treatment.
  • the cold rolling process may be performed by tandem rolling, Sendzimir rolling, cluster rolling, or the like.
  • 2B or 2D products are generally applied.
  • bright annealing is performed after cold rolling to make BA products. good.
  • Pickling treatment A pretreatment such as neutral salt electrolysis or molten alkali treatment or a pickling treatment such as nitric hydrofluoric acid or nitric acid electrolysis may be appropriately selected.
  • the frequency (%) of annealing twins was measured by the method described above, and a high-temperature tensile test by the method described above was performed at 900 ° C. went.
  • the ductility at room temperature is measured by taking a JIS No. 13 B test piece so that the rolling direction is the tensile direction, performing a tensile test at a strain rate of 10 ⁇ 3 / sec, and measuring the elongation at break. Went by.
  • Table 2-1 and Table 2-2 show the test results or measurement results performed on the product plates shown in Table 2-1 and Table 2-2.
  • the value with the symbol “*” in the column of the item “frequency of annealing twins (%)” in Table 2-2 indicates that the requirement for the frequency of annealing twins in the present invention is not satisfied.
  • the value of “2-2” in the column of 0.2% proof stress (MPa) at 900 ° C. in the item of Table 2-2 indicates that it is less than 70 MPa.
  • a value with a symbol “*” in the column of the item “room temperature ductility (%)” indicates that the room temperature ductility is less than 40%.
  • each product plate shown in Table 2-1 and Table 2-2 was molded into a turbocharger housing.
  • the quality of the moldability at this time is shown in the item “determination of moldability to part shape” in Tables 2-1 and 2-2.
  • “ ⁇ ” in the corresponding column of the above item indicates that the turbocharger was successfully molded into the housing, and “X” indicates that application as a housing is not possible.
  • the specific determination method was based on the presence or absence of cracks in the molded product and the sheet thickness reduction rate (30% or less passed).
  • the turbocharger housing obtained by molding each product plate shown in Table 2-1 and Table 2-2 was repeatedly heated (900 ° C.)-Cooled (150 ° C.) and deformed after 2000 cycles. The state and the presence or absence of oxidative damage were confirmed.
  • the results are shown in the items “determination of deformation degree in endurance test” and “presence of oxidation damage in endurance test” in Table 2-1 and Table 2-2.
  • “ ⁇ ” indicates that the degree of deformation after the endurance test was small compared to before the endurance test
  • “x” indicates that the degree of deformation was large.
  • the degree of deformation in the endurance test is determined by comparing the shape of the housing before and after the endurance test with, for example, a three-dimensional shape measuring instrument. Those exceeding were considered as rejected (x).
  • the case where no oxidative damage such as abnormal oxidation or scale peeling was confirmed by visual observation was indicated as “ ⁇ ”, and the case where oxidative damage was confirmed was indicated as “X”.
  • the steels of Comparative Examples 1 to 28 often have a normal temperature ductility of less than 40%.
  • a product plate having a room temperature ductility of less than 40% is poorly molded into a housing of a turbocharger and cannot be applied as a housing.
  • the comparative steel is excessively deformed in the durability test, and when applied to the housing, the exhaust performance is poor or the turbocharger is damaged by contact with other parts, so it cannot be applied to the turbocharger. It becomes.
  • when abnormal oxidation, scale peeling, or thinning occurs in the durability test it leads to damage of the subsequent catalyst or damage of the housing due to the peeling scale, but oxidation damage was not recognized in the present invention. Further, in some of the comparative examples, oxidative damage was severe, and the function as a housing could not be achieved.
  • the example of the present invention satisfies the turbo performance with less moldability to the housing and less deformation in the subsequent durability test.
  • the other conditions in a manufacturing process should just be selected suitably.
  • slab thickness, hot rolling board thickness, etc. suitably.
  • roll roughness, roll diameter, rolling oil, number of rolling passes, rolling speed, rolling temperature, etc. may be appropriately selected.
  • Intermediate annealing may be put in the middle of cold rolling, and batch annealing or continuous annealing may be used.
  • any of the neutral salt electrolytic treatment and the salt bath immersion treatment may be omitted as a pretreatment at the time of pickling, and the pickling process may be omitted in addition to nitric acid, nitric acid electrolytic pickling, sulfuric acid and hydrochloric acid.
  • You may perform the process using.
  • the shape and material may be adjusted by temper rolling or a tension leveler after annealing and pickling the cold-rolled sheet.
  • the product plate may be lubricated to further improve press molding, and the type of lubricating film may be appropriately selected.
  • a special surface treatment such as nitriding treatment or carburizing treatment may be applied after parts processing to further improve the heat resistance.
  • the present invention it is possible to provide an austenitic stainless steel sheet having excellent characteristics for exhaust parts that require workability in addition to heat resistance.
  • the material to which the present invention is applied particularly for turbochargers of automobiles, the weight can be significantly reduced as compared with conventional castings, and it is possible to lead to exhaust gas regulations, weight reduction, and fuel efficiency improvement.
  • this invention can be made into an application object with respect to any of each component used for turbochargers.
  • the housing that forms the outer frame of the turbocharger the precision components inside the nozzle vane turbocharger (for example, the so-called back plate, oil deflector, compressor wheel, nozzle mount, nozzle plate, nozzle vane, drive ring, drive lever) Etc.).
  • the present invention is not limited to automobiles and motorcycles, and can be applied to exhaust parts used in high-temperature environments such as various boilers and fuel cell systems, and the present invention is extremely useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Supercharger (AREA)

Abstract

本発明は、特に優れた耐熱性と加工性が要求されるターボチャージャーのハウジング素材となるオーステナイト系ステンレス鋼板を提供することを課題とする。本発明に係るオーステナイト系ステンレス鋼板は、質量%で、C:0.005~0.2%、Si:0.1~4%、Mn:0.1~10%、Ni:2~25%、Cr:15~30%、N:0.01~0.4%未満、Al:0.001~1%、Cu:0.05~4%、Mo:0.02~3%、V:0.02~1%、P:0.05%以下、S:0.01%以下を含有し、残部がFe及び不可避的不純物からなり、焼鈍双晶の頻度が40%以上であることを特徴としており、耐熱性に優れる。

Description

耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板およびターボチャージャー部品と、排気部品用オーステナイト系ステンレス鋼板の製造方法
 本発明は、耐熱性と加工性が要求される耐熱部品の素材となるオーステナイト系ステンレス鋼板に関するものであり、特に自動車のエキゾーストホールド、コンバーター、ターボチャージャー部品に適用されるものである。また、その中でも特に、ガソリン車やディーゼル車に搭載されるターボチャージャーのノズルマウント、ノズルプレート、ベーン、バックプレート等の内部精密部品およびハウジングに最適な材料に関するものである。
 自動車の排気マニホールド、フロントパイプ、センターパイプ、マフラーおよび排気ガス浄化のための環境対応部品は、高温の排気ガスを安定的に通気させるために、耐酸化性、高温強度、熱疲労特性等の耐熱性に優れた材料が使用される。また、凝縮水腐食環境でもあることから耐食性に優れることも要求される。
 排気ガス規制の強化、エンジン性能の向上、車体軽量化等の観点からも、これらの部品にはステンレス鋼が多く使用されている。また、近年では、排気ガス規制の強化が更に強まる他、燃費性能の向上、ダウンサイジング等の動きから、特にエンジン直下のエキゾーストマニホールドを通気する排気ガス温度は上昇傾向にある。加えて、ターボチャージャーの様な過給機を搭載するケースも多くなっており、エキゾーストマニホールドやターボチャージャーに使用されるステンレス鋼には耐熱性の一層の向上が求められる。排気ガス温度の上昇に関しては、従来900℃程度であった排気ガス温度が1000℃程度まで上昇することも見込まれている。
 一方、ターボチャージャーの内部構造は複雑で、過給効率を高めるとともに、耐熱信頼性の確保が重要であり、主として耐熱オーステナイト系ステンレス鋼の使用が開示されている。代表的な耐熱オーステナイト系ステンレス鋼であるSUS310S(25%Cr-20%Ni)やNi基合金等の他、特許文献1には高Cr、Mo添加鋼が開示されている。また、Siを2~4%添加したオーステナイト系ステンレス鋼を用いたノズルベーン式ターボチャージャーの排気ガイド部品が特許文献2に開示されている。
 特許文献2では鋼製造時の熱間加工性を考慮して鋼成分が規定されているが、上記部品に要求される高温特性を十分満足するとは言えない。また、打ち抜き穴の穴拡げ加工性を維持する事が重要とされているが、熱間加工性から規定された鋼成分では十分な穴拡げ性を得ることは出来なかった。更に、ターボチャージャーのハウジングにはステンレス鋳鋼が使用されているが、肉厚が厚いため薄肉軽量化ニーズがある。
 特許文献3には、Nb、V、C、N、Al、Tiの含有量の最適範囲を定め、製造プロセスを最適化することにより、耐熱オーステナイト系ステンレス鋼板の高温強度及びクリープ特性を向上することが開示されている。しかし、特許文献3に開示された発明の技術的課題は、800℃での高温強度及びクリープ特性の向上であり、特許文献3に開示された発明は、900℃を超える排気ガスへの対応には不十分である。
 また、特許文献4には、材料組成及び処理条件を最適化することにより、700℃で400時間熱処理後の室温における硬さが40HRC以上である耐熱オーステナイト系ステンレス鋼が開示されている。しかし、特許文献4に開示された発明の課題は、550℃以上の使用環境に耐え得る高温強度を有することであり、特許文献4には700℃での高温強度が示されているに過ぎず、特許文献4に開示された発明に係る耐熱オーステナイト系ステンレス鋼は、900℃を超える排気ガスへの対応には不十分である。
 また、特許文献5には、低ΣCSL粒界頻度、および結晶平均粒径等を制御することにより、小粒径の材料で、耐粒界腐食性の向上および高温強度の改善を実現できることが開示されている。しかし、特許文献5における「高温強度」とは、水中における高温強度であって、900℃を超える排気ガスに対する強度を達成するための具体的な解決手段は、開示されていない。
 また、特許文献6に開示された原子力用ステンレス鋼は、鋼中の双晶粒界比率を増加することによって、高温水中において優れた耐粒界腐食性を確保することを特徴としている。しかし、特許文献6は、前記原子力用ステンレス鋼の高温強度を開示しておらず、また、特許文献6には、900℃を超える排気ガスに対する強度を達成するための具体的な解決手段は、開示されていない。
 また、特許文献7に開示された耐食性オーステナイト系合金は、オーステナイト系合金に30%を超える冷間加工と加熱処理とを施して、オーステナイト結晶粒内に双晶境界を形成するとともに、オーステナイト粒界及び/又は双晶境界上に析出物を分散形成してなることを特徴とする。前記特徴によって、粒界すべりが抑制されて粒界強度が高められるので、前記耐食性オーステナイト系合金は、より高い耐応力腐食割れ進展性を有する。しかし、特許文献7に示された耐応力腐食割れ進展性は、高温水中における特性であって、特許文献7には、900℃を超える排気ガスに対する強度を達成するための具体的な解決手段は、開示されていない。
国際公開第2014/157655号 特許第4937277号公報 特開2013-209730号 特開2005-281855号 特開2011-168819号 特開2005-15896号 特開2008-63602号
 従来の薄肉ステンレス鋼板を背景技術に記載の高温環境に曝された際に、高温強度や剛性不足により変形が生じ、ターボ内部部品との接触や排気ガスの流動性が不良となる課題が生じる。加えて振動による疲労破壊や熱サイクルによる熱疲労破壊が生じる課題も存在する。従来のオーステナイト系ステンレス鋼板では、高温強度を高めるために合金元素添加を行うと常温延性が不足して複雑形状のハウジングへの成形加工が不可能である。本発明の目的は、前記の問題点を解決し、特に自動車排気部品の中でターボチャージャーの部品用、特にハウジングとして適合する耐熱性と加工性が要求されるオーステナイト系ステンレス鋼板を提供することにある。
 本願の解決しようとする課題の対象となる部品は、ターボチャージャーを構成する各部品であればいずれも該当する。具体的にはターボチャージャーの外枠を構成するハウジング、ノズルベーン式ターボチャージャー内部の精密部品(例えば、バックプレート、オイルディフレクター、コンプレッサーホイール、ノズルマウント、ノズルプレート、ノズルベーン、ドライブリング、ドライブレバーと呼ばれるもの)である。特に最も高温強度が要求され、かつ成形性も重要となるハウジングに適する部品が対象である。
 上記課題を解決するために、本発明者らはオーステナイト系ステンレス鋼板の金属組織と高温特性ならびに常温加工性の関係について詳細な研究を行った。その結果、例えばターボチャージャーの様な極めて過酷な熱環境に曝される部品の中で耐熱性が要求される素材に対して、鋼成分により耐熱性を確保するとともに、金属組織における結晶粒界性格を制御することにより、高温強度に著しく優れた特性が得られることを見出した。また、加工性の点では、特許文献2記載の様な鋼成分だけでは満足されず、上記の結晶粒界性格の制御により高温強度との両立に成功した。
 上記課題を解決する本発明の要旨は、
(1)質量%で、C:0.005~0.2%、Si:0.1~4%、Mn:0.1~10%、Ni:2~25%、Cr:15~30%、N:0.01~0.4%未満、Al:0.001~1%、Cu:0.05~4%、Mo:0.02~3%、V:0.02~1%、P:0.05%以下、S:0.01%以下を含有し、残部がFe及び不可避的不純物からなり、焼鈍双晶の頻度が40%以上であることを特徴とする耐熱性に優れた排気部品用オーステナイト系ステンレス鋼板。
(2)前記鋼板が、更に、質量%で、N:0.04%超、0.4%未満および/またはSi:1.0%超~3.5%未満を含有することを特徴とする(1)に記載の耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板。
(3)前記鋼板が、更に、質量%で、N:0.15%超、0.4%未満を含有することを特徴とする(1)又は(2)に記載の耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板。
(4)前記鋼板が、更に、質量%でTi:0.005~0.3%、Nb:0.005~0.3%、B:0.0002~0.005%、Ca:0.0005~0.01%、W:0.1~3.0%、Zr:0.05~0.30%、Sn:0.01~0.50%、Co:0.03~0.30%、Mg:0.0002~0.010%、Sb:0.005~0.3%、REM:0.002~0.2%、Ga:0.0002~0.3%、Ta:0.01~1.0%の1種又は2種以上を含有することを特徴とする(1)~(3)のうちいずれかに記載の耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板。
(5)前記鋼板が、更に、質量%で、Ti:0.03%超~0.3%、および/またはNb:0.005~0.05%を含有することを特徴とする(1)~(4)のうちいずれかに記載の耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板。
(6)前記鋼板が、900℃の高温耐力が70Mp以上であることを特徴とする(1)~(5)のうちいずれかに記載の耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板。
(7)(1)~(6)のうちいずれかに記載のステンレス鋼板の製造方法であって、冷間圧延工程にて圧下率を60%以下とし、冷延板焼鈍において900℃までの加熱速度を10℃/sec未満、900℃以上の加熱速度を10℃/sec以上、最高温度を1000~1200℃とすることを特徴とする耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板の製造方法。
(8)ターボチャージャーの外枠を構成するハウジング及び/或いはノズルベーン式ターボチャージャー内部の精密部品の少なくともいずれかに用いられることを特徴とする(1)~(6)のうちいずれかに記載のオーステナイト系ステンレス鋼板。
(9)ノズルベーン式ターボチャージャー内部のバックプレート、オイルディフレクター、コンプレッサーホイール、ノズルマウント、ノズルプレート、ノズルベーン、ドライブリング、ドライブレバーの少なくともいずれかに用いられることを特徴とする(1)~(6)のうちいずれかに記載のオーステナイト系ステンレス鋼板。
(10)(1)~(6)のうちいずれかに記載のステンレス鋼板を用いて作成されたことを特徴とする排気部品。
(11)ターボチャージャーの外枠を構成するハウジング及び/或いはノズルベーン式ターボチャージャー内部の精密部品の少なくともいずれかが(1)~(6)のうちいずれかに記載のオーステナイト系ステンレス鋼板を用いて作成されたことを特徴とする排気部品。
(12)(1)~(6)のうちいずれかに記載のオーステナイト系ステンレス鋼板を用いて作成されたことを特徴とするターボチャージャーの外枠を構成するハウジング。
(13)バックプレート、オイルディフレクター、コンプレッサーホイール、ノズルマウント、ノズルプレート、ノズルベーン、ドライブリング、ドライブレバーの少なくともいずれか1つが(1)~(6)のうちいずれかに記載のオーステナイト系ステンレス鋼板を用いて作成されたことを特徴とするノズルベーン式ターボチャージャー。
 本発明によれば、常温の成形性とともに高温特性に優れたオーステナイト系ステンレス鋼板を提供することが可能となり、自動車排気部品(特にターボチャージャーのハウジング)に適用することにより、軽量化や高排気温化に大きく寄与する。
ステンレス鋼板の焼鈍双晶の頻度と900℃における高温耐力の関係を示す図である。
 以下に本発明の限定理由について説明する。耐熱用途として使用されるオーステナイト系ステンレス鋼板の特性として重要なのは高温強度であるが、特に上記の様なターボチャージャーのハウジングへの適用を考えた場合、加工性も極めて重要である。先述した様に、ターボチャージャーのハウジングは複雑形状をしているとともに、高温環境下で変形が過度に生じてしまうと部品同士の接触やガス流れ不良等が生じて、破損や熱効率低下を招き、部品性能の信頼性低下に繋がる。そこで、これらの信頼性を確保するために、オーステナイト系ステンレス鋼の結晶粒界構造の微視的研究を鋭意すすめ、以下の知見を得た。
 先ず、結晶粒界における焼鈍双晶の頻度を40%以上とする点について説明する。オーステナイト系ステンレス鋼では冷延・焼鈍後に焼鈍双晶が生じることは知られている。焼鈍双晶とは、金属組織が冷延工程及び焼鈍工程によって再結晶する際に形成される双晶である。焼鈍双晶の関係にあり隣接する結晶粒は相対的な方位差を有しており、前記結晶粒間の粒界面(以下、単に「双晶界面」という。)において<111>軸周りに約60°(60°±8°以内)の相対方位差がある。前記焼鈍双晶は、積層欠陥エネルギーと関係があり、積層欠陥エネルギーが小さい材料は双晶が多く発生する。しかしながら、この双晶界面が高温変形や強度にどの様な影響を及ぼすか否かは不明であった。
 双晶界面は、材料の断面において双晶境界として観察される。この点を考慮して、本発明者は、焼鈍双晶の頻度と高温強度との関係を調べた。ここで、「焼鈍双晶の頻度」とは、観察した材料の断面の範囲内に存在する結晶粒界の総長さに対する焼鈍双晶の双晶境界の長さの割合である。前記焼鈍双晶の頻度を算出するため、EBSP(Electron Back-Sccetering Difraction pattern)を用いて材料の板厚中心から板厚1/4程度の範囲について、約300μm厚さ×約100μm巾の領域について結晶方位解析を行い、観察した範囲内に存在する結晶粒界の総長さを測定するとともに結晶粒界の相対方位差を求めた。次いで、前記結晶粒界の総長さに対して、<111>軸周りに相対方位差が60°±8°である界面を有する双晶の双晶長さの割合を算出した。
 また、高温引張試験は、圧延方向と引張方向が平行になる様に引張試験片を用意し、加熱速度100℃/min、保持時間10minとし、クロスヘッド速度1mm/minで等速引張試験を行い、圧延方向の0.2%耐力を得た。種々の焼鈍双晶の頻度を有するオーステナイト系ステンレス鋼板を900℃で高温引張試験した際の高温強度を図1に示す。
 図1の結果から、焼鈍双晶の頻度が高い方が900℃の高温強度が高く、焼鈍双晶の頻度が40%以上で70MPa以上の高強度材が得られることが分かる。尚、ターボチャージャーのハウジングの材料温度はガソリン車で900℃程度と推定され、その構造から本試験法の0.2%耐力で70MPa以上が必要である。
 本発明では焼鈍双晶の頻度の上昇によって高温強度が向上することを見出したが、その要因として双晶界面は粒界エネルギーが低いことが影響していると考えられる。即ち、多方位関係にある結晶粒界よりも双晶界面は粒界エネルギーが低いため、高温環境下における界面移動が遅くなる。本発明者は、高温での通常粒界、双晶界面の高温環境下での移動を研究した結果、通常粒界は移動が速く結晶粒粗大化が生じやすいが、双晶界面は移動が遅いため、結晶粒粗大化の過程から取り残されて特異な組織形態を高温環境で示すことを見出した。その結果、双晶界面が多い材料は、結晶粒粗大化の過程から取り残された双晶界面によって、一種の結晶粒微細化による強化に類似した強化が高温で発現することを見出した。
 また、耐熱オーステナイト系ステンレス鋼では添加元素によって種々の析出物(σ相、Cr炭窒化物、Laves相等)が高温加熱時に析出し、これらは結晶粒界で析出・成長し易い。析出物が微細に析出すると析出強化が作用に高温強度は向上するが、一般的には粒界析出物は粗大化し易く、高温強度の強化能は殆ど無い。一方、双晶界面の析出物は界面エネルギーが小さいため一般粒界よりも粗大化し難い。その結果、双晶界面で析出した析出物による析出強化が高温で維持され、長時間高温に曝された後の強化能も比較的高いことを見出した。尚、双晶粒界の頻度が60%以上で900℃の0.2%耐力が約80MPaを達成することから焼鈍双晶の頻度の上限を60%とする。更に高温クリープや疲労の観点から80%以上が望ましい。
 次に本発明のオーステナイト系ステンレス鋼の成分範囲について説明する。
 Cは、オーステナイト組織形成と高温強度の確保のために0.005%を下限とする。一方、過度な添加は硬質化を招く他、Cr炭化物形成により耐食性、特に溶接部の粒界腐食性の劣化、炭化物に起因した高温摺動性の劣化、冷延焼鈍板酸洗時の粒界浸食溝形成により表面粗さが粗くなる。また、Cは積層欠陥エネルギーを上げて焼鈍双晶の頻度が低下するため、上限を0.2%とする。更に、製造コストと熱間加工性を考慮すると、Cの含有量は、0.008%以上0.15%以下が望ましい。
 Siは、脱酸元素として添加される場合がある他、Siの内部酸化により耐酸化性、高温摺動性の向上、焼鈍双晶の頻度の増加による高温強度の向上をもたらすため、0.1%以上添加する。一方、4.0%以上の添加により硬質化するとともに、粗大なSi系酸化物が生成し、部品の加工精度が著しく低下するため、上限を4%とする。尚、製造コスト、鋼板製造時の酸洗性、溶接時の凝固割れ性を考慮すると、Siの含有量は、0.4%以上3.5%以下が望ましい。積層欠陥エネルギーの観点から下限を1.0%超とし、上限を3.5%未満とすることが望ましい。更に、高温摺動性を考慮すると2.0%以上3.5%未満が望ましい。
 Mnは、脱酸元素として利用する他、オーステナイト組織形成およびスケール密着性を確保する。また積層欠陥エネルギーを下げて焼鈍双晶の頻度の増加をもたらすために0.1%以上添加する。一方、10%超の添加により介在物清浄度が著しく劣化し穴拡げ性が低下する他、酸洗性が著しく劣化し製品表面が粗くなるため上限を10%とする。また、本発明鋼においては、10%超含有すると焼鈍双晶の頻度の低下を招く。更に、製造コスト、鋼板製造時の酸洗性を考慮すると、Mnの含有量は、0.2%以上5%以下が望ましく、異常酸化特性の観点からより好ましくは0.2%以上3%以下である。
 Niはオーステナイト組織形成元素であるとともに、耐食性や耐酸化性を確保する元素である。また、2%未満では結晶粒の粗大化が顕著に生じてしまうため2%以上添加する。また、双晶を十分に生成させるにも2%以上が必要である。一方、過度な添加はコストの上昇と焼鈍双晶の頻度の低下を招くことから上限を25%とする。更に、製造性、常温延性および耐食性を考慮すると、Niの含有量は、7%以上20%以下が望ましい。
 Crは、耐食性、耐酸化性および高温摺動性を向上させる元素であり、排気部品環境を考慮すると異常酸化抑制の観点から必要な元素である。また双晶を十分に生成させるには15%以上が必要である。一方過度な添加は、硬質となり成形性を劣化させる他、コストアップに繋がることから上限を30%とした。更に、製造コスト、鋼板製造性ならびに加工性を考慮すると、Crの含有量は、17%以上25.5%以下が望ましい。
 Nは、Cと同様にオーステナイト組織形成と高温強度、高温摺動性の確保の有効な元素である。高温強度に関しては固溶強化元素として知られているが、また、Nは双晶生成にも効果的である。本願においてはN単独の効果以外にCrとのクラスター形成による高温強度も考慮し、0.01%以上添加する。一方、0.4%超の添加により常温材質が著しく硬質化し、鋼板製造段階の冷間加工性が劣化する他、部品加工時の成形性や部品精度が悪くなるため、上限を0.4%とする。尚、軟質化、溶接時のピンホール抑制、溶接部の粒界腐食抑制の観点から、Nの含有量は、0.02%以上0.35%以下が望ましい。更に、高温強度、摺動性および常温延性の観点から、0.04%超且つ0.4%未満が望ましい。また、クリープ特性の観点から、N含有量を0.15%超、0.4%未満とすることが望ましい。
 Alは、脱酸元素として添加し、介在物清浄度を向上させることで穴拡げ性を向上させる。この他、酸化スケールの剥離抑制、微量内部酸化により高温摺動性の向上に寄与する効果があり,その作用は0.001%から発現するため、下限は0.001%である。また、フェライト生成元素であるため、1%以上の添加はオーステナイト組織の安定性が低下する他、酸洗性の低下から表面粗さの増加を招くため上限は1%である。更に、精錬コストと表面疵を考慮すると、Alの含有量は、0.007%以上0.5%以下が望まく、溶接性の観点から0.01%以上0.1%以下がより好ましい。
 Cuは、オーステナイト相の安定化や軟質化のために有効な元素あり、0.05%以上添加する。一方、過度な添加は耐酸化性の劣化や製造性の劣化に繋がるため、上限を4.0%とする。また、本発明鋼においては、4.0%超含有すると焼鈍双晶の頻度の低下を招く。更に、耐食性や製造性を考慮すると、Cuの含有量は、0.3%以上1%以下が望ましい。
 Moは、耐食性を向上させる元素であるとともに、高温強度の向上に寄与する。高温強度向上は、固溶強化が主体であるが、σ相等の析出促進元素であるため、双晶界面への微細析出強化にも寄与する。本発明においては、固溶強化の他にMo炭化物による析出強化を活用するために下限を0.02%とする。但し、過度な添加は焼鈍双晶の頻度を低下させるため上限を3%とする。更に、Moは高価な元素であること、上記析出物による強化安定性ならびに介在物清浄度を考慮すると、Moの含有量は、0.4%以上1.6%以下が望ましく、異常酸化特性を考慮すると0.4%以上1.0%以下がより好ましい。
 Vは、耐食性を向上させる元素であるとともに、V炭化物やσ相の生成を促進し高温強度を向上させるため0.02%以上添加する。一方、過度な添加は合金コストの増加や異常酸化限界温度の低下を招くことから、上限を1%とする。更に、製造性や介在物清浄度を考慮すると、Vの含有量は、0.1%以上0.5%以下が望ましい。
 Pは不純物であり、製造時の熱間加工性や凝固割れを助長する元素である他、硬質化して延性を低下させるためその含有量は少ないほど良いが、精錬コストを考慮して上限0.05%、下限0.01%の範囲で含有しても良い。更に、製造コストを考慮すると、Pの含有量は、0.02%以上0.04%以下が望ましい。
 Sは不純物であり、製造時の熱間加工性を低下させる他、耐食性を劣化させる元素である。また、粗大な硫化物(MnS)が形成されると清浄度が著しく悪くなり、常温延性を劣化させるため、0.01%を上限として含有しても良い。一方、過度な低減は精錬コストの増加に繋がることから、0.0001%を下限として含有しても良い。更に、製造コストや耐酸化性を考慮すると、Sの含有量は、0.0005%以上0.0050%以下が望ましい。
 発明の排気部品用オーステナイト系ステンレス鋼板は、前述した元素以外に、下記の成分を含有しても良い。
 Tiは、C,Nと結合して耐食性、耐粒界腐食性を向上させるために添加する元素である。C,N固定作用は0.005%から発現するため、下限を0.005%として必要に応じて添加しても良い。また、0.3%超の添加は鋳造段階でのノズル詰まりが生じ易くなり、製造性を著しく劣化させる他、粗大なTi炭窒化物により延性の劣化を招くことから、上限を0.3%とする。更に、高温強度、溶接部の粒界腐食性および合金コストを考慮すると、Tiの含有量は、0.01%以上0.2%以下が望ましい。また、クリープ特性の観点から、Tiの含有量は、0.03%超、0.3%以下とすることが望ましい。
 Nbは、Tiと同様にC,Nと結合して耐食性、耐粒界腐食性を向上させる他、高温強度を向上させる元素である。C,N固定作用の他、固溶Nbによる高温高強度化、Laves相の双晶界面析出による高強度化は0.005%から発現するため、下限を0.005%として必要に応じて添加しても良い。また、0.3%超の添加は鋼板製造段階での熱間加工性が著しく劣化する他、粗大なNb炭窒化物により延性の劣化を招くことから、上限を0.3%とする。更に、高温強度、溶接部の粒界腐食性および合金コストを考慮すると、Nbの含有量は、0.01以上0.20%以下が望ましい。また、クリープ特性の観点から、Nbの含有量は、0.005%超、0.05%以下とすることが望ましい。
 Bは、鋼板製造段階での熱間加工性を向上させる元素であり、0.0002%以上として必要に応じて添加しても良い。また、Bの双晶界面偏析による高強度化も作用する。但し、過度な添加はホウ炭化物の形成により清浄度および延性の低下、粒界腐食性の劣化をもたらすため、上限を0.005%とした。更に、精錬コストや延性低下を考慮すると、Bの含有量は、0.0003%以上0.003%以下が望ましい。
 Caは、脱硫のために必要に応じて添加される。この作用は0.0005%未満では発現しないため、下限を0.0005%として必要に応じて添加しても良い。また、0.01%超添加すると水溶性の介在物CaSが生成して清浄度の低下および耐食性の著しい低下を招くため、上限を0.01%とする。更に、製造性、表面品質の観点から、Caの含有量は、0.0010%以上0.0030%以下が望ましい。
 Wは、耐食性と高温強度の向上に寄与するため,必要に応じて0.1%以上添加しても良い。3%超の添加により硬質化、鋼板製造時の靭性劣化やコスト増につながるため、上限を3%とする。更に、精錬コストや製造性を考慮すると、Wの含有量は、0.1%以上2%以下が望ましく、異常酸化特性を考慮すると0.1%以上1.5%以下がより好ましい。
 Zrは、CやNと結合して溶接部の粒界腐食性や耐酸化性を向上させるため、必要に応じて0.05%以上添加しても良い。但し,0.3%超の添加によりコスト増になる他,製造性や穴拡げ性を著しく劣化させるため,上限を0.3%とする.更に,精錬コストや製造性を考慮すると、Zrの含有量は、0.05%以上0.1%以下が望ましい。
 Snは、耐食性と高温強度の向上に寄与するため、必要に応じて0.01%以上添加しても良い。0.03%以上で効果が顕著になり、さらに0.05%以上でより顕著となる。0.5%超の添加により鋼板製造時のスラブ割れが生じる場合があるため上限を0.5%とする。更に、精錬コストや製造性を考慮すると、Snの含有量は、0.05%以上0.3%以下が望ましい。
 Coは、高温強度の向上に寄与するため、必要に応じて0.03%以上添加しても良い。0.3%超の添加により、硬質化、鋼板製造時の靭性劣化やコスト増につながるため,上限を0.3%とする.更に,精錬コストや製造性を考慮すると、Coの含有量は、0.03%以上0.1%以下が望ましい。
 Mgは、脱酸元素として添加させる場合がある他、スラブの組織を酸化物の微細化分散化により介在物清浄度の向上や組織微細化に寄与する元素である。これは、0.0002%以上から発現するため、下限を0.0002%として必要に応じて添加しても良い。但し、過度な添加は、溶接性や耐食性の劣化、粗大介在物による穴拡げ性の低下につながるため、上限を0.01%とした。精錬コストを考慮すると、Mgの含有量は、0.0003%以上0.005%以下が望ましい。
 Sbは、粒界に偏析して高温強度を上げる作用をなす元素である。添加効果を得るため、必要に応じて0.005%以上とする添加しても良い。但し、0.3%を超えると、Sb偏析が生じて、溶接時に割れが生じるので、上限を0.3%とする。高温特性と製造コスト及び靭性を考慮すると、Sbの含有量は、0.03%以上0.3%以下が望ましく、更に望ましくは0.05%以上0.2%以下である。
 REM(希土類元素)は、耐酸化性や高温摺動性の向上に有効であり、必要に応じて0.002%以上で添加しても良い。また、0.2%を超えて添加してもその効果は飽和し、REMの粒化物による耐食性低下を生じるため、0.002%以上0.2%以下で添加する。製品の加工性や製造コストを考慮すると、下限を0.002%とし、上限を0.10%とすることが望ましい。尚、REM(希土類元素)は、一般的な定義に従う。スカンジウム (Sc)、イットリウム (Y)の2元素と、ランタン(La)からルテチウム(Lu) までの15元素(ランタノイド)の総称を指す。単独で添加しても良いし、混合物であっても良い。
 Gaは、耐食性向上や水素脆化抑制のため、必要に応じて0.3%以下で添加しても良いが、0.3%超の添加により粗大硫化物が生成してr値が劣化する。硫化物や水素化物形成の観点から下限は0.0002%とする。更に、製造性やコストの観点から0.002%以上が更に好ましい。
 その他の成分について本発明では特に規定するものではないが、Ta、Hfは高温強度向上のために0.01%以上1.0%以下で添加しても良い。また、Biを必要に応じて0.001~0.02%含有してもかまわない。なお、As、Pb等の一般的な有害な元素や不純物元素はできるだけ低減することが望ましい。
 次に製造方法について説明する。本発明の鋼板の製造方法は、製鋼-熱間圧延-焼鈍・酸洗-冷間圧延-焼鈍・酸洗よりなる。
 製鋼においては、前記必須成分および必要に応じて添加される成分を含有する鋼を、電気炉溶製あるいは転炉溶製し、続いて2次精錬を行う方法が好適である。溶製した溶鋼は、公知の鋳造方法(連続鋳造)に従ってスラブとされ、公知の熱間圧延の方法に従って、前記スラブは所定の温度に加熱され、所定の板厚に連続圧延で熱間圧延される。上記の様に本発明が対象となる部品には熱間圧延以降の工程において、公知の方法に従って所定の結晶粒度、断面硬度、表面粗さを確保した製造条件が設定される。
 熱間圧延後の鋼板は、熱延板焼鈍と酸洗処理が施された後、60%以下の圧下率にて冷間圧延される。これは、圧下率が60%超になると、その後の焼鈍工程で再結晶が過度に進行し、ランダム粒界が増加し焼鈍双晶の形成が阻害されるためである。材料の延性を考慮すると結晶粒径は粗大な方が良く、製造性や板形状も考慮すると圧下率は2~30%が望ましい。
 次に所定の板厚になった冷延鋼板を焼鈍する際、双晶界面を増やすための新しい焼鈍方法を本発明者は見出した。具体的には、冷延板焼鈍において900℃までの加熱速度を10℃/sec未満、900℃以上の加熱速度を10℃/sec以上、最高温度を1000~1200℃とすることを特徴とするものである。
 900℃までの温度域では低加熱速度とすることにより、再結晶が生じない温度域において双晶界面の生成を増加させ、900℃以上の温度域で急速加熱することによって、鋼板の金属組織を再結晶組織にする。900℃までの温度域において10℃/sec未満の加熱速度で加熱することによって、再結晶粒界の移動が容易になり双晶界面が再結晶界面により浸食されるのを防ぐことができる。材料の延性を考慮すると、結晶粒径は粗大な方が好ましいため最高温度は1000~1200℃とする。更に、未再結晶組織を防ぎかつ双晶頻度を高めるために最高温度は1030~1130℃が望ましい。最高温度における保持時間を長くすると、再結晶粒の粒成長段階で双晶界面が消失してしまうため、最高温度における保持時間を30sec以下とすることが望ましい。
 本願では、熱延板焼鈍・酸洗後に冷間圧延を施し、その後に冷延板焼鈍・酸洗処理を行うことで、更に平滑表面が得られる。冷間圧延工程は、タンデム圧延、ゼンジミア圧延、クラスター圧延等で行えば良い。ターボチャージャー部品の様な機能用途には、一般的に2Bあるいは2D製品が適用されるが、高い表面平滑性や光沢が要求される場合は、冷間圧延後に光輝焼鈍を施してBA製品としても良い。酸洗処理は。中性塩電解や溶融アルカリ処理といった前処理あるいは硝弗酸や硝酸電解といった酸洗処理を適宜選択すれば良い。
 表1-1及び表1-2に示す成分組成の鋼を溶製しスラブに鋳造し、熱延、熱延板焼鈍・酸洗を行った後、表2-1及び表2-2に示す条件にて冷延及び最終焼鈍を行い、更に酸洗を施して2.0mm厚の製品板を得た。尚、表1-2の符号“*”が付された欄内の値は、該当する成分が本発明の要件を満たさないことを示す。また、表1-2の符号“*”が付された欄内の値は、該当する製造条件が本発明の製造方法の要件を満たさないことを示す。
 表2-1及び表2-2に示す各製品板に対して、先に記載した方法によって焼鈍双晶の頻度(%)を測定するとともに、先に記載した方法による高温引張試験を900℃で行った。また、常温の延性の測定は 引張試験片は圧延方向が引張方向になる様にJIS13号B試験片を採取し、歪速度が10-3/secで引張試験を行い、破断伸びを測定することによって行った。
 表2-1及び表2-2に示す各製品板に対して行われた前記試験結果或いは測定結果を表2-1及び表2-2に示す。尚、表2-2の項目「焼鈍双晶の頻度(%)」の欄内に符号“*”が付された値は、本発明における焼鈍双晶の頻度の要件を満たさないことを示す。また、表2-2の項目「900℃の0.2%耐力(MPa)の欄内に符号“*”が付された値は、70MPa未満であることを示す。また、表2-2の項目「常温延性(%)」の欄内に符号“*”が付された値は、常温の延性が40%未満であることを示す。
 また、表2-1及び表2-2に示す各製品板のそれぞれをターボチャージャーのハウジングに成形加工した。このときの成形加工性の良否を表2-1及び表2-2の「部品形状への成形性判定」の項目に示す。尚、前記項目の該当欄内の“○”はターボチャージャーのハウジングへの成形が良好だったことを示し、“×”はハウジングとして適用が不可であることを示す。具体的な判定方法は成形品の割れ有無および板厚減少率(30%以下が合格)までを判定基準とした。
 更に、表2-1及び表2-2に示す各製品板を成形加工して得られたターボチャージャーのハウジングに対して加熱(900℃)-冷却(150℃)を繰り返し、2000サイクル後の変形状態及び酸化損傷の有無を確認した。その結果を表2-1及び表2-2の「耐久試験での変形度合い判定」及び「耐久試験での酸化損傷の有無」の項目に示す。尚、耐久試験前に対する耐久試験後の変形度合いが小さかったものを“○”とし、大きかったものを“×”で示した。ここで、耐久試験における変形度合いは、耐久試験前後のハウジング形状について、例えば3次元形状測定器等で形状比較し、形状変化率が±3%以内の場合を合格(○)、±3%を超えるものを不合格(×)とした。また、耐久試験後に、目視にて、異常酸化やスケール剥離の発生等の酸化損傷が確認されなかったものを“○”とし、酸化損傷が確認されたものを“×”として示す。
 表2-1に示す製造条件で製造した結果、本発明例(実施例1~23)の鋼は加工性、耐熱性に優れることが確認される。
 これに対して、表2-2に示すように、比較例1~28の鋼において、常温の延性が40%未満のものが多く見られる。このように常温の延性が40%未満の製品板は、ターボチャージャーのハウジングへの成形が不良であり、ハウジングとして適用が不可である。また、比較鋼は耐久試験において変形が過度であり、ハウジングに適用した場合に排気性能が不良であったり、他部品との接触によってターボチャージャーが破損するものであり、ターボチャージャーへの適用は不可となる。更に、耐久試験において異常酸化やスケール剥離の発生、減肉が生じる場合、剥離スケールによる後段触媒の損傷やハウジングの破損に繋がるが、本発明には酸化損傷が認められなかった。また、比較例の一部では酸化損傷が激しく、ハウジングとしての機能が未達な場合があった。
 以上より、本発明例は、ハウジングへの成形性、その後の耐久試験における変形も少なく、ターボの性能を満足することが確認される。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 なお、オーステナイト系ステンレス鋼板を用いてターボチャージャーの外枠等の排気部品を製造する際、製造工程における他の条件は適宜選択すれば良い。例えば、スラブ厚さ、熱間圧延板厚などは適宜設計すれば良い。冷間圧延においては、ロール粗度、ロール径、圧延油、圧延パス回数、圧延速度、圧延温度などは適宜選択すれば良い。冷間圧延の途中に中間焼鈍を入れても構わず、バッチ式焼鈍でも連続式焼鈍でも良い。また、酸洗時の前処理として中性塩電解処理やソルト浴浸漬処理のいずれを施しても、省略しても構わず、酸洗工程は、硝酸、硝酸電解酸洗の他、硫酸や塩酸を用いた処理を行っても良い。冷延板の焼鈍・酸洗後に調質圧延やテンションレベラー等により形状および材質調整を行っても良い。更に、本製品板に潤滑塗装を施して、更にプレス成形を向上させても良く、潤滑膜の種類は適宜選択すれば良い。加えて、部品加工後に窒化処理や浸炭処理等の特殊な表面処理を施して耐熱性を更に向上させても構わない。
 本発明によれば、耐熱性に加えて加工性が要求される排気部品に対して優れた特性を有するオーステナイト系ステンレス鋼板を提供することが可能である。本発明を適用した材料を、特に自動車のターボチャージャー用として使用することによって、従来の鋳物よりも大幅に軽量化が図られ、排ガス規制、軽量化、燃費向上につなげることが可能となる。また、部品の切削および研削加工の省略、表面加工処理省略も可能となり、低コスト化にも大きく寄与する。なお、本発明は、ターボチャージャー用として使用する各部品のいずれに対しても適用対象にすることができる。具体的にはターボチャージャーの外枠を構成するハウジング、ノズルベーン式ターボチャージャー内部の精密部品(例えば、バックプレート、オイルディフレクター、コンプレッサーホイール、ノズルマウント、ノズルプレート、ノズルベーン、ドライブリング、ドライブレバーと呼ばれるものなど)である。更に、自動車、二輪に限らず、各種ボイラー、燃料電池システム等の高温環境に使用される排気部品に適用することも可能であり、本発明は産業上極めて有益である。

Claims (13)

  1.  質量%で、C:0.005~0.2%、Si:0.1~4%、Mn:0.1~10%、Ni:2~25%、Cr:15~30%、N:0.01~0.4%未満、Al:0.001~1%、Cu:0.05~4%、Mo:0.02~3%、V:0.02~1%、P:0.05%以下、S:0.01%以下を含有し、残部がFe及び不可避的不純物からなり、焼鈍双晶の頻度が40%以上であることを特徴とする耐熱性に優れた排気部品用オーステナイト系ステンレス鋼板。
  2.  前記鋼板が、更に、質量%で、N:0.04%超、0.4%未満および/またはSi:1.0%超~3.5%未満を含有することを特徴とする請求項1に記載の耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板。
  3.  前記鋼板が、更に、質量%で、N:0.15%超、0.4%未満を含有することを特徴とする請求項1又は2に記載の耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板。
  4.  前記鋼板が、更に、質量%でTi:0.005~0.3%、Nb:0.005~0.3%、B:0.0002~0.005%、Ca:0.0005~0.01%、W:0.1~3.0%、Zr:0.05~0.30%、Sn:0.01~0.50%、Co:0.03~0.30%、Mg:0.0002~0.010%、Sb:0.005~0.3%、REM:0.002~0.2%、Ga:0.0002~0.3%、Ta:0.01~1.0%の1種又は2種以上を含有することを特徴とする請求項1~3のうちいずれか1項に記載の耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板。
  5.  前記鋼板が、更に、質量%で、Ti:0.03%超~0.3%、および/またはNb:0.005~0.05%を含有することを特徴とする請求項1~4のうちいずれか1項に記載の耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板。
  6.  前記鋼板が、900℃の高温耐力が70Mp以上であることを特徴とする請求項1~5のうちいずれか1項に記載の耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板。
  7.  請求項1~6のうちいずれか1項に記載のステンレス鋼板の製造方法であって、冷間圧延工程にて圧下率を60%以下とし、冷延板焼鈍において900℃までの加熱速度を10℃/sec未満、900℃以上の加熱速度を10℃/sec以上、最高温度を1000~1200℃とすることを特徴とする耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板の製造方法。
  8.  ターボチャージャーの外枠を構成するハウジング及び/或いはノズルベーン式ターボチャージャー内部の精密部品の少なくともいずれかに用いられることを特徴とする請求項1~6のうちいずれか1項に記載のオーステナイト系ステンレス鋼板。
  9.  ノズルベーン式ターボチャージャー内部のバックプレート、オイルディフレクター、コンプレッサーホイール、ノズルマウント、ノズルプレート、ノズルベーン、ドライブリング、ドライブレバーの少なくともいずれかに用いられることを特徴とする請求項1~6のうちいずれか1項に記載のオーステナイト系ステンレス鋼板。
  10.  請求項1~6のうちいずれか1項に記載のオーステナイト系ステンレス鋼板を用いて作成されたことを特徴とする排気部品。
  11.  ターボチャージャーの外枠を構成するハウジング及び/或いはノズルベーン式ターボチャージャー内部の精密部品の少なくともいずれかが請求項1~6のうちいずれか1項に記載のオーステナイト系ステンレス鋼板を用いて作成されたことを特徴とする排気部品。
  12.  請求項1~6のうちいずれか1項に記載のオーステナイト系ステンレス鋼板を用いて作成されたことを特徴とするターボチャージャーの外枠を構成するハウジング。
  13.  バックプレート、オイルディフレクター、コンプレッサーホイール、ノズルマウント、ノズルプレート、ノズルベーン、ドライブリング、ドライブレバーの少なくともいずれか1つが請求項1~6のうちいずれか1項に記載のオーステナイト系ステンレス鋼板を用いて作成されたことを特徴とするノズルベーン式ターボチャージャー。
PCT/JP2017/011872 2016-03-23 2017-03-23 耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板およびターボチャージャー部品と、排気部品用オーステナイト系ステンレス鋼板の製造方法 WO2017164344A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201780017038.1A CN108779532B (zh) 2016-03-23 2017-03-23 耐热性和加工性优异的排气部件用奥氏体系不锈钢板、涡轮增压器部件和排气部件用奥氏体系不锈钢板的制造方法
PL17770384T PL3441494T3 (pl) 2016-03-23 2017-03-23 Blacha cienka z nierdzewnej stali austenitycznej na element układu wydechowego o doskonałej odporności cieplnej i obrabialności, element turbosprężarki oraz sposób wytwarzania blachy cienkiej z nierdzewnej stali austenitycznej na element układu wydechowego
KR1020187026674A KR102165108B1 (ko) 2016-03-23 2017-03-23 내열성과 가공성이 우수한 배기 부품용 오스테나이트계 스테인리스 강판 및 터보 차저 부품과, 배기 부품용 오스테나이트계 스테인리스 강판의 제조 방법
JP2018507422A JP6541869B2 (ja) 2016-03-23 2017-03-23 耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板およびターボチャージャー部品と、排気部品用オーステナイト系ステンレス鋼板の製造方法
EP17770384.0A EP3441494B1 (en) 2016-03-23 2017-03-23 Austenitic stainless steel sheet for exhaust component having excellent heat resistance and workability, turbocharger component, and method for producing austenitic stainless steel sheet for exhaust component
US16/087,337 US10894995B2 (en) 2016-03-23 2017-03-23 Austenitic stainless steel sheet for exhaust component having excellent heat resistance and workability, turbocharger component, and method for producing austenitic stainless steel sheet for exhaust component
MX2018011505A MX2018011505A (es) 2016-03-23 2017-03-23 Lamina de acero inoxidable austenitica para componente de escape que tiene excelente resistencia al calor y maleabilidad, turbocarcador, componente, y metodo para producir lamina de acero inoxidable austenitica para componente de escape.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-059073 2016-03-23
JP2016059073 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017164344A1 true WO2017164344A1 (ja) 2017-09-28

Family

ID=59900546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011872 WO2017164344A1 (ja) 2016-03-23 2017-03-23 耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板およびターボチャージャー部品と、排気部品用オーステナイト系ステンレス鋼板の製造方法

Country Status (8)

Country Link
US (1) US10894995B2 (ja)
EP (1) EP3441494B1 (ja)
JP (1) JP6541869B2 (ja)
KR (1) KR102165108B1 (ja)
CN (1) CN108779532B (ja)
MX (1) MX2018011505A (ja)
PL (1) PL3441494T3 (ja)
WO (1) WO2017164344A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115385A (ja) * 2017-01-20 2018-07-26 新日鐵住金ステンレス株式会社 排気部品用オーステナイト系ステンレス鋼板およびその製造方法、ならびに排気部品およびその製造方法
KR20180086747A (ko) * 2017-01-23 2018-08-01 엘지전자 주식회사 공기 조화기 시스템
CN109944722A (zh) * 2017-12-20 2019-06-28 曼恩能源方案有限公司 废气再循环吹送器和内燃机
WO2019138869A1 (ja) * 2018-01-12 2019-07-18 新日鐵住金ステンレス株式会社 オーステナイト系ステンレス鋼およびその製造方法
JP2019218588A (ja) * 2018-06-18 2019-12-26 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼板およびその製造方法
WO2020090936A1 (ja) * 2018-10-30 2020-05-07 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼板
CN111534756A (zh) * 2020-06-30 2020-08-14 宝钢德盛不锈钢有限公司 应用于冷厢内胆的中镍不锈钢及中镍不锈钢板的制造方法
EP3760753A4 (en) * 2018-02-28 2021-09-15 Nippon Steel Corporation AUSTENITIC STAINLESS STEEL WELDED JOINT
JP7477278B2 (ja) 2018-10-12 2024-05-01 ボーグワーナー インコーポレーテッド ターボチャージャー用の新規オーステナイト合金

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7050584B2 (ja) * 2018-06-06 2022-04-08 日本特殊陶業株式会社 センサ
DE102018217057A1 (de) * 2018-10-05 2020-04-09 Continental Automotive Gmbh Stahl-Werkstoff für Hochtemperatur-Anwendungen und Abgasturbolader der diesen Stahl-Werkstoff aufweist
KR102180314B1 (ko) * 2018-12-14 2020-11-19 주식회사 포스코 압연기 백업롤 슬래드 및 그 제조 방법
RU2716922C1 (ru) * 2019-08-14 2020-03-17 Общество с ограниченной отвественностью "Лаборатория специальной металлургии" (ООО "Ласмет") Аустенитная коррозионно-стойкая сталь с азотом
CN110551932A (zh) * 2019-09-23 2019-12-10 广东鑫发精密金属科技有限公司 一种304薄带不锈钢电池加热片及其制备方法
CN110952036A (zh) * 2019-12-16 2020-04-03 上海华培动力科技股份有限公司 一种易切削耐热钢及其制备方法
US20230047414A1 (en) * 2020-01-09 2023-02-16 Nippon Steel Stainless Steel Corporation Austenitic stainless steel material
EP3995599A1 (en) * 2020-11-06 2022-05-11 Outokumpu Oyj Austenitic stainless steel
CN112458367B (zh) * 2020-11-14 2021-11-02 钢铁研究总院 一种高强度耐晶间腐蚀孪生诱发塑性奥氏体不锈钢
CN113386159A (zh) * 2021-06-03 2021-09-14 南京钢铁股份有限公司 一种连铸机械手耐高温叉头及制造、使用方法
CN113322417B (zh) * 2021-06-04 2022-06-28 西安建筑科技大学 一种Laves相强化不锈钢及其制备方法
CN113549820B (zh) * 2021-06-29 2022-05-17 鞍钢股份有限公司 一种高碳低铁素体含量奥氏体不锈钢板及其生产方法
CN116083810A (zh) * 2021-11-08 2023-05-09 北京明达茂业商贸有限责任公司 一种新型超高强度不锈钢
CN114657475B (zh) * 2022-03-04 2023-10-10 中国科学院金属研究所 高温紧固件用耐液态铅铋腐蚀奥氏体不锈钢及其制备方法
CN114574778A (zh) * 2022-03-04 2022-06-03 中国原子能科学研究院 一种提高铅基堆用高性能紧固件耐液态铅铋腐蚀性能的合金化方法
CN114657465B (zh) * 2022-03-04 2023-10-13 中国科学院金属研究所 一种提高铅基堆用高性能紧固件抗应力松弛性能的合金化方法
CL2022003322A1 (es) * 2022-11-25 2023-01-20 Aceros inoxidables superausteníticos con altas propiedades mecánicas y resistencia a altas temperaturas - sal solar.

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937277B1 (ja) 1970-04-27 1974-10-07
JPH09279315A (ja) * 1996-04-12 1997-10-28 Daido Steel Co Ltd メタルガスケット用オーステナイト系ステンレス鋼 及びその製造方法
JP2005015896A (ja) 2003-06-27 2005-01-20 Sumitomo Metal Ind Ltd 原子力用ステンレス鋼
JP2005281855A (ja) 2004-03-04 2005-10-13 Daido Steel Co Ltd 耐熱オーステナイト系ステンレス鋼及びその製造方法
JP2006016669A (ja) * 2004-07-02 2006-01-19 Nisshin Steel Co Ltd 二重構造エキゾーストマニホールドの内側用オーステナイト系ステンレス鋼
JP2008063602A (ja) 2006-09-05 2008-03-21 Toshiba Corp 明細書耐食性オーステナイト系合金及びその製造方法
JP2011168819A (ja) 2010-02-17 2011-09-01 Hitachi-Ge Nuclear Energy Ltd オーステナイト系ステンレス鋼、その製造方法
JP2012207259A (ja) * 2011-03-29 2012-10-25 Nippon Steel & Sumikin Stainless Steel Corp 耐食性及びろう付け性に優れたオーステナイト系ステンレス鋼
JP2013209730A (ja) 2012-03-30 2013-10-10 Nippon Steel & Sumikin Stainless Steel Corp 耐熱オーステナイト系ステンレス鋼板
WO2014157655A1 (ja) 2013-03-28 2014-10-02 新日鐵住金ステンレス株式会社 耐熱オーステナイト系ステンレス鋼板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179948A (ja) * 1992-10-13 1994-06-28 Nkk Corp 等方変形性に優れたオーステナイト系ステンレス冷延鋼板およびその製造方法
US8206091B2 (en) 2007-04-19 2012-06-26 Nisshin Steel Co., Ltd. Exhaust guide member of nozzle vane-type turbocharger
US8876990B2 (en) * 2009-08-20 2014-11-04 Massachusetts Institute Of Technology Thermo-mechanical process to enhance the quality of grain boundary networks
ITRM20120647A1 (it) * 2012-12-19 2014-06-20 Ct Sviluppo Materiali Spa ACCIAIO INOSSIDABILE AUSTENITICO AD ELEVATA PLASTICITÀ INDOTTA DA GEMINAZIONE, PROCEDIMENTO PER LA SUA PRODUZIONE, E SUO USO NELLÂeuro¿INDUSTRIA MECCANICA.
JP6747639B2 (ja) * 2014-08-28 2020-09-02 国立大学法人豊橋技術科学大学 金属材料および加工処理方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937277B1 (ja) 1970-04-27 1974-10-07
JPH09279315A (ja) * 1996-04-12 1997-10-28 Daido Steel Co Ltd メタルガスケット用オーステナイト系ステンレス鋼 及びその製造方法
JP2005015896A (ja) 2003-06-27 2005-01-20 Sumitomo Metal Ind Ltd 原子力用ステンレス鋼
JP2005281855A (ja) 2004-03-04 2005-10-13 Daido Steel Co Ltd 耐熱オーステナイト系ステンレス鋼及びその製造方法
JP2006016669A (ja) * 2004-07-02 2006-01-19 Nisshin Steel Co Ltd 二重構造エキゾーストマニホールドの内側用オーステナイト系ステンレス鋼
JP2008063602A (ja) 2006-09-05 2008-03-21 Toshiba Corp 明細書耐食性オーステナイト系合金及びその製造方法
JP2011168819A (ja) 2010-02-17 2011-09-01 Hitachi-Ge Nuclear Energy Ltd オーステナイト系ステンレス鋼、その製造方法
JP2012207259A (ja) * 2011-03-29 2012-10-25 Nippon Steel & Sumikin Stainless Steel Corp 耐食性及びろう付け性に優れたオーステナイト系ステンレス鋼
JP2013209730A (ja) 2012-03-30 2013-10-10 Nippon Steel & Sumikin Stainless Steel Corp 耐熱オーステナイト系ステンレス鋼板
WO2014157655A1 (ja) 2013-03-28 2014-10-02 新日鐵住金ステンレス株式会社 耐熱オーステナイト系ステンレス鋼板

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115385A (ja) * 2017-01-20 2018-07-26 新日鐵住金ステンレス株式会社 排気部品用オーステナイト系ステンレス鋼板およびその製造方法、ならびに排気部品およびその製造方法
KR20180086747A (ko) * 2017-01-23 2018-08-01 엘지전자 주식회사 공기 조화기 시스템
KR102141900B1 (ko) 2017-01-23 2020-08-07 엘지전자 주식회사 공기 조화기 시스템
CN109944722A (zh) * 2017-12-20 2019-06-28 曼恩能源方案有限公司 废气再循环吹送器和内燃机
CN111148854A (zh) * 2018-01-12 2020-05-12 日铁不锈钢株式会社 奥氏体系不锈钢及其制造方法
KR102379904B1 (ko) 2018-01-12 2022-04-01 닛테츠 스테인레스 가부시키가이샤 오스테나이트계 스테인리스강 및 그 제조 방법
CN111148854B (zh) * 2018-01-12 2021-09-21 日铁不锈钢株式会社 奥氏体系不锈钢及其制造方法
KR20200047631A (ko) * 2018-01-12 2020-05-07 닛테츠 스테인레스 가부시키가이샤 오스테나이트계 스테인리스강 및 그 제조 방법
JP2019123895A (ja) * 2018-01-12 2019-07-25 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼およびその製造方法
WO2019138869A1 (ja) * 2018-01-12 2019-07-18 新日鐵住金ステンレス株式会社 オーステナイト系ステンレス鋼およびその製造方法
EP3760753A4 (en) * 2018-02-28 2021-09-15 Nippon Steel Corporation AUSTENITIC STAINLESS STEEL WELDED JOINT
JP2019218588A (ja) * 2018-06-18 2019-12-26 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼板およびその製造方法
JP7166082B2 (ja) 2018-06-18 2022-11-07 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼板およびその製造方法
JP7477278B2 (ja) 2018-10-12 2024-05-01 ボーグワーナー インコーポレーテッド ターボチャージャー用の新規オーステナイト合金
JP6746035B1 (ja) * 2018-10-30 2020-08-26 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼板
WO2020090936A1 (ja) * 2018-10-30 2020-05-07 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼板
EP3875624A4 (en) * 2018-10-30 2022-08-31 NIPPON STEEL Stainless Steel Corporation SHEET MADE OF AUSTENITIC STAINLESS STEEL
CN111534756A (zh) * 2020-06-30 2020-08-14 宝钢德盛不锈钢有限公司 应用于冷厢内胆的中镍不锈钢及中镍不锈钢板的制造方法

Also Published As

Publication number Publication date
US10894995B2 (en) 2021-01-19
PL3441494T3 (pl) 2022-01-17
EP3441494B1 (en) 2021-09-22
MX2018011505A (es) 2019-01-28
CN108779532A (zh) 2018-11-09
CN108779532B (zh) 2020-08-21
KR20180115288A (ko) 2018-10-22
EP3441494A4 (en) 2019-09-18
KR102165108B1 (ko) 2020-10-13
EP3441494A1 (en) 2019-02-13
JPWO2017164344A1 (ja) 2019-01-17
US20200131595A1 (en) 2020-04-30
JP6541869B2 (ja) 2019-07-10

Similar Documents

Publication Publication Date Title
JP6541869B2 (ja) 耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板およびターボチャージャー部品と、排気部品用オーステナイト系ステンレス鋼板の製造方法
JP6621254B2 (ja) 耐熱性と表面平滑性に優れた排気部品用オーステナイト系ステンレス鋼板およびその製造方法
JP6552385B2 (ja) 耐熱性と加工性に優れたオーステナイト系ステンレス鋼板とその製造方法、および当該ステンレス鋼製排気部品
JP4702493B1 (ja) 耐熱性に優れるフェライト系ステンレス鋼
JP6768929B2 (ja) 高温耐摩耗性に優れたフェライト系ステンレス鋼、フェライト系ステンレス鋼板の製造方法、排気部品、高温摺動部品、およびターボチャージャー部品
KR20140117686A (ko) 내열성과 가공성이 우수한 페라이트계 스테인리스 강판
KR102306578B1 (ko) 페라이트계 스테인리스 강판 및 그 제조 방법, 및, 배기 부품
JP6879877B2 (ja) 耐熱性に優れたオーステナイト系ステンレス鋼板及びその製造方法
EP2857538B1 (en) Ferritic stainless steel
KR20190121799A (ko) 저비중 페라이트계 스테인리스 강판 및 그 제조 방법
JP7009278B2 (ja) 耐熱性に優れたフェライト系ステンレス鋼板および排気部品とその製造方法
JP6746035B1 (ja) オーステナイト系ステンレス鋼板
JP7166082B2 (ja) オーステナイト系ステンレス鋼板およびその製造方法
JP6866241B2 (ja) オーステナイト系ステンレス鋼板およびその製造方法、ならびに排気部品
JP6778621B2 (ja) 排気部品用オーステナイト系ステンレス鋼板およびその製造方法、ならびに排気部品およびその製造方法
JP2019143186A (ja) 排気部品用オーステナイト系ステンレス鋼板および排気部品ならびに排気部品用オーステナイト系ステンレス鋼板の製造方法
JP2022098633A (ja) オーステナイト系ステンレス鋼板、オーステナイト系ステンレス鋼板の製造方法及び自動車排気系部品
JP7270445B2 (ja) 高温高サイクル疲労特性に優れたオーステナイト系ステンレス鋼板およびその製造方法ならびに排気部品
JP2020147770A (ja) 高温高サイクル疲労特性に優れたオーステナイト系ステンレス鋼板およびその製造方法ならびに排気部品
JP2022151085A (ja) フェライト系ステンレス鋼板
CA3114743A1 (en) Hot-rolled and annealed ferritic stainless steel sheet and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507422

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187026674

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187026674

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/011505

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017770384

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017770384

Country of ref document: EP

Effective date: 20181023

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770384

Country of ref document: EP

Kind code of ref document: A1