WO2017164233A1 - 窒化アルミニウム単結晶基板の製造方法 - Google Patents

窒化アルミニウム単結晶基板の製造方法 Download PDF

Info

Publication number
WO2017164233A1
WO2017164233A1 PCT/JP2017/011428 JP2017011428W WO2017164233A1 WO 2017164233 A1 WO2017164233 A1 WO 2017164233A1 JP 2017011428 W JP2017011428 W JP 2017011428W WO 2017164233 A1 WO2017164233 A1 WO 2017164233A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
single crystal
nitride single
base substrate
plane
Prior art date
Application number
PCT/JP2017/011428
Other languages
English (en)
French (fr)
Inventor
徹 永島
玲子 岡山
真行 福田
柳 裕之
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN201780015442.5A priority Critical patent/CN108713075B/zh
Priority to US16/085,322 priority patent/US10822718B2/en
Priority to JP2018507369A priority patent/JP7023837B2/ja
Priority to EP17770273.5A priority patent/EP3434816A4/en
Publication of WO2017164233A1 publication Critical patent/WO2017164233A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments

Definitions

  • the present invention relates to a novel method for producing an aluminum nitride single crystal substrate. More specifically, this is a novel method for manufacturing an aluminum nitride single crystal substrate in which a base substrate on which an aluminum nitride single crystal layer is grown is used as a base substrate for repeated growth.
  • the aluminum nitride single crystal substrate is useful as a substrate for an electronic device such as a deep ultraviolet light emitting element or a Schottky diode having high withstand voltage.
  • an aluminum nitride single crystal substrate is usually manufactured as follows. First, raw materials to be an aluminum source and a nitrogen source are supplied onto a base substrate, and an aluminum nitride single crystal layer is grown on the base substrate. Next, the base substrate and the aluminum nitride single crystal layer are separated, and the obtained aluminum nitride single crystal layer is processed by a method such as polishing to produce an aluminum nitride single crystal substrate having a desired surface state.
  • Patent Document 3 As a method of growing an aluminum nitride single crystal layer on a base substrate, a sublimation method in which aluminum nitride is sublimated as an aluminum source and a nitrogen source (see, for example, Patent Documents 1 and 2), an aluminum trihalide gas, nitrogen A hydride vapor phase epitaxy (HVPE) method using ammonia gas as a source gas is known (for example, Patent Document 3).
  • HVPE nitrogen A hydride vapor phase epitaxy
  • gallium nitride single crystal has been established, and a thick single crystal layer can be manufactured.
  • an aluminum nitride single crystal is more fragile than a gallium nitride single crystal and has a higher reactivity of the source gas. Therefore, it has been difficult to grow a thick aluminum nitride single crystal layer.
  • aluminum nitride is grown on a sapphire substrate or SiC substrate, due to the difference in lattice constant or thermal expansion coefficient between the base substrate and aluminum nitride, the aluminum nitride is grown during or after cooling. Cracks were easy to occur.
  • a method for producing a thick aluminum nitride single crystal layer there is a method for producing an aluminum nitride single crystal by a sublimation method (see, for example, Patent Documents 1 and 2).
  • the aluminum nitride single crystal layer grown on the base substrate also grows in the lateral direction, and becomes an aluminum nitride single crystal having a gradually larger diameter.
  • an aluminum nitride single crystal substrate having a larger diameter is more advantageous in terms of yield improvement in applications such as a semiconductor element substrate.
  • an aluminum nitride single crystal layer portion grown on the base substrate is taken out, and the aluminum nitride single crystal layer is repeatedly formed using the taken out aluminum nitride single crystal portion as a base substrate. It only has to grow.
  • an object of the present invention is to provide a method capable of repeatedly producing an aluminum nitride single crystal layer with stable crystal quality.
  • the present inventors investigated the cause of the variation. And the following examination was performed. First, the thick film of the aluminum nitride single crystal layer grown on the base substrate was cut with a single wire saw, a plurality of aluminum nitride single crystal substrates were taken out, and the polishing conditions of the growth surface (main surface) were made the same. A plurality of base substrates were prepared. Then, after further growing an aluminum nitride single crystal layer on each base substrate, the characteristics and physical properties of each aluminum nitride single crystal layer were confirmed. Then, it was confirmed that each aluminum nitride single crystal layer had variations. From this, it was estimated that each base substrate produced from the thick aluminum nitride single crystal layer had a cause for the variation, not the variation generated during the growth of each aluminum nitride single crystal layer.
  • the cause of this variation was estimated as follows. That is, the thicker the aluminum nitride single crystal layer, the longer it takes to grow, and irregular changes in the layer, for example, deterioration of members inside the crystal growth apparatus, alteration, generation of precipitates, Impurities, foreign matters, bubbles, crystal defects, etc. are likely to be contained in the aluminum nitride single crystal layer. If each of these parts containing impurities, foreign matter, bubbles, crystal defects, etc. is used as a new base substrate, the crystal quality of the resulting aluminum nitride single crystal layer will deteriorate, or the crystal quality will change each time the base substrate is changed. It was found that aluminum nitride single crystal layers with different thicknesses were obtained.
  • the present inventors consider that it is possible to reduce variations in the quality and characteristics of the obtained aluminum nitride single crystal by repeatedly using the base substrate as much as possible. It came to complete.
  • the present invention supplies an aluminum source and a nitrogen source onto a main surface of a base substrate made of an aluminum nitride single crystal, and after growing an aluminum nitride single crystal layer on the main surface, the base substrate and the aluminum nitride single crystal
  • a preparation step of preparing a base substrate made of an aluminum nitride single crystal A laminate having the base substrate and the aluminum nitride single crystal layer grown on the main surface of the base substrate by growing an aluminum nitride single crystal layer having a thickness of 500 ⁇ m or more on the main surface of the base substrate Get the growth process, By cutting the aluminum nitride single crystal layer portion of the laminate, the laminate is separated into a base substrate on which at least a part of the thin film of the aluminum nitride single crystal layer is laminated and the other aluminum nitride single crystal layer portions.
  • a regeneration polishing step for polishing the surface of the thin film of the base substrate on which the thin film is laminated, and a regeneration base substrate made of the aluminum nitride single crystal obtained in the regeneration polishing step, and growing an aluminum nitride single crystal on the polished surface A method for producing an aluminum nitride single crystal substrate, comprising a circulation step used as a base substrate to be made.
  • any one of (001) surface, (110) surface, and (100) surface can be adopted.
  • the thickness of the thin film is 1 to 300 ⁇ m in the base substrate obtained by the separation step and laminated with the thin film.
  • the thin film polished in the regenerated base substrate made of aluminum nitride single crystal obtained in the reclaim polishing step is preferably 100 ⁇ m or less.
  • the base substrate portion prepared in the preparation step it is preferable to expose the base substrate portion prepared in the preparation step to the surface by removing all thin film portions by polishing in the regenerative polishing step. .
  • the dislocation density of the main surface of the base substrate made of the aluminum nitride single crystal prepared in the preparation step is 10 6 cm ⁇ 2 or less. It is preferable that
  • the main surface of the base substrate prepared in the preparation step is a (001) plane, a (100) plane, or a (110) plane; It is preferable that the X-ray omega ( ⁇ ) rocking curve half-value width of the specific crystal plane measured under the condition that the incident angle of the line is 4 ° or less is 200 seconds or less.
  • the specific crystal plane is the (103) plane; when the principal plane is the (100) plane, the specific crystal plane is the (106) plane; When it is the (110) plane, the specific crystal plane is the (114) plane.
  • the “incidence angle of X-rays with respect to the main surface” means an angle formed by the main surface and the traveling direction of the X-rays. For example, when the traveling direction of the X-ray is perpendicular to the main surface, the “incident angle of the X-ray with respect to the main surface” is 90 °.
  • the method for producing an aluminum nitride single crystal substrate of the present invention is suitable when the aluminum source is an aluminum halide gas and the nitrogen source is an ammonia gas.
  • the base substrate made of the aluminum nitride single crystal prepared in the preparation step is prepared. Is inclined in the m-axis direction within a range of 0.00 ° to 1.00 ° from the (001) plane, and a in the range of 0.00 ° to 1.00 ° from the (001) plane. It is a (001) plane inclined in the axial direction, and at least one of an inclination angle of the main surface in the m-axis direction and an inclination angle of the main surface in the a-axis direction is greater than 0.00 °. preferable.
  • the circulation step includes performing the preparation step, the growth step, the separation step, and the regenerative polishing step using the regenerated base substrate obtained in the regenerative polishing step as a new base substrate.
  • the aluminum nitride single crystal layer portion is preferably cut with wire saw.
  • the present invention supplies an aluminum source and a nitrogen source onto a base substrate made of an aluminum nitride single crystal, and after growing the aluminum nitride single crystal layer on the base substrate, the base substrate and the aluminum nitride single crystal layer are
  • This is a method of manufacturing an aluminum nitride single crystal substrate by separating. And it is the method of manufacturing the aluminum nitride single-crystal board
  • FIG. 1 is a diagram for explaining each step in one embodiment of the present invention.
  • FIG. 2 is a diagram for explaining each step in the manufacturing method according to another embodiment of the present invention. Hereinafter, these will be described in order.
  • the aluminum source and the nitrogen source will be described in relation to the growth process.
  • the base substrate will be described in relation to the preparation process.
  • the separation of the base substrate and the aluminum nitride single crystal layer will be described in relation to the separation step.
  • the method for producing an aluminum nitride single crystal substrate of the present invention includes a preparation step of preparing a base substrate 10 made of an aluminum nitride single crystal, An aluminum nitride single crystal layer 11 having a thickness of 500 ⁇ m or more is grown on the main surface of the base substrate, thereby having a base substrate 10 and an aluminum nitride single crystal layer 11 grown on the main surface of the base substrate 10.
  • a growth process to obtain a laminate By cutting the aluminum nitride single crystal layer 11 portion of the stacked body, the stacked body is a base substrate 10a (hereinafter simply referred to as “cut base substrate 10a”) in which at least a part of the thin film of the aluminum nitride single crystal layer is stacked.
  • a separation step for separating the aluminum nitride single crystal layer portion (hereinafter sometimes simply referred to as “aluminum nitride single crystal free-standing substrate 11a”);
  • the regenerated base substrate 10b or 10c made of the aluminum nitride single crystal obtained in the regenerative polishing step has an aluminum nitride single crystal (hereinafter, simply referred to as “new aluminum nitride single crystal layer 13”) on the polished surface.
  • the preparation step is a step of preparing the base substrate 10.
  • the base substrate 10 is made of aluminum nitride single crystal.
  • the surface of the base substrate on which the aluminum nitride single crystal layer 11 is grown, that is, the main surface is not particularly limited.
  • the crystal plane of the main surface is not limited as long as an aluminum nitride single crystal can be grown. Therefore, for example, the main surface may be a low index surface such as a (112) surface.
  • the main surface is the (001) plane, the (110) plane, or (100) A surface is preferred.
  • the main surface of the base substrate used in the circulation process has a surface index corresponding to the main surface of the base substrate prepared in this preparation step. That is, when the base substrate having the (001) plane as the main surface is prepared in the preparation process, the main surface of the base substrate used in the circulation process is the (001) plane, and the aluminum nitride single crystal substrate 11a finally obtained is The main surface is also a (001) surface.
  • the (001) plane refers to the C plane. When this plane is the main plane, the C plane or the -C plane is regarded as the main plane.
  • the main surface of the finally obtained aluminum nitride single crystal substrate 11a is also the (110) plane; the (100) plane is the base substrate.
  • the main surface of the finally obtained aluminum nitride single crystal substrate 11a is also the (100) surface.
  • the main surface of the base substrate 10 is 0.00 ° or more and 1.00 ° or less, more preferably 0.05 ° or more and 0.70 ° or less, and still more preferably 0.000 or less from the surface on which the aluminum nitride single crystal layer 11 is grown.
  • An off angle of 10 ° or more and 0.40 ° or less can also be provided. By providing such an off angle, the thickness of the aluminum nitride single crystal layer 11 can be increased.
  • the main surface of the base substrate prepared in the preparation process corresponds to the main surface of the base substrate (reproduction base substrate 10b or 10c) used in the circulation process, but this off angle (reproduction base substrate 10b). Or the off angle of 10c) can be adjusted in the regenerative polishing step.
  • the main surface of the base substrate 10 is the (001) plane
  • the main surface of the base substrate 10 is inclined in the m-axis direction within the range of 0.00 ° to 1.00 ° from the (001) plane.
  • the tilt angle of the main surface in the m-axis direction and the main surface in the a-axis direction is more than 0.00 °.
  • the main surface of the base substrate 10 is 0.05 ° or more and 0.70 or more from the (001) plane. It is more preferable to incline in the m-axis direction within a range of not more than °, and it is further preferable to incline in the m-axis direction in a range of 0.10 ° to 0.40 ° from the (001) plane. Further, it is more preferable to incline in the a-axis direction within a range from 0.05 ° to 0.70 ° from the (001) plane, and a range from 0.10 ° to 0.40 ° from the (001) plane.
  • the main surface of the base substrate 10 in the preparation step is the (001) plane
  • the main surface of the finally obtained aluminum nitride single crystal free-standing substrate 11a is also the (001) plane.
  • the aluminum nitride single crystal free-standing substrate 11a having a (001) plane as a main surface can be widely used as a substrate for a light emitting element or an electronic device.
  • the main surface of the base substrate 10 is the (110) plane
  • the main surface of the base substrate 10 is in the c-axis direction within the range of 0.00 ° to 1.00 ° from the (110) plane.
  • the inclination angle of the main surface in the c-axis direction and the m-axis direction of the main surface It is preferable that at least one of the inclination angles is greater than 0.00 °.
  • the main surface of the base substrate 10 is the (100) plane
  • the main surface of the base substrate 10 is inclined in the c-axis direction within the range of 0.00 ° to 1.00 ° from the (100) surface.
  • tilted in the a-axis direction within the range of 0.00 ° or more and 1.00 ° or less from the (100) plane, the tilt angle of the main surface in the c-axis direction, and the main surface in the a-axis direction. It is preferable that at least one of the inclination angles is more than 0.00 °.
  • An aluminum nitride single crystal substrate having a plane orientation generally called a nonpolar plane such as the (110) plane or the (100) plane can increase the internal quantum efficiency in the light emitting element, and improve the performance of the light emitting element. Contribute.
  • the main surface of the base substrate 10 (the surface on which the aluminum nitride single crystal layer 11 is grown) is the (001) plane, the (110) plane, or the (100) plane; the incident angle of X-rays to the main plane is 4 °
  • the X-ray omega ( ⁇ ) rocking curve half-value width of the specific crystal plane measured under the following conditions, is preferably 200 seconds or less.
  • the principal plane is the (001) plane
  • the specific crystal plane is the (103) plane
  • the principal plane is the (110) plane
  • the specific crystal plane is the (114) plane.
  • the principal surface is the (100) plane
  • the specific crystal plane is the (106) plane.
  • the incident angle of X-rays with respect to the main surface of the base substrate 10 is more preferably 2 ° or less. However, considering the current measurement technique, the lower limit of the incident angle of X-rays to the main surface is 0.1 °.
  • X-ray omega rocking curve of the specific crystal plane of the base substrate X-rays are irradiated at a shallow incident angle with respect to the base substrate 10. Reflects nearby crystal quality. Therefore, by measuring the half width of the X-ray omega rocking curve of the specific crystal plane, it can be determined whether or not the damaged layer due to polishing is reduced.
  • the damage layer on the growth surface (main surface) of the base substrate is reduced. Therefore, the quality of the aluminum nitride single crystal layer 11 grown on the base substrate 10 is improved by using the base substrate 10 in which the half width of the X-ray omega rocking curve of the specific crystal plane is not more than the upper limit.
  • the half width of the X-ray omega rocking curve of the specific crystal plane is more preferably 100 seconds or less, and further preferably 50 seconds or less.
  • the half width is preferably as low as possible, but is preferably 10 seconds or longer in consideration of industrial production of the base substrate 10.
  • the resolution of the half width that can be measured is also affected by the monochromatization means of the X-ray source, so that it is 2 on the (220) plane of the germanium single crystal. It is preferable to use an X-ray source monochromatized by diffraction.
  • the main surface of the base substrate 10 (surface on which the aluminum nitride single crystal layer 11 is grown) is a (001) surface, a (110) surface, or a (100) surface; the incident angle of X-rays to the main surface is It is preferable that the half width of the X-ray omega ( ⁇ ) rocking curve of the tilted crystal plane measured under the condition of 10 ° or more is 100 seconds or less.
  • the tilted crystal planes are the (002) plane and the (101) plane, and the X-ray omega ( ⁇ ) rocking curve of both the two tilted crystal planes.
  • the full width at half maximum is not more than the above upper limit; when the main surface is the (110) plane, the tilted crystal planes are the (110) plane and the (111) plane, and the two tilted crystal planes For both, the half width of the X-ray omega ( ⁇ ) rocking curve is preferably not more than the above upper limit value; when the principal plane is the (100) plane, the tilted crystal plane has (100) plane and (201) It is preferable that the full width at half maximum of the X-ray omega ( ⁇ ) rocking curve is not more than the above upper limit value for both of the two inclined crystal planes.
  • the half width of the X-ray omega ( ⁇ ) rocking curve of the specific crystal plane reflects the crystal quality near the surface of the crystal, whereas the half width of the X-ray omega ( ⁇ ) rocking curve of the tilted crystal plane is a comparison of crystals. Reflects the crystal quality in the deep part.
  • the full width at half maximum of the X-ray omega ( ⁇ ) rocking curve of the tilted crystal plane is more preferably 50 seconds or less, and particularly preferably 30 seconds or less.
  • the half width is preferably as low as possible, but is preferably 5 seconds or more in consideration of industrial production of the base substrate 10.
  • the resolution of the half-value width that can be measured is also affected by the monochromatic means of the X-ray source, so at least the (220) plane of the germanium single crystal. It is preferable to use an X-ray source monochromatized by diffracting four times.
  • the dislocation density in the main surface is preferably 10 6 cm ⁇ 2 or less.
  • the dislocation density of the main surface is more preferably 10 5 cm ⁇ 2 or less, further preferably 10 4 cm ⁇ 2 or less, and 10 3 cm ⁇ 2. The following are particularly preferred: The smaller the dislocation density, the better. However, considering the industrial production of the base substrate, the lower limit of the dislocation density on the main surface is 10 cm ⁇ 2 . In the present invention, the value of the etch pit density is substituted for the value of the dislocation density.
  • Etch pit density is the presence of pits on the surface of the formed aluminum nitride single crystal substrate by forming pits at dislocations by etching the aluminum nitride single crystal substrate in molten alkali of potassium hydroxide and sodium hydroxide. This is a value of the area number density calculated by counting the number by observation with an optical microscope and dividing the counted number of pits by the observation area.
  • the shape of the base substrate 10 may be circular, square, or indefinite, and the area is preferably 100 to 10,000 mm 2 .
  • the thickness of the base substrate 10 may be determined within a range where the aluminum nitride single crystal layer is not cracked due to insufficient strength. Specifically, the thickness is preferably 50 to 2000 ⁇ m, and more preferably 100 to 1000 ⁇ m.
  • the main surface of the base substrate 10 is not particularly limited, but has a surface roughness (root mean square roughness) of 0.05 to 0.5 nm and 2 ⁇ m by observation with an atomic force microscope or a scanning probe microscope. It is preferable that atomic steps are observed with a field of view of about ⁇ 2 ⁇ m.
  • the surface roughness can be adjusted by CMP (Chemical Mechanical Polishing) polishing as in the polishing step described in detail below. The surface roughness is measured after removing foreign substances and contaminants on the substrate surface using an atomic force microscope or a scanning probe microscope, and the surface roughness is obtained from observation of a 5 ⁇ m ⁇ 5 ⁇ m field of view.
  • CMP Chemical Mechanical Polishing
  • the curvature radius of the surface of the main surface of the base substrate 10 is not particularly limited, but is preferably in the range of 0.1 to 10,000 m.
  • the radius of curvature of the surface of the main surface of the base substrate 10 is preferably 2 to 10000 m, more preferably 8 to 10000 m.
  • the radius of curvature of the crystal plane forming the main plane of the base substrate 10 or the crystal plane parallel to the main plane is although not particularly limited, it is preferably in the range of 2 to 10,000 m.
  • the radius of curvature of the crystal plane forming the main surface of the base substrate 10 or the crystal plane parallel to the main surface is small, cracks may occur during the growth of the thick film. .
  • the radius of curvature of the crystal plane is preferably 5 to 10,000 m, more preferably 10 to 10,000 m.
  • the crystal plane forming the main surface of the base substrate 10 or a crystal plane parallel to the main surface when the main surface of the base substrate 10 is the (001) plane, the (110) plane, or the (100) plane.
  • the crystal quality of the aluminum nitride single crystal layer 11 grown on the base substrate 10 becomes good, and the crystal quality of the aluminum nitride single crystal free-standing substrate 11a obtained by the separation process is also good. It will be something. Furthermore, the performance of a light-emitting element or an electronic device manufactured using the aluminum nitride single crystal free-standing substrate 11a is improved.
  • the base substrate 10 may be grown by the sublimation method or may be grown by the HVPE method. Naturally, the effect of the present invention can be obtained without any problem even if it is grown by the liquid phase method. In addition, it is possible to use a base substrate that has been processed in advance with island-like or striped irregularities.
  • the characteristics of the base substrate such as the main surface, the off angle, the half width of the X-ray omega rocking curve, the dislocation density, the size, the surface roughness, and the radius of curvature, are described below in detail. It can also be applied to 10b or 10c.
  • the growth step is a step of growing the aluminum nitride single crystal layer 11 having a thickness of 500 ⁇ m or more on the base substrate 10.
  • any method of a sublimation method, a liquid phase method, or a vapor phase growth method may be adopted.
  • the aluminum source is vapor obtained by sublimating or decomposing aluminum nitride
  • the nitrogen source is vapor obtained by sublimating or decomposing aluminum nitride, or nitrogen gas supplied to the growth apparatus.
  • the aluminum source and the nitrogen source are solutions in which aluminum nitride is dissolved.
  • the aluminum source is an aluminum halide gas such as aluminum chloride, aluminum iodide or aluminum bromide, or the organic aluminum gas such as trimethylaluminum or triethylaluminum, and the nitrogen source is ammonia gas or nitrogen gas. It is.
  • the method for producing an aluminum nitride single crystal of the present invention is particularly effective when an aluminum nitride single crystal is grown by HVPE (hydride vapor phase epitaxy) among vapor phase growth methods.
  • HVPE hydrogen vapor phase epitaxy
  • the HVPE method has a slower growth rate than the sublimation method, but can reduce the concentration of impurities that adversely affect the deep ultraviolet light transmittance, and thus is suitable for manufacturing an aluminum nitride single crystal substrate for a light-emitting element.
  • the HVPE method has the advantages as described above, when the aluminum nitride single crystal layer 11 is grown, the reactivity between the aluminum halide gas and ammonia is fast, so that in addition to the reaction on the base substrate 10 The reaction in the gas phase is likely to occur, and particulate aluminum nitride is likely to be generated. As a result, unintended fine particles may adhere to the aluminum nitride single crystal layer 11 grown on the base substrate 10. If the aluminum nitride single crystal layer 11 to which such fine particles are attached is separated, cut, and polished to form base substrates, the aluminum nitride single crystal on each base substrate is likely to vary. Since this variation can reduce this variation, the present invention can be suitably applied to the case where the aluminum nitride single crystal layer 11 is grown by the HVPE method.
  • a schematic diagram of a vapor phase growth apparatus (HVPE apparatus) 300 used for the HVPE method is shown in FIG.
  • the growth of the aluminum nitride single crystal layer is performed by supplying an aluminum source gas and a nitrogen source gas into the reactor and reacting both gases on the heated base substrate 10.
  • an aluminum source gas such as an aluminum chloride gas, or a mixed gas of an aluminum organometallic gas and a hydrogen halide gas is used.
  • ammonia gas is preferably used as the nitrogen source gas.
  • These source gases are supplied together with a carrier gas such as hydrogen gas, nitrogen gas, argon gas, or helium gas.
  • a carrier gas such as hydrogen gas, nitrogen gas, argon gas, or helium gas.
  • the carrier gas one kind of gas may be used alone, or two or more kinds of gases may be used in combination.
  • a halogen-based gas such as a halogen gas or a hydrogen halide gas may be appropriately added to the aluminum source gas or the nitrogen source gas to suppress generation of metallic aluminum due to a disproportionation reaction from the aluminum halide gas.
  • the nozzle shape and reactor shape for supplying the raw material gas to the base substrate, the carrier gas composition, the carrier gas supply amount, the linear velocity of the gas flow in the reactor, the growth pressure (pressure in the reactor) are appropriately adjusted so as to obtain a good crystal quality at a desired growth rate.
  • Typical growth conditions include aluminum source gas: 0.1 to 100 sccm, nitrogen source gas: 1 to 10,000 sccm, additional halogen-based gas: 0.1 to 10,000 sccm, total carrier gas flow rate: 1000 to 100,000 sccm, carrier Composition of gas: nitrogen, hydrogen, argon, helium (gas composition ratio is arbitrary), linear velocity of nozzle outlet for supplying aluminum source gas: 50 to 500 sccm, linear velocity of nozzle outlet for supplying nitrogen source gas: 10 Examples include conditions of ⁇ 400 sccm, a linear velocity of gas flowing through the whole reactor: 5 to 200 sccm, a growth pressure: 36 to 1000 Torr, and a heating temperature (growth temperature) of the base substrate: 1200 to 1800 ° C.
  • an aluminum halide gas (a main component is an aluminum trihalide gas) in which an aluminum monohalide gas is reduced as a raw material gas. If the aluminum trihalide gas contains a large amount of aluminum monohalide gas, the crystal quality may deteriorate. Therefore, it is preferable to take measures so that the aluminum monohalide gas is not contained in the aluminum source gas as much as possible.
  • the growth conditions at the initial stage of growth can be arbitrarily selected from the above typical conditions. Specifically, it is a short time to implement means such as limiting the raw material supply amount at the initial stage of growth on the base substrate, temporarily increasing the supply amount of the coexisting halogen-based gas, and changing the pressure. It is possible to shift to conditions for performing thick film growth when the growth environment is stabilized.
  • the aluminum nitride single crystal layer 11 is formed on the base substrate under the above-described conditions in which the generation of aluminum nitride fine particles in the gas phase is small and the flow conditions are small in deposits such as foreign matters. Can be grown under the same conditions as in the initial growth stage.
  • the aluminum nitride single crystal grows independently in the directly upward direction and obliquely upward direction starting from each convex portion on the surface of the base substrate, and eventually grows independently starting from the adjacent convex portion. Single crystals come into contact with each other, and finally a single aluminum nitride single crystal thick film grows.
  • the aluminum nitride single crystal layer is supplied while appropriately supplying impurities (for example, a compound containing Si, Mg, S, etc.) serving as a donor and an acceptor. It is also possible to grow.
  • impurities for example, a compound containing Si, Mg, S, etc.
  • the thickness of the aluminum nitride single crystal layer 11 grown in the growth process must be 500 ⁇ m or more.
  • the thickness of the grown aluminum nitride single crystal layer 11 is less than 500 ⁇ m, the aluminum nitride single crystal free-standing substrate 11a obtained by the separation process becomes thin.
  • the upper limit of the thickness of the aluminum nitride single crystal layer 11 in the growth process is not particularly limited, but is 2000 ⁇ m in consideration of industrial production.
  • the thickness of the aluminum nitride single crystal layer 11 grown in the growth process is as follows. 600 to 1500 ⁇ m, and more preferably 800 to 1200 ⁇ m.
  • the conditions in the above growth process can also be applied to the case where the regenerated base substrate 10b or 10c is used as the base substrate and the new aluminum nitride single crystal layer 13 is grown on the surface (main surface).
  • the separation step is performed by cutting the aluminum nitride single crystal layer portion 11 of the laminate obtained in the growth step so that at least a part of the thin film 11b of the aluminum nitride single crystal layer 11 is obtained.
  • This is a step of separating the laminated base substrate (cut base substrate 10a) into other aluminum nitride single crystal layer portions 11a.
  • a known method for example, wire saw
  • the cutting in the separation process is performed in parallel to the growth surface of the base substrate 10.
  • any wire saw of fixed abrasive grains or loose abrasive grains may be used as the wire saw.
  • the tension of the wire is preferably adjusted as appropriate so that the thickness of the cutting margin is reduced, for example, the thickness of the cutting margin is about 100 to 300 ⁇ m.
  • the cutting speed of the wire saw is appropriately adjusted so that the strain layer (damage layer) remaining on the cut surface of the aluminum nitride single crystal layer becomes thin, but a relatively low speed condition is preferable, and 0.5 mm / A range of h to 20 mm / h is preferable.
  • the cutting direction with respect to the crystal plane of the aluminum nitride single crystal is also arbitrary.
  • the wire at the time of cutting may be oscillated. Further, the wire may be moved continuously in the cutting direction, or may be moved intermittently in the cutting direction. The peristaltic movement of the wire during cutting is appropriately controlled to prevent the occurrence of cracks due to heat generated by friction during cutting.
  • the whole or a part of the laminate of the base substrate 10 and the aluminum nitride single crystal layer 11 is covered with resin, cement or the like prior to the separation step. Cutting may be performed later.
  • a general epoxy resin, phenol resin, wax, or the like can be used as the resin.
  • the resin is cured by a general means such as curing by self-drying, heat curing, or photocuring. After the resin is cured, cutting is performed.
  • As the cement general industrial Portland cement, alumina cement, gypsum and the like can be used.
  • the laminate itself may be rotated.
  • the rotational speed of the laminate is preferably in the range of 1 rpm to 10 rpm.
  • the thickness of the aluminum nitride single crystal layer thin film 11b remaining on the cut base substrate 10a after separation is not particularly limited, but is preferably 5 ⁇ m or more and 300 ⁇ m or less.
  • the strained layer can be removed through a regenerative polishing step described later.
  • the thickness of the aluminum nitride single crystal layer thin film 11b is within the above range, and a polishing substrate (regenerated base substrate 10c) having the polished aluminum nitride single crystal layer thin film 11c in the polishing step described in detail below is produced.
  • the optimum thickness differs depending on the case and the case where a polished substrate ((reproduced base substrate 10b); the substrate on which the original base substrate 10 is exposed) is not provided with the aluminum nitride single crystal layer thin film 11b.
  • the preferred thickness of the aluminum nitride single crystal thin film 11b in the case of producing these recycled base substrates will be described.
  • the thickness of the aluminum nitride single crystal layer thin film 11b in the separation step is preferably 1 to 300 ⁇ m.
  • the aluminum nitride single crystal layer in the separation step in the case of producing a polishing substrate (regenerated base substrate 10b) that does not have the aluminum nitride single crystal layer thin film 11b.
  • the thickness of the thin film 11b is more preferably 20 to 200 ⁇ m, and further preferably 50 to 150 ⁇ m.
  • the polishing substrate (reproduction base substrate 10c) having the aluminum nitride single crystal layer thin film 11c is produced from the cut base substrate 10a, the strain layer on the surface of the aluminum nitride single crystal layer thin film 11b is removed by polishing. It is preferable. Therefore, in this case, the thickness of the aluminum nitride single crystal layer thin film 11b in the separation step is preferably 20 to 300 ⁇ m.
  • the polishing time can be shortened and no damaged layer is left in the remaining layer of the aluminum nitride thin film layer 11b. It becomes possible.
  • the thickness of the aluminum nitride single crystal layer thin film 11b is more preferably 50 to 250 ⁇ m, and further preferably 100 to 200 ⁇ m.
  • an outer peripheral grinding step is introduced for the purpose of removing the polycrystal generated on the outer periphery of the base substrate 10 / aluminum nitride single crystal layer 11 and for adjusting the outer peripheral shape to a circle. Also good. Further, for example, known substrate processing such as chamfering processing for producing a crystal plane or an inclined surface on an orientation flat or an outer peripheral end surface of the substrate may be performed. When changing the off angle of the main surface of the reproduction base substrate 10b or 10c, for example, the angle with respect to the crystal plane corresponding to the main surface of the wire saw at the time of cutting may be adjusted as appropriate. In addition, since the surface immediately after the growth of the aluminum nitride single crystal layer 11 often has a concavo-convex structure, planarization polishing or chemical mechanical polishing (CMP) may be performed before cutting.
  • CMP chemical mechanical polishing
  • the regenerative polishing step is a step of polishing the surface of the cut base substrate 10a from the thin film 11b side of the cut base substrate 10a on which the thin films are laminated.
  • the regenerated base substrate 10b or 10c is manufactured through the regenerative polishing step.
  • the quality of the aluminum nitride single crystal layer 11 grown on the base substrate 10 is locally affected by precipitates and deposits that occur accidentally during the growth process, impurities due to member deterioration and alteration inside the crystal growth apparatus, and the like. Deterioration may be observed. For this reason, if the reproduction
  • the operability may be reduced. Therefore, from the viewpoint of repeatedly using one base substrate for a long time, it is preferable to manufacture the regenerated base substrate 10c having a polished thin film portion. Further, when growing an aluminum nitride single crystal with more stable quality, it is preferable to produce a regenerated base substrate 10b with the base substrate 10 portion exposed on the surface. Next, the reproduction base substrates 10b and 10c will be described.
  • the cut base substrate 10a obtained by the separation process is regenerated and polished until the base substrate is exposed over the entire surface of the substrate. It is preferable to manufacture the reproduction base substrate 10b.
  • a new aluminum nitride single crystal layer 13 is grown on the reproduction base substrate 10b in a circulation process.
  • the degradation site can be removed by the regenerative polishing process.
  • the quality of the new aluminum nitride single crystal layer 13 grown on the reproduction base substrate 10b in the circulation process becomes more stable. Further, even if the circulation process is repeated a plurality of times and the base substrate is repeatedly used, stable quality aluminum nitride single crystal layers (11 and 13) can be obtained.
  • the aluminum nitride single crystal thin film layer 11b is entirely removed.
  • a strained layer is generated on the surface of the cutting base substrate 10a during cutting.
  • strain at the time of cutting may propagate to the base substrate 10.
  • the crystal quality of the new aluminum nitride single crystal layer 13 grown on the reproduction base substrate 10b is deteriorated in the next circulation step, or the new aluminum nitride single crystal layer 13 is caused by residual stress. Cracks occur. Further, if the strain remains, the substrate will be deformed (warped) due to the Twiman effect, so that further caution is required in handling the substrate.
  • the presence or absence of the strained layer in the reproduction base substrate 10b can be confirmed by the same method as that described for the base substrate 10 in the preparation step.
  • the main surface (surface on which the new aluminum nitride single crystal layer 13 is grown) of the reproduction base substrate 10b is a (001) plane, a (110) plane, or a (100) plane; It is preferable that the X-ray omega ( ⁇ ) rocking curve half-value width of the specific crystal plane measured under the condition that the incident angle of the line is 4 ° or less is 200 seconds or less.
  • the specific crystal plane is the (103) plane; when the principal plane is the (110) plane, the specific crystal plane is the (114) plane.
  • the principal surface is the (100) plane, the specific crystal plane is the (106) plane.
  • the incident angle of the X-ray with respect to the main surface of the reproduction base substrate 10b is more preferably 2 ° or less. However, considering the current measurement technique, the lower limit of the incident angle of X-rays to the main surface is 0.1 °.
  • the X-ray omega ( ⁇ ) rocking curve half-width of the specific crystal plane is more preferably 100 seconds or less, and even more preferably 60 seconds or less. The full width at half maximum is preferably 10 seconds or longer. In the measurement of the X-ray omega rocking curve of the specific crystal plane, it is preferable to use an X-ray source that is monochromatized by diffracting twice on the (220) plane of the germanium single crystal.
  • the thickness of the regenerated base substrate 10b in the regenerating polishing step is preferably thinner than the original base substrate 10 in the range of 0.1 ⁇ m to 300 ⁇ m.
  • the thickness of the reproduction base substrate 10b is determined based on the original base substrate. The thickness is more preferably in the range of 5 ⁇ m or more and 100 ⁇ m or less than the thickness of 10, and further preferably in the range of 10 ⁇ m or more and 50 ⁇ m or less than the thickness of the original base substrate 10.
  • the thickness of the aluminum nitride single crystal thin film 11b laminated on the reproduction base substrate 10c is within a predetermined range. As described above, in the aluminum nitride single crystal layer 11 grown on the base substrate 10, there is a possibility that a local degradation site may be accidentally generated. However, the film thickness of the aluminum nitride single crystal thin film 11b is within a predetermined range.
  • the original base substrate 10 can maintain the initial thickness even after undergoing the regenerative polishing process, and therefore the base substrate 10 is repeatedly used. You can increase the number of times.
  • the thickness of the regenerated base substrate 10c having the polished thin film portion 11c in the regenerating polishing step is thicker than the original base substrate 10 in the range of 0.1 ⁇ m to 100 ⁇ m. That is, the thickness of the aluminum nitride single crystal thin film 11c after regenerated polishing is preferably in the range of 0.1 ⁇ m to 100 ⁇ m.
  • the thickness of the reproduction base substrate 10c is determined based on the original base substrate.
  • the thickness is more preferably in the range of 2 ⁇ m or more and 50 ⁇ m or less than the thickness of 10, and more preferably in the range of 5 ⁇ m or more and 30 ⁇ m or less than the thickness of the original base substrate 10. That is, the thickness of the aluminum nitride single crystal thin film 11c after regenerated polishing is more preferably in the range of 2 ⁇ m to 50 ⁇ m, and still more preferably in the range of 5 ⁇ m to 30 ⁇ m.
  • the polishing amount is preferably 600 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 100 ⁇ m or less. is there.
  • the presence or absence of the strained layer can be confirmed by a method similar to the method described for the base substrate 10 in the preparation step.
  • the main surface (surface on which the new aluminum nitride single crystal layer 13 is grown) of the reproduction base substrate 10c is a (001) surface, a (110) surface, or a (100) surface; It is preferable that the X-ray omega ( ⁇ ) rocking curve half-value width of the specific crystal plane measured under the condition that the incident angle of the line is 4 ° or less is 200 seconds or less.
  • the specific crystal plane is the (103) plane; when the principal plane is the (110) plane, the specific crystal plane is the (114) plane.
  • the principal surface is the (100) plane, the specific crystal plane is the (106) plane.
  • the incident angle of the X-ray with respect to the main surface of the reproduction base substrate 10c is more preferably 2 ° or less. However, considering the current measurement technique, the lower limit of the incident angle of X-rays to the main surface is 0.1 °.
  • the X-ray omega ( ⁇ ) rocking curve half-value width of the specific crystal plane is more preferably 100 seconds or less, and still more preferably 80 seconds or less. The full width at half maximum is preferably 10 seconds or longer. In the measurement of the X-ray omega rocking curve of the specific crystal plane, it is preferable to use an X-ray source that is monochromatized by diffracting twice on the (220) plane of the germanium single crystal.
  • Regenerative polishing process polishing conditions
  • polishing conditions As a condition for polishing the cut base substrate 10a in order to produce the regenerated base substrate 10b having the regenerated base substrate 10b with the base substrate 10 portion exposed on the surface and the polished thin film portion 11c, a known condition is adopted. Can do. The same conditions as these polishing conditions can also be employed when polishing the aluminum nitride single crystal portion 11a.
  • the regenerative polishing step is completed by chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • a known method can be adopted for CMP.
  • polishing agent the abrasive
  • aluminum nitride has low alkali resistance on the nitrogen polar face (-c face), it is weaker, neutral or acidic than a strong alkaline abrasive, specifically, an abrasive having a pH of 9 or less. Is preferably used.
  • a strong alkaline abrasive specifically, an abrasive having a pH of 9 or less.
  • an additive such as an oxidizing agent can be added to the polishing agent.
  • a commercially available polishing pad can be used, and the material and hardness thereof are not particularly limited.
  • the polishing in the regenerative polishing step may be performed by CMP, for example. Further, for example, when the thickness of the aluminum nitride thin film layer 11b laminated on the cut base substrate 10a is thick, the CMP is performed after adjusting the thickness close to a desired thickness by means of a high polishing rate such as mirror polishing lapping in advance. You may go.
  • the regenerated base substrate 10b or 10c obtained in the regenerative polishing step has a thin substrate thickness (in the case of the regenerated base substrate 10b with the base substrate 10 portion exposed on the surface) or a polished thin film 11c (regenerated base substrate).
  • the base substrate 10 is the same as the base substrate 10 except for the case of 10c. Therefore, the characteristics of the reproduction base substrate 10 b are almost the same as those of the base substrate 10. Therefore, the X-ray omega rocking curve half width and dislocation density of the reproduction base substrate 10 b or 10 c can be made equal to the X-ray omega rocking curve half width and dislocation density of the original base substrate 10.
  • a polishing step of adjusting the off angle of the main surface of the reproduction base substrate 10b or 10c to a desired off angle may be further performed.
  • the circulation step is a step of using the recycled base substrate (10b or 10c) made of the aluminum nitride single crystal obtained in the recycled polishing step as a base substrate for growing the new aluminum nitride single crystal layer 13 on the polished surface. is there.
  • the circulation process preferably includes performing the above-described preparation process, growth process, separation process, and regenerative polishing process using the regenerated base substrate as a new base substrate. The circulation process may be repeated.
  • the method for growing the new aluminum nitride single crystal layer 13 on the regenerated base substrate (10b or 10c) in the circulation step is not particularly limited, and the method described above in relation to the growth step can be adopted. it can.
  • the base substrate 10 (recycled base substrate 10b or 10c) is repeatedly used, so that the aluminum nitride single crystal layer (11 and 13) with stable quality is provided.
  • a laminated body can be manufactured, and the quality of the aluminum nitride single crystal free-standing substrate 11a obtained by cutting from the laminated body is also stabilized.
  • the aluminum nitride single crystal layer 11 separated from the base substrate 10 can be used as the aluminum nitride single crystal free-standing substrate 11a.
  • the separated aluminum nitride single crystal layer 11a is subjected to a known grinding process or polishing process, and at least one surface thereof is epiready (the surface is sufficiently flat enough to form a new layer by vapor phase growth). After finishing to this state, it can be used for forming an electronic device or a light emitting element layer.
  • a known method such as a metal organic chemical vapor deposition (MOCVD) method, a molecular beam epitaxy (MBE) method, or a hydride vapor phase epitaxy (HVPE) method can be employed. If the aluminum nitride single crystal free-standing substrate 11a finished in an epi-ready state has the same characteristics as the original base substrate 10, the aluminum nitride single crystal free-standing substrate 11a is used as a new base substrate, and further It is also possible to grow an aluminum nitride single crystal layer.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • HVPE hydride vapor phase epitaxy
  • the aluminum nitride single crystal free-standing substrate 11a newly obtained at each separation step is repeatedly used as the next base substrate, the aluminum nitride single-crystal free-standing substrate 11a having characteristics different from those of the original base substrate Is likely to be. Therefore, it is preferable not to use the aluminum nitride single crystal free-standing substrate 11a newly obtained at each separation step as the next base substrate.
  • Example 1 In this example, an embodiment in which a regenerated base substrate 10b having a base substrate 10 portion exposed on the surface was adopted, and an aluminum nitride single crystal layer (11 and 13) was obtained by repeatedly using one base substrate. This is an example.
  • the base substrate 10 has a diameter of 25 mm, a thickness of 500 ⁇ m, a plane orientation (001) plane of the main surface, an off angle 0.3 ° in the m-axis direction of the main surface, and an off angle 0.05 ° in the a-axis direction of the main surface.
  • the radius of curvature of the substrate surface is a surface shape in the range of a diameter of 23 mm excluding the outer periphery of 1 mm from the microscope image obtained by measuring the entire surface of the substrate with a 10 times objective lens using a white interference microscope (New View 7300 manufactured by Zygo). Obtained from the profile.
  • X-ray omega rocking curves of the (002) plane (tilted crystal plane) and (101) plane (tilted crystal plane) were fitted with a 1 ⁇ 2 ° slit in a thin film X-ray diffractometer (X'Pert MRD manufactured by Panallytical). Measurements were made using a Ge (220) four-crystal monochromator module and a Xe proportional coefficient tube detector.
  • the X-ray omega rocking curve of the (103) plane (specific crystal plane) is a Ge (220) bicrystal monochromator module in which a 1/8 ° slit is mounted on a thin film X-ray diffractometer (X'Pert MRD manufactured by Panallytical). Hybrid module) and a Xe proportional coefficient tube detector.
  • a Ge (220) four-crystal single color in which a 1/2 ° slit is attached to a thin film X-ray diffractometer (X'Pert MRD manufactured by Panallytical) X-ray omega rocking curve is measured by moving the stage to a position of ⁇ 8mm from the center with the substrate center at 0mm position, using the measurement module and Xe proportional coefficient tube detector, and the peak position and X-ray irradiation optical system From the positional relationship, the radius of curvature of the crystal plane was calculated.
  • X'Pert MRD manufactured by Panallytical
  • the dislocation density is determined after weighing potassium hydroxide and sodium hydroxide at a weight ratio of 1: 1 and etching the growth surface for 5 minutes using an alkali melt obtained by melting in a platinum crucible (crucible temperature 450 ° C.).
  • the substrate surface was observed by using a differential interference microscope with 5 fields of view (magnification 500 times), the number of generated pits was counted, and the counted number of pits was divided by the observed field of view area.
  • a total of 200 sccm of mixed gas was supplied to the reaction zone 31.
  • the temperature of the nitrogen source gas supply nozzle 45 was adjusted to 500 ° C. so that ammonium chloride, which is a reaction product of ammonia gas and hydrogen chloride gas, did not precipitate.
  • 1500 sccm of nitrogen gas was supplied from a barrier gas nozzle (not shown; a nozzle arranged so as to be able to supply barrier gas from between the nitrogen source gas supply nozzle 45 and the aluminum halide gas supply nozzle 42).
  • the base substrate 10 was heated to 1550 ° C. under the above gas supply conditions. Thereafter, hydrogen chloride gas 114 sccm is supplied from the additional halogen-based gas supply pipe 41, and hydrogen-nitrogen mixed carrier gas 1686 sccm is supplied from the source-generating halogen-based gas introduction pipe 39, so that a total of 1800 sccm is supplied from the aluminum halide gas supply nozzle 42. The mixed gas was supplied.
  • the aluminum nitride single crystal layer 11 was grown on the base substrate 10 at 860 ⁇ m with the gas flow rate and the base substrate temperature under the above conditions. After the growth of the aluminum nitride single crystal layer 11, the supply of aluminum chloride gas, ammonia gas, and hydrogen chloride gas was stopped, and the substrate was cooled to room temperature.
  • the X-ray omega rocking curve half-width of the (002) plane (tilted crystal plane) was 13 seconds and the X-ray omega rocking curve half of the (101) plane (tilted crystal plane).
  • the value width was 12 seconds and the X-ray omega rocking curve half width of the (103) plane (specific crystal plane) was 54 seconds.
  • the laminated body having the aluminum nitride single crystal layer after growth is partially thin film 11b of the aluminum nitride single crystal layer so that the cut surface is parallel to the base substrate surface.
  • a base substrate cut base substrate 10a
  • the cutting margin at the time of cutting was 280 ⁇ m
  • the thickness of the aluminum nitride single crystal free-standing substrate 11 a was 500 ⁇ m
  • the thickness of the remaining film 11 b of the aluminum nitride single crystal layer stacked on the cutting base substrate 10 a was 80 ⁇ m. It was.
  • the surface orientation of the main surface was the (001) plane, the off angle of the main surface in the m-axis direction was 0.35 °, and the main surface Off-angle 0.15 ° in the a-axis direction, curvature radius of the substrate surface 10 m, surface roughness 0.11 nm, dislocation density (etch pit density) 2 ⁇ 10 4 cm ⁇ 2 , (002) plane (gradient crystal plane ) X-ray omega rocking curve half-width 12 seconds, (101) plane (tilted crystal plane) X-ray omega rocking curve half-width 11 seconds, (103) plane (specific crystal plane) X-ray omega rocking curve half-width 48 Second, the radius of curvature of the (002) crystal plane parallel to the main surface was 12 m.
  • the half-value width ((002) plane (gradient crystal plane) of the X-ray omega rocking curves of the aluminum nitride single crystal layer 11 and the new aluminum nitride single crystal layer 13 The (101) plane (inclined crystal plane), (103) plane (specific crystal plane)) values, and variations were evaluated.
  • the thickness of the regenerated base substrate 10b decreases with each cycle. It was clear that it was almost the same as the value of the base substrate and functioned sufficiently as a seed crystal.
  • Example 2 This example employs an embodiment in which a recycled base substrate 10c having a polished aluminum nitride single crystal thin film portion 11c is employed, and a single base substrate is repeatedly used to form a thick aluminum nitride single crystal film (11 and 13). ) Is grown.
  • a base substrate (cut base substrate 10a) in which a thin film 11b of a part of the aluminum nitride single crystal layer is laminated is formed on the stacked body having the aluminum nitride single crystal thick film 11 after growth.
  • the aluminum nitride single crystal layer portion 11a was separated.
  • the cutting margin at the time of cutting was 280 ⁇ m
  • the thickness of the aluminum nitride single crystal free-standing substrate 11a was 510 ⁇ m
  • the thickness of the remaining film 11b of the aluminum nitride single crystal layer laminated on the cutting base substrate 10a was 90 ⁇ m. It was.
  • the surface orientation of the main surface was the (001) plane, the main surface had an off angle of 0.29 ° in the m-axis direction, Off-angle 0.04 ° in the a-axis direction of the surface, curvature radius of the substrate surface 11 m, surface roughness 0.13 nm, dislocation density (etch pit density) 5 ⁇ 10 4 cm ⁇ 2 , (002) plane (gradient crystal X-ray omega rocking curve half-width of (plane) (19), X-ray omega rocking curve half-width of (101) plane (tilted crystal plane) 14 seconds, X-ray omega rocking curve half-width of (103) plane (specific crystal plane) For 63 seconds, the radius of curvature of the (002) crystal plane parallel to the main surface was 12 m.
  • the film thickness of the new aluminum nitride single crystal layer 13 (only the growth time is changed), the film thickness of the aluminum nitride single crystal thin film 11b (only the thickness of the remaining layer after cutting is changed, other conditions are the same), The film thickness of the polished aluminum nitride single crystal thin film portion 11c (changes because the film thickness of the aluminum nitride single crystal thin film 11b has changed, but the polishing conditions and the polishing amount are the same), and the numerical value changes with each cycle.
  • the regenerated polishing is performed so that the aluminum nitride single crystal thin film portion 11c remains so that the surface of the original base substrate 10 is not exposed. Therefore, the thickness of the regenerated base substrate 10c is maintained even after repeated use cycles. Is maintained. This makes it possible to supply a large number of aluminum nitride single crystal free-standing substrates 11a of sufficient quality for use in devices from a single base substrate.
  • FIG. 4 is a diagram illustrating each process in this comparative example.
  • the half width is 14 seconds
  • the (103) plane (specific crystal plane) X-ray omega rocking curve has a half width of 62 seconds, and is the growth of the aluminum nitride single crystal layer 11 on the original base substrate 10. Similar crystallinity was obtained.
  • the laminated body having the grown aluminum nitride single crystal thick film 11 is laminated with a base substrate (cut base substrate 10a) on which a part of the thin film 11b of the aluminum nitride single crystal layer is laminated. Separated from the other aluminum nitride single crystal free-standing substrate 11a.
  • the cutting margin at the time of cutting was 270 ⁇ m, and the thickness of the aluminum nitride single crystal free-standing substrate 11a was 610 ⁇ m.
  • Evaluation of the aluminum nitride single crystal free-standing substrate 11d revealed that the result was almost the same as that of the aluminum nitride single crystal layer 11 obtained in the growth process on the base substrate 10, and the plane orientation of the main surface was (001) plane, Off-angle 0.31 ° in the m-axis direction, off-angle 0.03 ° in the a-axis direction of the main surface, curvature radius of the substrate surface 10 m, surface roughness 0.15 nm, dislocation density (etch pit density) 8 ⁇ 10 4 cm ⁇ 2 , (002) plane (tilted crystal plane) X-ray omega rocking curve half width 16 seconds, (101) plane (tilted crystal plane) X-ray omega rocking curve half width 13 seconds, (103) plane The X-ray omega rocking curve half width of (specific crystal plane) was 73 seconds, and the radius of curvature of the (002) crystal plane parallel to the main surface was 11 m.
  • the aluminum nitride single crystal free-standing substrate 11d obtained in the reclaim polishing step was used as a new base substrate, and the growth step was performed except that the growth time was changed.
  • a new aluminum nitride single crystal layer 14 was grown at 950 ⁇ m on the aluminum nitride single crystal free-standing substrate 11d.
  • the laminated body having the new aluminum nitride single crystal layer 14 after the growth is cut base substrate in which a part of the thin film 14b of the new aluminum nitride single crystal layer is laminated in the same manner as in the separation step of Example 1, and the other new aluminum nitride Separated into a single crystal free-standing substrate 14a.
  • the margin for cutting was 250 ⁇ m, and the thickness of the new aluminum nitride single crystal free-standing substrate 14a was 640 ⁇ m.
  • the plane orientation of the main surface was the (001) plane and the m-axis direction of the main surface Off-angle 0.22 °, off-angle 0.10 ° of main surface in the a-axis direction, radius of curvature of substrate surface 12 m, surface roughness 0.14 nm, dislocation density (etch pit density) 9 ⁇ 10 4 cm - , (002) plane (tilted crystal plane) X-ray omega rocking curve half-width 36 seconds, (101) plane (tilted crystal plane) X-ray omega rocking curve half-width 28 seconds, (103) plane (specific crystal Surface) X-ray omega rocking curve half width of 77 seconds and the radius of curvature of the (002) crystal plane parallel to the main surface was 11 m.
  • the separation process, the regenerative polishing process, and the circulation process were similarly performed, and the aluminum nitride single crystal free-standing substrate 14a was repeatedly used to grow an aluminum nitride single crystal layer 14 ′. That is, a new aluminum nitride single crystal free-standing substrate newly obtained at each separation step was used as a new base substrate, and a new aluminum nitride single crystal layer was grown on the new base substrate.
  • Table 1 When the cycle of repeated use was increased, the crystal quality of the new aluminum nitride single crystal layer 14 'was deteriorated, and the quality was particularly deteriorated after the fourth cycle.

Abstract

窒化アルミニウム単結晶からなるベース基板を準備する準備工程、500μm以上の厚みの窒化アルミニウム単結晶層を該ベース基板の主面上に成長することにより積層体を得る成長工程、該積層体の窒化アルミニウム単結晶層部分を切断し、積層体を窒化アルミニウム単結晶層の少なくとも一部の薄膜が積層したベース基板とそれ以外の窒化アルミニウム単結晶層部分とに分離する分離工程、該薄膜が積層したベース基板の薄膜の表面を研磨する再生研磨工程、該再生研磨工程で得られた窒化アルミニウム単結晶からなる再生ベース基板を、その研磨した表面上に窒化アルミニウム単結晶を成長させるベース基板として使用する循環工程を含む、窒化アルミニウム単結晶基板の製造方法。

Description

窒化アルミニウム単結晶基板の製造方法
 本発明は、窒化アルミニウム単結晶基板の新規な製造方法に関する。より具体的には、窒化アルミニウム単結晶層をその上に成長するベース基板を、繰り返し成長用のベース基板として使用する窒化アルミニウム単結晶基板の新規な製造方法である。
 窒化アルミニウム単結晶基板は、深紫外発光素子や高耐圧性を有するショットキーダイオード等の電子デバイス向けの基板として有用である。現在、窒化アルミニウム単結晶基板は、通常、以下のように製造されている。先ず、ベース基板上にアルミニウム源、窒素源となる原料を供給し、該ベース基板上で窒化アルミニウム単結晶層を成長する。次いで、該ベース基板と窒化アルミニウム単結晶層とを分離し、得られた窒化アルミニウム単結晶層を研磨等の方法により加工し、所望の表面状態の窒化アルミニウム単結晶基板を製造する。ベース基板上に窒化アルミニウム単結晶層を成長する方法としては、アルミニウム源及び窒素源として窒化アルミニウムを昇華する昇華法(例えば、特許文献1、2参照)、アルミニウム源として三ハロゲン化アルミニウムガス、窒素源ガストしてアンモニアガスを使用するハイドライドベーパーフェイズエピタキシー(HVPE)法が知られている(例えば、特許文献3)。
 窒化ガリウム単結晶は、その製造方法の技術が確立されており、厚膜の単結晶層を製造することができる。一方、窒化アルミニウム単結晶は、窒化ガリウム単結晶よりも、割れやすく、原料ガスの反応性が高い。そのため、厚膜の窒化アルミニウム単結晶層を成長すること自体が難しかった。例えば、サファイア基板やSiC基板上に窒化アルミニウムを成長する場合には、ベース基板と窒化アルミニウムの格子定数差や熱膨張係数差に起因して、成長中、もしくは成長後の冷却途中に窒化アルミニウムにクラックが発生し易かった。また、ベース基板であるサファイア基板にチタンでマスクした後、厚膜の窒化ガリウム単結晶層を製造する方法(Void Assisted Separation法)をそのまま窒化アルミニウムに適用した場合、結晶性のよい厚膜の窒化アルミニウム単結晶層を成長することは難しかった。
特表2009-517329号公報 特表2009-532313号公報 特開2003-303774号公報
 厚膜の窒化アルミニウム単結晶層を製造するための方法としては、昇華法による窒化アルミニウム単結晶の製造方法がある(例えば、特許文献1、2参照)。該方法では、ベース基板上に成長した窒化アルミニウム単結晶層が横方向にも成長し、段々と直径の大きな窒化アルミニウム単結晶となる。通常であれば、窒化アルミニウム単結晶基板は、直径の大きなものの方が半導体素子基板等の用途において、歩留まり改善という点で有利である。
 そして、より大きな窒化アルミニウム単結晶基板を製造するためには、ベース基板上に成長した窒化アルミニウム単結晶層部分を取り出し、取り出した窒化アルミニウム単結晶部分をベース基板として、繰り返し窒化アルミニウム単結晶層を成長させればよい。
 しかしながら、ベース基板上に成長させた窒化アルミニウム単結晶層から得られる基板を、新たなベース基板として使用する場合には、以下の点で問題が生じる場合があることが分かった。すなわち、ベース基板上に成長した厚膜の窒化アルミニウム単結晶層を、新たなベース基板として取り出し、この操作を繰り返し行って窒化アルミニウム単結晶層を成長させると、品質にばらつきが生じやすくなることが分かった。
 したがって、本発明の目的は、結晶品質の安定した窒化アルミニウム単結晶層を繰り返し製造できる方法を提供することにある。
 本発明者等は、上記課題を解決するため、ばらつきが生じる原因について調査した。そして、以下の検討を行った。先ず、ベース基板上に成長させた窒化アルミニウム単結晶層の厚膜をシングルワイヤーソウにより切断し、複数枚の窒化アルミニウム単結晶基板を取り出して、成長面(主面)の研磨条件を同じにしたベース基板を複数準備した。そして、それぞれのベース基板上に、さらに窒化アルミニウム単結晶層を成長させた後、それぞれの該窒化アルミニウム単結晶層の特性・物性を確認した。すると、各窒化アルミニウム単結晶層には、ばらつきがあることが確認された。このことから、各窒化アルミニウム単結晶層の成長中に生じるばらつきではなく、厚膜の窒化アルミニウム単結晶層より作製した、それぞれのベース基板にばらつきの原因があると推定された。
 さらに、このばらつきが生じる原因は、以下の通りに推定された。すなわち、窒化アルミニウム単結晶層の膜厚を厚くすればするほど、成長に時間がかかり、該層中に不規則な変化、例えば、結晶成長装置内部の部材劣化や変質、析出物の発生により、窒化アルミニウム単結晶層中に不純物や異物、気泡、結晶欠陥等が含まれやすくなる。そして、この不純物や異物、気泡、結晶欠陥等を含む部分を、それぞれ新たなベース基板として使用すると、得られる窒化アルミニウム単結晶層の結晶品質が低下する、或いは、ベース基板を換えるたびに結晶品質の異なる窒化アルミニウム単結晶層が得られることが分かった。
 以上の結果から本発明者らは、なるべくベース基板を繰り返し使用することにより、得られる窒化アルミニウム単結晶の品質・特性のばらつきを低減できると考え、ベース基板を繰り返し使用できる条件を見出し、本発明を完成するに至った。
 本発明は、アルミニウム源と窒素源とを窒化アルミニウム単結晶からなるベース基板の主面上に供給し、該主面上に窒化アルミニウム単結晶層を成長した後、該ベース基板と窒化アルミニウム単結晶層とを分離して、窒化アルミニウム単結晶基板を製造する方法において、
 窒化アルミニウム単結晶からなるベース基板を準備する準備工程、
 500μm以上の厚みの窒化アルミニウム単結晶層を該ベース基板の主面上に成長することにより、前記ベース基板と該ベース基板の主面上に成長された前記窒化アルミニウム単結晶層とを有する積層体を得る成長工程、
 前記積層体の前記窒化アルミニウム単結晶層部分を切断することにより、前記積層体を窒化アルミニウム単結晶層の少なくとも一部の薄膜が積層したベース基板とそれ以外の窒化アルミニウム単結晶層部分とに分離する分離工程、
 該薄膜が積層したベース基板の薄膜の表面を研磨する再生研磨工程、及び
 該再生研磨工程で得られた窒化アルミニウム単結晶からなる再生ベース基板を、その研磨した表面上に窒化アルミニウム単結晶を成長させるベース基板として使用する循環工程
 を含むことを特徴とする窒化アルミニウム単結晶基板の製造方法である。
 前記準備工程で準備するベース基板の主面としては、(001)面、(110)面、又は(100)面の何れかの面を採用することができる。
 より効率よく確実にベース基板を繰り返して使用するためには、前記分離工程で得られる、薄膜が積層したベース基板において、該薄膜の厚さが1~300μmとすることが好ましい。
 より品質の安定した窒化アルミニウム単結晶基板を製造し、かつベース基板の繰り返し使用回数を増やすためには、前記再生研磨工程で得られる、窒化アルミニウム単結晶からなる再生ベース基板において、研磨された薄膜部分の厚みが100μm以下であることが好ましい。
 さらに品質の安定した窒化アルミニウム単結晶基板を製造するためには、前記再生研磨工程において、薄膜部分を全て研磨により除去することにより、準備工程で準備したベース基板部分を表面に露出させることが好ましい。
 ベース基板上に成長される窒化アルミニウム単結晶層の厚みをより厚くするためには、前記準備工程で準備する、窒化アルミニウム単結晶からなるベース基板の主面の転位密度が10cm-2以下であることが好ましい。
 窒化アルミニウム単結晶層の品質を向上させるためには、前記準備工程で準備するベース基板の主面が、(001)面、(100)面、又は(110)面であり;前記主面に対するX線の入射角度が4°以下である条件下で測定される、特定結晶面のX線オメガ(ω)ロッキングカーブ半値幅が200秒以下であることが好ましい。ここで、主面が(001)面であるとき、特定結晶面は(103)面であり;主面が(100)面であるとき、特定結晶面は(106)面であり;主面が(110)面であるとき、特定結晶面は(114)面である。なお本明細書において、「主面に対するX線の入射角度」とは、主面とX線の進行方向とがなす角度を意味する。例えばX線の進行方向が主面に対して垂直であるとき、「主面に対するX線の入射角度」は90°である。
 本発明の窒化アルミニウム単結晶基板の製造方法は、前記アルミニウム源がハロゲン化アルミニウムガスであり、前記窒素源がアンモニアガスである場合に好適である。
 得られる窒化アルミニウム単結晶基板の用途を広げ、かつベース基板上に成長される窒化アルミニウム単結晶層の厚みをより厚くするためには、前記準備工程で準備する、窒化アルミニウム単結晶からなるベース基板の主面が、(001)面から0.00°以上1.00°以下の範囲でm軸方向に傾斜し、かつ(001)面から0.00°以上1.00°以下の範囲でa軸方向に傾斜している(001)面であり、主面のm軸方向への傾斜角および前記主面のa軸方向への傾斜角のうち少なくとも一方は0.00°超であることが好ましい。
 前記循環工程が、前記再生研磨工程で得られた再生ベース基板を新たなベース基板として用いて、前記準備工程、成長工程、分離工程、及び再生研磨工程を行うことを含むことが好ましい。
 さらに、前記循環工程を繰り返し行うことが好ましい。
 前記分離工程において、前記窒化アルミニウム単結晶層部分をワイヤーソウによって切断することが好ましい。
 本発明の窒化アルミニウム単結晶基板の製造方法によれば、結晶品質の安定した窒化アルミニウム単結晶層を繰り返し製造することが可能である。
本発明の一の実施形態に係る製造方法における各工程を説明する図である。 本発明の他の実施形態に係る製造方法における各工程を説明する図である。 本発明で好適に使用できる窒化アルミニウム単結晶の製造装置の一形態を説明する断面図である。 比較例に係る製造方法における各工程を説明する図である。
 以下、図面を参照しつつ、本発明の実施の形態について説明する。ただし、本発明はこれらの形態に限定されるものではない。なお、図面は必ずしも正確な寸法を反映したものではない。また図では、一部の符号を省略することがある。本明細書においては特に断らない限り、数値A及びBについて「A~B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。また「又は」及び「若しくは」の語は、特に断りのない限り論理和を意味するものとする。
 本発明は、アルミニウム源と窒素源とを窒化アルミニウム単結晶からなるベース基板上に供給し、該ベース基板上で窒化アルミニウム単結晶層を成長した後、該ベース基板と窒化アルミニウム単結晶層とを分離して、窒化アルミニウム単結晶基板を製造する方法である。そして、該ベース基板を再度使用することにより、品質の安定した窒化アルミニウム単結晶基板を製造する方法である。図1は、本発明の一の実施形態における各工程を説明する図である。図2は、本発明の他の一実施形態に係る製造方法における各工程を説明する図である。以下、これらを順に説明する。
 なお、前記アルミニウム源、及び前記窒素源については、成長工程に関連して説明する。前記ベース基板については、準備工程に関連して説明する。前記ベース基板と窒化アルミニウム単結晶層とを分離することについては、分離工程に関連して説明する。
 本発明の窒化アルミニウム単結晶基板の製造方法は、窒化アルミニウム単結晶からなるベース基板10を準備する準備工程、
 500μm以上の厚みの窒化アルミニウム単結晶層11を該ベース基板の主面上に成長することにより、ベース基板10と該ベース基板10の主面上に成長された窒化アルミニウム単結晶層11とを有する積層体を得る成長工程、
 該積層体のうち窒化アルミニウム単結晶層11部分を切断することにより、積層体を窒化アルミニウム単結晶層の少なくとも一部の薄膜が積層したベース基板10a(以下、単に「切断ベース基板10a」とする場合もある)とそれ以外の窒化アルミニウム単結晶層部分(以下、単に「窒化アルミニウム単結晶自立基板11a」とする場合もある)とに分離する分離工程、
 該薄膜が積層したベース基板(切断ベース基板10a)の薄膜(切断後に残存する薄膜部分を以下、単に「窒化アルミニウム単結晶薄膜11b」とする場合もある)の表面を研磨する再生研磨工程、及び
 該再生研磨工程で得られた窒化アルミニウム単結晶からなる再生ベース基板10b又は10cを、その研磨した表面に窒化アルミニウム単結晶(以下、単に「新窒化アルミニウム単結晶層13」とする場合もある)を成長させる新たなベース基板として使用する循環工程
を含むことを特徴とする。
 (準備工程)
 本発明において、準備工程は、ベース基板10を準備する工程である。このベース基板10は、窒化アルミニウム単結晶からなる。
 (ベース基板)
 そして、該ベース基板の窒化アルミニウム単結晶層11を成長させる面、すなわち主面は、特に制限されるものではない。本発明においては、品質の安定した窒化アルミニウム単結晶自立基板11aを製造できるため、該主面は、窒化アルミニウム単結晶が成長できれば、その結晶面は制限されるものではない。そのため、例えば、該主面は、(112)面等の低指数面であってもよい。ただし、得られる窒化アルミニウム単結晶自立基板11aの有用性、窒化アルミニウム単結晶層11の成長のし易さを考慮すると、該主面は、(001)面、(110)面、又は(100)面であることが好ましい。
 下記に詳述するが、循環工程で使用するベース基板の主面は、この準備工程で準備したベース基板の主面に対応する面指数を有する。つまり、準備工程で(001)面を主面とするベース基板を準備した場合、循環工程で使用するベース基板の主面は(001)面となり、最終的に得られる窒化アルミニウム単結晶基板11aの主面も(001)面となる。なお、(001)面はC面を指すが、この面が主面である場合には、C面、又は-C面を主面と見なす。また、同様に、(110)面をベース基板の主面として使用する場合には、最終的に得られる窒化アルミニウム単結晶基板11aの主面も(110)面となり;(100)面をベース基板の主面として使用する場合には、最終的に得られる窒化アルミニウム単結晶基板11aの主面も(100)面となる。
 また、ベース基板10主面は、窒化アルミニウム単結晶層11を成長させる面から0.00°以上1.00°以下、より好ましくは0.05°以上0.70°以下、さらに好ましくは0.10°以上0.40°以下のオフ角を設けることもできる。このようなオフ角を設けることにより、窒化アルミニウム単結晶層11の厚みをより厚くすることができる。なお、準備工程で準備したベース基板の主面と、循環工程で使用するベース基板(再生ベース基板10b又は10c)の主面とは、対応すると上記説明したが、このオフ角(再生ベース基板10b又は10cのオフ角)は、再生研磨工程で調整することができる。
 中でも、ベース基板10の主面が(001)面である場合には、ベース基板10の主面は、該(001)面から0.00°以上1.00°以下範囲でm軸方向に傾斜し、かつ該(001)面から0.00°以上1.00°以下の範囲でa軸方向に傾斜しており、主面のm軸方向への傾斜角および主面のa軸方向への傾斜角の少なくとも一方が0.00°超であることが好ましい。この範囲にオフ角を設定することにより、窒化アルミニウム単結晶層11をより厚くすることができる。ベース基板10の主面が(001)面である場合に窒化アルミニウム単結晶層11をさらに厚くするためには、ベース基板10の主面は、(001)面から0.05°以上0.70°以下の範囲でm軸方向に傾斜していることがより好ましく、(001)面から0.10°以上0.40°以下の範囲でm軸方向に傾斜していることがさらに好ましい。また、(001)面から0.05°以上0.70°以下の範囲でa軸方向に傾斜していることがより好ましく、(001)面から0.10°以上0.40°以下の範囲でa軸方向に傾斜していることがさらに好ましい。準備工程におけるベース基板10の主面が(001)面である場合には、最終的に得られる窒化アルミニウム単結晶自立基板11aの主面も(001)面となる。(001)面を主面とする窒化アルミニウム単結晶自立基板11aは、発光素子や電子デバイス用の基板として幅広く使用することができる。
 同様に、ベース基板10の主面が(110)面である場合には、ベース基板10の主面は、該(110)面から0.00°以上1.00°以下範囲でc軸方向に傾斜し、かつ該(110)面から0.00°以上1.00°以下の範囲でm軸方向に傾斜しており、主面のc軸方向への傾斜角および主面のm軸方向への傾斜角の少なくとも一方が0.00°超であることが好ましい。
 また、ベース基板10の主面が(100)面である場合には、ベース基板10の主面は、該(100)面から0.00°以上1.00°以下範囲でc軸方向に傾斜し、かつ該(100)面から0.00°以上1.00°以下の範囲でa軸方向に傾斜しており、主面のc軸方向への傾斜角および主面のa軸方向への傾斜角の少なくとも一方が0.00°超であることが好ましい。
 (110)面や(100)面のような一般的に無極性面とよばれる面方位を有する窒化アルミニウム単結晶基板は、発光素子において内部量子効率を高めることができ、発光素子性能の向上に寄与する。
 ベース基板10の主面(窒化アルミニウム単結晶層11を成長させる面)が、(001)面、(110)面、又は(100)面であり;該主面に対するX線の入射角度が4°以下である条件下で測定される、特定結晶面のX線オメガ(ω)ロッキングカーブ半値幅が200秒以下であることが好ましい。ここで、上記主面が(001)面である場合には、特定結晶面は(103)面であり;上記主面が(110)面である場合には、特定結晶面は(114)面であり;上記主面が(100)面である場合には、特定結晶面は(106)面である。ベース基板10の主面に対するX線の入射角度は、より好ましくは2°以下である。ただし、現在の測定技術を考慮すると、主面に対するX線の入射角度の下限は0.1°である。ベース基板の上記特定結晶面のX線オメガロッキングカーブの測定にあたっては、ベース基板10に対して浅い入射角度でX線が照射されるため、該X線オメガロッキングカーブの半値幅の値は結晶表面近傍の結晶品質を反映する。したがって、上記特定結晶面のX線オメガロッキングカーブの半値幅を測定することにより、特に研磨によるダメージ層が低減されているか否かを判断できる。上記特定結晶面のX線オメガロッキングカーブの半値幅が上記上限値以下であるベース基板10においては、該ベース基板の成長面(主面)におけるダメージ層が低減されている。したがって、上記特定結晶面のX線オメガロッキングカーブの半値幅が上記上限値以下であるベース基板10を用いることにより、ベース基板10上に成長される窒化アルミニウム単結晶層11の品質が向上する。窒化アルミニウム単結晶層11の品質向上を考慮すると、上記特定結晶面のX線オメガロッキングカーブの半値幅は100秒以下であることがより好ましく、50秒以下であることがさらに好ましい。該半値幅は、低ければ低いほど好ましいが、ベース基板10の工業的な生産を考慮すると、10秒以上であることが好ましい。
 なお、上記特定結晶面のX線オメガロッキングカーブの測定においては、X線源の単色化の手段によっても、測定できる半値幅の分解能が影響を受けるため、ゲルマニウム単結晶の(220)面で2回回折することにより単色化したX線源を用いることが好ましい。
 さらに、ベース基板10の主面(窒化アルミニウム単結晶層11を成長させる面)が、(001)面、(110)面、又は(100)面であり;該主面に対するX線の入射角度が10°以上である条件下で測定される、傾斜結晶面のX線オメガ(ω)ロッキングカーブの半値幅が100秒以下であることが好ましい。ここで上記主面が(001)面である場合には、傾斜結晶面は(002)面および(101)面であり、該2つの傾斜結晶面の両方についてX線オメガ(ω)ロッキングカーブの半値幅が上記上限値以下であることが好ましく;上記主面が(110)面である場合には、傾斜結晶面は(110)面および(111)面であり、該2つの傾斜結晶面の両方についてX線オメガ(ω)ロッキングカーブの半値幅が上記上限値以下であることが好ましく;上記主面が(100)面である場合には、傾斜結晶面は(100)面および(201)面であり、該2つの傾斜結晶面の両方についてX線オメガ(ω)ロッキングカーブの半値幅が上記上限値以下であることが好ましい。上記特定結晶面のX線オメガ(ω)ロッキングカーブの半値幅が結晶の表面近傍における結晶品質を反映するのに対し、傾斜結晶面のX線オメガ(ω)ロッキングカーブの半値幅は結晶の比較的深部における結晶品質を反映する。傾斜結晶面のX線オメガ(ω)ロッキングカーブの半値幅がこの範囲を満足することにより、ベース基板10上に成長する窒化アルミニウム単結晶層11の品質がさらに向上する。上記傾斜結晶面のX線オメガ(ω)ロッキングカーブの半値幅は、50秒以下であることがさらに好ましく、30秒以下であることが特に好ましい。該半値幅は、低ければ低いほど好ましいが、ベース基板10の工業的な生産を考慮すると、5秒以上であることが好ましい。
 なお、上記傾斜結晶面のX線オメガロッキングカーブの測定においては、X線源の単色化の手段によっても、測定できる半値幅の分解能が影響を受けるため、少なくともゲルマニウム単結晶の(220)面で4回回折することにより単色化したX線源を用いることが好ましい。
 窒化アルミニウム単結晶層をベース基板10の主面上に厚膜で形成する場合には、該主面における転位密度が10cm-2以下であることが好ましい。窒化アルミニウム単結晶層11の厚みをより厚くするためには、主面の転位密度は10cm-2以下であることがより好ましく、10cm-2以下がさらに好ましく、10cm-2以下が特に好ましい。転位密度は少なければ少ないほど好ましいが、ベース基板の工業的生産を考慮すると、主面の転位密度の下限値は10cm-2である。なお、本発明において、転位密度の値としては、エッチピット密度の値を代用する。エッチピット密度とは、窒化アルミニウム単結晶基板を水酸化カリウム及び水酸化ナトリウムの溶融アルカリ中でエッチングすることにより転位存在箇所にピットを形成させ、形成された窒化アルミニウム単結晶基板表面のピットの存在個数を光学顕微鏡観察によりカウントし、カウントされたピットの個数を観察面積で除することにより算出される面積数密度の値である。
 前記ベース基板10の形状は、円形、四角形、又は不定形でもよく、その面積が100~10000mmであることが好ましい。ベース基板10の厚みは、窒化アルミニウム単結晶層を成長する上で強度不足で割れることのない範囲で決定すればよい。具体的には50~2000μmであることが好ましく、100~1000μmであることがより好ましい。
 ベース基板10の主面は、その他、特に制限されるものではないが、表面粗さ(二乗平均粗さ)が0.05~0.5nmであり、原子間力顕微鏡や走査プローブ顕微鏡観察により2μm×2μm視野程度で原子ステップが観察されることが好ましい。表面粗さは、下記に詳述する研磨工程と同じく、CMP(化学的機械的研磨)研磨で調整することができる。表面粗さの測定は、原子間力顕微鏡や走査プローブ顕微鏡を用い、基板表面の異物や汚染物を除去したうえで行い、5μm×5μm視野の観察から表面粗さを求める。ただし、島状やストライプ状の凹凸加工を主面に施したベース基板を用いることも可能である。
 ベース基板10主面の表面の曲率半径も、特に制限されるものではないが、0.1~10000mの範囲であることが好ましい。本発明ではベース基板を再生ベース基板として繰り返し用いるため、ベース基板10主面の表面の曲率半径は、好ましくは2~10000m、より好ましくは8~10000mである。また、ベース基板10の主面が(001)面、(110)面、又は(100)面である場合、ベース基板10の主面をなす結晶面または主面に平行な結晶面の曲率半径は、特に制限されるものではないが、2~10000mの範囲であることが好ましい。本発明では窒化アルミニウム単結晶層を500μm以上厚く成長するため、ベース基板10の主面をなす結晶面または主面に平行な結晶面の曲率半径が小さいと厚膜成長時にクラックが生じることがある。このため、該結晶面の曲率半径は好ましくは5~10000m、さらに好ましくは10~10000mである。本明細書において、ベース基板10の主面が(001)面、(110)面、又は(100)面である場合における「ベース基板10の主面をなす結晶面または主面に平行な結晶面」とは、主面が(001)面である場合には(002)面であり、主面が(110)面である場合には(110)面自体であり、主面が(100)面である場合には(100)面自体である。これは、窒化アルミニウムの(110)面および(100)面はそれ自体でX線回折を生じるのに対し、(001)面ではX線の回折が起きず、(001)面に平行な(002)面でX線の回折が生じることによる。
 このようなベース基板を使用することにより、ベース基板10上に成長させる窒化アルミニウム単結晶層11の結晶品質が良好なものとなり、分離工程によって得られる窒化アルミニウム単結晶自立基板11aの結晶品質も良好なものとなる。さらに、該窒化アルミニウム単結晶自立基板11aを用いて製造する発光素子や電子デバイスの性能が良好なものとなる。
 このベース基板10は、昇華法で成長されたものであっても、HVPE法で成長したものであってもよい。当然、液相法で成長されたものであっても本発明の効果を問題なく得られる。また、島状やストライプ状の凹凸加工を事前に行ったベース基板の使用も可能である。
 なお、上記ベース基板の特性、例えば、主面、オフ角、X線オメガロッキングカーブの半値幅、転位密度、大きさ、表面粗さ、曲率半径等の特性は、下記に詳述する再生ベース基板10b又は10cにも適用できる。
 (成長工程)
 成長工程は、500μm以上の厚みの窒化アルミニウム単結晶層11をベース基板10上に成長する工程である。
 窒化アルミニウム単結晶層11の成長方法は、昇華法、液相法、又は気相成長法の何れの方法を採用してもよい。昇華法の場合、アルミニウム源とは、窒化アルミニウムを昇華、もしくは分解させた蒸気であり、窒素源とは窒化アルミニウムを昇華、もしくは分解させた蒸気、または成長装置に供給した窒素ガスである。液相法の場合、アルミニウム源と窒素源とは、窒化アルミニウムが溶解した溶液である。気相成長法の場合、アルミニウム源は、塩化アルミニウム、ヨウ化アルミニウム、臭化アルミニウム等のハロゲン化アルミニウムガス、トリメチルアルミニウム、トリエチルアルミニウム等の有機アルミニウムガスであり、窒素源は、アンモニアガス、窒素ガスである。
 (好適な成長方法;HVPE法による窒化アルミニウム単結晶層11の成長)
 これらの成長方法の中でも、本発明の窒化アルミニウム単結晶の製造方法は、気相成長法の中でもHVPE(ハイドライド気相成長)法により窒化アルミニウム単結晶を成長する場合に、効果が顕著となる。HVPE法は、昇華法と比べると成長速度が遅いが、深紫外光透過率に悪影響を及ぼす不純物の濃度を低減できるため、発光素子用窒化アルミニウム単結晶基板の製造に好適である。また、不純物が低減できるため、電子移動度に悪影響を及ぼすアルミニウム空孔等の点欠陥濃度が低くなるため、電子デバイス用窒化アルミニウム単結晶基板の製造にも好適である。また、液相法よりも成長速度が高いため、結晶性の良好な単結晶を速い成膜速度で成長させることが可能であるため、結晶品質と量産性とをバランスした製造方法である。
 HVPE法は、以上のような利点があるが、窒化アルミニウム単結晶層11を成長する場合には、ハロゲン化アルミニウムガスとアンモニアとの反応性が速いため、ベース基板10上での反応の他に、気相での反応が起こり易く、微粒子状の窒化アルミニウムが生成し易い。その結果、ベース基板10上に成長している窒化アルミニウム単結晶層11に、意図していない微粒子が付着したりする場合がある。このような微粒子が付着した窒化アルミニウム単結晶層11を分離、切断、研磨してそれぞれベース基板にすると、各ベース基板上の窒化アルミニウム単結晶にばらつきが生じやすくなる。本発明は、このばらつきを低減することができるため、HVPE法により窒化アルミニウム単結晶層11を成長する場合に、好適に適用できる。
 HVPE法に用いる気相成長装置(HVPE装置)300の概略図を図3に示す。窒化アルミニウム単結晶層の成長は、アルミニウム源ガスと、窒素源ガスとを反応器中に供給し、両ガスを加熱されたベース基板10上で反応させることにより行われる。アルミニウム源ガスとしては、塩化アルミニウムガス等のハロゲン化アルミニウムガスや、アルミニウム有機金属ガスとハロゲン化水素ガスとの混合ガスが用いられる。また、窒素源ガスとしてはアンモニアガスが好適に使用される。これらの原料ガスは、水素ガス、窒素ガス、アルゴンガス、ヘリウムガス等のキャリアガスとともに供給される。キャリアガスとしては1種のガスを単独で用いてもよく、2種以上のガスを組み合わせて用いてもよい。さらに、アルミニウム源ガスや窒素源ガスにはハロゲンガスやハロゲン化水素ガス等のハロゲン系ガスを適宜追加供給し、ハロゲン化アルミニウムガスからの不均化反応による金属アルミニウムの発生を抑制してもよい。これらの各種ガス供給量をはじめ、ベース基板に原料ガスを供給するノズル形状やリアクタ形状、キャリアガスの組成、キャリアガス供給量、リアクタ中のガス流の線速度、成長圧力(リアクタ内の圧力)、ベース基板の加熱温度(成長温度)等の成長にかかわる条件を適宜調整し、所望する成長速度において良好な結晶品質が得られるように調整する。典型的な成長条件としては、アルミニウム源ガス:0.1~100sccm、窒素源ガス:1~10000sccm、追加供給するハロゲン系ガス:0.1~10000sccm、キャリアガスの総流量:1000~100000sccm、キャリアガスの組成:窒素、水素、アルゴン、ヘリウム(ガス組成比は任意)、アルミニウム源ガスを供給するノズル噴出口の線速度:50~500sccm、窒素源ガスを供給するノズル噴出口の線速度:10~400sccm、リアクタ全体を押し流すガスの線速度:5~200sccm、成長圧力:36~1000Torr、ベース基板の加熱温度(成長温度):1200~1800℃である条件を例示できる。
 HVPE法では、結晶性が良好な単結晶を得るために、様々な検討が行われている。本発明においては、それら公知の方法が特に制限なく使用できる。中でも、本発明においては、一ハロゲン化アルミニウムガスが低減されたハロゲン化アルミニウムガス(主成分は、三ハロゲン化アルミニウムガス)を原料ガスとすることが好ましい。三ハロゲン化アルミニウムガス中に一ハロゲン化アルミニウムガスが多く含まれると、結晶品質が低下する場合がある。そのため、なるべくアルミニウム源ガス中に一ハロゲン化アルミニウムガスが含まれないような手段をとることが好ましい。
 窒化アルミニウム単結晶層11の成長初期の成長環境が不安定な期間に、一時的に気相中での窒化アルミニウム微粒子の発生が起こりにくい条件を選択することもできる。成長初期の成長条件は、上記の典型条件の中から任意に成長条件を選択することできる。具体的には、ベース基板上への成長初期段階に原料供給量を制限すること、共存するハロゲン系ガスの供給量を一時的に増加させること、圧力を変動させる等の手段を実施する短時間の成長段階を設け、成長環境が安定した時点で厚膜成長を行う条件に移行することができる。この条件で、最大膜厚が100μm以内になるよう窒化アルミニウム単結晶層11を成長させることにより、窒化アルミニウム単結晶自立基板11aの品質のばらつきをより低減することができる。なお、当然ながら、上記に例示した気相中での窒化アルミニウム微粒子の発生が少ない条件、異物などの付着物の少ないフロー条件であれば、ベース基板上に窒化アルミニウム単結晶層(11および13)を成長初期段階と同一条件で成長させることも可能である。
 また、ベース基板に島状やストライプ状の凹凸加工を事前に行って成長初期段階の窒化アルミニウム単結晶層の成長箇所を制限する方法も適用可能である。このような成長方法においては、窒化アルミニウム単結晶はベース基板表面の各凸部を起点として独立に、直上方向および斜め上方向に成長し、やがて隣接する凸部を起点として独立に成長した窒化アルミニウム単結晶どうしが接するようになり、最終的には単一の窒化アルミニウム単結晶の厚膜が成長する。
 また、窒化アルミニウム単結晶層11の導電性を制御する必要のある場合には、適宜ドナーやアクセプタとなる不純物(例えば、Si、Mg、S等を含む化合物)を供給しながら窒化アルミニウム単結晶層を成長することも可能である。
 本発明において、成長工程において成長される窒化アルミニウム単結晶層11の厚さは、500μm以上でなければならない。成長される窒化アルミニウム単結晶層11の厚さが500μm未満であると、分離工程によって得られる窒化アルミニウム単結晶自立基板11aが薄くなるため、窒化アルミニウム単結晶自立基板11aを外周研削や研磨によってデバイス製造用のウェハに加工する際に、窒化アルミニウム単結晶自立基板11aが強度不足により破損しやすくなり、好ましくない。一方、成長工程における窒化アルミニウム単結晶層11の厚みの上限は、特に制限されるものではないが、工業的な生産を考慮すると2000μmである。成長される窒化アルミニウム単結晶層11が過度に厚い場合には成長工程や研磨工程に時間を要するため、工業的な生産を考慮すると、成長工程において成長される窒化アルミニウム単結晶層11の厚みは、600~1500μmであることが好ましく、800~1200μmであることがさらに好ましい。成長工程を経ることにより、ベース基板10と、該ベース基板10上に成長された窒化アルミニウム単結晶層11とを有する積層体が得られる。
 なお、上記成長工程における条件は、再生ベース基板10b又は10cをベース基板として用い、その表面上(主面上)に新窒化アルミニウム単結晶層13を成長する場合にも適用できる。
 (分離工程)
 本発明において、分離工程は、上記成長工程において得られた積層体の窒化アルミニウム単結晶層部分11を切断することにより、該積層体を、窒化アルミニウム単結晶層11の少なくとも一部の薄膜11bが積層したベース基板(切断ベース基板10a)とそれ以外の窒化アルミニウム単結晶層部分11aとに分離する工程である。分離工程における切断には、公知の方法(例えばワイヤーソウ等。)を採用することができる。
 分離工程における切断は、ベース基板10の成長表面に対して平行に行う。分離工程でワイヤーソウを使用する場合、ワイヤーソウとしては固定砥粒または遊離砥粒のいずれのワイヤーソウを用いてもよい。ワイヤーの張力は、切断しろの厚さが薄くなるように、例えば、切断しろの厚さが100~300μm程度になるように適宜調整することが好ましい。
 また、ワイヤーソウの切断速度は、窒化アルミニウム単結晶層の切断表面に残留するひずみ層(ダメージ層)が薄くなるように適宜調整されるが、比較的低速度の条件が好ましく、0.5mm/h~20mm/hの範囲が好適である。窒化アルミニウム単結晶の結晶面に対する切断方向も任意である。
 切断時のワイヤーは揺動移動させてもよい。また、ワイヤーを切断方向に連続的に移動させてもよく、また切断方向に間欠的に移動させてもよい。切断中のワイヤーの搖動移動は、切断時の摩擦により発生する熱による割れの発生を防ぐために適宜制御される。
 また、切断時の基板外周のチッピングに伴うクラック発生を抑制するため、分離工程に先立ってベース基板10と窒化アルミニウム単結晶層11との積層体の全体もしくは一部を樹脂やセメント等で覆った後に切断を行ってもよい。この際、樹脂には一般的なエポキシ樹脂、フェノール樹脂やワックス類等を使用することができ、積層体を樹脂で覆った後に、自己乾燥による硬化、熱硬化や光硬化等一般的な手段により樹脂を硬化させた後、切断を行う。また、セメントとしては一般的な工業用ポルトランドセメント、アルミナセメント、石膏等が使用できる。
 切断工程における切断の際には、上記積層体自体を回転させてもよい。積層体の回転数は1rpm~10rpmの範囲とすることが好ましい。
 分離後の切断ベース基板10aに残留する窒化アルミニウム単結晶層薄膜11bの厚さは、特に制限されるものではないが、5μm以上300μm以下であることが好ましい。窒化アルミニウム単結晶層薄膜11bの厚さが上記範囲内であると、後述する再生研磨工程を経ることにより、ひずみ層を除くことが可能になる。
 また、窒化アルミニウム単結晶層薄膜11bの厚みは、上記範囲の中でも、下記に詳述する研磨工程において、研磨された窒化アルミニウム単結晶層薄膜11cを有する研磨基板(再生ベース基板10c)を作製する場合と、窒化アルミニウム単結晶層薄膜11bを有さない研磨基板((再生ベース基板10b);元のベース基板10が表面に露出する基板)を作製する場合とで、最適な厚みが異なる。次に、これらの再生ベース基板を作製する場合における、窒化アルミニウム単結晶薄膜11bの好適な厚みについて説明する。
 (分離工程:窒化アルミニウム単結晶層薄膜11bを有さない研磨基板を作製する場合)
 切断ベース基板10aから窒化アルミニウム単結晶層薄膜11bを有さない研磨基板(再生ベース基板10b)を作製する場合には、前記ひずみ層が窒化アルミニウム単結晶層薄膜11bの内部で留まっている状態が最も好ましい。そのため、この場合には、分離工程における窒化アルミニウム単結晶層薄膜11bの厚さは、1~300μmであることが好ましい。分離工程における窒化アルミニウム単結晶層薄膜11bの厚さがこの範囲内であることにより、研磨時間を短くすることができ、元のベース基板10へのダメージ層の伝搬を抑制することができる。元のベース基板10の使いまわしの回数を増やすことを考慮すると、窒化アルミニウム単結晶層薄膜11bを有さない研磨基板(再生ベース基板10b)を作製する場合の、分離工程における窒化アルミニウム単結晶層薄膜11bの厚みは、20~200μmとすることがより好ましく、50~150μmとすることがさらに好ましい。
 (分離工程:研磨された窒化アルミニウム単結晶層薄膜11cを有する研磨基板を作製する場合)
 また、切断ベース基板10aから窒化アルミニウム単結晶層薄膜11cを有する研磨基板(再生ベース基板10c)を作製する場合には、研磨により、窒化アルミニウム単結晶層薄膜11b表面にある前記ひずみ層を除去することが好ましい。そのため、この場合には、分離工程における窒化アルミニウム単結晶層薄膜11bの厚さは、20~300μmであることが好ましい。分離工程における窒化アルミニウム単結晶層薄膜11bの厚さがこの範囲内であることにより、研磨時間を短くすることができ、窒化アルミニウム薄膜層11bの残存層にダメージ層が残らないようにすることが可能になる。再生ベース基板の使いまわしの回数を増やすことや、確実にダメージ層を除去することを考慮すると、窒化アルミニウム単結晶層薄膜11cを有する研磨基板(再生ベース基板10c)を作製する場合の分離工程における窒化アルミニウム単結晶層薄膜11bの厚みは、50~250μmとすることがより好ましく、さらには100~200μmとすることが好ましい。
 積層体を切断する前または後には、ベース基板10/窒化アルミニウム単結晶層11の外周に発生した多結晶を除去する目的、及び、外周形状を円形に整える目的で、外周研削工程を導入してもよい。また例えば、オリエンテーションフラットや基板外周端面に結晶面や傾斜面を出すための面取り加工等の、公知の基板加工を行ってもよい。再生ベース基板10b又は10cの主面のオフ角を変更する場合には、例えば切断時のワイヤーソウの主面に対応する結晶面に対する角度を適宜調整してもよい。また、窒化アルミニウム単結晶層11の成長直後の表面には凹凸構造がみられる場合が多いため、切断前に平面出し研磨や化学的機械的研磨(CMP)を行ってもよい。
 (再生研磨工程)
 再生研磨工程は、該薄膜が積層した切断ベース基板10aの薄膜11b側から、切断ベース基板10aの表面を研磨する工程である。再生研磨工程を経ることにより、再生ベース基板10b又は10cが作製される。
 ベース基板10上に成長する窒化アルミニウム単結晶層11の品質には、成長過程において偶発的に発生する析出物および付着物や、結晶成長装置内部の部材劣化や変質に伴う不純物等により、局所的な劣化がみられる場合がある。このため、窒化アルミニウム単結晶層薄膜11bを厚く残したまま再生研磨により再生ベース基板10cを製造すると、窒化アルミニウム単結晶層薄膜11bの局所的な劣化部位が残留する可能性が高くなる。ただし、その一方で、切断ベース基板10aからベース基板10部分をその表面に露出させた再生ベース基板10bを作製する場合には、該再生ベース基板10bの厚みがそのベース基板としての使用を繰り返すごとに薄くなり、操作性が低下する場合がある。そのため、1つのベース基板を繰り返し長く使用する観点からは、研磨した薄膜部分を有する再生ベース基板10cを作製することが好ましい。また、品質がより安定した窒化アルミニウム単結晶を成長する場合には、ベース基板10部分が表面に露出した再生ベース基板10bを作製することが好ましい。次に、これら再生ベース基板10bおよび10cについて説明する。
 (再生研磨工程:ベース基板10部分が表面に露出した再生ベース基板10b)
 次工程の循環工程において、局所的な劣化が残存した再生ベース基板上に新たな窒化アルミニウム単結晶層13を成長すると、残存した局所的な劣化部位が新たな窒化アルミニウム単結晶層13に伝播し易くなる。局所的な劣化部位は偶発的に発生するため、新たな窒化アルミニウム単結晶層13の結晶品質にバラツキが生じやすくなる。
 したがって、より品質の安定した新窒化アルミニウム単結晶層13を成長するためには、再生研磨工程においては、分離工程によって得られた切断ベース基板10aを基板全面にわたってベース基板が露出するまで再生研磨し、再生ベース基板10bを製造することが好ましい。次いで、循環工程において再生ベース基板10b上に新窒化アルミニウム単結晶層13を成長する。これにより、ベース基板10上に窒化アルミニウム単結晶層11を成長する際に偶発的な劣化部位が生じても、再生研磨工程により劣化部位を除去することができる。その結果、循環工程において再生ベース基板10b上に成長される新窒化アルミニウム単結晶層13の品質はより安定することになる。さらには、循環工程を複数回繰り返して、ベース基板を繰り返し使用しても、安定した品質の窒化アルミニウム単結晶層(11および13)が得られるようになる。
 ベース基板10部分が表面に露出した再生ベース基板10bを製造する形態の再生研磨工程では、窒化アルミニウム単結晶薄膜層11bを全て除去する。切断ベース基板10aの表面には切断時にひずみ層が発生する。窒化アルミニウム単結晶薄膜層11bが薄い場合には、ベース基板10にまで切断時のひずみが伝播する可能性がある。このような場合には、窒化アルミニウム薄膜層11bを除去し、さらに元のベース基板10の表面まで研磨することにより、再生ベース基板10bを作製することが好ましい。再生ベース基板10bにひずみ層が残留する場合、次の循環工程において再生ベース基板10b上に成長する新窒化アルミニウム単結晶層13の結晶品質が劣化する、あるいは残留応力により新窒化アルミニウム単結晶層13にクラックが発生する。また、ひずみが残留するとトワイマン効果による基板の変形(そり)が生じるため、基板の取り扱いに一段の注意が必要となる。なお、再生ベース基板10bにおけるひずみ層の有無については、前記準備工程のベース基板10について説明した方法と同様の方法で確認することができる。具体的には、再生ベース基板10bの主面(新窒化アルミニウム単結晶層13を成長させる面)が、(001)面、(110)面、又は(100)面であり;該主面に対するX線の入射角度が4°以下である条件下で測定される、特定結晶面のX線オメガ(ω)ロッキングカーブ半値幅が、200秒以下であることが好ましい。ここで、上記主面が(001)面である場合には、特定結晶面は(103)面であり;上記主面が(110)面である場合には、特定結晶面は(114)面であり;上記主面が(100)面である場合には、特定結晶面は(106)面である。再生ベース基板10bの主面に対するX線の入射角度は、より好ましくは2°以下である。ただし、現在の測定技術を考慮すると、主面に対するX線の入射角度の下限は0.1°である。上記特定結晶面のX線オメガ(ω)ロッキングカーブ半値幅は、より好ましくは100秒以下、さらに好ましくは60秒以下である。該半値幅は10秒以上であることが好ましい。なお、上記特定結晶面のX線オメガロッキングカーブの測定においては、ゲルマニウム単結晶の(220)面で2回回折することにより単色化したX線源を用いることが好ましい。
 再生研磨工程における、再生ベース基板10bの厚さは、元のベース基板10の厚さよりも0.1μm以上300μm以下の範囲で薄いことが好ましい。ただし、再生ベース基板10b上に成長する新窒化アルミニウム単結晶層13の品質安定性や、元のベース基板10の繰り返し使用回数を増やす観点では、再生ベース基板10bの厚さは、元のベース基板10の厚さよりも5μm以上100μm以下の範囲で薄いことがより好ましく、元のベース基板10の厚さよりも10μm以上50μm以下の範囲で薄いことがさらに好ましい。
 (再生研磨工程:研磨された薄膜部分11cを有する再生ベース基板10c)
 次工程の循環工程において、研磨された薄膜部分11cを有する再生ベース基板10c上に新窒化アルミニウム単結晶層13を成長する場合には、新窒化アルミニウム単結晶層13の品質バラツキを抑えるため、該再生ベース基板10cに積層される窒化アルミニウム単結晶薄膜11bの厚さを所定の範囲内とすることが好ましい。上述の通り、ベース基板10上に成長した窒化アルミニウム単結晶層11には、偶発的に局所的な劣化部位が発生する可能性があるが、窒化アルミニウム単結晶薄膜11bの膜厚を所定の範囲に収めることにより、局所的な劣化部位を排除できる可能性が高まる。さらに、研磨された薄膜部分11cを有する再生ベース基板10cを作製する形態によれば、元のベース基板10は再生研磨工程を経ても初期の厚さを維持できるため、ベース基板10を繰り返し使用する回数を増やすことができる。
 再生研磨工程における、研磨された薄膜部分11cを有する再生ベース基板10cの厚さは、元のベース基板10の厚さよりも0.1μm以上100μm以下の範囲で厚いことが好ましい。すなわち、再生研磨後の窒化アルミニウム単結晶薄膜11cの厚みが0.1μm以上100μm以下の範囲であることが好ましい。ただし、再生ベース基板10c上に成長する新窒化アルミニウム単結晶層13の品質安定性や、元のベース基板10の繰り返し使用回数を増やす観点では、再生ベース基板10cの厚さは、元のベース基板10の厚さよりも2μm以上50μm以下の範囲で厚いことがより好ましく、元のベース基板10の厚さよりも5μm以上30μm以下の範囲で厚いことがさらに好ましい。すなわち、再生研磨後の窒化アルミニウム単結晶薄膜11cの厚みが2μm以上50μm以下の範囲であることがより好ましく、5μm以上30μm以下の範囲であることがさらに好ましい。
 また、ひずみ層を再生研磨工程で除去するためには、切断ベース基板11bの表面から10μm超、より好ましくは30μm以上、さらに好ましくは100μm以上研磨することが好ましい。研磨量が多いほどひずみ層をより多く除去できるが、研磨量が多くなるほど産業上コストアップとなるため、研磨量は600μm以下であることが好ましく、より好ましくは200μm以下、さらに好ましくは100μm以下である。ひずみ層の有無については、前記準備工程のベース基板10について説明した方法と同様の方法で確認することができる。具体的には、再生ベース基板10cの主面(新窒化アルミニウム単結晶層13を成長させる面)が、(001)面、(110)面、又は(100)面であり;該主面に対するX線の入射角度が4°以下である条件下で測定される、特定結晶面のX線オメガ(ω)ロッキングカーブ半値幅が、200秒以下であることが好ましい。ここで、上記主面が(001)面である場合には、特定結晶面は(103)面であり;上記主面が(110)面である場合には、特定結晶面は(114)面であり;上記主面が(100)面である場合には、特定結晶面は(106)面である。再生ベース基板10cの主面に対するX線の入射角度は、より好ましくは2°以下である。ただし、現在の測定技術を考慮すると、主面に対するX線の入射角度の下限は0.1°である。上記特定結晶面のX線オメガ(ω)ロッキングカーブ半値幅は、より好ましくは100秒以下、さらに好ましくは80秒以下である。該半値幅は10秒以上であることが好ましい。なお、上記特定結晶面のX線オメガロッキングカーブの測定においては、ゲルマニウム単結晶の(220)面で2回回折することにより単色化したX線源を用いることが好ましい。
 (再生研磨工程:研磨の条件)
 ベース基板10部分が表面に露出した再生ベース基板10b、及び研磨された薄膜部分11cを有する再生ベース基板10cを作製するために切断ベース基板10aを研磨する条件としては、公知の条件を採用することができる。なお、この研磨条件と同じ条件を、窒化アルミニウム単結晶部分11aを研磨する場合にも採用することができる。
 切断時のひずみ層を除去するため、再生研磨工程は化学的機械的研磨(CMP)により完了することが好ましい。CMPには公知の方法を採用することができる。研磨剤としては、シリカ、アルミナ、セリア、炭化ケイ素、窒化ホウ素、ダイヤモンド等の材質を含む研磨剤を用いることができる。また、研磨剤の性状は、アルカリ性、中性、または酸性のいずれでもよい。ただし、窒化アルミニウムは、窒素極性面(-c面)の耐アルカリ性が低いため、強アルカリ性の研磨剤よりも、弱アルカリ性、中性または酸性の研磨剤、具体的には、pH9以下の研磨剤を用いることが好ましい。もちろん、窒素極性面に保護膜を形成すれば強アルカリ性の研磨剤も問題なく使用することも可能である。研磨速度を高めるために酸化剤等の添加剤を研磨剤に配合することも可能である。研磨パットとしては市販のものを使用することができ、その材質および硬度は特に制限されない。
 再生研磨工程における研磨は、例えばすべてCMPにより行ってもよい。また例えば、切断ベース基板10aに積層された窒化アルミニウム薄膜層11bの厚さが厚い場合には、事前に鏡面研磨ラッピング等の研磨速度の速い手段で所望の厚さ近くに調整した後に、CMPを行ってもよい。
 再生研磨工程で得られる再生ベース基板10b又は10cは、基板厚さが薄くなる(ベース基板10部分が表面に露出した再生ベース基板10bの場合)、又は研磨された薄膜11cを有する(再生ベース基板10cの場合)以外は、前記ベース基板10と同じものである。そのため、再生ベース基板10bの特性は、ベース基板10とほとんど変わらない。そのため、再生ベース基板10b又は10cのX線オメガロッキングカーブ半値幅や転位密度は、元のベース基板10のX線オメガロッキングカーブ半値幅や転位密度と同等とすることが可能である。分離工程において基板表面のオフ角が所望の角度よりも変動した場合には、再生ベース基板10b又は10cの主面のオフ角を所望のオフ角に調整する研磨工程をさらに行ってもよい。
 (循環工程)
 循環工程は、該再生研磨工程で得られた窒化アルミニウム単結晶からなる再生ベース基板(10bまたは10c)を、その研磨した表面に新窒化アルミニウム単結晶層13を成長させるベース基板として使用する工程である。循環工程は、再生ベース基板を新たなベース基板として用いて、上記準備工程、成長工程、分離工程、及び再生研磨工程を行うことを含むことが好ましい。循環工程を繰り返し行ってもよい。
 循環工程において、再生ベース基板(10bまたは10c)上に新窒化アルミニウム単結晶層13を成長する方法は、特に制限されるものではなく、成長工程に関連して上記説明した方法を採用することができる。本発明の窒化アルミニウム単結晶基板の製造方法によれば、ベース基板10(再生ベース基板10b、又は10c)を繰り返し使用することにより、品質の安定した窒化アルミニウム単結晶層(11および13)を有する積層体を製造することができ、さらに、該積層体から切断により得られた窒化アルミニウム単結晶自立基板11aの品質も安定したものとなる。
 (窒化アルミニウム単結晶層11の利用)
 前記分離工程において、ベース基板10から分離された窒化アルミニウム単結晶層11は、窒化アルミニウム単結晶自立基板11aとして使用することができる。分離した窒化アルミニウム単結晶層11aは、公知の研削加工や研磨加工を経た後に、少なくとも片方の表面をエピレディ(気相成長法により新たな層を形成できる程度に十分平坦な表面であること。)の状態に仕上げた後、電子デバイスや発光素子層の形成に供することができる。電子デバイスや発光素子層の形成にあたっては、有機金属気相成長(MOCVD)法や分子線エピタキシー(MBE)法、ハイドライド気相成長(HVPE)法等の公知の方法を採用できる。また、エピレディの状態に仕上げた窒化アルミニウム単結晶自立基板11aが元のベース基板10と同じ特性を有するのであれば、該窒化アルミニウム単結晶自立基板11aを新たなベース基板として用いて、さらにその上に窒化アルミニウム単結晶層を成長することもできる。ただし、分離工程のたびに新たに得られる窒化アルミニウム単結晶自立基板11aを次のベース基板として使用することを繰り返すと、元のベース基板の特性とは異なる特性の窒化アルミニウム単結晶自立基板11aとなる可能性が高くなる。そのため、分離工程のたびに新たに得られる窒化アルミニウム単結晶自立基板11aを次のベース基板として使用しないことが好ましい。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 <実施例1>
 本実施例は、ベース基板10部分が表面に露出した再生ベース基板10bを作製する実施形態を採用して、1つのベース基板を繰り返し使用して窒化アルミニウム単結晶層(11および13)を得た実施例である。
 (準備工程)
 ベース基板10として直径25mm、厚さ500μm、主面の面方位(001)面、主面のm軸方向へのオフ角0.3°、主面のa軸方向へのオフ角0.05°、基板表面の曲率半径12m、表面粗さ0.12nm、転位密度(エッチピット密度)2×10cm-2、(002)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅12秒、(101)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅11秒、(103)面(特定結晶面)のX線オメガロッキングカーブ半値幅46秒、主面に平行な(002)結晶面の曲率半径12mである、昇華法により製造された窒化アルミニウム単結晶基板を用いた。
 基板表面の曲率半径は、白色干渉顕微鏡(Zygo社製NewView7300)を用いて対物レンズ10倍にて基板全面測定を行うことにより得られた顕微鏡像から外周1mmを除いた直径23mmの範囲の表面形状プロファイルから得た。(002)面(傾斜結晶面)と(101)面(傾斜結晶面)のX線オメガロッキングカーブは、薄膜X線回折装置(Panalytical社製X‘Pert MRD)に1/2°スリットを装着したGe(220)四結晶単色化モジュールとXe比例係数管検出器を使用して測定した。(103)面(特定結晶面)のX線オメガロッキングカーブは、薄膜X線回折装置(Panalytical社製X‘Pert MRD)に1/8°スリットを装着したGe(220)二結晶単色化モジュール(ハイブリッドモジュール)とXe比例係数管検出器を使用して測定した。(002)結晶面(主面に平行な結晶面)の曲率半径については、薄膜X線回折装置(Panalytical社製X‘Pert MRD)に1/2°スリットを装着したGe(220)四結晶単色化モジュールとXe比例係数管検出器を使用し、基板中心を0mm位置として、中心から±8mmの位置にステージを移動させてX線オメガロッキングカーブを測定し、そのピーク位置とX線照射光学系の位置関係から結晶面の曲率半径を算出した。転位密度は、水酸化カリウムと水酸化ナトリウムを重量比1:1で秤量し、白金るつぼ内(るつぼ内温度450℃)で溶融させてなるアルカリ融液を用いて成長面を5分間エッチングした後、基板表面を、微分干渉顕微鏡を用いて5視野(倍率500倍)で観察し、発生したピットの個数をカウントし、カウントしたピットの個数を観察視野面積で除することにより算出した。
 (成長工程)
 図3に示す結晶成長装置(HVPE装置)を用いて、前記準備工程で準備したベース基板10上に窒化アルミニウム単結晶層11を成長した。ベース基板10をサセプタ32上に設置した。次いで、押し出しキャリアガス導入口33から、反応管内部雰囲気の全体を押し流すためのガスとして、水素と窒素を7:3の割合で混合した水素窒素混合キャリアガス9000sccmを流した。また、成長中の反応器30の圧力は0.99atmに保持した。
 窒素源ガス導入口43からアンモニアガス20sccm及び水素キャリアガス160sccmを、追加ハロゲン系ガス供給ノズル44から塩化水素ガス20sccmをそれぞれ供給し、窒素源ガス供給ノズル45からベース基板10が設置された成長部反応域31へ計200sccmの混合ガスを供給した。この際、アンモニアガスと塩化水素ガスとの反応生成物である塩化アンモニウムが析出しないように、窒素源ガス供給ノズル45の温度は500℃に調整した。また、バリアガスノズル(不図示;窒素源ガス供給ノズル45、及びハロゲン化アルミニウムガス供給ノズル42との間からバリアガスを供給できるように配置されたノズル。)から窒素ガス1500sccmを供給した。
 上記ガス供給条件で、ベース基板10を1550℃に加熱した。その後、追加ハロゲン系ガス供給管41から塩化水素ガス114sccmを供給し、原料発生用ハロゲン系ガス導入管39から水素窒素混合キャリアガス1686sccmを供給することにより、ハロゲン化アルミニウムガス供給ノズル42から合計1800sccmの混合ガスを供給した。
 追加ハロゲン系ガス供給管41からの塩化水素ガスの供給を開始して20秒後に、原料発生用ハロゲン系ガス導入管39から供給していた水素-窒素混合キャリアガスのうち18sccm分を塩化水素ガスに切り替え、原料部外部加熱手段35によってあらかじめ400℃に加熱されているアルミニウム原料40と反応させ塩化アルミニウムガスを発生させた。発生した塩化アルミニウムガスがハロゲン化アルミニウムガス供給ノズル42からベース基板10上に供給されることにより、結晶成長が開始した。
 上記条件のガス流量とベース基板温度でベース基板10上に窒化アルミニウム単結晶層11を860μm成長した。窒化アルミニウム単結晶層11の成長後、塩化アルミニウムガス、アンモニアガス、及び塩化水素ガスの供給を停止して基板を室温まで冷却した。得られた窒化アルミニウム単結晶層11を評価したところ、(002)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅13秒、(101)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅12秒、(103)面(特定結晶面)のX線オメガロッキングカーブ半値幅54秒であった。
 (分離工程)
 成長後の窒化アルミニウム単結晶層を有する積層体を、遊離砥粒を用いたワイヤーソウを用いて、切断面がベース基板表面と平行になるように、窒化アルミニウム単結晶層の一部の薄膜11bが積層したベース基板(切断ベース基板10a)とそれ以外の窒化アルミニウム単結晶層部分11aとに分離した。切断時の切りしろは280μmであり、窒化アルミニウム単結晶自立基板11aの厚さは500μmであり、切断ベース基板10aに積層されている窒化アルミニウム単結晶層の残膜11bの厚さは80μmであった。
 (再生研磨工程)
 前記切断後の切断ベース基板10aの成長層側の表面には、ソウマーク(波状痕)がみられたため、ソウマークを除去する平坦面出しを行い、さらにCMP研磨によりひずみ層を除去した。CMPにより得られた再生ベース基板10bの厚みは498μmであり、窒化アルミニウム単結晶層の残膜11bが除去されていた。
 再生ベース基板10bを評価したところ、元のベース基板10とほぼ同様の結果であり、主面の面方位は(001)面、主面のm軸方向へのオフ角0.35°、主面のa軸方向へのオフ角0.15°、基板表面の曲率半径10m、表面粗さ0.11nm、転位密度(エッチピット密度)2×10cm-2、(002)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅12秒、(101)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅11秒、(103)面(特定結晶面)のX線オメガロッキングカーブ半値幅48秒、主面に平行な(002)結晶面の曲率半径12mであった。
 (循環工程)
 成長時間を変化させた以外は上記成長工程で採用した原料供給条件と同様にして、前記再生ベース基板10b上に新たな窒化アルミニウム単結晶層13を1210μm成長した。得られた新窒化アルミニウム単結晶層13を評価したところ、(002)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅12秒、(101)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅11秒、(103)面(特定結晶面)のX線オメガロッキングカーブ半値幅53秒であり、元のベース基板10上に成長させた窒化アルミニウム単結晶層11とほぼ同様の品質であった。
 以降、分離工程、再生研磨工程、循環工程を同様に実施してベース基板10を繰り返し使用し、新窒化アルミニウム単結晶層13を成長した。その結果を表1にまとめた。新窒化アルミニウム単結晶層13の膜厚(成長時間のみ変更)、窒化アルミニウム単結晶薄膜11bの膜厚(切断後の残存層の厚みを変えただけであり、他の条件は同じである)は、サイクル毎に数値に変わっているが、品質が安定した新窒化アルミニウム単結晶層13が得られ、デバイスに使用する上で十分な品質の窒化アルミニウム単結晶自立基板11aを1枚のベース基板から複数供給できた。なお、良好な品質の評価、及びばらつきがないことについては、窒化アルミニウム単結晶層11、新窒化アルミニウム単結晶層13のX線オメガロッキングカーブの半値幅((002)面(傾斜結晶面)、(101)面(傾斜結晶面)、(103)面(特定結晶面))の値、及びばらつきで評価した。
 本実施例では、元のベース基板10の表面が露出するまで再生研磨を行うため、再生ベース基板10bの厚さはサイクル毎に減少するが、いずれの再生ベース基板10bの評価結果も、元のベース基板の値とほぼ同様であり、種結晶として十分に機能することが明かであった。
 <実施例2>
 本実施例は、研磨された窒化アルミニウム単結晶薄膜部分11cを有する再生ベース基板10cを作製する実施形態を採用して、1つのベース基板を繰り返し使用して窒化アルミニウム単結晶厚膜(11および13)を成長させた場合の実施例である。
 (準備工程・成長工程)
 ベース基板10としては実施例1と同様の昇華法により製造された窒化アルミニウム単結晶基板を使用し、このベース基板10上に実施例1の成長工程と同様に窒化アルミニウム単結晶層11を880μm成長した。得られた窒化アルミニウム単結晶厚膜11を評価したところ、(002)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅18秒、(101)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅14秒、(103)面(特定結晶面)のX線オメガロッキングカーブ半値幅60秒であった。
 (分離工程)
 成長後の窒化アルミニウム単結晶厚膜11を有する積層体を、実施例1の分離工程と同様に窒化アルミニウム単結晶層の一部の薄膜11bが積層したベース基板(切断ベース基板10a)とそれ以外の窒化アルミニウム単結晶層部分11aとに分離した。切断時の切りしろは280μmであり、窒化アルミニウム単結晶自立基板11aの厚さは510μmであり、切断ベース基板10aに積層されている窒化アルミニウム単結晶層の残膜11bの厚さは90μmであった。
 (再生研磨工程)
 前記切断後の切断ベース基板10aの成長層側の表面には、ソウマークがみられたため、ソウマークを除去する平坦面出しを行い、さらにCMP研磨によりひずみ層を除去した。CMPにより得られた再生ベース基板10cの厚みは504μmであり、窒化アルミニウム単結晶層の残膜11cが4μm残存した再生ベース基板10cを得た。この再生ベース基板10cを評価したところ、元のベース基板10とほぼ同様の結果であり、主面の面方位は(001)面、主面のm軸方向へのオフ角0.29°、主面のa軸方向へのオフ角0.04°、基板表面の曲率半径11m、表面粗さ0.13nm、転位密度(エッチピット密度)5×10cm-2、(002)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅19秒、(101)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅14秒、(103)面(特定結晶面)のX線オメガロッキングカーブ半値幅63秒、主面に平行な(002)結晶面の曲率半径12mであった。
 (循環工程)
 成長時間を変化させた以外は成長工程で実施した原料供給条件と同様にして、前記再生ベース基板10c上に新たな窒化アルミニウム単結晶層13を1170μm成長した。得られた新窒化アルミニウム単結晶層13を評価したところ、(002)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅20秒、(101)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅15秒、(103)面(特定結晶面)のX線オメガロッキングカーブ半値幅66秒であり、元のベース基板10上に成長させた窒化アルミニウム単結晶厚膜11よりごくわずかの数値悪化がみられたが、デバイスに使用する上では十分使用可能な品質であった。
 以降、分離工程、再生研磨工程、循環工程を同様に実施してベース基板10を繰り返し使用し、新窒化アルミニウム単結晶層13を成長した。その結果を表1にまとめた。新窒化アルミニウム単結晶層13の膜厚(成長時間のみ変更)、窒化アルミニウム単結晶薄膜11bの膜厚(切断後の残存層の厚みを変えただけであり、他の条件は同じである)、研磨された窒化アルミニウム単結晶薄膜部分11cの膜厚(窒化アルミニウム単結晶薄膜11bの膜厚が変わったため変化しているが、研磨条件、研磨量は同じである)は、サイクル毎に数値が変化しているが、顕著な結晶品質の悪化は見られず、良好な品質の新窒化アルミニウム単結晶層13が得られた。なお、良好な品質の評価、及びばらつきがないことについては、窒化アルミニウム単結晶層11、新窒化アルミニウム単結晶層13のX線オメガロッキングカーブの半値幅((002)面(傾斜結晶面)、(101)面(傾斜結晶面)、(103)面(特定結晶面))の秒数、ばらつきで評価した。
 本実施例では、元のベース基板10の表面を露出させないように、窒化アルミニウム単結晶薄膜部分11cが残存するように再生研磨を行うため、繰り返し使用のサイクルを経ても再生ベース基板10cの厚さが維持される。このため、デバイスに使用する上では十分な品質の窒化アルミニウム単結晶自立基板11aを1枚のベース基板から多数供給することが可能となった。
 <比較例>
 本比較例は、分離工程のたびに窒化アルミニウム単結晶層11(新窒化アルミニウム単結晶層13)から得られる窒化アルミニウム単結晶自立基板11aを次のベース基板として使用し、成長された窒化アルミニウム単結晶層11、13の品質、品質のばらつきを確認した例である。図4は、本比較例における各工程を説明する図である。
 (成長工程)
 ベース基板10としては実施例1と同様の昇華法により製造された窒化アルミニウム単結晶基板を使用し、このベース基板10上に実施例1の成長工程と同様に窒化アルミニウム単結晶層11を960μm成長した。得られた窒化アルミニウム単結晶厚膜11を評価したところ、(002)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅15秒、(101)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅14秒、(103)面(特定結晶面)のX線オメガロッキングカーブ半値幅62秒であり、元のベース基板10上への窒化アルミニウム単結晶層11の成長であるため、実施例と同様の結晶性のものが得られた。
 (分離工程)
 成長後の窒化アルミニウム単結晶厚膜11を有する積層体を、実施例1の分離工程と同様にして、窒化アルミニウム単結晶層の一部の薄膜11bが積層したベース基板(切断ベース基板10a)とそれ以外の窒化アルミニウム単結晶自立基板11aとに分離した。切断時の切りしろは270μmであり、窒化アルミニウム単結晶自立基板11aの厚さは610μmであった。
 (再生研磨工程)
 前記切断後の窒化アルミニウム自立基板11aのベース基板側の表面には、ソウマークがみられたため、ソウマークを除去する平坦面出しを行った。また、窒化アルミニウム自立基板11aの成長面側についてもダイヤラップ研磨による平坦面出しとCMP研磨を行い、ひずみ層を除去した。切断面のソウマーク除去のために50μm研磨し、成長面側をCMPで80μm研磨した結果、再生研磨後の窒化アルミニウム単結晶自立基板11dの厚みは480μmとなった。窒化アルミニウム単結晶自立基板11dを評価したところ、ベース基板10上に成長工程で得た窒化アルミニウム単結晶層11とほぼ同様の結果であり、主面の面方位は(001)面、主面のm軸方向へのオフ角0.31°、主面のa軸方向へのオフ角0.03°、基板表面の曲率半径10m、表面粗さ0.15nm、転位密度(エッチピット密度)8×10cm-2、(002)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅16秒、(101)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅13秒、(103)面(特定結晶面)のX線オメガロッキングカーブ半値幅73秒、主面に平行な(002)結晶面の曲率半径11mであった。
 (循環工程;窒化アルミニウム単結晶自立基板11dを新たなベース基板として使用)
 実施例1、2における再生ベース基板10b、10cに代えて、前記再生研磨工程で得た窒化アルミニウム単結晶自立基板11dを新たなベース基板とし、成長時間を変化させた以外は成長工程で実施した原料供給条件と同様にして、前記窒化アルミニウム単結晶自立基板11d上に新たな窒化アルミニウム単結晶層14を950μm成長した。得られた新窒化アルミニウム単結晶層14を評価したところ、(002)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅35秒、(101)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅30秒、(103)面(特定結晶面)のX線オメガロッキングカーブ半値幅80秒であり、元のベース基板10上に成長させた窒化アルミニウム単結晶厚膜11よりわずかに結晶性が悪化した。
 (2回目の分離工程)
 成長後の新窒化アルミニウム単結晶層14を有する積層体を、実施例1の分離工程と同様に新窒化アルミニウム単結晶層の一部の薄膜14bが積層した切断ベース基板とそれ以外の新窒化アルミニウム単結晶自立基板14aとに分離した。切断時の切りしろは250μmであり、新窒化アルミニウム単結晶自立基板14aの厚さは640μmであった。
 (2回目の再生研磨工程)
 前記切断後の窒化アルミニウム自立基板14aのベース基板側の表面には、ソウマークがみられたため、ソウマークを除去する平坦面出しを行った。また、新窒化アルミニウム自立基板14aの成長面側についてもダイヤラップ研磨による平坦面出しを行い、さらにCMP研磨を行ってひずみ層を除去した。切断面のソウマーク除去のために65μm研磨し、成長面側をCMPで90μm研磨した結果、再生研磨後の窒化アルミニウム単結晶自立基板14dの厚みは485μmとなった。新窒化アルミニウム単結晶自立基板14dを評価したところ、循環工程で得た新窒化アルミニウム単結晶層14とほぼ同様の結果であり、主面の面方位は(001)面、主面のm軸方向へのオフ角0.22°、主面のa軸方向へのオフ角0.10°、基板表面の曲率半径12m、表面粗さ0.14nm、転位密度(エッチピット密度)9×10cm-2、(002)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅36秒、(101)面(傾斜結晶面)のX線オメガロッキングカーブ半値幅28秒、(103)面(特定結晶面)のX線オメガロッキングカーブ半値幅77秒、主面に平行な(002)結晶面の曲率半径11mであった。
 以降、分離工程、再生研磨工程、循環工程を同様に実施して、窒化アルミニウム単結晶自立基板14aを繰り返し使用し、窒化アルミニウム単結晶層14´を成長した。すなわち、分離工程のたびに新たに得られる新窒化アルミニウム単結晶自立基板を新たなベース基板として用いて、該新たなベース基板上に新窒化アルミニウム単結晶層を成長させることを繰り返した。その結果を表1にまとめた。繰り返し使用のサイクルを増やすと、新たな窒化アルミニウム単結晶層14´に結晶品質の悪化が見られ、特に4サイクル目以降において品質の低下が顕著であった。
Figure JPOXMLDOC01-appb-T000001
10   ベース基板
10a  切断ベース基板
10b  再生ベース基板
10c  再生ベース基板(窒化アルミニウム単結晶残存薄膜あり)
11   窒化アルミニウム単結晶層
11a  窒化アルミニウム単結晶自立基板
11b  窒化アルミニウム単結晶薄膜(切断後の残存層)
11c  窒化アルミニウム単結晶薄膜(再生研磨後の残存層)
11d  窒化アルミニウム単結晶自立基板(再生研磨後)
12   研磨領域
13   新窒化アルミニウム単結晶層(再生ベース基板上の成長層)
14、14´ 新窒化アルミニウム単結晶層(窒化アルミニウム自立基板上の成長層)
14a  新窒化アルミニウム自立基板(切断後)
14b  新窒化アルミニウム単結晶層の一部の薄膜(切断後の残存層)
14d  新窒化アルミニウム自立基板(再生研磨後)
21   成長工程
22   分離工程
23   再生研磨工程
24   循環工程(再生ベース基板上への成長)
300  気相成長装置(HVPE装置)
30   反応管
31   成長部反応域
32   サセプタ
33   押し出しキャリアガス導入部
34   排気部
35   原料部外部加熱手段
36   成長部外部加熱手段
37   高周波加熱コイル
38   原料部反応管
39   原料発生用ハロゲン系ガス導入管
40   アルミニウム原料
41   追加ハロゲン系ガス導入管
42   ハロゲン系原料ガス供給ノズル
43   窒素源ガス導入管
44   追加ハロゲン系ガス(窒素源ガス用)導入管
45   窒素源ガス供給ノズル

Claims (12)

  1.  アルミニウム源と窒素源とを窒化アルミニウム単結晶からなるベース基板の主面上に供給し、該主面上に窒化アルミニウム単結晶層を成長した後、該ベース基板と窒化アルミニウム単結晶層とを分離して、窒化アルミニウム単結晶基板を製造する方法において、
     窒化アルミニウム単結晶からなるベース基板を準備する準備工程、
     500μm以上の厚みの窒化アルミニウム単結晶層を該ベース基板の主面上に成長することにより、前記ベース基板と該ベース基板の主面上に成長された前記窒化アルミニウム単結晶層とを有する積層体を得る成長工程、
     前記積層体の前記窒化アルミニウム単結晶層部分を切断することにより、前記積層体を窒化アルミニウム単結晶層の少なくとも一部の薄膜が積層したベース基板とそれ以外の窒化アルミニウム単結晶層部分とに分離する分離工程、
     該薄膜が積層したベース基板の薄膜の表面を研磨する再生研磨工程、及び
     該再生研磨工程で得られた窒化アルミニウム単結晶からなる再生ベース基板を、その研磨した表面上に窒化アルミニウム単結晶を成長させるベース基板として使用する循環工程
     を含むことを特徴とする窒化アルミニウム単結晶基板の製造方法。
  2.  前記準備工程で準備するベース基板の主面が、(001)面、(110)面、又は(100)面であることを特徴とする請求項1に記載の窒化アルミニウム単結晶基板の製造方法。
  3.  前記分離工程で得られる、薄膜が積層したベース基板において、該薄膜の厚さが1~300μmであることを特徴とする請求項1又は2に記載の窒化アルミニウム単結晶基板の製造方法。
  4.  前記研磨工程で得られる、窒化アルミニウム単結晶からなる再生ベース基板において、研磨された薄膜部分の厚みが100μm以下であることを特徴とする請求項1~3の何れかに記載の窒化アルミニウム単結晶基板の製造方法。
  5.  前記研磨工程において、薄膜部分を全て研磨により除去することにより、準備工程で準備したベース基板部分を表面に露出させることを特徴とする請求項1~4の何れかに記載の窒化アルミニウム単結晶基板の製造方法。
  6.  前記準備工程で準備する、窒化アルミニウム単結晶からなるベース基板の主面における転位密度が10cm-2以下であることを特徴とする請求項1~5の何れかに記載の窒化アルミニウム単結晶基板の製造方法。
  7.  前記準備工程で準備する、窒化アルミニウム単結晶からなるベース基板の主面が、(001)面、(100)面、又は(110)面であり、
     前記主面に対するX線の入射角度が4°以下である条件下で測定される、特定結晶面のX線オメガ(ω)ロッキングカーブ半値幅が200秒以下であり、
     前記主面が(001)面であるとき、前記特定結晶面は(103)面であり、
     前記主面が(100)面であるとき、前記特定結晶面は(106)面であり、
     前記主面が(110)面であるとき、前記特定結晶面は(114)面であることを特徴とする請求項1~6の何れかに記載の窒化アルミニウム単結晶基板の製造方法。
  8.  前記アルミニウム源がハロゲン化アルミニウムガスであり、前記窒素源がアンモニアガスであることを特徴とする請求項1~7の何れかに記載の窒化アルミニウム基板の製造方法。
  9.  前記準備工程で準備する、窒化アルミニウム単結晶からなるベース基板の主面が、(001)面から0.00°以上1.00°以下の範囲でm軸方向に傾斜し、かつ(001)面から0.00°以上1.00°以下の範囲でa軸方向に傾斜している(001)面であり、
     前記主面のm軸方向への傾斜角および前記主面のa軸方向への傾斜角のうち少なくとも一方は0.00°超であることを特徴とする請求項1~8の何れかに記載の窒化アルミニウム単結晶基板の製造方法。
  10.  前記循環工程が、前記再生研磨工程で得られた再生ベース基板を新たなベース基板として用いて、前記準備工程、成長工程、分離工程、及び再生研磨工程を行うことを含む、請求項1~9の何れかに記載の窒化アルミニウム単結晶基板の製造方法。
  11.  前記循環工程を繰り返し行う、請求項1~10の何れかに記載の窒化アルミニウム単結晶基板の製造方法。
  12.  前記分離工程において、前記窒化アルミニウム単結晶層部分をワイヤーソウによって切断する、請求項1~11の何れかに記載の窒化アルミニウム単結晶基板の製造方法。
PCT/JP2017/011428 2016-03-23 2017-03-22 窒化アルミニウム単結晶基板の製造方法 WO2017164233A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780015442.5A CN108713075B (zh) 2016-03-23 2017-03-22 氮化铝单晶基板的制造方法
US16/085,322 US10822718B2 (en) 2016-03-23 2017-03-22 Method for producing aluminum nitride single crystal substrate
JP2018507369A JP7023837B2 (ja) 2016-03-23 2017-03-22 窒化アルミニウム単結晶基板の製造方法
EP17770273.5A EP3434816A4 (en) 2016-03-23 2017-03-22 METHOD FOR MANUFACTURING A SINGLE CRYSTAL SUBSTRATE OF ALUMINUM NITRIDE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-057838 2016-03-23
JP2016057838 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017164233A1 true WO2017164233A1 (ja) 2017-09-28

Family

ID=59900363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011428 WO2017164233A1 (ja) 2016-03-23 2017-03-22 窒化アルミニウム単結晶基板の製造方法

Country Status (5)

Country Link
US (1) US10822718B2 (ja)
EP (1) EP3434816A4 (ja)
JP (1) JP7023837B2 (ja)
CN (1) CN108713075B (ja)
WO (1) WO2017164233A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045005A1 (ja) * 2018-08-27 2020-03-05 古河機械金属株式会社 半極性自立基板の製造方法
JP2020203818A (ja) * 2019-06-19 2020-12-24 国立大学法人山口大学 低転位AlNの製造方法及びそれに用いる種基板
WO2021066042A1 (ja) * 2019-09-30 2021-04-08 京セラ株式会社 半導体素子の製造方法
WO2021132491A1 (ja) * 2019-12-24 2021-07-01 株式会社トクヤマ Iii族窒化物単結晶基板およびその製造方法
WO2022030550A1 (ja) * 2020-08-04 2022-02-10 株式会社トクヤマ 窒化アルミニウム単結晶基板の洗浄方法、窒化アルミニウム単結晶積層体の製造方法、及び窒化アルミニウム単結晶基板の製造方法、並びに窒化アルミニウム単結晶基板
DE112022000129T5 (de) 2021-08-23 2023-07-20 Tokuyama Corporation Verfahren zum reinigen eines gruppe-iii-nitrid-einkristall-substrats und verfahren zu dessen herstellung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797462A (zh) * 2019-11-06 2020-02-14 苏州协鑫纳米科技有限公司 钙钛矿薄片的制作方法、单晶钙钛矿电池的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303774A (ja) 2002-04-09 2003-10-24 Nokodai Tlo Kk Al系III−V族化合物半導体の気相成長方法、Al系III−V族化合物半導体の製造方法ならびに製造装置
JP2005225756A (ja) * 2004-02-13 2005-08-25 Technologies & Devices Internatl Inc クラックフリーiii族窒化物半導体材料の製造方法
JP2009057260A (ja) * 2007-09-03 2009-03-19 Hitachi Cable Ltd Iii族窒化物単結晶の製造方法及びiii族窒化物単結晶基板の製造方法
JP2009517329A (ja) 2005-11-28 2009-04-30 クリスタル・イズ,インコーポレイテッド 低欠陥の大きな窒化アルミニウム結晶及びそれを製造する方法
JP2009532313A (ja) 2006-03-30 2009-09-10 クリスタル・イズ,インコーポレイテッド 窒化アルミニウムバルク結晶を制御可能にドーピングする方法
JP2010042950A (ja) * 2008-08-11 2010-02-25 Sumitomo Electric Ind Ltd AlN結晶の製造方法、AlN基板の製造方法および圧電振動子の製造方法
JP2010254499A (ja) * 2009-04-22 2010-11-11 Tokuyama Corp Iii族窒化物結晶基板の製造方法
WO2014042054A1 (ja) * 2012-09-11 2014-03-20 株式会社トクヤマ 窒化アルミニウム基板およびiii族窒化物積層体
JP2015531739A (ja) * 2012-08-23 2015-11-05 国立大学法人東京農工大学 高透明性窒化アルミニウム単結晶層、及びこれからなる素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100572A (ja) 2000-09-25 2002-04-05 Sanyo Electric Co Ltd 半導体素子およびその製造方法
US7501023B2 (en) * 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
EP1962340A3 (en) * 2004-11-09 2009-12-23 S.O.I. TEC Silicon Method for manufacturing compound material wafers
KR100616656B1 (ko) * 2005-01-03 2006-08-28 삼성전기주식회사 질화갈륨계 단결정 기판의 제조방법 및 제조장치
JP5324110B2 (ja) * 2008-01-16 2013-10-23 国立大学法人東京農工大学 積層体およびその製造方法
PL394857A1 (pl) * 2008-08-07 2011-09-26 Sorra, Inc. Sposób amonotermalnego wytwarzania kryształów ciągnionych azotku galu na dużą skalę
CN102362016B (zh) * 2009-01-30 2014-10-22 Amg艾迪卡斯特太阳能公司 晶种层和晶种层的制造方法
TW201200646A (en) * 2010-03-15 2012-01-01 Univ California Group-III nitride crystal ammonothermally grown using an initially off-oriented non-polar or semi-polar growth surface of a group-III nitride seed crystal
JP6279619B2 (ja) 2014-01-28 2018-02-14 住友化学株式会社 半導体基板の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303774A (ja) 2002-04-09 2003-10-24 Nokodai Tlo Kk Al系III−V族化合物半導体の気相成長方法、Al系III−V族化合物半導体の製造方法ならびに製造装置
JP2005225756A (ja) * 2004-02-13 2005-08-25 Technologies & Devices Internatl Inc クラックフリーiii族窒化物半導体材料の製造方法
JP2009517329A (ja) 2005-11-28 2009-04-30 クリスタル・イズ,インコーポレイテッド 低欠陥の大きな窒化アルミニウム結晶及びそれを製造する方法
JP2009532313A (ja) 2006-03-30 2009-09-10 クリスタル・イズ,インコーポレイテッド 窒化アルミニウムバルク結晶を制御可能にドーピングする方法
JP2009057260A (ja) * 2007-09-03 2009-03-19 Hitachi Cable Ltd Iii族窒化物単結晶の製造方法及びiii族窒化物単結晶基板の製造方法
JP2010042950A (ja) * 2008-08-11 2010-02-25 Sumitomo Electric Ind Ltd AlN結晶の製造方法、AlN基板の製造方法および圧電振動子の製造方法
JP2010254499A (ja) * 2009-04-22 2010-11-11 Tokuyama Corp Iii族窒化物結晶基板の製造方法
JP2015531739A (ja) * 2012-08-23 2015-11-05 国立大学法人東京農工大学 高透明性窒化アルミニウム単結晶層、及びこれからなる素子
WO2014042054A1 (ja) * 2012-09-11 2014-03-20 株式会社トクヤマ 窒化アルミニウム基板およびiii族窒化物積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3434816A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045005A1 (ja) * 2018-08-27 2020-03-05 古河機械金属株式会社 半極性自立基板の製造方法
JPWO2020045005A1 (ja) * 2018-08-27 2021-08-26 古河機械金属株式会社 半極性自立基板の製造方法
JP7328230B2 (ja) 2018-08-27 2023-08-16 古河機械金属株式会社 半極性自立基板の製造方法
JP2020203818A (ja) * 2019-06-19 2020-12-24 国立大学法人山口大学 低転位AlNの製造方法及びそれに用いる種基板
WO2021066042A1 (ja) * 2019-09-30 2021-04-08 京セラ株式会社 半導体素子の製造方法
JPWO2021066042A1 (ja) * 2019-09-30 2021-04-08
WO2021132491A1 (ja) * 2019-12-24 2021-07-01 株式会社トクヤマ Iii族窒化物単結晶基板およびその製造方法
WO2022030550A1 (ja) * 2020-08-04 2022-02-10 株式会社トクヤマ 窒化アルミニウム単結晶基板の洗浄方法、窒化アルミニウム単結晶積層体の製造方法、及び窒化アルミニウム単結晶基板の製造方法、並びに窒化アルミニウム単結晶基板
DE112021004184T5 (de) 2020-08-04 2023-05-17 Tokuyama Corporation Verfahren zum waschen von einem aluminiumnitrid-einkristall-substrat, verfahren zur herstellung von einem aluminiumnitrid-einkristall-schichtkörper, und verfahren zur herstellung von einem aluminiumnitrid-einkristall-substrat, und ein aluminiumnitrid-einkristall-substrat
DE112022000129T5 (de) 2021-08-23 2023-07-20 Tokuyama Corporation Verfahren zum reinigen eines gruppe-iii-nitrid-einkristall-substrats und verfahren zu dessen herstellung
US11859312B2 (en) 2021-08-23 2024-01-02 Tokuyama Corporation Method of cleaning a group III-nitride single crystal substrate comprising cleaning a nitrogen-polar face with a detergent including a fluoroorganic compound

Also Published As

Publication number Publication date
US10822718B2 (en) 2020-11-03
CN108713075B (zh) 2020-11-13
EP3434816A4 (en) 2019-10-30
JP7023837B2 (ja) 2022-02-22
JPWO2017164233A1 (ja) 2019-02-07
US20190093255A1 (en) 2019-03-28
CN108713075A (zh) 2018-10-26
EP3434816A1 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
WO2017164233A1 (ja) 窒化アルミニウム単結晶基板の製造方法
JP5304713B2 (ja) 炭化珪素単結晶基板、炭化珪素エピタキシャルウェハ、及び薄膜エピタキシャルウェハ
JP4946202B2 (ja) 炭化珪素半導体エピタキシャル基板の製造方法。
JP6122704B2 (ja) SiCエピタキシャルウェハ及びその製造方法
KR101654440B1 (ko) SiC 에피택셜 웨이퍼 및 그의 제조 방법
JP5125098B2 (ja) 窒化物半導体自立基板の製造方法
KR101088953B1 (ko) 〈110〉 배향을 가지며 에피택셜 방식으로 코팅된 실리콘 웨이퍼 및 그 제작 방법
JP5569112B2 (ja) 炭化珪素単結晶ウェハの製造方法及びこの方法で得られた炭化珪素単結晶ウェハ
CN111164242B (zh) Iii族氮化物单晶基板
JP2009218575A (ja) 半導体基板の製造方法
JP2006225232A (ja) 炭化珪素単結晶の製造方法、炭化珪素単結晶インゴット、炭化珪素単結晶基板、炭化珪素エピタキシャルウェハ、および薄膜エピタキシャルウェハ
US20220333270A1 (en) SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, SiC INGOT PRODUCED BY GROWING SAID SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, AND SiC WAFER PRODUCED FROM SAID SiC INGOT AND SiC WAFER WITH EPITAXIAL FILM AND METHODS RESPECTIVELY FOR PRODUCING SAID SiC WAFER AND SAID SiC WAFER WITH EPITAXIAL FILM
JP6832240B2 (ja) SiCエピタキシャルウェハ及びその製造方法
JP4408247B2 (ja) 炭化珪素単結晶育成用種結晶と、それを用いた炭化珪素単結晶の製造方法
WO2021132491A1 (ja) Iii族窒化物単結晶基板およびその製造方法
KR102606186B1 (ko) SiC 기판 및 SiC 에피택셜 웨이퍼
JP5518566B2 (ja) 窒化物半導体自立基板の製造方法
JP2005314167A (ja) 炭化珪素単結晶成長用種結晶とその製造方法及びそれを用いた結晶成長方法
CN111051581B (zh) 碳化硅外延晶片
WO2023181586A1 (ja) 窒化アルミニウム単結晶基板、及び窒化アルミニウム単結晶基板の製造方法
WO2023127454A1 (ja) Iii族窒化物単結晶基板の製造方法、窒化アルミニウム単結晶基板
JP7194407B2 (ja) 単結晶の製造方法
JP2009292705A (ja) 炭化珪素エピタキシャル成長用炭化珪素単結晶ウェハ及び炭化珪素エピタキシャルウェハ
JP2023113512A (ja) エピタキシャルウェーハの製造方法
WO2023181601A1 (ja) Iii族窒化物単結晶の製造方法、およびiii族窒化物単結晶成長用基板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507369

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017770273

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017770273

Country of ref document: EP

Effective date: 20181023

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770273

Country of ref document: EP

Kind code of ref document: A1