WO2017159606A1 - 固体電解質及びリチウムイオン電池 - Google Patents

固体電解質及びリチウムイオン電池 Download PDF

Info

Publication number
WO2017159606A1
WO2017159606A1 PCT/JP2017/009943 JP2017009943W WO2017159606A1 WO 2017159606 A1 WO2017159606 A1 WO 2017159606A1 JP 2017009943 W JP2017009943 W JP 2017009943W WO 2017159606 A1 WO2017159606 A1 WO 2017159606A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte
lithium
garnet
metal
Prior art date
Application number
PCT/JP2017/009943
Other languages
English (en)
French (fr)
Inventor
山本 均
知史 横山
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to US16/085,949 priority Critical patent/US10774004B2/en
Publication of WO2017159606A1 publication Critical patent/WO2017159606A1/ja
Priority to US16/992,227 priority patent/US10947160B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid electrolyte and a lithium ion battery using the solid electrolyte.
  • Patent Document 1 discloses a silicon-containing lithium lanthanum titanate composite solid electrolyte material and a method for producing the same as a solid electrolyte for a battery.
  • a lithium lanthanum titanate composite compound is added to a silicon precursor solution, heated and dried, then pelletized and sintered, so that amorphous grains are formed at grain boundaries between lithium lanthanum titanate crystal particles.
  • Silicon (Si) or Si compound is introduced. Thereby, the grain boundary conductivity is remarkably improved.
  • Patent Document 2 discloses a method for forming a titanium oxide type solid electrolyte, in which a precursor solution containing water and a water-soluble titanium compound is heated and fired.
  • the precursor solution can contain a relatively high concentration of each element supply source such as lithium (Li) and lanthanum (La), including titanium, alcohol as a solvent.
  • Li lithium
  • La lanthanum
  • Patent Document 1 and Patent Document 2 when sintering is performed at a high temperature of 1000 ° C. or higher, Li is released from the sintered body or a by-product is generated by heat treatment, resulting in a composition of the sintered body. May change. Therefore, if the temperature of the heat treatment is lowered to suppress the composition change of the sintered body, there is a problem that the interface between crystal grains is not sufficiently sintered and the grain boundary resistance is increased.
  • the present invention has been made to solve at least a part of the problems described above, and can be realized as the following forms or application examples.
  • a solid electrolyte according to this application example includes a first electrolyte that is a garnet-type or garnet-like type crystal, and a second electrolyte that is an ion-conductive amorphous, and the first electrolyte Is a lithium composite metal compound containing one kind of first metal element selected from Group 13 elements of the third period or higher, and the second electrolyte comprises Li, Group 5 elements of the fifth period or higher, It contains at least two kinds of second metal elements selected from among Group 15 elements of 5 cycles or more.
  • the first electrolyte that is crystalline and the second electrolyte that is amorphous are joined, compared to the case where the first electrolytes that are crystalline are joined directly to each other.
  • the effect of reducing the resistance generated at the crystal interface can be obtained.
  • it contributes to stabilization of the cubic crystal in the sintering of the garnet-type or garnet-like type crystal at a low temperature, and the ionic conductivity in the crystal can be ensured without performing the high-temperature sintering.
  • a part of the Li 24d site is replaced with one kind of first metal element selected from group 13 elements of the third period or more, so that the crystalline Improves ion conductivity.
  • a part of the other metal elements excluding Li and the first metal element is a Group 5 element or a fifth period contained in the second electrolyte.
  • the concentration of the second metal element between the crystalline first electrolyte and the amorphous second electrolyte is replaced by at least two second metal elements selected from the group 15 elements described above. A gradient occurs.
  • the boundary between the first electrolyte and the second electrolyte becomes unclear, and it is possible to realize high ionic conductivity by reducing the grain boundary resistance as compared with the case where the boundary is clear.
  • the first metal element is selected from Al and Ga. According to this configuration, in the garnet-type or garnet-like type crystal, a part of the 24d site of Li is replaced by Al or Ga, and ion conductivity in the crystal is improved.
  • an atomic crystal radius of the second metal element is 78 pm or more. According to this configuration, even if heat treatment is performed, it is difficult for the second metal element to escape from the lithium composite metal compound constituting the first electrolyte, so that stable ionic conductivity is obtained.
  • the second metal element is selected from Nb, Ta, Sb, and Bi. According to this configuration, since the two kinds of second metal elements replace a part of the other metal elements excluding Li and the first metal element in the lithium composite metal compound constituting the first electrolyte, High ionic conductivity in crystalline can be realized.
  • the solid electrolyte described in the application example may further include an amorphous third electrolyte made of an oxide containing Li and B. According to this configuration, the first electrolyte is joined to the third electrolyte in addition to the second electrolyte, so that the solid electrolyte having high ion conductivity is realized by effectively using the first electrolyte. it can.
  • a lithium ion battery according to the application example includes a solid electrolyte layer made of the solid electrolyte described in the application example, an electrode provided on one surface of the solid electrolyte layer, and the other of the solid electrolyte layers. And a current collector provided on the surface.
  • the electrode is made of metallic lithium, and a positive electrode active material layer containing Li is provided between the other surface of the solid electrolyte layer and the current collector. According to this configuration, since the electrode serving as the lithium supply source and the positive electrode active material layer are provided, it is possible to provide a high-capacity lithium ion battery having excellent charge / discharge characteristics.
  • the schematic sectional drawing which shows the structure of a lithium ion battery.
  • the schematic diagram which shows the structure of the solid electrolyte layer of 1st Embodiment.
  • the flowchart which shows the manufacturing method of the solid electrolyte of 1st Embodiment.
  • the schematic diagram which shows the structure of the solid electrolyte layer of 2nd Embodiment.
  • the flowchart which shows the manufacturing method of the solid electrolyte of 2nd Embodiment.
  • the schematic sectional drawing which shows the manufacturing method of the solid electrolyte of 2nd Embodiment.
  • the graph which shows the measurement result of the X-ray diffraction intensity of Example 1 and Comparative Example 1.
  • the graph which shows the Raman scattering spectrum of Example 1 and Comparative Example 1.
  • the graph which shows the Raman scattering spectrum of the comparative example 3. 6 is a table showing the measurement results and bulk density of lithium ion conductivity in pellets of solid electrolytes of Examples 1 to 4 and Comparative Examples 1 to 3.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a lithium ion battery.
  • the lithium ion battery 10 of this embodiment has a configuration in which a current collector 1, an active material layer 2, a solid electrolyte layer 3, and an electrode 4 are laminated in this order.
  • the lithium ion battery 10 has a disk shape with an outer diameter of, for example, ⁇ 3 mm to 30 mm and a thickness of 150 ⁇ m to 200 ⁇ m (micrometer).
  • Such a thin lithium ion battery 10 may be used alone or in a form in which a plurality of lithium ion batteries 10 are stacked.
  • each configuration of the lithium ion battery 10 will be described.
  • the current collector 1 includes, for example, copper (Cu), magnesium (Mg), titanium (Ti), iron (Fe), cobalt (Co), nickel (Ni), zinc (Zn), aluminum (Al), germanium ( One metal selected from a metal group of Ge), indium (In), gold (Au), platinum (Pt), silver (Ag), and palladium (Pd), or selected from the metal group An alloy made of two or more metals can be used.
  • the shape of the current collector 1 may be a plate shape, a foil shape, a net shape, or the like, and the surface may be smooth or uneven.
  • the current collector 1 has a thickness of about 20 ⁇ m, for example.
  • the material used for the active material layer 2 differs depending on whether the current collector 1 is used on the positive electrode side or the negative electrode side in the lithium ion battery 10.
  • the active material layer 2 is formed using a positive electrode active material.
  • the positive electrode active material include a lithium composite metal compound containing two or more metal elements including lithium (Li). More specifically, examples of the lithium composite metal compound include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 3 , LiFePO 4 , Li 2 FeP 2 O 7 , LiMnPO 4 , LiFeBO 3 , Li Examples thereof include lithium composite oxides such as 3 V 2 (PO 4 ) 3 , Li 2 CuO 2 , Li 2 FeSiO 4 , and Li 2 MnSiO 4 .
  • a lithium composite fluoride such as LiFeF 3 may be used.
  • those in which some atoms of these lithium composite metal compounds are substituted with other transition metals typical metals, alkali metals, alkali rare earths, lanthanoids, chalcogenides, halogens and the like are also included.
  • the active material layer 2 is formed using a negative electrode active material.
  • the negative electrode active material include silicon-manganese alloy (Si-Mn), silicon-cobalt alloy (Si-Co), silicon-nickel alloy (Si-Ni), niobium pentoxide (Nb 2 O 5 ), five Vanadium oxide (V 2 O 5 ), titanium oxide (TiO 2 ), indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), nickel oxide (NiO), tin (Sn) added Added indium oxide (ITO), zinc oxide (AZO) to which aluminum (Al) is added, zinc oxide (GZO) to which gallium is added, tin oxide (ATO) to which antimony is added, fluorine (F) is added tin (FTO) oxide that is, the carbon material, substance lithium ions are intercalated into the carbon material, TiO 2 in anatase
  • the thickness of the active material layer 2 is, for example, 20 ⁇ m to 400 ⁇ m.
  • the electrode 4 is a negative electrode.
  • aluminum (Al) can be used as the current collector 1 and, for example, metallic lithium can be used as the electrode 4.
  • the thickness of the electrode 4 is approximately 40 ⁇ m, for example. If metallic lithium is used as the electrode 4 functioning as a negative electrode, it becomes a lithium supply source in charge and discharge, and thus a large-capacity lithium ion battery 10 can be realized.
  • the solid electrolyte layer 3 is applied with the solid electrolyte of the present embodiment, and includes a first electrolyte that is crystalline and a second electrolyte that is ion-conductive amorphous, and has excellent ion conductivity. Have.
  • the thickness of the solid electrolyte layer 3 is, for example, 50 nm (nanometer) to 100 ⁇ m.
  • the lithium ion battery 10 provided with such a solid electrolyte layer 3 has excellent battery characteristics (charge / discharge characteristics).
  • the solid electrolyte layer 3 in the lithium ion battery 10 of the present embodiment will be described in detail.
  • the solid electrolyte layer 3 may be combined with the active material layer 2.
  • FIG. 2 is a schematic diagram showing the configuration of the solid electrolyte layer of the first embodiment.
  • the solid electrolyte layer 3 includes a first portion 3A including a first electrolyte 31 that is crystalline, and a second portion 3B including a second electrolyte 32 that is ion-conductive amorphous. And a third portion 3C that is a gap.
  • the voids communicate with each other inside the solid electrolyte layer 3. That is, the solid electrolyte layer 3 is porous.
  • FIG. 2 schematically shows the state of observation of the structure with a transmission electron microscope for the configuration of the solid electrolyte layer 3 as described above, and does not necessarily coincide with the state of actual observation.
  • electrolyte materials constituting the first electrolyte 31 and the second electrolyte 32 Li 7-3x Ga x La 3 Zr 2 O 12 , Li 3.4 V 0.6 Si 0.4 O 4 , Li 14 ZnGe 4 O 16 , Li 3.6 V 0.4 Ge 0.6 O 4, Li 1.3 Ti 1.7 Al 10.3 (PO 4) 3, Li 2.88 PO 3.73 N 0.14, LiNbO 3, Li 0.
  • the first electrolyte 31 preferably exhibits excellent ionic conductivity and is electrochemically stable, and Li 7-3x M1 x M2 y M3 2-y M4O 12 (0.1 ⁇ A garnet-type or garnet-like type crystalline material represented by a formula of x ⁇ 0.6, 0.1 ⁇ y ⁇ 1.0) is used.
  • M1 is the first metal element in the present invention, and any metal element that can replace the 24d site of Li in a garnet-type or garnet-like crystal can be used.
  • it is preferably selected from Al and Ga having a third period or more among group 13 elements.
  • M2 is the second metal element in the present invention, and any metal element capable of forming a garnet-type or garnet-like crystal can be used.
  • any metal element capable of forming a garnet-type or garnet-like crystal can be used.
  • Nb niobium
  • Ta tantalum
  • Sb antimony
  • Bi bismuth
  • the atomic crystal radii (unit: pm (picometer)) of these second metal elements are Nb: 78 pm, Ta: 78 pm, Sb: 90 pm, Bi: 117 pm, all of which are 78 pm or more (manufactured by Hulinks) Crystal and molecular structure design program, CrystalMaker (registered trademark)).
  • M3 can be any metal element that can form a garnet-type or garnet-like crystal, but zirconium (Zr) is particularly preferable in order to form a crystal having high ionic conductivity.
  • M4 may be any metal element that can form a garnet-type or garnet-like crystal, but is particularly preferably a lanthanoid element in order to form a crystal having high ionic conductivity, and particularly lanthanum (La). Is preferred.
  • the second electrolyte 32 is amorphous formed by using the above-described electrolyte material, and, like the first electrolyte 31, the Nb, Ta, and Group 15 elements of the fifth period or more among the Group 5 elements are included. Of these, at least two kinds of second metal elements selected from Sb and Bi on the fifth period are included.
  • FIG. 3 is a flowchart showing the method for manufacturing the solid electrolyte of the first embodiment.
  • the manufacturing method of the solid electrolyte of the present embodiment is a wet method, and includes a metal compound solution preparation step (step S1), a solid electrolyte precursor solution preparation step (step S2), and a solid electrolyte synthesis step (step S3). ) And a product firing step (step S4).
  • the metal compound prepared in this embodiment is a lithium compound, a lanthanum compound, a zirconium compound, an aluminum compound, a gallium compound, a niobium compound, a tantalum compound, an antimony compound, or a bismuth compound.
  • lithium compound examples include lithium metal salts such as lithium chloride, lithium nitrate, lithium acetate, lithium hydroxide, and lithium carbonate, lithium methoxide, lithium ethoxide, lithium propoxide, lithium isopropoxide, lithium Examples thereof include lithium alkoxides such as butoxide, lithium isobutoxide, lithium secondary butoxide, lithium tertiary butoxide, and dipivaloylmethanatolithium, and one or more of these can be used in combination.
  • lithium metal salts such as lithium chloride, lithium nitrate, lithium acetate, lithium hydroxide, and lithium carbonate, lithium methoxide, lithium ethoxide, lithium propoxide, lithium isopropoxide
  • lithium alkoxides such as butoxide, lithium isobutoxide, lithium secondary butoxide, lithium tertiary butoxide, and dipivaloylmethanatolithium, and one or more of these can be used in combination.
  • lanthanum compound examples include lanthanum metal salts such as lanthanum chloride, lanthanum nitrate, lanthanum acetate, lanthanum methoxide, lanthanum ethoxide, lanthanum propoxide, lanthanum isopropoxide, lanthanum butoxide, lanthanum isobutoxide, lanthanum Lanthanum alkoxides such as secondary butoxide, lanthanum tertiary butoxide, and dipivaloylmethanatrantan can be used, and one or more of these can be used in combination.
  • lanthanum metal salts such as lanthanum chloride, lanthanum nitrate, lanthanum acetate, lanthanum methoxide, lanthanum ethoxide, lanthanum propoxide, lanthanum isopropoxide, lanthanum butoxide, lanthanum isobutoxide, lanthanum Lanthanum alk
  • zirconium compound examples include zirconium metal salts such as zirconium chloride, zirconium oxychloride, zirconium oxynitrate, siloxynium oxyacetate, zirconium acetate, zirconium methoxide, zirconium ethoxide, zirconium propoxide, zirconium isopropoxide.
  • zirconium alkoxides such as zirconium butoxide, zirconium isobutoxide, zirconium secondary butoxide, zirconium tertiary butoxide, and dipivaloylmethanatozirconium can be used, and one or more of these can be used in combination.
  • Examples of the aluminum compound (aluminum source) containing aluminum that is a metal element of the third period or more among the group 13 elements include zirconium metals such as aluminum bromide, aluminum chloride, aluminum fluoride, aluminum iodide, and aluminum nitrate. And aluminum alkoxides such as salts, trimethoxyaluminum, triethoxyaluminum, trinormalpropoxyaluminum, triisopropoxyaluminum, trinormalbutoxyaluminum, triisobutoxyaluminum, trisecondary butoxyaluminum, and tritertiary butoxyaluminum. One or two or more of them can be used in combination.
  • gallium compound (gallium source) containing gallium which is a metal element of the third period or more among group 13 elements for example, gallium metal salts such as gallium bromide, gallium chloride, gallium iodide, gallium nitrate, Examples thereof include gallium alkoxides such as trimethoxygallium, triethoxygallium, trinormalpropoxygallium, triisopropoxygallium, and trinormalbutoxygallium, and one or more of these can be used in combination.
  • niobium compound that is a metal element having a fifth period or more in Group 5 and having an atomic crystal radius of 78 pm or more
  • niobium chloride niobium oxychloride
  • niobium oxalate niobium acetylacetone
  • niobium alkoxides such as niobium metal salts, niobium ethoxide, niobium propoxide, niobium isopropoxide, niobium secondary butoxide, etc., and one or more of these can be used in combination.
  • tantalum compound that is a metal element of Group 5 in the fifth period or more and having an atomic crystal radius of 78 pm or more
  • a tantalum metal salt such as tantalum chloride or tantalum bromide
  • tantalum alkoxides such as pentamethoxy tantalum, pentaethoxy tantalum, pentaisopropoxy tantalum, pentanormal propoxy tantalum, pentaisobutoxy tantalum, pentanormal butoxy tantalum, penta secondary butoxy tantalum, and pentatertiary butoxy tantalum.
  • tantalum alkoxides such as pentamethoxy tantalum, pentaethoxy tantalum, pentaisopropoxy tantalum, pentanormal propoxy tantalum, pentaisobutoxy tantalum, pentanormal butoxy tantalum, penta secondary butoxy tantalum, and pentatertiary butoxy tantalum.
  • antimony compound that is a metal element of Group 15 in the fifth period or more and having an atomic crystal radius of 78 pm or more
  • antimony such as antimony bromide, antimony chloride, and antimony fluoride.
  • Antimony alkoxides such as metal salts, trimethoxyantimony, triethoxyantimony, triisopropoxyantimony, trinormalpropoxyantimony, triisobutoxyantimony, trinormalbutoxyantimony, and the like, and combinations of one or more of these Can be used.
  • bismuth compound that is a metal element of Group 15 in the fifth period or more and having an atomic crystal radius of 78 pm or more
  • bismuth tribromide bismuth trichloride, trifluoride Bismuth, bismuth triiodide, bismuth nitrate, bismuth oxychloride, bismuth tribenzoate, bismuth citrate, bismuth acetate, bismuth ethylhexanoate, bismuth triethoxide, bismuth trinormal propoxide, bismuth tri
  • bismuth tri Examples include bismuth alkoxides such as isopropoxide, bismuth tri-normal butoxide, bismuth triisobutoxide, bismuth mandatoributoxide, bismaster shaributoxide, bismuth tritertiary amyloxide, and one or more of these are combined.
  • Use Rukoto can.
  • organic solvents include, but are not limited to, alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, allyl alcohol, 2-n-butoxyethanol, ethylene glycol, propylene glycol, butylene glycol, Glycols such as hexylene glycol, pentanediol, hexanediol, heptanediol, dipropylene glycol, ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl formate, ethyl formate, methyl acetate, methyl acetoacetate, etc.
  • alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, allyl alcohol, 2-n-butoxyethanol, ethylene glycol, propylene glycol, butylene glycol, Glycols such as hexylene glycol
  • the above-described metal compound is weighed so as to have a concentration of mol unit, charged into a selected solvent, mixed and dissolved. In order to dissolve the metal compound sufficiently, the solvent is heated and mixed as necessary. Then, the process proceeds to step S2.
  • the metal compound solution in which the metal compound is dissolved is weighed and mixed for each metal source in consideration of the composition of the solid electrolyte to be obtained as a product.
  • a solid electrolyte precursor solution is obtained.
  • three metal compound solutions each containing a lithium compound, a lanthanum compound, and a zirconium compound, one metal compound solution containing either an aluminum compound or a gallium compound, a niobium compound, a tantalum compound, and an antimony compound A plurality of metal compound solutions each containing at least two metal compounds selected from bismuth compounds are mixed at a predetermined blending ratio. Then, the process proceeds to step S3.
  • step S3 the solid electrolyte precursor solution obtained in step S2 is heated to remove the solvent component to obtain a product. The removal of the solvent component is performed in an atmosphere open state. Then, the process proceeds to step S4.
  • the product obtained in step S4 is fired. Since it is preferable to completely remove the solvent component that may remain in the product, the firing step is preferably performed step by step.
  • the temporarily fired body obtained by temporarily firing the product at a temperature of less than 900 ° C. is ground in an agate bowl and finely ground.
  • a predetermined amount of the pulverized pre-fired body is weighed, filled in a die (tablet molding machine), and press-molded to obtain a molded body.
  • the obtained molded body is put into a crucible made of magnesium oxide so that the composition does not change during the main firing, and the crucible is covered with the same magnesium oxide lid, and the main firing is performed at a temperature of 900 ° C. or higher and lower than 1000 ° C., for example.
  • the first electrolyte 31 that is a garnet-type or garnet-like type crystal composed of a lithium composite metal compound, and the second electrolyte that is an ion-conductive amorphous material. 32 is obtained. Since the solid electrolyte (solid electrolyte layer 3) has a configuration in which the second portion 3B including the second electrolyte 32 is connected to the first portion 3A including the first electrolyte 31, a plurality of crystals are directly bonded. Rather than adopting such a configuration, the effect of reducing the resistance generated at each crystal interface can be obtained, and a solid electrolyte having high ionic conductivity can be realized or manufactured without performing high-temperature sintering.
  • the first electrolyte 31 is obtained by replacing a part of Li in the garnet-type or garnet-like type crystal with Al or Ga which is the first metal element.
  • a part of other metal elements excluding Li and the first metal element is the second metal element, and Nb, Ta, Sb, Bi of atomic crystal radius of 78 pm or more Substituted by at least two of them. Since the second metal element is also contained in the second electrolyte 32, the concentration of the second metal element in the solid electrolyte is higher in the second electrolyte 32 that is amorphous than in the first electrolyte 31 that is crystalline. growing.
  • a concentration gradient of the second metal element is generated between the first electrolyte 31 and the second electrolyte 32. Therefore, since the concentration of the second metal element continuously changes at the boundary between the first electrolyte 31 and the second electrolyte 32, the first electrolyte 31 and the second electrolyte that can be confirmed by a technique such as a transmission electron microscope.
  • the 32 boundaries are unclear. In other words, compared with the case where the boundary between the first electrolyte 31 and the second electrolyte 32 is clear, the charge transfer between the first electrolyte 31 and the second electrolyte 32 is performed smoothly, and such a solid electrolyte is used. Can be used to form the solid electrolyte layer 3 having excellent ion conductivity.
  • the lithium ion battery 10 provided with the solid electrolyte layer 3 having excellent ion conductivity as described above has excellent battery characteristics (charge / discharge characteristics). Further, the current collector 1 is the positive electrode side, the active material layer 2 is formed on the current collector 1 using a positive electrode active material, and the electrode 4 is formed on the solid electrolyte layer 3 using metal lithium to form a negative electrode Then, the lithium ion battery 10 having excellent battery characteristics and a large capacity can be obtained.
  • the second electrolyte 32 may be selected from Nb, Ta, Sb among Nb, Ta, Sb, Bi, which are second metal elements having an atomic crystal radius of 78 pm or more. It is preferable in that it has an excellent amorphous forming ability.
  • a metal element having an atomic crystal radius larger than Bi (117 pm) is difficult to replace Zr in a garnet-type or garnet-like crystal structure, a metal element having the same atomic crystal radius as Bi or smaller than Bi is selected. Is preferred.
  • FIG. 4 is a schematic diagram showing the configuration of the solid electrolyte layer of the second embodiment
  • FIG. 5 is a flowchart showing the method of manufacturing the solid electrolyte of the second embodiment
  • FIG. 6 shows the method of manufacturing the solid electrolyte of the second embodiment. It is a schematic sectional drawing.
  • the solid electrolyte of the second embodiment is obtained by adding a third electrolyte to the solid electrolyte of the first embodiment.
  • the same components as those of the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted.
  • the solid electrolyte layer 3X of the present embodiment includes a first portion 3A including a crystalline first electrolyte 31, a second portion 3B including an amorphous second electrolyte 32, And a third portion 3C including an amorphous third electrolyte 33.
  • the third electrolyte 3 is filled in the third portion 3 ⁇ / b> C that is a void in the solid electrolyte layer 3 of the first embodiment.
  • the above-described electrolyte materials of the first electrolyte 31 and the second electrolyte 32 can be used.
  • the melting point is preferably less than 900 ° C.
  • a material having ion conductivity and being amorphous at room temperature is preferable.
  • Li 3 BO 3 , Li 3 BO 3 —Li 4 SiO 4 , Li 3 BO 3 —Li 3 PO 4 examples thereof include lithium composite oxides including Li and B such as Li 3 BO 3 —Li 2 SO 4 and Li 2 CO 3 —Li 3 BO 3 .
  • Li 3 BO 3 has an ionic conductivity of approximately 6.0 ⁇ 10 ⁇ 10 S / cm and a melting point of approximately 820 ° C.
  • Li 3 BO 3 —Li 4 SiO 4 has an ionic conductivity of approximately 4.0 ⁇ 10 ⁇ 6 S / cm and a melting point of approximately 720 ° C.
  • Li 3 BO 3 —Li 3 PO 4 has an ionic conductivity of approximately 1.0 ⁇ 10 ⁇ 7 S / cm and a melting point of approximately 850 ° C.
  • Li 3 BO 3 —Li 2 SO 4 has an ionic conductivity of approximately 1.0 ⁇ 10 ⁇ 6 S / cm and a melting point of approximately 700 ° C.
  • the ionic conductivity of Li 2.2 C 0.8 B 0.2 O 3 which is a Li 2 CO 3 —Li 3 BO 3 system, is approximately 8.0 ⁇ 10 ⁇ 7 S / cm, and the melting point is 685 ° C.
  • the manufacturing method of the solid electrolyte (solid electrolyte layer 3X) of the present embodiment includes a third electrolyte addition step (step S5) in addition to steps S1 to S4 of the first embodiment. is doing.
  • step S5 added to the first embodiment will be described.
  • step S5 powder of the third electrolyte 33 is prepared. Then, as shown in FIG. 6, a predetermined amount of the powder of the third electrolyte 33 is weighed and placed on the sintered body 3 ⁇ / b> P after the main firing in Step S ⁇ b> 4.
  • the sintered body 3P on which the powder of the third electrolyte 33 is placed is placed in an electric muffle furnace and heated at a temperature that is equal to or higher than the melting point of the third electrolyte 33 and lower than 900 ° C., which is the main firing temperature.
  • the powder of the third electrolyte 33 is melted.
  • the sintered body 3P is a porous body having voids and a bulk density of about 50% to 70%, and the voids communicate with each other inside
  • the melt of the third electrolyte 33 is sintered by capillary action. Immerse into the 3P gap. Then, by rapidly cooling to room temperature, the melt is solidified, and a solid electrolyte layer 3X in which the amorphous third electrolyte 33 is filled in the voids is formed.
  • the bulk density in the sintered body 3P (the ratio of the solid content in the total volume excluding voids) can be obtained by dividing the weight of the sintered body 3P by the value obtained by multiplying the volume of the sintered body 3P by the specific gravity. it can. Since the volume of the void can be obtained if the bulk density is known, the predetermined amount of the third electrolyte 33 necessary for filling the void can also be calculated in advance.
  • the crystalline first electrolyte is filled by filling the third electrolyte 33 in the third portion 3C, which is a gap in the first embodiment. 31 can be effectively used to further improve the ionic conductivity. Moreover, if the lithium ion battery 10 is constituted using such a solid electrolyte layer 3X, the lithium ion battery 10 having more excellent battery characteristics (charge / discharge characteristics) can be provided.
  • the method of adding the third electrolyte 33 to the sintered body 3P including the first electrolyte 31 and the second electrolyte 32 is not limited to the method of immersing the melt of the third electrolyte 33.
  • the sintered body 3P is again put in an agate bowl and ground and mixed with the powder of the third electrolyte 33 to obtain a mixture.
  • the obtained mixture is put into a die (tablet molding machine) and subjected to pressure molding to form a molded body.
  • the molded body is fired at a temperature lower than the melting point of the third electrolyte 33 and cooled to form a solid electrolyte.
  • the solid electrolyte layer 3X which is a body may be manufactured. According to this, since the firing is performed at a temperature lower than the melting point of the third electrolyte 33, it is difficult for Li to escape from the molded body even if heat treatment is performed.
  • the volume ratio of the third electrolyte 33 to the powder of the sintered body 3P is about 36% to 75%.
  • the volume ratio (addition ratio) of the third electrolyte 33 is in the above range, the average distance between the particles of the composite of the first electrolyte 31 and the second electrolyte 32 inside the solid electrolyte is the first electrolyte 31 and the second electrolyte.
  • the method for forming the garnet-type or garnet-like type first electrolyte 31 in the solid electrolytes of the first embodiment and the second embodiment is not limited to the wet method.
  • Various synthesis methods such as a solid phase synthesis method, a sol-gel method, and various solution methods such as a metal organic compound decomposition method (MOD; Metal Organic Decomposition method) can be applied in accordance with a desired application form.
  • MOD Metal Organic Decomposition method
  • At least one compound containing lithium, at least one compound containing lanthanum, and at least one compound containing zirconium are used.
  • at least two kinds selected from niobium, tantalum, antimony, and bismuth are weighed and mixed so as to have a predetermined ratio. It can synthesize
  • the raw material containing lithium examples include oxides such as Li 2 O and Li 2 O 2 , oxoacid salts such as Li 2 CO 3 , LiHCO 3 , and LiNO 3 , hydroxides such as LiOH, and LiCH 3 COO.
  • oxides such as Li 2 O and Li 2 O 2
  • oxoacid salts such as Li 2 CO 3 , LiHCO 3 , and LiNO 3
  • hydroxides such as LiOH, and LiCH 3 COO.
  • Any of organic acid salts, halides such as LiF, inorganic compounds such as Li 3 N, lithium metal, lithium alloys and the like can be suitably used according to a desired production method.
  • at least lithium and a double oxide such as Li 2 ZrO 3 or LiNbO 3 containing at least one element other than lithium can be used. 2 CO 3 is particularly preferred.
  • raw materials containing lanthanum include oxides such as La 2 O 3 , oxoacid salts such as La 2 (CO 3 ) 3 , LaCO 3 OH, and La (NO 3 ) 3, and water such as La (OH) 3.
  • oxides such as La 2 O 3
  • oxoacid salts such as La 2 (CO 3 ) 3 , LaCO 3 OH, and La (NO 3 ) 3
  • water such as La (OH) 3.
  • a double oxide such as La 2 ZrO 7 or La 2 Nb 2 O 7 containing at least lanthanum and containing one or more elements other than lanthanum can be used.
  • La 2 O 3 is particularly preferred.
  • the raw material containing zirconium examples include oxides such as ZrO 2 , oxoacid salts such as ZrCO 3 , ZrO (NO 3 ) 2 and ZrOSO 4 , hydroxides such as ZrO (OH) 2 , Zr (C 3 H Any organic acid salts such as 3 O 2 ) 4 , halides such as ZrOCl 2 , inorganic compounds such as ZrC and ZrN, zirconium metal, zirconium alloys and the like can be suitably used according to the desired production method. Moreover, you may use the raw material containing these zirconium in combination with multiple types as needed.
  • a composite oxide such as Li 2 ZrO 3 , Li 4 ZrO 4 , La 2 Zr 2 O 7 containing at least zirconium and containing one or more elements other than zirconium is also used.
  • ZrO 2 is particularly preferred.
  • raw materials containing niobium include oxides such as Nb 2 O 5 , oxoacid salts such as Nb 2 (CO 3 ) 5 and Nb 2 O 2 (SO 4 ) 3 , Nb (OH) 5 , and NbO 2 OH.
  • Any of hydroxides such as NbCl 5 , halides such as NbCl 5 , inorganic compounds such as NbC, NbN, and NbSe 3 , niobium metals, niobium alloys, and the like can be suitably used according to the desired production method.
  • niobium and a mixed oxide such as LiNb0 3 or La 2 Nb 2 O 7 containing one or more elements other than niobium can be used.
  • Nb 2 O 5 is particularly preferable.
  • the raw material containing tantalum examples include oxides such as Ta 2 O 5 , oxo acid salts such as Ta 2 (CO 3 ) 5 , TaO (NO 3 ) 2 , Ta 2 O 2 (SO 4 ) 3 , Ta ( OH) 5 , TaO 2 OH and other hydroxides, TaCl 5 and other halides, TaC, TaN, TaSe 3 and other inorganic compounds, tantalum metals, tantalum alloys and the like are preferably used according to the desired production method. be able to. Moreover, you may use the raw material containing these tantalums combining multiple types as needed.
  • oxides such as Ta 2 O 5
  • oxo acid salts such as Ta 2 (CO 3 ) 5 , TaO (NO 3 ) 2 , Ta 2 O 2 (SO 4 ) 3 , Ta ( OH) 5 , TaO 2 OH and other hydroxides, TaCl 5 and other halides, TaC, TaN, TaSe 3 and other
  • At least tantalum and a mixed oxide such as LiTaO 3 and La 2 Ta 2 O 7 containing at least one element other than tantalum can be used.
  • Ta 2 O 5 is particularly preferable.
  • the raw material containing antimony examples include oxides such as Sb 2 O 3 , oxo acid salts such as Sb 2 (CO 3 ) 3 , Sb (HCO 3 ) 5 and Sb (NO 3 ) 3 , and Sb (OH) 3.
  • oxides such as Sb 2 O 3
  • oxo acid salts such as Sb 2 (CO 3 ) 3 , Sb (HCO 3 ) 5 and Sb (NO 3 ) 3
  • Sb (OH) 3 Any of hydroxides such as SbCl 5 , halides such as SbCl 5 , inorganic compounds such as SbC, SbN, and Sb 2 Se 3 , antimony metals, antimony alloys, and the like can be suitably used according to a desired production method. Moreover, you may use the raw material containing these antimony in combination of multiple types as needed.
  • At least antimony and a mixed oxide such as LiSbO 3 and La 2 Sb 2 O 7 containing one or more elements other than antimony can be used.
  • Sb 2 O 3 is particularly preferred.
  • raw materials containing bismuth include oxides such as Bi 2 O 3 , (BiO) 2 CO 3 , Bi (CH 3 COO) O, BiO (C 6 H 4 (OH) COO), and 4BiNO 3 (OH).
  • Oxo acid salts such as 2 ⁇ BiO (OH) and Bi 2 (CO 3 ) O 2 ⁇ 0.5H 2 O, hydroxides such as Bi (OH) 3 , Bi (C 6 H 5 C 7 , Bi (C 6 H 5 COO), organic acid salts such as BiF 3 and BiI 3 , inorganic compounds such as BiN and BiP, lithium metal, lithium alloys, etc. are preferably used according to the desired production method.
  • these bismuth-containing raw materials may be used in combination, and among the constituent elements of garnet-type or garnet-like crystals, at least bismuth and other elements than bismuth are used.
  • Bi oxides such as Bi 2 O 3 .3ZrO 2 can also be used, and Bi 2 O 3 is particularly preferable.
  • Li 7 -x La 3 Zr 2 -x Nb x Ta x O 12 (0 ⁇ x ⁇ 0.5) is weighed and mixed.
  • the particle size and particle size distribution of the raw material powder there is no particular limitation on the particle size and particle size distribution of the raw material powder, and those that have been sized so as to align the particle size or those that have been previously treated to remove adsorbed water on the particle surface in a dry atmosphere are used. May be.
  • the weighing operation may be performed in a dry atmosphere or an inert atmosphere as necessary. Further, since lithium in the above composition formula may be desorbed during high-temperature firing, an excess of about 0.05% to 20% of the theoretical composition ratio may be added in advance according to the firing conditions.
  • the shape and method to be molded are not particularly limited, and for example, a known method using press working with a die (tablet molding machine) or CIP (ColdCIsostatic Pressing) can be used.
  • a so-called binder made of a polymer may be added as appropriate.
  • the heat treatment of the powder mixed with the raw material or the raw material powder molded body is performed in a temperature range of 540 ° C. to 1300 ° C. depending on the desired sintering density and crystallinity.
  • the atmosphere during the heat treatment step is not particularly limited, it is preferably performed at least for a certain period of time under an air-fuel mixture containing air or oxygen. Further, the treatment can be performed in an inert gas atmosphere for a certain time or in a certain temperature range for the purpose of controlling the desorption reaction of the additive and element.
  • active material particles particles obtained by pulverizing a sintered body of the first electrolyte 31 and the second electrolyte 32, and a third electrolyte 33 (which may contain a conductive assistant, a binder, and a solvent as necessary) are prepared. To do.
  • the above materials are mixed using an agate bowl, press-molded (or slurried to form a green sheet), and after degreasing if a binder is used, at a temperature below the melting point of the third electrolyte 33.
  • An active material mixture is produced by heat treatment.
  • the active material mixture in this case is a composite of the active material layer 2 in the lithium ion battery 10 shown in FIG. 1 and the solid electrolyte layer 3X of the second embodiment shown in FIG. What is necessary is just to form the electrical power collector 1 and the electrode 4 in the obtained active material compound material.
  • a porous body obtained by sintering active material particles, a precursor solution of the first electrolyte 31 and the second electrolyte 32, and a precursor solution of the third electrolyte 33 are prepared. After filling the precursor solution of the first electrolyte 31 and the second electrolyte 32 into the voids in the porous body made of active material particles and firing, the precursor solution of the third electrolyte 33 is filled and the melting point of the third electrolyte 33 is filled. Bake in less than. That is, each precursor solution is sequentially applied onto the active material layer 2 of the lithium ion battery 10 shown in FIG. 1, dried and fired, and the active material layer 2 and the second embodiment shown in FIG. This is a method of compositing the solid electrolyte layer 3X in the form.
  • a porous body obtained by sintering active material particles, a precursor solution of the first electrolyte 31 and the second electrolyte 32, and a powder of the third electrolyte 33 are prepared.
  • the precursor solution of the first electrolyte 31 and the second electrolyte 32 is filled in a void in the porous body made of active material particles and fired, and then impregnated with a melt obtained by melting the third electrolyte 33 and rapidly cooled. That is, the third electrolyte is applied to the sintered body 3P (see FIG. 6) obtained by applying the precursor solution onto the active material layer 2 of the lithium ion battery 10 shown in FIG. In this method, the active material layer 2 is combined with the solid electrolyte layer 3X of the second embodiment shown in FIG. 4 by impregnating the melt 33 and quenching.
  • the third electrolyte 33 is not added, an active material mixture in which the active material layer 2 and the solid electrolyte layer 3 of the first embodiment are combined is obtained. Further, in the wet method, if the third electrolyte 33 as a material is not prepared, the active material layer 2 and the solid electrolyte layer 3 of the first embodiment can be combined.
  • Example 1 a (Li 5.5 Ga 0.5 ) La 3 Zr 2 Nb 0.025 Sb 0.025 O 12 precursor solution is prepared as a solid electrolyte precursor solution.
  • metal compound solutions 6.6000 g of 1 mol / kg concentration of lithium nitrate butanol solution, 1 mol / kg concentration of gallium nitrate, and 5.
  • Example 2 a (Li 5.5 Ga 0.5 ) La 3 Zr 2 Nb 0.05 Ta 0.05 O 12 precursor solution is prepared as a solid electrolyte precursor solution.
  • metal compound solutions 6.6000 g of 1 mol / kg concentration of lithium nitrate butanol solution, 1 mol / kg concentration of gallium nitrate, and 5.
  • Example 3 a (Li 5.5 Ga 0.5 ) La 3 Zr 2 Ta 0.005 Sb 0.005 O 12 precursor solution is prepared as a solid electrolyte precursor solution.
  • metal compound solutions 6.6000 g of 1 mol / kg concentration of lithium nitrate butanol solution, 1 mol / kg concentration of gallium nitrate, and 5.
  • Comparative Example 1 a (Li 5.5 Ga 0.5 ) La 3 Zr 2 O 12 precursor solution is prepared as a solid electrolyte precursor solution.
  • metal compound solutions 6.6000 g of 1 mol / kg concentration of lithium nitrate butanol solution, 1 mol / kg concentration of gallium nitrate, and 5.
  • the solid electrolyte precursor solution of Comparative Example 1 does not contain the second metal element selected from Nb, Ta, Sb, and Bi.
  • Comparative Example 2 a (Li 5.5 Ga 0.5 ) La 3 Zr 2 V 0.05 O 12 precursor solution is prepared as a solid electrolyte precursor solution.
  • metal compound solutions 6.6000 g of 1 mol / kg concentration of lithium nitrate butanol solution, 1 mol / kg concentration of gallium nitrate, and 5.
  • the solid electrolyte precursor solution of Comparative Example 2 contains vanadium (V), which is an element in the fourth period among the Group 5 elements, as the second metal element.
  • the atomic crystal radius of vanadium (V) is 68 pm.
  • a Li 7 La 3 Zr 2 O 12 precursor solution is prepared as a solid electrolyte precursor solution.
  • the solid electrolyte of Comparative Example 3 does not contain the first metal element selected from Al and Ga and the second metal element selected from Nb, Ta, Sb, and Bi.
  • the molar ratio is 1.2 times the original theoretical composition in consideration of the amount of Li released during firing.
  • a butanol solution of lithium nitrate having a concentration of 1 mol / kg as a lithium source is prepared.
  • Metal compound solutions relating to other metal element sources are prepared so as to have an equimolar ratio with respect to the theoretical composition of the solid electrolyte.
  • 0.2000 g of the pulverized pre-fired body is weighed, put into a ⁇ 10 mm die (tablet molding machine), and uniaxially pressed at 50 kgN using a handy press machine to produce a pre-fired body pellet.
  • the temporarily fired body pellets of Examples 1 to 3 and Comparative Examples 1 to 3 were put in a crucible made of magnesium oxide, covered with a lid made of magnesium oxide from above, placed in an electric muffle furnace, and at 900 ° C. for 12 hours. Firing is performed. After slow cooling to room temperature, the magnesium oxide crucible is taken out of the electric muffle furnace.
  • Example 4 the solid electrolyte pellet obtained by firing at 900 ° C. for 12 hours using the solid electrolyte precursor solution of Example 1 as a starting material is pulverized in an agate bowl. After pulverization, 0.1500 g is weighed and 0.0500 g of Li 3 BO 3 (trilithium borate) is added thereto. Transfer this mixed powder to an agate bowl, add 0.2 ml of hexane, and mix well until hexane is completely volatilized. The mixed powder is put into a ⁇ 10 mm die (tablet molding machine), and uniaxially pressed at 50 kgN using a handy press machine, and pelletized again. The pellet was placed on a ⁇ 13 mm pure gold plate, placed in an electric muffle furnace preheated to 800 ° C., heat-treated for 10 minutes, and then rapidly cooled to obtain a solid electrolyte pellet of Example 4. .
  • Li 3 BO 3 trilithium borate
  • each solid electrolyte pellet was measured using an X-ray diffractometer (Philips MRD) and a Raman scattering spectrometer (JEOL S-2000) to confirm the crystal phase.
  • impedance measurement was performed by an AC impedance method using an impedance measuring device (Solartron 1260), and the bulk, grain boundary, and total lithium ion conductivity of the solid electrolyte as a product were obtained.
  • ⁇ 8 mm gold (Au) was vapor-deposited on both the front and back surfaces of the solid electrolyte pellet by sputtering, an inactivated electrode was prepared, AC impedance measurement was performed, and then the sputtered gold ( The lithium metal foil was pressed on both the front and back surfaces of the solid electrolyte pellet on the Au) electrode, and the AC impedance was measured with the activated electrode.
  • FIG. 7 is a graph showing the measurement results of the X-ray diffraction intensity of Example 1 and Comparative Example 1
  • FIG. 8 is a graph showing the Raman scattering spectra of Example 1 and Comparative Example 1.
  • Example 1 only the diffraction peak of gallium-doped lithium lanthanum zirconate was observed from the solid electrolytes of Example 1 and Comparative Example 1.
  • Example 1 the diffraction peak of niobium-doped or antimony-doped lithium lanthanum zirconate is not observed.
  • a diffraction peak related to a contamination phase indicating the generation of impurities is not observed.
  • the doped niobium or antimony is considered to be mainly contained in the amorphous second electrolyte 32. Therefore, the solid electrolytes of Example 1 and Comparative Example 1 both contain garnet-type or garnet-like gallium-doped lanthanum zirconate zirconate and have no contaminating phase.
  • the garnet-type or garnet-like crystal there are 24d, 48g, and 96h sites as sites where Li enters.
  • the 24d site is isolated and is not connected to the 48g, 96h site.
  • the Raman scattering spectrum scattering at each site position is observed, so that a sharp spectrum has a triplet peak.
  • the 24d site, the 48g site, and the 96h site are connected, and Li can move freely through these three sites in the crystal. For this reason, in the Raman scattering spectrum, the position of Li is observed in a blurred manner, and thus a triplet peak such as a tetragonal crystal is not obtained.
  • Example 1 and Comparative Example 1 together, 24d site near 370 cm -1, and 260 cm -1 vicinity 48g site, and Raman scattering spectra due to 96h site 290cm around -1 broadened ing. If the crystal structures of the lithium lanthanum zirconate of Example 1 and Comparative Example 1 are both tetragonal, the Raman scattering spectrum is not broadened, and the triplet has a steep spectrum.
  • Example 1 and Comparative Example It is considered that the crystal structure of 1 lanthanum zirconate lithium has a cubic garnet structure. Here, evaluation of the crystal structures of the solid electrolytes of Example 1 and Comparative Example 1 was described, but similar evaluation results were obtained in Examples 2 to 4 and Comparative Example 2.
  • the solid electrolytes of Examples 2 to 4 and Comparative Example 2 contain garnet-type or garnet-like gallium-doped lanthanum zirconate lithium, and have no contaminating phase.
  • a metallic element selected from Nb, Ta, Sb, and V and doped is mainly contained in the amorphous second electrolyte 32.
  • FIG. 9 is a graph showing the Raman scattering spectrum of Comparative Example 3.
  • the solid electrolyte of Comparative Example 3 gallium and niobium or antimony is not doped is, 48 g site (260 cm around -1), 96h site (290 cm around -1), and 24d site (370 cm - 1 ), the spectral spectrum is split into triplets, and it can be seen that Li is immobilized at each site. This suggests that the crystal structure of the solid electrolyte of Comparative Example 3 is a tetragonal garnet type.
  • FIG. 10 is a table showing the measurement results and bulk density of lithium ion conductivity in the solid electrolyte pellets of Examples 1 to 4 and Comparative Examples 1 to 3.
  • the bulk lithium ion conductivity (S / cm) in Examples 1 to 4 and Comparative Examples 1 and 2 are all on the order of 10 ⁇ 4 .
  • the lithium ion conductivity (S / cm) at the grain boundaries in Examples 1 to 3 is on the order of 10 ⁇ 4
  • Example 4 is on the order of 10 ⁇ 3 .
  • the lithium ion conductivity (S / cm) at the grain boundaries in Comparative Examples 1 and 2 is on the order of 10 ⁇ 5 .
  • the total lithium ion conductivity (S / cm) in Examples 1 to 4 is on the order of 10 ⁇ 4 , whereas the total lithium ion conductivity (S / cm) in Comparative Examples 1 and 2 is 10 -5 orders. That is, in Examples 1 to 4, the lithium ion conductivity (S / cm) at the grain boundary is improved, and the total lithium ion conductivity is improved as compared with Comparative Examples 1 and 2.
  • any of the metallic elements substituting the 48 g site in the garnet-type or garnet-like type crystal structure among doped Nb, Ta, and Sb has the effect of promoting the formation of cubic crystals. Then, by adding a metal element that contributes to the expression of bulk ionic conductivity and competes at the same site, a concentration gradient of the metal element occurs between the first electrolyte 31 and the second electrolyte 32, and the first It is considered that it contributes to the reduction of the grain boundary resistance in the composite body of the first electrolyte 31 and the second electrolyte 32.
  • Example 4 by adding the third electrolyte 33, the composite particles of the first electrolyte 31 and the second electrolyte 32 are dispersed, the resistance generated at the particle interface becomes extremely small, and the total ionic conductivity is increased. It is thought that it improved.
  • the solid electrolyte of Comparative Example 2 is doped with vanadium (V), but V (68 pm) having an atomic crystal radius smaller than Nb (78 pm) is easily removed from the crystal structure in the firing step. It is also considered that the grain boundary resistance increased and the ionic conductivity of the grain boundary decreased.
  • the solid electrolyte considered to be a tetragonal garnet type of Comparative Example 3 exhibits an insulator behavior (impedance increases monotonically with decreasing frequency) in the measurement frequency range (10 MHz to 1 MHz), and the bulk and grain boundaries. It was not possible to determine the lithium ion conductivity at.
  • the bulk density of the solid electrolyte pellets of Examples 1 to 3 is about 70%, compared with the bulk density of the solid electrolyte pellets of Comparative Examples 1 to 3 being about 50%.
  • the bulk density of the solid electrolyte pellets of Example 4 filled with the third electrolyte 33 is 98%. That is, it is presumed that the first electrolyte 31 in which Examples 1 to 3 are crystalline is more effectively used than Comparative Examples 1 to 3, and that Example 4 is more effectively used.
  • the bulk component and the grain boundary component as the impedance component were separated, but in Examples 1 to 4, the impedance component was separated.
  • the bulk component and the grain boundary component cannot be clearly separated. Therefore, the bulk component and the grain boundary component of Examples 1 to 4 are calculated from the total impedance component of Examples 1 to 4 and the frequency of Comparative Example 1 in which the bulk component and the grain boundary component are separated, as shown in FIG. Shown in parentheses in the table.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification.
  • a lithium ion battery to which a solid electrolyte is applied is also included in the technical scope of the present invention.
  • the second metal element contained in the solid electrolyte is not limited to two selected from Nb, Ta, Sb, and Bi, and may be three or four.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

比較的に低温で焼結を行っても粒界抵抗を確保可能な固体電解質及び該固体電解質を用いたリチウムイオン電池を提供すること。 固体電解質は、第3周期以上の13族元素の中から選ばれる1種の第1金属元素を含むリチウム複合金属化合物を有する第1電解質と、Liと、第5周期以上の5族元素または第5周期以上の15族元素の中から選ばれる少なくとも2種の第2金属元素を含む第2電解質とを備える。

Description

固体電解質及びリチウムイオン電池
 本発明は、固体電解質及び固体電解質を用いたリチウムイオン電池に関する。
 電池用の固体電解質として、例えば、特許文献1には、ケイ素含有チタン酸リチウムランタン複合固体電解質材料及びその製造方法が開示されている。特許文献1によれば、ケイ素前駆体溶液にチタン酸リチウムランタン複合化合物を添加して加熱乾燥させた後、ペレット化して焼結することにより、チタン酸リチウムランタン結晶粒子間の粒界にアモルファスのシリコン(Si)またはSi化合物を導入している。これにより、粒界導電率が顕著に向上するとしている。
 また、例えば、特許文献2には、水と水溶性チタン化合物とを含む前駆体溶液を加熱して焼成する、チタン酸化物型の固体電解質の形成方法が開示されている。特許文献2によれば、上記前駆体溶液が、チタンを始めとして、例えばリチウム(Li)やランタン(La)などの各元素供給源を比較的に高濃度で含むことができることから、溶媒としてアルコールを用いたゾル-ゲル法に比べて、溶液の塗布及び焼成の回数を減じて、所望の体積を有するチタン酸化物型の固体電解質を形成することができるとしている。
特開2011-529243号公報 特開2003-346895号公報
 しかしながら、上記特許文献1及び上記特許文献2において、1000℃以上の高温で焼結を行うと、焼結体からLiが抜けたり、熱処理によって副生成物が生じたりして焼結体の組成が変化するおそれがある。そこで、焼結体の組成変化を抑制すべく、熱処理の温度を低くすると、結晶粒子の界面が十分に焼結されず、粒界抵抗が上昇するという課題があった。
 また、上記特許文献1及び上記特許文献2に示された湿式化学法を用いて固体電解質を形成する場合、生成物が均一層を形成するため、生成物における界面が明確であって、界面抵抗が生じ易いという課題もあった。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
 [適用例]本適用例に係る固体電解質は、ガーネット型またはガーネット類似型の結晶質である第1電解質と、イオン伝導性の非晶質である第2電解質と、を含み、前記第1電解質は、第3周期以上の13族元素の中から選ばれる1種の第1金属元素を含むリチウム複合金属化合物であり、前記第2電解質は、Liと、第5周期以上の5族元素または第5周期以上の15族元素の中から選ばれる少なくとも2種の第2金属元素とを含むことを特徴とする。
 本適用例によれば、結晶質である第1電解質と、非晶質である第2電解質とが接合される構成となることから、結晶質である第1電解質同士を直接接合する場合に比べて、結晶界面に生ずる抵抗を減ずる効果が得られる。加えて、ガーネット型またはガーネット類似型の結晶質の低温での焼結における立方晶の安定化に寄与し、高温の焼結を行わずとも結晶質におけるイオン伝導性を確保することができる。さらに、ガーネット型またはガーネット類似型の結晶質において、Liの24dサイトの一部が第3周期以上の13族元素の中から選ばれる1種の第1金属元素によって置換されることで、結晶質におけるイオン伝導性が向上する。また、第1電解質を構成するリチウム複合金属化合物のうち、Li及び第1金属元素を除く他の金属元素の一部が、第2電解質に含まれる第5周期以上の5族元素または第5周期以上の15族元素の中から選ばれる少なくとも2種の第2金属元素と置換されることで、結晶質の第1電解質と非晶質の第2電解質との間で、第2金属元素の濃度勾配が生ずる。これによって、第1電解質と第2電解質との境界が不明確になり、境界が明確である場合に比べて粒界抵抗を減じて高いイオン伝導性を実現できる。
 上記適用例に記載の固体電解質において、前記第1金属元素がAl、Gaの中から選ばれることを特徴とする。
 この構成によれば、ガーネット型またはガーネット類似型の結晶質において、Liの24dサイトの一部がAlまたはGaによって置換され、結晶質におけるイオン伝導性が向上する。
 上記適用例に記載の固体電解質において、前記第2金属元素の原子結晶半径が78pm以上であることが好ましい。
 この構成によれば、熱処理が施されても、第1電解質を構成するリチウム複合金属化合物から第2金属元素が抜け難くなるので、安定したイオン伝導性が得られる。
 上記適用例に記載の固体電解質において、前記第2金属元素がNb、Ta、Sb、Biの中から2種選ばれることが好ましい。
 この構成によれば、2種の第2金属元素によって、第1電解質を構成するリチウム複合金属化合物のうち、Li及び第1金属元素を除く他の金属元素の一部が置換されることから、結晶質における高いイオン伝導性を実現できる。
 上記適用例に記載の固体電解質において、Li、Bを含む酸化物からなる非晶質の第3電解質をさらに含むとしてもよい。
 この構成によれば、第1電解質は第2電解質との接合に加えて第3電解質とも接合することになるため、第1電解質を有効に利用して、高いイオン伝導性を有する固体電解質を実現できる。
 [適用例]本適用例に係るリチウムイオン電池は、上記適用例に記載の固体電解質からなる固体電解質層と、前記固体電解質層の一方の面に設けられた電極と、前記固体電解質層の他方の面に設けられた集電体と、を備えたことを特徴とする。
 本適用例によれば、粒界抵抗が減ぜられると共にイオン伝導性が確保された固体電解質が用いられているので、優れた充放電特性を有するリチウムイオン電池を提供することができる。
 上記適用例に記載のリチウムイオン電池において、前記電極が金属リチウムからなり、前記固体電解質層の他方の面と前記集電体との間に、Liを含む正極活物質層を備えることが好ましい。
 この構成によれば、リチウム供給源となる電極及び正極活物質層を備えているので、優れた充放電特性を有すると共に、大容量のリチウムイオン電池を提供することができる。
リチウムイオン電池の構成を示す概略断面図。 第1実施形態の固体電解質層の構成を示す模式図。 第1実施形態の固体電解質の製造方法を示すフローチャート。 第2実施形態の固体電解質層の構成を示す模式図。 第2実施形態の固体電解質の製造方法を示すフローチャート。 第2実施形態の固体電解質の製造方法を示す概略断面図。 実施例1及び比較例1のX線回折強度の測定結果を示すグラフ。 実施例1及び比較例1のラマン散乱スペクトルを示すグラフ。 比較例3のラマン散乱スペクトルを示すグラフ。 実施例1~4、比較例1~3の固体電解質のペレットにおけるリチウムイオン伝導率の測定結果及び嵩密度を示す表。
 以下、本発明を具体化した実施形態について図面に従って説明する。なお、使用する図面は、説明する部分が認識可能な状態となるように、適宜拡大または縮小して表示している。
 (第1実施形態)
 <リチウムイオン電池>
 まず、本実施形態の固体電解質が適用されたリチウムイオン電池の一例について、図1を参照して説明する。図1はリチウムイオン電池の構成を示す概略断面図である。
 図1に示すように、本実施形態のリチウムイオン電池10は、集電体1と、活物質層2と、固体電解質層3と、電極4とがこの順に積層された構成となっている。リチウムイオン電池10は、外形が例えばφ3mm~30mm、厚みが150μm~200μm(マイクロメーター)の円盤状である。このような薄型のリチウムイオン電池10は、単体で用いてもよいし、複数のリチウムイオン電池10をスタックした形態で用いてもよい。以降、リチウムイオン電池10の各構成について説明する。
 集電体1は、例えば、銅(Cu)、マグネシウム(Mg)、チタン(Ti)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、ゲルマニウム(Ge)、インジウム(In)、金(Au)、白金(Pt)、銀(Ag)、及びパラジウム(Pd)の金属群から選ばれる1種の金属(金属単体)や、該金属群から選ばれる2種以上の金属からなる合金などを用いることができる。
 集電体1の形状は、板状、箔状、網状などを採用することができ、その表面は、平滑であっても、凹凸が形成されていてもよい。このような集電体1の厚みは例えばおよそ20μmである。
 活物質層2は、リチウムイオン電池10において、集電体1を正極側に使用する場合と、負極側に使用する場合とで、用いられる材料が異なる。
 集電体1を正極側に使用する場合には、活物質層2は、正極活物質材料を用いて形成される。正極活物質材料としては、例えば、リチウム(Li)を含む2種以上の金属元素が含まれるリチウム複合金属化合物が挙げられる。より具体的には、リチウム複合金属化合物としては、例えば、LiCoO2、LiNiO2、LiMn24、Li2Mn23、LiFePO4、Li2FeP27、LiMnPO4、LiFeBO3、Li32(PO43、Li2CuO2、Li2FeSiO4、Li2MnSiO4などのリチウム複合酸化物が挙げられる。また、リチウム複合酸化物以外にも、LiFeF3などのリチウム複合フッ化物を用いてもよい。さらに、これらのリチウム複合金属化合物の一部の原子が他の遷移金属、典型金属、アルカリ金属、アルカリ希土類、ランタノイド、カルコゲナイド、ハロゲンなどで置換されたものも含まれる。また、これらのリチウム複合金属化合物の固溶体を正極活物質材料として用いてもよい。
 集電体1を負極側に使用する場合には、活物質層2は、負極活物質材料を用いて形成される。負極活物質材料としては、例えば、シリコン-マンガン合金(Si-Mn)、シリコン-コバルト合金(Si-Co)、シリコン-ニッケル合金(Si-Ni)、五酸化ニオブ(Nb25)、五酸化バナジウム(V25)、酸化チタン(TiO2)、酸化インジウム(In23)、酸化亜鉛(ZnO)、酸化スズ(SnO2)、酸化ニッケル(NiO)、錫(Sn)が添加された酸化インジウム(ITO)、アルミニウム(Al)が添加された酸化亜鉛(AZO)、ガリウムが添加された酸化亜鉛(GZO)、アンチモンが添加された酸化スズ(ATO)、フッ素(F)が添加された酸化スズ(FTO)、炭素材料、炭素材料の層間にリチウムイオンが挿入された物質、TiO2のアナターゼ相、Li4Ti512、Li2Ti37などのリチウム複合酸化物、金属リチウムなどが挙げられる。
 このような活物質層2の厚みは、例えば20μm~400μmである。
 集電体1を正極側に使用する場合、電極4は負極となる。その場合、集電体1として例えばアルミニウム(Al)を用い、電極4として例えば金属リチウムを用いることができる。電極4の厚みは例えばおよそ40μmである。負極として機能する電極4として金属リチウムを用いれば、充放電におけるリチウム供給源となることから、大容量のリチウムイオン電池10を実現できる。
 固体電解質層3は、本実施形態の固体電解質が適用されており、結晶質である第1電解質と、イオン伝導性の非晶質である第2電解質と、を含み、優れたイオン伝導性を有している。固体電解質層3の厚みは例えば50nm(ナノメーター)~100μmである。このような固体電解質層3を備えたリチウムイオン電池10は、優れた電池特性(充放電特性)を有する。以降、本実施形態のリチウムイオン電池10における固体電解質層3について、詳しく説明する。
 なお、詳しくは後述するが、固体電解質層3は、活物質層2と複合化されていてもよい。
 <固体電解質層>
 図2は第1実施形態の固体電解質層の構成を示す模式図である。図2に示すように、固体電解質層3は、結晶質である第1電解質31を含む第1の部分3Aと、イオン伝導性の非晶質である第2電解質32を含む第2の部分3Bと、空隙である第3の部分3Cとを少なくとも有している。空隙は固体電解質層3の内部で連通している。すなわち、固体電解質層3は多孔質である。
 このような固体電解質層3の構造は、例えば透過型電子顕微鏡などにより確認することができるものの、本実施形態の固体電解質層3における第1の部分3Aと第2の部分3Bとの境界は、必ずしも明確ではなく、詳しくは、後述するが、第1電解質31及び第2電解質32に含まれる少なくとも2種の第2金属元素の濃度が第1の部分3Aと第2の部分3Bとの間で連続的に変化していることにより、第1の部分3Aと第2の部分3Bとの境界が不明確な状態となっている。なお、図2はこのような固体電解質層3の構成について、透過型電子顕微鏡による構造の観察の状態を模式的に図示したものであって、必ずしも実際の観察の状態と一致するものではない。
 第1電解質31及び第2電解質32を構成する電解質材料としては、Li7-3xGaxLa3Zr212、Li3.40.6Si0.44、Li14ZnGe416、Li3.60.4Ge0.64、Li1.3Ti1.7Al10.3(PO43、Li2.88PO3.730.14、LiNbO3、Li0. 35La0.55TiO3、Li3NI2、Li6NBr3、Li2SO4、Li4SiO4、Li4GeO4、Li3VO4、Li4GeO4-Zn2GeO2、LiMoO4、Li3PO、Li4ZrO4、Li2+XCl-XX3、LiBH4、Li7-XPs6-XClX、Li10GeP212などのリチウムを含む酸化物、硫化物、窒化物、水素化物或いはそれらの部分置換体の結晶質、非晶質および部分結晶化ガラスのいずれも好適に用いることができる。
 本実施形態において、第1電解質31は、優れたイオン伝導性を示すと共に、電気化学的に安定であることが好ましく、Li7-3xM1xM2yM32-yM4O12(0.1≦x≦0.6、0.1≦y≦1.0)の示性式で表されるガーネット型またはガーネット類似型の結晶質が用いられている。
 上記示性式において、M1は本発明における第1金属元素であり、ガーネット型またはガーネット類似型の結晶におけるLiの24dサイトを置換することが可能な金属元素であればいずれも用いることができるが、特にイオン伝導率が高い結晶を形成するために、13族元素のうち第3周期以上のAl、Gaの中から選ばれることが好ましい。
 M2は本発明における第2金属元素であり、ガーネット型またはガーネット類似型の結晶を形成可能な金属元素であればいずれも用いることができるが、特にイオン伝導率が高い結晶を形成するために、5族元素のうち第5周期以上のニオブ(Nb)、タンタル(Ta)、及び15族元素のうち同じく第5周期上のアンチモン(Sb)、ビスマス(Bi)の中から少なくとも2種選ぶことが好ましい。
 これらの第2金属元素の原子結晶半径(単位;pm(ピコメートル))は、Nbが78pm、Taが78pm、Sbが90pm、Biが117pmであり、いずれも78pm以上である(Hulinks社製の結晶・分子構造設計プログラム、CrystalMaker(登録商標)による)。
 M3は、ガーネット型またはガーネット類似型の結晶を形成可能な金属元素であればいずれも用いることができるが、特にイオン伝導率が高い結晶を形成するために、ジルコニウム(Zr)が好ましい。
 M4は、ガーネット型またはガーネット類似型の結晶を形成可能な金属元素であればいずれも用いることができるが、特にイオン伝導率が高い結晶を形成するためにランタノイド元素が好ましく、特にランタン(La)が好ましい。
 第2電解質32は、上述した電解質材料を用いて形成された非晶質であって、第1電解質31と同様に、5族元素のうち第5周期以上のNb、Ta、及び15族元素のうち同じく第5周期上のSb、Biの中から選ばれた少なくとも2種の第2金属元素を含むものである。
 <固体電解質の製造方法>
 次に、固体電解質層3を構成するところの固体電解質の製造方法について、図3を参照して説明する。図3は第1実施形態の固体電解質の製造方法を示すフローチャートである。本実施形態の固体電解質の製造方法は、湿式法であって、金属化合物溶液の調製工程(ステップS1)と、固体電解質前駆体溶液の調製工程(ステップS2)と、固体電解質合成工程(ステップS3)と、生成物焼成工程(ステップS4)と、を含んでいる。
 ステップS1の金属化合物溶液の調製工程では、固体電解質に含まれる種々の金属について、それぞれ金属化合物として入手し、当該金属化合物を溶媒に溶解させた金属化合物溶液を調製する。本実施形態において準備する金属化合物は、リチウム化合物、ランタン化合物、ジルコニウム化合物、アルミニウム化合物、ガリウム化合物、ニオブ化合物、タンタル化合物、アンチモン化合物、ビスマス化合物である。
 リチウム化合物(リチウム源)としては、例えば、塩化リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、炭酸リチウムなどのリチウム金属塩、リチウムメトキシド、リチウムエトキシド、リチウムプロポキシド、リチウムイソプロポキシド、リチウムブトキシド、リチウムイソブトキシド、リチウムセカンダリーブトキド、リチウムターシャリーブトキシド、ジピバロイルメタナトリチウムなどのリチウムアルコキシドが挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 ランタン化合物(ランタン源)としては、例えば、塩化ランタン、硝酸ランタン、酢酸ランタンなどのランタン金属塩、ランタンメトキシド、ランタンエトキシド、ランタンプロポキシド、ランタンイソプロポキシド、ランタンブトキシド、ランタンイソブトキシド、ランタンセカンダリーブトキシド、ランタンターシャリーブトキシド、ジピバロイルメタナトランタンなどのランタンアルコキシドが挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 ジルコニウム化合物(ジルコニウム源)としては、例えば、塩化ジルコニウム、オキシ塩化ジルコニウム、オキシ硝酸ジルコニウム、オキシ酢酸シルコニウム、酢酸ジルコニウムなどのジルコニウム金属塩、ジルコニウムメトキシド、ジルコニウムエトキシド、ジルコニウムプロポキシド、ジルコニウムイソプロポキシド、ジルコニウムブトキシド、ジルコニウムイソブトキシド、ジルコニウムセカンダリーブトキシド、ジルコニウムターシャリーブトキシド、ジピバロイルメタナトジルコニウムなどのジルコニウムアルコキシドが挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 13族元素のうち第3周期以上の金属元素であるアルミニウムを含む、アルミニウム化合物(アルミニウム源)としては、例えば、臭化アルミニウム、塩化アルミニウム、フッ化アルミニウム、沃化アルミニウム、硝酸アルミニウムなどのジルコニウム金属塩、トリメトキシアルミニウム、トリエトキシアルミニウム、トリノルマルプロポキシアルミニウム、トリイソプロポキシアルミニウム、トリノルマルブトキシアルミニウム、トリイソブトキシアルミニウム、トリセカンダリーブトキシアルミニウム、トリターシャリーブトキシアルミニウムなどのアルミニウムアルコキシドが挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 同じく、13族元素のうち第3周期以上の金属元素であるガリウムを含む、ガリウム化合物(ガリウム源)としては、例えば、臭化ガリウム、塩化ガリウム、沃化ガリウム、硝酸ガリウムなどのガリウム金属塩、トリメトキシガリウム、トリエトキシガリウム、トリノルマルプロポキシガリウム、トリイソプロポキシガリウム、トリノルマルブトキシガリウムなどのガリウムアルコキシドが挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 また、5族の第5周期以上の金属元素であって、原子結晶半径が78pm以上の化合物としてのニオブ化合物(ニオブ源)としては、例えば、塩化ニオブ、オキシ塩化ニオブ、蓚酸ニオブ、ニオブアセチルアセトンなどのニオブ金属塩、ニオブエトキシド、ニオブプロポキシド、ニオブイソプロポキシド、ニオブセカンダリーブトキシドなどのニオブアルコキシドが挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 同様に、5族の第5周期以上の金属元素であって、原子結晶半径が78pm以上の化合物としてのタンタル化合物(タンタル源)としては、例えば、塩化タンタル、臭化タンタルなどのタンタル金属塩、ペンタメトキシタンタル、ペンタエトキシタンタル、ペンタイソプロポキシタンタル、ペンタノルマルプロポキシタンタル、ペンタイソブトキシタンタル、ペンタノルマルブトキシタンタル、ペンタセカンダリーブトキシタンタル、ペンタターシャリーブトキシタンタルなどのタンタルアルコキシドが挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 さらに、15族の第5周期以上の金属元素であって、原子結晶半径が78pm以上の化合物としてのアンチモン化合物(アンチモン源)としては、例えば、臭化アンチモン、塩化アンチモン、フッ化アンチモンなどのアンチモン金属塩、トリメトキシアンチモン、トリエトキシアンチモン、トリイソプロポキシアンチモン、トリノルマルプロポキシアンチモン、トリイソブトキシアンチモン、トリノルマルブトキシアンチモンなどのアンチモンアルコキシドが挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 同様に、15族の第5周期以上の金属元素であって、原子結晶半径が78pm以上の化合物としてのビスマス化合物(ビスマス源)としては、例えば、三臭化ビスマス、三塩化ビスマス、三フッ化ビスマス、三ヨウ化ビスマス、硝酸ビスマス、オキシ塩化ビスマス、三安息香酸ビスマス、クエン酸ビスマス、酢酸ビスマス、2エチルヘキサン酸ビスマスなどのビスマス金属塩、ビスマストリエトキシド、ビスマストリノルマルプロポキシド、ビスマストリイソプロポキシド、ビスマストリノルマルブトキシド、ビスマストリイソブトキシド、ビスマスカンダリーブトキド、ビスマスターシャリーブトキシド、ビスマストリターシャリーアミロキシドなどのビスマスアルコキシドが挙げられ、これらのうちの1種または2種以上を合わせて用いることができる。
 また、溶媒としては、リチウム化合物、ランタン化合物、ジルコニウム化合物、アルミニウム化合物、ガリウム化合物、及び原子結晶半径が78pm以上である金属化合物を、それぞれ、溶解し得る、水および有機溶媒の単溶媒または混合溶媒が用いられる。
 このような有機溶媒としては、特に限定されないが、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、アリルアルコール、2-n-ブトキシエタノールなどのアルコール類、エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、ジプロピレングリコールなどのグリコール類、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトンなどのケトン類、ギ酸メチル、ギ酸エチル、酢酸メチル、アセト酢酸メチルなどのエステル類、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテルなどのエーテル類、ギ酸、酢酸、プロピオン酸などの有機酸類、トルエン、o-キシレン、p-キシレンなどの芳香族類などが挙げられる。
 金属化合物溶液の調製は、上述した金属化合物をモル(mol)単位の濃度となるように秤量して、選定された溶媒に投入し、混ぜ合わせて溶解させる。金属化合物を十分に溶解させるため、必要により溶媒を加温して混ぜ合わせる。そして、ステップS2へ進む。
 ステップS2の固体電解質前駆体溶液の調製工程では、生成物として得ようとする固体電解質の組成を考慮して、金属化合物が溶解した金属化合物溶液を、金属源ごとにそれぞれ秤量して混ぜ合わせることにより、固体電解質前駆体溶液を得る。具体的には、リチウム化合物、ランタン化合物、ジルコニウム化合物をそれぞれ含む3種の金属化合物溶液と、アルミニウム化合物またはガリウム化合物のいずれかを含む1種の金属化合物溶液と、ニオブ化合物、タンタル化合物、アンチモン化合物、ビスマス化合物の中から選ばれる少なくとも2種の金属化合物をそれぞれ含む複数種の金属化合物溶液とを所定の配合割合で混ぜ合わせる。そして、ステップS3へ進む。
 ステップS3の固体電解質合成工程では、ステップS2で得られた固体電解質前駆体溶液を加熱して溶媒成分を除去して生成物を得る。なお、溶媒成分の除去は大気開放状態で行う。そして、ステップS4に進む。
 ステップS4の生成物焼成工程では、ステップS4で得られた生成物を焼成する。焼成工程は、生成物に残存するおそれがある溶媒成分を完全に除去することが好ましいことから、段階的に行うことが好ましい。本実施形態では、900℃未満の温度で生成物を一旦仮焼成して得られた仮焼成体をメノウ鉢ですり潰して細かく粉砕する。粉砕された仮焼成体を所定量秤量してダイス(錠剤成型器)に充填し加圧成型して成型体を得る。得られた成型体を本焼成時に組成が変化しないように、酸化マグネシウム製のルツボに入れ、同じく酸化マグネシウム製の蓋でルツボを蓋して例えば900℃以上1000℃未満の温度で本焼成を行って固体電解質を得る。
 上記第1実施形態の固体電解質の製造方法によれば、リチウム複合金属化合物からなるガーネット型またはガーネット類似型の結晶質である第1電解質31と、イオン伝導性の非晶質である第2電解質32とを含む固体電解質が得られる。固体電解質(固体電解質層3)は、第1電解質31を含む第1の部分3Aに第2電解質32を含む第2の部分3Bが接続された構成となることから、複数の結晶質を直接接合する構成とするよりも、それぞれの結晶界面に生ずる抵抗を減ずる効果が得られ、高温の焼結を行わずとも高いイオン伝導性を有する固体電解質を実現あるいは製造することができる。
 また、ガーネット型またはガーネット類似型の結晶のうちLiの一部が第1金属元素であるAlまたがGaによって置換されることにより、第1電解質31において優れたイオン伝導性が得られる。加えて、ガーネット型またはガーネット類似型の結晶のうちLiや第1金属元素を除く他の金属元素の一部が第2金属元素であり原子結晶半径が78pm以上のNb、Ta、Sb、Biのうちの少なくとも2種によって置換される。第2電解質32にも上記第2金属元素が含まれることから、上記第2金属元素の固体電解質における濃度は、結晶質である第1電解質31よりも非晶質である第2電解質32のほうが大きくなる。したがって、第1電解質31と第2電解質32との間で上記第2金属元素の濃度勾配が生ずる。ゆえに、第1電解質31と第2電解質32との境界では上記第2金属元素の濃度が連続的に変化することから、透過型電子顕微鏡などの手法で確認可能な第1電解質31と第2電解質32の境界は不明確になる。言い換えれば、第1電解質31と第2電解質32の境界が明確である場合に比べて、第1電解質31と第2電解質32との間における電荷の移動がスムーズに行われ、このような固体電解質を用いれば優れたイオン伝導性を有する固体電解質層3を形成することができる。
 このように優れたイオン伝導性を有する固体電解質層3を備えたリチウムイオン電池10は、優れた電池特性(充放電特性)を有する。また、集電体1を正極側とし、集電体1上に正極活物質材料を用いて活物質層2を形成し、金属リチウムを用いて固体電解質層3上に電極4を形成して負極とすれば、優れた電池特性を有すると共に、大容量のリチウムイオン電池10が得られる。
 なお、上記固体電解質の製造方法において、原子結晶半径が78pm以上の第2金属元素であるNb、Ta、Sb、Biのうち、Nb、Ta、Sbの中から選択することが、第2電解質32の非晶質形成能力に優れている点で好ましい。また、原子結晶半径がBi(117pm)より大きな金属元素は、ガーネット型またはガーネット類似型の結晶構造においてZrを置換し難いため、Biと同じまたはBiよりも原子結晶半径が小さい金属元素を選ぶことが好ましい。
 (第2実施形態)
 次に、第2実施形態の固体電解質とその製造方法について、図4~図6を参照して説明する。図4は第2実施形態の固体電解質層の構成を示す模式図、図5は第2実施形態の固体電解質の製造方法を示すフローチャート、図6は第2実施形態の固体電解質の製造方法を示す概略断面図である。第2実施形態の固体電解質は、第1実施形態の固体電解質に第3電解質を加えたものであり、第1実施形態と同じ構成には同じ符号を付して詳細な説明は省略する。
 図4に示すように、本実施形態の固体電解質層3Xは、結晶質の第1電解質31を含む第1の部分3Aと、非晶質の第2電解質32を含む第2の部分3Bと、非晶質の第3電解質33を含む第3の部分3Cとを少なくとも有している。言い換えれば、上記第1実施形態の固体電解質層3において空隙であった第3の部分3Cに第3電解質33が充填された構成となっている。
 第3電解質33は、上述した第1電解質31や第2電解質32の電解質材料を用いることができるが、特に、融点が900℃未満であることが好ましい。具体的には、イオン伝導性を有し、室温で非晶質である材料が好ましく、例えば、Li3BO3、Li3BO3-Li4SiO4、Li3BO3-Li3PO4、Li3BO3-Li2SO4、Li2CO3-Li3BO3などのLi、Bを含むリチウム複合酸化物が挙げられる。
 Li3BO3のイオン伝導率は、およそ6.0×10-10S/cmであり、融点はおよそ820℃である。Li3BO3-Li4SiO4のイオン伝導率は、およそ4.0×10-6S/cmであり、融点はおよそ720℃である。Li3BO3-Li3PO4のイオン伝導率は、およそ1.0×10-7S/cmであり、融点はおよそ850℃である。Li3BO3-Li2SO4のイオン伝導率は、およそ1.0×10-6S/cmであり、融点はおよそ700℃である。Li2CO3-Li3BO3系であるLi2.20.80.23のイオン伝導率は、およそ8.0×10-7S/cmであり、融点は685℃である。
 図5に示すように、本実施形態の固体電解質(固体電解質層3X)の製造方法は、上記第1実施形態のステップS1~ステップS4に加えて、第3電解質添加工程(ステップS5)を有している。以下、第1実施形態に対して付加されたステップS5について説明する。
 ステップS5の第3電解質添加工程では、まず、第3電解質33の粉体を用意する。そして、図6に示すように、ステップS4にて本焼成された後の焼結体3Pに、所定量の第3電解質33の粉体を秤量して載置する。第3電解質33の粉体が載置された焼結体3Pを、電気マッフル炉に入れて第3電解質33の融点以上であって本焼成の温度である900℃よりも低い温度で加熱し、第3電解質33の粉体を溶融させる。焼結体3Pは空隙を有する嵩密度が50%~70%程度の多孔質体であって、空隙は内部で連通していることから、第3電解質33の融液は毛細管現象により焼結体3Pの空隙に浸み込む。そして、室温まで急激に冷却することで、融液が固化して、空隙に非晶質の第3電解質33が充填された固体電解質層3Xが形成される。
 焼結体3Pにおける嵩密度(空隙を除いた全体積に占める固形分の割合)は、焼結体3Pの重量を焼結体3Pの体積に比重を乗じた値で除することで求めることができる。嵩密度が分かれば空隙の体積を求めることができることから、空隙を埋めるために必要な第3電解質33の所定量も予め算出することができる。
 なお、焼結体3Pに含まれる空隙のすべてを第3電解質33で埋めることが好ましいが、必ずしもすべての空隙を埋める必要はなく、部分的に空隙が残っていてもよい。
 上記第2実施形態の固体電解質層3Xとその製造方法によれば、上記第1実施形態において空隙であった第3の部分3Cに第3電解質33を充填することによって、結晶質の第1電解質31を有効に利用してイオン伝導性をさらに向上させることができる。また、このような固体電解質層3Xを用いてリチウムイオン電池10を構成すれば、より優れた電池特性(充放電特性)を有するリチウムイオン電池10を提供することができる。
 なお、第1電解質31及び第2電解質32を含む焼結体3Pに第3電解質33を添加する方法は、第3電解質33の融液を浸み込ませる方法に限定されない。例えば、焼結体3Pを再びメノウ鉢に入れてすり潰し、第3電解質33の粉体と混ぜ合わせて混合物を得る。得られた混合物をダイス(錠剤成型器)に入れて加圧成型して成型体を形成し、成型体を第3電解質33の融点未満の温度で焼成して冷却することにより、固体電解質の成型体である固体電解質層3Xを製造してもよい。これによれば、第3電解質33の融点未満の温度で焼成するので、熱処理を施してもLiが成型体から抜け難くなる。
 また、第3電解質33の粉体を混ぜ合わせる場合、焼結体3Pの粉体に対する第3電解質33の体積比率が36%~75%程度となるように混合することが好ましい。第3電解質33の体積比率(添加比率)が上記範囲にあるとき、固体電解質内部における第1電解質31及び第2電解質32の複合体の粒子間の平均距離が、第1電解質31及び第2電解質32の複合体のメジアン径よりも大きくなるように配置され、それらの粒子間に第3電解質33が挟持されることで高いイオン伝導率が得られ易くなる。
 <第1電解質の製造方法>
 上記第1実施形態及び上記第2実施形態の固体電解質におけるガーネット型またはガーネット類似型の第1電解質31の形成方法は、湿式法であることに限定されない。固相合成法や、ゾルゲル法、金属有機化合物分解法(MOD;Metal Organic Decomposition法)といった各種溶液法など望ましい適用形態に合わせて様々な合成方法を適用することができる。
 以下、固相合成法によってガーネット型またはガーネット類似型結晶粒子を合成する手法の例について説明する。
 ガーネット型またはガーネット類似型結晶粒子を固相合成法で得るためには、リチウムを含む化合物の少なくとも1種と、ランタンを含む化合物の少なくとも1種と、ジルコニウムを含む化合物の少なくとも1種とが用いられ、さらにニオブ、タンタル、アンチモン、ビスマスの中から選ばれた少なくとも2種を所定の比率となるように秤量して混合したものを出発原料として、大気下やアルゴン―酸素混合気などの少なくとも酸素ガスが存在する雰囲気中で加熱することによって合成することができる。
 リチウムを含む原料としては、例えば、Li2O、Li22などの酸化物、Li2CO3、LiHCO3、LiNO3などのオキソ酸塩類、LiOHなどの水酸化物、LiCH3COOなどの有機酸塩類、LiFなどのハロゲン化物、Li3Nなどの無機化合物、リチウム金属、リチウム合金などを所望の製造方法に合わせていずれも好適に用いることができる。また必要に応じてこれらのリチウムを含む原料を複数種組み合わせて用いてもよい。さらにガーネット型またはガーネット類似型結晶の構成元素のうち、少なくともリチウムを含み、リチウム以外の元素を一種以上含むLi2ZrO3、LiNbO3などの複酸化物も使用することができるが、なかでもLi2CO3が特に好ましい。
 ランタンを含む原料としては、例えば、La23などの酸化物、La2(CO33、LaCO3OH、La(NO33などのオキソ酸塩類、La(OH)3などの水酸化物、La(CH3COO)3などの有機酸塩類、LaF3などのハロゲン化物、LaC2、La23、LaNなどの無機化合物、ランタン金属、ランタン合金などを所望の製造方法に合わせていずれも好適に用いることができる。また必要に応じてこれらのランタンを含む原料を複数種組み合わせて用いてもよい。さらにガーネット型またはガーネット類似型結晶の構成元素のうち、少なくともランタンを含み、ランタン以外の元素を一種以上含むLa2ZrO7、La2Nb27などの複酸化物も使用することができるが、中でもLa23が特に好ましい。
 ジルコニウムを含む原料としては、例えば、ZrO2などの酸化物、ZrCO3、ZrO(NO32、ZrOSO4などのオキソ酸塩類、ZrO(OH)2などの水酸化物、Zr(C3324などの有機酸塩類、ZrOCl2などのハロゲン化物、ZrC、ZrNなどの無機化合物、ジルコニウム金属、ジルコニウム合金などを所望の製造方法に合わせていずれも好適に用いることができる。また必要に応じてこれらのジルコニウムを含む原料を複数種組み合わせて用いてもよい。さらにガーネット型またはガーネット類似型結晶の構成元素のうち、少なくともジルコニウムを含み、ジルコニウム以外の元素を一種以上含むLi2ZrO3、Li4ZrO4、La2Zr27などの複酸化物も使用することができるが、中でもZrO2が特に好ましい。
 ニオブを含む原料としては、例えば、Nb25などの酸化物、Nb2(CO35、Nb22(SO43などのオキソ酸塩類、Nb(OH)5、NbO2OHなどの水酸化物、NbCl5などのハロゲン化物、NbC、NbN、NbSe3などの無機化合物、ニオブ金属、ニオブ合金などを所望の製造方法に合わせていずれも好適に用いることができる。また必要に応じてこれらのニオブを含む原料を複数種組み合わせて用いてもよい。さらにガーネット型またはガーネット類似型結晶の構成元素のうち、少なくともニオブを含み、ニオブ以外の元素を一種以上含むLiNb03、La2Nb27などの複酸化物なども使用することができるが、中でもNb25が特に好ましい。
 タンタルを含む原料としては、例えば、Ta25などの酸化物、Ta2(CO35、TaO(NO32、Ta22(SO43などのオキソ酸塩類、Ta(OH)5、TaO2OHなどの水酸化物、TaCl5などのハロゲン化物、TaC、TaN、TaSe3などの無機化合物、タンタル金属、タンタル合金などを所望の製造方法に合わせていずれも好適に用いることができる。また必要に応じてこれらのタンタルを含む原料を複数種組み合わせて用いてもよい。さらにガーネット型またはガーネット類似型結晶の構成元素のうち、少なくともタンタルを含み、タンタル以外の元素を一種以上含むLiTaO3、La2Ta27などの複酸化物なども使用することができるが、中でもTa25が特に好ましい。
 アンチモンを含む原料としては、例えば、Sb23などの酸化物、Sb2(CO33、Sb(HCO35、Sb(NO33などのオキソ酸塩類、Sb(OH)3などの水酸化物、SbCl5などのハロゲン化物、SbC、SbN、Sb2Se3などの無機化合物、アンチモン金属、アンチモン合金などを所望の製造方法に合わせていずれも好適に用いることができる。また必要に応じてこれらのアンチモンを含む原料を複数種組み合わせて用いてもよい。さらにガーネット型またはガーネット類似型結晶の構成元素のうち、少なくともアンチモンを含み、アンチモン以外の元素を一種以上含むLiSbO3、La2Sb27などの複酸化物なども使用することができるが、中でもSb23が特に好ましい。
 ビスマスを含む原料としては、例えば、Bi23などの酸化物、(BiO)2CO3、Bi(CH3COO)O、BiO(C64(OH)COO)、4BiNO3(OH)2・BiO(OH)、Bi2(CO3)O2・0.5H2Oなどのオキソ酸塩類、Bi(OH)3などの水酸化物、Bi(C657、Bi(C65COO)などの有機酸塩類、BiF3、BiI3などのハロゲン化物、BiN、BiPなどの無機化合物、リチウム金属、リチウム合金などを所望の製造方法に合わせていずれも好適に用いることができる。また必要に応じてこれらのビスマスを含む原料を複数種組み合わせて用いてもよい。さらにガーネット型またはガーネット類似型結晶の構成元素のうち、少なくともビスマスを含み、ビスマス以外の元素を一種以上含むBi23・3ZrO2などの複酸化物も使用することができるが、なかでもBi23が特に好ましい。
 上記に例示した各原料の粉体を用いて、例えばLi7-xLa3Zr2-xNbxTax12(0<x<0.5)を満たすよう秤量し混合する。この時、原料の粉体の粒径や粒度分布に特に制限はなく、粒子の粒径をそろえる整粒を行ったものや、あらかじめ乾燥雰囲気で粒子表面吸着水を取り除く処理を行ったものを用いてもよい。秤量作業は必要に応じて乾燥雰囲気中や不活性雰囲気中で行ってもよい。また上記組成式中のリチウムは高温焼成時に脱離することがあるため、焼成条件にあわせてあらかじめ理論組成比よりも0.05%~20%程度過剰量添加してもよい。
 固相合成法によるガーネット型またはガーネット類似型結晶を合成する次の工程として、秤量し混合した原料粉末の固相反応を促進し均一性を高めるために、粒子間が密着するよう固形状に成型する作業を行ってもよい。成型される形状や方法は特に限定されず、例えばダイス(錠剤成型器)によるプレス加工や、CIP(Cold Isostatic Pressing)などを利用した公知の方法を用いることができる。また成型性を補助する目的で、高分子からなるいわゆるバインダーを適宜添加してもよい。
 原料を混合した粉末、または原料粉末成型体の熱処理は所望の焼結密度、結晶性に応じて540℃~1300℃の温度範囲で行われる。熱処理工程時の雰囲気は特に限定されないが、少なくとも一定時間は大気や酸素を含む混合気のもとで行われることが好ましい。また添加材や元素の脱離反応の制御を目的として一定時間、または一定の温度範囲で不活性ガス雰囲気において処理を行うこともできる。
 <リチウムイオン電池の製造方法>
 上記第1実施形態または上記第2実施形態の固体電解質を用いて、リチウムイオン電池10を製造する方法としては、種々の方法が考えられる。以下、各種の製造方法について概略を説明する。
 <固相法>
 材料として、活物質粒子、第1電解質31と第2電解質32の焼結体を粉砕した粒子、第3電解質33(必要に応じて導電助剤、バインダー、溶剤を含んでいてもよい)を準備する。上記の材料をメノウ鉢を用いて混合し、プレス成型(またはスラリー化してグリーンシート成型)を行い、(バインダーを用いた場合は脱脂工程を行ったのち)第3電解質33の融点未満の温度で熱処理を行って活物質合材を製造する。この場合の活物質合材は、図1に示した、リチウムイオン電池10における活物質層2と、図4に示した第2実施形態の固体電解質層3Xとが複合化したものである。得られた活物質合材に集電体1と電極4とを形成すればよい。
 <湿式法>
 材料として、活物質粒子を焼結した多孔体、第1電解質31及び第2電解質32の前駆体溶液、第3電解質33の前駆体溶液を準備する。第1電解質31及び第2電解質32の前駆体溶液を活物質粒子からなる上記多孔体内の空隙に充填して焼成した後、第3電解質33の前駆体溶液を充填して第3電解質33の融点未満で焼成する。つまり、図1に示した、リチウムイオン電池10の活物質層2上に、各前駆体溶液を順次塗布して乾燥・焼成することにより、活物質層2と、図4に示した第2実施形態の固体電解質層3Xとを複合化する方法である。
 <湿式法と乾式法の併用>
 材料として、活物質粒子を焼結した多孔体、第1電解質31及び第2電解質32の前駆体溶液、第3電解質33の粉体を準備する。第1電解質31及び第2電解質32の前駆体溶液を活物質粒子からなる多孔体内の空隙に充填して焼成した後、第3電解質33を溶融させた融液を含浸させ急冷する。つまり、図1に示した、リチウムイオン電池10の活物質層2上に、上記前駆体溶液を塗布して乾燥・焼成して得られた焼結体3P(図6参照)に、第3電解質33の融液を含浸させて急冷することにより、活物質層2と、図4に示した第2実施形態の固体電解質層3Xとを複合化する方法である。
 上述した固相法において、第3電解質33を添加しなければ、活物質層2と第1実施形態の固体電解質層3とが複合化された活物質合材が得られる。また、湿式法において、材料としての第3電解質33を用意しなければ、活物質層2と第1実施形態の固体電解質層3とを複合化することができる。
 次に、固体電解質の実施例と比較例とを挙げて、その効果について具体的に説明する。
 1.金属化合物溶液の調製例
 <1mol/kg 硝酸リチウムのブタノール溶液の調製>
 マグネチックスターラーバーを入れた30gの試薬ビンに、リチウム源である金属化合物としての硝酸リチウム1.3789g、及びブタノール18.6211gを秤量し、マグネチックスターラーを用いて、室温にて30分間撹拌し、硝酸リチウムを完全に溶解し、1mol/kg濃度の硝酸リチウムのブタノール溶液を得た。
 <1mol/kg 硝酸ランタン・六水和物の2-n-ブトキシエタノール溶液の調製>
 マグネチックスターラーバーを入れた試薬ビンに、ランタン源である金属化合物としての硝酸ランタン8.6608g、及び2-ブトキシエタノール11.3392gを秤量し、ホットプレート機能付きマグネチックスターラーを用いて、140℃にて30分間撹拌し、硝酸ランタン・六水和物を完全に溶解し、室温まで徐冷し、1mol/kg濃度の硝酸ランタン・六水和物の2-n-ブトキシエタノール溶液を得た。
 <1mol/kg ジルコニウム-n-ブトキシドのブタノール溶液の調製>
 マグネチックスターラーバーを入れた試薬ビンに、ジルコニウム源である金属化合物としてのジルコニウム-n-ブトキシド3.8368g、及びブタノール6.1632gを秤量し、マグネチックスターラーを用いて、室温にて30分間撹拌し、1mol/kg濃度のジルコニウム-n-ブトキシドのブタノール溶液を得た。
 <1mol/kg 硝酸アルミニウム・九水和物のエタノール/水溶液の調製>
 マグネチックスターラーバーを入れた試薬ビンに、アルミニウム源である金属化合物としての硝酸アルミニウム・九水和物3.7513g、エタノール3.1244g、及び水3.1243gを秤量し、ホットプレート機能付きマグネチックスターラーを用いて、120℃にて60分間撹拌し、硝酸アルミニウム・九水和物を完全に溶解し、室温まで徐冷し、1mol/kg濃度の硝酸アルミニウム・九水和物のエタノール/水溶液を得た。
 <1mol/kg 硝酸ガリウム・五.五水和物のエタノール溶液の調製>
 マグネチックスターラーバーを入れた試薬ビンに、ガリウム源である金属化合物としての硝酸ガリウム・五.五水和物3.5470g、エタノール6.4530gを秤量し、ホットプレート機能付きマグネチックスターラーを用いて、90℃にて60分間撹拌し、硝酸ガリウム・五.五水和物を完全に溶解し、室温まで徐冷し、1mol/kg濃度の硝酸ガリウム・五.五水和物のエタノール溶液を得た。
 <1mol/kg ニオブペンタエトキシドの2-n-ブトキシエタノール溶液の調製>
 マグネチックスターラーバーを入れた試薬ビンに、ニオブ源である金属化合物としてのニオブペンタエトキシド3.1821g、及び2-n-ブトキシエタノール6.8179gを秤量し、マグネチックスターラーを用いて、室温にて30分間撹拌し、1mol/kg濃度のニオブペンタエトキシドの2-ブトキシエタノール溶液を得た。
 <1mol/kg アンチモントリ-n-ブトキシドの2-n-ブトキシエタノール溶液の調製>
 マグネチックスターラーバーを入れた試薬ビンに、アンチモン源である金属化合物としてのアンチモントリ-n-ブトキシド3.4110g、及び2-n-ブトキシエタノール6.5890gを秤量し、マグネチックスターラーを用いて、室温にて30分間撹拌し、1mol/kg濃度のアンチモントリ-n-ブトキシドの2-ブトキシエタノール溶液を得た。
 <1mol/kg タンタルペンタ-n-ブトキシドの2-n-ブトキシエタノール溶液の調製>
 マグネチックスターラーバーを入れた試薬ビンに、タンタル源である金属化合物としてのタンタルペンタ-n-ブトキシド5.4640g、及び2-n-ブトキシエタノール4.5360gを秤量し、マグネチックスターラーを用いて、室温にて30分間撹拌し、1mol/kg濃度のタンタルペンタ-n-ブトキシドの2-ブトキシエタノール溶液を得た。
 2.固体電解質前駆体溶液の調製例
 [実施例1]
 実施例1では、固体電解質前駆体溶液として(Li5.5Ga0.5)La3Zr2Nb0.025Sb0.02512前駆体溶液を調製する。
 上述した金属化合物溶液のうちから、1mol/kg濃度の硝酸リチウムのブタノール溶液6.6000g、1mol/kg濃度の硝酸ガリウム・五.五水和物のエタノール溶液0.5000g、1mol/kg濃度の硝酸ランタン・六水和物の2-n-ブトキシエタノール溶液3.0000g、1mol/kg濃度のジルコニウム-n-ブトキシドのブタノール溶液2.0000g、1mol/kg濃度のニオブペンタエトキシドの2-n-ブトキシエタノール溶液0.0250g、及び1mol/kg濃度のアンチモントリ-n-ブトキシドの2-n-ブトキシエタノール溶液0.0250gを秤量し、マグネチックスターラーを用いて、室温にて30分間撹拌し、(Li5.5Ga0.5)La3Zr2Nb0.025Sb0.02512前駆体溶液を得た。
 [実施例2]
 実施例2では、固体電解質前駆体溶液として(Li5.5Ga0.5)La3Zr2Nb0.05Ta0.0512前駆体溶液を調製する。
 上述した金属化合物溶液のうちから、1mol/kg濃度の硝酸リチウムのブタノール溶液6.6000g、1mol/kg濃度の硝酸ガリウム・五.五水和物のエタノール溶液0.5000g、1mol/kg濃度の硝酸ランタン・六水和物の2-n-ブトキシエタノール溶液3.0000g、1mol/kg濃度のジルコニウム-n-ブトキシドのブタノール溶液2.0000g、1mol/kg濃度のニオブペンタエトキシドの2-n-ブトキシエタノール溶液0.0500g、及び1mol/kg濃度のタンタルペンタ-n-ブトキシドの2-n-ブトキシエタノール溶液0.0500gを秤量し、マグネチックスターラーを用いて、室温にて30分間撹拌し、(Li5.5Ga0.5)La3Zr2Nb0.05Ta0.0512前駆体溶液を得た。
 [実施例3]
 実施例3では、固体電解質前駆体溶液として(Li5.5Ga0.5)La3Zr2Ta0.005Sb0.00512前駆体溶液を調製する。
 上述した金属化合物溶液のうちから、1mol/kg濃度の硝酸リチウムのブタノール溶液6.6000g、1mol/kg濃度の硝酸ガリウム・五.五水和物のエタノール溶液0.5000g、1mol/kg濃度の硝酸ランタン・六水和物の2-n-ブトキシエタノール溶液3.0000g、1mol/kg濃度のジルコニウム-n-ブトキシドのブタノール溶液2.0000g、1mol/kg濃度のタンタルペンタ-n-ブトキシドの2-n-ブトキシエタノール溶液0.0050g、及び1mol/kg濃度のアンチモントリ-n-ブトキシドの2-n-ブトキシエタノール溶液0.0050gを秤量し、マグネチックスターラーを用いて、室温にて30分間撹拌し、(Li5.5Ga0.5)La3Zr2Ta0.005Sb0.00512前駆体溶液を得た。
 [比較例1]
 比較例1では、固体電解質前駆体溶液として(Li5.5Ga0.5)La3Zr212前駆体溶液を調製する。
 上述した金属化合物溶液のうちから、1mol/kg濃度の硝酸リチウムのブタノール溶液6.6000g、1mol/kg濃度の硝酸ガリウム・五.五水和物のエタノール溶液0.5000g、1mol/kg濃度の硝酸ランタン・六水和物の2-n-ブトキシエタノール溶液3.0000g、及び1mol/kg濃度のジルコニウム-n-ブトキシドのブタノール溶液2.0000gを秤量し、マグネチックスターラーを用いて、室温にて30分間撹拌し、(Li5.5Ga0.5)La3Zr212前駆体溶液を得た。つまり、比較例1の固体電解質前駆体溶液は、Nb、Ta、Sb、Biの中から選ばれる第2金属元素を含んでいない。
 [比較例2]
 比較例2では、固体電解質前駆体溶液として(Li5.5Ga0.5)La3Zr20.0512前駆体溶液を調製する。
 上述した金属化合物溶液のうちから、1mol/kg濃度の硝酸リチウムのブタノール溶液6.6000g、1mol/kg濃度の硝酸ガリウム・五.五水和物のエタノール溶液0.5000g、1mol/kg濃度の硝酸ランタン・六水和物の2-n-ブトキシエタノール溶液3.0000g、及び1mol/kg濃度のジルコニウム-n-ブトキシドのブタノール溶液2.0000g、及びバナジウム源である金属化合物としてバナジウムトリ-n-ブトキシドオキシド0.0143gを秤量し、マグネチックスターラーを用いて、室温にて30分間撹拌し、(Li5.5Ga0.5)La3Zr20.0512前駆体溶液を得た。つまり、比較例2の固体電解質前駆体溶液は、第2金属元素として5族元素のうち第4周期の元素であるバナジウム(V)が含まれるものである。なお、バナジウム(V)の原子結晶半径は、68pmである。
 [比較例3]
 比較例3では、固体電解質前駆体溶液としてLi7La3Zr212前駆体溶液を調製する。
 上述した金属化合物溶液のうちから、1mol/kg濃度の硝酸リチウムのブタノール溶液8.4000g、1mol/kg濃度の硝酸ランタン・六水和物の2-n-ブトキシエタノール溶液3.0000g、及び1mol/kg濃度のジルコニウム-n-ブトキシドのブタノール溶液2.0000gを秤量し、マグネチックスターラーを用いて、室温にて30分間撹拌し、Li7La3Zr212前駆体溶液を得た。つまり、比較例3の固体電解質が、Al、Gaの中からから選ばれる第1金属元素及びNb、Ta、Sb、Biの中から選ばれる第2金属元素を含んでいない。
 上記の実施例1~3、比較例1~3の固体電解質前駆体溶液では、焼成時のLiの抜け量を勘案して、本来の理論組成に対して、モル比で1.2倍となるようにリチウム源である1mol/kg濃度の硝酸リチウムのブタノール溶液を調製している。他の金属元素源に係る金属化合物溶液は、固体電解質の理論組成に対して等モル比となるように調製している。
 3.固体電解質の合成及び焼成
 内径φ50mm×高さ20mmのチタン製シャーレを用意し、実施例1~3、及び比較例1~3の上記固体電解質前駆体溶液をそれぞれチタン製シャーレに入れ、ホットプレート上に置く。ホットプレートの温度を180℃に設定し、60分間、溶媒乾燥を行う。続いて、ホットプレートの温度を360℃に設定し、30分間、大部分の有機分を燃焼分解する。最後に、ホットプレートの温度を540℃に設定し、60分間、残有機分を燃焼分解させる仮焼成を行った。得られた仮焼成体があるチタン製シャーレをホットプレート上に置いたまま、ホットプレートを室温まで徐冷する。そして、各仮焼成体を取り出し、メノウ鉢に移してすり潰し粉砕する。
 粉砕した仮焼成体を0.2000g秤量し、φ10mmのダイス(錠剤成型器)に入れ、ハンディープレス機を用いて、50kgNにて一軸プレスを行い、仮焼成体ペレットを作製する。
 実施例1~3、及び比較例1~3の仮焼成体ペレットを酸化マグネシウム製のルツボに入れ、上から酸化マグネシウム製の蓋をした上で、電気マッフル炉に入れ、900℃にて12時間焼成を行う。室温まで徐冷した後、電気マッフル炉から酸化マグネシウム製のルツボを取り出す。酸化マグネシウム製のルツボから900℃12時間焼成した、実施例1~3、及び比較例1,2の固体電解質のペレットを取り出す。
 [実施例4]
 実施例4では、実施例1の固体電解質前駆体溶液を出発原料として、900℃12時間焼成して得られた固体電解質のペレットをメノウ鉢にて粉砕する。粉砕後、0.1500g秤量し、これにLi3BO3(ホウ酸三リチウム)0.0500gを加える。この混合粉体をメノウ鉢に移し、ヘキサンを0.2ml加え、ヘキサンが完全に揮発するまで、よく混合を行う。混合した粉体をφ10mmのダイス(錠剤成型器)に入れ、ハンディープレス機を用いて、50kgNにて一軸プレスを行って再びペレット化する。φ13mmの純金製皿の上に当該ペレットを置き、800℃に予熱しておいた電気マッフル炉に入れ、10分間加熱処理した後、急速冷却を行って実施例4の固体電解質のペレットを得た。
 4.実施例1~4、及び比較例1~3の固体電解質のペレットの評価
 本焼成(900℃12時間)した後の各固体電解質のペレットの直径、及び厚みを、デジタルノギス(ミツトヨ製CD67-S15PS)を用いて測定した。また、重量に関しては、分析用天秤(メトラー・トレド製ME204T)を用いて、0.1mgの単位で測定した。これらの値から、嵩密度を求めた。
 また、X線回折装置(フィリップス製MRD)、及びラマン散乱スペクトル装置(日本電子製S-2000)を用いて各固体電解質のペレットの測定を行い、結晶相の確認を行った。
 さらに、インピーダンス測定装置(ソーラトロン製1260)を用いて、交流インピーダンス法にてインピーダンス測定を行い、生成物である固体電解質のバルク、粒界、及び総リチウムイオン伝導率を求めた。具体的には、最初に、固体電解質のペレットの表裏両面にスパッタにてφ8mmの金(Au)を蒸着し、非活性化電極を作製し、交流インピーダンス測定を行い、続いて、スパッタした金(Au)電極上に、リチウムメタル箔を固体電解質のペレットの表裏両面共に押し当て、活性化電極での交流インピーダンス測定を行った。
 5.評価結果
 図7は実施例1及び比較例1のX線回折強度の測定結果を示すグラフ、図8は実施例1及び比較例1のラマン散乱スペクトルを示すグラフである。
 図7に示すように、実施例1及び比較例1の固体電解質からは、ガリウムドープされたジルコン酸ランタンリチウムの回折ピークのみが観測された。また、実施例1においてニオブドープまたはアンチモンドープされたジルコン酸ランタンリチウムの回折ピークは観測されない。夾雑物の生成を示す夾雑相に係る回折ピークも観測されない。ドープされたニオブまたはアンチモンは、主に非晶質の第2電解質32に含まれると考えられる。よって、実施例1及び比較例1の固体電解質は、共にガーネット型またはガーネット類似型のガリウムドープされたジルコン酸ランタンリチウムを含むものであって、夾雑相は無い。
 ガーネット型またはガーネット類似型の結晶において、Liが入るサイトとしては、24d、48g、96hサイトがある。正方晶のガーネット型またはガーネット類似型の結晶では、24dサイトが孤立していて、48g、96hサイトと連結していない。その結果として、Liが自由に結晶内を動くことができず、それぞれのサイトに固定化される傾向がある。したがって、ラマン散乱スペクトルにおいては、それぞれのサイト位置での散乱が観測されるため急峻なスペクトルでトリプレットなピークとなる。一方、立方晶のガーネット型またはガーネット類似型の結晶では、24dサイト、48gサイト、及び96hサイトが連結し、Liが結晶内のこれら3つのサイトを自由に動くことができるようになる。そのため、ラマン散乱スペクトルにおいては、Liの存在位置がぼやけて観測されるため、正方晶のようなトリプレットなピークとはならない。
 図8に示すように、実施例1及び比較例1共に、370cm-1付近の24dサイト、及び260cm-1付近の48gサイト、及び290cm-1付近の96hサイトに起因するラマン散乱スペクトルがブロード化している。実施例1及び比較例1のジルコン酸ランタンリチウムの結晶構造がいずれも正方晶であれば、上記ラマン散乱スペクトルがブロード化せず、トリプレットで急峻なスペクトルとなることから、実施例1及び比較例1のジルコン酸ランタンリチウムの結晶構造は立方晶ガーネット型構造となっていると考えられる。
 ここでは、実施例1及び比較例1の固体電解質の結晶構造の評価について述べたが、実施例2~4、比較例2も同様な評価結果が得られている。つまり、実施例2~4、比較例2の固体電解質は、ガーネット型またはガーネット類似型のガリウムドープされたジルコン酸ランタンリチウムを含むものであって、夾雑相は無い。Nb、Ta、Sb、Vの中から選ばれドープされた金属元素が、主に非晶質の第2電解質32に含まれる。
 図9は比較例3のラマン散乱スペクトルを示すグラフである。図9に示すように、ガリウム及びニオブまたはアンチモンがドープがされていない比較例3の固体電解質は、48gサイト(260cm-1付近)、96hサイト(290cm-1付近)、及び24dサイト(370cm-1付近)の分光スペクトルがトリプレットに分裂しており、Liがそれぞれのサイトに固定化されているのが分かる。これは、比較例3の固体電解質における結晶構造が、正方晶のガーネット型であることを示唆するものである。
 図10は実施例1~4、比較例1~3の固体電解質のペレットにおけるリチウムイオン伝導率の測定結果及び嵩密度を示す表である。
 図10に示すように、実施例1~4、及び比較例1,2におけるバルクのリチウムイオン伝導率(S/cm)は、いずれも10-4オーダーである。一方で、実施例1~3における粒界のリチウムイオン伝導率(S/cm)は、10-4オーダーであり、実施例4では10-3オーダーとなっている。これに対して、比較例1,2における粒界のリチウムイオン伝導率(S/cm)は、10-5オーダーとなっている。したがって、実施例1~4における総リチウムイオン伝導率(S/cm)は、10-4オーダーであるのに対して、比較例1,2の総リチウムイオン伝導率(S/cm)は、10-5オーダーとなっている。つまり、実施例1~4は、粒界におけるリチウムイオン伝導率(S/cm)が向上して、比較例1,2よりも総リチウムイオン伝導率が改善されている。
 実施例1~4では、ドープされたNb、Ta、Sbのうちガーネット型またはガーネット類似型の結晶構造における48gサイトを置換する金属元素が、いずれも立方晶の生成を促進する効果を有する。そして、バルクのイオン伝導率の発現に寄与すると共に、同一サイトにおいて競合する金属元素を添加することにより、第1電解質31と第2電解質32との間で当該金属元素の濃度勾配が生じ、第1電解質31と第2電解質32の複合体内における粒界抵抗の減少に寄与すると考えられる。実施例4では、第3電解質33を添加したことにより、第1電解質31と第2電解質32との複合体粒子が分散して、粒子界面に発生する抵抗が極めて小さくなり、総イオン伝導率が改善したと考えられる。
 比較例2の固体電解質は、バナジウム(V)をドープしたものであるが、焼成工程で、原子結晶半径がNb(78pm)よりも小さいV(68pm)が結晶構造から抜け易く、比較例1よりも粒界抵抗が上昇して粒界のイオン伝導率が低下したと考えられる。
 比較例3の正方晶のガーネット型であると考えられる固体電解質は、測定周波数範囲(10MHz~1MHz)にて、絶縁体挙動(周波数の低下と共にインピーダンスが単調に増加)を示し、バルク及び粒界におけるリチウムイオン伝導率を求めることができなかった。
 また、比較例1~3の固体電解質のペレットにおける嵩密度が50%程度であるのに比べて、実施例1~3の固体電解質のペレットの嵩密度は70%程度となっている。また、第3電解質33が充填された実施例4の固体電解質のペレットの嵩密度は98%となっている。つまり、比較例1~3よりも実施例1~3の方が結晶質である第1電解質31が有効に利用され、さらに実施例4の方がより有効に利用されていると推察される。
 なお、交流インピーダンス法でインピーダンス(リチウムイオン伝導率)を測定した場合、比較例1,2ではインピーダンス成分としてのバルク成分と粒界成分とが分離されていたが、実施例1~4ではインピーダンス成分としてのバルク成分と粒界成分とを明確に分離できない。そこで、実施例1~4の総インピーダンス成分と、バルク成分と粒界成分とが分離した比較例1の周波数とから、実施例1~4のバルク成分と粒界成分を算出し、図10の表中において( )書きで示した。
 本発明は、上記した実施形態に限られるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う固体電解質及び該固体電解質を適用するリチウムイオン電池もまた本発明の技術的範囲に含まれるものである。
 (変形例1)固体電解質に含まれる第2金属元素は、Nb、Ta、Sb、Biの中から選ばれる2種に限定されず、3種あるいは4種であってもよい。
 1…集電体、2…活物質層、3,3X…固体電解質層、4…電極、10…リチウムイオン電池、31…第1電解質、32…第2電解質、33…第3電解質。

Claims (7)

  1.  第3周期以上の13族元素の中から選ばれる1種の第1金属元素を含むリチウム複合金属化合物を有する第1電解質と、
     Liと、第5周期以上の5族元素または第5周期以上の15族元素の中から選ばれる少なくとも2種の第2金属元素を含む第2電解質と、を備えたことを特徴とする固体電解質。
  2.  前記第1金属元素がAl、Gaの中から選ばれることを特徴とする請求項1に記載の固体電解質。
  3.  前記第2金属元素の原子結晶半径が78pm以上であることを特徴とする請求項1または2に記載の固体電解質。
  4.  前記第2金属元素がNb、Ta、Sb、Biの中から2種選ばれることを特徴とする請求項2に記載の固体電解質。
  5.  Li、Bを含む酸化物からなる非晶質の第3電解質を含むことを特徴とする請求項1乃至4のいずれか一項に記載の固体電解質。
  6.  請求項1乃至5のいずれか一項に記載の固体電解質からなる固体電解質層と、
     前記固体電解質層の一方の面に設けられた電極と、
     前記固体電解質層の他方の面に設けられた集電体と、を備えたことを特徴とするリチウムイオン電池。
  7.  前記電極が金属リチウムからなり、
     前記固体電解質層の他方の面と前記集電体との間に、Liを含む正極活物質層を備えたことを特徴とする請求項6に記載のリチウムイオン電池。
PCT/JP2017/009943 2016-03-18 2017-03-13 固体電解質及びリチウムイオン電池 WO2017159606A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/085,949 US10774004B2 (en) 2016-03-18 2017-03-13 Solid electrolyte and lithium ion battery
US16/992,227 US10947160B2 (en) 2016-03-18 2020-08-13 Solid electrolyte and lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016054958A JP6658161B2 (ja) 2016-03-18 2016-03-18 固体電解質及びリチウムイオン電池
JP2016-054958 2016-03-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/085,949 A-371-Of-International US10774004B2 (en) 2016-03-18 2017-03-13 Solid electrolyte and lithium ion battery
US16/992,227 Continuation US10947160B2 (en) 2016-03-18 2020-08-13 Solid electrolyte and lithium ion battery

Publications (1)

Publication Number Publication Date
WO2017159606A1 true WO2017159606A1 (ja) 2017-09-21

Family

ID=59850315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009943 WO2017159606A1 (ja) 2016-03-18 2017-03-13 固体電解質及びリチウムイオン電池

Country Status (3)

Country Link
US (2) US10774004B2 (ja)
JP (1) JP6658161B2 (ja)
WO (1) WO2017159606A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101881769B1 (ko) 2016-11-18 2018-07-26 한국생산기술연구원 전고체전지용 고이온전도성 고체전해질의 제조방법
JP7220978B2 (ja) 2017-06-22 2023-02-13 セイコーエプソン株式会社 電解質、電池、電子機器、電解質および電池の製造方法
US11276879B2 (en) * 2017-08-04 2022-03-15 Samsung Electronics Co., Ltd. Solid electrolyte, method of preparing the same, and lithium battery including the solid electrolyte
JP7211470B2 (ja) * 2017-12-22 2023-01-24 セイコーエプソン株式会社 電極複合体、電池、電子機器
JP7021533B2 (ja) * 2017-12-22 2022-02-17 セイコーエプソン株式会社 電解質前駆体溶液の製造方法および電極複合体の製造方法
JP7031353B2 (ja) * 2018-02-16 2022-03-08 セイコーエプソン株式会社 電解質、電池、電子機器、電解質および電池の製造方法
JP7156488B2 (ja) * 2018-02-19 2022-10-19 セイコーエプソン株式会社 電解質、電池、電子機器、電解質および電池の製造方法
JP6969422B2 (ja) * 2018-02-19 2021-11-24 セイコーエプソン株式会社 電解質、電池、電子機器、電解質および電池の製造方法
JP7243146B2 (ja) * 2018-11-28 2023-03-22 セイコーエプソン株式会社 固体電解質の製造方法、固体電解質、二次電池、電子機器
KR20200070647A (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 고-니켈 양극 활물질, 그 제조 방법, 이를 포함하는 양극 및 리튬이차전지
WO2021014905A1 (ja) 2019-07-19 2021-01-28 第一稀元素化学工業株式会社 セラミックス粉末材料、セラミックス粉末材料の製造方法、及び、電池
CN110581312B (zh) * 2019-08-07 2022-08-12 广东工业大学 一种高离子电导率nasicon结构固态电解质及制备与应用
JP2021144791A (ja) * 2020-03-10 2021-09-24 セイコーエプソン株式会社 固体電解質、固体電解質の製造方法および複合体
JP2022078708A (ja) * 2020-11-13 2022-05-25 株式会社デンソー 全固体電池用正極層およびその製造方法ならびに全固体電池
JP6916405B1 (ja) 2021-03-31 2021-08-11 第一稀元素化学工業株式会社 セラミックス粉末材料、焼結体、及び、電池
JP6916406B1 (ja) 2021-03-31 2021-08-11 第一稀元素化学工業株式会社 セラミックス粉末材料、セラミックス粉末材料の製造方法、成型体、焼結体、及び、電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037992A (ja) * 2011-08-10 2013-02-21 Toyota Central R&D Labs Inc 固体電解質及びその製造方法
WO2014038521A1 (ja) * 2012-09-04 2014-03-13 日本碍子株式会社 固体電解質セラミックス材料
JP2015050071A (ja) * 2013-09-02 2015-03-16 日本碍子株式会社 固体電解質セラミックス材料
JP2015048280A (ja) * 2013-09-02 2015-03-16 日本碍子株式会社 固体電解質セラミックス材料の製造方法
JP2015050072A (ja) * 2013-09-02 2015-03-16 日本碍子株式会社 固体電解質セラミックス材料

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346895A (ja) 2002-05-30 2003-12-05 Fujitsu Ltd 固体電解質の形成方法およびリチウム電池
JP4930857B2 (ja) 2008-03-12 2012-05-16 住友電気工業株式会社 電解質粒子
US20110059368A1 (en) 2008-05-09 2011-03-10 Daisuke Inagaki Separtor for high-power density lithium ion secondary battery (as amended)
CN101325094B (zh) 2008-07-25 2013-04-03 清华大学 一种锂镧钛氧llto复合固态电解质材料及其合成方法
JP5617417B2 (ja) * 2010-08-02 2014-11-05 株式会社豊田中央研究所 ガーネット型リチウムイオン伝導性酸化物及びその製法
JP5739262B2 (ja) * 2011-07-29 2015-06-24 日立マクセル株式会社 画像伝送装置、画像伝送方法、画像受信装置および画像受信方法
JP5945432B2 (ja) 2012-03-07 2016-07-05 公立大学法人大阪府立大学 リチウムイオン伝導性酸化物及びその製造方法
JP6240306B2 (ja) * 2014-02-27 2017-11-29 株式会社日立製作所 リチウム二次電池
US10205155B2 (en) * 2014-10-14 2019-02-12 Quantumscape Corporation High surface area anode with volume expansion features
US10439250B2 (en) * 2014-11-11 2019-10-08 Purdue Research Foundation Solid-state electrolytes and batteries made therefrom, and methods of making solid-state electrolytes
JP2017033926A (ja) * 2015-07-29 2017-02-09 セントラル硝子株式会社 ガーネット型酸化物焼結体及びその製造方法
US10347937B2 (en) * 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037992A (ja) * 2011-08-10 2013-02-21 Toyota Central R&D Labs Inc 固体電解質及びその製造方法
WO2014038521A1 (ja) * 2012-09-04 2014-03-13 日本碍子株式会社 固体電解質セラミックス材料
JP2015050071A (ja) * 2013-09-02 2015-03-16 日本碍子株式会社 固体電解質セラミックス材料
JP2015048280A (ja) * 2013-09-02 2015-03-16 日本碍子株式会社 固体電解質セラミックス材料の製造方法
JP2015050072A (ja) * 2013-09-02 2015-03-16 日本碍子株式会社 固体電解質セラミックス材料

Also Published As

Publication number Publication date
US20190084887A1 (en) 2019-03-21
JP2017168396A (ja) 2017-09-21
US10774004B2 (en) 2020-09-15
US20200369574A1 (en) 2020-11-26
JP6658161B2 (ja) 2020-03-04
US10947160B2 (en) 2021-03-16

Similar Documents

Publication Publication Date Title
US10947160B2 (en) Solid electrolyte and lithium ion battery
US10784534B2 (en) Solid electrolyte and lithium ion battery
JP6870243B2 (ja) 固体電解質成形体の製造方法および複合体の製造方法
JP7151839B2 (ja) 電解質、電池、電子機器、電解質および電池の製造方法
JP6747186B2 (ja) 固体電解質及び電池並びに電子機器及び移動体
JP2016072210A (ja) 耐リチウム還元層形成用組成物、耐リチウム還元層の成膜方法およびリチウム二次電池
US11335948B2 (en) Method for producing solid electrolyte, solid electrolyte, secondary battery, and electronic apparatus
US20200176772A1 (en) Active material, method for producing active material, electrode assembly, secondary battery, and electronic apparatus
US11258094B2 (en) Solid electrolyte, method for producing solid electrolyte, secondary battery, and electronic apparatus
US11075405B2 (en) Electrolyte, battery, and electronic apparatus
JP2015088392A (ja) 固体電解質、固体電解質の製造方法およびリチウムイオン電池
US11437645B2 (en) Electrolyte, battery, electronic apparatus, and methods for producing electrolyte and battery
JP2022075701A (ja) 固体電解質材料、固体電解質、これらの製造方法および全固体電池
CN114122502A (zh) 固体电解质、固体电解质的制造方法及复合体
JP7283122B2 (ja) ガーネット型の固体電解質、ガーネット型の固体電解質の製造方法、二次電池、電子機器
JP2022015857A (ja) 負極活物質の前駆体溶液、負極活物質の前駆体粉末および負極活物質の製造方法
US20220158228A1 (en) Precursor solution of garnet-type solid electrolyte, method for producing precursor solution of garnet-type solid electrolyte, and garnet-type solid electrolyte
JP2022068359A (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
JP2022063361A (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
JP2022071045A (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766606

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766606

Country of ref document: EP

Kind code of ref document: A1