JP7220978B2 - 電解質、電池、電子機器、電解質および電池の製造方法 - Google Patents
電解質、電池、電子機器、電解質および電池の製造方法 Download PDFInfo
- Publication number
- JP7220978B2 JP7220978B2 JP2017121991A JP2017121991A JP7220978B2 JP 7220978 B2 JP7220978 B2 JP 7220978B2 JP 2017121991 A JP2017121991 A JP 2017121991A JP 2017121991 A JP2017121991 A JP 2017121991A JP 7220978 B2 JP7220978 B2 JP 7220978B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- active material
- lithium
- heat treatment
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C10/00—Arrangements of electric power supplies in time pieces
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G21/00—Input or output devices integrated in time-pieces
- G04G21/02—Detectors of external physical values, e.g. temperature
- G04G21/025—Detectors of external physical values, e.g. temperature for measuring physiological data
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Physiology (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Conductive Materials (AREA)
Description
(Li7-3x+yGax)(La3-yCay)Zr2O12 ・・・(1)
(但し、0.1≦x≦0.6、0.0<y≦0.3を満たす。)
(Li7-3x+y-zGax)(La3-yCay)(Zr2-zMz)O12 ・・・(2)
(但し、0.1≦x≦0.6、0.0<y≦0.3、0.1≦z≦0.6を満たし、Mは、78pm以上の結晶半径を有する金属元素を表す。)
(Li7-3x+yGax)(La3-yCay)Zr2O12 ・・・(1)
(但し、0.1≦x≦0.6、0.0<y≦0.3を満たす。)
(Li7-3x+yGax)(La3-yCay)Zr2O12 ・・・(1)
(但し、0.1≦x≦0.6、0.0<y≦0.3を満たす。)
<電池>
まず、本実施形態に係る電池について、図1を参照して説明する。本実施形態では、電池としてリチウム電池を例に挙げて説明する。図1は、実施形態1に係る電池としてのリチウム電池の構成を示す概略斜視図である。
第1集電体41および第2集電体は、正極9および負極30と電気化学反応を生じず、かつ電子伝導性を有している形成材料であれば、いずれも好適に用いることができる。第1集電体41および第2集電体の形成材料としては、例えば、銅(Cu)、マグネシウム(Mg)、チタン(Ti)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、ゲルマニウム(Ge)、インジウム(In)、金(Au)、白金(Pt)、銀(Ag)、およびパラジウム(Pd)からなる群から選ばれる1種の金属(金属単体)や、上記の群から選ばれる少なくとも1種の金属元素を含む合金、ITO(Tin-doped Indium Oxide)、ATO(Antimony-doped Tin Oxide)、およびFTO(Fluorine-doped Tin Oxide)などの導電性金属酸化物、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化タンタル(TaN)などの金属窒化物などが挙げられる。
負極30が含む負極活物質(形成材料)としては、例えば、五酸化ニオブ(Nb2O5)、五酸化バナジウム(V2O5)、酸化チタン(TiO2)、酸化インジウム(In2O3)、酸化亜鉛(ZnO)、酸化錫(SnO2)、酸化ニッケル(NiO)、ITO(Indium Tin Oxide)、ATO(Antimony doped Tin Oxide)、FTO(Fluorine doped Tin Oxide)アルミニウム(Al)が添加された酸化亜鉛(AZO)、ガリウム(Ga)が添加された酸化亜鉛(GZO)、TiO2のアナターゼ相、Li4Ti5O12、Li2Ti3O7などのリチウム複合酸化物、リチウム(Li)、シリコン(Si)、錫(Sn)、シリコン-マンガン合金(Si-Mn)、シリコン-コバルト合金(Si-Co)、シリコン-ニッケル合金(Si-Ni)、インジウム(In)、金(Au)などの金属および合金、炭素材料、炭素材料の層間にリチウムイオンが挿入された物質などが挙げられる。
正極9における活物質部2の複数の孔は、活物質部2の内部で互いに網目状に連通している。そのため、活物質2b同士の接触が確保されている。電解質3は、活物質部2の複数の孔を埋め、さらに活物質部2全体を覆って設けられている。すなわち、活物質部2と電解質3とが複合化されて、複合体(正極9)が形成されている。そのため、活物質部2が複数の孔を有さない場合や、孔内まで電解質3が設けられていない場合と比べて、活物質2bと電解質3との接触面積が大きくなる。これにより、界面抵抗が低減され、活物質部2と電解質3との界面において良好な電荷移動が可能となる。
β={w/(v・ρ)}×100 ・・・(1)
電解質部20は、上述したように、正極9と負極30との間に設けられている。電解質部20は、電解質3を含み、活物質2bを含んでいない。電解質部20には、上述した、正極9と同様な電解質3を用いることができる。活物質2bを含まない電解質部20が、正極9と負極30との間に介在することにより、正極9と負極30とが電気的に接続されにくくなり、短絡の発生が抑えられる。正極9および電解質部20は、電解質3を含むため、製造時に双方の電解質3を同時に形成してもよい。すなわち、リチウム電池100の製造工程においては、活物質部2の形成と、電解質部20の形成とを一度に行ってもよい。また、電解質部20を、電解質3とは異なる形成材料を用いて形成してもよい。その場合には、正極9と電解質部20とを、別々の製造工程にて形成する。
次に、電解質3の構成について、図3を参照して説明する。図3は、電解質の構成を示す模式図である。
(Li7-3x+yGax)(La3-yCay)Zr2O12 ・・・(1)
(但し、0.1≦x≦0.6、0.0<y≦0.3を満たす。)
(Li7-3x+y-zGax)(La3-yCay)(Zr2-zMz)O12 ・・・(2)
(但し、0.1≦x≦0.6、0.0<y≦0.3、0.1≦z≦0.6を満たし、Mは、78pm以上の結晶半径を有する金属元素を表す。)
本実施形態に係る電池としてのリチウム電池100の製造方法について、図4を参照して説明する。図4は、リチウム電池の製造方法を示す工程フロー図である。なお、図4に示した工程フローは一例であって、これに限定されるものではない。
(Li7-3x+yGax)(La3-yCay)Zr2O12 ・・・(1)
(但し、0.1≦x≦0.6、0.0<y≦0.3を満たす。)
図4に示した工程S1では、第1電解質31および第2電解質32の原材料としての前駆体を、溶媒に溶解させて溶液を作製した後、それらを混合して混合物を調製する。すなわち、混合物は、上記原材料(前駆体)を溶解する溶媒を含んでいる。第1電解質31および第2電解質32の前駆体には、上記組成式(1)のリチウム複合金属酸化物を構成する元素を含む金属化合物と、78pm以上の結晶半径を有する金属元素を含む金属化合物とを用いる。
工程S2では、第1の成形体としての活物質部2を形成する。本実施形態では、活物質部2の形成材料(活物質2b)として、リチウム複合金属化合物のLiCoO2を用いる。まず、LiCoO2(シグマアルドリッチ社)の粒子に、湿式遠心分離機LC-1000型(Krettek社)を用いてn-ブタノール中で分級操作を行い、平均粒子径が5μmの活物質2bを得る。次に、成形型を使用して、活物質2bを圧縮成型する。LiCoO2の粉末を、624MPaの圧力にて成形型(内径10mmの排気ポート付きダイス)を用いて2分間加圧し、LiCoO2(活物質2b)の円盤状成形物(直径10mm、実効径8mm、厚さ150μm)を作製する。
工程S3では、工程S1で調製した混合物を活物質部2に接触、含浸させて加熱処理を施し、混合物の反応により、結晶質の第1電解質31および非晶質の第2電解質32を製造する。これにより、活物質部2の複数の孔内を含む表面に、第1電解質31および第2電解質32が形成され、第2の成形体が得られる。
工程S4では、第2の成形体の孔内に第3電解質33の融液を充填する。本実施形態では、第3電解質33として、Li2.2C0.8B0.2O3(以下、「LCBO」ともいう。)を用いる。まず、LCBOの粒子(紛体)を作製する。具体的には、例えば、Li2CO3およびLi3BO3を質量混合比4:1で混合し、工程S2で用いたものと同様な成形型を用い、30MPaの圧力にて2分間加圧し錠剤型とする。その後、高温炉に入れ、650℃にて4時間焼成して、LCBOの固形物を作製する。この固形物を、乾式ミルなどを用いて粉砕し、粉末状としてLCBO粒子(第3電解質33の粒子)を得る。
工程S5では、第3電解質33の融液および第2の成形体を放冷して、第3電解質33の融液を固化させる。このとき、第3電解質33は、第2の成形体における、活物質部2の表面に設けられた第1電解質31、第2電解質32と接触した状態で固化する。これにより、活物質部2、第1電解質31、第2電解質32、第3電解質33が複合化された正極9が形成される。
工程S6では、まず、正極9の電解質部20を形成した面(上面)と対向する面(下面)側を研磨する。このとき、研磨加工によって、活物質部2を確実に露出させて、表面9aを形成する。これにより、活物質部2と、この後に形成する第1集電体41との電気的な接続を確保可能にする。なお、上述した工程において、正極9の下面側に活物質部2が十分に露出している場合は、この研磨加工を省略してもよい。
すなわち、第1電解質31から第2電解質32に亘って、結晶格子への入りやすさが高い金属元素は濃度が漸減し、上記入りやすさが低い金属元素は濃度が漸増する。この構成により、第1電解質31と第2電解質32との境界が曖昧な状態になる。したがって、境界が明確である場合と比べて、粒界抵抗が低減されてリチウムイオン伝導性をより向上させることができる。また、結晶半径が78pm以上の、ニオブ(Nb)、アンチモン(Sb)、タンタル(Ta)などの金属元素は、比較的に高温の焼成においても第1電解質31から抜けにくく、安定したリチウムイオン伝導性を得ることができる。
<金属化合物溶液の調製>
まず、リチウム化合物、ランタン化合物、ジルコニウム化合物、ガリウム化合物、カルシウム化合物、ニオブ化合物、アンチモン化合物、タンタル化合物および溶媒を用いて、それぞれの金属化合物を含む金属元素源として、以下の金属化合物溶液を調製した。
マグネチックスターラーバー(撹拌子)を入れた30gのパイレックス(登録商標)(Pyrex:CORNING社商標)製試薬瓶へ、純度99.95%の硝酸リチウム(関東化学社 3N5)1.3789gと、2-n-ブトキシエタノール(エチレングルコールモノブチルエーテル)(関東化学社 鹿特級)18.6211gとを秤量した。次いで、ホットプレート機能付きマグネチックスターラーに載せ、190℃にて1時間撹拌しながら、硝酸リチウムを2-n-ブトキシエタノールに完全に溶解し、室温(約20℃)まで徐冷して、1mol/kg濃度の硝酸リチウムの2-n-ブトキシエタノール溶液を得た。なお、硝酸リチウムの純度は、イオンクロマトグラフィー質量分析計を用いて測定することが可能である。
マグネチックスターラーバーを入れた20gのパイレックス製試薬瓶へ、硝酸ガリウム・n水和物(n=5.5:高純度化学研究所社 3N)3.5470gと、エチルアルコール6.4530gとを秤量した。次いで、ホットプレート機能付きマグネチックスターラーに載せ、90℃にて1時間撹拌しながら、硝酸ガリウム・n水和物(n=5.5)をエチルアルコールに完全に溶解し、室温まで徐冷して、1mol/kg濃度の硝酸ガリウム・n水和物(n=5.5)のエチルアルコール溶液を得た。なお、用いた硝酸ガリウム・n水和物の水和数nは、燃焼実験による質量減少の結果から、5.5であった。
マグネチックスターラーバーを入れた30gのパイレックス製試薬瓶へ、硝酸ランタン・六水和物(関東化学社 4N)8.6608gと、2-n-ブトキシエタノール11.3392gとを秤量した。次いで、ホットプレート機能付きマグネチックスターラーに載せ、140℃にて30分間撹拌しながら、硝酸ランタン・六水和物を2-n-ブトキシエタノールに完全に溶解し、室温まで徐冷して、1mol/kg濃度の硝酸ランタン・六水和物の2-n-ブトキシエタノール溶液を得た。
マグネチックスターラーバーを入れた20gのパイレックス製試薬瓶へ、硝酸カルシウム・四水和物(関東化学社 3N)2.3600gと、2-n-ブトキシエタノール7.6400gとを秤量した。次いで、ホットプレート機能付きマグネチックスターラーに載せ、100℃にて30分間撹拌しながら、硝酸カルシウム・四水和物を2-n-ブトキシエタノールに完全に溶解し、室温まで徐冷して、1mol/kg濃度の硝酸カルシウム・四水和物の2-n-ブトキシエタノール溶液を得た。
マグネチックスターラーバーを入れた20gのパイレックス製試薬瓶へ、ジルコニウムテトラ-n-ブトキシド(和光純薬工業社)3.8368gと、ブタノール(n-ブタノール)6.1632gとを秤量した。次いで、マグネチックスターラーに載せ、室温にて30分間撹拌しながら、ジルコニウムテトラ-n-ブトキシドをブタノールに完全に溶解して、1mol/kg濃度のジルコニウムテトラ-n-ブトキシドのブタノール溶液を得た。
マグネチックスターラーバーを入れた20gのパイレックス製試薬瓶へ、ニオブペンタエトキシド(和光純薬工業社)3.1821gと、2-n-ブトキシエタノール6.8179gとを秤量した。マグネチックスターラーに載せ、室温にて30分間撹拌しながら、ニオブペンタエトキシドを2-n-ブトキシエタノールに完全に溶解して、1mol/kg濃度のニオブペンタエトキシドの2-n-ブトキシエタノール溶液を得た。
マグネチックスターラーバーを入れた20gのパイレックス製試薬瓶へ、アンチモントリ-n-ブトキシド(和光純薬工業社)3.4110gと、2-n-ブトキシエタノール6.5890gとを秤量した。マグネチックスターラーに載せ、室温にて30分間撹拌しながら、アンチモントリ-n-ブトキシドを2-n-ブトキシエタノールに完全に溶解して、1mol/kg濃度のアンチモントリ-n-ブトキシドの2-n-ブトキシエタノール溶液を得た。
マグネチックスターラーバーを入れた20gのパイレックス製試薬瓶へ、タンタルペンタ-n-ブトキシド(高純度化学研究所社)5.4640gと、2-n-ブトキシエタノール4.5360gとを秤量した。マグネチックスターラーに載せ、室温にて30分間撹拌しながら、タンタルペンタ-n-ブトキシドを2-n-ブトキシエタノールに完全に溶解して、1mol/kg濃度のタンタルペンタ-n-ブトキシドの2-n-ブトキシエタノール溶液を得た。
次に、実施例および比較例において、図5に示した第1電解質および第2電解質の組成に従って、混合物としての第1電解質および第2電解質の前駆体を含む溶液を調製した。
実施例1および実施例2では、Li5.1Ga0.5La2.95Ca0.05Zr1.55Nb0.25Sb0.2O12の前駆体を含む溶液を調製する。まず、1mol/kg濃度の硝酸リチウムの2-n-ブトキシエタノール溶液6.1200g、1mol/kg濃度の硝酸ガリウム・n水和物(n=5.5)のエチルアルコール溶液0.5000g、1mol/kg濃度の硝酸ランタン・六水和物の2-n-ブトキシエタノール溶液2.9500g、1mol/kg濃度の硝酸カルシウム・四水和物の2-n-ブトキシエタノール溶液0.0500g、1mol/kg濃度のジルコニウムテトラ-n-ブトキシドのブタノール溶液1.5500g、1mol/kg濃度のニオブペンタエトキシドの2-n-ブトキシエタノール溶液0.2500g、1mol/kg濃度のアンチモントリ-n-ブトキシドの2-n-ブトキシエタノール溶液0.2000gを秤量し、マグネチックスターラーバーを投入した。次いで、マグネチックスターラーを用いて、室温にて30分間撹拌し、実施例1および実施例2の混合物を得た。
実施例3および実施例4では、Li4.85Ga0.5La2.95Ca0.05Zr1.3Sb0.45Ta0.25O12の前駆体を含む溶液を調製する。まず、1mol/kg濃度の硝酸リチウムの2-n-ブトキシエタノール溶液5.8200g、1mol/kg濃度の硝酸ガリウム・n水和物(n=5.5)のエチルアルコール溶液0.5000g、1mol/kg濃度の硝酸ランタン・六水和物の2-n-ブトキシエタノール溶液2.9500g、1mol/kg濃度の硝酸カルシウム・四水和物の2-n-ブトキシエタノール溶液0.0500g、1mol/kg濃度のジルコニウムテトラ-n-ブトキシドのブタノール溶液1.3000g、1mol/kg濃度のアンチモントリ-n-ブトキシドの2-n-ブトキシエタノール溶液0.4500g、1mol/kg濃度のタンタルペンタ-n-ブトキシドの2-n-ブトキシエタノール溶液0.2500gを秤量し、マグネチックスターラーバーを投入した。次いで、マグネチックスターラーを用いて、室温にて30分間撹拌し、実施例3および実施例4の混合物を得た。
実施例5および実施例6では、Li5.11Ga0.5La2.95Ca0.05Zr1.56Nb0.22Ta0.22O12の前駆体を含む溶液を調製する。まず、1mol/kg濃度の硝酸リチウムの2-n-ブトキシエタノール溶液6.1320g、1mol/kg濃度の硝酸ガリウム・n水和物(n=5.5)のエチルアルコール溶液0.5000g、1mol/kg濃度の硝酸ランタン・六水和物の2-n-ブトキシエタノール溶液2.9500g、1mol/kg濃度の硝酸カルシウム・四水和物の2-n-ブトキシエタノール溶液0.0500g、1mol/kg濃度のジルコニウムテトラ-n-ブトキシドのブタノール溶液1.5600g、1mol/kg濃度のニオブペンタエトキシドの2-n-ブトキシエタノール溶液0.2200g、1mol/kg濃度のタンタルペンタ-n-ブトキシドの2-n-ブトキシエタノール溶液0.2200gを秤量し、マグネチックスターラーバーを投入した。次いで、マグネチックスターラーを用いて、室温にて30分間撹拌し、実施例5および実施例6の混合物を得た。
実施例7および実施例8では、Li4.5Ga0.5La2.95Ca0.05Zr1.35Nb0.25Sb0.4Ta0.4O12の前駆体を含む溶液を調製する。まず、1mol/kg濃度の硝酸リチウムの2-n-ブトキシエタノール溶液5.4000g、1mol/kg濃度の硝酸ガリウム・n水和物(n=5.5)のエチルアルコール溶液0.5000g、1mol/kg濃度の硝酸ランタン・六水和物の2-n-ブトキシエタノール溶液2.9500g、1mol/kg濃度の硝酸カルシウム・四水和物の2-n-ブトキシエタノール溶液0.0500g、1mol/kg濃度のジルコニウムテトラ-n-ブトキシドのブタノール溶液1.3500g、1mol/kg濃度のニオブペンタエトキシドの2-n-ブトキシエタノール溶液0.2500g、1mol/kg濃度のアンチモントリ-n-ブトキシドの2-n-ブトキシエタノール溶液0.4000g、1mol/kg濃度のタンタルペンタ-n-ブトキシドの2-n-ブトキシエタノール溶液0.4000gを秤量し、マグネチックスターラーバーを投入した。次いで、マグネチックスターラーを用いて、室温にて30分間撹拌し、実施例7および実施例8の混合物を得た。
比較例1では、Li6Ga0.5La2.5Ca0.5Zr2O12の前駆体を含む溶液を調製する。まず、1mol/kg濃度の硝酸リチウムの2-n-ブトキシエタノール溶液7.2000g、1mol/kg濃度の硝酸ガリウム・n水和物(n=5.5)のエチルアルコール溶液0.5000g、1mol/kg濃度の硝酸ランタン・六水和物の2-n-ブトキシエタノール溶液2.5000g、1mol/kg濃度の硝酸カルシウム・四水和物の2-n-ブトキシエタノール溶液0.5000g、1mol/kg濃度のジルコニウムテトラ-n-ブトキシドのブタノール溶液2.0000gを秤量し、マグネチックスターラーバーを投入した。次いで、マグネチックスターラーを用いて、室温にて30分間撹拌し、比較例1の混合物を得た。なお、比較例1では、上記組成式(1)のリチウム複合金属酸化物を構成する元素が、他の金属元素で置換されていない第1電解質を用いることとし、第2電解質は用いない。
比較例2では、Li6.5La3Zr1.5Nb0.25Sb0.25O12の前駆体を含む溶液を調製する。まず、1mol/kg濃度の硝酸リチウムの2-n-ブトキシエタノール溶液7.8000g、1mol/kg濃度の硝酸ランタン・六水和物の2-n-ブトキシエタノール溶液3.0000g、1mol/kg濃度のジルコニウムテトラ-n-ブトキシドのブタノール溶液1.5000g、1mol/kg濃度のニオブペンタエトキシドの2-n-ブトキシエタノール溶液0.2500g、1mol/kg濃度のアンチモントリ-n-ブトキシドの2-n-ブトキシエタノール溶液0.2500gを秤量し、マグネチックスターラーバーを投入した。次いで、マグネチックスターラーを用いて、室温にて30分間撹拌し、比較例2の混合物を得た。なお、比較例2では、上記組成式(2)のリチウム複合金属酸化物に対して、リチウムおよびランタンが置換されていない第1電解質を用いる。
以上で調製した、実施例1、実施例3、実施例5、実施例7、比較例1、比較例2の前駆体を含む溶液を用いて、評価用の固体電解質ペレットを作製する。まず、内径50mmφ×高さ20mmのチタン製シャーレに、前駆体を含む溶液を入れる。これをホットプレートに載せ、ホットプレートの設定温度を180℃として1時間加熱し、溶媒を除去する。続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させる。その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させる。その後、ホットプレート上で室温まで徐冷して、540℃仮焼成体を得る。
実施例および比較例の固体電解質ペレットについて、以下の方法にてリチウムイオン伝導性の評価を行い、その結果を図6に示した。
[リチウムイオン伝導性]
リチウムイオン伝導性の評価結果について、図6を参照して説明する。図6は、実施例および比較例に係るリチウムイオン伝導率の評価結果を示す表である。実施例1、実施例3、実施例5、実施例7では、上述した通り、粒子バルク内成分(Z1)と粒界成分(Z2)とが一体となっており、分離できなかった。そのため、図6における粒子バルク内成分および粒界成分の欄は、「-」と表記した。すなわち、これらの水準では、比較例1と比べて粒界抵抗が低減されていることが示された。また、実施例1、実施例3、実施例5、実施例7の総イオン伝導率は、5.0×10-4S/cm以上と良好な数値が得られ、リチウムイオン伝導性が向上していることが示された。
固体電解質ペレット中の夾雑物の副生などの調査結果について、図8を参照して説明する。図8は、実施例1のX線回折チャートを示す図である。図8においては、横軸は2θ、縦軸は強度を示している。図8に示したように、実施例1では、ガーネット型結晶構造を持つLi6.75La3Zr1.75Nb0.25O12と同一の回折ピークのみが観察され、夾雑物に由来する回折ピークは検出されなかった。すなわち、実施例1においては、夾雑物が未検出であり、夾雑物の含有量がX線回折分析装置の検出下限以下であることが分かった。また、結晶構造中にニオブが含まれていることが確認された。
実施例1から実施例8、比較例1および比較例2の前駆体を含む溶液を用いて、それぞれリチウム電池を作製した。具体的には、正極活物質としてLiCoO2を、負極としてリチウム箔(厚さ約150μm)を、第1集電体および第2集電体として銅箔(厚さ約100μm)をそれぞれ用いた。正極の厚さは約150μm、電解質部の厚さは約15μm、実効径は約8mmとした。
実施例および比較例のリチウム電池について、25℃環境下で充放電を行い、電池特性の指標として放電容量維持率を評価した。その際の充放電条件を図9に示した。図9は、実施例および比較例のリチウム電池の充放電条件および評価結果を示す表である。
<電池の製造方法>
本実施形態に係る電池としてのリチウム電池の製造方法について、図10を参照して説明する。図10は、実施形態2に係る電池としてのリチウム電池の製造方法を示す工程フロー図である。本実施形態の製造方法には、第1電解質および第2電解質の製造方法が含まれる。なお、図10に示した工程フローは一例であって、これに限定されるものではない。また、実施形態1と同一の構成部位については、同一の符号を使用し、重複する説明は省略する。
図10に示した工程S11では、実施形態1と同様にして、第1電解質および第2電解質の原材料としての前駆体を含む混合物を調製する。
工程S12では、混合物から仮焼成体を作製する。具体的には、混合物に第1の加熱処理を施して、溶媒の揮発による除去と、有機成分の燃焼または熱分解による除去とを行う。加熱温度は、500℃以上、650℃以下とする。次いで、得られた混合物の固形物を粉砕、混合して粉体状の仮焼成体を作製する。
<電子機器>
本実施形態に係る電子機器について、図11を参照して説明する。本実施形態では、電子機器として、ウェアラブル機器を例に挙げて説明する。図11は、実施形態3に係る電子機器としてのウェアラブル機器の構成を示す概略図である。
Claims (10)
- 下記組成式(1)で表される結晶質のリチウム複合金属酸化物を構成する元素のうちのZrの一部が、Nb、Sb、Taのうちの1種以上の金属元素で置換されている第1電解質と、
前記Nb、Sb、Taのうちの前記置換をした1種以上の金属元素、およびLi、La、Zrを含む、非晶質の第2電解質と、を備える電解質。
(Li7-3x+yGax)(La3-yCay)Zr2O12 ・・・(1)
(但し、0.1≦x≦0.6、0.0<y≦0.3を満たす。) - 前記第1電解質は、下記組成式(2)で表される結晶質のリチウム複合金属酸化物を含む、請求項1に記載の電解質。
(Li7-3x+y-zGax)(La3-yCay)(Zr2-zMz)O12 ・・・(2)
(但し、0.1≦x≦0.6、0.0<y≦0.3、0.1≦z≦0.6を満たし、Mは、Nb、Sb、Taのうちの1種以上の金属元素を表す。) - 前記第1電解質および前記第2電解質に接する、Liを含む非晶質の第3電解質を備える、請求項1又は2に記載の電解質。
- 前記第3電解質は、Li、B、Oを含む、請求項3に記載の電解質。
- 請求項1から請求項4のいずれか1項に記載の電解質、および活物質を含む複合体と、
前記複合体の一方の側に設けられた電極と、
前記複合体の他方の側に設けられた集電体と、を備えた電池。 - 前記活物質は、Liを含む正極活物質である、請求項5に記載の電池。
- 請求項5または請求項6に記載の電池を備えた電子機器。
- 下記組成式(1)で表される結晶質のリチウム複合金属酸化物を構成する元素と、Nb、Sb、Taのうちの1種以上の金属元素とが、それぞれに含まれる複数種の原材料を溶媒に溶解させた混合物を調製する工程と、
前記混合物に加熱処理を施して、その後の冷却によって、Zrの一部が前記金属元素の少なくとも1種に置換されて、結晶質の第1電解質および非晶質の第2電解質を形成する工程と、
を備え、
前記加熱処理は、加熱温度が500℃以上、650℃以下の第1の加熱処理と、前記第1の加熱処理の後に行われ、加熱温度が800℃以上、950℃以下の第2の加熱処理と、を含む電解質の製造方法。
(Li7-3x+yGax)(La3-yCay)Zr2O12 ・・・(1)
(但し、0.1≦x≦0.6、0.0<y≦0.3を満たす。) - 下記組成式(1)で表される結晶質のリチウム複合金属酸化物を構成する元素と、Nb、Sb、Taのうちの1種以上の金属元素とが、それぞれに含まれる複数種の原材料を溶媒に溶解させ、混合して混合物を調製する工程と、
活物質を用いて第1の成形体を形成する工程と、
前記混合物を、前記第1の成形体に含浸させた状態で加熱処理を施して反応させ、その後の冷却によって、Zrの一部が前記金属元素の少なくとも1種に置換されて、反応後に得られる結晶質の第1電解質および非晶質の第2電解質と、前記第1の成形体とを含む第2の成形体を形成する工程と、
前記第2の成形体に、Li、B、Oを含む第3電解質を接触させた状態で、加熱によって前記第3電解質を溶融させ、前記第2の成形体に前記第3電解質の融液を充填する工程と、
前記第3電解質の融液が充填された前記第2の成形体を冷却して、前記第1電解質、前記第2電解質、前記第3電解質、前記活物質を含む複合体を形成する工程と、
前記複合体に、集電体を形成する工程と、を備えた電池の製造方法。
(Li7-3x+yGax)(La3-yCay)Zr2O12 ・・・(1)
(但し、0.1≦x≦0.6、0.0<y≦0.3を満たす。) - 前記加熱処理は、加熱温度が500℃以上、650℃以下の第1の加熱処理と、前記第1の加熱処理の後に行われ、加熱温度が800℃以上、950℃以下の第2の加熱処理と、を含む請求項9に記載の電池の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017121991A JP7220978B2 (ja) | 2017-06-22 | 2017-06-22 | 電解質、電池、電子機器、電解質および電池の製造方法 |
US15/995,683 US10468717B2 (en) | 2017-06-22 | 2018-06-01 | Electrolyte, battery, and electronic apparatus |
CN201810630571.1A CN109119684B (zh) | 2017-06-22 | 2018-06-19 | 电解质、电池以及电子设备 |
JP2021132849A JP7151839B2 (ja) | 2017-06-22 | 2021-08-17 | 電解質、電池、電子機器、電解質および電池の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017121991A JP7220978B2 (ja) | 2017-06-22 | 2017-06-22 | 電解質、電池、電子機器、電解質および電池の製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021132849A Division JP7151839B2 (ja) | 2017-06-22 | 2021-08-17 | 電解質、電池、電子機器、電解質および電池の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019008930A JP2019008930A (ja) | 2019-01-17 |
JP7220978B2 true JP7220978B2 (ja) | 2023-02-13 |
Family
ID=64693543
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017121991A Active JP7220978B2 (ja) | 2017-06-22 | 2017-06-22 | 電解質、電池、電子機器、電解質および電池の製造方法 |
JP2021132849A Active JP7151839B2 (ja) | 2017-06-22 | 2021-08-17 | 電解質、電池、電子機器、電解質および電池の製造方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021132849A Active JP7151839B2 (ja) | 2017-06-22 | 2021-08-17 | 電解質、電池、電子機器、電解質および電池の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10468717B2 (ja) |
JP (2) | JP7220978B2 (ja) |
CN (1) | CN109119684B (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11682789B2 (en) * | 2018-10-29 | 2023-06-20 | Shenzhen Xworld Technology Limited | Environmentally preferable method of making solid electrolyte and integration of metal anodes thereof |
WO2020183806A1 (ja) * | 2019-03-14 | 2020-09-17 | セイコーエプソン株式会社 | ガーネット型固体電解質の前駆体溶液、ガーネット型固体電解質の前駆体溶液の製造方法およびガーネット型固体電解質 |
KR20210050322A (ko) | 2019-10-28 | 2021-05-07 | 삼성전자주식회사 | 이차전지 및 이차전지의 제조방법 |
JP2021141025A (ja) * | 2020-03-09 | 2021-09-16 | セイコーエプソン株式会社 | 固体電解質、固体電解質の製造方法および複合体 |
JP2021168275A (ja) * | 2020-04-13 | 2021-10-21 | セイコーエプソン株式会社 | 固体組成物および固体電解質成形体の製造方法 |
JP2022039124A (ja) * | 2020-08-27 | 2022-03-10 | セイコーエプソン株式会社 | 固体電解質、固体電解質の製造方法および複合体 |
EP4324791A1 (en) * | 2021-04-15 | 2024-02-21 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery using same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014229579A (ja) | 2013-05-27 | 2014-12-08 | 株式会社オハラ | リチウムイオン伝導性無機固体複合体 |
JP2017004673A (ja) | 2015-06-08 | 2017-01-05 | セイコーエプソン株式会社 | 電極複合体、電極複合体の製造方法およびリチウム電池 |
JP2017061397A (ja) | 2015-09-25 | 2017-03-30 | トヨタ自動車株式会社 | リチウム含有ガーネット型酸化物 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10026941A1 (de) * | 2000-05-30 | 2001-12-06 | Creavis Tech & Innovation Gmbh | Verfahren zur selektiven elektrochemischen Oxidation von organischen Verbindungen |
JP2003346895A (ja) | 2002-05-30 | 2003-12-05 | Fujitsu Ltd | 固体電解質の形成方法およびリチウム電池 |
JP5110556B2 (ja) * | 2006-03-27 | 2012-12-26 | 日立マクセルエナジー株式会社 | 非水二次電池およびその使用方法 |
JP4930857B2 (ja) | 2008-03-12 | 2012-05-16 | 住友電気工業株式会社 | 電解質粒子 |
CN101325094B (zh) | 2008-07-25 | 2013-04-03 | 清华大学 | 一种锂镧钛氧llto复合固态电解质材料及其合成方法 |
DE102011079401A1 (de) * | 2011-07-19 | 2013-01-24 | Robert Bosch Gmbh | Lithiumionen leitende, granatartige Verbindungen |
JP6079307B2 (ja) * | 2012-05-14 | 2017-02-15 | 株式会社豊田中央研究所 | ガーネット型リチウムイオン伝導性酸化物の製造方法 |
JP6028694B2 (ja) | 2013-08-23 | 2016-11-16 | 株式会社豊田中央研究所 | ガーネット型イオン伝導性酸化物の製造方法及び複合体の製造方法 |
JP6144159B2 (ja) * | 2013-09-02 | 2017-06-07 | 日本碍子株式会社 | 固体電解質セラミックス材料 |
JP2016171068A (ja) * | 2015-03-10 | 2016-09-23 | Tdk株式会社 | ガーネット型リチウムイオン伝導性酸化物 |
CN106159318A (zh) * | 2015-04-07 | 2016-11-23 | 中国科学院上海硅酸盐研究所 | 石榴石型固体电解质支撑的新型片式固态二次锂电池及其制备方法 |
JP6658127B2 (ja) | 2016-03-10 | 2020-03-04 | セイコーエプソン株式会社 | 固体電解質、固体電解質の製造方法およびリチウムイオン電池 |
JP6658161B2 (ja) | 2016-03-18 | 2020-03-04 | セイコーエプソン株式会社 | 固体電解質及びリチウムイオン電池 |
JP6658160B2 (ja) | 2016-03-18 | 2020-03-04 | セイコーエプソン株式会社 | 固体電解質及びリチウムイオン電池 |
-
2017
- 2017-06-22 JP JP2017121991A patent/JP7220978B2/ja active Active
-
2018
- 2018-06-01 US US15/995,683 patent/US10468717B2/en active Active
- 2018-06-19 CN CN201810630571.1A patent/CN109119684B/zh active Active
-
2021
- 2021-08-17 JP JP2021132849A patent/JP7151839B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014229579A (ja) | 2013-05-27 | 2014-12-08 | 株式会社オハラ | リチウムイオン伝導性無機固体複合体 |
JP2017004673A (ja) | 2015-06-08 | 2017-01-05 | セイコーエプソン株式会社 | 電極複合体、電極複合体の製造方法およびリチウム電池 |
JP2017061397A (ja) | 2015-09-25 | 2017-03-30 | トヨタ自動車株式会社 | リチウム含有ガーネット型酸化物 |
Also Published As
Publication number | Publication date |
---|---|
CN109119684A (zh) | 2019-01-01 |
JP7151839B2 (ja) | 2022-10-12 |
CN109119684B (zh) | 2023-02-28 |
JP2021180194A (ja) | 2021-11-18 |
US10468717B2 (en) | 2019-11-05 |
JP2019008930A (ja) | 2019-01-17 |
US20180375150A1 (en) | 2018-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7151839B2 (ja) | 電解質、電池、電子機器、電解質および電池の製造方法 | |
JP6747186B2 (ja) | 固体電解質及び電池並びに電子機器及び移動体 | |
WO2017159606A1 (ja) | 固体電解質及びリチウムイオン電池 | |
WO2017159571A1 (ja) | 固体電解質及びリチウムイオン電池 | |
JP6870243B2 (ja) | 固体電解質成形体の製造方法および複合体の製造方法 | |
US11335948B2 (en) | Method for producing solid electrolyte, solid electrolyte, secondary battery, and electronic apparatus | |
US20200176772A1 (en) | Active material, method for producing active material, electrode assembly, secondary battery, and electronic apparatus | |
US11437645B2 (en) | Electrolyte, battery, electronic apparatus, and methods for producing electrolyte and battery | |
US11075405B2 (en) | Electrolyte, battery, and electronic apparatus | |
US11258094B2 (en) | Solid electrolyte, method for producing solid electrolyte, secondary battery, and electronic apparatus | |
US11322775B2 (en) | Secondary battery, method for producing secondary battery, and electronic apparatus | |
JP7081719B2 (ja) | ガーネット型固体電解質の前駆体溶液、ガーネット型固体電解質の前駆体溶液の製造方法およびガーネット型固体電解質 | |
JP7283122B2 (ja) | ガーネット型の固体電解質、ガーネット型の固体電解質の製造方法、二次電池、電子機器 | |
JP2021141025A (ja) | 固体電解質、固体電解質の製造方法および複合体 | |
JP7211470B2 (ja) | 電極複合体、電池、電子機器 | |
JP2019114380A (ja) | 電解質前駆体溶液、電極複合体の製造方法、電極複合体、電池、電子機器 | |
JP2021141024A (ja) | 固体電解質、固体電解質の製造方法および複合体 | |
JP2022038107A (ja) | 固体電解質、固体電解質の製造方法および複合体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20180910 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20190402 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200324 |
|
RD07 | Notification of extinguishment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7427 Effective date: 20200806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210127 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210518 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210817 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210817 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210824 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210831 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20211008 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20211012 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220412 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20221004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221128 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20221220 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20230117 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20230117 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230201 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7220978 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |