WO2017159252A1 - 熱伝導性シリコーン組成物及び半導体装置 - Google Patents

熱伝導性シリコーン組成物及び半導体装置 Download PDF

Info

Publication number
WO2017159252A1
WO2017159252A1 PCT/JP2017/006602 JP2017006602W WO2017159252A1 WO 2017159252 A1 WO2017159252 A1 WO 2017159252A1 JP 2017006602 W JP2017006602 W JP 2017006602W WO 2017159252 A1 WO2017159252 A1 WO 2017159252A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
mass
heat
silicone composition
Prior art date
Application number
PCT/JP2017/006602
Other languages
English (en)
French (fr)
Inventor
翔太 秋場
謙一 辻
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020187024686A priority Critical patent/KR20180127325A/ko
Priority to CN201780009539.5A priority patent/CN108603033B/zh
Priority to JP2018505384A priority patent/JP6658866B2/ja
Priority to US16/064,327 priority patent/US20190002694A1/en
Publication of WO2017159252A1 publication Critical patent/WO2017159252A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3738Semiconductor materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass

Definitions

  • the present invention relates to a silicone composition and a semiconductor device excellent in thermal conductivity.
  • Patent Document 1 a silicone grease composition in which a specific organopolysiloxane is blended with a spherical hexagonal aluminum nitride powder having a certain particle size range is disclosed in Japanese Patent Laid-Open No. 3-14873 ( Patent Document 2) discloses a thermally conductive organosiloxane composition in which an aluminum nitride powder having a small particle diameter and an aluminum nitride powder having a large particle diameter are combined, and Japanese Patent Application Laid-Open No. 10-110179 (Patent Document 3) discloses a nitridation. Japanese Patent Application Laid-Open No.
  • Patent Document 4 discloses a heat conductive grease composition using an aluminum nitride powder surface-treated with an organosilane. It is disclosed. Aluminum nitride has a thermal conductivity of 70 to 270 W / mK, and diamond having a thermal conductivity of 900 to 2,000 W / mK is a material having higher thermal conductivity.
  • Patent Document 5 discloses a thermally conductive silicone composition using diamond, zinc oxide, and a dispersant as a silicone resin.
  • JP-A-2000-63873 Patent Document 6
  • JP-A-2008-222277 Patent Document 7
  • Patent Document 8 discloses a thermally conductive grease composition in which metal aluminum powder is mixed with a base oil such as silicone oil. It is disclosed.
  • Japanese Patent No. 3130193 Patent Document 8
  • Japanese Patent No. 3677671 Patent Document 9
  • Some of the above thermal conductive greases and thermal conductive materials exhibit high thermal conductivity, but those exhibiting high thermal conductivity have a large minimum thickness (BLT) during compression and a high thermal resistance. .
  • an object of the present invention is to provide a thermally conductive silicone composition that exhibits a good heat dissipation effect.
  • the present inventors have found that silver powder having a specific tap density and specific surface area and a conductive filler having a specific particle size are contained in a specific organopolysiloxane. As a result of the mixing, it was found that the thermal conductivity was drastically improved, and the present invention was completed. That is, the present invention provides the following thermally conductive silicone composition and the like.
  • the heat conductive silicone composition containing the following component (A), (B), (C) and (D).
  • the heat conductive filler of component (C) is an aluminum powder having a tap density of 0.5 to 2.6 g / cm 3 and a specific surface area of 0.15 to 3.0 m 2 / g. Thermally conductive silicone composition.
  • ⁇ 4> The thermal conductivity according to any one of ⁇ 1> to ⁇ 3>, wherein the mass ratio ⁇ / ⁇ of the mass ⁇ of the silver powder of component (B) and the mass ⁇ of the aluminum powder of component (C) is 3 to 150. Silicone composition.
  • component (A) all or part of component (E): organopolysiloxane having at least two alkenyl groups bonded to silicon atoms and / or component (F): hydrogen bonded to silicon atoms
  • the heat conductive silicone composition according to any one of ⁇ 1> to ⁇ 4>, which is an organohydrogenpolysiloxane having at least two atoms in one molecule.
  • R 2 represents one or more groups selected from a saturated or unsaturated monovalent hydrocarbon group, epoxy group, acrylic group and methacryl group which may have a substituent.
  • R 3 represents a monovalent hydrocarbon group, and b is 1 ⁇ b ⁇ 3.
  • a semiconductor device comprising an exothermic electronic component and a heat radiator, wherein the thermal conductivity according to any one of ⁇ 1> to ⁇ 6> is provided between the exothermic electronic component and the heat radiator.
  • a semiconductor device comprising a silicone composition.
  • the heat conductive silicone composition according to any one of ⁇ 6> is heated to 80 ° C. or higher in a state where a pressure of 0.01 MPa or more is applied between the heat generating electronic component and the heat radiating body.
  • the thermally conductive silicone composition of the present invention has excellent thermal conductivity and is useful for semiconductor devices.
  • the thermally conductive silicone composition of the present invention will be described in detail below.
  • the organopolysiloxane of component (A) has the following average composition formula (1) R 1 a SiO (4-a) / 2 (1) [Wherein R 1 represents one or more groups selected from the group consisting of a hydrogen atom, a hydroxy group, and a saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms; Is 1.8 ⁇ a ⁇ 2.2. ]
  • examples of the saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms represented by R 1 include a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, and a decyl group.
  • Alkyl groups such as dodecyl group, tetradecyl group, hexadecyl group and octadecyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; alkenyl groups such as vinyl group and allyl group; aryl groups such as phenyl group and tolyl group; Aralkyl groups such as phenylethyl group and 2-methyl-2-phenylethyl group; 3,3,3-trifluoropropyl group, 2- (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ethyl group, p -Halogenated hydrocarbon groups such as a chlorophenyl group.
  • a is preferably in the range of 1.8 to 2.2, particularly preferably 1.9 to 2.1, from the viewpoint of consistency required for the silicone grease composition.
  • the kinematic viscosity at 25 ° C. of the organopolysiloxane used in the present invention is lower than 10 mm 2 / s, oil bleeding tends to occur when the composition is used, and if it exceeds 100,000 mm 2 / s, the viscosity at the time of handling becomes poor since the higher is required to be 10 ⁇ 100,000mm 2 / s at 25 ° C., it is preferred in particular 30 ⁇ 10,000mm 2 / s.
  • the kinematic viscosity of the organopolysiloxane is a value of 25 ° C. measured with an Ostwald viscometer.
  • component (E) and (F) All or part of component (A) is composed of component (E) organopolysiloxane containing at least two alkenyl groups bonded to silicon atoms and / or component (F) hydrogen atoms bonded to silicon atoms. Is preferably an organohydrogenpolysiloxane containing at least two per molecule.
  • the component (E) organopolysiloxane has an average of 2 or more (usually 2 to 50), preferably 2 to 20, more preferably about 2 to 10 alkenyl groups bonded to silicon atoms in one molecule. It is what you have.
  • Examples of the alkenyl group contained in the component (E) organopolysiloxane include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group, and a vinyl group is particularly preferable.
  • the alkenyl group of component (E) may be bonded to the silicon atom at the molecular chain terminal, may be bonded to the silicon atom at the non-terminal molecular chain, or both.
  • the organic group bonded to the silicon atom other than the alkenyl group, for example, alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, etc. Groups; aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group; aralkyl groups such as benzyl group and phenethyl group; chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, etc.
  • alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, etc.
  • aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group
  • aralkyl groups such as benzyl group
  • Examples thereof include a halogenated alkyl group, and a methyl group and a phenyl group are particularly preferable.
  • Examples of the molecular structure of such component (E) include linear, partially branched linear, cyclic, branched, and three-dimensional network, but basically the main chain is diorgano.
  • a linear diorganopolysiloxane consisting of repeating siloxane units (D units) and having both ends of the molecular chain blocked with triorganosiloxy groups, or the linear diorganopolysiloxane and branched or three-dimensional
  • a mixture of reticulated organopolysiloxanes is preferred.
  • the organohydrogenpolysiloxane of component (F) has at least two hydrogen atoms (that is, SiH groups) bonded to silicon atoms in a molecule (usually 2 to 300), preferably about 2 to 100. It may be any of a linear, branched, cyclic, or three-dimensional network resinous material.
  • the hydrogen atom of component (F) may be bonded to the silicon atom at the molecular chain terminal, or may be bonded to the silicon atom at the non-terminal molecular chain.
  • examples of the organic group bonded to the silicon atom include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group; Aryl groups such as benzyl, phenethyl and the like; alkyl halides such as chloromethyl, 3-chloropropyl, 3,3,3-trifluoropropyl, etc. Group, etc., and a methyl group and a phenyl group are particularly preferable.
  • an organopolysiloxane having a hydrolyzable group represented by the following general formula (3) You may mix
  • the content of the hydrolyzable organopolysiloxane is preferably 0 to 20% by mass, more preferably 0 to 10% by mass with respect to the component (A).
  • R 4 is an alkyl group having 1 to 6 carbon atoms
  • R 5 is independently of each other a saturated or unsaturated, unsubstituted or substituted monovalent carbon atom having 1 to 18 carbon atoms.
  • a hydrogen group, and c is 5 to 120.
  • the organopolysiloxane represented by the above formula (3) assists in the high filling of the powder into the silicone composition. Further, the surface of the powder can be hydrophobized with the organopolysiloxane.
  • R 4 is an alkyl group having 1 to 6 carbon atoms, and examples thereof include an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group. An ethyl group is preferred.
  • R 5 is independently of each other a saturated or unsaturated, unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms.
  • Examples of the monovalent hydrocarbon group include alkyl groups such as a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, a tetradecyl group, a hexadecyl group, and an octadecyl group; a cyclopentyl group, and Cycloalkyl groups such as cyclohexyl groups; alkenyl groups such as vinyl groups and allyl groups; aryl groups such as phenyl groups and tolyl groups; aralkyl groups such as 2-phenylethyl groups and 2-methyl-2-phenylethyl groups Or a group in which some or all of the hydrogen atoms in these groups are substituted with a halogen atom such as fluorine, bromine or chlorine, a cyano group, etc., for example, 3,3,3-triflu
  • Component (B) is a silver powder having a tap density of 3.0 g / cm 3 or more and a specific surface area of 2.0 m 2 / g or less. If the tap density of the silver powder of component (B) is less than 3.0 g / cm 3 , the filling rate into the composition of component (B) cannot be increased, the viscosity of the composition increases, and the workability deteriorates. 3.0 g / cm 3 to 10.0 g / cm 3 , preferably 4.5 g / cm 3 to 10.0 g / cm 3 , more preferably 6.0 g / cm 3 to 10.0 g / cm 3. 3 .
  • the specific surface area of the silver powder of component (B) is larger than 2.0 m 2 / g, the filling rate of the component (B) in the composition cannot be increased, the viscosity of the composition is increased, and workability is deteriorated.
  • 0.08m 2 /g ⁇ 2.0m 2 / g range of well, preferably 0.08m 2 /g ⁇ 1.0m 2 / g, more preferably 0.08m 2 /g ⁇ 0.5m 2 / g It is.
  • the tap density described in this specification measures 100 g of silver powder, gently drops it into a 100 ml measuring cylinder with a funnel, and then places the cylinder on a tap density measuring device at a drop distance of 20 mm at a speed of 60 times / minute.
  • the aspect ratio of the silver powder of component (B) is 2.0 to 150.0, preferably 3.0 to 100.0, and more preferably 3.0 to 50.0. .
  • the aspect ratio refers to the ratio of the major axis to the minor axis of the particle (major axis / minor axis).
  • an electron micrograph of the particle is taken, the major axis and minor axis of the particle are measured from this photograph, and the major axis and minor axis of the measured particle can be calculated.
  • the size of the particles can be measured by an electron micrograph from the upper surface, and the larger diameter is measured from the electron micrograph of the upper surface as the major axis.
  • the minor axis is the thickness of the particle with respect to the major axis.
  • the thickness of the particles cannot be measured with an electron micrograph from the top.
  • To measure the thickness of the particle when taking an electron micrograph, the sample stage on which the particle is placed is tilted and mounted, the electron micrograph is taken from the top, and corrected by the tilt angle of the sample stage. What is necessary is just to calculate the thickness. Specifically, after taking several photographs magnified several thousand times with an electron microscope, arbitrarily measure the major axis and minor axis of 100 particles and determine the ratio of major axis to minor axis (major axis / minor axis). The average value was calculated.
  • the particle size of the silver powder of component (B) is not particularly limited, but the average particle size is preferably in the range of 0.2 to 50 ⁇ m, particularly preferably in the range of 1.0 to 30 ⁇ m.
  • the average particle size can be measured with a laser diffraction particle size analyzer after taking 1 to 2 cups of silver powder with a microspatella, putting about 60 ml of isopropyl alcohol, and dispersing the silver powder with an ultrasonic homogenizer for 1 minute.
  • the measurement time was 30 seconds.
  • the manufacturing method of the silver powder used by this invention is not specifically limited, For example, the electrolytic method, the grinding
  • the silver powder may be used as it is as manufactured by the above method, or may be used after being pulverized so as to satisfy the above numerical range.
  • the apparatus is not particularly limited, and examples thereof include known apparatuses such as a stamp mill, a ball mill, a vibration mill, a hammer mill, a rolling roller, and a mortar.
  • a stamp mill, a ball mill, a vibration mill, and a hammer mill are preferable.
  • the blending amount of the component (B) silver powder is 300 to 11,000 parts by mass with respect to 100 parts by mass of the component (A). If less than 300 parts by mass with respect to 100 parts by mass of component (A), the thermal conductivity of the resulting composition will be poor, and if it is more than 11,000 parts by mass, the fluidity of the composition will be poor and handling will be poor. .
  • the range is preferably 300 to 5,000 parts by mass, more preferably 500 to 5,000 parts by mass.
  • Component (C) is a heat conductive filler other than component (B) having an average particle size of 5 to 100 ⁇ m and a thermal conductivity of 10 W / m ° C. or more.
  • the average particle diameter of the heat conductive filler of component (C) is smaller than 5 ⁇ m, the minimum thickness of the resulting composition at the time of compression becomes very thin, and the thermal resistance after the heat cycle is deteriorated.
  • the average particle diameter is larger than 100 micrometers, the thermal resistance of the composition obtained will become high and performance will fall.
  • the average particle diameter of the thermally conductive filler of component (C) is preferably in the range of 5 to 100 ⁇ m, preferably 10 to 90 ⁇ m, more preferably 15 to 70 ⁇ m.
  • the average particle diameter of the thermally conductive filler of component (C) is a volume-based volume average diameter [MV] that can be measured by Nikkiso Co., Ltd. Microtrac MT330OEX.
  • the thermal conductivity of the thermally conductive filler of component (C) is preferably 10 W / m ° C. or more, and more preferably 10 to 2,000 W / m, since the thermal conductivity of the composition decreases if it is smaller than 10 W / m ° C.
  • the range of ° C is good, preferably 100 to 2,000 W / m ° C, more preferably 200 to 2,000 W / m ° C.
  • the thermal conductivity of the thermally conductive filler of component (C) is a value measured by QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd.
  • the blending amount of the heat conductive filler of this component (C) is less than 10 parts by mass with respect to 100 parts by mass of the component (A)
  • the minimum thickness at the time of compression of the resulting composition becomes very thin, and after the heat cycle
  • the heat resistance of the resin composition deteriorates, and if it exceeds 2,750 parts by mass, the viscosity of the resulting composition increases and the workability deteriorates, so the range is from 10 to 2,750 parts by mass, preferably 30 to 1,000 parts by mass, more preferably 40 to 500 parts by mass.
  • the heat conductive filler of component (C) is preferably an aluminum powder having a tap density of 0.5 to 2.6 g / cm 3 and a specific surface area of 0.15 to 3.0 m 2 / g.
  • the tap density of the aluminum powder of the component (C) is smaller than 0.5 g / cm 3 , the minimum thickness at the time of compression of the resulting composition becomes very thin, and the thermal resistance after the heat cycle may be deteriorated.
  • the tap density is larger than 2.6 g / cm 3 , the resulting composition has a high thermal resistance, which may deteriorate the performance.
  • the tap density of the aluminum powder of component (C) is preferably in the range of 0.5 g / cm 3 to 2.6 g / cm 3 , preferably 1.0 g / cm 3 to 2.3 g / cm 3 . Preferably, it is 1.3 g / cm 3 to 2.0 g / cm 3 .
  • the specific surface area of the aluminum powder of component (C) is a 0.15 m 2 / g less than the thermal resistance is increased in the resulting composition, there is a possibility that the performance is lowered, and greater than 3.0 m 2 / g , the minimum thickness at the time of compression of the resulting composition becomes very thin, the thermal resistance after the heat cycle there is a possibility to deteriorate, good range of 0.15m 2 /g ⁇ 3.0m 2 / g, preferably the 0.2m 2 /g ⁇ 2.5m 2 / g, more preferably 0.2m 2 /g ⁇ 1.5m 2 / g.
  • the tap density of the aluminum powder of a component (C) is Tsutsuri-Rika Instruments Co., Ltd. product A.M. B. D powder characteristic measuring device B. It is a value measured by D-72 type.
  • the specific surface area of the aluminum powder of component (C) is a value measured by HM model-1201 (flow BET method) manufactured by Mountec Co., Ltd. The measuring method of this specific surface area is a method based on JIS Z 8830 2013: (ISO9277: 2010).
  • the aluminum powder of component (C) may be subjected to a hydrophobic treatment with an organosilane, an organosilazane, an organopolysiloxane, an organic fluorine compound or the like, if necessary.
  • a hydrophobizing treatment method a generally known method can be used.
  • Ultramixer registered trademark of Mizuho Kogyo Co., Ltd.
  • Hibis Disper Mix registered trademark of mixer manufactured by Special Machine Industries Co., Ltd.
  • the organopolysiloxane of the component (A) which is a liquid component of the present invention as a diluting solvent.
  • the hydrophobization treatment and the mixing can be simultaneously performed by previously mixing the organosilane or the partial hydrolyzate thereof as the treatment agent with the organopolysiloxane and adding aluminum powder thereto. Compositions made by this method are also within the scope of the present invention.
  • the aspect ratio of the thermally conductive filler of component (C) is preferably 1.0 to 3.0, preferably 1.0 to 2.0, more preferably 1.0 to 1. A range of 5 is good.
  • the aspect ratio refers to the ratio of the major axis to the minor axis of the particle (major axis / minor axis).
  • the measuring method for example, an electron micrograph of the particle is taken, the major axis and minor axis of the particle are measured from this photograph, and the major axis and minor axis of the measured particle can be calculated.
  • the size of the particles can be measured by an electron micrograph from the upper surface, and the larger diameter is measured from the electron micrograph of the upper surface as the major axis.
  • the minor axis is the thickness of the particle with respect to the major axis.
  • the thickness of the particles cannot be measured with an electron micrograph from the top.
  • To measure the thickness of the particle when taking an electron micrograph, the sample stage on which the particle is placed is tilted and mounted, the electron micrograph is taken from the top, and corrected by the tilt angle of the sample stage. What is necessary is just to calculate the thickness. Specifically, after taking several photographs magnified several thousand times with an electron microscope, arbitrarily measure the major axis and minor axis of 100 particles and determine the ratio of major axis to minor axis (major axis / minor axis). The average value was calculated.
  • the thermal conductivity of the resulting composition is lowered, and if it is greater than 150, the mass conductivity is reduced. Since the minimum thickness at the time becomes very thin and the thermal resistance after the heat cycle is deteriorated, 3 to 150 is preferable, 8 to 100 is particularly preferable, and 10 to 80 is more preferable.
  • the heat conductive silicone composition of this invention may contain inorganic compound powder and / or organic compound material in the range which does not impair the effect of this invention other than a component (B) and (C).
  • the inorganic compound powder those having high thermal conductivity are preferable, for example, aluminum powder, zinc oxide powder, titanium oxide powder, magnesium oxide powder, alumina powder, aluminum hydroxide powder, boron nitride powder, aluminum nitride powder, diamond powder.
  • the organic compound material also preferably has a high thermal conductivity. Examples thereof include one or more selected from carbon fibers, graphene, graphite, carbon nanotubes, and carbon materials.
  • the inorganic compound powder and organic compound material those having a surface subjected to hydrophobic treatment with organosilane, organosilazane, organopolysiloxane, organic fluorine compound, or the like may be used as necessary.
  • the average particle size of the inorganic compound powder and the organic compound material is preferably in the range of 0.5 to 100 ⁇ m, particularly preferably less than 0.5 ⁇ m or more than 100 ⁇ m, because the filling rate of the resulting composition cannot be increased. Is in the range of 1-50 ⁇ m.
  • the filling rate of the obtained composition cannot be increased even if the fiber length of the carbon fiber is smaller than 10 ⁇ m or larger than 500 ⁇ m, the range of 10 to 500 ⁇ m is preferable, and the range of 30 to 300 ⁇ m is particularly preferable.
  • the blending amount of the inorganic compound powder and the organic compound material is preferably 0 to 3,000 parts by mass, because if it exceeds 3,000 parts by mass with respect to 100 parts by mass of the component (A), the fluidity becomes worse and the handling becomes worse.
  • the amount is preferably 0 to 2,000 parts by mass.
  • Component (D) is a catalyst selected from the group consisting of platinum-based catalysts, organic peroxides and condensation reaction catalysts, and the composition of the present invention is cured by blending the component (D) catalyst.
  • Composition When the thermally conductive silicone composition of the present invention is to be cured by a hydrosilylation reaction, components (E) and (F) are added as component (A), and a platinum-based catalyst is added as component (D).
  • Component (F) should be blended in such an amount that silicon atom-bonded hydrogen atoms in component (F) are within a range of 0.1 to 15.0 moles with respect to 1 mole of alkenyl groups in component (E).
  • the amount is in the range of 0.1 to 10.0 mol, and particularly preferably in the range of 0.1 to 5.0 mol.
  • platinum-based catalyst include chloroplatinic acid, chloroplatinic acid alcohol solutions, platinum olefin complexes, platinum alkenylsiloxane complexes, and platinum carbonyl complexes.
  • the content of the platinum-based catalyst of the component (D) is an amount necessary for curing the composition of the present invention, a so-called catalytic amount.
  • the amount of platinum metal contained in component (D) relative to the component is preferably in an amount in the range of 0.1 to 2,000 ppm, particularly in the range of 0.1 to 1,500 ppm. Is preferred.
  • It can contain hardening reaction inhibitors, such as a compound, a phosphine type compound, and a mercaptan type compound.
  • the content of the curing reaction inhibitor is not limited, but is preferably within the range of 0.0001 to 1.0 part by mass with respect to 100 parts by mass of component (A).
  • the thermally conductive silicone composition of the present invention is to be cured by a free radical reaction with an organic peroxide
  • an organic peroxide as the component (D).
  • the organic peroxide of component (D) include benzoyl peroxide, di (p-methylbenzoyl) peroxide, di (o-methylbenzoyl) peroxide, dicumyl peroxide, and 2,5-dimethyl-2. , 5-bis (t-butylperoxy) hexane, di-t-butylperoxide, t-butylperoxybenzoate, 1,1-di (t-butylperoxy) cyclohexane.
  • the content of the organic peroxide of the component (D) is an amount necessary for curing the composition of the present invention, specifically, 0.1 to 8 parts by mass with respect to 100 parts by mass of the component (A). It is preferable to be within the range.
  • the thermally conductive silicone composition of the present invention when the thermally conductive silicone composition of the present invention is to be cured by a condensation reaction, the composition has at least three silicon atom-bonded hydrolyzable groups in one molecule as a curing agent. It is preferable to contain a condensation reaction catalyst as the silane or siloxane oligomer and component (D).
  • a condensation reaction catalyst as the silane or siloxane oligomer and component (D).
  • examples of the silicon atom-bonded hydrolyzable group include an alkoxy group, an alkoxyalkoxy group, an acyloxy group, a ketoxime group, an alkenoxy group, an amino group, an aminoxy group, and an amide group.
  • the silicon atom of the silane or siloxane oligomer includes, for example, a linear alkyl group, a branched alkyl group, a cyclic alkyl group, an alkenyl group, an aryl group, an aralkyl group, a halogen atom.
  • An alkyl group may be bonded.
  • Examples of such silane or siloxane oligomer include tetraethoxysilane, methyltriethoxysilane, vinyltriethoxysilane, methyltris (methylethylketoxime) silane, vinyltriacetoxysilane, ethylorthosilicate, vinyltri (isopropenoxy) silane.
  • the content of the silane or siloxane oligomer is an amount necessary for curing the composition of the present invention.
  • the content of the silane or siloxane oligomer is in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the component (A). Particularly preferred is a range of 0.1 to 10 parts by mass.
  • the condensation reaction catalyst of component (D) is an optional component, and is not essential when, for example, a silane having a hydrolyzable group such as an aminoxy group, amino group, or ketoxime group is used as a curing agent.
  • Examples of the condensation reaction catalyst of component (D) include organic titanates such as tetrabutyl titanate and tetraisopropyl titanate; diisopropoxy bis (acetyl acetate) titanium, diisopropoxy bis (ethyl acetoacetate) titanium and the like.
  • Organic titanium chelate compounds Organotin compounds such as dilaurate and butyltin-2-ethylhexoate; presence of tin naphthenate, tin oleate, tin butyrate, cobalt naphthenate, zinc stearate, etc.
  • the content of the condensation reaction catalyst of component (D) is an arbitrary amount. When blended, specifically, it is 0 for 100 parts by mass of component (A). The content is preferably in the range of 0.01 to 20 parts by mass, and more preferably in the range of 0.1 to 10 parts by mass.
  • Ingredient (G) Furthermore, in the heat conductive silicone composition of this invention, as a component (G), following General formula (2) R 2 b Si (OR 3 ) 4-b (2) [Wherein R 2 represents one or more groups selected from a saturated or unsaturated monovalent hydrocarbon group, epoxy group, acrylic group and methacryl group which may have a substituent. R 3 represents a monovalent hydrocarbon group, and b is 1 ⁇ b ⁇ 3. ] You may mix
  • R 2 in the general formula (2) is, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, or a tetradecyl group; a cycloalkylalkenyl group; Acrylic group; epoxy group; cycloalkyl group such as cyclopentyl group and cyclohexyl group; alkenyl group such as vinyl group and allyl group; aryl group such as phenyl group and tolyl group; 2-phenylethyl group and 2-methyl-2-phenyl Aralkyl groups such as ethyl groups; halogenated hydrocarbon groups such as 3,3,3-trifluoropropyl groups, 2- (perfluorobutyl) ethyl groups, 2- (perfluorooctyl)
  • Examples of the substituent for the monovalent hydrocarbon group include an acryloyloxy group and a methacryloyloxy group.
  • B is 1 to 3.
  • Examples of R 3 include one or more alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. preferable.
  • the organosilane of component (G) When the organosilane of component (G) is added, it is added in the range of 0.1 to 20 parts by mass, more preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of component (A). Good.
  • the method for producing the heat conductive silicone composition of the present invention may be any conventional method for producing a silicone composition, and is not particularly limited.
  • the above-mentioned components (A) to (D) and other components as necessary are mixed with Trimix, Twin Mix, Planetary Mixer (all are mixers manufactured by Inoue Mfg. Co., Ltd., registered trademark), Ultra Mixer ( It can be produced by mixing for 30 minutes to 4 hours with a mixer such as Mizuho Kogyo Co., Ltd. (registered trademark), Hibis Disper Mix (Primics Co., Ltd., registered trademark). If necessary, mixing may be performed while heating at a temperature in the range of 50 to 150 ° C.
  • the heat conductive silicone composition of the present invention preferably has an absolute viscosity measured at 25 ° C. of 10 to 600 Pa ⁇ s, preferably 15 to 500 Pa ⁇ s, more preferably 15 to 400 Pa ⁇ s.
  • the absolute viscosity within the above range can be obtained by adjusting each component with the blending amount described above.
  • the absolute viscosity is a result of measurement using Model No. PC-1TL (10 rpm) manufactured by Malcolm Corporation.
  • cured material obtained by hardening the heat conductive silicone composition of this invention is not limited, For example, a gel form, a low-hardness rubber form, or a high-hardness rubber form is mentioned. .
  • the semiconductor device of the present invention is characterized in that the thermally conductive silicone composition of the present invention is interposed between a heat-generating electronic component and a radiator.
  • the heat-conductive silicone composition of the present invention is preferably interposed between the heat-generating electronic component and the heat dissipator with a thickness of 10 to 200 ⁇ m.
  • a typical structure of the semiconductor device of the present invention is shown in FIG. 1, but the present invention is not limited to this.
  • the heat conductive silicone composition of the present invention is shown in FIG.
  • the thermally conductive silicone composition of the present invention is heated to 80 ° C. or more with a pressure of 0.01 MPa or more applied between the heat-generating electronic component and the radiator.
  • the applied pressure is preferably 0.01 MPa or more, particularly preferably 0.05 MPa to 100 MPa, and further preferably 0.1 MPa to 100 MPa.
  • the heating temperature needs to be 80 ° C. or higher.
  • the heating temperature is preferably 90 ° C to 300 ° C, more preferably 100 ° C to 300 ° C, and further preferably 120 ° C to 300 ° C.
  • the test for confirming the effect of the present invention was performed as follows. ⁇ viscosity ⁇ The absolute viscosity of the composition was measured at 25 ° C. using a Malcolm viscometer (type PC-1TL).
  • each composition was poured into a 6 mm thick mold, heated to 150 ° C. under a pressure of 0.35 MPa, and then manufactured by Kyoto Electronics Industry Co., Ltd. The thermal conductivity was measured at 25 ° C. using TPS-2500S.
  • TPS-2500S the composition was poured into a 6 mm thick mold and allowed to stand at 23 ⁇ 2 ° C./50 ⁇ 5% RH (relative humidity) for 7 days, and then TPS-2500S manufactured by Kyoto Electronics Industry Co., Ltd. The thermal conductivity was measured at 25 ° C.
  • thermo resistance measurement Each composition was sandwiched between two aluminum plates of ⁇ (diameter) 12.7 mm, and each composition was heat-cured by placing it in an oven at 150 ° C. for 90 minutes under a pressure of 0.35 MPa. A test piece for measuring thermal resistance was prepared, and the thermal resistance of the test piece was measured. Further, after that, a heat cycle test ( ⁇ 55 ° C. ⁇ ⁇ 150 ° C.) was conducted for 1,000 hours to observe a change in thermal resistance. In addition, this thermal resistance measurement was performed by nanoflash (the Niche company make, LFA447).
  • BLT ( ⁇ m) thickness of specimen ( ⁇ m) ⁇ thickness of two aluminum plates used ( ⁇ m) (5)
  • the thickness of the test piece was measured with a Digimatic standard outer micrometer (MDC-25MX, manufactured by Mitutoyo Corporation).
  • A-2 Organohydrogenpolysiloxane represented by the following formula
  • A-3 Dimethylpolysiloxane having both ends blocked with hydroxyl groups and a kinematic viscosity at 25 ° C. of 5000 mm 2 / s
  • B-1 Silver powder having a tap density of 6.6 g / cm 3 , a specific surface area of 0.28 m 2 / g, and an aspect ratio of 8
  • B-2 A tap density of 6.2 g / cm 3 and a specific surface area of 0.8. 48 m 2 / g silver powder with an aspect ratio of 13
  • B-3 Silver powder having a tap density of 9.0 g / cm 3 , a specific surface area of 0.16 m 2 / g, and an aspect ratio of 30
  • B-4 Silver powder having a tap density of 3.0 g / cm 3 , a specific surface area of 2.0 m 2 / g, and an aspect ratio of 50
  • B-5 (comparative example): Silver powder having a tap density of 2.3 g / cm 3 , a specific surface area of 2.3 m 2 / g, and an aspect ratio of 1
  • B-6 (comparative example): Silver powder having a tap density of 3.3 g / cm 3 , a specific surface area of 2.11 m 2 / g, and an aspect ratio of 1
  • B-7 (Comparative Example): Silver powder with a tap density of 2.8 g / cm 3 , a specific surface area of 1.8 m 2 / g, and an aspect ratio of 2
  • Ingredient (C) C-1 Aluminum powder having an average particle size of 15 ⁇ m, thermal conductivity of 230 W / m ° C., tap density of 1.3 g / cm 3 , specific surface area of 1.5 m 2 / g and aspect ratio of 1.5
  • C-2 Aluminum powder having an average particle diameter of 20 ⁇ m, thermal conductivity of 230 W / m ° C., tap density of 1.5 g / cm 3 , specific surface area of 0.3 m 2 / g, and aspect ratio of 1.2
  • C-3 Aluminum powder having an average particle size of 70 ⁇ m, thermal conductivity of 230 W / m ° C., tap density of 2.0 g / cm 3 , specific surface area of 0.2 m 2 / g, and aspect ratio of 1.1
  • C-4 Silver powder having an average particle diameter of 11 ⁇ m, a thermal conductivity of 400 W / m ° C., a tap density of 5.2 g / cm 3 , a specific surface area of 0.2 m 2 / g, and an aspect ratio of 1.1.
  • C-5 Aluminum having an average particle size of 110 ⁇ m, a thermal conductivity of 230 W / m ° C., a tap density of 2.0 g / cm 3 , a specific surface area of 0.12 m 2 / g, and an aspect ratio of 1.1 Powder
  • D-1 platinum catalyst: A-1 solution of platinum-divinyltetramethyldisiloxane complex, containing 1 wt% as platinum atoms
  • D-2 organic peroxide: peroxide (trade name Perhexa C manufactured by NOF Corporation)
  • Examples 1 to 15 and Comparative Examples 1 to 8 The components were mixed in the compositions shown in Tables 1 to 3 below to obtain compositions of Examples 1 to 15 and Comparative Examples 1 to 8. Specifically, the component (A) is put into a 5 liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.), and the component (G) is added in Example 4 and the component (H) is added in Example 5. The components (B) and (C) were added thereto and mixed at 25 ° C. for 1.5 hours. Next, component (D) was added, and component (I) was added in Examples 1 to 8 and Comparative Examples 1 to 8, and component (J) was added in Example 15, and mixed uniformly.
  • Substrate 7 Heat-generating electronic components (CPU) 8 Thermally conductive silicone composition layer 9 Heat radiator (lid)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

優れた熱伝導性を有する熱伝導性シリコーン組成物の提供。 下記、成分(A)~(C)及び(D)を含有する熱伝導性シリコーン組成物。 (A)平均組成式(1) R1 aSiO(4-a)/2 (1) 〔式中、R1は、水素原子、ヒドロキシ基又は一価炭化水素基を示し、aは1.8≦a≦2.2である〕で表される、25℃における動粘度が10~100,000mm2/sのオルガノポリシロキサン (B)タップ密度が3.0g/cm3以上であり、比表面積が2.0m2/g以下であり、かつアスペクト比が、2.0~150.0である銀粉末 成分(A)100質量部に対して、300~11,000質量部 (C)平均粒径が5~100μmであり、10W/m℃以上の熱伝導率を有する成分(B)以外の熱伝導性充填材 成分(A)100質量部に対して、10~2,750質量部 (D)白金系触媒、有機過酸化物及び縮合反応用触媒からなる群より選択される触媒

Description

熱伝導性シリコーン組成物及び半導体装置
 本発明は、熱伝導性に優れたシリコーン組成物及び半導体装置に関する。
 電子部品の多くは使用中に熱が発生するので、その電子部品を適切に機能させるためには、その電子部品から熱を取り除くことが必要である。特にパーソナルコンピューターに使用されているCPU等の集積回路素子は、動作周波数の高速化により発熱量が増大しており、熱対策が重要な問題となっている。
 したがって、この熱を放熱する多くの方法が提案されている。特に発熱量の多い電子部品では、電子部品とヒートシンク等の部材の間に、熱伝導性グリースや、熱伝導性シートなどの熱伝導性材料を介在させて熱を逃がす方法が提案されている。
 特開平2-153995号公報(特許文献1)には、特定のオルガノポリシロキサンに一定粒径範囲の球状六方晶系窒化アルミニウム粉末を配合したシリコーングリース組成物が、特開平3-14873号公報(特許文献2)には、粒径の細かい窒化アルミニウム粉末と粒径の粗い窒化アルミニウム粉末を組み合わせた熱伝導性オルガノシロキサン組成物が、特開平10-110179号公報(特許文献3)には、窒化アルミニウム粉末と酸化亜鉛粉末を組み合わせた熱伝導性シリコーングリースが、特開2000-63872号公報(特許文献4)には、オルガノシランで表面処理した窒化アルミニウム粉末を用いた熱伝導性グリース組成物が開示されている。
 窒化アルミニウムの熱伝導率は70~270W/mKであり、これより熱伝導性の高い材料として熱伝導率900~2,000W/mKのダイヤモンドがある。特開2002-30217号公報(特許文献5)には、シリコーン樹脂に、ダイヤモンド、酸化亜鉛、分散剤を用いた熱伝導性シリコーン組成物が開示されている。
 また、特開2000-63873号公報(特許文献6)や特開2008-222776号公報(特許文献7)には、シリコーンオイル等の基油に金属アルミニウム粉末を混合した熱伝導性グリース組成物が開示されている。
 更には熱伝導率の高い銀粉末を充填剤として用いている特許3130193号公報(特許文献8)、特許3677671号公報(特許文献9)なども開示されている。
 上記の熱伝導性グリースや熱伝導性材料の中には高い熱伝導率を示すものもあるが、高い熱伝導性を示すものは、圧縮時の最小厚み(BLT)が厚く、熱抵抗が高い。一方で、熱抵抗の低いものは、BLTが薄く、ヒートサイクル後の熱抵抗が悪化し、信頼性に欠ける。従って、いずれの熱伝導性材料や熱伝導性グリースも、最近の発熱量が増大したCPU等の集積回路素子の放熱のためには不十分なものとなってきている。
特開平2-153995号公報 特開平3-14873号公報 特開平10-110179号公報 特開2000-63872号公報 特開2002-30217号公報 特開2000-63873号公報 特開2008-222776号公報 特許3130193号公報 特許3677671号公報
 従って、本発明の目的は、良好な放熱効果を奏する熱伝導性シリコーン組成物を提供することにある。
 本発明者らは、上記目的を達成するために鋭意研究した結果、特定のタップ密度と比表面積を持つ銀粉末と、特定の粒径の伝導性充填材とを、特定のオルガノポリシロキサン中に混合することで、熱伝導性が飛躍的に向上することを見出し、本発明を完成した。
 すなわち、本発明は、次の熱伝導性シリコーン組成物等を提供するものである。
<1>
 下記、成分(A)、(B)、(C)及び(D)を含有する熱伝導性シリコーン組成物。
(A)下記平均組成式(1)
   R1 aSiO(4-a)/2      (1)
〔式中、R1は、水素原子、ヒドロキシ基又は炭素数1~18の飽和若しくは不飽和の一価炭化水素基の群の中から選択される1種若しくは2種以上の基を示し、aは1.8≦a≦2.2である。〕
で表される、25℃における動粘度が10~100,000mm2/sのオルガノポリシロキサン
(B)タップ密度が3.0g/cm3以上であり、比表面積が2.0m2/g以下であり、かつアスペクト比が、2.0~150.0である銀粉末
  成分(A)100質量部に対して、300~11,000質量部
(C)平均粒径が5~100μmであり、10W/m℃以上の熱伝導率を有する成分(B)以外の熱伝導性充填材
  成分(A)100質量部に対して、10~2,750質量部
(D)白金系触媒、有機過酸化物及び縮合反応用触媒からなる群より選択される触媒
  触媒量
<2>
 成分(C)の熱伝導性充填材が、タップ密度が0.5~2.6g/cm3であり、比表面積が0.15~3.0m2/gのアルミニウム粉末である<1>記載の熱伝導性シリコーン組成物。
<3>
 成分(C)の熱伝導性充填材のアスペクト比が、1.0以上3.0以下である<1>又は<2>記載の熱伝導性シリコーン組成物。
<4>
 成分(B)の銀粉末の質量αと成分(C)のアルミニウム粉末の質量βの質量比α/βが3~150である<1>~<3>の何れか1項記載の熱伝導性シリコーン組成物。
<5>
 成分(A)の全部又は一部が、成分(E):ケイ素原子に結合したアルケニル基を一分子中に少なくとも2個有するオルガノポリシロキサン及び/又は、成分(F):ケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサンである<1>~<4>の何れか1項記載の熱伝導性シリコーン組成物。
<6>
 更に、成分(G)として、下記一般式(2)
   R2 bSi(OR34-b   (2)
〔式中、R2は、置換基を有していてもよい飽和又は不飽和の一価炭化水素基、エポキシ基、アクリル基及びメタクリル基の中から選択される1種又は2種以上の基を示し、R3は一価炭化水素基を示し、bは1≦b≦3である。〕
で表されるオルガノシランを、成分(A)100質量部に対して0~20質量部含む<1>~<5>の何れか1項記載の熱伝導性シリコーン組成物。
<7>
 発熱性電子部品と、放熱体とを備えている半導体装置であって、前記発熱性電子部品と前記放熱体との間に、<1>~<6>の何れか1項記載の熱伝導性シリコーン組成物が介在していることを特徴とする半導体装置。
<8>
 <1>~<6>の何れか1項記載の熱伝導性シリコーン組成物を、発熱性電子部品と放熱体との間で、0.01MPa以上の圧力を掛けた状態で80℃以上に加熱する工程を有することを特徴とする半導体装置の製造方法。
 本発明の熱伝導性シリコーン組成物は、優れた熱伝導性を有するため、半導体装置に有用である。
本発明の半導体装置の1例を示す縦断面概略図である。
 本発明の熱伝導性シリコーン組成物について以下詳述する。
成分(A):
 成分(A)のオルガノポリシロキサンは、下記平均組成式(1)
   R1 aSiO(4-a)/2      (1)
〔式中、R1は、水素原子、ヒドロキシ基又は炭素数1~18の飽和若しくは不飽和の一価炭化水素基の群の中から選択される1種若しくは2種以上の基を示し、aは1.8≦a≦2.2である。〕
で表される、25℃における動粘度が10~100,000mm2/sのオルガノポリシロキサンである。
 上記式(1)において、R1で示される炭素数1~18の飽和又は不飽和の一価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基;3,3,3-トリフルオロプロピル基、2-(パーフルオロブチル)エチル基、2-(パーフルオロオクチル)エチル基、p-クロロフェニル基等のハロゲン化炭化水素基が挙げられる。本発明のシリコーン組成物をグリースとして用いる場合、aはシリコーングリース組成物として要求される稠度の観点から1.8~2.2の範囲がよく、特に1.9~2.1が好ましい。
 また、本発明で使用するオルガノポリシロキサンの25℃における動粘度は、10mm2/sより低いと組成物にした時にオイルブリードが出やすくなるし、100,000mm2/sより大きくなると組成物にしたときの粘度が高くなることから取り扱いが乏しくなるため、25℃で10~100,000mm2/sであることが必要であり、特に30~10,000mm2/sであることが好ましい。なお、オルガノポリシロキサンの動粘度はオストワルド粘度計で測定した25℃の値である。
成分(E)及び(F):
 成分(A)の全部又は一部は、成分(E)ケイ素原子に結合したアルケニル基を一分子中に少なくとも2個含有するオルガノポリシロキサン及び/又は、成分(F)ケイ素原子に結合した水素原子を一分子中に少なくとも2個含有するオルガノハイドロジェンポリシロキサンであることが好ましい。
 成分(E)のオルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を、一分子中に平均2個以上(通常2~50個)、好ましくは2~20個、より好ましくは2~10個程度有するものである。成分(E)のオルガノポリシロキサンが含有するアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基等が挙げられ、特に、ビニル基が好ましい。成分(E)のアルケニル基は、分子鎖末端のケイ素原子に結合していても、分子鎖非末端のケイ素原子に結合していても、その両方であってもよい。
 成分(E)のオルガノポリシロキサンにおいて、ケイ素原子に結合した有機基としては、アルケニル基以外では、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基などが挙げられ、特に、メチル基、フェニル基が好ましい。
 このような成分(E)の分子構造としては、例えば、直鎖状、一部分岐を有する直鎖状、環状、分岐鎖状、三次元網状等が挙げられるが、基本的に主鎖がジオルガノシロキサン単位(D単位)の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のジオルガノポリシロキサン、又は該直鎖状のジオルガノポリシロキサンと分岐鎖状あるいは三次元網状のオルガノポリシロキサンの混合物が好ましい。
 成分(F)のオルガノハイドロジェンポリシロキサンは、ケイ素原子に結合した水素原子(即ち、SiH基)を、一分子中に少なくとも2個(通常、2~300個)、好ましくは2~100個程度有するものであり、直鎖状、分岐状、環状、或いは三次元網状構造の樹脂状物のいずれでもよい。成分(F)の水素原子は、分子鎖末端のケイ素原子に結合していても、分子鎖非末端のケイ素原子に結合していても、その両方であってもよい。
 成分(F)のオルガノハイドロジェンポリシロキサンにおいて、ケイ素原子に結合した有機基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基などが挙げられ、特に、メチル基、フェニル基が好ましい。
 また、成分(A)の平均組成式(1)で示されるオルガノポリシロキサンと併せて、下記一般式(3)で表される、加水分解性基を有するオルガノポリシロキサン(成分(H))を配合してもよい。この加水分解性オルガノポリシロキサンの含有量は、成分(A)に対して0~20質量%の量が好ましく、より好ましくは0~10質量%である。
Figure JPOXMLDOC01-appb-C000001
(式(3)中、R4は炭素数1~6のアルキル基であり、R5は、互いに独立に、炭素数1~18の、飽和または不飽和の、非置換または置換の一価炭化水素基であり、cは5~120である。)
 上記式(3)で示されるオルガノポリシロキサンは、シリコーン組成物中に粉末を高充填することを補助する。また、該オルガノポリシロキサンによって粉末の表面を疎水化処理することもできる。
 上記式(3)中、R4は、炭素数1~6のアルキル基であり、例えばメチル基、エチル基、プロピル基などの炭素数1~6のアルキル基等が挙げられるが、特にメチル基、エチル基が好ましい。R5は、互いに独立に、炭素数1~18、好ましくは炭素数1~10の、飽和または不飽和の、非置換または置換の一価炭化水素基である。該一価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、及びオクタデシル基等のアルキル基;シクロペンチル基、及びシクロヘキシル基等のシクロアルキル基;ビニル基、及びアリル基等のアルケニル基;フェニル基、及びトリル基等のアリール基;2-フェニルエチル基、及び2-メチル-2-フェニルエチル基等のアラルキル基;又は、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えば、3,3,3-トリフルオロプロピル基、2-(パーフルオロブチル)エチル基、2-(パーフルオロオクチル)エチル基、p-クロロフェニル基等が挙げられる。この内、特にメチル基が好ましい。上記式(3)中、cは5~120の整数であり、好ましくは10~90の整数である。
成分(B):
 成分(B)は、タップ密度が3.0g/cm3以上であり、比表面積が2.0m2/g以下の銀粉末である。
 成分(B)の銀粉末のタップ密度は、3.0g/cm3より小さいと成分(B)の組成物への充填率が上げられなくなり、組成物の粘度が上がり、作業性が悪くなるため、3.0g/cm3~10.0g/cm3の範囲がよく、好ましくは4.5g/cm3~10.0g/cm3、より好ましくは6.0g/cm3~10.0g/cm3である。
 成分(B)の銀粉末の比表面積は、2.0m2/gより大きいと成分(B)の組成物への充填率が上げられなくなり、組成物の粘度が上がり、作業性が悪くなるため0.08m2/g~2.0m2/gの範囲がよく、好ましくは0.08m2/g~1.0m2/g、より好ましくは0.08m2/g~0.5m2/gである。
 なお、本明細書記載のタップ密度は、銀粉末100gをはかり、ロートで100mlメスシリンダーに静かに落とした後、シリンダーをタップ密度測定器にのせて落差距離20mm、60回/分の速さで600回落下させ、圧縮した銀粉末の容積から算出した値である。
 また、比表面積は、銀粉末約2gをサンプルにとり、60±5℃で10分間脱ガスした後、比表面積自動測定装置(BET法)にて総表面積を測定した。その後、サンプル量をはかり、下記式(4)で計算し、算出したものである。
 比表面積(m2/g)=総表面積(m2)/サンプル量(g)    (4)
 成分(B)の銀粉末のアスペクト比は、2.0~150.0であり、好ましくは3.0~100.0の範囲であり、より好ましくは3.0~50.0の範囲である。アスペクト比とは、粒子の長径と短径の比率(長径/短径)をいう。その測定方法としては、例えば、粒子の電子顕微鏡写真を撮り、この写真から粒子の長径と短径を測定して、この測定された粒子の長径と短径から算出することができる。粒子の大きさは上面からの電子顕微鏡写真で測定でき、この上面の電子顕微鏡写真から大きい方の直径を長径として測定する。この長径に対して短径は粒子の厚さになる。粒子の厚さは上面からの電子顕微鏡写真では測定できない。粒子の厚さを測定するには、電子顕微鏡写真を撮る際に、粒子の載っている試料台を傾斜させて取り付け、上面から電子顕微鏡写真を撮り、試料台の傾きの角度で補正して粒子の厚さを算出すれば良い。具体的には、電子顕微鏡で数千倍に拡大した写真を数枚撮影した後、任意に100個の粒子の長径及び短径を測定し、長径と短径の比(長径/短径)を算出して、平均値を求めた。
 成分(B)の銀粉末の粒径は、特に限定されないが、平均粒径は0.2~50μmの範囲が好ましく、特に1.0~30μmの範囲が好ましい。平均粒径は、銀粉末をミクロスパテラで1~2杯100mlビーカーにとり、イソプロピルアルコールを約60ml入れて、超音波ホモジナイザーで1分間銀粉末を分散させた後、レーザー回折式粒度分析計により測定できる、体積基準の体積平均径[MV]である。なお、測定時間は30秒で測定した。
 本発明で用いる銀粉末の製造方法は、特に限定されないが、例えば、電解法、粉砕法、熱処理法、アトマイズ法、還元法等が挙げられる。
 銀粉末は、上記方法で製造されたものとそのまま用いてもよく、上記数値範囲を満たす範囲になるように粉砕したものを用いてもよい。銀粉末を粉砕する場合、装置は特に限定されず、例えば、スタンプミル、ボールミル、振動ミル、ハンマーミル、圧延ローラ、乳鉢等の公知の装置が挙げられる。好ましいのは、スタンプミル、ボールミル、振動ミル、ハンマーミルである。
 成分(B)の銀粉末の配合量は、成分(A)100質量部に対して、300~11,000質量部である。成分(A)100質量部に対して、300質量部より少ないと得られる組成物の熱伝導率が悪くなり、11,000質量部より多いと組成物の流動性が悪くなり取扱い性が悪くなる。好ましくは300~5,000質量部、より好ましくは500~5,000質量部の範囲である。
成分(C):
 成分(C)は、平均粒径が5~100μmであり、10W/m℃以上の熱伝導率を有する成分(B)以外の熱伝導性充填材である。
 成分(C)の熱伝導性充填材の平均粒径が5μmより小さいと、得られる組成物の圧縮時における最小厚みが非常に薄くなり、ヒートサイクル後の熱抵抗が悪化してしまう。また、その平均粒径が100μmより大きいと、得られる組成物の熱抵抗が高くなり、性能が低下してしまう。このため、成分(C)の熱伝導性充填材の平均粒径は、5~100μmの範囲がよく、好ましくは10~90μm、より好ましくは15~70μmである。なお、本発明において、成分(C)の熱伝導性充填材の平均粒径は、日装機(株)製マイクロトラックMT330OEXにより測定できる体積基準の体積平均径[MV]である。
 成分(C)の熱伝導性充填材の熱伝導率は、10W/m℃より小さいと組成物の熱伝導率が小さくなるため、10W/m℃以上がよく、さらに10~2,000W/m℃の範囲がよく、好ましくは100~2,000W/m℃、より好ましくは200~2,000W/m℃である。なお、本発明において、成分(C)の熱伝導性充填材の熱伝導率は、京都電子工業(株)製QTM-500により測定した値である。
 この成分(C)の熱伝導性充填材の配合量は、成分(A)100質量部に対し10質量部より少ないと得られる組成物の圧縮時における最小厚みが非常に薄くなり、ヒートサイクル後の熱抵抗が悪化してしまい、2,750質量部より多いと得られる組成物の粘度が上昇して作業性が悪化してしまうため、10~2,750質量部の範囲であり、好ましくは30~1,000質量部、より好ましくは40~500質量部である。
 成分(C)の熱伝導性充填材は、タップ密度が0.5~2.6g/cm3であり、比表面積が0.15~3.0m2/gのアルミニウム粉末が好ましい。成分(C)のアルミニウム粉末のタップ密度が0.5g/cm3より小さいと、得られる組成物の圧縮時における最小厚みが非常に薄くなり、ヒートサイクル後の熱抵抗が悪化する虞がある。また、そのタップ密度が2.6g/cm3より大きいと、得られる組成物の熱抵抗が高くなり、性能が低下する虞がある。このため、成分(C)のアルミニウム粉末のタップ密度は、0.5g/cm3~2.6g/cm3の範囲がよく、好ましくは1.0g/cm3~2.3g/cm3、より好ましくは1.3g/cm3~2.0g/cm3である。成分(C)のアルミニウム粉末の比表面積は、0.15m2/gより小さいと、得られる組成物の熱抵抗が高くなり、性能が低下する虞があり、3.0m2/gより大きいと、得られる組成物の圧縮時における最小厚みが非常に薄くなり、ヒートサイクル後の熱抵抗が悪化する虞があるため、0.15m2/g~3.0m2/gの範囲がよく、好ましくは0.2m2/g~2.5m2/g、より好ましくは0.2m2/g~1.5m2/gである。なお、本発明において、成分(C)のアルミニウム粉末のタップ密度は、筒井理化学器械(株)製A.B.D紛体特性測定器A.B.D-72型により測定した値である。また、成分(C)のアルミニウム粉末の比表面積は、(株)マウンテック製HM model-1201(流動BET法)により測定した値である。この比表面積の測定方法は、JIS Z 8830 2013:(ISO9277:2010)に準拠した方法である。
 また、成分(C)のアルミニウム粉末は、必要により、オルガノシラン、オルガノシラザン、オルガノポリシロキサン、有機フッ素化合物等で疎水化処理を施したものであってもよい。疎水化処理法としては、一般公知の方法を用いることができ、例えば、アルミニウム粉末と、オルガノシラン又はその部分加水分解物を、トリミックス、ツウィンミックス、プラネタリミキサー(いずれも、井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機にて混合する方法が挙げられる。この際、必要ならば、50~100℃に加熱してもよい。なお、混合には、トルエン、キシレン、石油エーテル、ミネラルスピリット、イソパラフィン、イソプロピルアルコール、エタノール等の溶剤を用いてもよく、その場合は、混合後に溶剤を真空装置など用いて除去することが好ましい。また、希釈溶剤として、本発明の液体成分である成分(A)のオルガノポリシロキサンを使用することも可能である。この場合、予め処理剤であるオルガノシラン又はその部分加水分解物をオルガノポリシロキサンと混合し、そこにアルミニウム粉末を加えて、疎水化処理と混合を同時に行うことができる。
 この方法で製造された組成物もまた、本発明の範囲内である。
 さらに、成分(C)の熱伝導性充填材のアスペクト比は、1.0~3.0がよく、好ましくは1.0~2.0の範囲がよく、より好ましくは1.0~1.5の範囲がよい。アスペクト比とは、粒子の長径と短径の比率(長径/短径)をいう。その測定方法としては、例えば、粒子の電子顕微鏡写真を撮り、この写真から粒子の長径と短径を測定して、この測定された粒子の長径と短径から算出することができる。粒子の大きさは上面からの電子顕微鏡写真で測定でき、この上面の電子顕微鏡写真から大きい方の直径を長径として測定する。この長径に対して短径は粒子の厚さになる。粒子の厚さは上面からの電子顕微鏡写真では測定できない。粒子の厚さを測定するには、電子顕微鏡写真を撮る際に、粒子の載っている試料台を傾斜させて取り付け、上面から電子顕微鏡写真を撮り、試料台の傾きの角度で補正して粒子の厚さを算出すれば良い。具体的には、電子顕微鏡で数千倍に拡大した写真を数枚撮影した後、任意に100個の粒子の長径及び短径を測定し、長径と短径の比(長径/短径)を算出して、平均値を求めた。
 成分(B)の銀粉末の質量αと成分(C)のアルミニウム粉末の質量βの質量比α/βは、3より小さいと得られる組成物の熱伝導率が低下し、150より大きいと圧縮時における最小厚みが非常に薄くなり、ヒートサイクル後の熱抵抗が悪化するため、3~150が好ましく、特に8~100が好ましく、さらに10~80の範囲が好ましい。
 また、本発明の熱伝導性シリコーン組成物は、成分(B)と(C)以外に、本発明の効果を損なわない範囲で、無機化合物粉末及び/又は有機化合物材料を含有させてもよい。無機化合物粉末としては、熱伝導率の高いものが好ましく、例えば、アルミニウム粉末、酸化亜鉛粉末、酸化チタン粉末、酸化マグネシウム粉末、アルミナ粉末、水酸化アルミニウム粉末、窒化ホウ素粉末、窒化アルミニウム粉末、ダイヤモンド粉末、金粉末、銅粉末、カーボン粉末、ニッケル粉末、インジウム粉末、ガリウム粉末、金属ケイ素粉末、二酸化ケイ素粉末の中から選択される1種又は2種以上を挙げることができる。有機化合物材料も、熱伝導率の高いものが好ましく、例えば、炭素繊維、グラフェン、グラファイト、カーボンナノチューブ、カーボン材料の中から選択される1種又は2種以上を挙げることができる。これら無機化合物粉末と有機化合物材料は、必要に応じて、表面にオルガノシラン、オルガノシラザン、オルガノポリシロキサン、有機フッ素化合物等で疎水化処理を施したものを用いてもよい。無機化合物粉末と有機化合物材料の平均粒径は、0.5μmより小さくても100μmより大きくても得られる組成物への充填率が上がらなくなるため、0.5~100μmの範囲が好ましく、特に好ましくは1~50μmの範囲である。また、炭素繊維の繊維長は10μmより小さくても500μmより大きくても得られる組成物への充填率が上がらなくなるため、10~500μmの範囲が好ましく、特に好ましくは30~300μmの範囲である。無機化合物粉末と有機化合物材料の配合量は、成分(A)100質量部対して3,000質量部より大きくなると流動性が悪くなり取り扱いが悪くなるため0~3,000質量部が好ましく、特に好ましくは0~2,000質量部である。
成分(D):
 成分(D)は、白金系触媒及び有機過酸化物及び縮合反応用触媒からなる群より選択される触媒であり、本発明の組成物は、成分(D)の触媒を配合することにより、硬化性の組成物とすることができる。
 本発明の熱伝導性シリコーン組成物をヒドロシリル化反応により硬化するものとする場合には、成分(A)として成分(E)と成分(F)、成分(D)として白金系触媒を添加する。成分(F)の配合量は、成分(E)のアルケニル基1モルに対して成分(F)のケイ素原子結合水素原子が0.1~15.0モルの範囲内となる量とすることが好ましく、さらに、0.1~10.0モルの範囲内となる量とすることが好ましく、特に、0.1~5.0モルの範囲内となる量とすることが好ましい。
 成分(D)の白金系触媒としては、例えば、塩化白金酸、塩化白金酸のアルコール溶液、白金のオレフィン錯体、白金のアルケニルシロキサン錯体、白金のカルボニル錯体が挙げられる。
 本発明の熱伝導性シリコーン組成物において、成分(D)の白金系触媒の含有量は、本発明の組成物の硬化に必要な量、いわゆる触媒量であり、具体的には、(A)成分に対して成分(D)に含まれる白金金属が、質量単位で0.1~2,000ppmの範囲内となる量であることが好ましく、特に、0.1~1,500ppmの範囲内となる量であることが好ましい。
 また、本発明の熱伝導性シリコーン組成物の硬化速度を調節し、取扱作業性を向上させるため、2-メチル-3-ブチン-2-オール、2-フェニル-3-ブチン-2-オール、1-エチニル-1-シクロヘキサノール等のアセチレン系化合物;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエン-イン化合物;その他、ヒドラジン系化合物、フォスフィン系化合物、メルカプタン系化合物等の硬化反応抑制剤を含有することができる。この硬化反応抑制剤の含有量は、限定されないが、(A)成分100質量部に対して0.0001~1.0質量部の範囲内とすることが好ましい。
 一方、本発明の熱伝導性シリコーン組成物を有機過酸化物によるフリーラジカル反応により硬化するものとする場合には、成分(D)として有機過酸化物を用いることが好ましい。成分(D)の有機過酸化物としては、例えば、ベンゾイルパーオキサイド、ジ(p-メチルベンゾイル)パーオキサイド、ジ(o-メチルベンゾイル)パーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、1,1-ジ(t-ブチルパーオキシ)シクロヘキサンが挙げられる。成分(D)の有機過酸化物の含有量は、本発明の組成物の硬化に必要な量であり、具体的には、(A)成分100質量部に対して0.1~8質量部の範囲内とすることが好ましい。
 また、本発明の熱伝導性シリコーン組成物を縮合反応により硬化するものとする場合には、組成物中に、硬化剤として、一分子中に少なくとも3個のケイ素原子結合加水分解性基を有するシラン又はシロキサンオリゴマー、成分(D)として縮合反応用触媒を含有させることが好ましい。ここで、ケイ素原子結合加水分解性基としては、アルコキシ基、アルコキシアルコキシ基、アシロキシ基、ケトオキシム基、アルケノキシ基、アミノ基、アミノキシ基、アミド基が例示される。また、このシラン又はシロキサンオリゴマーのケイ素原子には、上記の加水分解性基以外に、例えば、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基が結合していてもよい。このようなシラン又はシロキサンオリゴマーとしては、例えば、テトラエトキシシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、メチルトリス(メチルエチルケトオキシム)シラン、ビニルトリアセトキシシラン、エチルオルソシリケート、ビニルトリ(イソプロぺノキシ)シランが挙げられる。
 このシラン又はシロキサンオリゴマーの含有量は、本発明の組成物の硬化に必要な量であり、具体的には、(A)成分100質量部に対して0.01~20質量部の範囲内が好ましく、特に、0.1~10質量部の範囲内が好ましい。
 また、成分(D)の縮合反応用触媒は任意の成分であり、例えば、アミノキシ基、アミノ基、ケトオキシム基等の加水分解性基を有するシランを硬化剤として用いる場合には必須ではない。成分(D)の縮合反応用触媒としては、例えば、テトラブチルチタネート、テトライソプロピルチタネート等の有機チタン酸エステル;ジイソプロポキシビス(アセチルアセテート)チタン、ジイソプロポキシビス(エチルアセトアセテート)チタン等の有機チタンキレート化合物;アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)等の有機アルミニウム化合物;ジルコニウムテトラ(アセチルアセトネート)、ジルコニウムテトラブチレート等の有機ジルコニウム化合物;ジブチルスズジオクトエート、ジブチルスズジラウレート、ブチルスズ-2-エチルヘキソエート等の有機スズ化合物;ナフテン酸スズ、オレイン酸スズ、ブチル酸スズ、ナフテン酸コバルト、ステアリン酸亜鉛等の有機カルボン酸の金属塩;ヘキシルアミン、燐酸ドデシルアミン等のアミン化合物、およびその塩;ベンジルトリエチルアンモニウムアセテート等の4級アンモニウム塩;酢酸カリウム等のアルカリ金属の低級脂肪酸塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン;グアニジル基含有有機ケイ素化合物が挙げられる。
 本発明の熱伝導性シリコーン組成物において、成分(D)の縮合反応用触媒の含有量は任意量であり、配合する場合は、具体的には、(A)成分100質量部に対して0.01~20質量部の範囲内とすることが好ましく、特に、0.1~10質量部の範囲内とすることが好ましい。
成分(G):
さらに、本発明の熱伝導性シリコーン組成物には、成分(G)として、下記一般式(2)
   R2 bSi(OR34-b   (2)
〔式中、R2は、置換基を有していてもよい飽和又は不飽和の一価炭化水素基、エポキシ基、アクリル基及びメタクリル基の中から選択される1種又は2種以上の基を示し、R3は一価炭化水素基を示し、bは1≦b≦3である。〕
で表されるオルガノシランを配合してもよい。
 上記一般式(2)のR2としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等のアルキル基;シクロアルキルアルケニル基;アクリル基;エポキシ基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基;3,3,3-トリフルオロプロピル基、2-(パーフルオロブチル)エチル基、2-(パーフルオロオクチル)エチル基、p-クロロフェニル基等のハロゲン化炭化水素基等が挙げられる。一価炭化水素基の置換基としては、アクリロイルオキシ基、メタクリロイルオキシ基等が挙げられる。また、bは1~3である。R3としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などの炭素数1~6の1種若しくは2種以上のアルキル基が挙げられ、特にメチル基、エチル基が好ましい。
 成分(G)の一般式(2)で表されるオルガノシランとしては、例えば、下記のものを挙げることができる。
1021Si(OCH33
1225Si(OCH33
1225Si(OC253
1021Si(CH3)(OCH32
1021Si(C66)(OCH32
1021Si(CH3)(OC252
1021Si(CH=CH2)(OCH32
1021Si(CH2CH2CF3)(OCH32
CH2=C(CH3)COOC816Si(OCH33
 成分(G)のオルガノシランを添加する場合には、成分(A)100質量部に対し0.1~20質量部の範囲、より好ましくは0.1~10質量部の範囲で添加するのがよい。
 本発明の熱伝導性シリコーン組成物の製造方法は、従来公知のシリコーン組成物の製造方法に従えばよく、特に制限されるものでない。例えば、上記(A)~(D)成分、及び必要に応じてその他の成分を、トリミックス、ツウィンミックス、プラネタリミキサー(いずれも、井上製作所(株)製混合機、登録商標)、ウルトラミキサー(みずほ工業(株)製混合機、登録商標)、ハイビスディスパーミックス(プライミクス(株)製混合機、登録商標)等の混合機にて30分~4時間混合することにより製造することができる。また、必要に応じて、50~150℃の範囲の温度で加熱しながら混合してもよい。
 本発明の熱伝導性シリコーン組成物は、25℃にて測定される絶対粘度が10~600Pa・s、好ましくは15~500Pa・s、さらには15~400Pa・sであるものが好ましい。絶対粘度が上記範囲内であることにより、良好なグリースを提供でき、また作業性にも優れる。上記範囲内の絶対粘度は、各成分を上述した配合量で調整することにより得ることができる。上記絶対粘度は、株式会社マルコム社製の型番PC-1TL(10rpm)を用いて測定した結果である。
 本発明の熱伝導性シリコーン組成物を硬化させことによって得られる熱伝導性シリコーン硬化物の性状は、限定されないが、例えば、ゲル状、低硬度のゴム状、又は高硬度のゴム状が挙げられる。
半導体装置:
 本発明の半導体装置は、発熱性電子部品と放熱体との間に、本発明の熱伝導性シリコーン組成物が介在していることを特徴とする。本発明の熱伝導性シリコーン組成物は、発熱性電子部品と放熱体との間に、10~200μmの厚さで介在させることが好ましい。
 本発明の半導体装置の代表的な構造を図1に示すが、本発明はこれに限定されるものではない。本発明の熱伝導性シリコーン組成物は、図1の8に示すものである。
 本発明の半導体装置を製造するには、本発明の熱伝導性シリコーン組成物を、発熱性電子部品と放熱体との間で、0.01MPa以上の圧力を掛けた状態で80℃以上に加熱する方法が好ましい。この際、掛ける圧力は、0.01MPa以上が好ましく、特に0.05MPa~100MPaが好ましく、さらに0.1MPa~100MPaが好ましい。加熱する温度は、80℃以上が必要である。加熱する温度は、好ましくは、90℃~300℃であり、より好ましくは100℃~300℃であり、さらに好ましくは120℃~300℃である。
 以下、本発明の効果をより明確にする目的で、実施例及び比較例によって、さらに詳述するが、本発明はこれによって限定されるものではない。
 本発明の効果を確認するための試験は、つぎのように行った。
〔粘度〕
 組成物の絶対粘度は、マルコム粘度計(タイプPC-1TL)を用いて25℃で測定した。
〔熱伝導率〕
 実施例1~14と比較例1~8については、各組成物を6mm厚の型に流し込み、0.35MPaの圧力を掛けた状態で150℃に加熱した後、京都電子工業(株)社製のTPS-2500Sにより、25℃において熱伝導率を測定した。実施例15については、組成物を6mm厚の型に流し込み、23±2℃/50±5%RH(相対湿度)に7日間放置した後、京都電子工業(株)社製のTPS-2500Sにより、25℃において熱伝導率を測定した。
〔熱抵抗測定〕
 φ(直径)12.7mmの2枚のアルミニウム板の間に、各組成物を挟み込み、0.35MPaの圧力を掛けた状態で、150℃のオーブンに90分間装入して、各組成物を加熱硬化させ、熱抵抗測定用の試験片を作製し、この試験片の熱抵抗を測定した。さらに、その後、ヒートサイクル試験(-55℃←→150℃)を1,000時間実施して熱抵抗の変化を観察した。なお、この熱抵抗測定は、ナノフラッシュ(ニッチェ社製、LFA447)により行った。
〔圧縮時の最小厚み(BLT)測定〕
 φ12.7mmの2枚のアルミニウム板の厚みを測定し、その後、厚みを測定した2枚のアルミニウム板の間に、各組成物を挟み込み、0.35MPaの圧力を掛けた状態で、150℃のオーブンに90分間装入して、各組成物を加熱硬化させ、BLT測定用の試験片を作製し、この試験片の厚みを測定した。そして、下記式(5)を用いて、BLTを算出した。
BLT(μm)=試験片の厚み(μm)-使用した2枚のアルミニウム板の厚み(μm)   (5)
 なお、試験片の厚みの測定は、デジマチック標準外側マイクロメータ((株)ミツトヨ社製、MDC-25MX)により行った。
 組成物を形成する以下の各成分を用意した。
成分(A)
A-1:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が600mm2/sのジメチルポリシロキサン
A-2:下記式で表されるオルガノハイドロジェンポリシロキサン
Figure JPOXMLDOC01-appb-C000002
A-3:両末端が水酸基で封鎖され、25℃における動粘度が5000mm2/sのジメチルポリシロキサン
成分(B)
B-1:タップ密度が6.6g/cm3、比表面積が0.28m2/g、アスペクト比が8の銀粉末
B-2:タップ密度が6.2g/cm3、比表面積が0.48m2/g、アスペクト比が13の銀粉末
B-3:タップ密度が9.0g/cm3、比表面積が0.16m2/g、アスペクト比が30の銀粉末
B-4:タップ密度が3.0g/cm3、比表面積が2.0m2/g、アスペクト比が50の銀粉末
B-5(比較例):タップ密度が2.3g/cm3、比表面積が2.3m2/g、アスペクト比が1の銀粉末
B-6(比較例):タップ密度が3.3g/cm3、比表面積が2.11m2/g、アスペクト比が1の銀粉末
B-7(比較例):タップ密度が2.8g/cm3、比表面積が1.8m2/g、アスペクト比が2の銀粉末
成分(C)
C-1:平均粒径が15μm、熱伝導率230W/m℃、タップ密度が1.3g/cm3、比表面積が1.5m2/g、アスペクト比が1.5のアルミニウム粉末
C-2:平均粒径が20μm、熱伝導率230W/m℃、タップ密度が1.5g/cm3、比表面積が0.3m2/g、アスペクト比が1.2のアルミニウム粉末
C-3:平均粒径が70μm、熱伝導率230W/m℃、タップ密度が2.0g/cm3、比表面積が0.2m2/g、アスペクト比が1.1のアルミニウム粉末
C-4:平均粒径が11μm、熱伝導率400W/m℃、タップ密度が5.2g/cm3、比表面積が0.2m2/g、アスペクト比が1.1の銀粉末
C-5(比較例):平均粒径が110μm、熱伝導率230W/m℃、タップ密度が2.0g/cm3、比表面積が0.12m2/g、アスペクト比が1.1のアルミニウム粉末
成分(D)
D-1(白金触媒):白金-ジビニルテトラメチルジシロキサン錯体のA-1溶液、白金原子として1wt%含有
D-2(有機過酸化物):パーオキサイド(日本油脂(株)製の商品名パーヘキサC)
D-3(縮合反応用触媒):テトラメチルグアニジルプロピルトリメトキシシラン
成分(G)
G-1:下記式で表されるオルガノシラン
Figure JPOXMLDOC01-appb-C000003
成分(H)
H-1:下記式で表されるオルガノポリシロキサン
Figure JPOXMLDOC01-appb-C000004
成分(I)
I-1(硬化反応抑制剤):1-エチニル-1-シクロヘキサノール
6495441828
成分(J)
J-1(硬化剤):ビニルトリ(イソプロピノキシ)シラン
実施例1~15及び比較例1~8
 各成分を下記表1~3に示す組成で混合し、実施例1~15および比較例1~8の組成物を得た。
 具体的には、容積5リットルのプラネタリーミキサー(井上製作所(株)社製)に成分(A)を入れ、さらに、実施例4では成分(G)、実施例5では成分(H)を加え、これに成分(B)と(C)を加え25℃で1.5時間混合した。つぎに成分(D)を加え、さらに、実施例1~8と比較例1~8では成分(I)、実施例15では成分(J)を加えて均一になるように混合した。
Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
6 基板
7 発熱性電子部品(CPU)
8 熱伝導性シリコーン組成物層
9 放熱体(リッド)

Claims (8)

  1.  下記、成分(A)、(B)、(C)及び(D)を含有する熱伝導性シリコーン組成物。
    (A)下記平均組成式(1)
       R1 aSiO(4-a)/2      (1)
    〔式中、R1は、水素原子、ヒドロキシ基又は炭素数1~18の飽和若しくは不飽和の一価炭化水素基の群の中から選択される1種若しくは2種以上の基を示し、aは1.8≦a≦2.2である。〕
    で表される、25℃における動粘度が10~100,000mm2/sのオルガノポリシロキサン
    (B)タップ密度が3.0g/cm3以上であり、比表面積が2.0m2/g以下であり、かつアスペクト比が、2.0~150.0である銀粉末
      成分(A)100質量部に対して、300~11,000質量部
    (C)平均粒径が5~100μmであり、10W/m℃以上の熱伝導率を有する成分(B)以外の熱伝導性充填材
      成分(A)100質量部に対して、10~2,750質量部
    (D)白金系触媒、有機過酸化物及び縮合反応用触媒からなる群より選択される触媒
      触媒量
  2.  成分(C)の熱伝導性充填材が、タップ密度が0.5~2.6g/cm3であり、比表面積が0.15~3.0m2/gのアルミニウム粉末である請求項1記載の熱伝導性シリコーン組成物。
  3.  成分(C)の熱伝導性充填材のアスペクト比が、1.0以上3.0以下である請求項1又は2記載の熱伝導性シリコーン組成物。
  4.  成分(B)の銀粉末の質量αと成分(C)のアルミニウム粉末の質量βの質量比α/βが、3~150である請求項1~3のいずれか1項記載の熱伝導性シリコーン組成物。
  5.  成分(A)の全部又は一部が、成分(E):一分子中に少なくとも2個のケイ素原子に結合したアルケニル基を有するオルガノポリシロキサン及び/又は、成分(F):一分子中に少なくとも2個のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサンである請求項1~4のいずれか1項記載の熱伝導性シリコーン組成物。
  6.  さらに、成分(G)として、下記一般式(2)
       R2 bSi(OR34-b      (2)
    〔式中、R2は、置換基を有していてもよい飽和又は不飽和の一価炭化水素基、エポキシ基、アクリル基及びメタクリル基の中から選択される1種又は2種以上の基を示し、R3は一価炭化水素基を示し、bは1≦b≦3である。〕
    で表されるオルガノシランを、成分(A)100質量部に対して0~20質量部含む請求項1~5のいずれか1項記載の熱伝導性シリコーン組成物。
  7.  発熱性電子部品と、放熱体とを備えている半導体装置であって、前記発熱性電子部品と放熱体との間に、請求項1~6のいずれか1項記載の熱伝導性シリコーン組成物が介在していることを特徴とする半導体装置。
  8.  請求項1~6の何れか1項記載の熱伝導性シリコーン組成物を、発熱性電子部品と放熱体との間で、0.01MPa以上の圧力を掛けた状態で80℃以上に加熱する工程を有することを特徴とする半導体装置の製造方法。
PCT/JP2017/006602 2016-03-18 2017-02-22 熱伝導性シリコーン組成物及び半導体装置 WO2017159252A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187024686A KR20180127325A (ko) 2016-03-18 2017-02-22 열전도성 실리콘 조성물 및 반도체 장치
CN201780009539.5A CN108603033B (zh) 2016-03-18 2017-02-22 热传导性硅酮组合物和半导体装置
JP2018505384A JP6658866B2 (ja) 2016-03-18 2017-02-22 熱伝導性シリコーン組成物及び半導体装置
US16/064,327 US20190002694A1 (en) 2016-03-18 2017-02-22 Thermally conductive silicone composition and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-055133 2016-03-18
JP2016055133 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159252A1 true WO2017159252A1 (ja) 2017-09-21

Family

ID=59850381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006602 WO2017159252A1 (ja) 2016-03-18 2017-02-22 熱伝導性シリコーン組成物及び半導体装置

Country Status (6)

Country Link
US (1) US20190002694A1 (ja)
JP (1) JP6658866B2 (ja)
KR (1) KR20180127325A (ja)
CN (1) CN108603033B (ja)
TW (1) TWI742051B (ja)
WO (1) WO2017159252A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155846A1 (ja) * 2018-02-09 2019-08-15 信越化学工業株式会社 熱伝導性シリコーン組成物、硬化物、半導体装置、及び半導体装置の製造方法
WO2020129555A1 (ja) * 2018-12-21 2020-06-25 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
CN111849169A (zh) * 2020-07-14 2020-10-30 广东乐普泰新材料科技有限公司 一种导热硅脂及其制备方法
JP2020193250A (ja) * 2019-05-27 2020-12-03 信越化学工業株式会社 熱伝導性シリコーン組成物、半導体装置及びその製造方法
US20210253927A1 (en) * 2018-06-08 2021-08-19 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone composition and method for producing same
JPWO2021235214A1 (ja) * 2020-05-22 2021-11-25
JP2021191823A (ja) * 2020-06-05 2021-12-16 信越化学工業株式会社 熱伝導性シリコーン組成物、半導体装置、及び半導体装置の製造方法
US20210403785A1 (en) * 2019-01-24 2021-12-30 Shin-Etsu Chemical Co., Ltd. Highly thermally conductive silicone composition and method for producing same
WO2022264715A1 (ja) 2021-06-16 2022-12-22 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物
WO2023276846A1 (ja) * 2021-07-02 2023-01-05 信越化学工業株式会社 熱伝導性シリコーン組成物、半導体装置及びその製造方法
KR20240021236A (ko) 2021-06-16 2024-02-16 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 열전도성 폴리실록산 조성물

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018148282A1 (en) 2017-02-08 2018-08-16 Elkem Silicones USA Corp. Secondary battery pack with improved thermal management
EP3608384B1 (en) * 2017-06-27 2022-02-09 Sekisui Polymatech Co., Ltd. Heat-conductive sheet
JP7283555B2 (ja) * 2019-09-27 2023-05-30 信越化学工業株式会社 熱伝導性シリコーン組成物及びその製造方法、並びに半導体装置、半導体装置の熱伝導性充填剤層の耐ポンプアウト性を改善する方法
CN111560187A (zh) * 2019-11-26 2020-08-21 东莞市美庆电子科技有限公司 一种导热泥及其制备方法
CN116195053A (zh) * 2020-07-15 2023-05-30 昭和电工株式会社 导热组合物及其固化物
WO2024083341A1 (en) * 2022-10-21 2024-04-25 Wacker Chemie Ag Semiconductor device, method of fabricating the same, and silicone-based resin composition contained therein

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334075A (ja) * 1993-05-20 1994-12-02 Denki Kagaku Kogyo Kk 回路モジュール冷却用放熱スペーサー
JP2002299534A (ja) * 2001-04-02 2002-10-11 Denso Corp 放熱材およびその製造方法
JP2008063542A (ja) * 2006-09-11 2008-03-21 Dow Corning Toray Co Ltd 硬化性シリコーン組成物および電子部品
JP2013091726A (ja) * 2011-10-26 2013-05-16 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物
WO2014099639A1 (en) * 2012-12-20 2014-06-26 Dow Corning Corporation Curable silicone compositions, electrically conductive silicone adhesives, methods of making and using same, and electrical devices containing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3803058B2 (ja) * 2001-12-11 2006-08-02 信越化学工業株式会社 熱伝導性シリコーン組成物、その硬化物及び敷設方法並びにそれを用いた半導体装置の放熱構造体
KR100719993B1 (ko) * 2003-09-26 2007-05-21 히다치 가세고교 가부시끼가이샤 혼합 도전 분말 및 그의 이용
CN101288133B (zh) * 2005-09-29 2011-01-26 阿尔法科学株式会社 导电粉及其制造方法、导电粉膏以及导电粉膏的制造方法
JP4933094B2 (ja) * 2005-12-27 2012-05-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP5388329B2 (ja) * 2008-11-26 2014-01-15 株式会社デンソー 放熱用シリコーングリース組成物
CN102918115A (zh) * 2010-06-17 2013-02-06 日立化成工业株式会社 树脂糊剂组合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334075A (ja) * 1993-05-20 1994-12-02 Denki Kagaku Kogyo Kk 回路モジュール冷却用放熱スペーサー
JP2002299534A (ja) * 2001-04-02 2002-10-11 Denso Corp 放熱材およびその製造方法
JP2008063542A (ja) * 2006-09-11 2008-03-21 Dow Corning Toray Co Ltd 硬化性シリコーン組成物および電子部品
JP2013091726A (ja) * 2011-10-26 2013-05-16 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物
WO2014099639A1 (en) * 2012-12-20 2014-06-26 Dow Corning Corporation Curable silicone compositions, electrically conductive silicone adhesives, methods of making and using same, and electrical devices containing same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019155846A1 (ja) * 2018-02-09 2020-12-03 信越化学工業株式会社 熱伝導性シリコーン組成物、硬化物、半導体装置、及び半導体装置の製造方法
WO2019155846A1 (ja) * 2018-02-09 2019-08-15 信越化学工業株式会社 熱伝導性シリコーン組成物、硬化物、半導体装置、及び半導体装置の製造方法
US20210253927A1 (en) * 2018-06-08 2021-08-19 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone composition and method for producing same
US12107031B2 (en) 2018-12-21 2024-10-01 Shin-Etsu Chemical Co., Ltd. Thermal conductive silicone composition and semiconductor device
JPWO2020129555A1 (ja) * 2018-12-21 2021-10-14 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
WO2020129555A1 (ja) * 2018-12-21 2020-06-25 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
JP7092212B2 (ja) 2018-12-21 2022-06-28 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
US20210403785A1 (en) * 2019-01-24 2021-12-30 Shin-Etsu Chemical Co., Ltd. Highly thermally conductive silicone composition and method for producing same
JP2020193250A (ja) * 2019-05-27 2020-12-03 信越化学工業株式会社 熱伝導性シリコーン組成物、半導体装置及びその製造方法
WO2020241054A1 (ja) 2019-05-27 2020-12-03 信越化学工業株式会社 熱伝導性シリコーン組成物、半導体装置及びその製造方法
JP7076400B2 (ja) 2019-05-27 2022-05-27 信越化学工業株式会社 熱伝導性シリコーン組成物、半導体装置及びその製造方法
US12060517B2 (en) 2019-05-27 2024-08-13 Shin-Etsu Chemical Co., Ltd. Thermal conductive silicone composition, semiconductor device, and method for manufacturing the same
JP7371249B2 (ja) 2020-05-22 2023-10-30 信越化学工業株式会社 高熱伝導性シリコーン組成物
JPWO2021235214A1 (ja) * 2020-05-22 2021-11-25
WO2021235214A1 (ja) * 2020-05-22 2021-11-25 信越化学工業株式会社 高熱伝導性シリコーン組成物
JP2021191823A (ja) * 2020-06-05 2021-12-16 信越化学工業株式会社 熱伝導性シリコーン組成物、半導体装置、及び半導体装置の製造方法
CN111849169B (zh) * 2020-07-14 2023-02-17 广东乐普泰新材料科技有限公司 一种导热硅脂及其制备方法
CN111849169A (zh) * 2020-07-14 2020-10-30 广东乐普泰新材料科技有限公司 一种导热硅脂及其制备方法
KR20240021236A (ko) 2021-06-16 2024-02-16 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 열전도성 폴리실록산 조성물
WO2022264715A1 (ja) 2021-06-16 2022-12-22 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物
WO2023276846A1 (ja) * 2021-07-02 2023-01-05 信越化学工業株式会社 熱伝導性シリコーン組成物、半導体装置及びその製造方法

Also Published As

Publication number Publication date
JP6658866B2 (ja) 2020-03-04
CN108603033A (zh) 2018-09-28
KR20180127325A (ko) 2018-11-28
CN108603033B (zh) 2021-02-19
TW201800488A (zh) 2018-01-01
TWI742051B (zh) 2021-10-11
US20190002694A1 (en) 2019-01-03
JPWO2017159252A1 (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
WO2017159252A1 (ja) 熱伝導性シリコーン組成物及び半導体装置
JP6607166B2 (ja) 熱伝導性シリコーン組成物及び半導体装置
US9783723B2 (en) Thermal conductive silicone composition and semiconductor device
JP6610491B2 (ja) 熱伝導性シリコーン組成物及び半導体装置
JP6183319B2 (ja) 熱伝導性シリコーン組成物及び熱伝導性シート
JP7092212B2 (ja) 熱伝導性シリコーン組成物及び半導体装置
JP2021191823A (ja) 熱伝導性シリコーン組成物、半導体装置、及び半導体装置の製造方法
JP6939914B2 (ja) 熱伝導性シリコーン組成物、硬化物、半導体装置、及び半導体装置の製造方法
WO2024004625A1 (ja) 熱伝導性シリコーン組成物、半導体装置及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505384

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187024686

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766257

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766257

Country of ref document: EP

Kind code of ref document: A1