WO2017159252A1 - 熱伝導性シリコーン組成物及び半導体装置 - Google Patents
熱伝導性シリコーン組成物及び半導体装置 Download PDFInfo
- Publication number
- WO2017159252A1 WO2017159252A1 PCT/JP2017/006602 JP2017006602W WO2017159252A1 WO 2017159252 A1 WO2017159252 A1 WO 2017159252A1 JP 2017006602 W JP2017006602 W JP 2017006602W WO 2017159252 A1 WO2017159252 A1 WO 2017159252A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- group
- mass
- heat
- silicone composition
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/06—Preparatory processes
- C08G77/08—Preparatory processes characterised by the catalysts used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/12—Polysiloxanes containing silicon bound to hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/20—Polysiloxanes containing silicon bound to unsaturated aliphatic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3738—Semiconductor materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/0806—Silver
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/0812—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/006—Additives being defined by their surface area
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/016—Additives defined by their aspect ratio
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3731—Ceramic materials or glass
Definitions
- the present invention relates to a silicone composition and a semiconductor device excellent in thermal conductivity.
- Patent Document 1 a silicone grease composition in which a specific organopolysiloxane is blended with a spherical hexagonal aluminum nitride powder having a certain particle size range is disclosed in Japanese Patent Laid-Open No. 3-14873 ( Patent Document 2) discloses a thermally conductive organosiloxane composition in which an aluminum nitride powder having a small particle diameter and an aluminum nitride powder having a large particle diameter are combined, and Japanese Patent Application Laid-Open No. 10-110179 (Patent Document 3) discloses a nitridation. Japanese Patent Application Laid-Open No.
- Patent Document 4 discloses a heat conductive grease composition using an aluminum nitride powder surface-treated with an organosilane. It is disclosed. Aluminum nitride has a thermal conductivity of 70 to 270 W / mK, and diamond having a thermal conductivity of 900 to 2,000 W / mK is a material having higher thermal conductivity.
- Patent Document 5 discloses a thermally conductive silicone composition using diamond, zinc oxide, and a dispersant as a silicone resin.
- JP-A-2000-63873 Patent Document 6
- JP-A-2008-222277 Patent Document 7
- Patent Document 8 discloses a thermally conductive grease composition in which metal aluminum powder is mixed with a base oil such as silicone oil. It is disclosed.
- Japanese Patent No. 3130193 Patent Document 8
- Japanese Patent No. 3677671 Patent Document 9
- Some of the above thermal conductive greases and thermal conductive materials exhibit high thermal conductivity, but those exhibiting high thermal conductivity have a large minimum thickness (BLT) during compression and a high thermal resistance. .
- an object of the present invention is to provide a thermally conductive silicone composition that exhibits a good heat dissipation effect.
- the present inventors have found that silver powder having a specific tap density and specific surface area and a conductive filler having a specific particle size are contained in a specific organopolysiloxane. As a result of the mixing, it was found that the thermal conductivity was drastically improved, and the present invention was completed. That is, the present invention provides the following thermally conductive silicone composition and the like.
- the heat conductive silicone composition containing the following component (A), (B), (C) and (D).
- the heat conductive filler of component (C) is an aluminum powder having a tap density of 0.5 to 2.6 g / cm 3 and a specific surface area of 0.15 to 3.0 m 2 / g. Thermally conductive silicone composition.
- ⁇ 4> The thermal conductivity according to any one of ⁇ 1> to ⁇ 3>, wherein the mass ratio ⁇ / ⁇ of the mass ⁇ of the silver powder of component (B) and the mass ⁇ of the aluminum powder of component (C) is 3 to 150. Silicone composition.
- component (A) all or part of component (E): organopolysiloxane having at least two alkenyl groups bonded to silicon atoms and / or component (F): hydrogen bonded to silicon atoms
- the heat conductive silicone composition according to any one of ⁇ 1> to ⁇ 4>, which is an organohydrogenpolysiloxane having at least two atoms in one molecule.
- R 2 represents one or more groups selected from a saturated or unsaturated monovalent hydrocarbon group, epoxy group, acrylic group and methacryl group which may have a substituent.
- R 3 represents a monovalent hydrocarbon group, and b is 1 ⁇ b ⁇ 3.
- a semiconductor device comprising an exothermic electronic component and a heat radiator, wherein the thermal conductivity according to any one of ⁇ 1> to ⁇ 6> is provided between the exothermic electronic component and the heat radiator.
- a semiconductor device comprising a silicone composition.
- the heat conductive silicone composition according to any one of ⁇ 6> is heated to 80 ° C. or higher in a state where a pressure of 0.01 MPa or more is applied between the heat generating electronic component and the heat radiating body.
- the thermally conductive silicone composition of the present invention has excellent thermal conductivity and is useful for semiconductor devices.
- the thermally conductive silicone composition of the present invention will be described in detail below.
- the organopolysiloxane of component (A) has the following average composition formula (1) R 1 a SiO (4-a) / 2 (1) [Wherein R 1 represents one or more groups selected from the group consisting of a hydrogen atom, a hydroxy group, and a saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms; Is 1.8 ⁇ a ⁇ 2.2. ]
- examples of the saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms represented by R 1 include a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, and a decyl group.
- Alkyl groups such as dodecyl group, tetradecyl group, hexadecyl group and octadecyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; alkenyl groups such as vinyl group and allyl group; aryl groups such as phenyl group and tolyl group; Aralkyl groups such as phenylethyl group and 2-methyl-2-phenylethyl group; 3,3,3-trifluoropropyl group, 2- (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ethyl group, p -Halogenated hydrocarbon groups such as a chlorophenyl group.
- a is preferably in the range of 1.8 to 2.2, particularly preferably 1.9 to 2.1, from the viewpoint of consistency required for the silicone grease composition.
- the kinematic viscosity at 25 ° C. of the organopolysiloxane used in the present invention is lower than 10 mm 2 / s, oil bleeding tends to occur when the composition is used, and if it exceeds 100,000 mm 2 / s, the viscosity at the time of handling becomes poor since the higher is required to be 10 ⁇ 100,000mm 2 / s at 25 ° C., it is preferred in particular 30 ⁇ 10,000mm 2 / s.
- the kinematic viscosity of the organopolysiloxane is a value of 25 ° C. measured with an Ostwald viscometer.
- component (E) and (F) All or part of component (A) is composed of component (E) organopolysiloxane containing at least two alkenyl groups bonded to silicon atoms and / or component (F) hydrogen atoms bonded to silicon atoms. Is preferably an organohydrogenpolysiloxane containing at least two per molecule.
- the component (E) organopolysiloxane has an average of 2 or more (usually 2 to 50), preferably 2 to 20, more preferably about 2 to 10 alkenyl groups bonded to silicon atoms in one molecule. It is what you have.
- Examples of the alkenyl group contained in the component (E) organopolysiloxane include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group, and a vinyl group is particularly preferable.
- the alkenyl group of component (E) may be bonded to the silicon atom at the molecular chain terminal, may be bonded to the silicon atom at the non-terminal molecular chain, or both.
- the organic group bonded to the silicon atom other than the alkenyl group, for example, alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, etc. Groups; aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group; aralkyl groups such as benzyl group and phenethyl group; chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, etc.
- alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, etc.
- aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group
- aralkyl groups such as benzyl group
- Examples thereof include a halogenated alkyl group, and a methyl group and a phenyl group are particularly preferable.
- Examples of the molecular structure of such component (E) include linear, partially branched linear, cyclic, branched, and three-dimensional network, but basically the main chain is diorgano.
- a linear diorganopolysiloxane consisting of repeating siloxane units (D units) and having both ends of the molecular chain blocked with triorganosiloxy groups, or the linear diorganopolysiloxane and branched or three-dimensional
- a mixture of reticulated organopolysiloxanes is preferred.
- the organohydrogenpolysiloxane of component (F) has at least two hydrogen atoms (that is, SiH groups) bonded to silicon atoms in a molecule (usually 2 to 300), preferably about 2 to 100. It may be any of a linear, branched, cyclic, or three-dimensional network resinous material.
- the hydrogen atom of component (F) may be bonded to the silicon atom at the molecular chain terminal, or may be bonded to the silicon atom at the non-terminal molecular chain.
- examples of the organic group bonded to the silicon atom include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group; Aryl groups such as benzyl, phenethyl and the like; alkyl halides such as chloromethyl, 3-chloropropyl, 3,3,3-trifluoropropyl, etc. Group, etc., and a methyl group and a phenyl group are particularly preferable.
- an organopolysiloxane having a hydrolyzable group represented by the following general formula (3) You may mix
- the content of the hydrolyzable organopolysiloxane is preferably 0 to 20% by mass, more preferably 0 to 10% by mass with respect to the component (A).
- R 4 is an alkyl group having 1 to 6 carbon atoms
- R 5 is independently of each other a saturated or unsaturated, unsubstituted or substituted monovalent carbon atom having 1 to 18 carbon atoms.
- a hydrogen group, and c is 5 to 120.
- the organopolysiloxane represented by the above formula (3) assists in the high filling of the powder into the silicone composition. Further, the surface of the powder can be hydrophobized with the organopolysiloxane.
- R 4 is an alkyl group having 1 to 6 carbon atoms, and examples thereof include an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group. An ethyl group is preferred.
- R 5 is independently of each other a saturated or unsaturated, unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms.
- Examples of the monovalent hydrocarbon group include alkyl groups such as a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, a tetradecyl group, a hexadecyl group, and an octadecyl group; a cyclopentyl group, and Cycloalkyl groups such as cyclohexyl groups; alkenyl groups such as vinyl groups and allyl groups; aryl groups such as phenyl groups and tolyl groups; aralkyl groups such as 2-phenylethyl groups and 2-methyl-2-phenylethyl groups Or a group in which some or all of the hydrogen atoms in these groups are substituted with a halogen atom such as fluorine, bromine or chlorine, a cyano group, etc., for example, 3,3,3-triflu
- Component (B) is a silver powder having a tap density of 3.0 g / cm 3 or more and a specific surface area of 2.0 m 2 / g or less. If the tap density of the silver powder of component (B) is less than 3.0 g / cm 3 , the filling rate into the composition of component (B) cannot be increased, the viscosity of the composition increases, and the workability deteriorates. 3.0 g / cm 3 to 10.0 g / cm 3 , preferably 4.5 g / cm 3 to 10.0 g / cm 3 , more preferably 6.0 g / cm 3 to 10.0 g / cm 3. 3 .
- the specific surface area of the silver powder of component (B) is larger than 2.0 m 2 / g, the filling rate of the component (B) in the composition cannot be increased, the viscosity of the composition is increased, and workability is deteriorated.
- 0.08m 2 /g ⁇ 2.0m 2 / g range of well, preferably 0.08m 2 /g ⁇ 1.0m 2 / g, more preferably 0.08m 2 /g ⁇ 0.5m 2 / g It is.
- the tap density described in this specification measures 100 g of silver powder, gently drops it into a 100 ml measuring cylinder with a funnel, and then places the cylinder on a tap density measuring device at a drop distance of 20 mm at a speed of 60 times / minute.
- the aspect ratio of the silver powder of component (B) is 2.0 to 150.0, preferably 3.0 to 100.0, and more preferably 3.0 to 50.0. .
- the aspect ratio refers to the ratio of the major axis to the minor axis of the particle (major axis / minor axis).
- an electron micrograph of the particle is taken, the major axis and minor axis of the particle are measured from this photograph, and the major axis and minor axis of the measured particle can be calculated.
- the size of the particles can be measured by an electron micrograph from the upper surface, and the larger diameter is measured from the electron micrograph of the upper surface as the major axis.
- the minor axis is the thickness of the particle with respect to the major axis.
- the thickness of the particles cannot be measured with an electron micrograph from the top.
- To measure the thickness of the particle when taking an electron micrograph, the sample stage on which the particle is placed is tilted and mounted, the electron micrograph is taken from the top, and corrected by the tilt angle of the sample stage. What is necessary is just to calculate the thickness. Specifically, after taking several photographs magnified several thousand times with an electron microscope, arbitrarily measure the major axis and minor axis of 100 particles and determine the ratio of major axis to minor axis (major axis / minor axis). The average value was calculated.
- the particle size of the silver powder of component (B) is not particularly limited, but the average particle size is preferably in the range of 0.2 to 50 ⁇ m, particularly preferably in the range of 1.0 to 30 ⁇ m.
- the average particle size can be measured with a laser diffraction particle size analyzer after taking 1 to 2 cups of silver powder with a microspatella, putting about 60 ml of isopropyl alcohol, and dispersing the silver powder with an ultrasonic homogenizer for 1 minute.
- the measurement time was 30 seconds.
- the manufacturing method of the silver powder used by this invention is not specifically limited, For example, the electrolytic method, the grinding
- the silver powder may be used as it is as manufactured by the above method, or may be used after being pulverized so as to satisfy the above numerical range.
- the apparatus is not particularly limited, and examples thereof include known apparatuses such as a stamp mill, a ball mill, a vibration mill, a hammer mill, a rolling roller, and a mortar.
- a stamp mill, a ball mill, a vibration mill, and a hammer mill are preferable.
- the blending amount of the component (B) silver powder is 300 to 11,000 parts by mass with respect to 100 parts by mass of the component (A). If less than 300 parts by mass with respect to 100 parts by mass of component (A), the thermal conductivity of the resulting composition will be poor, and if it is more than 11,000 parts by mass, the fluidity of the composition will be poor and handling will be poor. .
- the range is preferably 300 to 5,000 parts by mass, more preferably 500 to 5,000 parts by mass.
- Component (C) is a heat conductive filler other than component (B) having an average particle size of 5 to 100 ⁇ m and a thermal conductivity of 10 W / m ° C. or more.
- the average particle diameter of the heat conductive filler of component (C) is smaller than 5 ⁇ m, the minimum thickness of the resulting composition at the time of compression becomes very thin, and the thermal resistance after the heat cycle is deteriorated.
- the average particle diameter is larger than 100 micrometers, the thermal resistance of the composition obtained will become high and performance will fall.
- the average particle diameter of the thermally conductive filler of component (C) is preferably in the range of 5 to 100 ⁇ m, preferably 10 to 90 ⁇ m, more preferably 15 to 70 ⁇ m.
- the average particle diameter of the thermally conductive filler of component (C) is a volume-based volume average diameter [MV] that can be measured by Nikkiso Co., Ltd. Microtrac MT330OEX.
- the thermal conductivity of the thermally conductive filler of component (C) is preferably 10 W / m ° C. or more, and more preferably 10 to 2,000 W / m, since the thermal conductivity of the composition decreases if it is smaller than 10 W / m ° C.
- the range of ° C is good, preferably 100 to 2,000 W / m ° C, more preferably 200 to 2,000 W / m ° C.
- the thermal conductivity of the thermally conductive filler of component (C) is a value measured by QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd.
- the blending amount of the heat conductive filler of this component (C) is less than 10 parts by mass with respect to 100 parts by mass of the component (A)
- the minimum thickness at the time of compression of the resulting composition becomes very thin, and after the heat cycle
- the heat resistance of the resin composition deteriorates, and if it exceeds 2,750 parts by mass, the viscosity of the resulting composition increases and the workability deteriorates, so the range is from 10 to 2,750 parts by mass, preferably 30 to 1,000 parts by mass, more preferably 40 to 500 parts by mass.
- the heat conductive filler of component (C) is preferably an aluminum powder having a tap density of 0.5 to 2.6 g / cm 3 and a specific surface area of 0.15 to 3.0 m 2 / g.
- the tap density of the aluminum powder of the component (C) is smaller than 0.5 g / cm 3 , the minimum thickness at the time of compression of the resulting composition becomes very thin, and the thermal resistance after the heat cycle may be deteriorated.
- the tap density is larger than 2.6 g / cm 3 , the resulting composition has a high thermal resistance, which may deteriorate the performance.
- the tap density of the aluminum powder of component (C) is preferably in the range of 0.5 g / cm 3 to 2.6 g / cm 3 , preferably 1.0 g / cm 3 to 2.3 g / cm 3 . Preferably, it is 1.3 g / cm 3 to 2.0 g / cm 3 .
- the specific surface area of the aluminum powder of component (C) is a 0.15 m 2 / g less than the thermal resistance is increased in the resulting composition, there is a possibility that the performance is lowered, and greater than 3.0 m 2 / g , the minimum thickness at the time of compression of the resulting composition becomes very thin, the thermal resistance after the heat cycle there is a possibility to deteriorate, good range of 0.15m 2 /g ⁇ 3.0m 2 / g, preferably the 0.2m 2 /g ⁇ 2.5m 2 / g, more preferably 0.2m 2 /g ⁇ 1.5m 2 / g.
- the tap density of the aluminum powder of a component (C) is Tsutsuri-Rika Instruments Co., Ltd. product A.M. B. D powder characteristic measuring device B. It is a value measured by D-72 type.
- the specific surface area of the aluminum powder of component (C) is a value measured by HM model-1201 (flow BET method) manufactured by Mountec Co., Ltd. The measuring method of this specific surface area is a method based on JIS Z 8830 2013: (ISO9277: 2010).
- the aluminum powder of component (C) may be subjected to a hydrophobic treatment with an organosilane, an organosilazane, an organopolysiloxane, an organic fluorine compound or the like, if necessary.
- a hydrophobizing treatment method a generally known method can be used.
- Ultramixer registered trademark of Mizuho Kogyo Co., Ltd.
- Hibis Disper Mix registered trademark of mixer manufactured by Special Machine Industries Co., Ltd.
- the organopolysiloxane of the component (A) which is a liquid component of the present invention as a diluting solvent.
- the hydrophobization treatment and the mixing can be simultaneously performed by previously mixing the organosilane or the partial hydrolyzate thereof as the treatment agent with the organopolysiloxane and adding aluminum powder thereto. Compositions made by this method are also within the scope of the present invention.
- the aspect ratio of the thermally conductive filler of component (C) is preferably 1.0 to 3.0, preferably 1.0 to 2.0, more preferably 1.0 to 1. A range of 5 is good.
- the aspect ratio refers to the ratio of the major axis to the minor axis of the particle (major axis / minor axis).
- the measuring method for example, an electron micrograph of the particle is taken, the major axis and minor axis of the particle are measured from this photograph, and the major axis and minor axis of the measured particle can be calculated.
- the size of the particles can be measured by an electron micrograph from the upper surface, and the larger diameter is measured from the electron micrograph of the upper surface as the major axis.
- the minor axis is the thickness of the particle with respect to the major axis.
- the thickness of the particles cannot be measured with an electron micrograph from the top.
- To measure the thickness of the particle when taking an electron micrograph, the sample stage on which the particle is placed is tilted and mounted, the electron micrograph is taken from the top, and corrected by the tilt angle of the sample stage. What is necessary is just to calculate the thickness. Specifically, after taking several photographs magnified several thousand times with an electron microscope, arbitrarily measure the major axis and minor axis of 100 particles and determine the ratio of major axis to minor axis (major axis / minor axis). The average value was calculated.
- the thermal conductivity of the resulting composition is lowered, and if it is greater than 150, the mass conductivity is reduced. Since the minimum thickness at the time becomes very thin and the thermal resistance after the heat cycle is deteriorated, 3 to 150 is preferable, 8 to 100 is particularly preferable, and 10 to 80 is more preferable.
- the heat conductive silicone composition of this invention may contain inorganic compound powder and / or organic compound material in the range which does not impair the effect of this invention other than a component (B) and (C).
- the inorganic compound powder those having high thermal conductivity are preferable, for example, aluminum powder, zinc oxide powder, titanium oxide powder, magnesium oxide powder, alumina powder, aluminum hydroxide powder, boron nitride powder, aluminum nitride powder, diamond powder.
- the organic compound material also preferably has a high thermal conductivity. Examples thereof include one or more selected from carbon fibers, graphene, graphite, carbon nanotubes, and carbon materials.
- the inorganic compound powder and organic compound material those having a surface subjected to hydrophobic treatment with organosilane, organosilazane, organopolysiloxane, organic fluorine compound, or the like may be used as necessary.
- the average particle size of the inorganic compound powder and the organic compound material is preferably in the range of 0.5 to 100 ⁇ m, particularly preferably less than 0.5 ⁇ m or more than 100 ⁇ m, because the filling rate of the resulting composition cannot be increased. Is in the range of 1-50 ⁇ m.
- the filling rate of the obtained composition cannot be increased even if the fiber length of the carbon fiber is smaller than 10 ⁇ m or larger than 500 ⁇ m, the range of 10 to 500 ⁇ m is preferable, and the range of 30 to 300 ⁇ m is particularly preferable.
- the blending amount of the inorganic compound powder and the organic compound material is preferably 0 to 3,000 parts by mass, because if it exceeds 3,000 parts by mass with respect to 100 parts by mass of the component (A), the fluidity becomes worse and the handling becomes worse.
- the amount is preferably 0 to 2,000 parts by mass.
- Component (D) is a catalyst selected from the group consisting of platinum-based catalysts, organic peroxides and condensation reaction catalysts, and the composition of the present invention is cured by blending the component (D) catalyst.
- Composition When the thermally conductive silicone composition of the present invention is to be cured by a hydrosilylation reaction, components (E) and (F) are added as component (A), and a platinum-based catalyst is added as component (D).
- Component (F) should be blended in such an amount that silicon atom-bonded hydrogen atoms in component (F) are within a range of 0.1 to 15.0 moles with respect to 1 mole of alkenyl groups in component (E).
- the amount is in the range of 0.1 to 10.0 mol, and particularly preferably in the range of 0.1 to 5.0 mol.
- platinum-based catalyst include chloroplatinic acid, chloroplatinic acid alcohol solutions, platinum olefin complexes, platinum alkenylsiloxane complexes, and platinum carbonyl complexes.
- the content of the platinum-based catalyst of the component (D) is an amount necessary for curing the composition of the present invention, a so-called catalytic amount.
- the amount of platinum metal contained in component (D) relative to the component is preferably in an amount in the range of 0.1 to 2,000 ppm, particularly in the range of 0.1 to 1,500 ppm. Is preferred.
- It can contain hardening reaction inhibitors, such as a compound, a phosphine type compound, and a mercaptan type compound.
- the content of the curing reaction inhibitor is not limited, but is preferably within the range of 0.0001 to 1.0 part by mass with respect to 100 parts by mass of component (A).
- the thermally conductive silicone composition of the present invention is to be cured by a free radical reaction with an organic peroxide
- an organic peroxide as the component (D).
- the organic peroxide of component (D) include benzoyl peroxide, di (p-methylbenzoyl) peroxide, di (o-methylbenzoyl) peroxide, dicumyl peroxide, and 2,5-dimethyl-2. , 5-bis (t-butylperoxy) hexane, di-t-butylperoxide, t-butylperoxybenzoate, 1,1-di (t-butylperoxy) cyclohexane.
- the content of the organic peroxide of the component (D) is an amount necessary for curing the composition of the present invention, specifically, 0.1 to 8 parts by mass with respect to 100 parts by mass of the component (A). It is preferable to be within the range.
- the thermally conductive silicone composition of the present invention when the thermally conductive silicone composition of the present invention is to be cured by a condensation reaction, the composition has at least three silicon atom-bonded hydrolyzable groups in one molecule as a curing agent. It is preferable to contain a condensation reaction catalyst as the silane or siloxane oligomer and component (D).
- a condensation reaction catalyst as the silane or siloxane oligomer and component (D).
- examples of the silicon atom-bonded hydrolyzable group include an alkoxy group, an alkoxyalkoxy group, an acyloxy group, a ketoxime group, an alkenoxy group, an amino group, an aminoxy group, and an amide group.
- the silicon atom of the silane or siloxane oligomer includes, for example, a linear alkyl group, a branched alkyl group, a cyclic alkyl group, an alkenyl group, an aryl group, an aralkyl group, a halogen atom.
- An alkyl group may be bonded.
- Examples of such silane or siloxane oligomer include tetraethoxysilane, methyltriethoxysilane, vinyltriethoxysilane, methyltris (methylethylketoxime) silane, vinyltriacetoxysilane, ethylorthosilicate, vinyltri (isopropenoxy) silane.
- the content of the silane or siloxane oligomer is an amount necessary for curing the composition of the present invention.
- the content of the silane or siloxane oligomer is in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the component (A). Particularly preferred is a range of 0.1 to 10 parts by mass.
- the condensation reaction catalyst of component (D) is an optional component, and is not essential when, for example, a silane having a hydrolyzable group such as an aminoxy group, amino group, or ketoxime group is used as a curing agent.
- Examples of the condensation reaction catalyst of component (D) include organic titanates such as tetrabutyl titanate and tetraisopropyl titanate; diisopropoxy bis (acetyl acetate) titanium, diisopropoxy bis (ethyl acetoacetate) titanium and the like.
- Organic titanium chelate compounds Organotin compounds such as dilaurate and butyltin-2-ethylhexoate; presence of tin naphthenate, tin oleate, tin butyrate, cobalt naphthenate, zinc stearate, etc.
- the content of the condensation reaction catalyst of component (D) is an arbitrary amount. When blended, specifically, it is 0 for 100 parts by mass of component (A). The content is preferably in the range of 0.01 to 20 parts by mass, and more preferably in the range of 0.1 to 10 parts by mass.
- Ingredient (G) Furthermore, in the heat conductive silicone composition of this invention, as a component (G), following General formula (2) R 2 b Si (OR 3 ) 4-b (2) [Wherein R 2 represents one or more groups selected from a saturated or unsaturated monovalent hydrocarbon group, epoxy group, acrylic group and methacryl group which may have a substituent. R 3 represents a monovalent hydrocarbon group, and b is 1 ⁇ b ⁇ 3. ] You may mix
- R 2 in the general formula (2) is, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, or a tetradecyl group; a cycloalkylalkenyl group; Acrylic group; epoxy group; cycloalkyl group such as cyclopentyl group and cyclohexyl group; alkenyl group such as vinyl group and allyl group; aryl group such as phenyl group and tolyl group; 2-phenylethyl group and 2-methyl-2-phenyl Aralkyl groups such as ethyl groups; halogenated hydrocarbon groups such as 3,3,3-trifluoropropyl groups, 2- (perfluorobutyl) ethyl groups, 2- (perfluorooctyl)
- Examples of the substituent for the monovalent hydrocarbon group include an acryloyloxy group and a methacryloyloxy group.
- B is 1 to 3.
- Examples of R 3 include one or more alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. preferable.
- the organosilane of component (G) When the organosilane of component (G) is added, it is added in the range of 0.1 to 20 parts by mass, more preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of component (A). Good.
- the method for producing the heat conductive silicone composition of the present invention may be any conventional method for producing a silicone composition, and is not particularly limited.
- the above-mentioned components (A) to (D) and other components as necessary are mixed with Trimix, Twin Mix, Planetary Mixer (all are mixers manufactured by Inoue Mfg. Co., Ltd., registered trademark), Ultra Mixer ( It can be produced by mixing for 30 minutes to 4 hours with a mixer such as Mizuho Kogyo Co., Ltd. (registered trademark), Hibis Disper Mix (Primics Co., Ltd., registered trademark). If necessary, mixing may be performed while heating at a temperature in the range of 50 to 150 ° C.
- the heat conductive silicone composition of the present invention preferably has an absolute viscosity measured at 25 ° C. of 10 to 600 Pa ⁇ s, preferably 15 to 500 Pa ⁇ s, more preferably 15 to 400 Pa ⁇ s.
- the absolute viscosity within the above range can be obtained by adjusting each component with the blending amount described above.
- the absolute viscosity is a result of measurement using Model No. PC-1TL (10 rpm) manufactured by Malcolm Corporation.
- cured material obtained by hardening the heat conductive silicone composition of this invention is not limited, For example, a gel form, a low-hardness rubber form, or a high-hardness rubber form is mentioned. .
- the semiconductor device of the present invention is characterized in that the thermally conductive silicone composition of the present invention is interposed between a heat-generating electronic component and a radiator.
- the heat-conductive silicone composition of the present invention is preferably interposed between the heat-generating electronic component and the heat dissipator with a thickness of 10 to 200 ⁇ m.
- a typical structure of the semiconductor device of the present invention is shown in FIG. 1, but the present invention is not limited to this.
- the heat conductive silicone composition of the present invention is shown in FIG.
- the thermally conductive silicone composition of the present invention is heated to 80 ° C. or more with a pressure of 0.01 MPa or more applied between the heat-generating electronic component and the radiator.
- the applied pressure is preferably 0.01 MPa or more, particularly preferably 0.05 MPa to 100 MPa, and further preferably 0.1 MPa to 100 MPa.
- the heating temperature needs to be 80 ° C. or higher.
- the heating temperature is preferably 90 ° C to 300 ° C, more preferably 100 ° C to 300 ° C, and further preferably 120 ° C to 300 ° C.
- the test for confirming the effect of the present invention was performed as follows. ⁇ viscosity ⁇ The absolute viscosity of the composition was measured at 25 ° C. using a Malcolm viscometer (type PC-1TL).
- each composition was poured into a 6 mm thick mold, heated to 150 ° C. under a pressure of 0.35 MPa, and then manufactured by Kyoto Electronics Industry Co., Ltd. The thermal conductivity was measured at 25 ° C. using TPS-2500S.
- TPS-2500S the composition was poured into a 6 mm thick mold and allowed to stand at 23 ⁇ 2 ° C./50 ⁇ 5% RH (relative humidity) for 7 days, and then TPS-2500S manufactured by Kyoto Electronics Industry Co., Ltd. The thermal conductivity was measured at 25 ° C.
- thermo resistance measurement Each composition was sandwiched between two aluminum plates of ⁇ (diameter) 12.7 mm, and each composition was heat-cured by placing it in an oven at 150 ° C. for 90 minutes under a pressure of 0.35 MPa. A test piece for measuring thermal resistance was prepared, and the thermal resistance of the test piece was measured. Further, after that, a heat cycle test ( ⁇ 55 ° C. ⁇ ⁇ 150 ° C.) was conducted for 1,000 hours to observe a change in thermal resistance. In addition, this thermal resistance measurement was performed by nanoflash (the Niche company make, LFA447).
- BLT ( ⁇ m) thickness of specimen ( ⁇ m) ⁇ thickness of two aluminum plates used ( ⁇ m) (5)
- the thickness of the test piece was measured with a Digimatic standard outer micrometer (MDC-25MX, manufactured by Mitutoyo Corporation).
- A-2 Organohydrogenpolysiloxane represented by the following formula
- A-3 Dimethylpolysiloxane having both ends blocked with hydroxyl groups and a kinematic viscosity at 25 ° C. of 5000 mm 2 / s
- B-1 Silver powder having a tap density of 6.6 g / cm 3 , a specific surface area of 0.28 m 2 / g, and an aspect ratio of 8
- B-2 A tap density of 6.2 g / cm 3 and a specific surface area of 0.8. 48 m 2 / g silver powder with an aspect ratio of 13
- B-3 Silver powder having a tap density of 9.0 g / cm 3 , a specific surface area of 0.16 m 2 / g, and an aspect ratio of 30
- B-4 Silver powder having a tap density of 3.0 g / cm 3 , a specific surface area of 2.0 m 2 / g, and an aspect ratio of 50
- B-5 (comparative example): Silver powder having a tap density of 2.3 g / cm 3 , a specific surface area of 2.3 m 2 / g, and an aspect ratio of 1
- B-6 (comparative example): Silver powder having a tap density of 3.3 g / cm 3 , a specific surface area of 2.11 m 2 / g, and an aspect ratio of 1
- B-7 (Comparative Example): Silver powder with a tap density of 2.8 g / cm 3 , a specific surface area of 1.8 m 2 / g, and an aspect ratio of 2
- Ingredient (C) C-1 Aluminum powder having an average particle size of 15 ⁇ m, thermal conductivity of 230 W / m ° C., tap density of 1.3 g / cm 3 , specific surface area of 1.5 m 2 / g and aspect ratio of 1.5
- C-2 Aluminum powder having an average particle diameter of 20 ⁇ m, thermal conductivity of 230 W / m ° C., tap density of 1.5 g / cm 3 , specific surface area of 0.3 m 2 / g, and aspect ratio of 1.2
- C-3 Aluminum powder having an average particle size of 70 ⁇ m, thermal conductivity of 230 W / m ° C., tap density of 2.0 g / cm 3 , specific surface area of 0.2 m 2 / g, and aspect ratio of 1.1
- C-4 Silver powder having an average particle diameter of 11 ⁇ m, a thermal conductivity of 400 W / m ° C., a tap density of 5.2 g / cm 3 , a specific surface area of 0.2 m 2 / g, and an aspect ratio of 1.1.
- C-5 Aluminum having an average particle size of 110 ⁇ m, a thermal conductivity of 230 W / m ° C., a tap density of 2.0 g / cm 3 , a specific surface area of 0.12 m 2 / g, and an aspect ratio of 1.1 Powder
- D-1 platinum catalyst: A-1 solution of platinum-divinyltetramethyldisiloxane complex, containing 1 wt% as platinum atoms
- D-2 organic peroxide: peroxide (trade name Perhexa C manufactured by NOF Corporation)
- Examples 1 to 15 and Comparative Examples 1 to 8 The components were mixed in the compositions shown in Tables 1 to 3 below to obtain compositions of Examples 1 to 15 and Comparative Examples 1 to 8. Specifically, the component (A) is put into a 5 liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.), and the component (G) is added in Example 4 and the component (H) is added in Example 5. The components (B) and (C) were added thereto and mixed at 25 ° C. for 1.5 hours. Next, component (D) was added, and component (I) was added in Examples 1 to 8 and Comparative Examples 1 to 8, and component (J) was added in Example 15, and mixed uniformly.
- Substrate 7 Heat-generating electronic components (CPU) 8 Thermally conductive silicone composition layer 9 Heat radiator (lid)
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
したがって、この熱を放熱する多くの方法が提案されている。特に発熱量の多い電子部品では、電子部品とヒートシンク等の部材の間に、熱伝導性グリースや、熱伝導性シートなどの熱伝導性材料を介在させて熱を逃がす方法が提案されている。
窒化アルミニウムの熱伝導率は70~270W/mKであり、これより熱伝導性の高い材料として熱伝導率900~2,000W/mKのダイヤモンドがある。特開2002-30217号公報(特許文献5)には、シリコーン樹脂に、ダイヤモンド、酸化亜鉛、分散剤を用いた熱伝導性シリコーン組成物が開示されている。
更には熱伝導率の高い銀粉末を充填剤として用いている特許3130193号公報(特許文献8)、特許3677671号公報(特許文献9)なども開示されている。
上記の熱伝導性グリースや熱伝導性材料の中には高い熱伝導率を示すものもあるが、高い熱伝導性を示すものは、圧縮時の最小厚み(BLT)が厚く、熱抵抗が高い。一方で、熱抵抗の低いものは、BLTが薄く、ヒートサイクル後の熱抵抗が悪化し、信頼性に欠ける。従って、いずれの熱伝導性材料や熱伝導性グリースも、最近の発熱量が増大したCPU等の集積回路素子の放熱のためには不十分なものとなってきている。
すなわち、本発明は、次の熱伝導性シリコーン組成物等を提供するものである。
下記、成分(A)、(B)、(C)及び(D)を含有する熱伝導性シリコーン組成物。
(A)下記平均組成式(1)
R1 aSiO(4-a)/2 (1)
〔式中、R1は、水素原子、ヒドロキシ基又は炭素数1~18の飽和若しくは不飽和の一価炭化水素基の群の中から選択される1種若しくは2種以上の基を示し、aは1.8≦a≦2.2である。〕
で表される、25℃における動粘度が10~100,000mm2/sのオルガノポリシロキサン
(B)タップ密度が3.0g/cm3以上であり、比表面積が2.0m2/g以下であり、かつアスペクト比が、2.0~150.0である銀粉末
成分(A)100質量部に対して、300~11,000質量部
(C)平均粒径が5~100μmであり、10W/m℃以上の熱伝導率を有する成分(B)以外の熱伝導性充填材
成分(A)100質量部に対して、10~2,750質量部
(D)白金系触媒、有機過酸化物及び縮合反応用触媒からなる群より選択される触媒
触媒量
成分(C)の熱伝導性充填材が、タップ密度が0.5~2.6g/cm3であり、比表面積が0.15~3.0m2/gのアルミニウム粉末である<1>記載の熱伝導性シリコーン組成物。
成分(C)の熱伝導性充填材のアスペクト比が、1.0以上3.0以下である<1>又は<2>記載の熱伝導性シリコーン組成物。
成分(B)の銀粉末の質量αと成分(C)のアルミニウム粉末の質量βの質量比α/βが3~150である<1>~<3>の何れか1項記載の熱伝導性シリコーン組成物。
成分(A)の全部又は一部が、成分(E):ケイ素原子に結合したアルケニル基を一分子中に少なくとも2個有するオルガノポリシロキサン及び/又は、成分(F):ケイ素原子に結合した水素原子を一分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサンである<1>~<4>の何れか1項記載の熱伝導性シリコーン組成物。
更に、成分(G)として、下記一般式(2)
R2 bSi(OR3)4-b (2)
〔式中、R2は、置換基を有していてもよい飽和又は不飽和の一価炭化水素基、エポキシ基、アクリル基及びメタクリル基の中から選択される1種又は2種以上の基を示し、R3は一価炭化水素基を示し、bは1≦b≦3である。〕
で表されるオルガノシランを、成分(A)100質量部に対して0~20質量部含む<1>~<5>の何れか1項記載の熱伝導性シリコーン組成物。
発熱性電子部品と、放熱体とを備えている半導体装置であって、前記発熱性電子部品と前記放熱体との間に、<1>~<6>の何れか1項記載の熱伝導性シリコーン組成物が介在していることを特徴とする半導体装置。
<8>
<1>~<6>の何れか1項記載の熱伝導性シリコーン組成物を、発熱性電子部品と放熱体との間で、0.01MPa以上の圧力を掛けた状態で80℃以上に加熱する工程を有することを特徴とする半導体装置の製造方法。
成分(A):
成分(A)のオルガノポリシロキサンは、下記平均組成式(1)
R1 aSiO(4-a)/2 (1)
〔式中、R1は、水素原子、ヒドロキシ基又は炭素数1~18の飽和若しくは不飽和の一価炭化水素基の群の中から選択される1種若しくは2種以上の基を示し、aは1.8≦a≦2.2である。〕
で表される、25℃における動粘度が10~100,000mm2/sのオルガノポリシロキサンである。
また、本発明で使用するオルガノポリシロキサンの25℃における動粘度は、10mm2/sより低いと組成物にした時にオイルブリードが出やすくなるし、100,000mm2/sより大きくなると組成物にしたときの粘度が高くなることから取り扱いが乏しくなるため、25℃で10~100,000mm2/sであることが必要であり、特に30~10,000mm2/sであることが好ましい。なお、オルガノポリシロキサンの動粘度はオストワルド粘度計で測定した25℃の値である。
成分(A)の全部又は一部は、成分(E)ケイ素原子に結合したアルケニル基を一分子中に少なくとも2個含有するオルガノポリシロキサン及び/又は、成分(F)ケイ素原子に結合した水素原子を一分子中に少なくとも2個含有するオルガノハイドロジェンポリシロキサンであることが好ましい。
このような成分(E)の分子構造としては、例えば、直鎖状、一部分岐を有する直鎖状、環状、分岐鎖状、三次元網状等が挙げられるが、基本的に主鎖がジオルガノシロキサン単位(D単位)の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のジオルガノポリシロキサン、又は該直鎖状のジオルガノポリシロキサンと分岐鎖状あるいは三次元網状のオルガノポリシロキサンの混合物が好ましい。
成分(F)のオルガノハイドロジェンポリシロキサンにおいて、ケイ素原子に結合した有機基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基などが挙げられ、特に、メチル基、フェニル基が好ましい。
上記式(3)で示されるオルガノポリシロキサンは、シリコーン組成物中に粉末を高充填することを補助する。また、該オルガノポリシロキサンによって粉末の表面を疎水化処理することもできる。
上記式(3)中、R4は、炭素数1~6のアルキル基であり、例えばメチル基、エチル基、プロピル基などの炭素数1~6のアルキル基等が挙げられるが、特にメチル基、エチル基が好ましい。R5は、互いに独立に、炭素数1~18、好ましくは炭素数1~10の、飽和または不飽和の、非置換または置換の一価炭化水素基である。該一価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、及びオクタデシル基等のアルキル基;シクロペンチル基、及びシクロヘキシル基等のシクロアルキル基;ビニル基、及びアリル基等のアルケニル基;フェニル基、及びトリル基等のアリール基;2-フェニルエチル基、及び2-メチル-2-フェニルエチル基等のアラルキル基;又は、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えば、3,3,3-トリフルオロプロピル基、2-(パーフルオロブチル)エチル基、2-(パーフルオロオクチル)エチル基、p-クロロフェニル基等が挙げられる。この内、特にメチル基が好ましい。上記式(3)中、cは5~120の整数であり、好ましくは10~90の整数である。
成分(B)は、タップ密度が3.0g/cm3以上であり、比表面積が2.0m2/g以下の銀粉末である。
成分(B)の銀粉末のタップ密度は、3.0g/cm3より小さいと成分(B)の組成物への充填率が上げられなくなり、組成物の粘度が上がり、作業性が悪くなるため、3.0g/cm3~10.0g/cm3の範囲がよく、好ましくは4.5g/cm3~10.0g/cm3、より好ましくは6.0g/cm3~10.0g/cm3である。
成分(B)の銀粉末の比表面積は、2.0m2/gより大きいと成分(B)の組成物への充填率が上げられなくなり、組成物の粘度が上がり、作業性が悪くなるため0.08m2/g~2.0m2/gの範囲がよく、好ましくは0.08m2/g~1.0m2/g、より好ましくは0.08m2/g~0.5m2/gである。
なお、本明細書記載のタップ密度は、銀粉末100gをはかり、ロートで100mlメスシリンダーに静かに落とした後、シリンダーをタップ密度測定器にのせて落差距離20mm、60回/分の速さで600回落下させ、圧縮した銀粉末の容積から算出した値である。
また、比表面積は、銀粉末約2gをサンプルにとり、60±5℃で10分間脱ガスした後、比表面積自動測定装置(BET法)にて総表面積を測定した。その後、サンプル量をはかり、下記式(4)で計算し、算出したものである。
銀粉末は、上記方法で製造されたものとそのまま用いてもよく、上記数値範囲を満たす範囲になるように粉砕したものを用いてもよい。銀粉末を粉砕する場合、装置は特に限定されず、例えば、スタンプミル、ボールミル、振動ミル、ハンマーミル、圧延ローラ、乳鉢等の公知の装置が挙げられる。好ましいのは、スタンプミル、ボールミル、振動ミル、ハンマーミルである。
成分(C)は、平均粒径が5~100μmであり、10W/m℃以上の熱伝導率を有する成分(B)以外の熱伝導性充填材である。
成分(C)の熱伝導性充填材の平均粒径が5μmより小さいと、得られる組成物の圧縮時における最小厚みが非常に薄くなり、ヒートサイクル後の熱抵抗が悪化してしまう。また、その平均粒径が100μmより大きいと、得られる組成物の熱抵抗が高くなり、性能が低下してしまう。このため、成分(C)の熱伝導性充填材の平均粒径は、5~100μmの範囲がよく、好ましくは10~90μm、より好ましくは15~70μmである。なお、本発明において、成分(C)の熱伝導性充填材の平均粒径は、日装機(株)製マイクロトラックMT330OEXにより測定できる体積基準の体積平均径[MV]である。
この成分(C)の熱伝導性充填材の配合量は、成分(A)100質量部に対し10質量部より少ないと得られる組成物の圧縮時における最小厚みが非常に薄くなり、ヒートサイクル後の熱抵抗が悪化してしまい、2,750質量部より多いと得られる組成物の粘度が上昇して作業性が悪化してしまうため、10~2,750質量部の範囲であり、好ましくは30~1,000質量部、より好ましくは40~500質量部である。
この方法で製造された組成物もまた、本発明の範囲内である。
また、本発明の熱伝導性シリコーン組成物は、成分(B)と(C)以外に、本発明の効果を損なわない範囲で、無機化合物粉末及び/又は有機化合物材料を含有させてもよい。無機化合物粉末としては、熱伝導率の高いものが好ましく、例えば、アルミニウム粉末、酸化亜鉛粉末、酸化チタン粉末、酸化マグネシウム粉末、アルミナ粉末、水酸化アルミニウム粉末、窒化ホウ素粉末、窒化アルミニウム粉末、ダイヤモンド粉末、金粉末、銅粉末、カーボン粉末、ニッケル粉末、インジウム粉末、ガリウム粉末、金属ケイ素粉末、二酸化ケイ素粉末の中から選択される1種又は2種以上を挙げることができる。有機化合物材料も、熱伝導率の高いものが好ましく、例えば、炭素繊維、グラフェン、グラファイト、カーボンナノチューブ、カーボン材料の中から選択される1種又は2種以上を挙げることができる。これら無機化合物粉末と有機化合物材料は、必要に応じて、表面にオルガノシラン、オルガノシラザン、オルガノポリシロキサン、有機フッ素化合物等で疎水化処理を施したものを用いてもよい。無機化合物粉末と有機化合物材料の平均粒径は、0.5μmより小さくても100μmより大きくても得られる組成物への充填率が上がらなくなるため、0.5~100μmの範囲が好ましく、特に好ましくは1~50μmの範囲である。また、炭素繊維の繊維長は10μmより小さくても500μmより大きくても得られる組成物への充填率が上がらなくなるため、10~500μmの範囲が好ましく、特に好ましくは30~300μmの範囲である。無機化合物粉末と有機化合物材料の配合量は、成分(A)100質量部対して3,000質量部より大きくなると流動性が悪くなり取り扱いが悪くなるため0~3,000質量部が好ましく、特に好ましくは0~2,000質量部である。
成分(D)は、白金系触媒及び有機過酸化物及び縮合反応用触媒からなる群より選択される触媒であり、本発明の組成物は、成分(D)の触媒を配合することにより、硬化性の組成物とすることができる。
本発明の熱伝導性シリコーン組成物をヒドロシリル化反応により硬化するものとする場合には、成分(A)として成分(E)と成分(F)、成分(D)として白金系触媒を添加する。成分(F)の配合量は、成分(E)のアルケニル基1モルに対して成分(F)のケイ素原子結合水素原子が0.1~15.0モルの範囲内となる量とすることが好ましく、さらに、0.1~10.0モルの範囲内となる量とすることが好ましく、特に、0.1~5.0モルの範囲内となる量とすることが好ましい。
成分(D)の白金系触媒としては、例えば、塩化白金酸、塩化白金酸のアルコール溶液、白金のオレフィン錯体、白金のアルケニルシロキサン錯体、白金のカルボニル錯体が挙げられる。
本発明の熱伝導性シリコーン組成物において、成分(D)の白金系触媒の含有量は、本発明の組成物の硬化に必要な量、いわゆる触媒量であり、具体的には、(A)成分に対して成分(D)に含まれる白金金属が、質量単位で0.1~2,000ppmの範囲内となる量であることが好ましく、特に、0.1~1,500ppmの範囲内となる量であることが好ましい。
このシラン又はシロキサンオリゴマーの含有量は、本発明の組成物の硬化に必要な量であり、具体的には、(A)成分100質量部に対して0.01~20質量部の範囲内が好ましく、特に、0.1~10質量部の範囲内が好ましい。
本発明の熱伝導性シリコーン組成物において、成分(D)の縮合反応用触媒の含有量は任意量であり、配合する場合は、具体的には、(A)成分100質量部に対して0.01~20質量部の範囲内とすることが好ましく、特に、0.1~10質量部の範囲内とすることが好ましい。
さらに、本発明の熱伝導性シリコーン組成物には、成分(G)として、下記一般式(2)
R2 bSi(OR3)4-b (2)
〔式中、R2は、置換基を有していてもよい飽和又は不飽和の一価炭化水素基、エポキシ基、アクリル基及びメタクリル基の中から選択される1種又は2種以上の基を示し、R3は一価炭化水素基を示し、bは1≦b≦3である。〕
で表されるオルガノシランを配合してもよい。
C10H21Si(OCH3)3
C12H25Si(OCH3)3
C12H25Si(OC2H5)3
C10H21Si(CH3)(OCH3)2
C10H21Si(C6H6)(OCH3)2
C10H21Si(CH3)(OC2H5)2
C10H21Si(CH=CH2)(OCH3)2
C10H21Si(CH2CH2CF3)(OCH3)2
CH2=C(CH3)COOC8H16Si(OCH3)3
本発明の半導体装置は、発熱性電子部品と放熱体との間に、本発明の熱伝導性シリコーン組成物が介在していることを特徴とする。本発明の熱伝導性シリコーン組成物は、発熱性電子部品と放熱体との間に、10~200μmの厚さで介在させることが好ましい。
本発明の半導体装置の代表的な構造を図1に示すが、本発明はこれに限定されるものではない。本発明の熱伝導性シリコーン組成物は、図1の8に示すものである。
〔粘度〕
組成物の絶対粘度は、マルコム粘度計(タイプPC-1TL)を用いて25℃で測定した。
実施例1~14と比較例1~8については、各組成物を6mm厚の型に流し込み、0.35MPaの圧力を掛けた状態で150℃に加熱した後、京都電子工業(株)社製のTPS-2500Sにより、25℃において熱伝導率を測定した。実施例15については、組成物を6mm厚の型に流し込み、23±2℃/50±5%RH(相対湿度)に7日間放置した後、京都電子工業(株)社製のTPS-2500Sにより、25℃において熱伝導率を測定した。
φ(直径)12.7mmの2枚のアルミニウム板の間に、各組成物を挟み込み、0.35MPaの圧力を掛けた状態で、150℃のオーブンに90分間装入して、各組成物を加熱硬化させ、熱抵抗測定用の試験片を作製し、この試験片の熱抵抗を測定した。さらに、その後、ヒートサイクル試験(-55℃←→150℃)を1,000時間実施して熱抵抗の変化を観察した。なお、この熱抵抗測定は、ナノフラッシュ(ニッチェ社製、LFA447)により行った。
φ12.7mmの2枚のアルミニウム板の厚みを測定し、その後、厚みを測定した2枚のアルミニウム板の間に、各組成物を挟み込み、0.35MPaの圧力を掛けた状態で、150℃のオーブンに90分間装入して、各組成物を加熱硬化させ、BLT測定用の試験片を作製し、この試験片の厚みを測定した。そして、下記式(5)を用いて、BLTを算出した。
成分(A)
A-1:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が600mm2/sのジメチルポリシロキサン
B-1:タップ密度が6.6g/cm3、比表面積が0.28m2/g、アスペクト比が8の銀粉末
B-2:タップ密度が6.2g/cm3、比表面積が0.48m2/g、アスペクト比が13の銀粉末
C-1:平均粒径が15μm、熱伝導率230W/m℃、タップ密度が1.3g/cm3、比表面積が1.5m2/g、アスペクト比が1.5のアルミニウム粉末
D-1(白金触媒):白金-ジビニルテトラメチルジシロキサン錯体のA-1溶液、白金原子として1wt%含有
G-1:下記式で表されるオルガノシラン
H-1:下記式で表されるオルガノポリシロキサン
I-1(硬化反応抑制剤):1-エチニル-1-シクロヘキサノール
成分(J)
J-1(硬化剤):ビニルトリ(イソプロピノキシ)シラン
各成分を下記表1~3に示す組成で混合し、実施例1~15および比較例1~8の組成物を得た。
具体的には、容積5リットルのプラネタリーミキサー(井上製作所(株)社製)に成分(A)を入れ、さらに、実施例4では成分(G)、実施例5では成分(H)を加え、これに成分(B)と(C)を加え25℃で1.5時間混合した。つぎに成分(D)を加え、さらに、実施例1~8と比較例1~8では成分(I)、実施例15では成分(J)を加えて均一になるように混合した。
7 発熱性電子部品(CPU)
8 熱伝導性シリコーン組成物層
9 放熱体(リッド)
Claims (8)
- 下記、成分(A)、(B)、(C)及び(D)を含有する熱伝導性シリコーン組成物。
(A)下記平均組成式(1)
R1 aSiO(4-a)/2 (1)
〔式中、R1は、水素原子、ヒドロキシ基又は炭素数1~18の飽和若しくは不飽和の一価炭化水素基の群の中から選択される1種若しくは2種以上の基を示し、aは1.8≦a≦2.2である。〕
で表される、25℃における動粘度が10~100,000mm2/sのオルガノポリシロキサン
(B)タップ密度が3.0g/cm3以上であり、比表面積が2.0m2/g以下であり、かつアスペクト比が、2.0~150.0である銀粉末
成分(A)100質量部に対して、300~11,000質量部
(C)平均粒径が5~100μmであり、10W/m℃以上の熱伝導率を有する成分(B)以外の熱伝導性充填材
成分(A)100質量部に対して、10~2,750質量部
(D)白金系触媒、有機過酸化物及び縮合反応用触媒からなる群より選択される触媒
触媒量 - 成分(C)の熱伝導性充填材が、タップ密度が0.5~2.6g/cm3であり、比表面積が0.15~3.0m2/gのアルミニウム粉末である請求項1記載の熱伝導性シリコーン組成物。
- 成分(C)の熱伝導性充填材のアスペクト比が、1.0以上3.0以下である請求項1又は2記載の熱伝導性シリコーン組成物。
- 成分(B)の銀粉末の質量αと成分(C)のアルミニウム粉末の質量βの質量比α/βが、3~150である請求項1~3のいずれか1項記載の熱伝導性シリコーン組成物。
- 成分(A)の全部又は一部が、成分(E):一分子中に少なくとも2個のケイ素原子に結合したアルケニル基を有するオルガノポリシロキサン及び/又は、成分(F):一分子中に少なくとも2個のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサンである請求項1~4のいずれか1項記載の熱伝導性シリコーン組成物。
- さらに、成分(G)として、下記一般式(2)
R2 bSi(OR3)4-b (2)
〔式中、R2は、置換基を有していてもよい飽和又は不飽和の一価炭化水素基、エポキシ基、アクリル基及びメタクリル基の中から選択される1種又は2種以上の基を示し、R3は一価炭化水素基を示し、bは1≦b≦3である。〕
で表されるオルガノシランを、成分(A)100質量部に対して0~20質量部含む請求項1~5のいずれか1項記載の熱伝導性シリコーン組成物。 - 発熱性電子部品と、放熱体とを備えている半導体装置であって、前記発熱性電子部品と放熱体との間に、請求項1~6のいずれか1項記載の熱伝導性シリコーン組成物が介在していることを特徴とする半導体装置。
- 請求項1~6の何れか1項記載の熱伝導性シリコーン組成物を、発熱性電子部品と放熱体との間で、0.01MPa以上の圧力を掛けた状態で80℃以上に加熱する工程を有することを特徴とする半導体装置の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187024686A KR20180127325A (ko) | 2016-03-18 | 2017-02-22 | 열전도성 실리콘 조성물 및 반도체 장치 |
CN201780009539.5A CN108603033B (zh) | 2016-03-18 | 2017-02-22 | 热传导性硅酮组合物和半导体装置 |
JP2018505384A JP6658866B2 (ja) | 2016-03-18 | 2017-02-22 | 熱伝導性シリコーン組成物及び半導体装置 |
US16/064,327 US20190002694A1 (en) | 2016-03-18 | 2017-02-22 | Thermally conductive silicone composition and semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-055133 | 2016-03-18 | ||
JP2016055133 | 2016-03-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017159252A1 true WO2017159252A1 (ja) | 2017-09-21 |
Family
ID=59850381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/006602 WO2017159252A1 (ja) | 2016-03-18 | 2017-02-22 | 熱伝導性シリコーン組成物及び半導体装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20190002694A1 (ja) |
JP (1) | JP6658866B2 (ja) |
KR (1) | KR20180127325A (ja) |
CN (1) | CN108603033B (ja) |
TW (1) | TWI742051B (ja) |
WO (1) | WO2017159252A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019155846A1 (ja) * | 2018-02-09 | 2019-08-15 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物、硬化物、半導体装置、及び半導体装置の製造方法 |
WO2020129555A1 (ja) * | 2018-12-21 | 2020-06-25 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物及び半導体装置 |
CN111849169A (zh) * | 2020-07-14 | 2020-10-30 | 广东乐普泰新材料科技有限公司 | 一种导热硅脂及其制备方法 |
JP2020193250A (ja) * | 2019-05-27 | 2020-12-03 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物、半導体装置及びその製造方法 |
US20210253927A1 (en) * | 2018-06-08 | 2021-08-19 | Shin-Etsu Chemical Co., Ltd. | Thermally conductive silicone composition and method for producing same |
JPWO2021235214A1 (ja) * | 2020-05-22 | 2021-11-25 | ||
JP2021191823A (ja) * | 2020-06-05 | 2021-12-16 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物、半導体装置、及び半導体装置の製造方法 |
US20210403785A1 (en) * | 2019-01-24 | 2021-12-30 | Shin-Etsu Chemical Co., Ltd. | Highly thermally conductive silicone composition and method for producing same |
WO2022264715A1 (ja) | 2021-06-16 | 2022-12-22 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | 熱伝導性ポリシロキサン組成物 |
WO2023276846A1 (ja) * | 2021-07-02 | 2023-01-05 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物、半導体装置及びその製造方法 |
KR20240021236A (ko) | 2021-06-16 | 2024-02-16 | 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 | 열전도성 폴리실록산 조성물 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018148282A1 (en) | 2017-02-08 | 2018-08-16 | Elkem Silicones USA Corp. | Secondary battery pack with improved thermal management |
EP3608384B1 (en) * | 2017-06-27 | 2022-02-09 | Sekisui Polymatech Co., Ltd. | Heat-conductive sheet |
JP7283555B2 (ja) * | 2019-09-27 | 2023-05-30 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物及びその製造方法、並びに半導体装置、半導体装置の熱伝導性充填剤層の耐ポンプアウト性を改善する方法 |
CN111560187A (zh) * | 2019-11-26 | 2020-08-21 | 东莞市美庆电子科技有限公司 | 一种导热泥及其制备方法 |
CN116195053A (zh) * | 2020-07-15 | 2023-05-30 | 昭和电工株式会社 | 导热组合物及其固化物 |
WO2024083341A1 (en) * | 2022-10-21 | 2024-04-25 | Wacker Chemie Ag | Semiconductor device, method of fabricating the same, and silicone-based resin composition contained therein |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06334075A (ja) * | 1993-05-20 | 1994-12-02 | Denki Kagaku Kogyo Kk | 回路モジュール冷却用放熱スペーサー |
JP2002299534A (ja) * | 2001-04-02 | 2002-10-11 | Denso Corp | 放熱材およびその製造方法 |
JP2008063542A (ja) * | 2006-09-11 | 2008-03-21 | Dow Corning Toray Co Ltd | 硬化性シリコーン組成物および電子部品 |
JP2013091726A (ja) * | 2011-10-26 | 2013-05-16 | Shin-Etsu Chemical Co Ltd | 熱伝導性シリコーン組成物 |
WO2014099639A1 (en) * | 2012-12-20 | 2014-06-26 | Dow Corning Corporation | Curable silicone compositions, electrically conductive silicone adhesives, methods of making and using same, and electrical devices containing same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3803058B2 (ja) * | 2001-12-11 | 2006-08-02 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物、その硬化物及び敷設方法並びにそれを用いた半導体装置の放熱構造体 |
KR100719993B1 (ko) * | 2003-09-26 | 2007-05-21 | 히다치 가세고교 가부시끼가이샤 | 혼합 도전 분말 및 그의 이용 |
CN101288133B (zh) * | 2005-09-29 | 2011-01-26 | 阿尔法科学株式会社 | 导电粉及其制造方法、导电粉膏以及导电粉膏的制造方法 |
JP4933094B2 (ja) * | 2005-12-27 | 2012-05-16 | 信越化学工業株式会社 | 熱伝導性シリコーングリース組成物 |
JP5388329B2 (ja) * | 2008-11-26 | 2014-01-15 | 株式会社デンソー | 放熱用シリコーングリース組成物 |
CN102918115A (zh) * | 2010-06-17 | 2013-02-06 | 日立化成工业株式会社 | 树脂糊剂组合物 |
-
2017
- 2017-02-22 JP JP2018505384A patent/JP6658866B2/ja active Active
- 2017-02-22 CN CN201780009539.5A patent/CN108603033B/zh active Active
- 2017-02-22 KR KR1020187024686A patent/KR20180127325A/ko not_active Application Discontinuation
- 2017-02-22 US US16/064,327 patent/US20190002694A1/en not_active Abandoned
- 2017-02-22 WO PCT/JP2017/006602 patent/WO2017159252A1/ja active Application Filing
- 2017-03-06 TW TW106107210A patent/TWI742051B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06334075A (ja) * | 1993-05-20 | 1994-12-02 | Denki Kagaku Kogyo Kk | 回路モジュール冷却用放熱スペーサー |
JP2002299534A (ja) * | 2001-04-02 | 2002-10-11 | Denso Corp | 放熱材およびその製造方法 |
JP2008063542A (ja) * | 2006-09-11 | 2008-03-21 | Dow Corning Toray Co Ltd | 硬化性シリコーン組成物および電子部品 |
JP2013091726A (ja) * | 2011-10-26 | 2013-05-16 | Shin-Etsu Chemical Co Ltd | 熱伝導性シリコーン組成物 |
WO2014099639A1 (en) * | 2012-12-20 | 2014-06-26 | Dow Corning Corporation | Curable silicone compositions, electrically conductive silicone adhesives, methods of making and using same, and electrical devices containing same |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019155846A1 (ja) * | 2018-02-09 | 2020-12-03 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物、硬化物、半導体装置、及び半導体装置の製造方法 |
WO2019155846A1 (ja) * | 2018-02-09 | 2019-08-15 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物、硬化物、半導体装置、及び半導体装置の製造方法 |
US20210253927A1 (en) * | 2018-06-08 | 2021-08-19 | Shin-Etsu Chemical Co., Ltd. | Thermally conductive silicone composition and method for producing same |
US12107031B2 (en) | 2018-12-21 | 2024-10-01 | Shin-Etsu Chemical Co., Ltd. | Thermal conductive silicone composition and semiconductor device |
JPWO2020129555A1 (ja) * | 2018-12-21 | 2021-10-14 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物及び半導体装置 |
WO2020129555A1 (ja) * | 2018-12-21 | 2020-06-25 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物及び半導体装置 |
JP7092212B2 (ja) | 2018-12-21 | 2022-06-28 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物及び半導体装置 |
US20210403785A1 (en) * | 2019-01-24 | 2021-12-30 | Shin-Etsu Chemical Co., Ltd. | Highly thermally conductive silicone composition and method for producing same |
JP2020193250A (ja) * | 2019-05-27 | 2020-12-03 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物、半導体装置及びその製造方法 |
WO2020241054A1 (ja) | 2019-05-27 | 2020-12-03 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物、半導体装置及びその製造方法 |
JP7076400B2 (ja) | 2019-05-27 | 2022-05-27 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物、半導体装置及びその製造方法 |
US12060517B2 (en) | 2019-05-27 | 2024-08-13 | Shin-Etsu Chemical Co., Ltd. | Thermal conductive silicone composition, semiconductor device, and method for manufacturing the same |
JP7371249B2 (ja) | 2020-05-22 | 2023-10-30 | 信越化学工業株式会社 | 高熱伝導性シリコーン組成物 |
JPWO2021235214A1 (ja) * | 2020-05-22 | 2021-11-25 | ||
WO2021235214A1 (ja) * | 2020-05-22 | 2021-11-25 | 信越化学工業株式会社 | 高熱伝導性シリコーン組成物 |
JP2021191823A (ja) * | 2020-06-05 | 2021-12-16 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物、半導体装置、及び半導体装置の製造方法 |
CN111849169B (zh) * | 2020-07-14 | 2023-02-17 | 广东乐普泰新材料科技有限公司 | 一种导热硅脂及其制备方法 |
CN111849169A (zh) * | 2020-07-14 | 2020-10-30 | 广东乐普泰新材料科技有限公司 | 一种导热硅脂及其制备方法 |
KR20240021236A (ko) | 2021-06-16 | 2024-02-16 | 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 | 열전도성 폴리실록산 조성물 |
WO2022264715A1 (ja) | 2021-06-16 | 2022-12-22 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | 熱伝導性ポリシロキサン組成物 |
WO2023276846A1 (ja) * | 2021-07-02 | 2023-01-05 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物、半導体装置及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6658866B2 (ja) | 2020-03-04 |
CN108603033A (zh) | 2018-09-28 |
KR20180127325A (ko) | 2018-11-28 |
CN108603033B (zh) | 2021-02-19 |
TW201800488A (zh) | 2018-01-01 |
TWI742051B (zh) | 2021-10-11 |
US20190002694A1 (en) | 2019-01-03 |
JPWO2017159252A1 (ja) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017159252A1 (ja) | 熱伝導性シリコーン組成物及び半導体装置 | |
JP6607166B2 (ja) | 熱伝導性シリコーン組成物及び半導体装置 | |
US9783723B2 (en) | Thermal conductive silicone composition and semiconductor device | |
JP6610491B2 (ja) | 熱伝導性シリコーン組成物及び半導体装置 | |
JP6183319B2 (ja) | 熱伝導性シリコーン組成物及び熱伝導性シート | |
JP7092212B2 (ja) | 熱伝導性シリコーン組成物及び半導体装置 | |
JP2021191823A (ja) | 熱伝導性シリコーン組成物、半導体装置、及び半導体装置の製造方法 | |
JP6939914B2 (ja) | 熱伝導性シリコーン組成物、硬化物、半導体装置、及び半導体装置の製造方法 | |
WO2024004625A1 (ja) | 熱伝導性シリコーン組成物、半導体装置及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018505384 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187024686 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17766257 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17766257 Country of ref document: EP Kind code of ref document: A1 |