WO2017158639A1 - セルロースアセテート - Google Patents

セルロースアセテート Download PDF

Info

Publication number
WO2017158639A1
WO2017158639A1 PCT/JP2016/001481 JP2016001481W WO2017158639A1 WO 2017158639 A1 WO2017158639 A1 WO 2017158639A1 JP 2016001481 W JP2016001481 W JP 2016001481W WO 2017158639 A1 WO2017158639 A1 WO 2017158639A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose acetate
sulfuric acid
content
cellulose
weight
Prior art date
Application number
PCT/JP2016/001481
Other languages
English (en)
French (fr)
Inventor
裕之 松村
慶多 高橋
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to RU2018136100A priority Critical patent/RU2690114C1/ru
Priority to JP2018505551A priority patent/JP6663979B2/ja
Priority to US16/081,373 priority patent/US20190077885A1/en
Priority to MX2018011061A priority patent/MX2018011061A/es
Priority to PCT/JP2016/001481 priority patent/WO2017158639A1/ja
Priority to KR1020187029340A priority patent/KR102111293B1/ko
Priority to BR112018068026A priority patent/BR112018068026A2/pt
Priority to EP16894263.9A priority patent/EP3431509A4/en
Priority to CN201680085664.XA priority patent/CN109195995B/zh
Publication of WO2017158639A1 publication Critical patent/WO2017158639A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/06Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/22Post-esterification treatments, including purification
    • C08B3/26Isolation of the cellulose ester
    • C08B3/28Isolation of the cellulose ester by precipitation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/22Post-esterification treatments, including purification
    • C08B3/30Stabilising
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • D21C1/04Pretreatment of the finely-divided materials before digesting with acid reacting compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/04Pulping cellulose-containing materials with acids, acid salts or acid anhydrides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/22Other features of pulping processes
    • D21C3/26Multistage processes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • D01F2/28Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives from organic cellulose esters or ethers, e.g. cellulose acetate

Definitions

  • the present invention relates to cellulose acetate.
  • cellulose acetates cellulose triacetate is used as various photographic materials and optical films because it has high optical isotropy and is excellent in toughness and flame retardancy.
  • cellulose diacetate is used as a cellulose acetate fiber in a cigarette filter or the like.
  • Cellulose acetate fibers are generally produced by dry spinning, in which a spinning stock solution in which cellulose acetate is dissolved in a soluble solvent is discharged from a spinneret, and then the solvent is evaporated with hot air to solidify into a fibrous form. it can.
  • a cellulose acetate fiber having a thin fiber diameter used for a tobacco filter has a thin pore diameter of the spinneret, and yarn breakage tends to occur during the spinning process.
  • Patent Document 1 describes that the alkaline earth metal salt content of hemicellulose acetate is reduced to 0.15% by weight or less in the spinning solution of cellulose acetate fiber.
  • Patent Document 2 describes that an organic acid having two or more carboxyl groups and / or a salt of the organic acid is added to a solution obtained by dissolving cellulose ester in an organic solvent.
  • An object of the present invention is to provide a cellulose acetate that has excellent wet heat stability and can reduce yarn breakage in a spinning process.
  • the chemical equivalent ratio [Ca / H 2 SO 4 ] of the calcium content to the residual sulfuric acid amount and the chemical equivalent ratio [Mg / H 2 SO 4 ] of the magnesium content to the residual sulfuric acid amount are represented by the following formula (1). It relates to a cellulose acetate that satisfies the relationship shown in FIG. [Mg / H 2 SO 4 ]> 0, [Ca / H 2 SO 4 ” ]> 0, and (2.70- [Mg / H 2 SO 4 ]) / 1.62 ⁇ [Ca / H 2 SO 4 ] ⁇ (37.7- [Mg / H 2 SO 4 ]) / 10.3 (1)
  • the chemical equivalent ratio [Ca / H 2 SO 4 ] of the calcium content to the residual sulfuric acid amount and the chemical equivalent ratio [Mg / H 2 SO 4 ] of the magnesium content to the residual sulfuric acid amount satisfy the relationship shown in the following formula (2), and
  • the acetylation degree is preferably 54.0% or more and 56.0% or less.
  • the chemical equivalent ratio [Ca / H 2 SO 4 ] of the calcium content relative to the residual sulfuric acid amount and the chemical equivalent ratio [Mg / H 2 SO 4 ] of the magnesium content relative to the residual sulfuric acid amount satisfy the relationship represented by the following formula (3). preferable. [Ca / H 2 SO 4 ]> 0, [Mg / H 2 SO 4 ]> 0, and [Mg / H 2 SO 4 ] ⁇ ( ⁇ 9.59) [Ca / H 2 SO 4 ] +29.8 ( 3)
  • a cellulose acetate that is excellent in wet heat stability and can reduce yarn breakage in the spinning process.
  • the cellulose acetate according to the present disclosure has a chemical equivalent ratio [Ca / H 2 SO 4 ] of the calcium content to the residual sulfuric acid amount and a chemical equivalent ratio [Mg / H 2 SO 4 ] of the magnesium content to the residual sulfuric acid amount represented by the following formula (1 ) Is satisfied.
  • the chemical equivalent ratio [Ca / H 2 SO 4 ] of the calcium content to the residual sulfuric acid amount is obtained by measuring the calcium content (in mol units) and the residual sulfuric acid amount (in mol units), and dividing the calcium content by the residual sulfuric acid amount. This is the value obtained.
  • the residual sulfuric acid is used to mean the sulfuric acid corresponding to the bound sulfuric acid in cellulose acetate, free sulfuric acid, and sulfate neutralized by the addition of a base.
  • the bound sulfuric acid refers to sulfuric acid (bound sulfuric acid component bound as a sulfate group such as a sulfate ester or a sulfonate group) bound to cellulose acetate.
  • bound sulfuric acid bound sulfuric acid component bound as a sulfate group such as a sulfate ester or a sulfonate group
  • the cellulose acetate according to the present disclosure has a chemical equivalent ratio [Ca / H 2 SO 4 ] of the calcium content to the residual sulfuric acid amount and a chemical equivalent ratio [Mg / H 2 SO 4 ] of the magnesium content to the residual sulfuric acid amount represented by the following formula (1 ), And is excellent in wet heat stability and can reduce yarn breakage in the spinning process.
  • [Mg / H 2 SO] 4 and [Ca / H 2 SO 4 ] are set to a certain value or less, segregation of substances that cause yarn breakage is suppressed, so that yarn breakage is improved.
  • the region satisfying the relationship represented by the above formula (1) is a region where both [Mg / H 2 SO 4 ] and [Ca / H 2 SO 4 ] exhibit positive values, and the [Mg / H 2 SO 4 ] axis.
  • Glucuronoxylan in xylan a hemicellulose component contained in pulp (especially wood pulp) used as a raw material for cellulose acetate, or glucuronoxylan oxidized in the process of pulp refining cellulose acetate in acetone, acetone aqueous solution or other It exists as an alkaline earth metal salt of glucuronoxylan acetate in a solution dissolved with a solvent.
  • This alkaline earth metal salt of glucuronoxylan acetate has a property that, when the temperature of the solution becomes high, crosslinking is promoted and precipitation tends to occur.
  • the temperature is high in the spinning tower to evaporate acetone in the cellulose acetate solution discharged from the spinneret. For this reason, the temperature of the cellulose acetate solution in the vicinity of the spinneret may also rise, and the alkaline earth metal salt of glucuronoxylan acetate precipitates in the cellulose acetate solution and accumulates in the spinneret to clog the spinneret. Thread breakage is likely to occur.
  • the wet heat stability will be described.
  • cellulose acetate is inferior in wet heat stability, it tends to cause a decrease in molecular weight in the process of refining cellulose acetate, which causes coloration and increases the amount of acetic acid in cellulose acetate.
  • the cellulose acetate after being made into a fiber is similarly inferior in wet heat stability, it tends to cause deacetylation and molecular weight reduction, and the period during which the property can be guaranteed is shortened. That is, when such cellulose acetate inferior in wet heat stability is used to form a fiber, it can be a cellulose acetate fiber having coloring or acid odor.
  • cellulose acetate fiber for an application sensitive to human senses such as a cigarette filter, it causes deterioration of taste and acid odor, so that particularly high heat and humidity stability is required.
  • the cellulose acetate of the present disclosure has a chemical equivalent ratio [Ca / H 2 SO 4 ] of the calcium content to the residual sulfuric acid amount and a chemical equivalent ratio [Mg / H 2 SO 4 ] of the magnesium content to the residual sulfuric acid amount represented by the following formula (2): It is preferable that the degree of acetylation is 54.0% or more and 56.0% or less. Since the occurrence of deacetylation of cellulose acetate is further suppressed, it becomes possible to produce cellulose acetate fibers that are superior in wet heat stability. [Ca / H 2 SO 4 ]> 0, [Mg / H 2 SO 4 ]> 0, and [Mg / H 2 SO 4 ] ⁇ ( ⁇ 1.78) [Ca / H 2 SO 4 ] +4.10 ( 2)
  • the cellulose acetate of the present disclosure has a chemical equivalent ratio [Ca / H 2 SO 4 ] of the calcium content to the residual sulfuric acid amount and a chemical equivalent ratio [Mg / H 2 SO 4 ] of the magnesium content to the residual sulfuric acid amount represented by the following formula ( It is more preferable to satisfy the relationship shown in 3). Since the precipitation of alkaline earth metal salt of glucuronoxylan acetate in the cellulose acetate solution is further suppressed, yarn breakage in the spinning process of cellulose acetate can be further reduced, and a yarn having a smaller filament denier can be obtained. The spinning speed can also be increased. [Ca / H 2 SO 4 ]> 0, [Mg / H 2 SO 4 ]> 0, and [Mg / H 2 SO 4 ] ⁇ ( ⁇ 9.59) [Ca / H 2 SO 4 ] +29.8 ( 3)
  • the measurement of the residual sulfuric acid amount is preferably carried out by a so-called combustion trap method that is not easily affected by solid inorganic sulfate. That is, in this combustion trap method, the amount of residual sulfuric acid is determined by baking the dried cellulose ester in an electric furnace at about 1300 ° C. and trapping the sublimated sulfurous acid gas in a predetermined concentration of hydrogen peroxide water. It can be measured by titrating with a concentration base (for example, aqueous sodium hydroxide). The measured value is expressed in mol units or ppm units as the sulfuric acid content in 1 g of cellulose acetate in an absolutely dry state as the amount of H 2 SO 4 . It should be noted that the formula amount of H 2 SO 4 may be 98.0 g / mol in terms of mol units and ppm units.
  • the magnesium content and calcium content can be measured by atomic absorption method after firstly burning the dried cellulose acetate and then pretreating the ash in hydrochloric acid. Specifically, it is as follows. A sample (3.0 g) is weighed into a crucible, carbonized on an electric heater, and then incinerated in an electric furnace at 750 to 850 ° C. for about 2 hours. After cooling for about 30 minutes, 25 mL of a 0.07% hydrochloric acid solution is added and dissolved by heating at 220 to 230 ° C.
  • the dissolved solution is made up to 200 mL with distilled water, and the absorbance is measured using an atomic absorption photometer together with the standard solution as a test solution, and the calcium (Ca) content and magnesium (Mg) of the test solution are measured.
  • Each content is obtained and converted by the following formula, whereby the calcium (Ca) content and the magnesium (Mg) content in 1 g of the sample can be obtained respectively.
  • the unit can be converted to mol unit.
  • moisture (% by weight), that is, moisture in the sample can be measured using, for example, a ketometer TOLEDO HB43.
  • Moisture (wt%) in the sample can be calculated from the weight change before and after heating by placing about 2.0 g of the water-containing sample on the aluminum tray of the ket moisture meter and heating at 120 ° C. until the weight does not change.
  • the atomic weights of Ca and Mg may be converted as 40.0 g / mol and 24.3 g / mol, respectively.
  • the average degree of acetylation of the cellulose acetate of the present disclosure is preferably 51.8% or more and 58.9% or less, and more preferably 54.0% or more and 56.0% or less. If it is less than 51.8%, the strength of the yarn becomes brittle, or if the cigarette filter is used, the taste is affected. If it exceeds 58.9%, the solubility in a solvent such as acetone is lowered.
  • the acetylation degree follows the measurement and calculation method of acetylation degree according to ASTM-D-817-91 (testing method for cellulose acetate and the like).
  • the cellulose acetate according to the present disclosure includes a step (1) of crushing cellulose pulp, a step (2) of bringing the crushed cellulose pulp into contact with acetic acid, and pretreating the pretreated cellulose pulp with acetic anhydride and The step (3) of esterifying by contacting 20 parts by weight or less of concentrated sulfuric acid with respect to 100 parts by weight of the cellulose pulp, the step of hydrolyzing the cellulose acetate obtained by the esterification by adding a neutralizing agent (4) the step (5) of precipitating cellulose acetate whose degree of acetylation has been adjusted by hydrolysis, and calcium hydroxide or other calcium salt, and magnesium acetate or other for the precipitated cellulose acetate
  • a series of steps (6) comprising adding one or more stabilizers selected from the group consisting of magnesium salts It can be manufactured through a degree.
  • the chemical equivalent ratio [Ca / H 2 SO 4 ] of the calcium content relative to the residual sulfuric acid amount and the chemical equivalent ratio [Mg / H 2 SO 4 ] of the magnesium content relative to the residual sulfuric acid amount are the esterification step described later. Adjust according to the amount or total amount of neutralizing agent added at the end of (3) or at the start of hydrolysis step (4), precipitation agent used in precipitation step (5), and stabilizer added in stabilization step (6) can do.
  • “Wood Chemistry” (above) (Umeda et al., Kyoritsu Publishing Co., Ltd., 1968, pages 180-190).
  • Wood pulp or linter pulp can be used as cellulose acetate (cellulose source) that is a raw material of the cellulose acetate of the present disclosure.
  • Wood pulp includes softwood pulp, hardwood pulp and the like.
  • coniferous pulp include coniferous pulp obtained from spruce, pine, tsuga and the like.
  • hardwood pulp include hardwood pulp obtained from eucalyptus, acacia and the like. These pulps may be used singly or in combination of two or more kinds, and softwood pulp and hardwood pulp may be used in combination.
  • the cellulose pulp it is advantageous to use a pulp having a high mannose content and / or a pulp having a low xylose content relative to the whole saccharide component.
  • the content (mol%) of mannose (mannose skeleton or mannose unit) is 0.4 or more (for example, 0.4 to 2.5), preferably 0. 0.5 to 2 (for example, 0.5 to 1.5), more preferably about 0.6 to 1.5.
  • the ratio (mol ratio) of the xylose content to the mannose content is usually less than 3, for example, 0.3 to 2.8, preferably about 0.3 to 2, and about 0.5 to 1.5. There may be.
  • the cellulose pulp may also contain xylose (xylose skeleton or xylose unit), and the xylose content (mol%) is, for example, 0.5 to 3, preferably 0.7 to 2, and more preferably. It is about 0.8 to 1.5.
  • xylose xylose skeleton or xylose unit
  • mol% xylose content
  • a mannose content and a xylose content can be quantified with the following method.
  • High performance liquid chromatography HPLC, DX-AQ type manufactured by Dionex
  • Detector Pulsed amperometry detector (gold electrode)
  • Column manufactured by Dionex, Carbo Pac PA-1 (250 ⁇ 4 mm)
  • Eluent 2 mM NaOH
  • Flow rate 1.0 ml / min
  • Post column manufactured by Dionex, AMMS-II type, and the molar ratio of mannose and xylose can be obtained in advance from a calibration curve prepared using mannose, xylose and glucose standards. The total of these three components is taken as 100, and the content of each constituent sugar component is expressed in mol%.
  • the ⁇ -cellulose content (% by weight) of the cellulose pulp is usually about 90 to 99 (eg, 93 to 99), preferably about 96 to 98.5 (eg, 97.3 to 98). Good.
  • the water content of the cellulose pulp is preferably 5.0 to 9.0% by weight, more preferably 6.0 to 8.0% by weight, and 6.5 to 7.5% by weight. Is more preferable. If the moisture content of the cellulose pulp is too low, the reactivity of the pulp is significantly deteriorated. On the other hand, if the water content is too high, the acetic anhydride used for the reaction must be used excessively, which is disadvantageous in terms of cost. By being in the above-mentioned range, it is possible to easily control properties such as acetylation degree of cellulose acetate.
  • Cellulose pulp can be used in the form of a sheet.
  • the sheet has a basis weight of 300 to 850 g / m 2 , a density of 0.40 to 0.60 g / cm 3 , and a burst strength of 50 to 1000 KPa. Absent.
  • the manufacturing method of the cellulose acetate of this indication has a process (1) which crushes cellulose pulp. As a result, the reaction proceeds efficiently and uniformly in the subsequent steps, and handling becomes easy.
  • the crushing step is particularly effective when the cellulose pulp is supplied in the form of a sheet.
  • methods for crushing cellulose pulp include a wet crushing method and a dry crushing method.
  • the wet crushing method is a method of crushing by adding water or steam to cellulose pulp such as a pulp sheet.
  • Examples of the wet crushing method include activation by steam and strong shearing stirring in a reaction apparatus, soaking in a dilute acetic acid aqueous solution to form a slurry, and repeating soaking and acetic acid replacement before so-called slurry.
  • the method of performing a process etc. are mentioned.
  • the dry crushing method is a method of crushing cellulose pulp such as a pulp sheet in a dry state.
  • Examples of the dry crushing method include, for example, a method of finely crushing pulp that has been roughly crushed with a disc refiner having pyramid teeth, and a cylindrical outer box having a liner attached to the inner wall, Using a turbo mill having a plurality of disks that rotate at high speed around the center line of the outer box and a plurality of wings mounted in the radial direction with respect to the center line between the disks, the blades are used to strike and liner
  • the object to be crushed supplied inside the outer box is crushed by three kinds of impact action consisting of the collision with the high-speed rotation and the high-frequency pressure vibration generated by the three-part action of the disk, blade and liner rotating at high speed. And the like.
  • the crushing method is not limited to these.
  • Pretreatment process In the step (2) of bringing the pulverized cellulose pulp into contact with acetic acid and pretreating it, preferably 10 parts by weight per 100 parts by weight of cellulose pulp (crushed pulp) obtained by pulverizing acetic acid and / or sulfuric acid-containing acetic acid. Up to 500 parts by weight can be added. At this time, 96 to 100% by weight of acetic acid can be used as acetic acid.
  • the pretreatment using sulfuric acid-containing acetic acid is a method of pretreatment with acetic acid containing sulfuric acid, and 1 to 10% by weight of sulfuric acid can be contained in acetic acid.
  • acetic acid and / or sulfuric acid-containing acetic acid to cellulose pulp
  • acetic acid or sulfuric acid-containing acetic acid is added in one step, or acetic acid is added and after a certain time has passed, sulfuric acid-containing acetic acid is added.
  • examples thereof include a method of adding acetic acid or sulfuric acid-containing acetic acid such as a method of adding sulfuric acid-containing acetic acid and a method of adding acetic acid after a lapse of a certain period of time.
  • acetic acid and / or sulfuric acid-containing acetic acid is added to the cellulose pulp and then left to stand at 17 to 40 ° C. for 0.2 to 48 hours, or at 17 to 40 ° C. for 0.1 to It can be performed by sealing and stirring for 24 hours.
  • concentrated sulfuric acid for example, acetic acid, acetic anhydride, and concentrated sulfuric acid.
  • Adding a pretreated activated cellulose pulp to a mixture comprising, adding a mixture of acetic acid and acetic anhydride and concentrated sulfuric acid to a pretreated activated cellulose pulp, or adding acetic acid to a pretreated activated cellulose pulp
  • the esterification can be started by adding a mixture of styrene and acetic anhydride and then adding concentrated sulfuric acid.
  • acetic acid and acetic anhydride when preparing a mixture of acetic acid and acetic anhydride, it is not particularly limited as long as it contains acetic acid and acetic anhydride, but the ratio of acetic acid to acetic anhydride is 300 to 600 parts by weight of acetic acid, Acetic anhydride is preferably 200 to 400 parts by weight, more preferably acetic anhydride 240 to 280 parts by weight with respect to acetic acid 350 to 530 parts by weight.
  • the mixture of acetic acid and acetic anhydride and the ratio of concentrated sulfuric acid are preferably 500 to 1000 parts by weight of the mixture of acetic acid and acetic anhydride with respect to 100 parts by weight of the raw material cellulose (cellulose pulp).
  • the concentrated sulfuric acid can be 20 parts by weight or less, for example, 1 to 20 parts by weight.
  • the acetic acid can be 96 to 100 parts by weight.
  • the esterification reaction can be performed, for example, at a temperature of about 0 to 55 ° C., preferably 20 to 50 ° C., more preferably about 30 to 50 ° C.
  • the esterification reaction may be initially performed at a relatively low temperature (for example, 10 ° C. or less, preferably 0 to 10 ° C.).
  • the reaction time at such a low temperature may be, for example, 30 minutes or more (for example, 40 minutes to 5 hours, preferably about 60 to 300 minutes) from the start of the esterification reaction.
  • the esterification time (total esterification time) varies depending on the reaction temperature and the like, but is, for example, in the range of 20 minutes to 36 hours, preferably 30 minutes to 20 hours.
  • the reaction is desirably performed at a temperature of at least 30 to 50 ° C. for about 30 to 180 minutes (preferably about 50 to 150 minutes).
  • the time from when the pulp is brought into contact with the catalyst to when the deactivator is added is defined as the esterification time.
  • the esterification reaction can be performed under reduced pressure. For example, while stirring a mixture of cellulose, acetic anhydride and acetic acid, the pressure of the reaction system is reduced to 5.3 to 20 kPa, preferably 6 to 12 kPa, and then the first stage catalyst is added to start the esterification reaction. .
  • the vapor mixture of acetic acid and acetic anhydride to be evaporated is condensed in a condenser and distilled out of the reaction system, the same vacuum is maintained, the temperature is maintained at about 50 to 65 ° C., and the esterification reaction is continued.
  • the second stage catalyst is added at a predetermined time and the reaction is continued under reduced pressure.
  • a neutralizing agent such as water, dilute acetic acid (1 to 50% by weight acetic acid aqueous solution), or an aqueous solution of a basic substance is added to form an esterifying agent.
  • acetic anhydride it is preferable to make water exist in the reaction system by adding a neutralizing agent.
  • the hydrolysis is also referred to as saponification.
  • the neutralizing agent is preferably an aqueous solution of a basic substance among water, dilute acetic acid (1 to 50% by weight aqueous acetic acid solution), or an aqueous solution of a basic substance.
  • water reacts with acetic anhydride present in the reaction mixture containing cellulose acetate to form acetic acid, and the water content of the reaction mixture containing cellulose acetate after the hydrolysis step is relative to acetic acid. It can be added so as to be 5 to 70 mol%. If it is less than 5 mol%, the hydrolysis reaction does not proceed and depolymerization proceeds, resulting in a low-viscosity cellulose acetate. If it exceeds 70 mol%, the cellulose ester (cellulose triacetate) after the esterification reaction is precipitated, resulting in a hydrolysis reaction system. Therefore, the hydrolysis reaction of the precipitated cellulose ester does not proceed.
  • neutralizing agents such as aqueous solutions of basic substances include alkali metal compounds (for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; hydrogen carbonate Alkali metal hydrogen carbonates such as sodium and potassium hydrogen carbonate; alkali metal carboxylates such as sodium acetate and potassium acetate; sodium alkoxide such as sodium methoxide and sodium ethoxide), alkaline earth metal compounds (for example, hydroxide) Alkaline earth metal hydroxides such as magnesium and calcium hydroxide; alkaline earth metal carbonates such as magnesium carbonate and calcium carbonate; alkaline earth metal hydrogen carbonates such as calcium hydrogen carbonate; alkalis such as magnesium acetate and calcium acetate Earth metal carboxylate; Magne Alkaline earth metals such as Umuetokishido metal alkoxide, etc.) can be used.
  • alkaline earth metal compounds particularly magnesium compounds such as magnesium a
  • the neutralizing agent may neutralize a part of sulfuric acid that is a catalyst used for esterification, and may use sulfuric acid that is a remaining esterification catalyst as a catalyst in hydrolysis, or a catalyst that remains without being neutralized. All the sulfuric acid that is may be used as a catalyst in the hydrolysis.
  • cellulose acetate is hydrolyzed (deacetylated) using sulfuric acid, which is a residual esterification catalyst, as a catalyst in hydrolysis.
  • a solvent or the like acetic acid, methylene chloride, water, alcohol, etc.
  • hydrolysis methods There are two types of hydrolysis methods: high temperature aging and normal temperature aging.
  • the hydrolysis step performed at room temperature is referred to as normal temperature aging and refers to the case where the maximum temperature reached in the reaction system is 55 ° C. or higher and lower than 100 ° C., preferably 55 ° C. or higher and lower than 90 ° C.
  • Hydrolysis performed at high temperature is referred to as high temperature aging and refers to a range in which the maximum temperature reached in the reaction system is 100 ° C. or higher and 200 ° C. or lower.
  • high temperature aging the temperature in the system is increased using water vapor.
  • the temperature in the reaction system is 125 to 170 ° C.
  • the hydrolysis reaction time is not particularly limited, but is maintained for 3 minutes to 6 hours.
  • cellulose diacetate having a desired degree of acetylation is obtained.
  • the time for the hydrolysis reaction refers to the time from the start of charging the neutralizer to the termination of the hydrolysis reaction.
  • the completely neutralized reaction mixture was kept at a high temperature of 140 to 155 ° C. for 10 to 50 minutes using an autoclave, and then the reaction mixture was gradually flushed to the atmosphere, so that the reaction mixture was cooled to 50 to 120 ° C.
  • the hydrolysis reaction can be stopped and stopped.
  • concentrated sulfuric acid is added in an amount of 1.13 to 2 with respect to 100 parts by weight of cellulose triacetate obtained by the esterification step. .53 parts by weight (in other words, 2 to 4.5 parts by weight per 100 parts by weight of cellulose pulp).
  • cellulose acetate is added to the mixture containing cellulose acetate by adding a precipitating agent such as water, dilute acetic acid, or magnesium acetate aqueous solution.
  • a precipitating agent such as water, dilute acetic acid, or magnesium acetate aqueous solution.
  • dilute acetic acid refers to an aqueous solution of 1 to 50% by weight of acetic acid.
  • the magnesium acetate aqueous solution is preferably 5 to 30% by weight.
  • the precipitation point of the cellulose acetate is rapidly exceeded. Specifically, (1) Add a precipitant in an amount exceeding the precipitation point of cellulose acetate at a time, (2) Add an amount of precipitant beyond the precipitation point of cellulose acetate, and add a precipitant Adding the precipitating agent in two portions, (3) adding an amount of precipitating agent not exceeding the precipitation point of cellulose acetate, adding a large amount of precipitating agent, and adding the precipitating agent twice. It may be added separately.
  • reaction mixture containing cellulose acetate and the precipitating agent It is preferable to mix the reaction mixture containing cellulose acetate and the precipitating agent.
  • the method include a method of stirring the reaction mixture containing cellulose acetate and the precipitating agent using a commercial mixer, or cellulose acetate.
  • examples thereof include a method of adding a precipitant to the reaction mixture and kneading with a biaxial kneader.
  • the precipitated cellulose acetate is stabilized.
  • a stabilizer comprising calcium hydroxide or other calcium salt, magnesium acetate or other magnesium salt, or calcium hydroxide or other calcium salt and magnesium acetate or other magnesium salt with respect to the produced cellulose acetate.
  • a stabilizer comprising calcium hydroxide or other calcium salt, magnesium acetate or other magnesium salt, or calcium hydroxide or other calcium salt and magnesium acetate or other magnesium salt with respect to the produced cellulose acetate.
  • the stabilizer aqueous solution having the predetermined concentration examples include 1) a calcium hydroxide aqueous solution prepared to a concentration of 0.0017 to 0.0030 wt%, and 2) acetic acid prepared to a concentration of 0.01 to 0.15 wt%. Selected from the group consisting of a magnesium aqueous solution, and 3) a calcium hydroxide aqueous solution prepared to a concentration of 0.001 to 0.0025% by weight and a magnesium acetate aqueous solution prepared to a concentration of 0.01% to 0.08% by weight. Stabilize with any one of the stabilizers.
  • the step (6) of adding a stabilizer to the precipitated cellulose acetate includes, for example, separating cellulose acetate and immersing the cellulose acetate in a stabilizer aqueous solution having a stabilizer concentration adjusted to a predetermined concentration.
  • the precipitated cellulose acetate can be stabilized.
  • a method for adding an industrial stabilizer a method in which a dilute aqueous solution of the metal compound is added to a suspension in which a cellulose derivative is dispersed may be used.
  • drying After adding the stabilizer, it is preferable to dry the cellulose acetate.
  • a drying method is not specifically limited, A well-known thing can be used, For example, drying can be performed on various conditions, such as a heating, ventilation, or pressure reduction.
  • the cellulose acetate of the present disclosure can be formed into a fiber by spinning.
  • the spinning method at that time is not limited, but dry spinning is preferably used.
  • dry spinning is a method in which cellulose acetate is dissolved in a predetermined solvent, discharged from a spinneret, and the solvent is evaporated by hot air to form a fiber.
  • the predetermined solvent include acetone or an acetone aqueous solution.
  • the fiber can be suitably used for tobacco filters and the like.
  • the dissolved solution is made up to 200 mL with distilled water, and the absorbance is measured using an atomic absorption photometer together with the standard solution as a test solution, and the calcium (Ca) content and magnesium (Mg) of the test solution are measured.
  • the contents were determined and converted by the following formulas to determine the calcium (Ca) content and the magnesium (Mg) content of the sample.
  • the unit was converted into mol unit.
  • moisture (% by weight) that is, moisture in the sample was measured using, for example, a Kett moisture meter (METTTLER TOLEDO HB43).
  • Moisture (wt%) in the sample can be calculated from the weight change before and after heating by placing about 2.0 g of the water-containing sample on the aluminum tray of the ket moisture meter and heating at 120 ° C. until the weight does not change.
  • the residual sulfuric acid content of cellulose acetate was measured as follows. Cellulose acetate dried using an electric dryer is baked in an electric furnace at 1300 ° C, and sublimated sulfurous acid gas is trapped in 10% hydrogen peroxide solution, titrated with a normal sodium hydroxide solution, and the amount in terms of H 2 SO4 As measured. The measured value is expressed in mol unit or ppm unit as the sulfuric acid content in 1 g of cellulose acetate in an absolutely dry state.
  • the wet heat stability of cellulose acetate was determined by measuring the amount of hydrolyzed acetic acid as follows. The dried cellulose acetate was pulverized using a Nara-type free crusher, and approximately 2.0 g was weighed into a Pyrex (registered trademark) test tube, 2 ml of distilled water was added, and the bottle was sealed and placed in a boiling water bath for 7 hours. Soaked. After cooling, the contents were washed out on the filter paper with boiling water, and the filtrate was combined to 150 ml. This solution was titrated with 0.01N NaOH solution using phenolphthalein as an indicator.
  • wet heat stability (%) (AB) ⁇ F ⁇ 0.6 ⁇ 10 ⁇ 3 (g) ⁇ sample weight (g) ⁇ 100 A: 0.01N-NaOH solution titration (ml), B: 0.01N-NaOH solution titration (ml) in blank test, F: 0.01N-NaOH solution factor.
  • 0.6 ⁇ 10 ⁇ 3 (g) is the weight of acetic acid that reacts with the titration amount (ml) of 0.01N—NaOH solution calculated based on the following reaction formula.
  • the wet heat stability was rated as ⁇ for less than 0.07% and x for 0.07% or more.
  • the yarn breakage in the spinning process of cellulose acetate was evaluated as follows.
  • a spinning solution (dope) obtained by mixing and dissolving 29.5 parts by weight of cellulose acetate, 67.5 parts by weight of acetone, 0.5 parts by weight of titanium oxide, and 2.5 parts by weight of pure water is filtered and defoamed.
  • a spinneret 95 mm ⁇ having 400 triangular pores having a side of 58 ⁇ m, spinning was performed under conditions of a discharge rate of 333 g / min and a spinning speed of 400 m / min. Next air was dried at 95 ° C.
  • This spinning test was carried out continuously for 10 days, and the yarn cutting frequency over 10 days (number of times / ton-product) and the release agent between the die and the spinning solution at the start of spinning were evaluated based on the degree of yarn discharge.
  • the stringing property was evaluated according to the following criteria.
  • Thread breakage is shown as a relative value when the thread breakage number of Comparative Example 1 is 100. Further, 100 or more was regarded as thread breakage x, and less than 100 was regarded as thread breakage ⁇ .
  • Example 1 The kraft process dissolving pulp, which is a cellulose raw material, was crushed into fluff and dried to a moisture content of about 6%. To 100 parts of this dried fluff pulp, 31 parts of glacial acetic acid was added to activate the pretreatment for 1 hour. This pretreated activated cellulose was charged into a stirring acetylation reactor, and a mixed solution of 270 parts of acetic anhydride as an acetylation reagent and 330 parts of acetic acid as a reaction solvent was simultaneously charged. Thereafter, 30 parts of the first stage catalyst solution (3% sulfuric acid acetic acid solution) was added over 0.5 minutes to initiate the reaction. The time when the catalyst solution started to be added was set to 0 minute, and the subsequent reference time was used.
  • the first stage catalyst solution 3% sulfuric acid acetic acid solution
  • Example 2-10 and Comparative Example 1-8 Cellulose acetate was obtained in the same manner as in Example 1 except that the stabilizer described in Table 1 was used instead of calcium hydroxide having a concentration of 0.0027% by weight. Under the conditions where both calcium hydroxide and magnesium acetate were used, calcium hydroxide and magnesium acetate were each 2 parts by weight as a stabilizer with respect to 100 parts by weight of cellulose acetate obtained by precipitation, and calcium hydroxide was added. Magnesium acetate was added continuously after the addition.
  • Example 9 Cellulose acetate was obtained in the same manner as in Example 1 except that 0.0027 wt% calcium hydroxide was not used as a stabilizer. About the obtained cellulose acetate, calcium content and magnesium content, residual sulfuric acid content, chemical equivalent ratio of calcium content to residual sulfuric acid content [Ca / H 2 SO 4 ] and chemical equivalent ratio of magnesium content to residual sulfuric acid content [Mg / H 2 SO 4 ], degree of acetylation, wet heat stability, and thread breakage were evaluated, and the results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Artificial Filaments (AREA)

Abstract

湿熱安定性に優れるとともに、紡糸工程における糸切れを低減することができるセルロースアセテートを提供することを目的とする。 残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]および残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]が下記式(1)に示す関係を満たすセルロースアセテート。 [Mg/HSO]>0、[Ca/HSO4」]>0、かつ (2.70-[Mg/HSO])/1.62≦[Ca/HSO]≦(37.7-[Mg/HSO])/10.3 (1)

Description

セルロースアセテート
 本発明は、セルロースアセテートに関する。
 セルロースアセテートのうち、セルローストリアセテートは、光学的等方性が高く、しかも強靭性および難燃性に優れるため、各種の写真材料や光学フィルム等として用いられている。また、セルロースジアセテートは、セルロースアセテート繊維として、たばこフィルター等に用いられている。セルロースアセテート繊維は、一般的には、セルロースアセテートを可溶な溶剤に溶解した紡糸原液を、紡糸口金から吐出した後、溶剤を熱風により蒸発させて繊維状に凝固させる乾式紡糸により製造することができる。特にたばこフィルターに用いられるような繊維径が細いセルロースアセテート繊維は、紡糸口金の細孔の径も細く、紡糸工程中に糸切れが生じやすい。
 このような紡糸工程中の糸切れに関し、特許文献1には、セルロースアセテート繊維の紡糸原液において、ヘミセルロースアセテートのアルカリ土類金属塩の含有率を0.15重量%以下に低減することが記載されており、特許文献2には、セルロースエステルを有機溶剤に溶解させてなる溶液に、カルボキシル基を2個以上有する有機酸および/または前記有機酸の塩を添加することが記載されている。
特開平10-298823号公報 特開平2-251607号公報
 特許文献1に記載のセルロースアセテートは、いずれもカルシウム含量が低く、セルロースアセテートの湿熱安定性に劣るという問題がある。特許文献2においても、溶液に添加するカルボキシル基を2個以上有する有機酸(クエン酸等)が溶媒に難溶であるため、セルロースアセテート溶液に該有機酸を添加すると、有機酸やその塩が析出して、紡糸ノズルの閉塞を招き、糸切れを発生させてしまうという欠点がある。さらに、有機酸はカルボキシル基が多いため、溶液を酸性化させる傾向があり、その結果セルロースアセテートの脱アセチル化を引き起こし、セルロースアセテート溶液が不安定なものになり、セルロースアセテートの湿熱安定性に劣るという問題もある。
 本発明は、湿熱安定性に優れるとともに、紡糸工程における糸切れを低減することができるセルロースアセテートを提供することを目的とする。
 本発明の第一は、残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]および残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]が下記式(1)に示す関係を満たすセルロースアセテートに関する。
[Mg/HSO]>0、[Ca/HSO4」]>0、かつ
(2.70-[Mg/HSO])/1.62≦[Ca/HSO]≦(37.7-[Mg/HSO])/10.3   (1)
 残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]および残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]が下記式(2)に示す関係を満たし、さらに、酢化度が54.0%以上56.0%以下であることが好ましい。
[Ca/HSO]>0、[Mg/HSO]>0、かつ
[Mg/HSO]≧(-1.78)[Ca/HSO]+4.10 (2)
 残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]および残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]が下記式(3)に示す関係を満たすことが好ましい。
[Ca/HSO]>0、[Mg/HSO]>0、かつ
[Mg/HSO]≦(-9.59)[Ca/HSO]+29.8 (3)
 本発明によれば、湿熱安定性に優れるとともに、紡糸工程における糸切れを低減することができるセルロースアセテートを提供することができる。
実施例及び比較例の残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]と残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]との関係をプロットしたグラフを示す図面である。
 以下、好ましい実施の形態の一例を具体的に説明する。
 本開示に係るセルロースアセテートは、残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]および残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]が下記式(1)に示す関係を満たすものである。
[Mg/HSO]>0、[Ca/HSO4」]>0、かつ
(2.70-[Mg/HSO])/1.62≦[Ca/HSO]≦(37.7-[Mg/HSO])/10.3   (1)
 [残存硫酸量に対するカルシウムおよびマグネシウムの化学当量比]
 残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]は、測定によりカルシウム含量(mol単位)および残存硫酸量(mol単位)を求め、カルシウム含量を残存硫酸量で除することにより得られる値である。残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]についても同様である。
 ここで、残存硫酸とは、セルロースアセテートにおける結合硫酸、遊離の硫酸、および塩基の添加により中和された硫酸塩などに対応する硫酸を含む意味に用いる。また、結合硫酸とは、セルロースアセテートに結合した硫酸(硫酸エステルなどの硫酸基やスルホン酸基として結合した結合硫酸成分)をいう。なお、セルロースアセテートを洗浄した場合、残存硫酸としての遊離硫酸及び硫酸塩は低減され、結合硫酸がほとんどである場合もある。
 本開示に係るセルロースアセテートは、残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]および残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]が下記式(1)に示す関係を満たすものであり、湿熱安定性に優れるとともに、紡糸工程における糸切れを低減することができる。[Mg/HSO]および[Ca/HSO]を一定値以下にすると、糸切れの原因となる物質の析生が抑制されるため糸切れが改善される。しかし、[Mg/HSO]および[Ca/HSO]が低くなりすぎると、セルロースアセテート中のCaまたはMg量に対するHSO量が多くなるため、湿熱安定性が維持できなくなる。そのため、下記式(1)の関係を満たす範囲にすることが重要である。
[Mg/HSO]>0、[Ca/HSO4」]>0、かつ
(2.70-[Mg/HSO])/1.62≦[Ca/HSO]≦(37.7-[Mg/HSO])/10.3   (1)
 上記式(1)に示す関係を図1のグラフを用いて説明する。上記式(1)に示す関係を満たす領域は、[Mg/HSO]および[Ca/HSO]のいずれも正の値を示す領域において、[Mg/HSO]軸上の37.7と[Ca/HSO]軸上の3.67を通る実直線1と、[Mg/HSO]軸上の2.70と[Ca/HSO]軸上の1.67を通る実直線2との間、および両実直線から構成される領域である。
 糸切れが生じる機構について説明する。セルロースアセテートの原料として用いるパルプ(特に木材パルプ)に含まれるヘミセルロース成分であるキシラン中のグルクロノキシラン、もしくは、パルプ精製の過程で酸化したグルクロノキシランは、セルロースアセテートをアセトン、アセトン水溶液またはその他の溶媒で溶解した溶液中でグルクロノキシランアセテートのアルカリ土類金属塩として存在する。このグルクロノキシランアセテートのアルカリ土類金属塩は、その溶液の温度が高くなることにより、架橋が促進され析出しやすくなる性質を有する。セルロースアセテートを紡糸する工程では、紡糸塔では紡糸口金から吐出したセルロースアセテート溶液中のアセトンを蒸発させるために温度が高くなっている。このため、紡糸口金近傍のセルロースアセテート溶液も温度が高くなる場合もあり、セルロースアセテート溶液中でグルクロノキシランアセテートのアルカリ土類金属塩が析出し、口金に蓄積して紡糸口を詰まらせることにより糸切れが発生しやすくなる。
 湿熱安定性について説明する。セルロースアセテートは湿熱安定性に劣る場合、セルロースアセテートを精製する工程にて、分子量低下を引き起こしやすく、着色したり、セルロースアセテート中の酢酸量が多くなる要因となる。さらに、繊維状とした後のセルロースアセテートも同様に、湿熱安定性に劣る場合、脱アセチル化や分子量低下を引き起こしやすく、性状を保証できる期間が短くなる。つまり、そのような湿熱安定性に劣るセルロースアセテートを使用し、繊維状とした場合、着色や酸臭を有するセルロースアセテート繊維となりうる。なお、セルロースアセテート繊維を、特にたばこフィルター等、人の五感に敏感に作用する用途に用いる場合は、味の劣化や酸臭の要因となるため、特に高い湿熱安定性が要求される。
 上記式(1)に示す関係を満たさず、[Ca/HSO]>0、[Mg/HSO]>0、かつ[Ca/HSO]>(37.7-[Mg/HSO])/10.3の関係式を満たすこととなる場合は、セルロースアセテートの紡糸工程による糸切れが発生しやすくなり、[Ca/HSO]>0、[Mg/HSO]>0、かつ(2.70-[Mg/HSO])/1.62>[Ca/HSO]の関係式を満たすこととなる場合は、セルロースアセテートが湿熱安定性に劣るものとなる。
 本開示のセルロースアセテートは、残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]および残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]が下記式(2)に示す関係を満たし、さらに、酢化度が54.0%以上56.0%以下であることが好ましい。セルロースアセテートの脱アセチル化の発生がより抑制されるため、湿熱安定性により優れたセルロースアセテート繊維の製造が可能となる。
[Ca/HSO]>0、[Mg/HSO]>0、かつ
[Mg/HSO]≧(-1.78)[Ca/HSO]+4.10 (2)
 上記式(2)に示す関係を図1のグラフを用いて説明する。[Mg/HSO]および[Ca/HSO]のいずれも正の値を示す領域において、[Mg/HSO]軸上の4.10と[Ca/HSO]軸上の2.30を通る破直線1を境に[Mg/HSO]および[Ca/HSO]が高い側、並びに破直線1から構成される領域が、上記式(2)に示す関係を満たす領域である。
 また、本開示のセルロースアセテートは、残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]および残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]が下記式(3)に示す関係を満たすことがより好ましい。セルロースアセテート溶液中でグルクロノキシランアセテートのアルカリ土類金属塩の析出がより抑制されるため、セルロースアセテートの紡糸工程における糸切れをより低減することができ、フィラメントデニールのより小さい糸を得ることや、紡糸速度も速くすることができる。
[Ca/HSO]>0、[Mg/HSO]>0、かつ
[Mg/HSO]≦(-9.59)[Ca/HSO]+29.8 (3)
 上記式(3)に示す関係を図1のグラフを用いて説明する。[Mg/HSO]および[Ca/HSO]のいずれも正の値を示す領域において、[Mg/HSO]軸上の29.8と[Ca/HSO]軸上の3.10を通る破直線2を境に[Mg/HSO]が低い側、および破直線2から構成される領域が、上記式(3)に示す関係を満たす領域である。
 残存硫酸量の測定は、固体状の無機硫酸塩の影響を受けにくい、いわゆる燃焼トラップ法で行うことが好ましい。すなわち、この燃焼トラップ法において、残存硫酸量は、乾燥したセルロースエステルを1300℃程度の電気炉で焼き、昇華してきた亜硫酸ガスを所定の濃度の過酸化水素水にトラップして、これを所定の濃度の塩基(例えば、水酸化ナトリウム水溶液)にて滴定することにより測定できる。当該測定値はHSO量として、絶乾状態のセルロースアセテート1g中の硫酸含有量としてmol単位またはppm単位で表される。なお、mol単位およびppm単位の換算においてHSOの式量は、98.0g/molとすればよい。
 マグネシウム含量およびカルシウム含量の測定は、まず乾燥したセルロースアセテートを完全に燃焼させた後、灰分を塩酸に溶解した前処理を行った上で原子吸光法により測定することができる。具体的には、以下のとおりである。試料3.0gをルツボに計量し、電熱器上で炭化させた後、750~850℃の電気炉で2時間程度灰化させる。約30分放冷した後、0.07%の塩酸溶液25mLを加え、220~230℃で加熱溶解させる。放冷後、溶解液を200mLまで蒸留水でメスアップし、これを検液として標準液と共に原子吸光光度計を用いて吸光度を測定して、検液のカルシウム(Ca)含量およびマグネシウム(Mg)含量をそれぞれ求め、以下の式で換算して、試料1g中のカルシウム(Ca)含量およびマグネシウム(Mg)含量をそれぞれ求めることができる。単位は、mol単位に換算することもできる。ここで、水分(重量%)、つまり試料中の水分は、例えばケット水分計(METTLER TOLEDO HB43)を用いて測定することができる。ケット水分計のアルミ受け皿に含水状態の試料約2.0gを乗せ、重量が変化しなくなるまで120℃で加熱することで加熱前後の重量変化から試料中の水分(重量%)が算出できる。なお、mol単位およびppm単位の換算において、CaおよびMgの原子量はそれぞれ40.0g/molおよび24.3g/molとして換算すればよい。
Figure JPOXMLDOC01-appb-M000001
 [酢化度]
 本開示のセルロースアセテートの平均酢化度は、51.8%以上58.9%以下であることが好ましく、54.0%以上56.0%以下であることがより好ましい。51.8%未満であると、糸の強度が脆くなったり、たばこフィルターとした場合には喫味に影響を与える、58.9%を超えると、アセトン等溶媒への溶解性が低下する。
 酢化度は、ASTM-D-817-91(セルロースアセテート等の試験法)における酢化度の測定および計算方法に従う。
 [セルロースアセテートの製造]
 セルロースアセテートの製造方法について詳述する。本開示に係るセルロースアセテートは、セルロースパルプを解砕する工程(1)、前記解砕したセルロースパルプを酢酸と接触させて前処理する工程(2)、前記前処理したセルロースパルプを、無水酢酸および前記セルロースパルプ100重量部に対して20重量部以下の濃硫酸と接触させてエステル化する工程(3)、中和剤を添加して、前記エステル化により得られたセルロースアセテートを加水分解する工程(4)、前記加水分解により酢化度が調整されたセルロースアセテートを沈殿する工程(5)、および前記沈澱したセルロースアセテートに対して、水酸化カルシウムまたは他のカルシウム塩、および酢酸マグネシウムまたは他のマグネシウム塩からなる群から選択される1以上の安定剤を添加する工程(6)を有する一連の工程を経ることにより製造することができる。得られるセルロースアセテートの、残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]および残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]は、後述するエステル化工程(3)の終了または加水分解工程(4)の開始時に添加する中和剤、沈殿工程(5)用いられる沈澱剤、および安定化工程(6)で添加する安定剤の各量または総量により調整することができる。なお、一般的なセルロースアセテートの製造方法については、「木材化学」(上)(右田ら、共立出版(株)1968年発行、第180頁~第190頁)を参照できる。
 (セルロースパルプ)
 本開示のセルロースアセテートの原料となるセルロースアセテート(セルロース源)として、木材パルプまたはリンターパルプを用いることができる。木材パルプとしては、針葉樹パルプ、広葉樹パルプ等が挙げられる。針葉樹パルプとしては、例えば、トウヒ、マツ、ツガ等から得られる針葉樹パルプが挙げられる。広葉樹パルプとしては、例えば、ユーカリ、アカシア等から得られる広葉樹パルプが挙げられる。これらのパルプは単独で又は二種以上組み合わせてもよく、また、針葉樹パルプと広葉樹パルプとを併用してもよい。
 セルロースパルプとしては、構成糖成分全体に対して高いマンノース含量のパルプ及び/又はマンノース含量に対するキシロース含量の低いパルプを用いるのが有利である。パルプを構成する糖鎖成分(又は構成糖成分)において、マンノース(マンノース骨格又はマンノース単位)の含量(mol%)は、0.4以上(例えば、0.4~2.5)、好ましくは0.5~2(例えば、0.5~1.5)、さらに好ましくは0.6~1.5程度である。また、マンノース含量に対するキシロース含量の割合(mol比)は、通常、3未満、例えば、0.3~2.8、好ましくは0.3~2程度であり、0.5~1.5程度であってもよい。なお、セルロースパルプは、キシロース(キシロース骨格又はキシロース単位)をも含んでいてもよく、キシロース含有量(mol%)は、例えば、0.5~3、好ましくは0.7~2、さらに好ましくは0.8~1.5程度である。なお、パルプ及びセルロースアセテートにおいて、マンノース含量及びキシロース含量は、以下の方法で定量できる。
 充分に乾燥した試料200mgを精秤し、72%硫酸3mlを加え、氷水で冷却しながら超音波を用い、2時間以上かけて試料を完全に溶解させる。得られた溶液に蒸留水39mlを加えて十分に振盪し、窒素気流下、110℃で3時間還流した後、30分間放冷する。次いで、炭酸バリウム14gを加え、氷水で冷却しつつ超音波を用いて中和する。30分後、さらに炭酸バリウム10gを加え、pH5.5~6.5程度になるまで中和し、濾過する。濾液を超純水で100重量倍に希釈し、試料を調製する。続いて、得られた試料を下記の条件でイオンクロマトグラフィにより分析する。
高速液体クロマトグラフィ(HPLC,ダイオネクス社製DX-AQ型)
検出器:パルスドアンペロメトリー検出器(金電極)
カラム:ダイオネクス社製、Carbo Pac PA-1(250×4mm)
溶離液:2mM NaOH
流量:1.0ml/分
ポストカラム:ダイオネクス社製、AMMS-II型
そして、マンノースおよびキシロースのmol比は、予め、マンノース、キシロースおよびグルコース標品を用いて作成した検量線より求めることができる。これらの3成分の合計を100として各構成糖成分の含量をmol%で表す。
 また、セルロースパルプのα-セルロース含有量(重量%)は、通常、90~99(例えば、93~99)、好ましくは96~98.5(例えば、97.3~98)程度であってもよい。
 セルロースパルプの含水率は、5.0~9.0重量%であることが好ましく、6.0~8.0重量%であることがより好ましく、6.5~7.5重量%であることがさらに好ましい。セルロースパルプの含水率が低すぎるとパルプの反応性が著しく悪化する。また、含水率が高すぎると反応に使用する無水酢酸を過剰に使用する必要がありコスト面で不利となる。上記範囲であることにより、セルロースアセテートの酢化度等の性状の制御を容易とすることができる。
 セルロースパルプは、シート状のものを用いることができる。この場合、シートの坪量が300~850g/mで密度が0.40~0.60g/cm、破裂強度が50~1000KPaのものであることが好ましいが、これらに限定されるものではない。
 (解砕)
 本開示のセルロースアセテートの製造方法は、セルロースパルプを解砕する工程(1)を有する。これにより、以降の工程で反応が効率的に均一に進み、取扱いも容易になる。解砕工程は、特に、セルロースパルプがシート状の形態で供給されるような場合に有効である。
 セルロースパルプを解砕する工程(1)において、セルロースパルプを解砕する方法としては、湿式解砕法と乾式解砕法がある。湿式解砕法は、パルプシートなどのセルロースパルプに水または水蒸気などを添加して解砕する方法である。湿式解砕法としては、例えば、蒸気による活性化と反応装置中での強い剪断攪拌を行う方法や、希酢酸水溶液中で離解してスラリーとした後、脱液と酢酸置換を繰り返す、いわゆるスラリー前処理を行う方法等が挙げられる。また、乾式解砕法は、パルプシートなどのセルロースパルプを乾燥状態のまま解砕する方法である。乾式解砕法としては、例えば、ピラミッド歯を有するディスクリファイナーで粗解砕したパルプを、線状歯を有するディスクリファイナーで微解砕する方法や、内壁にライナーを取付けた円筒形の外箱と、外箱の中心線を中心として高速回転する複数の円板と、各円板の間に前記中心線に対して放射方向に取り付けられた多数の翼とを備えたターボミルを用い、翼による打撃と、ライナーへの衝突と、高速回転する円板、翼及びライナーの三者の作用で生じる高周波数の圧力振動とからなる三種類の衝撃作用により、外箱の内部に供給される被解砕物を解砕する方法等が挙げられる。解砕方法は、これらに限定されるものではない。
 (前処理工程)
 前記解砕したセルロースパルプを酢酸と接触させて前処理する工程(2)においては、酢酸及び/または含硫酸酢酸を解砕したセルロースパルプ(解砕パルプ)100重量部に対して、好ましくは10~500重量部を添加することができる。このとき、酢酸は、96~100重量%の酢酸を用いることができる。また、含硫酸酢酸を用いた前処理は、硫酸を含む酢酸で前処理をする方法であり、酢酸中に1~10重量%の硫酸を含むこともできる。
 また、セルロースパルプに酢酸及び/または含硫酸酢酸を添加する方法としては、例えば、酢酸もしくは含硫酸酢酸を一段階で添加する方法、または、酢酸を添加して一定時間経過後、含硫酸酢酸を添加する方法、含硫酸酢酸を添加して一定時間経過後、酢酸を添加する方法等の酢酸または含硫酸酢酸を2段階以上に分割して添加する方法等が挙げられる。添加の具体的手段としては、噴霧してかき混ぜる方法が挙げられる。
 そして、前処理活性化は、セルロースパルプに酢酸及び/または含硫酸酢酸を添加した後、17~40℃下で0.2~48時間静置する、または17~40℃下で0.1~24時間密閉及び攪拌すること等により行うことができる。
 (エステル化工程)
 前記前処理したセルロースパルプを無水酢酸および前記セルロースパルプ100重量部に対して20重量部以下の濃硫酸と接触させてエステル化する工程(3)においては、例えば、酢酸、無水酢酸、および濃硫酸からなる混合物に、前処理活性化したセルロースパルプを添加すること、前処理活性化したセルロースパルプに、酢酸と無水酢酸の混合物および濃硫酸を添加すること、または前処理活性化したセルロースパルプに酢酸と無水酢酸の混合物を添加した後、濃硫酸を添加すること等によりエステル化を開始することができる。
 また、酢酸と無水酢酸との混合物を調製する場合、酢酸と無水酢酸とが含まれていれば、特に限定されないが、酢酸と無水酢酸との割合としては、酢酸300~600重量部に対し、無水酢酸200~400重量部であることが好ましく、酢酸350~530重量部に対し、無水酢酸240~280重量部であることがより好ましい。
 エステル化反応における、酢酸と無水酢酸の混合物、および濃硫酸の割合としては、原料セルロース(セルロースパルプ)100重量部に対して、酢酸と無水酢酸の混合物は500~1000重量部であることが好ましく、濃硫酸は、20重量部以下、例えば1~20重量部とすることができる。このとき、酢酸は、96~100重量部とすることができる。エステル化触媒である硫酸の量が少ない場合は、反応時間が長くなりすぎ、生産性が低下する。エステル化触媒である硫酸の量が多すぎると、反応が早くなりすぎ制御が困難となる。また硫酸量により残存硫酸の量も影響を受ける。
 エステル化反応は、例えば0~55℃、好ましくは20~50℃、さらに好ましくは30~50℃程度の温度で行うことができる。エステル化反応は、初期において、比較的低温(例えば、10℃以下、好ましくは0~10℃)で行ってもよい。このような低温での反応時間は、例えば、エステル化反応開始から30分以上(例えば、40分~5時間、好ましくは60~300分程度)であってもよい。また、エステル化時間(総エステル化時間)は、反応温度等によっても異なるが、例えば20分~36時間、好ましくは30分~20時間の範囲である。特に、少なくとも30~50℃の温度で30分~180分程度(好ましくは50分~150分程度)反応させるのが望ましい。なお、パルプを触媒と接触させた時点から失活剤を添加するまでの時間をエステル化時間とする。
 エステル化反応は、減圧下においても行うことができる。例えば、セルロース、無水酢酸、酢酸の混合物を攪拌しながら、反応系を5.3~20kPa、好ましくは6~12kPaの減圧にした後、1段目の触媒を添加し、エステル化反応を開始する。蒸発する酢酸と無水酢酸の混合蒸気は凝縮器で凝縮させて反応系外へ留出させ、同減圧度を維持し、温度は50~65℃程度に保持してエステル化反応を継続させ、途中で所定の時点に2段目の触媒を添加し、さらに減圧下で反応を継続する。
 86~201重量部の酢酸及び無水酢酸混合物が留出した時点又は混合物の凝縮液が殆ど留出しなくなった時点で反応系の圧力を約5分かけ徐々に常圧へ戻し、50~80℃で1~60分間反応を継続させる。
 (加水分解工程)
 中和剤を添加して、前記エステル化により得られたセルロースアセテートを加水分解する工程(4)について述べる。前記エステル化反応により、セルロースはアセチル化され、また硫酸は部分的に硫酸エステルとしてセルロースに結合しているため、前記エステル化反応終了後、所望のアセチル置換度のセルロースアセテート、特にはセルロースジアセテートを得るために、および湿熱安定性向上のために、加水分解してアセチル基および結合硫酸を脱離する。当該加水分解に際して、前記エステル化反応を停止するために水、希酢酸(1~50重量%の酢酸水溶液)、又は塩基性物質の水溶液などの中和剤を添加して、エステル化剤である無水酢酸を失活させる。このように中和剤の添加により反応系に水を存在させることが好ましい。なお、当該加水分解は、ケン化ともいう。
 中和剤は、水、希酢酸(1~50重量%の酢酸水溶液)、又は塩基性物質の水溶液などの中でも、塩基性物質の水溶液が好ましい。
 水または希酢酸を用いる場合、水は、セルロースアセテートを含む反応混合物中に存在する無水酢酸と反応して酢酸を生成させ、加水分解工程後のセルロースアセテートを含む反応混合物の水分量が酢酸に対し5~70mol%になるように添加することができる。5mol%未満であると、加水分解反応が進まず解重合が進み、低粘度のセルロースアセテートとなり、70mol%を超えると、エステル化反応終了後のセルロースエステル(セルローストリアセテート)が析出し加水分解反応系から出るため、析出したセルロースエステルの加水分解反応が進まなくなる。
 塩基性物質の水溶液などの中和剤としては、例えば、アルカリ金属化合物(例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩;酢酸ナトリウム、酢酸カリウム等のアルカリ金属カルボン酸塩;ナトリウムメトキシド、ナトリウムエトキシド等のナトリウムアルコキシドなど)、アルカリ土類金属化合物(例えば、水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物、炭酸マグネシウム、炭酸カルシウム等のアルカリ土類金属炭酸塩;炭酸水素カルシウム等のアルカリ土類金属炭酸水素塩;酢酸マグネシウム、酢酸カルシウム等のアルカリ土類金属カルボン酸塩;マグネシウムエトキシド等のアルカリ土類金属アルコキシドなど)などを使用できる。これらの中和剤の中でも、アルカリ土類金属化合物、特に、酢酸マグネシウム等のマグネシウム化合物が好ましい。
 中和剤は、エステル化に利用した触媒である硫酸の一部を中和し、残存するエステル化触媒である硫酸を加水分解における触媒として利用してもよく、中和することなく残存した触媒である硫酸を全て加水分解における触媒として利用してもよい。好ましい態様では、残存エステル化触媒である硫酸を加水分解における触媒として利用してセルロースアセテートを加水分解(脱アセチル化)する。なお、加水分解において、必要に応じて新たに溶媒等(酢酸、塩化メチレン、水、アルコールなど)を添加してもよい。
 加水分解の方法の中には、高温熟成と常温熟成がある。常温において行う加水分解工程は、常温熟成と称し、反応系内の最高到達温度が55℃以上100℃未満である場合をいい、好ましくは55℃以上90℃未満である。高温において行う加水分解は、高温熟成と称し、反応系内の最高到達温度が100℃以上200℃以下の範囲をいう。高温熟成においては、水蒸気を用いて系内の温度を上昇させる。
 (高温熟成)
 例えば酢化度を54.0以上56.0%以下に調整する場合、反応系内の温度を125~170℃とし、加水分解反応の時間は、特に限定されないが、3分~6時間保持して所望の酢化度のセルロースジアセテートを得る。当該酢化度の範囲内において、より高い酢化度にするには、加水分解反応の時間を短くすることにより調整することができる。ここで、加水分解反応の時間は、中和剤の投入開始から加水分解反応停止までの時間をいう。
 具体的には、完全中和した反応混合物をオートクレーブを用い、140~155℃の高温に10~50分間保持した後、反応物を大気下に徐々にフラッシュさせて、反応混合物を50~120℃とすることにより、加水分解の反応およびその停止を行うことができる。
 (常温熟成)
 例えば酢化度を54.0以上56.0%以下に調整する場合、加水分解工程における水の添加量、および加水分解温度の組み合わせについて、水の添加量が高めで且つ加水分解温度が低めの反応条件の組み合わせが最も好ましく、水の添加量としては酢酸に対し38~48mol%で、且つ加水分解温度が65~78℃の範囲が最も好ましい。エステル化触媒である硫酸の量が多い場合には、水の添加量および加水分解温度の変化に対する解重合速度の変化を大きくする効果があるので、上記の水の添加量および加水分解温度の範囲の組み合わせであれば、エステル化触媒である硫酸の量は低い方が好ましく、具体的には、エステル化工程により得られたセルローストリアセテート100重量部に対して例えば、濃硫酸を1.13~2.53重量部(言い換えれば、セルロースパルプ100重量部に対して2~4.5重量部)である。
 (沈殿工程)
 前記加水分解により酢化度が調整されたセルロースアセテートを沈殿する工程(5)においては、セルロースアセテートを含む混合物に、水、希酢酸、又は酢酸マグネシウム水溶液等の沈澱剤を添加することによりセルロースアセテートを沈殿することができる。ここで、希酢酸とは、1~50重量%の酢酸水溶液をいう。また、酢酸マグネシウム水溶液は、5~30重量%であることが好ましい。
 セルロースアセテートを含む反応混合物に沈澱剤を添加して、セルロースアセテートを沈殿させる際、セルロースアセテートの沈殿点を急激に超えるようにすることが好ましい。具体的には、(1)セルロースアセテートの沈殿点を超える量の沈澱剤を一回で添加すること、(2)セルロースアセテートの沈殿点を超える量の沈澱剤を添加し、さらに沈澱剤を添加して、沈澱剤を二回に分けて添加すること、(3)セルロースアセテートの沈殿点を超えない量の沈澱剤を添加し、さらに大量の沈澱剤を添加して、沈澱剤を二回に分けて添加すること等が挙げられる。
 セルロースアセテートを含む反応混合物と沈澱剤を混合することが好ましく、その具体的な手段としては、セルロースアセテートを含む反応混合物と沈澱剤とを業務用ミキサーを用いて撹拌する方法、またはセルロースアセテートを含む反応混合物に沈澱剤を添加し、二軸ニーダーを用いて練り込む方法などが挙げられる。
 (安定化工程)
 前記沈澱したセルロースアセテートに対して、水酸化カルシウムまたは他のカルシウム円、および酢酸マグネシウムまたは他のマグネシウム塩からなる群から選択される1以上の安定剤を添加する工程(6)(以下、安定化工程とも称する。)においては、前記沈澱したセルロースアセテートに対して、安定化を行う。具体的には、生成したセルロースアセテートに対して水酸化カルシウムまたは他のカルシウム塩、酢酸マグネシウムまたは他のマグネシウム塩、または水酸化カルシウムや他のカルシウム塩および酢酸マグネシウムや他のマグネシウム塩からなる安定剤を添加することができる。これにより安定剤を含有するセルロースアセテートを得られる。
 当該所定濃度の安定剤水溶液としては、例えば、1)0.0017~0.0030重量%の濃度に調製した水酸化カルシウム水溶液、2)0.01~0.15重量%の濃度に調製した酢酸マグネシウム水溶液、並びに3)0.001~0.0025重量%の濃度に調製した水酸化カルシウム水溶液および0.01~0.08重量%の濃重量%度に調製した酢酸マグネシウム水溶液からなる群から選択される何れか1種の安定剤で安定化処理する。上記濃度の水酸化カルシウムおよび/または酢酸マグネシウムを添加することにより、湿熱安定性に優れるとともに、紡糸工程における糸切れを低減することができるセルロースアセテートを得ることができる。尚、1ppmは1×10-4重量%である
 前記沈澱したセルロースアセテートに対して、安定剤を添加する工程(6)は、例えば、セルロースアセテートを分離し、所定濃度に調整した安定剤の濃度を有する安定剤水溶液にセルロースアセテートを浸漬することにより、沈澱したセルロースアセテートを安定化することができる。ここで、前記沈澱したセルロースアセテートに対して、安定剤を添加する前、前記沈澱したセルロースアセテートを分離した後に水洗することが好ましい。水洗により遊離の金属成分や硫酸成分などを除去することができる。また、工業的な安定剤の添加方法としては、前記金属化合物の希薄水溶液をセルロース誘導体が分散した懸濁液に添加する方法であってもよい。
 (乾燥)
 上記安定剤を添加した後、セルロースアセテートを乾燥することが好ましい。乾燥方法は特に限定されず、公知のものを用いることができ、例えば、加熱、送風、または減圧などの種々の条件下乾燥を行うことができる。
 本開示のセルロースアセテートは、紡糸することにより繊維状に成形することができる。その際の紡糸方法としては、限定されるものではないが乾式紡糸を用いることが好ましい。ここで、乾式紡糸は、セルロースアセテートを所定の溶剤に溶かし、これを紡糸口金から吐出させ、熱風により溶剤を蒸発させて繊維状にする方法である。ここで所定の溶剤とは、例えば、アセトンまたはアセトン水溶液が挙げられる。
 本開示のセルロースアセテートおよびその製造方法によれば、紡糸工程における糸切れが低減され、得られる繊維の湿熱安定性にも優れるため、当該繊維は、タバコのフィルター等へ好適に使用することができる。
 以下、実施例により本発明を具体的に説明するが、本発明は、これらの実施例によりその技術的範囲が限定されるものではない。
 後述する実施例および比較例に記載の各物性は以下の方法で評価した。
 [カルシウム含量およびマグネシウム含量]
 セルロースアセテートのカルシウム含量およびマグネシウム含量は次のようにして測定した。試料3.0gをルツボに計量し、電熱器上で炭化させた後、750~850℃の電気炉で2時間程度灰化させた。約30分放冷した後、0.07%の塩酸溶液25mLを加え、220~230℃で加熱溶解させた。放冷後、溶解液を200mLまで蒸留水でメスアップし、これを検液として標準液と共に原子吸光光度計を用いて吸光度を測定して、検液のカルシウム(Ca)含量およびマグネシウム(Mg)含量をそれぞれ求め、以下の式で換算して、試料のカルシウム(Ca)含量およびマグネシウム(Mg)含量をそれぞれ求めた。単位は、mol単位に換算した。ここで、水分(重量%)、つまり試料中の水分は、例えばケット水分計(METTLER TOLEDO HB43)を用いて測定した。ケット水分計のアルミ受け皿に含水状態の試料約2.0gを乗せ、重量が変化しなくなるまで120℃で加熱することで加熱前後の重量変化から試料中の水分(重量%)が算出できる。
Figure JPOXMLDOC01-appb-M000002
 [残存硫酸量]
 セルロースアセテートの残存硫酸量は次のようにして測定した。電気乾燥機を用いて乾燥したセルロースアセテートを1300℃の電気炉で焼き、昇華した亜硫酸ガスを10%過酸化水素水にトラップし、規定水酸化ナトリウム水溶液にて滴定し、HSO4換算の量として測定した。当該測定値は絶乾状態のセルロースアセテート1g中の硫酸含有量としてmol単位またはppm単位で表す。
 [酢化度]
 粉砕試料約0.52gを秤量瓶に採取し、105±5℃で2時間乾燥後デシケーター中で約40分間放冷した。これを精秤してフラスコに移し、空の秤量瓶を再び精秤して、その重量差を試料重量とした。フラスコには予めエタノール約2mlを加えておく。試料をよく湿潤させた後、アセトン50mlを加え、約30分間攪拌して完全に溶解した。次に、攪拌しながら50mlの0.2mol/l-NaOH溶液を加えて白色沈澱を生成させる。約1分間攪拌した後、約3時間静置した。再び攪拌しながら50mlの0.2ml/l-HCl溶液を加え、15分以上放置した。ここに指示薬としてフェノールフタレイン溶液を加え、0.2mol/l-NaOH規定液で淡紅色となるまで滴定した(A ml)。同時にブランク試験を行う(B ml)。
次式により酢化度を算出した。
酢化度(%)=[(A-B)×F×1.201]/試料重量(g)
F:0.2mol/l-NaOH規定液のファクター
 [湿熱安定性]
 セルロースアセテートの湿熱安定性は次のようにして、加水分解した酢酸量を測定することにより求めた。奈良式自由粉砕機を用いて乾燥したセルロースアセテートを粉砕し約2.0gをパイレックス(登録商標)試験管に秤取し、2mlの蒸留水を加えたのち、密栓して沸騰水浴中に7時間浸漬した。冷却後、内容物を沸騰水で濾紙上に洗い出し、濾液を合わせて150mlとした。この液についてフェノールフタレインを指示薬として0.01N-NaOH溶液で滴定した。同時に、蒸留水のみを用いたブランクテストを行い、次式により湿熱安定性を算出した。
湿熱安定性(%)=(A-B)×F×0.6×10-3(g)÷試料重量(g)×100
但し、A:0.01N-NaOH溶液の滴定量(ml)、B:ブランクテストにおける0.01N-NaOH溶液の滴定量(ml)、F:0.01N-NaOH溶液のファクター。なお、0.6×10-3(g)は、以下の反応式に基づき算出される0.01N-NaOH溶液の滴定量(ml)と反応する酢酸の重量である。
CHCOOH(60g/mol) + NaOH(40g/mol)  →  CHCOONa(2g/mol) + HO(18g/mol)
 湿熱安定性は、0.07%未満は○、0.07%以上は×とした。
 [糸切れ]
 セルロースアセテートの紡糸工程における糸切れは次のようにして評価した。セルロースアセテート29.5重量部、アセトン67.5重量部、酸化チタン0.5重量部、純水2.5重量部を混合溶解して得た紡糸溶液(ドープ液)を濾過して脱泡し、一辺58μmの三角形の細孔400個を有する紡糸口金(95mmφ)を利用して、吐出量333g/分、紡糸速度400m/分の条件で紡糸し、乾燥ゾーンでの一次空気温度100℃および二次空気温度95℃で乾燥した。この紡糸試験を10日間連続して行い、10日間に亘る糸の切断頻度(回数/トン-製品)、および紡糸開始時に口金と紡糸溶液との離型剤を糸出し性の程度で評価した。なお、糸出し性は、下記の基準で評価した。
 糸切れは、比較例1の糸切れ回数を100とした時の相対値で示す。また、100以上は糸切れ×、100未満は糸切れ○とした。
 (実施例1)
 セルロース原料であるクラフト法溶解パルプをフラッフ状に解砕後、含水分約6%に乾燥した。この乾燥フラッフパルプ100部に対し、氷酢酸31部を添加し、1時間前処理活性化した。この前処理活性化させたセルロースを攪拌している酢化反応器に仕込み、酢化反応剤である無水酢酸270部、反応溶媒である酢酸330部の混合液を同時に仕込んだ。その後、1段目の触媒液(3%硫酸酢酸溶液)30部を0.5分かけて添加し、反応を開始させた。この触媒液を添加し始めた時間を0分とし、以降の基準時間とした。反応系の温度は急激に上昇して約5分後に55℃に達したので、その後は一定温度となるように調整した。5分時点(DS=0.83)に2段目の触媒液(3%硫酸酢酸溶液)10部を添加した。その後、60分時点に、24%酢酸マグネシウム水溶液11部を添加混合して反応系内の硫酸を完全に中和し、かつ酢酸マグネシウム過剰下とした。完全中和した反応混合物に60℃の水71部を加え、攪拌混合した。この反応混合物をオートクレーブへ移し、外部加熱により60分かけて150℃にした。150℃で30分保持した後、外部冷却により約20分で100℃として加水分解を行い、二酢酸セルロースを含む反応混合物を得た。
 セルロースアセテートを含む反応混合物100重量部に対し、15%希酢酸水溶液約234重量部にて沈澱させた。水洗した後、沈澱で得られたセルロースアセテート100重量部に対して、安定剤として2重量部、0.0027重量%の水酸化カルシウム水溶液を添加し、乾燥することにより、セルロースアセテートを得た。得られたセルロースアセテートについて、カルシウム含量およびマグネシウム含量、残存硫酸量、残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]および残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]、酢化度、湿熱安定性、並びに糸切れを、それぞれ評価した結果を表1に示す。
 (実施例2-10および比較例1-8)
 安定剤として、濃度0.0027重量%の水酸化カルシウムに代えて、それぞれ表1に記載する安定剤を用いた以外は、実施例1と同様にしてセルロースアセテートを得た。なお、水酸化カルシウムおよび酢酸マグネシウムのいずれも用いた条件では、水酸化カルシウムおよび酢酸マグネシウムは沈澱で得られたセルロースアセテート100重量部に対して、安定剤として各2重量部とし、水酸化カルシウムを添加した後に連続して酢酸マグネシウムを添加した。得られたセルロースアセテートについて、カルシウム含量およびマグネシウム含量、残存硫酸量、残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]および残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]、酢化度、湿熱安定性、並びに糸切れを評価した結果を表1に示す。
 (比較例9)
 安定剤として、0.0027重量%濃度の水酸化カルシウムを用いなかった以外は、実施例1と同様にしてセルロースアセテートを得た。得られたセルロースアセテートについて、カルシウム含量およびマグネシウム含量、残存硫酸量、残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]および残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]、酢化度、湿熱安定性、並びに糸切れを、それぞれ評価した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (3)

  1.  残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]および残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]が下記式(1)に示す関係を満たすセルロースアセテート。
    [Mg/HSO]>0、[Ca/HSO4」]>0、かつ
    (2.70-[Mg/HSO])/1.62≦[Ca/HSO]≦(37.7-[Mg/HSO])/10.3   (1)
  2.  残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]および残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]が下記式(2)に示す関係を満たし、さらに、酢化度が54.0%以上56.0%以下である、請求項1に記載のセルロースアセテート。
    [Ca/HSO]>0、[Mg/HSO]>0、かつ
    [Mg/HSO]≧(-1.78)[Ca/HSO]+4.10   (2)
  3.  残存硫酸量に対するカルシウム含量の化学当量比[Ca/HSO]および残存硫酸量に対するマグネシウム含量の化学当量比[Mg/HSO]が下記式(3)に示す関係を満たす、請求項1または2に記載のセルロースアセテート。
    [Ca/HSO]>0、[Mg/HSO]>0、かつ
    [Mg/HSO]≦(-9.59)[Ca/HSO]+29.8   (3)
PCT/JP2016/001481 2016-03-15 2016-03-15 セルロースアセテート WO2017158639A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
RU2018136100A RU2690114C1 (ru) 2016-03-15 2016-03-15 Ацетилцеллюлоза
JP2018505551A JP6663979B2 (ja) 2016-03-15 2016-03-15 セルロースアセテート
US16/081,373 US20190077885A1 (en) 2016-03-15 2016-03-15 Cellulose acetate
MX2018011061A MX2018011061A (es) 2016-03-15 2016-03-15 Acetato de celulosa.
PCT/JP2016/001481 WO2017158639A1 (ja) 2016-03-15 2016-03-15 セルロースアセテート
KR1020187029340A KR102111293B1 (ko) 2016-03-15 2016-03-15 셀룰로오스아세테이트
BR112018068026A BR112018068026A2 (pt) 2016-03-15 2016-03-15 acetato de celulose
EP16894263.9A EP3431509A4 (en) 2016-03-15 2016-03-15 ACETATE OF CELLULOSE
CN201680085664.XA CN109195995B (zh) 2016-03-15 2016-03-15 乙酸纤维素

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/001481 WO2017158639A1 (ja) 2016-03-15 2016-03-15 セルロースアセテート

Publications (1)

Publication Number Publication Date
WO2017158639A1 true WO2017158639A1 (ja) 2017-09-21

Family

ID=59850789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001481 WO2017158639A1 (ja) 2016-03-15 2016-03-15 セルロースアセテート

Country Status (9)

Country Link
US (1) US20190077885A1 (ja)
EP (1) EP3431509A4 (ja)
JP (1) JP6663979B2 (ja)
KR (1) KR102111293B1 (ja)
CN (1) CN109195995B (ja)
BR (1) BR112018068026A2 (ja)
MX (1) MX2018011061A (ja)
RU (1) RU2690114C1 (ja)
WO (1) WO2017158639A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007686A (ja) * 2018-07-12 2020-01-16 株式会社ダイセル セルロースアセテート繊維、セルロースアセテートトウバンド、及びセルロースアセテートトウバンドの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076490A1 (ja) * 2003-02-25 2004-09-10 Daicel Chemical Industries, Ltd. 湿熱安定性を改良したセルロースエステル
JP2005082744A (ja) * 2003-09-10 2005-03-31 Daicel Chem Ind Ltd セルロースエステル又はそのフイルム及びその製造方法
JP2009161701A (ja) * 2008-01-10 2009-07-23 Daicel Chem Ind Ltd セルロースアセテート及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2748517B2 (ja) 1989-03-17 1998-05-06 東洋紡績株式会社 セルロースエステル繊維の紡糸方法
JP2999293B2 (ja) * 1991-07-02 2000-01-17 ダイセル化学工業株式会社 酢酸セルロースの製造方法
RU2156839C2 (ru) * 1996-03-06 2000-09-27 Мицубиси Рэйон Ко., Лтд. Волокна фибрилловой системы (варианты), формованное изделие, способ изготовления волокон фибрилловой системы, прядильная фильера для изготовления волокон фибрилловой системы
JPH10298823A (ja) 1997-04-22 1998-11-10 Mitsubishi Rayon Co Ltd セルロースアセテート繊維の紡糸原液とその製造方法
US7122660B1 (en) * 1998-03-17 2006-10-17 Daicel Chemical Industries, Ltd. Cellulose acetate and dope containing the same
KR101497739B1 (ko) * 2007-08-24 2015-03-02 이스트만 케미칼 컴파니 가소제를 포함하고 저복굴절을 갖는 혼합 셀룰로스 에스터 조성물 및 이로부터 제조된 액정 디스플레이용 필름

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076490A1 (ja) * 2003-02-25 2004-09-10 Daicel Chemical Industries, Ltd. 湿熱安定性を改良したセルロースエステル
JP2005082744A (ja) * 2003-09-10 2005-03-31 Daicel Chem Ind Ltd セルロースエステル又はそのフイルム及びその製造方法
JP2009161701A (ja) * 2008-01-10 2009-07-23 Daicel Chem Ind Ltd セルロースアセテート及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3431509A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007686A (ja) * 2018-07-12 2020-01-16 株式会社ダイセル セルロースアセテート繊維、セルロースアセテートトウバンド、及びセルロースアセテートトウバンドの製造方法
WO2020013248A1 (ja) * 2018-07-12 2020-01-16 株式会社ダイセル セルロースアセテート繊維、セルロースアセテートトウバンド、及びセルロースアセテートトウバンドの製造方法
CN111684115A (zh) * 2018-07-12 2020-09-18 株式会社大赛璐 乙酸纤维素纤维、乙酸纤维素丝束带、及乙酸纤维素丝束带的制造方法
KR20210029135A (ko) * 2018-07-12 2021-03-15 주식회사 다이셀 셀룰로오스아세테이트 섬유, 셀룰로오스아세테이트 토우 밴드, 및 셀룰로오스아세테이트 토우 밴드의 제조 방법
EP3715509A4 (en) * 2018-07-12 2021-07-07 Daicel Corporation CELLULOSE ACETATE FIBER, CELLULOSE ACETATE ROPE TAPE, AND METHOD OF MANUFACTURING CELLULOSE ACETATE ROPE TAPE
JP7217099B2 (ja) 2018-07-12 2023-02-02 株式会社ダイセル セルロースアセテート繊維、セルロースアセテートトウバンド、及びセルロースアセテートトウバンドの製造方法
CN111684115B (zh) * 2018-07-12 2023-07-11 株式会社大赛璐 乙酸纤维素纤维、乙酸纤维素丝束带、及乙酸纤维素丝束带的制造方法
KR102677634B1 (ko) 2018-07-12 2024-06-21 주식회사 다이셀 셀룰로오스아세테이트 섬유, 셀룰로오스아세테이트 토우 밴드, 및 셀룰로오스아세테이트 토우 밴드의 제조 방법

Also Published As

Publication number Publication date
CN109195995A (zh) 2019-01-11
BR112018068026A2 (pt) 2019-01-08
MX2018011061A (es) 2019-05-06
RU2690114C1 (ru) 2019-05-30
US20190077885A1 (en) 2019-03-14
JPWO2017158639A1 (ja) 2019-01-31
CN109195995B (zh) 2021-07-16
KR20180124922A (ko) 2018-11-21
EP3431509A1 (en) 2019-01-23
JP6663979B2 (ja) 2020-03-13
EP3431509A4 (en) 2019-12-11
KR102111293B1 (ko) 2020-05-15

Similar Documents

Publication Publication Date Title
JP4435086B2 (ja) 湿熱安定性を改良したセルロースエステル
JP6820858B2 (ja) セルロースアセテート、セルロースアセテートの製造方法および製造装置
EP1422244B1 (en) Film comprising a cellulose triacetate and method of producing the same
JP2018058941A (ja) セルロースアセテートおよびセルロースアセテートの製造方法
JP5517409B2 (ja) セルロースアセテート及びその製造方法
KR20090033913A (ko) 셀룰로오스 에스테르 고분자의 제조 방법 및 셀룰로오스 에스테르 고분자 제조용 셀룰로오스의 전처리 방법
JPH10316701A (ja) セルロースアセテートおよびそれを含むドープ
WO2017158639A1 (ja) セルロースアセテート
JPS604841B2 (ja) セルロ−スエステルの製造法
JP2006089574A (ja) セルロースエステル及びその製造方法
JP7526419B2 (ja) セルロースアセテートの製造方法
US11066484B2 (en) Cellulose acetate and method for producing cellulose acetate
JP7093256B2 (ja) セルロースアセテートの製造方法
JP2001026601A (ja) セルロースアセテートの製造方法
JP2538323B2 (ja) 酢酸セルロ―ス
Akishima et al. Structural changes of amorphous cellulose by acid pulping treatments

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505551

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/011061

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187029340

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016894263

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018068026

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016894263

Country of ref document: EP

Effective date: 20181015

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018068026

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180906