WO2017150126A1 - 熱交換器及び空気調和機 - Google Patents

熱交換器及び空気調和機 Download PDF

Info

Publication number
WO2017150126A1
WO2017150126A1 PCT/JP2017/004744 JP2017004744W WO2017150126A1 WO 2017150126 A1 WO2017150126 A1 WO 2017150126A1 JP 2017004744 W JP2017004744 W JP 2017004744W WO 2017150126 A1 WO2017150126 A1 WO 2017150126A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
heat exchanger
flow path
partition plate
space
Prior art date
Application number
PCT/JP2017/004744
Other languages
English (en)
French (fr)
Inventor
青木 泰高
秀哲 立野井
洋平 葛山
将之 左海
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP17759597.2A priority Critical patent/EP3425321B1/en
Publication of WO2017150126A1 publication Critical patent/WO2017150126A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass

Definitions

  • the present invention relates to a heat exchanger and an air conditioner.
  • This application claims priority based on Japanese Patent Application No. 2016-038327 for which it applied to Japan on February 29, 2016, and uses the content here.
  • a heat exchanger for an air conditioner in which a plurality of heat transfer tubes extending in the horizontal direction are arranged at intervals in the vertical direction and fins are provided on the outer surface of each heat transfer tube. Both ends of the plurality of heat transfer tubes are respectively connected to a pair of headers extending in the vertical direction.
  • the refrigerant introduced into one header and circulated through the heat transfer tube to the other header is transmitted again so that the other header returns. It is configured to return to one header via a heat pipe.
  • a plurality of areas are defined by a partition plate that divides the header in the vertical direction.
  • the refrigerant introduced into the one area in the header via the heat transfer tube is introduced into the other area in the header via the connection pipe, and then the plurality of heat transfer pipes connected to the other area. Is returned to one header on the entrance / exit side.
  • Patent Document 1 discloses a heat exchanger including a connecting pipe having one main pipe part and a branch pipe part extending from the main pipe part in two.
  • the main pipe part is connected to one area in the header
  • the branch pipe parts are each connected to one of two other areas in the header.
  • region in the header via the heat exchanger tube is shunted through the main pipe part and branch pipe part in a connection pipe, Introduced into two other areas.
  • the refrigerant introduced into one area in the header via the heat transfer tube is not necessarily vaporized, but a liquid phase refrigerant and a gas phase refrigerant. Are in a gas-liquid two-phase refrigerant state.
  • an object of the present invention is to provide a heat exchanger capable of suppressing performance degradation (efficiency degradation) and an air conditioner using the heat exchanger.
  • the heat exchanger includes a first heat transfer tube in which a plurality of refrigerants are circulated and arranged at intervals, and each of the first heat transfer tubes is formed in a cylindrical shape.
  • a first header portion connected in communication with each other, a second heat transfer tube in which a plurality of refrigerants circulate in the interior and arranged at intervals, and a cylindrical shape extending along an axis to form each of the second heat transfer tubes.
  • a second header part connected to the internal space in a state in which the heat pipe communicates, a second header inner partition plate that divides the internal space of the second header part into two regions, and a first end of the first header part
  • the second end opposite to the first end is connected to the outer peripheral surface in communication with the inner space of the first header portion, and the inner space of the second header portion is connected to the outer peripheral surface of the second header portion.
  • the second end opening is in contact with the second header inner partition plate.
  • a connecting tube having a connecting tube body with an opening end is disposed across the two regions partitioned by the second header partition plates, the.
  • the refrigerant introduced into the connecting pipe body from the first header portion spans the two areas in the second header portion, the second end opening of the connecting pipe body, It will be introduced into each of these two areas. Therefore, since there is only one connection point between the connection pipe, the first header part, and the second header part, handling of the connection pipe is facilitated.
  • the area occupied by the connection pipe can be made smaller than when the connection pipe is branched. Therefore, a wide effective area for heat exchange with air in the heat exchanger can be secured.
  • the refrigerant introduced from the first end of the connecting pipe main body and introduced from the second end into the two areas of the second header portion flows through the same path in the connecting pipe main body. For this reason, the deviation of the gas-liquid ratio of the refrigerant introduced into the two regions can be reduced. Therefore, it is possible to suppress the performance deterioration (efficiency reduction) of the heat exchanger.
  • the second header inner partition plate has a plate shape extending along a plane orthogonal to the axis of the second header portion, and One of the two regions is a first space defined on one side in the axial direction, which is a direction in which the axis extends with the second header inner partition as a boundary, and the two of the two regions The other may be a second space partitioned on the other side in the axial direction with the second header inner partition plate as a boundary.
  • board surface of this vertical partition part from the edge part of the axial direction which is the direction where the said axis line extends among this vertical partition part A first horizontal partition portion that has a plate shape extending only to the side, and an edge on the other side in the axial direction of the vertical partition portion toward only the other side in a direction orthogonal to the plate surface of the vertical partition portion.
  • one of the two regions is partitioned on one side in the axial direction of the first horizontal partition and the second horizontal partition.
  • the first space, the other of the two regions is an axis direction of the first horizontal partition and the second horizontal partition It may be a second space defined in the other side.
  • the gas-liquid ratio of the refrigerant introduced into each of the first space and the second space partitioned by the second header inner partition plate can be made uniform.
  • the space in the second header portion is connected to the outflow side region to which each of the second heat transfer tubes is connected in the cross-sectional view orthogonal to the axis.
  • a vertical partition that divides into an inflow side region to which a second end of the pipe is connected; a first outflow side space juxtaposed in an axial direction in which the axial line extends in the outflow side region; and a second A first partition adjacent to each other in the circumferential direction of the second header portion in a horizontal sectional view of the inflow side region.
  • a plate extending along a plane including the axis so as to be partitioned into the second chamber, the first chamber and the first outflow side at a portion facing the first chamber in the vertical partition plate
  • a first through hole that communicates with the space is formed, and the second chamber in the vertical partition plate faces the second chamber.
  • a second through-hole is formed in the portion to communicate the second chamber and the region above the second outflow side space, and one of the two regions is the first chamber, One of the two regions may be the second chamber.
  • connection pipe extends continuously from the second header inner partition plate into the connection pipe main body, and at least the connection pipe main body You may further have the division part which divides
  • the refrigerant introduced into the connecting pipe main body may be separated into a gas phase component and a liquid phase component in the process of flowing through the connecting pipe main body.
  • the bias of the gas-liquid ratio of the refrigerant introduced into the two regions on the second end side is reduced. Can do.
  • connection pipe main body is a 1st pipe part extended from the said 1st header part to the radial direction outer side of this 1st header part, and said 2nd header part.
  • a second pipe portion extending radially outward from the second header portion, and a connection extending by bending with respect to the first pipe portion and the second pipe portion so as to connect the first pipe portion and the second pipe portion A pipe part, and the dividing part may extend continuously from the second end to at least the middle of the first pipe part via the second pipe part and the connecting pipe part.
  • a liquid phase refrigerant having a large specific gravity on the outside of the bend due to centrifugal force at the bent portion between the first tube portion and the connecting tube portion and the bent portion between the connecting tube portion and the second tube portion. May be unevenly distributed.
  • the unevenly distributed refrigerant is introduced into one of the two regions of the second header portion, resulting in a decrease in performance as a heat exchanger.
  • the bent part that is easy to separate the gas and liquid by adopting a configuration in which the divided part of the connecting pipe extends from the bent part between the first pipe part and the connecting pipe part to the part on the first header side.
  • the amount of refrigerant introduced into the two regions of the second header portion is determined before this. Thereby, the gas-liquid ratio of the refrigerant introduced into these two regions can be made uniform.
  • the dividing portion may extend from the second end to the first end.
  • the amount of refrigerant flowing through the first flow path and the second flow path in the connection pipe is determined when the refrigerant is introduced from the first header portion into the connection pipe. Moreover, since the 1st flow path and the 2nd flow path are connected to the same location of the 1st header, the refrigerant
  • the first header has a cylindrical shape extending along the axis on one side of the second header portion in the axial direction
  • the first pipe part, the second pipe part, and the connection pipe part of the connection pipe may extend on a virtual plane including the axis.
  • the first flow path and the second flow path may be adjacent to each other in the vertical direction on the first end side of the connection pipe body.
  • the first flow path and the second flow path may be adjacent to each other in the horizontal direction on the first end side of the connection pipe body.
  • a refrigerant in a liquid phase is likely to gather downward due to gravity, and a refrigerant in a gas phase is likely to gather upward.
  • coolant may change with the up-down direction also in a 1st header part.
  • the same gas-liquid ratio refrigerant is introduced into the first flow path and the second flow path. Thereby, the gas-liquid ratio of the refrigerant introduced into the two regions in the second header can be made uniform.
  • the heat exchanger according to the eleventh aspect of the present invention is a small heat exchanger in which a plurality of the first flow path and the second flow path are arranged in parallel in the direction adjacent to the first flow path and the second flow path.
  • the connecting pipe may have a flat tubular shape having a longitudinal direction in which the small channels are arranged side by side.
  • the radius of curvature at the bent portion of the connecting pipe can be made smaller than when the connecting pipe has a circular cross section. For this reason, the effective area which heat-exchanges with the air as a heat exchanger can be ensured widely by making the volume which a connection pipe occupies small.
  • the channel cross-sectional areas of the first channel and the second channel may be different from each other.
  • the second header inner partition plate is formed with a notch that is recessed from the radially outer side to the inner side of the second header part, The second end of the connecting pipe main body may be fitted into the notch.
  • the connecting pipe can be easily positioned and the workability can be improved.
  • connection pipe is formed with a cut portion extending along the divided portion from the second end, and the cut portion and the second header partition The plate may be fitted to each other.
  • the connecting pipe can be easily positioned and the workability can be improved.
  • the first header portion has a cylindrical header body centered on the axis, and the direction in which the axis extends in the header body.
  • a portion of the main partition plate on one side in the axial direction in the header having a main partition plate partitioned in the axial direction, wherein the second header portion is the other in the axial direction of the main partition plate in the header.
  • the axial direction may be an up-down direction.
  • the heat exchanger which has these 1st header parts and the 2nd header parts is constituted easily by forming the 1st header part and the 2nd header part via the main partition board in one header. be able to.
  • an air conditioner according to a sixteenth aspect of the present invention includes any one of the above heat exchangers.
  • performance degradation of the heat exchanger or the air conditioner can be suppressed.
  • 1 is an overall configuration diagram of an air conditioner according to a first embodiment of the present invention. It is a longitudinal cross-sectional view of the heat exchanger which concerns on the 1st Embodiment of this invention. It is a perspective view of the heat exchanger which concerns on the 1st Embodiment of this invention. It is sectional drawing of the 1st pipe part of the connection pipe of the heat exchanger which concerns on the 1st Embodiment of this invention. It is sectional drawing of the 2nd pipe part of the connecting pipe of the heat exchanger which concerns on the 1st Embodiment of this invention. It is a longitudinal cross-sectional view of the heat exchanger which concerns on the 1st modification of the 1st Embodiment of this invention.
  • the air conditioner 1 includes a compressor 2, an indoor heat exchanger 3 (heat exchanger 10), an expansion valve 4, an outdoor heat exchanger 5 (heat exchanger 10), a four-way valve 6, and The pipe 7 for connecting them is provided, and a refrigerant circuit composed of these is constituted.
  • the compressor 2 compresses the refrigerant and supplies the compressed refrigerant to the refrigerant circuit.
  • the indoor heat exchanger 3 performs heat exchange between the refrigerant and the indoor air.
  • the indoor heat exchanger 3 is used as an evaporator during cooling operation and absorbs heat from the room, and is used as a condenser during heating operation and dissipates heat to the room.
  • the expansion valve 4 reduces the pressure by expanding the high-pressure refrigerant liquefied by exchanging heat with the condenser.
  • the outdoor heat exchanger 5 performs heat exchange between the refrigerant and the outdoor air.
  • the outdoor heat exchanger 5 is used as a condenser and dissipates heat to the outside during cooling operation.
  • the outdoor heat exchanger 5 is used as an evaporator during the heating operation and absorbs heat from the outside.
  • the four-way valve 6 switches the direction of refrigerant flow between the heating operation and the cooling operation.
  • the refrigerant circulates in the order of the compressor 2, the outdoor heat exchanger 5, the expansion valve 4, and the indoor heat exchanger 3.
  • the refrigerant is circulated in the order of the compressor 2, the indoor heat exchanger 3, the expansion valve 4, and the outdoor heat exchanger 5.
  • the heat exchanger 10 includes a plurality of heat transfer tubes 20, a plurality of fins 28, a pair of headers 30, and a connection tube 61.
  • the heat transfer tube 20 is a tubular member extending linearly in the horizontal direction, and a flow path through which a refrigerant flows is formed.
  • a plurality of the heat transfer tubes 20 are arranged at intervals in the vertical direction, and are arranged in parallel to each other.
  • each heat transfer tube 20 has a flat tubular shape, and a plurality of flow paths arranged in parallel in the horizontal direction perpendicular to the extending direction of the heat transfer tube 20 inside the heat transfer tube 20. Is formed. The plurality of flow paths are arranged in parallel to each other. For this reason, the outer shape of the cross section orthogonal to the extending direction of the heat transfer tube 20 is a flat shape with the horizontal direction orthogonal to the extending direction of the heat transfer tube 20 as the longitudinal direction.
  • the fins 28 are respectively disposed between the heat transfer tubes 20 arranged as described above. In 1st Embodiment, it extends so that it may contact to the heat exchanger tube 20 adjacent up and down alternately as it goes to the extending direction of each heat exchanger tube 20 (it extends in corrugated form).
  • the shape of the fin 28 is not limited to this, and may be any shape as long as it is provided so as to protrude from the outer peripheral surface of the heat transfer tube 20.
  • the pair of headers 30 are provided so that the heat transfer tubes 20 are sandwiched between both ends of the plurality of heat transfer tubes 20.
  • One of the pair of headers 30 is an inlet / outlet header 40 serving as an inlet / outlet of the refrigerant into the heat exchanger 10 from the outside, and the other is a return header 50 for returning the refrigerant in the heat exchanger 10. Has been.
  • the entrance / exit header 40 is a cylindrical member extending in the vertical direction.
  • the entrance / exit header 40 is closed at the upper and lower ends and is partitioned into two upper and lower regions by a partition plate 41.
  • a lower area defined by the partition plate 41 is a lower access area 42.
  • the upper area is an upper entrance / exit area 43.
  • the lower entrance / exit area 42 and the upper entrance / exit area 43 are not in communication with each other in the entrance / exit header 40.
  • the lower entry / exit area 42 and the upper entry / exit area 43 are connected to the pipes 7 constituting the refrigerant circuit.
  • the heat transfer tube 20 connected in communication with the lower entrance / exit region 42 is a first heat transfer tube 21.
  • the heat transfer tube 20 connected in a communicating state with the upper entrance / exit region 43 is a second heat transfer tube 23.
  • the folded-back header 50 includes a header body 51, a main partition plate 58, and a second header inner partition plate 60.
  • the header body 51 is a cylindrical member that extends along the axis O with the axis O of the header body 51 as the center. The upper end and the lower end of the header body 51 are closed.
  • the header main body 51 of the first embodiment extends in a state in which the axis O is aligned in the vertical direction. That is, the vertical direction is the axis O direction.
  • the main partition plate 58 is provided in the header body 51 and divides the space in the header body 51 into upper and lower areas.
  • a portion including a lower region (one side in the direction of the axis O) partitioned by the main partition plate 58 is a first header portion 52. That is, the lower area partitioned by the main partition plate 58 is an internal space of the first header portion 52.
  • a portion including the upper (other side in the axis O direction) sectioned by the main partition plate 58 is a second header portion 53. That is, the upper region partitioned by the main partition plate 58 is an internal space of the second header portion 53.
  • the header main body 51 is partitioned by the main partition plate 58, so that the first header portion 52 and the second header portion 53 each having a space therein are provided in the folded-back header 50. Is formed. In other words, the first header portion 52 and the second header portion 53 constitute the folded-back header 50.
  • the second header inner partition plate 60 further divides the internal space of the second header portion 53 into two regions.
  • the second header inner partition plate 60 of the first embodiment has a plate shape extending along a horizontal plane (a plane orthogonal to the axis O).
  • the second header inner partition plate 60 partitions the internal space of the second header portion 53 into a lower region and an upper region.
  • a lower region in the second header portion 53 with the second header inner partition plate 60 as a boundary is defined as a lower space 54 (first space), and an upper region with the second header inner partition plate 60 as a boundary is an upper side.
  • a space 55 (second space) is defined.
  • the plurality of first heat transfer tubes 21 are connected to the first header portion 52 so as to communicate with the inside of the first header portion 52, respectively.
  • the plurality of first heat transfer tubes 21 constitute a first tube group 22.
  • the heat transfer tube 20 connected to the first header portion 52 is the first heat transfer tube 21.
  • the second heat transfer tube 23 is connected to the second header portion 53 so as to be in communication with the lower space 54 and the upper space 55 of the second header portion 53, respectively. That is, the heat transfer tube 20 connected to the second header portion 53 is the second heat transfer tube 23.
  • the lower second tube group 25 is configured by a plurality of second heat transfer tubes 23 connected to the lower space 54 in a communicating state.
  • the upper second tube group 26 is configured by a plurality of second heat transfer tubes 23 connected in communication with the upper space 55.
  • the connecting pipe 61 communicates the internal space of the first header portion 52 with the lower space 54 and the upper space 55 in the second header portion 53.
  • the connecting pipe 61 has a connecting pipe main body 62 and a dividing portion 70.
  • the connecting pipe main body 62 is a tubular member, and includes a first pipe part 65, a second pipe part 66, and a connecting pipe part 67.
  • the first pipe portion 65 is connected to the first header portion 52 from the outer peripheral side. That is, the first pipe portion 65 is a tubular member extending in the horizontal direction (a direction orthogonal to the axis O), and one end of the first pipe portion 65 is in the header main body 51 so as to communicate with the inside of the first header portion 52.
  • the first header portion 52 is connected to the formation region.
  • the 1st pipe part 65 is connected to the part on the opposite side on both sides of the axis line O of the location where the heat exchanger tube 20 was connected in the circumferential direction position of the 1st header part 52 (header main body 51).
  • the second pipe portion 66 is connected to the second header portion 53 from the outer peripheral side. That is, the second pipe portion 66 is a tubular member extending in the horizontal direction, and one end of the second pipe portion 66 is formed in the header main body 51 so as to communicate with the inside of the second header portion 53. It is connected to the.
  • the 2nd pipe part 66 is connected to the part similar to the connection location of the 1st pipe part 65 in the circumferential direction position of the 2nd header part 53 (header main body 51).
  • the connecting pipe part 67 connects the first pipe part 65 and the second pipe part 66 in the vertical direction. That is, the connecting pipe part 67 is a tubular member extending in the up-down direction, and the lower end is connected to the first pipe part 65 with the inside thereof in communication. Further, the upper ends are connected to the second pipe portion 66 with the insides thereof in communication with each other.
  • a first bent portion 68 is formed at the connection portion between the connecting pipe portion 67 and the first pipe portion 65 so that the flow path in the connection pipe 61 is bent in the vertical direction from the horizontal direction.
  • a connecting portion between the connecting pipe portion 67 and the second pipe portion 66 is configured with a second bent portion 69 in which the flow path in the connecting pipe 61 is bent in the vertical direction from the horizontal direction.
  • the first pipe portion 65, the second pipe portion 66, and the connecting pipe portion 67 extend on a virtual plane including the axis O.
  • the end connected to the first header portion 52 of the first pipe portion 65 in the connecting pipe main body 62 is a first end 63 of the connecting pipe main body 62. Further, the end of the connection pipe main body 62 connected to the second header part 53 of the second pipe part 66 is the second end 64 of the connection pipe main body 62.
  • the vertical position of the second end 64 of the connecting pipe main body 62 is the same position as the second header inner partition plate 60 that divides the second header portion 53 into two upper and lower regions. Thereby, the opening of the second end 64 of the connecting pipe main body 62 is in contact with the second header inner partition plate 60.
  • the thickness dimension (vertical dimension) of the second header inner partition plate 60 is set to be smaller than the vertical dimension of the opening of the second pipe part 66 of the connecting pipe main body 62.
  • the second header inner partition plate 60 is installed in the vertical range of the opening of the second pipe portion 66.
  • the opening of the second end 64 is disposed across both the lower space 54 and the upper space 55, and the second pipe portion 66 of the connecting pipe main body 62 is inside the second header portion 53.
  • the lower space 54 and the upper space 55 are in communication with each other.
  • the dividing unit 70 divides the inside of the connecting pipe main body 62 into a first channel 71 and a second channel 72.
  • the dividing portion 70 is connected to the first pipe portion 65 inside the connecting pipe main body 62 from the first header portion 52 via the connecting pipe portion 67 and the second pipe portion 66.
  • the second header portion 53 is connected to the connection portion.
  • the first flow path 71 and the second flow path 72 are formed in the entire region extending from the first end 63 and the second end 64 in the connecting pipe main body 62.
  • the dividing portion 70 extends in a plate shape along the horizontal plane in each of the first tube portion 65 and the second tube portion 66. Thereby, the dividing part 70 divides the inside of the first pipe part 65 and the inside of the second pipe part 66 into two upper and lower flow paths.
  • the dividing portion 70 extends along a vertical plane orthogonal to the plane including the axis O of the header body 51 in the connecting pipe portion 67.
  • the dividing unit 70 divides the inside of the connecting pipe part 67 into a flow path on the side close to the header main body 51 and a flow path on the side separated from the header main body 51.
  • the first flow path 71 includes a lower flow path in the first pipe portion 65, a flow path on the side away from the header body 51 in the connection pipe portion 67, and a second pipe portion 66. It is comprised by the upper flow path in the inside.
  • the second flow path 72 includes an upper flow path in the first pipe portion 65, a flow path on the side close to the header body 51 in the connection pipe portion 67, and a lower flow path in the second pipe portion 66. It is comprised by the flow path.
  • the first flow path 71 and the second flow path 72 are adjacent to each other in the vertical direction even at the openings of both the first end 63 and the second end 64 of the connection pipe 61.
  • the end of the dividing portion 70 on the second end 64 side is in contact with the second header partition plate 60 in the second header portion 53. Thereby, the division
  • the heat exchanger 10 is used as an evaporator during the cooling operation of the air conditioner 1.
  • the heat exchanger 10 is used as an evaporator during the heating operation of the air conditioner 1.
  • a gas-liquid two-phase refrigerant with a large liquid phase is supplied from the pipe 7 to the lower inlet / outlet region 42 of the inlet / outlet header 40 shown in FIG.
  • This refrigerant is distributed and supplied into the plurality of first heat transfer tubes 21 in the lower entrance / exit region 42, and exchanges heat with the external atmosphere of the first heat transfer tubes 21 in the process of flowing through the first heat transfer tubes 21. Evaporation is encouraged.
  • the refrigerant in the first header portion 52 is introduced into the second header portion 53 via the connection pipe 61. More specifically, a refrigerant is introduced into each of the first flow path 71 and the second flow path 72 in the connection pipe 61 from the opening of the first end 63 in the connection pipe 61, and the refrigerant flowing through the first flow path 71 is The first flow path 71 is introduced into the upper space 55 of the second header portion 53 that communicates. On the other hand, the refrigerant flowing through the second flow path 72 is introduced into the upper space 55 of the second header portion 53 with which the second flow path 72 communicates.
  • a refrigerant having a high liquid phase content and a high density gathers under the first header portion 52 due to gravity, and a refrigerant having a high gas phase content and a low density. It will gather at the top of the first header portion 52. That is, in the first header portion 52, the gas-liquid ratio of the refrigerant differs at the vertical position.
  • the first flow path 71 and the second flow path 72 communicating with the lower space 54 and the upper space 55 of the second header portion 53 are formed in the entire area of the connection pipe 61. Only the first end 63 of the connecting pipe main body 62 in which the path 71 and the second flow path 72 are arranged in parallel with each other is connected to the first header portion 52.
  • the first flow path 71 and the second flow path 72 are supplied with substantially the same refrigerant in the vertical direction. Therefore, since the refrigerant having substantially the same gas-liquid ratio is introduced into the lower space 54 and the upper space 55 through the first flow path 71 and the second flow path 72, the lower space 54 and the upper space 55 The gas-liquid ratio of the 55 refrigerant is close.
  • the refrigerant in the lower space 54 and the upper space 55 of the second header portion 53 is divided into a plurality of second heat transfer tubes 23 and circulates in the second heat transfer tubes 23. Then, the refrigerant is urged to evaporate again by exchanging heat with the external atmosphere of the second heat transfer tube 23 in the process of flowing through the second heat transfer tube 23. As a result, the liquid phase remaining in the refrigerant changes into a gas phase in the second heat transfer tube 23, and the gas phase refrigerant is supplied to the upper entrance / exit region 43 of the inlet / outlet header 40. And this refrigerant
  • coolant is introduce
  • the first flow path 71 and the second flow path 72 are formed over the entire extending direction in the connection pipe 61, and the first flow path 71 and the second flow path are formed at the first end 63.
  • the path 72 is connected to the vertical position of the first header portion 52.
  • substantially the same gas-liquid refrigerant is introduced into the first channel 71 and the second channel 72.
  • the refrigerant introduced into the first flow path 71 and the second flow path 72 is directly introduced into the lower space 54 and the upper space 55 of the second header portion 53 without being branched. That is, when the refrigerant is introduced into the connection pipe 61 from the first header portion 52, the gas-liquid ratio of the refrigerant introduced into the lower space 54 and the upper space 55 is determined.
  • the gas-liquid ratio of the refrigerant introduced into the lower space 54 and the upper space 55 can be made uniform, and then efficient heat exchange can be performed in the second heat transfer tube 23 into which the refrigerant is introduced. It becomes possible, and the performance fall of the heat exchanger 10 can be suppressed.
  • first header portion 52 and the lower space 54 and the upper space 55 of the second header portion 53 are connected by a flow path that branches in the middle, the two flow rates particularly when the flow rate of the refrigerant changes.
  • the gas-liquid ratio of the refrigerant flowing into the space may also change greatly.
  • the refrigerant introduced from the first header portion 52 into the first flow path 71 and the second flow path 72 is directly introduced into the lower space 54 and the upper space 55 of the second header section 53, Even when the flow rate of the refrigerant changes, the gas-liquid ratio of the refrigerant introduced into the lower space 54 and the upper space 55 does not differ greatly.
  • connection pipe 61 there is only one connection point for the first header portion 52 and the second header portion 53 of the connection pipe 61.
  • the connection pipe 61 can be easily routed as compared to the case where a plurality of flow paths are used or the flow paths are branched.
  • connection pipe 61 by forming a plurality of flow paths (first flow path 71 and second flow path 72) in a single connection pipe 61, the area occupied by the connection pipe 61 can be reduced. For example, when the size of the heat exchanger 10 as a whole is predetermined in design, the effective area for heat exchange with air can be increased by the amount that the connecting pipe 61 is made compact. Therefore, a more efficient heat exchanger 10 can be realized.
  • connection pipe 61 may be configured without the dividing portion 70.
  • the connecting pipe 61 is composed only of the connecting pipe main body 62.
  • connection pipe 61 is introduced from the first end 63 of the connection pipe main body 62 even if the connection pipe 61 does not have the dividing portion 70.
  • the refrigerant introduced into the two regions of the second header portion 53 from the second end 64 circulates in the same path in the connecting pipe main body 62 and enters the lower space 54 and the upper space 55 of the second header portion 53. be introduced. For this reason, the deviation of the gas-liquid ratio of the refrigerant introduced into the two regions can be reduced.
  • the formation range of the dividing portion 70 may be different from that of the first embodiment.
  • the dividing portion 70 of the connecting pipe 61 is connected to the first pipe portion from the second end 64 of the connecting pipe main body 62 via the second pipe portion 66 and the connecting pipe portion 67. It is formed so as to extend halfway through 65, that is, before the first end 63.
  • the first bent portion 68 and the second bent portion 69 may change the gas phase and liquid of the refrigerant depending on the flow rate and flow rate of the refrigerant.
  • the phases may be separated.
  • the liquid phase component having a higher density is unevenly distributed outside the bent portion.
  • the distribution of the liquid-phase refrigerant is formed in the circumferential direction in the connecting pipe main body 62.
  • the refrigerant having a largely different gas-liquid ratio is present in the lower space 54 and the upper space 55 of the second header portion 53.
  • the divided portion 70 extends from the first bent portion 68 to the first end 63 side of the connection pipe 61, the refrigerant introduced from the first end 63 of the connection pipe main body 62.
  • the gas is separated from the first flow path 71 and the second flow path 72 before the gas-liquid separation at the first bent portion 68.
  • circulates between the 1st flow path 71 and the 2nd flow path 72 does not differ greatly. Therefore, the performance fall of the heat exchanger 10 can be suppressed similarly to 1st Embodiment.
  • the notch part 75 recessed from the outer peripheral side of this 2nd header inner partition plate 60 is provided in the connection area
  • the second end 64 of the connecting pipe 61 that has entered the inside of the two header parts 53 is configured to fit into the cutout part 75.
  • the second header inner partition plate 60 is formed with the notch 75 before being mounted in the header 30. Then, a notch for inserting the second header inner partition plate 60 is provided in the header 30, and the second header inner partition plate 60 is inserted into the header 30 from the outer peripheral side of the header 30.
  • connection pipe 61 is inserted into the header 30 from the connection hole of the connection pipe 61 formed in the header 30, and the second end 64 is inserted into the cut portion of the second header inner partition plate 60. Fit. After assembling in this way, the header 30, the second header inner partition plate 60, and the connecting pipe 61 are brazed together.
  • the connecting pipe 61 is preferably made of an aluminum alloy, and the second header partition plate 60 is preferably made of a clad material formed by bonding a brazing material.
  • connection pipe 61 can be easily positioned when the heat exchanger 10 is manufactured, the workability can be improved.
  • the first flow path 71 and the second flow path 72 in the connection pipe 61 are arranged side by side in the vertical direction in the second pipe section 66, while the first pipe section In 65, it is set as the structure arranged in parallel in the horizontal direction.
  • the division part 70 in the first pipe part 65 has a plate shape extending in the vertical direction, and thereby the first pipe part 65 is arranged in parallel in the horizontal direction.
  • the flow path is divided into a single flow path 71 and a second flow path 72.
  • the first flow path 71 and the second flow path 72 are arranged in parallel in the opening portion of the first end 63, the first flow path 71 and the second flow path at the first end 63 are arranged.
  • the vertical direction position of the two flow paths 72 is the same.
  • coolant of a gas-liquid ratio is introduce
  • the gas-liquid ratio of the refrigerant can be made uniform.
  • first flow path 71 and the second flow path 72 are arranged in parallel in at least the first end 63.
  • the first flow path 71 and the second flow path 72 need only be arranged in the horizontal direction at least at the second end 64. Between the first end 63 and the second end 64, the first flow path 71 and the second flow path 72 are arranged.
  • the two flow paths 72 may be in any juxtaposed state. That is, the division part 70 may be formed to be twisted at at least one of the first pipe part 65, the second pipe part 66, and the connection pipe part 67.
  • the division part 70 of the fourth modification is applied to the second modification, and the first flow path 71 and the first flow path 71 are formed at the end of the division part 70 located in the middle of the extending direction of the first pipe part 65.
  • the two flow paths 72 may be juxtaposed in the horizontal direction.
  • the heat exchanger 80 of the second embodiment is different from the first embodiment in the structure of the second header partition plate 81 and the connecting pipe 90.
  • the second header inner partition plate 81 of the second embodiment has a vertical partition 82, a first horizontal partition 83, and a second horizontal partition 84.
  • the vertical partition 82 is a plate-like member extending along a plane including the axis O, and the second header portion 53 has a diameter direction (heat transfer tube) in a partial range in the vertical direction in the second header portion 53. 20, the extending direction of the first pipe 94 and the second pipe portion 95).
  • the vertical partition part 82 is extended over the diametrical direction over the side to which the 2nd heat exchanger tube 23 was connected in the 2nd header part 53, and the side to which the connection pipe 90 was connected.
  • the vertical partition 82 has a rectangular plate shape, and its longitudinal edge is formed as a lower edge and an upper edge of the vertical partition 82 extending in the diameter direction. An edge portion in the hand direction is in contact with the inner peripheral surface of the second header portion 53 and extends in the vertical direction.
  • the first horizontal partition 83 extends from the lower edge of the vertical partition 82 toward one side (left side in FIG. 10) in the direction orthogonal to the pair of plate surfaces of the vertical partition 82.
  • the vertical partition 82 is a semicircular plate member in plan view, and the semicircular linear edge forms an intersecting ridge line with the lower edge of the vertical partition 82, and has an arc shape Is in contact with a region in the circumferential direction half of the inner peripheral surface of the second header portion 53.
  • the second horizontal partitioning portion 84 extends from the upper edge of the vertical partitioning portion 82 toward the other side (right side in FIG. 10) in the direction orthogonal to the pair of plate surfaces of the vertical partitioning portion 82.
  • the vertical partition 82 is a semicircular plate member in plan view.
  • the semi-circular linear edge forms an intersecting ridge line with the upper edge of the vertical partition 82, and the arc-shaped edge is in the region in the circumferential direction half of the inner peripheral surface of the second header portion 53. It touches.
  • the second header portion 53 is partitioned into two spaces by such a second header inner partition plate 81.
  • the space below the first horizontal partition 83 and the second horizontal partition 84 that is, the lower surface of the first horizontal partition 83, the lower surface of the second horizontal partition 84, and the other of the vertical partition 82.
  • a space in contact with the side (right side in FIG. 10) is a lower space 86.
  • the space above the first horizontal partition 83 and the second horizontal partition 84 that is, the upper surface of the first horizontal partition 83, the upper surface of the second horizontal partition 84, and the vertical partition 82.
  • a space in contact with the surface on one side is an upper space 87.
  • the connecting pipe 90 has a connecting pipe main body 91 and a dividing unit 100. Similar to the first embodiment, the connecting pipe main body 91 is a tubular member that allows the first header portion 52 and the second header portion 53 to communicate with each other, and the first end 92 is an outer periphery of the first header portion 52. The second end 93 is connected to the outer peripheral surface of the second header portion 53.
  • the outer diameter of the cross section perpendicular to the extending direction of the connecting pipe main body 91 is a flat shape having one direction as a longitudinal direction. In 2nd Embodiment, it is set as the flat shape which makes a horizontal direction a longitudinal direction.
  • the connecting pipe main body 91 is composed of three tubular members, a first pipe portion 94, a second pipe portion 95, and a connecting pipe portion 96, and the first pipe portion 94 and the connecting pipe portion.
  • a first bent portion 97 is formed between the second pipe portion 95 and the connecting pipe portion 96
  • a second bent portion 98 is formed between the second pipe portion 95 and the connecting pipe portion 96.
  • the first end 92 of the connecting pipe main body 91 is connected to the first header portion 52 in a posture in which the horizontal direction is the longitudinal direction and the vertical direction is the short direction.
  • the second end 93 of the connecting pipe main body 91 is connected to the second header portion 53 in a posture in which the horizontal direction is the longitudinal direction and the vertical direction is the short direction.
  • the vertical position and the circumferential position of the second end 93 of the connecting pipe main body 91 are the same as the vertical partition 82 of the second header inner partition plate 81. For this reason, the opening part of the second end 93 part of the connecting pipe main body 91 is in contact with the vertical partition part 82. As a result, the opening of the second end 93 extends over both sides in the direction in which the pair of plate surfaces of the vertical partition 82 face, and the second pipe 95 of the connecting pipe main body 91 is located below the second header 53.
  • the side space 86 and the upper space 87 are in communication with each other.
  • the second end 93 of the connecting pipe main body 91 is in communication with both spaces so as to straddle the horizontal space between the lower space 86 and the upper space 87 adjacent to each other in the horizontal direction. It is said that.
  • the dividing portion 100 is provided in the connecting pipe body 91 so as to divide the inside of the connecting pipe body 91 into two flow paths arranged in parallel in the horizontal direction from the first end 92 to the second end 93. That is, the dividing portion 100 is provided so as to bisect the inside of the connecting pipe main body 91 at the central portion in the longitudinal direction inside the connecting pipe main body 91.
  • One of the flow paths formed by the dividing section 100 is a first flow path 101 that allows the inside of the first header section 52 and the lower space 86 of the second header section 53 to communicate with each other.
  • the other of the flow paths formed by the dividing part 100 is a second flow path 103 that allows the inside of the first header part 52 and the upper space 87 of the second header part 53 to communicate with each other.
  • Each of the first channel 101 and the second channel 103 has a channel cross-sectional shape whose longitudinal direction is the juxtaposed direction, and the second end from the first end 92 in a state where the channel cross-sectional shape is maintained. 93.
  • the refrigerant introduced from the first end 92 of the connecting pipe body 91 into the first flow path 101 and the second flow path 103 is The first flow path 101 and the second flow path 103 are circulated and introduced into the lower space 86 and the upper space 87 of the second header portion 53.
  • connection location of the first flow path 101 and the second flow path 103 to the first header portion 52 is the same vertical position, refrigerants having the same gas-liquid ratio are introduced to each other, while these refrigerants are in the middle.
  • the second header portion 53 is directly introduced into the lower space 86 and the upper space 87 without branching. Therefore, the gas-liquid ratio of the refrigerant in these two spaces can be made uniform, and the performance deterioration as the heat exchanger 80 can be suppressed as in the first embodiment.
  • the shape of the connecting pipe main body 91 is a flat tubular shape
  • the first bent portion 97 and the second bent portion 98 are compared with, for example, a circular shape having a similar channel cross-sectional area.
  • the radius of curvature at can be reduced. Therefore, by reducing the volume occupied by the connecting pipe 90, it is possible to secure a wide effective area for heat exchange with air as the heat exchanger 80.
  • the first flow channel 101 and the second flow channel 103 in which a part of the flow channel having a circular cross section is cut out in a straight line form a divided portion that forms the straight part. 100 is provided so as to be juxtaposed with each other.
  • Such a structure may be adopted.
  • a second modification example of the second embodiment will be described with reference to FIG.
  • a plurality of connecting pipes 90 are arranged in parallel in the direction in which the first flow path 101 and the second flow path 103 are adjacent to the first flow path 101 and the second flow path 103, respectively.
  • a flat tube structure having small flow paths 102 and 104 may be used.
  • the refrigerant can be introduced from the first header portion 52 into each space of the second header portion 53 via the small flow paths 102 and 104.
  • connection pipe main body 91 and the split part 100 in the connection pipe 90 are formed with a cut part 105 extending from the second end 93 to the first end 92 side along the split part 100.
  • the cut portion 105 and the second header inner partition plate 81 are fitted to each other.
  • the first flow path 101 and the second flow path 103 are not in communication with each other, and the first flow path 101 and the second flow path 103 are respectively connected to the lower space 86 and the upper space 87. While maintaining the communication state, the connecting pipe 90 can be easily positioned, and the workability can be improved.
  • the channel cross-sectional areas of the first channel 101 and the second channel 103 are different from each other.
  • the channel cross-sectional area of the second channel 103 is smaller than the channel cross-sectional area of the first channel 101.
  • the number of the second heat transfer tubes 23 of the lower second tube group 25 connected to the lower space 86 of the second header portion 53 is the second of the upper second tube group 26 connected to the upper space 87.
  • the cross-sectional area of the first flow path 101 is set large as described above, and the flow rate of the refrigerant introduced into the lower space 86 is increased. The heat exchange efficiency of can be improved.
  • the cross-sectional area of the first flow path 101 is set to be large as described above.
  • heat exchange is performed by changing the amount of the refrigerant introduced into the lower space 86 and the upper space 87 according to the heat exchange performance in the second tube group 24 into which the refrigerant is introduced from the lower space 86 and the upper space 87. Efficiency can be improved.
  • the vertical partition part 82 of 2nd Embodiment is extended only to the perpendicular direction, it is not limited to this, You may incline with respect to the perpendicular direction and a horizontal direction.
  • the 1st horizontal partition part 83 and the 2nd horizontal partition part 84 are each extended along only a horizontal surface, they may be inclined a little and may not necessarily be a flat board. .
  • the heat exchanger 110 according to the third embodiment is different from the first embodiment in the structure within the second header portion 53.
  • a first header portion 52 similar to that of the first embodiment is disposed below the second header portion 53.
  • a heat transfer tube 20 similar to that of the first embodiment is connected to the second header portion 53.
  • a vertical partition plate 111 In the second header portion 53 of the third embodiment, a vertical partition plate 111, a horizontal partition plate 116, and a second header inner partition plate 119 are provided.
  • the vertical partition plate 111 divides the space in the second header portion 53 into two regions, that is, a region to which each second heat transfer tube 23 is connected and a region to which the connection tube 61 is connected in a horizontal sectional view. Yes.
  • a region to which the second heat transfer tube 23 partitioned by the vertical partition plate 111 is connected is an outflow region 112.
  • a region to which the connection pipe 61 partitioned by the vertical partition plate 111 is connected is an inflow side region 113.
  • the second header portion 53 has a cylindrical shape extending in the vertical direction, and the internal space is also cylindrical.
  • the vertical partition 111 is arrange
  • the inflow side region 113 and the outflow side region 112 each have a semicircular shape in a horizontal sectional view.
  • the horizontal partition plate 116 divides the outflow side region 112 into two spaces in the vertical direction.
  • a lower space of the two spaces is a first outflow side space 117.
  • the upper space of the two spaces is a second outflow side space 118.
  • a second heat transfer tube 23 is connected to each of the first outflow side space 117 and the second outflow side space 118.
  • the horizontal partition plate 116 has a semicircular plate shape in plan view.
  • the second header inner partition plate 119 is a plate-like member extending in the vertical direction, and is provided in the inflow side region 113 in the second header portion 53.
  • the second header inner partition plate 119 divides the inflow side region 113 into two regions adjacent to each other in the circumferential direction of the second header portion 53 in a horizontal sectional view. Of these two regions, the left region as viewed from the other side in the horizontal direction, which is the connecting direction of the connecting pipe 61, is the first chamber 120, and the right region is the second chamber 121.
  • the second header inner partition plate 119 is disposed along the radial direction in the horizontal sectional view of the internal space of the cylindrical second header portion 53.
  • the second header inner partition plate 119 is disposed so as to extend perpendicular to the vertical partition plate 111, whereby the first chamber 120 and the second chamber 121 have the same volume.
  • a portion of the vertical partition plate 111 facing the first chamber 120 is formed with a first through-hole 114 that allows the first chamber 120 to communicate with the first outflow side space 117 of the outflow side region 112.
  • a second through hole 115 that communicates the second chamber 121 and the second outflow side space 118 of the outflow side region 112 is formed in a portion facing the second chamber 121 in the vertical partition plate 111.
  • the 1st through-hole 114 and the 2nd through-hole 115 are arrange
  • the first through hole 114 is formed at a position near the lowermost portion of the second header portion 53 and below the vertical partition plate 111.
  • the second through-hole 115 is formed at a location near the uppermost portion of the second header portion 53 on the upper part of the vertical partition plate 111. Further, the vertical positions of the first through hole 114 and the second through hole 115 are different from the vertical position of the connection portion of the connection pipe 61 to the second header portion 53.
  • first through-hole 114 and the second through-hole 115 may be different in the vertical position from the connection location to the second header portion 53 of the connection pipe 61.
  • connection location with the 2nd header part 53 of the connection pipe main body 62 of the connection pipe 61 is made into the same location as the circumferential direction position in the 2nd header part 53 of the vertical partition plate 111.
  • connection location to the 2nd header part 53 of the connection pipe main body 62 is arrange
  • the refrigerant introduced from the connecting pipe main body 62 into the second header portion 53 is introduced into both the first chamber 120 and the second chamber 121.
  • connection portion of the connection pipe body 62 with the second header portion 53 is the lower portion of the second header portion 53.
  • the division part 70 may be formed in the inside of the connection pipe 61 like 1st Embodiment.
  • the first flow path 71 and the second flow path 72 defined by the dividing unit 70 the first flow path 71 is in communication with the first chamber 120, and the second flow path 72 is in the second chamber 121. Is in communication.
  • the refrigerant introduced from the connection pipe 61 into the second header portion 53 is such that the connection pipe main body 62 communicates with both the first chamber 120 and the second chamber 121. Therefore, the refrigerant of almost the same gas / liquid ratio is introduced into the first chamber 120 and the second chamber 121.
  • the refrigerant introduced into the first chamber 120 is introduced into the first outflow side space 117 of the outflow side region 112 through the first through hole 114 formed in the lower portion of the second header portion 53. At this time, when the flow rate of the refrigerant is small, the refrigerant is introduced into the lower portion of the outflow side region 112 through the first through hole 114 without being stored in the first chamber 120. On the other hand, when the flow rate of the refrigerant is large, the refrigerant is sequentially introduced into the first outflow side space 117 through the first through hole 114 while the refrigerant is stored in the first chamber 120 to some extent.
  • the refrigerant introduced into the second chamber 121 sequentially moves upward in the second chamber 121 as the refrigerant continues to be supplied, and passes through the second through hole 115 formed in the upper portion of the second header portion 53. And introduced into the second outlet side space 118 of the outlet side region 112.
  • the connection portion between the connection pipe 61 and the second header portion 53 is disposed in the lower portion of the second header portion 53, whereas the second penetration that communicates the second chamber 121 and the outflow side region 112. Since the hole 115 is arranged at the upper part of the second header portion 53, the refrigerant introduced into the second chamber 121 is introduced into the upper part of the outflow side region 112 after moving through the second chamber 121 from below to above.
  • the refrigerant moving path is lengthened, so that the liquid phase and gas phase in the refrigerant can be mixed.
  • the refrigerant in the gas-liquid two-phase state introduced from the first chamber 120 and the second chamber 121 into the first outflow side space 117 and the second outflow side space 118 of the outflow side region 112 enters the second header portion 53. It is introduced into each connected heat transfer tube 20.
  • the connecting pipe main body 62 is connected across the first chamber 120 and the second chamber 121 in the second header portion 53 as in the first embodiment and the second embodiment. Therefore, it is possible to introduce a refrigerant having substantially the same gas-liquid ratio into these two chambers. These refrigerants are respectively introduced into the second heat transfer tube 23 through the flow path in the second header portion 53. Therefore, the gas-liquid ratio of the refrigerant introduced into the second heat transfer tube 23 can be made uniform, and a decrease in heat exchange performance can be avoided.
  • first through hole 114 and the second through hole 115 are not limited to the above-described arrangement locations, and for example, both of them may be arranged below the vertical partition plate 111. That is, the first through hole 114 and the second through hole 115 may be disposed at any location on the vertical partition plate 111. Further, the first through hole 114 and the second through hole 115 may not only form one, but may be formed in plural.
  • the first header portion 52 and the second header portion 53 have the same axis O, and the axis O extends in the vertical direction.
  • the present invention is not limited to this.
  • the axis O direction may be a horizontal direction, or may be an inclined direction that is inclined with respect to the horizontal direction and the vertical direction.
  • first header part 52 and the second header part 53 were formed in the same header 30
  • the first header part 52 and the second header part 53 are configured separately. Also good.
  • the postures of the first header portion 52 and the second header portion 53 may be different from each other, that is, the first header portion 52 is on an axis O different from the axis O of the second header portion 53. You may comprise the cylinder shape extended along.
  • the present invention is applicable to a heat exchanger and an air conditioner equipped with the heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

第一端が第一ヘッダ部(52)の外周面に第一ヘッダ部(52)の内部空間と連通状態で接続されるとともに、第一端の反対側の第二端が第二ヘッダ部(53)の外周面に該第二ヘッダ部(53)の内部空間と連通状態で接続され、第二端の開口部が第二ヘッダ内仕切板(60)に接することで第二端の開口部が第二ヘッダ内仕切板(60)によって区画された二つの領域に跨って配置されている接続管本体を有する接続管を備える。

Description

熱交換器及び空気調和機
 本発明は、熱交換器及び空気調和機に関する。
 本願は、2016年2月29日に、日本に出願された特願2016-038327号に基づき優先権を主張し、その内容をここに援用する。
 空気調和機の熱交換器として、水平方向に延びる伝熱管を上下方向に間隔をあけて複数配置し、各伝熱管の外面にフィンを設けたものが知られている。複数の伝熱管の両端は上下方向に延びる一対のヘッダにそれぞれ接続されている。
 このような熱交換器は、冷媒の流路長さを確保するため、一方のヘッダに導入されて伝熱管を経て他方のヘッダに流通した冷媒が、該他方のヘッダで折り返すようにして再度伝熱管を経て一方のヘッダに戻るように構成されている。
 折り返し側のヘッダ内は、該ヘッダ内を上下方向に区画する仕切板によって複数の領域が区画されている。これによって、ヘッダ内の一の領域内に伝熱管を経て導入された冷媒は、接続管を介してヘッダ内の他の領域に導入された後に、該他の領域に接続された複数の伝熱管を経由して出入口側の一方のヘッダに戻される。
 例えば、特許文献1には、一の主管部と該主管部から二つに分岐して延びる分岐管部とを有する接続管を備えた熱交換器が開示されている。この熱交換器では、主管部がヘッダ内の一の領域に接続されており、分岐管部はそれぞれヘッダ内の2つの他の領域のいずれかに接続されている。
 そして、当該熱交換器を蒸発器として用いる場合には、伝熱管を介してヘッダ内の一の領域に導入された冷媒は、接続管における主管部及び分岐管部を経て分流され、ヘッダ内の二つの他の領域に導入される。
特開2015-55404号公報
 ところで、上記熱交換器を蒸発器として用いる場合、伝熱管を介してヘッダ内の一の領域に導入される冷媒は、その全てが気化しているとは限らず、液相冷媒と気相冷媒とが混在した気液二相冷媒の状態にある。
 そのため、分岐管の配置箇所によっては、一部の分岐管のみに液相冷媒がより多く流通し、分岐管同士で冷媒の流量や気液割合に偏りが生じてしまう。特に、主管部における分岐管の上流側に屈曲部が存在し、かつ、当該屈曲部と同一平面状に主管部及び分岐管が延びている場合には、屈曲の外側に位置する分岐管のみに液相冷媒が集中する傾向がある。
 このように、各分岐管に液相冷媒の偏りが生じれば、冷媒全体の流量の変化によっても分流時の冷媒分配割合に大きな変化が生じてしまう。また、冷媒の流量や気液割合に偏りがある状態で冷媒が分流されれば、冷媒の流量が極端に少ない伝熱管が存在してしまい、熱交換器の伝熱領域を十分に活用することができない。
 さらに、特許文献1の接続管では、複数の接続管同士の干渉を避けるべく取り回しが複雑になり、加工やろう付けが困難となる。また、接続管の占める領域が大きくなってしまう結果、空気と熱交換する有効面積を小さくしなければならなくなり、熱交換性能が低下する。
 そこで、本発明は、性能低下(効率低下)を抑制することの可能な熱交換器、及び該熱交換器を用いた空気調和機を提供することを目的とする。
 本発明の第1の態様に係る熱交換器は、内部を冷媒が流通するとともに間隔をあけて複数が配列された第一伝熱管と、筒状をなして各前記第一伝熱管が内部空間に連通状態で接続される第一ヘッダ部と、内部を冷媒が流通するとともに間隔をあけて複数が配列された第二伝熱管と、軸線に沿って延びる筒状をなして各前記第二伝熱管が内部空間に連通状態で接続される第二ヘッダ部と、該第二ヘッダ部の内部空間を二つの領域に区画する第二ヘッダ内仕切板と、第一端が前記第一ヘッダ部の外周面に該第一ヘッダ部の内部空間と連通状態で接続されるとともに、前記第一端の反対側の第二端が前記第二ヘッダ部の外周面に該第二ヘッダ部の内部空間と連通状態で接続され、前記第二端の開口部が前記第二ヘッダ内仕切板に接することで該第二端の開口部が前記第二ヘッダ内仕切板によって区画された二つの領域に跨って配置されている接続管本体を有する接続管と、を備える。
 このような熱交換器によれば、第一ヘッダ部内から接続管本体内に導入された冷媒は、接続管本体の第二端の開口が第二ヘッダ部における二つの領域に跨っているため、これら二つの領域にそれぞれ導入されることになる。よって、接続管と第一ヘッダ部、第二ヘッダ部との接続箇所がそれぞれ一か所のみとなるため、接続管の取り回しが容易となる。また、接続管を分岐させる場合に比べて当該接続管の占める領域を小さくすることができる。よって、熱交換器における空気と熱交換する有効面積を広く確保できる。
 さらに、接続管本体の第一端から導入されて第二端から第二ヘッダ部の二つの領域に導入される冷媒は、接続管本体内の同様の経路を流通する。このため、二つの領域に導入される冷媒の気液割合の偏りを低減することができる。したがって、熱交換器の性能低下(効率低下)を抑制できる。
 また、本発明の第2の態様に係る熱交換器において、前記第二ヘッダ内仕切板は、前記第二ヘッダ部の前記軸線に直交する平面に沿って延びる板状をなしており、前記二つの領域のうちの一方は、前記第二ヘッダ内仕切板を境界として前記軸線が延在する方向である軸線方向の一方側に区画された第一空間であって、前記二つの領域のうちの他方は、前記第二ヘッダ内仕切板を境界として前記軸線方向の他方側に区画された第二空間であってもよい。
 このような構成とすることで、第二ヘッダ部の軸線方向に分割された第一空間及び第二空間のそれぞれに導入される冷媒の気液割合の均一化を図ることができる。
 また、本発明の第3の態様に係る熱交換器において、前記第二ヘッダ内仕切板は、第二ヘッダ部内で前記軸線を含む平面に沿って延びる板状をなして前記接続管の第二端の開口部が接する縦仕切部と、該縦仕切部のうち、前記軸線が延在する方向である軸線方向の一方側の縁部から、該縦仕切部の板面に直交する方向の一方側のみに向かって延びる板状をなす第一横仕切部と、前記縦仕切部の前記軸線方向の他方側の縁部から、該縦仕切部の板面に直交する方向の他方側のみに向かって延びる板状をなす第二横仕切部と、を有し、前記二つの領域のうちの一方は、前記第一横仕切部及び前記第二横仕切部の軸線方向の一方側に区画された第一空間であって、前記二つの領域のうちの他方は、前記第一横仕切部及び前記第二横仕切部の軸線方向の他方側に区画された第二空間であってもよい。
 このような構成とすることで、第二ヘッダ内仕切板によって区画された第一空間、第二空間のそれぞれに導入される冷媒の気液割合の均一化を図ることができる。
 また、本発明の第4の態様に係る熱交換器において、前記軸線に直交する断面視にて該第二ヘッダ部内の空間を、各前記第二伝熱管が接続された流出側領域と前記接続管の第二端が接続された流入側領域とに区画する縦仕切板と、 前記流出側領域を前記軸線が延在する方向である軸線方向に並設された第一流出側空間と第二流出側空間とに区画する横仕切板と、をさらに備え、前記第二ヘッダ内仕切板は、前記流入側領域を水平断面視にて前記第二ヘッダ部の周方向に互いに隣り合う第一室及び第二室に区画するように前記軸線を含む平面に沿って延びる板状をなしており、前記縦仕切板における前記第一室に面する部分に、前記第一室と前記第一流出側空間とを連通させる第一貫通孔が形成され、前記縦仕切板における前記第二室に面する部分に、前記第二室と前記第二流出側空間の上方の領域とを連通させる第二貫通孔が形成され、前記二つの領域のうちの一方は前記第一室であって、前記二つの領域のうちの一方は前記第二室であってもよい。
 このような構成とすることで、第二ヘッダ内仕切板によって周方向に分割された第一室及び第二室のそれぞれに導入される冷媒の気液割合の均一化を図ることができる。
 また、本発明の第5の態様に係る熱交換器において、前記接続管は、前記第二ヘッダ内仕切板から前記接続管本体内に連続するようにして延びて、該接続管本体における少なくとも前記第二端を含む部分を、前記二つの領域のうちの一方の領域のみに連通する第一流路と他方の領域のみに連通する第二流路とに分割する分割部をさらに有してもよい。
 接続管本体に導入された冷媒は、該接続管本体を流通する過程で気相分、液相分に分離されることもある。これに対して、接続管本体内を分割部によって第一流路、第二流路に分割することで、第二端側で二つの領域に導入される冷媒の気液割合の偏りを低減させることができる。
 また、本発明の第6の態様に係る熱交換器において、前記接続管本体は、前記第一ヘッダ部から該第一ヘッダ部の径方向外側に延びる第一管部と、前記第二ヘッダ部から該第二ヘッダ部の径方向外側に延びる第二管部と、前記第一管部及び第二管部を連結するように第一管部及び第二管部に対して屈曲して延びる連結管部と、を有し、前記分割部は、前記第二端から、前記第二管部及び前記連結管部を経由して少なくとも前記第一管部の中途まで連続して延びていてもよい。
 一般的に、第一管部と連結管部との間の屈曲部、連結管部と第二管部との間の屈曲部では、それぞれ遠心力によって屈曲の外側に比重の大きい液相の冷媒が偏在してしまうことがある。この場合、偏在した冷媒が第二ヘッダ部の二つの領域の一方により多く導入されることになり、熱交換器としての性能低下を招く。
 これに対して、第一管部と連結管部との間の屈曲部よりも第一ヘッダ側の部分まで接続管の分割部が延びている構成とすることで、気液分離し易い屈曲部の手前で第二ヘッダ部の二つの領域に導入される冷媒量が確定される。これによって、これら二つの領域に導入される冷媒の気液割合の均一化を図ることができる。
 また、本発明の第7の態様に係る熱交換器において、前記分割部は、前記第二端から前記第一端にわたって延びていてもよい。
 このような構成とすることで、第一ヘッダ部から接続管に冷媒が導入された時点で、接続管内の第一流路と第二流路を流通する冷媒量が確定される。また、第一流路と第二流路とは第一ヘッダの同様の箇所に接続されているため、それぞれ同様の気液割合の冷媒が導入される。これによって、第二ヘッダ部の二つの領域に導入される冷媒の気液割合の均一化をより一層図ることができる。
 また、本発明の第8の態様に係る熱交換器において、前記第一ヘッダは、前記第二ヘッダ部の前記軸線方向の一方側で、前記軸線に沿って延びる筒状をなしており、前記接続管の前記第一管部、前記第二管部及び前記連結管部は、前記軸線を含む仮想平面上に延びていてもよい。
 このような接続管の構造であっても、接続管内に分割部が存在していることで、第一流路及び第二流路での気液割合の相違を低減することができる。
 また、本発明の第9の態様に係る熱交換器は、前記第一流路及び前記第二流路は、前記接続管本体の第一端側で上下方向に隣接していてもよい。
 このような構成の場合でも、第一流路及び第二流路には気液割合の近い冷媒が導入されるため、第二ヘッダ内の二つの領域に導入される冷媒の気液割合の均一化を図ることができる。
 また、本発明の第10の態様に係る熱交換器は、前記第一流路及び前記第二流路は、前記接続管本体の第一端側で水平方向に隣接していてもよい。
 一般的に、液相状態の冷媒は重力によって下方に集まり易く、気相状態の冷媒は上方に集まり易い。このため、第一ヘッダ部内でも上下方向によって冷媒の気液割合が異なる場合がある。この場合であっても第一流路及び第二流路が水平方向に隣接していることで、第一流路及び第二流路には、同様の気液割合の冷媒が導入される。これにより、第二ヘッダ内の二つの領域に導入される冷媒の気液割合の均一化を図ることができる。
 また、本発明の第11の態様に係る熱交換器は、前記第一流路及び前記第二流路のそれぞれが、これら第一流路及び第二流路の隣接方向に複数が並設された小流路を有し、前記接続管は、前記小流路の並設方向を長手方向とした扁平管状をなしていてもよい。
 このような構成とすることで、例えば、接続管の断面を円形とした場合に比べて、該接続管の屈曲部における曲率半径を小さくすることができる。このため、接続管の占める体積を小さくすることで、熱交換器としての空気と熱交換する有効面積を広く確保することができる。
 また、本発明の第12の態様に係る熱交換器は、前記第一流路と前記第二流路との流路断面積が互いに異なっていてもよい。
 第二ヘッダ部の二つの領域にそれぞれ接続された第二伝熱管の熱交換効率が異なる場合には、これに応じて第一流路、第二流路の流路断面積を異ならせることにより、熱交換器全体としての熱交換効率を向上させることができる。
 また、本発明の第13の態様に係る熱交換器は、前記第二ヘッダ内仕切板に、前記第二ヘッダ部の径方向外側から内側に向かって凹む切り欠き部が形成されており、前記接続管本体の第二端が前記切り欠き部に嵌合していてもよい。
 このような構成とすることで、接続管の位置決めを容易に行うことができ、施工性を向上させることができる。
 また、本発明の第14の態様に係る熱交換器は、前記接続管に、前記第二端から分割部に沿って延びる切り込み部が形成されており、 該切り込み部と前記第二ヘッダ内仕切板とが互いに嵌合していてもよい。
 このような構成とすることで、接続管の位置決めを容易に行うことができ、施工性を向上させることができる。
 また、本発明の第15の態様に係る熱交換器は、前記第一ヘッダ部は、前記軸線を中心とした筒状をなすヘッダ本体と該ヘッダ本体内を前記軸線が延在する方向である軸線方向に区画する主仕切板とを有するヘッダにおける前記主仕切板の前記軸線方向の一方側の部分であって、前記第二ヘッダ部は、前記ヘッダにおける前記主仕切板の前記軸線方向の他方側の部分であって、前記軸線方向は上下方向であってもよい。
 このように、一のヘッダ内に主仕切板を介して第一ヘッダ部及び第二ヘッダ部を形成することで、これら第一ヘッダ部及び第二ヘッダ部を有する熱交換器を容易に構成することができる。
 また、本発明の第16の態様に係る空気調和器は、上記いずれかの熱交換器を備える。
 このように、上記いずれかの熱交換器を備えることで、熱交換性能の低下を抑制し、効率の高い空気調和機を実現できる。
 本発明によれば、熱交換器または空気調和機の性能低下(効率低下)を抑制することができる。
本発明の第1の実施形態に係る空気調和機の全体構成図である。 本発明の第1の実施形態に係る熱交換器の縦断面図である。 本発明の第1の実施形態に係る熱交換器の斜視図である。 本発明の第1の実施形態に係る熱交換器の接続管の第一管部の断面図である。 本発明の第1の実施形態に係る熱交換器の接続管の第二管部の断面図である。 本発明の第1の実施形態の第1変形例に係る熱交換器の縦断面図である。 本発明の第1の実施形態の第2変形例に係る熱交換器の縦断面図である。 本発明の第1の実施形態の第三変形例に係る熱交換器の第二ヘッダ部の水平断面図である。 本発明の第1の実施形態の第4変形例に係る熱交換器の接続管の第一管部の断面図である。 本発明の第1の実施形態の第4変形例に係る熱交換器の接続管の第二管部の断面図である。 本発明の第2の実施形態に係る熱交換器の斜視図である。 本発明の第2の実施形態に係る熱交換器の第二ヘッダ部を接続管の接続方向から見た図である。 本発明の第2の実施形態の第1変形例に係る熱交換器の接続管の断面図である。 本発明の第2の実施形態の第2変形例に係る熱交換器の接続管の断面図である。 本発明の第2の実施形態の第三変形例係る熱交換器の接続管の斜視図である。 本発明の第2の実施形態の第4変形例に係る熱交換器の接続管の断面図である。 本発明の第3の実施形態に係る熱交換器の第二ヘッダ部の斜視図である。 本発明の第3の実施形態に係る熱交換器の第二ヘッダ部の水平断面図である。
〔第1の実施形態〕
 図1~図3、図4A、及び図4Bを参照して、本発明の第1の実施形態に係る熱交換器10を備えた空気調和機1について説明する。
 図1に示すように、空気調和機1は、圧縮機2、室内熱交換器3(熱交換器10)、膨張弁4、室外熱交換器5(熱交換器10)、四方弁6、及び、これらを接続する配管7を備えており、これらからなる冷媒回路を構成している。
 圧縮機2は、冷媒を圧縮し、圧縮した冷媒を冷媒回路に供給する。
 室内熱交換器3は、冷媒と室内の空気との間で熱交換を行う。室内熱交換器3は、冷房運転時には蒸発器として用いられ室内から吸熱し、暖房運転時には凝縮器として用いられ室内へ放熱する。
 膨張弁4は、凝縮器で熱交換をすることで液化した高圧の冷媒を膨張させることで低圧化する。
 室外熱交換器5は、冷媒と室外の空気との間で熱交換を行う。室外熱交換器5は、冷房運転時には、凝縮器として用いられ室外へ放熱する。室外熱交換器5は、暖房運転時には、蒸発器として用いられ室外から吸熱する。
 四方弁6は、暖房運転時と冷房運転時とで冷媒の流通する方向を切り替える。これにより、冷房運転時において、冷媒は、圧縮機2、室外熱交換器5、膨張弁4及び室内熱交換器3の順に循環する。一方、暖房運転時において、冷媒は、圧縮機2、室内熱交換器3、膨張弁4、室外熱交換器5の順に循環される。
 次に、図2~図5を参照して、上記室内熱交換器3及び室外熱交換器5として用いられる熱交換器10について説明する。
 熱交換器10は、複数の伝熱管20、複数のフィン28、一対のヘッダ30、及び接続管61を備える。
 伝熱管20は、水平方向に直線状に延びる管状の部材であって、内部に冷媒が流通する流路が形成されている。伝熱管20は、上下方向に間隔をあけて複数が配列されており、互いに平行に配置されている。
 第1の実施形態では、各伝熱管20は、扁平管状をなしており、伝熱管20の内部には、該伝熱管20の延在方向に直交する水平方向に並設された複数の流路が形成されている。これら複数の流路は互いに平行に配列されている。このため、伝熱管20の延在方向に直交する断面の外形は、伝熱管20の延在方向に直交する水平方向を長手方向とした扁平状とされている。
 フィン28は、上記のように配列された伝熱管20の間にそれぞれ配置されている。第1の実施形態では、各伝熱管20の延在方向に向かうにしたがって上下に隣り合う伝熱管20に交互に接触するように延びる(コルゲート状に延びている)。なお、フィン28の形状はこれに限定されることはなく、伝熱管20の外周面から張り出すように設けられていれば、いかなる形状であってもよい。
 一対のヘッダ30は、上記複数の伝熱管20の両端に伝熱管20を挟み込むように設けられている。一対のヘッダ30の一方は、外部から熱交換器10内への冷媒の出入り口となる出入口側ヘッダ40とされており、他方は、熱交換器10内で冷媒が折り返すための折り返し側ヘッダ50とされている。
 出入口側ヘッダ40は、上下方向に延びる筒状の部材である。出入口側ヘッダ40は、上端及び下端が閉塞されるとともに内部が仕切板41によって上下二つの領域に区画されている。仕切板41によって区画された下方の領域は、下部出入領域42とされている。一方、上方の領域は、上部出入領域43とされている。下部出入領域42と上部出入領域43とは、出入口側ヘッダ40内で互いに非連通状態とされている。下部出入領域42及び上部出入領域43は、冷媒回路を構成する配管7がそれぞれ接続されている。
 複数の伝熱管20のうち、下部出入領域42と連通状態で接続されている伝熱管20は、第一伝熱管21とされている。上部出入領域43と連通状態で接続されている伝熱管20は、第二伝熱管23とされている。
 折り返し側ヘッダ50は、ヘッダ本体51、主仕切板58及び第二ヘッダ内仕切板60を備える。
 ヘッダ本体51は、ヘッダ本体51の軸線Oを中心として、軸線Oに沿って延びる筒状をなす部材である。ヘッダ本体51の上端及び下端は、閉塞されている。第1の実施形態のヘッダ本体51は、上記軸線Oを上下方向に一致させた状態で延びている。即ち、上下方向が軸線O方向とされている。
 主仕切板58は、ヘッダ本体51内に設けられており、ヘッダ本体51内の空間を上下の領域に区画している。
 主仕切板58によって区画される下方(軸線O方向一方側)の領域を含む部分は、第一ヘッダ部52とされている。即ち、主仕切板58によって区画される下方の領域は、第一ヘッダ部52の内部空間とされている。
 主仕切板58によって区画される上方(軸線O方向他方側)の領域を含む部分は、第二ヘッダ部53とされている。即ち、主仕切板58によって区画される上方の領域は、第二ヘッダ部53の内部空間とされている。
 このように第1の実施形態では、ヘッダ本体51内が主仕切板58によって区画されることで、折り返し側ヘッダ50に、それぞれ内部に空間を有する第一ヘッダ部52及び第二ヘッダ部53が形成されている。換言すれば、第一ヘッダ部52及び第二ヘッダ部53によって折り返し側ヘッダ50が構成されている。
 第二ヘッダ内仕切板60は、第二ヘッダ部53の内部空間をさらに二つの領域に区画している。第1の実施形態の第二ヘッダ内仕切板60は、水平面(軸線Oに直交する平面)に沿って延びる板状をなしている。
 これによって、第二ヘッダ内仕切板60は、第二ヘッダ部53の内部空間を下方の領域と上方の領域とに区画している。第二ヘッダ部53内における第二ヘッダ内仕切板60を境界とした下方の領域は下側空間54と(第一空間)され、第二ヘッダ内仕切板60を境界とした上方の領域は上側空間55(第二空間)とされている。
 上記複数の第一伝熱管21は、それぞれ第一ヘッダ部52内と連通状態となるように該第一ヘッダ部52に接続されている。これら複数の第一伝熱管21によって第一管群22が構成されている。換言すれば、第一ヘッダ部52に接続されている伝熱管20が第一伝熱管21とされている。
 第二伝熱管23は、それぞれ第二ヘッダ部53の下側空間54内、上側空間55内と連通状態となるように該第二ヘッダ部53に接続されている。即ち、第二ヘッダ部53に接続されている伝熱管20が第二伝熱管23とされている。そして、第二伝熱管23のうち、下側空間54に連通状態で接続されている複数の第二伝熱管23によって下側第二管群25が構成されている。また、上側空間55に連通状態で接続されている複数の第二伝熱管23によって上側第二管群26が構成されている。
 接続管61は、第一ヘッダ部52の内部空間と、第二ヘッダ部53内の下側空間54、上側空間55とを連通させる。接続管61は、接続管本体62及び分割部70を有している。
 接続管本体62は、管状の部材であって、第一管部65、第二管部66及び連結管部67から構成されている。
 第一管部65は、第一ヘッダ部52に対して外周側から接続されている。即ち、第一管部65は、水平方向(軸線Oに直交する方向)に延びる管状の部材であって、内部が第一ヘッダ部52内と連通状態となるように、一端がヘッダ本体51における第一ヘッダ部52の形成領域に接続されている。第一管部65は、第一ヘッダ部52(ヘッダ本体51)の周方向位置における伝熱管20が接続された箇所の軸線Oを挟んだ反対側の部分に接続されている。
 第二管部66は、第二ヘッダ部53に対して外周側から接続されている。即ち、第二管部66は、水平方向に延びる管状の部材であって、内部が第二ヘッダ部53内と連通状態となるように、一端がヘッダ本体51における第二ヘッダ部53の形成領域に接続されている。第二管部66は、第二ヘッダ部53(ヘッダ本体51)の周方向位置における第一管部65の接続箇所と同様の部分に接続されている。
 連結管部67は、第一管部65と第二管部66とを上下方向に連結している。即ち、連結管部67は、上下方向に延びる管状の部材であって、下端が第一管部65に対して互いの内側を連通状態にして接続されている。また、上端が第二管部66に対して互いの内側を連通状態にして接続されている。
 これによって、連結管部67と第一管部65との接続箇所には、接続管61内の流路が水平方向から上下方向に屈曲する第一屈曲部68が構成されている。また、連結管部67と第二管部66との接続箇所には、接続管61内の流路が水平方向から上下方向に屈曲する第二屈曲部69が構成されている。
 上記構成された接続管本体62は、上記第一管部65、第二管部66及び連結管部67は、軸線Oを含む仮想平面上で延在している。
 接続管本体62における第一管部65の第一ヘッダ部52と接続される端部は、接続管本体62の第一端63とされている。また、接続管本体62における第二管部66の第二ヘッダ部53と接続される端部は、接続管本体62の第二端64とされている。
 そして、接続管本体62の第二端64の上下方向位置は、第二ヘッダ部53内を上下二つの領域に区画する第二ヘッダ内仕切板60と同様の位置とされている。これによって、接続管本体62の第二端64の開口部が第二ヘッダ内仕切板60に接している。
 また、第二ヘッダ内仕切板60の厚さ寸法(上下方向の寸法)は、接続管本体62の第二管部66の開口部の上下方向の寸法よりも小さく設定されている。そして、第二ヘッダ内仕切板60は、第二管部66の開口部の上下方向範囲内に設置されている。これによって、第二端64の開口部が下側空間54と上側空間55との両空間に跨って配置されており、接続管本体62の第二管部66内は、第二ヘッダ部53内の下側空間54及び上側空間55の双方と連通状態とされている。
 分割部70は、接続管本体62の内部を第一流路71と第二流路72とに分割している。第1の実施形態において、分割部70は、接続管本体62の内部の第一管部65の第一ヘッダ部52との接続箇所から、連結管部67を経由して、第二管部66の第二ヘッダ部53との接続箇所までわたって形成されている。これによって、第一流路71及び第二流路72が、接続管本体62内の第一端63と第二端64とにわたった全域に形成されている。
 図6に示すように、分割部70は、第一管部65内及び第二管部66内のそれぞれで水平面に沿って板状に延在している。これにより、分割部70は、第一管部65内及び第二管部66内を上下二つの流路に分割している。
 さらに、分割部70は、連結管部67内では、ヘッダ本体51の軸線Oを含む平面に直交する鉛直平面に沿って延在している。これにより、分割部70は、該連結管部67内をヘッダ本体51に近接した側の流路とヘッダ本体51から離間した側の流路に分割している。
 第1の実施形態において、上記第一流路71は、第一管部65内における下方の流路、連結管部67内のヘッダ本体51から離間した側の流路、及び、第二管部66内における上方の流路によって構成されている。一方、上記第二流路72は、第一管部65内における上方の流路、連結管部67内のヘッダ本体51に近接した側の流路、及び、第二管部66内における下方の流路によって構成されている。これにより、第一流路71及び第二流路72は、接続管61の第一端63及び第二端64の双方の開口部でも上下方向に隣接している。
 そして、上記分割部70における第二端64側の端部は、第二ヘッダ部53内の第二ヘッダ内仕切板60に接している。これにより、分割部70は、第二ヘッダ内仕切板60から接続管本体62内に連続するように延びている。このため、接続管61の第一流路71は、第二ヘッダ部53内のうち上側空間55のみに連通している。一方、接続管61の第二流路72は、第二ヘッダ部53内のうち下側空間54のみに連通している。
 次に、上記熱交換器10が蒸発器として用いられる場合の作用・効果について説明する。なお、熱交換器10が室内熱交換器3の場合、熱交換器10は、空気調和機1の冷房運転時に蒸発器として用いられる。室外熱交換器5の場合には空気調和機1の暖房運転時に蒸発器として用いられることになる。
 熱交換器10が蒸発器として用いられる場合、図2に示す出入口側ヘッダ40の下部出入領域42に配管7から液相分の多い気液二相冷媒が供給される。この冷媒は、下部出入領域42で複数の第一伝熱管21内に分配供給され、第一伝熱管21を流通する過程で該第一伝熱管21の外部雰囲気との間で熱交換することで蒸発が促される。
 これにより、第一伝熱管21から折り返し側ヘッダ50の第一ヘッダ部52内に供給される冷媒は、一部が液相から気相に変化し、下部出入領域42内の冷媒よりも気相割合が増えた気液二相冷媒となる。
 そして、第一ヘッダ部52内の冷媒は、接続管61を経由して第二ヘッダ部53内に導入される。より詳細には、接続管61における第一端63の開口から該接続管61内の第一流路71及び第二流路72のそれぞれに冷媒が導入され、第一流路71を流通する冷媒は該第一流路71が連通する第二ヘッダ部53の上側空間55に導入される。一方、第二流路72を流通する冷媒は該第二流路72が連通する第二ヘッダ部53の上側空間55に導入される。
 第一ヘッダ部52内に供給される気液二相冷媒のうち、液相分が多く密度の大きい冷媒が重力により第一ヘッダ部52の下部に集まり、気相分が多く密度の小さい冷媒が第一ヘッダ部52の上部に集まることになる。即ち、第一ヘッダ部52内では、冷媒の気液割合が上下方向位置で異なることになる。
 第1の実施形態では、接続管61内の全域に第二ヘッダ部53の下側空間54及び上側空間55に連通する第一流路71、第二流路72が形成されており、これら第一流路71及び第二流路72が互いに並設された接続管本体62の第一端63のみが第一ヘッダ部52に接続されている。
 このため、第一流路71及び第二流路72には、それぞれほぼ同一の上下方向位置の冷媒が供給されることになる。よって、気液割合のほぼ等しい冷媒が第一流路71及び第二流路72を介して第二ヘッダ部53の下側空間54及び上側空間55に導入されるため、下側空間54及び上側空間55の冷媒の気液割合は近しいものとなる。
 その後、第二ヘッダ部53の下側空間54及び上側空間55の冷媒は、複数の第二伝熱管23に分流して第二伝熱管23内を流通する。そして、冷媒は、第二伝熱管23を流通する過程で該第二伝熱管23の外部雰囲気との間で熱交換することで、再度蒸発が促される。これにより、第二伝熱管23内にて、冷媒における残存していた液相が気相に変化し、出入口側ヘッダ40の上部出入領域43には気相状態の冷媒が供給される。そして、この冷媒は、上部出入領域43から配管7に導入され、冷媒回路を循環する。
 上記説明したように、第1の実施形態では、接続管61内の延在方向全域にわたって第一流路71及び第二流路72が形成され、第一端63において第一流路71及び第二流路72が第一ヘッダ部52の上下方向の位置に接続されている。
 このため、第一流路71及び第二流路72には互いにほぼ同様の気液割合の冷媒が導入される。また、第一流路71及び第二流路72に導入された冷媒が分岐されることなくそのまま第二ヘッダ部53の下側空間54及び上側空間55に導入される。即ち、第一ヘッダ部52から接続管61内に冷媒が導入された時点で、下側空間54及び上側空間55に導入される冷媒の気液割合が確定される。
 したがって、下側空間54及び上側空間55に導入される冷媒の気液割合の均一化を図ることができ、その後冷媒が導入される第二伝熱管23にて効率的な熱交換を行うことが可能となり、熱交換器10の性能低下を抑制できる。
 また、仮に第一ヘッダ部52と第二ヘッダ部53の下側空間54及び上側空間55を、中途で分岐する流路で接続した場合には、特に冷媒の流量が変化した場合にこれら二つの空間に流入される冷媒の気液割合も大きく変化してしまうことがある。
 第1の実施形態では、第一ヘッダ部52から第一流路71及び第二流路72に導入された冷媒がそのまま第二ヘッダ部53の下側空間54及び上側空間55に導入されるため、冷媒の流量が変化した場合であっても、下側空間54及び上側空間55に導入される冷媒の気液割合が大きく異なってしまうことはない。
 また、第1の実施形態では、接続管61の第一ヘッダ部52、第二ヘッダ部53に対する接続箇所がそれぞれ一か所のみとなる。その結果、例えば、複数の流路を用いる場合や流路を分岐させる場合に比べて接続管61の取り回しが容易となる。
 また、単一の接続管61に複数の流路(第一流路71、第二流路72)を形成することで、接続管61の占める領域を小さくすることができる。例えば、熱交換器10全体としての大きさが設計上予め定められている場合、接続管61のコンパクト化を図った分だけ空気と熱交換する有効面積を増加させることができる。よって、より効率の高い熱交換器10を実現できる。
 次に、図5を参照して、第1の実施形態の第1変形例について説明する。第1の実施形態の第1変形例として、接続管61が分割部70を有さない構成としてもよい。この場合、接続管61は接続管本体62のみから構成される。
 このような構成とされた第1の実施形態の第1変形例によれば、接続管61が分割部70を有さない構成であっても、接続管本体62の第一端63から導入されて第二端64から第二ヘッダ部53の二つの領域に導入される冷媒は、接続管本体62内の同様の経路を流通し、第二ヘッダ部53の下側空間54及び上側空間55に導入される。このため、二つの領域に導入される冷媒の気液割合の偏りを低減することができる。
 次に、図6を参照して、第1の実施形態の第2変形例について説明する。第1の実施形態の第2変形例として、分割部70の形成範囲を第1の実施形態と異ならせてもよい。
 第1の実施形態の第2変形例では、接続管61の分割部70は、接続管本体62の第二端64から第二管部66及び連結管部67を経由して、第一管部65の中途、即ち、第一端63の手前まで延びるように形成される。
 例えば、第1変形例のように分割部70を有さない構成の接続管61の場合、冷媒の流速や流量によっては、第一屈曲部68や第二屈曲部69で冷媒の気相と液相とが分離されてしまう場合がある。
 即ち、冷媒が接続管本体62の第一屈曲部68を通過する際に受ける遠心力によって、冷媒のうちより密度の大きい液相分が屈曲の外側に偏在することになる。この場合、接続管本体62内で周方向に液相冷媒の分布を形成することになり、その結果、第二ヘッダ部53の下側空間54及び上側空間55に気液割合が大きく異なる冷媒が導入されることもある。
 これに対して第2変形例では、第一屈曲部68よりも接続管61の第一端63側まで分割部70が延びているため、接続管本体62の第一端63から導入された冷媒が第一屈曲部68で気液分離されてしまう前段階で第一流路71及び第二流路72に分流して流通することになる。このため、第一流路71と第二流路72との間で流通する冷媒の気液割合が大きく異なってしまうことはない。よって、第1の実施形態と同様に、熱交換器10の性能低下を抑制できる。
 次に、図7を参照して、第1の実施形態の第3変形例について説明する。第1の実施形態の第3変形例では、第二ヘッダ内仕切板60における接続管61との接続領域に、該第二ヘッダ内仕切板60の外周側から凹む切り欠き部75を設け、第二ヘッダ部53の内側まで入り込んだ接続管61の第二端64が当該切り欠き部75に嵌合する構成とされている。
 第二ヘッダ内仕切板60には、ヘッダ30内に取り付ける前に、上記切り欠き部75が形成される。そして、ヘッダ30に当該第二ヘッダ内仕切板60を挿入するための切り込み部を設け、ヘッダ30の外周側から第二ヘッダ内仕切板60をヘッダ30内に挿入する。
 その後、ヘッダ30に形成した接続管61の接続用の孔部から接続管61の第二端64をヘッダ30内に挿入し、該第二端64を第二ヘッダ内仕切板60の切り込み部に嵌合させる。このように組み立てた後に、ヘッダ30、第二ヘッダ内仕切板60及び接続管61を一体にロウ付けする。
 なお、接続管61はアルミニウム合金で形成することが好ましく、第二ヘッダ内仕切板60はろう材を張り合わせることで形成したクラッド材からなることが好ましい。
 第1の実施形態の第3変形例によれば、熱交換器10を製作する際における接続管61の位置決めを容易に行うことができるため、施工性を向上させることが可能となる。
 次に、図8A及び図8Bを参照して、第1の実施形態の第4変形例について説明する。第1の実施形態の第4変形例では、接続管61内の第一流路71及び第二流路72が、第二管部66内では上下方向に並設されている一方、第一管部65では水平方向に並設された構成とされている。
 即ち、第4変形例では、第一管部65内の分割部70は、鉛直方向に延在する板状をなしており、これによって第一管部65内を水平方向に並設された第一流路71、第二流路72に分割している。
 このような接続管61によれば、第一端63の開口部において第一流路71及び第二流路72が水平方向に並設されているため、第一端63における第一流路71及び第二流路72の上下方向位置は同一となる。これにより、第一流路71及び第二流路72には、気液割合の同様の冷媒がそれぞれ導入される。したがって、第一端63で第一流路71及び第二流路72が上下方向に並設されている場合に比べてより一層、第二ヘッダ部53の下側空間54及び上側空間55に導入される冷媒の気液割合の均一化を図ることができる。
 なお、第4変形例では少なくとも第一端63において第一流路71及び第二流路72が水平方向に並設されていればよい。また、少なくとも第二端64において第一流路71及び第二流路72が水平方向に並設されていればよく、第一端63と第二端64との間では、第一流路71及び第二流路72がどのような並設状態であってもよい。即ち、第一管部65、第二管部66及び連結管部67の少なくとも一つの部分で分割部70が捩じれるように形成されていてもよい。
 さらに、この第4変形例の分割部70を上記第2変形例に適用して、第一管部65の延在方向の中途に位置する分割部70の端部で、第一流路71と第二流路72とを水平方向に並設してもよい。
〔第2の実施形態〕
 図9及び図10を参照して、本発明の第2の実施形態に係る熱交換器80について説明する。なお、図9及び図10では、第1の実施形態と同様の構成要素については、第1の実施形態同一の符号を付して詳細な説明を省略する。
 第2の実施形態の熱交換器80は、第二ヘッダ内仕切板81及び接続管90の構造が第1の実施形態と相違する。
 第2の実施形態の第二ヘッダ内仕切板81は、縦仕切部82、第一横仕切部83及び第二横仕切部84を有している。縦仕切部82は、軸線Oを含む平面に沿って延びる板状をなす部材であって、第二ヘッダ部53内の上下方向の一部範囲に、第二ヘッダ部53の直径方向(伝熱管20、第一管94、第二管部95の延在方向)にわたって延在している。
 第2の実施形態では、縦仕切部82は、第二ヘッダ部53の内における第二伝熱管23が接続された側と接続管90が接続された側とにわたる直径方向にわたって延在している。この縦仕切部82は、矩形状をなす板状をなしており、長手方向の縁部が上記直径方向に延びる縦仕切部82の下方の縁部及び上方の縁部をとされており、短手方向の縁部が第二ヘッダ部53の内周面に接して上下方向に延びている。
 第一横仕切部83は、縦仕切部82における下方の縁部から、縦仕切部82の一対の板面に直交する方向の一方側(図10における左側)に向かって延在している。縦仕切部82は、平面視で半円形状の板部材であって、半円形状の直線状の縁部が、縦仕切部82の下方の縁部と交差稜線を形成しており、円弧状の縁部が第二ヘッダ部53の内周面の周方向半分の領域に接している。
 第二横仕切部84は、縦仕切部82における上方の縁部から、縦仕切部82の一対の板面に直交する方向の他方側(図10における右側)に向かって延在している。縦仕切部82は、平面視で半円形状の板部材である。半円形状の直線状の縁部が縦仕切部82の上方の縁部と交差稜線を形成しており、円弧状の縁部が第二ヘッダ部53の内周面の周方向半分の領域に接している。
 このような第二ヘッダ内仕切板81によって、第二ヘッダ部53内は二つの空間に区画されている。二つの空間のうち、第一横仕切部83及び第二横仕切部84の下方の空間、即ち、第一横仕切部83の下面、第二横仕切部84の下面及び縦仕切部82の他方側(図10における右側)の面に接する空間は、下側空間86とされている。また、二つの空間のうち、第一横仕切部83及び第二横仕切部84の上方の空間、即ち、第一横仕切部83の上面、第二横仕切部84の上面及び縦仕切部82の一方側(図10における左側)の面に接する空間は、上側空間87とされている。
 接続管90は、接続管本体91及び分割部100を有している。接続管本体91は、第1の実施形態と同様、第一ヘッダ部52内と第二ヘッダ部53内とを連通させる管状の部材であって、第一端92が第一ヘッダ部52の外周面に接続されており、第二端93が第二ヘッダ部53の外周面に接続されている。
 接続管本体91の延在方向に直交する断面における外径は、一方向を長手方向とする扁平形状とされている。第2の実施形態では、水平方向を長手方向とする扁平形状とされている。接続管本体91は、第1の実施形態同様、第一管部94、第二管部95及び連結管部96の3つの管状の部材から構成されており、第一管部94と連結管部96との間に第一屈曲部97が形成され、第二管部95と連結管部96との間に第二屈曲部98が形成されている。
 接続管本体91の第一端92は、水平方向を長手方向として上下方向を短手方向とする姿勢で第一ヘッダ部52に接続されている。接続管本体91の第二端93も、第一端92同様にして、水平方向を長手方向とするとともに上下方向を短手方向とする姿勢で第二ヘッダ部53に接続されている。
 このような接続管本体91の第二端93の上下方向位置及び周方向位置は、第二ヘッダ内仕切板81の縦仕切部82と同様の位置とされている。このため、接続管本体91の第二端93部の開口部が縦仕切部82に接している。これによって、第二端93の開口部は、縦仕切部82の一対の板面が向く方向の両側にわたっており、接続管本体91の第二管部95内は、第二ヘッダ部53内の下側空間86及び上側空間87と連通状態とされている。
 このように第2の実施形態では、接続管本体91の第二端93が下側空間86及び上側空間87の互いに水平方向に隣り合う部分に、水平方向に跨るようにして両空間と連通状態とされている。
 分割部100は、接続管本体91内を第一端92から第二端93にわたって水平方向に並設された二つの流路に分割するように接続管本体91内に設けられている。即ち、この分割部100は、接続管本体91内の長手方向の中央部において接続管本体91内を二分するように設けられている。
 分割部100によって形成される流路のうちの一方は、第一ヘッダ部52内と第二ヘッダ部53の下側空間86とを連通させる第一流路101とされている。分割部100によって形成される流路のうちの他方は、第一ヘッダ部52内と第二ヘッダ部53の上側空間87とを連通させる第二流路103とされている。これら第一流路101及び第二流路103はそれぞれ互いに並設方向を長手方向とする流路断面形状をなしており、当該流路断面形状を維持した状態で、第一端92から第二端93にわたって延びている。
 上記説明した第2の実施形態の熱交換器80においても、第1の実施形態同様、接続管本体91の第一端92から第一流路101、第二流路103に導入された冷媒が、これら第一流路101及び第二流路103を流通して第二ヘッダ部53の下側空間86及び上側空間87に導入される。
 第一流路101及び第二流路103の第一ヘッダ部52との接続箇所は、同様の上下方向位置であるため、互いに同様の気液割合の冷媒がそれぞれ導入される一方、これら冷媒は中途で分岐することなくそのまま第二ヘッダ部53の下側空間86及び上側空間87に導入される。そのため、これら2つの空間での冷媒の気液割合の均一化を図ることができ、第1の実施形態同様、熱交換器80としての性能低下を抑制することができる。
 また、第2の実施形態では、接続管本体91の形状が扁平管状をなしているため、例えば同様の流路断面積の円形状のものに比べて第一屈曲部97及び第二屈曲部98での曲率半径を小さくすることができる。そのため、接続管90の占める体積を小さくすることで、熱交換器80として空気と熱交換する有効面積を広く確保することができる。
 次に、図11を参照して、第2の実施形態の第1変形例について説明する。第2の実施形態の第1変形例では、断面円形の流路の一部が直線状に切り欠かれた第一流路101及び第二流路103が、当該直線状の部分を構成する分割部100によって互いに並設するように設けられた構造とされている。このような構造としてもよい。
 次に、図12を参照して、第2の実施形態の第2変形例について説明する。第2の実施形態の第2変形例では、接続管90が、第一流路101及び前記第二流路103のそれぞれが第一流路101及び第二流路103の隣接方向に複数が並設された小流路102,104を有した扁平管構造としてもよい。
 これによっても第2の実施形態同様、各小流路102,104を介して第一ヘッダ部52から第二ヘッダ部53の各空間に冷媒を導入することができる。
 次に、図13を参照して、第2の実施形態の第3変形例について説明する。第2の実施形態の第3変形例では、接続管90における接続管本体91及び分割部100に、第二端93から分割部100に沿って第一端92側に延びる切り込み部105が形成されており、該切り込み部105と第二ヘッダ内仕切板81とが互いに嵌合した構造とされている。
 このような構成とすることで、第一流路101及び第二流路103の互いの非連通状態、及び、第一流路101及び第二流路103それぞれの下側空間86及び上側空間87への連通状態を維持しながら、接続管90の位置決めを容易に行うことができ、施工性を向上させることができる。
 次に、図14を参照して、第2の実施形態の第4変形例について説明する。第2の実施形態の第4変形例では、第一流路101と第二流路103との流路断面積を互いに異なるものとしている。第2の実施形態の第4変形例では、第一流路101の流路断面積よりも第二流路103の流路断面積が小さい。
 例えば、第二ヘッダ部53の下側空間86に接続される下側第二管群25の第二伝熱管23の数の方が、上側空間87に接続される上側第二管群26の第二伝熱管23の数よりも多い場合、上記のように第一流路101の断面積を大きく設定し、下側空間86に導入される冷媒の流量を増加することで、熱交換器80全体としての熱交換効率を向上させることができる。
 さらに、例えば、下側第二管群25に当たる送風の流速が上側第二管群26に当たる送風の流速よりも速い場合にも、上記のように第一流路101の断面積を大きく設定して下側空間86に導入される冷媒の流量を増加することで、熱交換器80全体としての熱交換効率を向上させることができる。
 即ち、下側空間86、上側空間87から冷媒が導入される第二管群24における熱交換性能に応じて下側空間86、上側空間87に導入する冷媒の量を変化させることで、熱交換効率の向上を図ることができる。
 なお、第2の実施形態の縦仕切部82は、鉛直方向のみに延在しているが、これに限定されことはなく、鉛直方向及び水平方向に対して傾斜していてもよい。
また、第一横仕切部83、第二横仕切部84は、それぞれ水平面のみに沿って延在しているが、多少傾斜していてもよいし、必ずしも平坦状をなす板でなくてもよい。
〔第3の実施形態〕
 図15及び図16を参照して、本発明の第3の実施形態に係る熱交換器110について説明する。なお、第3の実施形態では、第1の実施形態と同様の構成要素については、第1の実施形態同一の符号を付して詳細な説明を省略する。
 第3の実施形態の熱交換器110は、第二ヘッダ部53内の構造が第1の実施形態と異なる。なお、図15及び図16では図示を省略しているが、第二ヘッダ部53の下方には第1の実施形態同様の第一ヘッダ部52が配置されており、これら第一ヘッダ部52及び第二ヘッダ部53には第1の実施形態同様の伝熱管20が接続されている。
 第3の実施形態の第二ヘッダ部53内には、縦仕切板111、横仕切板116及び第二ヘッダ内仕切板119が設けられている。
 縦仕切板111は、第二ヘッダ部53内の空間を水平断面視にて、各第二伝熱管23が接続された領域と接続管61が接続された領域との二つの領域に区画している。縦仕切板111によって区画された第二伝熱管23が接続された領域は、流出側領域112とされている。縦仕切板111によって区画された接続管61が接続された領域は流入側領域113とされている。
 第3の実施形態では、第二ヘッダ部53は上下方向に延びる円筒形状をなしており、これにともなって内部空間も円筒状をなしている。そして、縦仕切板111は、円筒状をなす第二ヘッダ部53の内部空間の水平断面視における直径方向に沿うようにして配置されている。これによって、流入側領域113及び流出側領域112はそれぞれ水平断面視が半円形状をなしている。
 横仕切板116は、流出側領域112を、上下方向に二つの空間に区画している。二つの空間のうちの下方の空間は、第一流出側空間117とされている。また、二つの空間のうちの上方の空間は、第二流出側空間118とされている。これら第一流出側空間117及び第二流出側空間118には、それぞれ第二伝熱管23が接続されている。この横仕切板116は、平面視にて半円形状の板状をなしている。
 第二ヘッダ内仕切板119は、上下方向に延びる板状の部材であって、第二ヘッダ部53内の流入側領域113に設けられている。第二ヘッダ内仕切板119は、流入側領域113を水平断面視にて、第二ヘッダ部53の周方向に互いに隣り合う二つの領域に区画している。この二つの領域のうち、接続管61の接続方向である水平方向他方側から見て左側の領域は第一室120とされており、右側の領域は第二室121とされている。
 第3の実施形態では、第二ヘッダ内仕切板119は、円筒状をなす第二ヘッダ部53の内部空間の水平断面視における半径方向に沿うように配置されている。また、第二ヘッダ内仕切板119は、縦仕切板111に直交して延在するように配置されており、これによって第一室120と第二室121との容積は同一とされている。
 ここで、縦仕切板111における第一室120に面する部分には、該第一室120と流出側領域112の第一流出側空間117とを連通させる第一貫通孔114が形成されている。また、縦仕切板111における第二室121に面する部分には、該第二室121と流出側領域112の第二流出側空間118とを連通させる第二貫通孔115が形成されている。
 第一貫通孔114及び第二貫通孔115は、互いに上下方向位置が異なる箇所に配置されている。第3の実施形態では、第一貫通孔114は、縦仕切板111の下部であって第二ヘッダ部53の最下部に近い箇所に形成されている。また、第二貫通孔115は、縦仕切板111の上部であって第二ヘッダ部53の最上部に近い箇所に形成されている。さらに、第一貫通孔114及び第二貫通孔115の上下方向位置は、接続管61の第二ヘッダ部53への接続箇所の上下方向位置と互いに異なる位置とされている。
 なお、第一貫通孔114及び第二貫通孔115の一方のみが接続管61の第二ヘッダ部53への接続箇所と上下方向位置が違っていてもよい。
 そして、接続管61の接続管本体62の第二ヘッダ部53との接続箇所は、縦仕切板111の第二ヘッダ部53における周方向位置と同一箇所とされている。これにより、接続管本体62の第二ヘッダ部53への接続箇所は第一室120と第二室121とに跨って配置されている。したがって、接続管本体62から第二ヘッダ部53に導入される冷媒は、第一室120と第二室121との双方に導入されることになる。
 また、第3の実施形態では、接続管本体62の第二ヘッダ部53との接続箇所は、第二ヘッダ部53の下部とされている。
 なお、接続管61の内部には、第1の実施形態同様、分割部70が形成されていてもよい。この場合、分割部70によって画成される第一流路71と第二流路72とのうち、第一流路71は第一室120に連通状態とされ、第二流路72は第二室121に連通状態とされる。
 第3の実施形態の熱交換器110においても、接続管61から第二ヘッダ部53内に導入される冷媒は、接続管本体62が第一室120及び第二室121の双方に連通されているため、これら第一室120及び第二室121にほぼ同一の気液割合の冷媒が導入される。
 第一室120に導入された冷媒は、第二ヘッダ部53の下部に形成された第一貫通孔114を介して流出側領域112の第一流出側空間117に導入される。この際、冷媒の流量が小さい場合には、第一室120内に冷媒が貯留されることなく第一貫通孔114を介して流出側領域112の下部に導入される。一方、冷媒の流量が大きい場合には、第一室120内にある程度冷媒が貯留された状態で、該冷媒が順次第一貫通孔114を介して第一流出側空間117に導入される。
 一方、第二室121に導入された冷媒は、冷媒が供給され続けるにしたがって順次第二室121内を上方に移動し、第二ヘッダ部53の上部に形成された第二貫通孔115を介して流出側領域112の第二流出側空間118に導入される。即ち、接続管61と第二ヘッダ部53との接続箇所が第二ヘッダ部53の下部に配置されているのに対して、第二室121と流出側領域112とを連通される第二貫通孔115は第二ヘッダ部53の上部に配置されているため、第二室121に導入された冷媒は該第二室121を下方から上方にわたって移動した上で流出側領域112の上部に導入される。
 このように冷媒の移動経路の長大化が図られることで、冷媒中の液相分、気相分の混合が図られる。そして、第一室120及び第二室121から流出側領域112の第一流出側空間117及び第二流出側空間118に導入されたそれぞれ気液二相状態の冷媒は、第二ヘッダ部53に接続された各伝熱管20内に導入される。
 上記説明したように、第3の実施形態でも第1の実施形態、第2の実施形態同様、接続管本体62が第二ヘッダ部53内の第一室120及び第二室121に跨って接続されているため、これら二つの室に気液割合のほぼ同一の冷媒を導入することができる。これら冷媒は、それぞれ第二ヘッダ部53内の流路を経て第二伝熱管23に導入あれる。したがって、第二伝熱管23に導入される冷媒の気液割合の均一化を図ることができ、熱交換性能の低下を回避できる。
 なお、第一貫通孔114及び第二貫通孔115は、上記の配置箇所に限らず、例えばこれらの双方を縦仕切板111の下部に配置してもよい。即ち、第一貫通孔114及び第二貫通孔115は、縦仕切板111のいかなる箇所に配置してもよい。また、第一貫通孔114及び第二貫通孔115はそれぞれ一つを形成するのみならず、複数形成してもよい。
 以上、本発明の実施形態について説明したが、本発明はこれらの実施形態に限定されることなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、第3の実施形態では、第一ヘッダ部52と第二ヘッダ部53との軸線Oを同一のものとし、当該軸線Oを上下方向に沿うものとしたがこれに限定されることはない。例えば、軸線O方向を水平方向としても良いし、水平方向及び上下方向に対して傾斜する傾斜方向としてもよい。
 また、第一ヘッダ部52と第二ヘッダ部53とを同一のヘッダ30内に形成した場合を例に挙げて説明したが、第一ヘッダ部52、第二ヘッダ部53を別個に構成してもよい。この場合、第一ヘッダ部52と第二ヘッダ部53との姿勢が互いに異なるものであってもよく、即ち、第一ヘッダ部52は、第二ヘッダ部53の軸線Oとは異なる軸線Oに沿って延びる筒状をなしていてもよい。
 本発明は、熱交換器、及び該熱交換器を備えた空気調和機に適用可能である。
 1  空気調和機
 2  圧縮機
 3  室内熱交換器
 4  膨張弁
 5  室外熱交換器
 6  四方弁
 7  配管
 10,80,110  熱交換器
 20  伝熱管
 21  第一伝熱管
 22  第一管群
 23  第二伝熱管
 24  第二管群
 25  下側第二管群
 26  上側第二管群
 28  フィン
 30  ヘッダ
 40  出入口側ヘッダ
 41  仕切板
 42  下部出入領域
 43  上部出入領域
 50  折り返し側ヘッダ
 51  ヘッダ本体
 52  第一ヘッダ部
 53  第二ヘッダ部
 54,86  下側空間
 55,87  上側空間
 58  主仕切板
 60,81,119  第二ヘッダ内仕切板
 61,90  接続管
 62,91  接続管本体
 63,92  第一端
 64,93  第二端
 65,94  第一管部
 66,95  第二管部
 67,96  連結管部
 68,97  第一屈曲部
 69,98  第二屈曲部
 70,100  分割部
 71,101  第一流路
 72,103  第二流路
 75  切り欠き部
 82  縦仕切部
 83  第一横仕切部
 84  第二横仕切部
 102,104  小流路
 105  切り込み部
 111  縦仕切板
 112  流出側領域
 113  流入側領域
 114  第一貫通孔
 115  第二貫通孔
 116  横仕切板
 117  第一流出側空間
 118  第二流出側空間
 120  第一室
 121  第二室
 O  軸線

Claims (16)

  1.  内部を冷媒が流通するとともに間隔をあけて複数が配列された第一伝熱管と、
     筒状をなして各前記第一伝熱管が内部空間に連通状態で接続される第一ヘッダ部と、
     内部を冷媒が流通するとともに間隔をあけて複数が配列された第二伝熱管と、
     軸線に沿って延びる筒状をなして各前記第二伝熱管が内部空間に連通状態で接続される第二ヘッダ部と、
     該第二ヘッダ部の内部空間を二つの領域に区画する第二ヘッダ内仕切板と、
     第一端が前記第一ヘッダ部の外周面に該第一ヘッダ部の内部空間と連通状態で接続されるとともに、前記第一端の反対側の第二端が前記第二ヘッダ部の外周面に該第二ヘッダ部の内部空間と連通状態で接続され、前記第二端の開口部が前記第二ヘッダ内仕切板に接することで該第二端の開口部が前記第二ヘッダ内仕切板によって区画された二つの領域に跨って配置されている接続管本体を有する接続管と、を備える熱交換器。
  2.  前記第二ヘッダ内仕切板は、前記第二ヘッダ部の前記軸線に直交する平面に沿って延びる板状をなしており、
     前記二つの領域のうちの一方は、前記第二ヘッダ内仕切板を境界として前記軸線が延在する方向である軸線方向の一方側に区画された第一空間であって、
     前記二つの領域のうちの他方は、前記第二ヘッダ内仕切板を境界として前記軸線方向の他方側に区画された第二空間である請求項1に記載の熱交換器。
  3.  前記第二ヘッダ内仕切板は、
     第二ヘッダ部内で前記軸線を含む平面に沿って延びる板状をなして前記接続管の第二端の開口部が接する縦仕切部と、
     該縦仕切部のうち、前記軸線が延在する方向である軸線方向の一方側の縁部から、該縦仕切部の板面に直交する方向の一方側のみに向かって延びる板状をなす第一横仕切部と、
     前記縦仕切部の前記軸線方向の他方側の縁部から、該縦仕切部の板面に直交する方向の他方側のみに向かって延びる板状をなす第二横仕切部と、を有し、
     前記二つの領域のうちの一方は、前記第一横仕切部及び前記第二横仕切部の軸線方向の一方側に区画された第一空間であって、
     前記二つの領域のうちの他方は、前記第一横仕切部及び前記第二横仕切部の軸線方向の他方側に区画された第二空間である請求項1に記載の熱交換器。
  4.  前記軸線に直交する断面視にて該第二ヘッダ部内の空間を、各前記第二伝熱管が接続された流出側領域と前記接続管の第二端が接続された流入側領域とに区画する縦仕切板と、 前記流出側領域を前記軸線が延在する方向である軸線方向に並設された第一流出側空間と第二流出側空間とに区画する横仕切板と、をさらに備え、
     前記第二ヘッダ内仕切板は、前記流入側領域を水平断面視にて前記第二ヘッダ部の周方向に互いに隣り合う第一室及び第二室に区画するように前記軸線を含む平面に沿って延びる板状をなしており、
     前記縦仕切板における前記第一室に面する部分に、前記第一室と前記第一流出側空間とを連通させる第一貫通孔が形成され、
     前記縦仕切板における前記第二室に面する部分に、前記第二室と前記第二流出側空間の上方の領域とを連通させる第二貫通孔が形成され、
     前記二つの領域のうちの一方は前記第一室であって、
     前記二つの領域のうちの一方は前記第二室である請求項1に記載の熱交換器。
  5.  前記接続管は、
     前記第二ヘッダ内仕切板から前記接続管本体内に連続するようにして延びて、該接続管本体における少なくとも前記第二端を含む部分を、前記二つの領域のうちの一方の領域のみに連通する第一流路と他方の領域のみに連通する第二流路とに分割する分割部をさらに有する請求項1から4のいずれか一項に記載の熱交換器。
  6.  前記接続管本体は、
     前記第一ヘッダ部から該第一ヘッダ部の径方向外側に延びる第一管部と、
     前記第二ヘッダ部から該第二ヘッダ部の径方向外側に延びる第二管部と、
     前記第一管部及び第二管部を連結するように第一管部及び第二管部に対して屈曲して延びる連結管部と、を有し、
     前記分割部は、前記第二端から、前記第二管部及び前記連結管部を経由して少なくとも前記第一管部の中途まで連続して延びている請求項5に記載の熱交換器。
  7.  前記分割部は、前記第二端から前記第一端にわたって延びている請求項6に記載の熱交換器。
  8.  前記第一ヘッダ部は、前記第二ヘッダ部の前記軸線方向の一方側で前記軸線に沿って延びる筒状をなしており、
     前記接続管の前記第一管部、前記第二管部及び前記連結管部は、前記軸線を含む仮想平面上に延びている請求項6又は請求項7に記載の熱交換器。
  9.  前記第一流路及び前記第二流路は、前記接続管本体の第一端側で上下方向に隣接している請求項5から請求項8のうち、いずれか一項に記載の熱交換器。
  10.  前記第一流路及び前記第二流路は、前記接続管本体の第一端側で水平方向に隣接している請求項5から請求項8のうち、いずれか一項に記載の熱交換器。
  11.  前記第一流路及び前記第二流路のそれぞれが、これら第一流路及び第二流路の隣接方向に複数が並設された小流路を有し、
     前記接続管は、前記小流路の並設方向を長手方向とした扁平管状をなしている請求項5から請求項10のうち、いずれか一項に記載の熱交換器。
  12.  前記第一流路と前記第二流路との流路断面積が互いに異なる請求項5から請求項11のうち、いずれか一項に記載の熱交換器。
  13.  前記第二ヘッダ内仕切板に、前記第二ヘッダ部の径方向外側から内側に向かって凹む切り欠き部が形成されており、
     前記接続管本体の第二端が前記切り欠き部に嵌合している請求項5から請求項12のうち、いずれか一項に記載の熱交換器。
  14.  前記接続管に、前記第二端から分割部に沿って延びる切り込み部が形成されており、 該切り込み部と前記第二ヘッダ内仕切板とが互いに嵌合している請求項5から請求項12のうち、いずれか一項に記載の熱交換器。
  15.  前記第一ヘッダ部は、前記軸線を中心とした筒状をなすヘッダ本体と該ヘッダ本体内を前記軸線が延在する方向である軸線方向に区画する主仕切板とを有するヘッダにおける前記主仕切板の前記軸線方向の一方側の部分であって、
     前記第二ヘッダ部は、前記ヘッダにおける前記主仕切板の前記軸線方向の他方側の部分であって、
     前記軸線方向は上下方向である請求項1から請求項14のうち、いずれか一項に記載の熱交換器。
  16.  請求項1から請求項15のうち、いずれか一項に記載の熱交換器を備える空気調和機。
PCT/JP2017/004744 2016-02-29 2017-02-09 熱交換器及び空気調和機 WO2017150126A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17759597.2A EP3425321B1 (en) 2016-02-29 2017-02-09 Heat exchanger and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-038327 2016-02-29
JP2016038327A JP6145189B1 (ja) 2016-02-29 2016-02-29 熱交換器及び空気調和機

Publications (1)

Publication Number Publication Date
WO2017150126A1 true WO2017150126A1 (ja) 2017-09-08

Family

ID=59011997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004744 WO2017150126A1 (ja) 2016-02-29 2017-02-09 熱交換器及び空気調和機

Country Status (3)

Country Link
EP (1) EP3425321B1 (ja)
JP (1) JP6145189B1 (ja)
WO (1) WO2017150126A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6466047B1 (ja) * 2018-08-22 2019-02-06 三菱電機株式会社 熱交換器及び空気調和装置
WO2020217271A1 (ja) * 2019-04-22 2020-10-29 三菱電機株式会社 冷媒分配器、熱交換器及び冷凍サイクル装置
JPWO2021005682A1 (ja) * 2019-07-08 2021-01-14

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017106016U1 (de) 2016-10-04 2017-12-07 Toshiba Medical Systems Corporation Medizinische Informationsverarbeitungsvorrichtung, Röntgen-CT-Vorrichtung und computerlesbares Speichermedium mit einem Programm für ein medizinisches Informationsverarbeitungsverfahren
CN107270591B (zh) * 2017-07-24 2022-11-18 江苏必领能源科技有限公司 降膜蒸发器用两相分配器
CN113330268B (zh) * 2019-02-04 2023-05-16 三菱电机株式会社 热交换器以及具备热交换器的空气调节装置
CN114174758A (zh) * 2019-07-31 2022-03-11 东芝开利株式会社 热交换器以及冷冻循环装置
DE102020125450A1 (de) * 2020-09-29 2022-03-31 Audi Aktiengesellschaft Kühlvorrichtung für eine wiederaufladbare Batterie

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648086U (ja) * 1987-07-02 1989-01-17
JP2007333311A (ja) * 2006-06-15 2007-12-27 Calsonic Kansei Corp 熱交換器
JP2009097838A (ja) * 2007-10-19 2009-05-07 T Rad Co Ltd 熱交換器の製造方法および熱交換器
JP2013130386A (ja) * 2011-11-22 2013-07-04 Daikin Industries Ltd 熱交換器
JP2015055414A (ja) * 2013-09-11 2015-03-23 ダイキン工業株式会社 熱交換器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3373940B2 (ja) * 1994-07-14 2003-02-04 シャープ株式会社 熱交換器
US20100206535A1 (en) * 2007-10-12 2010-08-19 Carrier Corporation Heat exchangers having baffled manifolds
JP5741657B2 (ja) * 2013-09-11 2015-07-01 ダイキン工業株式会社 熱交換器及び空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648086U (ja) * 1987-07-02 1989-01-17
JP2007333311A (ja) * 2006-06-15 2007-12-27 Calsonic Kansei Corp 熱交換器
JP2009097838A (ja) * 2007-10-19 2009-05-07 T Rad Co Ltd 熱交換器の製造方法および熱交換器
JP2013130386A (ja) * 2011-11-22 2013-07-04 Daikin Industries Ltd 熱交換器
JP2015055414A (ja) * 2013-09-11 2015-03-23 ダイキン工業株式会社 熱交換器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6466047B1 (ja) * 2018-08-22 2019-02-06 三菱電機株式会社 熱交換器及び空気調和装置
WO2020039513A1 (ja) * 2018-08-22 2020-02-27 三菱電機株式会社 熱交換器及び空気調和装置
WO2020217271A1 (ja) * 2019-04-22 2020-10-29 三菱電機株式会社 冷媒分配器、熱交換器及び冷凍サイクル装置
JPWO2020217271A1 (ja) * 2019-04-22 2021-10-21 三菱電機株式会社 冷媒分配器、熱交換器及び冷凍サイクル装置
JP7086279B2 (ja) 2019-04-22 2022-06-17 三菱電機株式会社 冷媒分配器、熱交換器及び冷凍サイクル装置
JPWO2021005682A1 (ja) * 2019-07-08 2021-01-14
WO2021005682A1 (ja) * 2019-07-08 2021-01-14 三菱電機株式会社 冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置
JP7195434B2 (ja) 2019-07-08 2022-12-23 三菱電機株式会社 冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置

Also Published As

Publication number Publication date
EP3425321B1 (en) 2021-01-27
JP2017155989A (ja) 2017-09-07
EP3425321A1 (en) 2019-01-09
EP3425321A4 (en) 2019-02-20
JP6145189B1 (ja) 2017-06-07

Similar Documents

Publication Publication Date Title
WO2017150126A1 (ja) 熱交換器及び空気調和機
US10571205B2 (en) Stacking-type header, heat exchanger, and air-conditioning apparatus
JP6202451B2 (ja) 熱交換器及び空気調和機
US9651317B2 (en) Heat exchanger and air conditioner
AU2006211653B2 (en) Parallel flow heat exchanger for heat pump applications
JP6664558B1 (ja) 熱交換器、熱交換器を備えた空気調和装置、および熱交換器を備えた冷媒回路
US10041710B2 (en) Heat exchanger and air conditioner
WO2018116929A1 (ja) 熱交換器及び空気調和機
US11035627B2 (en) Distributor and heat exchanger
JP4358981B2 (ja) 空調用凝縮器
US20210254907A1 (en) Heat exchanger
WO2017149950A1 (ja) 熱交換器及び空気調和機
WO2017150219A1 (ja) 熱交換器及び空気調和機
JPWO2019003428A1 (ja) 熱交換器、及び冷凍サイクル装置
JP7134250B2 (ja) 熱交換器および冷凍サイクル装置
JP2006317080A (ja) 熱交換器および熱交換器の製造方法
KR100606332B1 (ko) 공조기기의 열교환기용 납작튜브
JP2020148346A (ja) 熱交換器及び空気調和機
JP6853867B2 (ja) 熱交換器及び空気調和機
JP7146139B1 (ja) 熱交換器及び空気調和装置
EP3760957B1 (en) Air conditioner
WO2020178965A1 (ja) 熱交換器及び冷凍サイクル装置
EP3971507B1 (en) Heat exchanger and refrigeration cycle device
JP2018105606A (ja) 熱交換器及び空気調和機

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017759597

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759597

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759597

Country of ref document: EP

Kind code of ref document: A1