WO2020178965A1 - 熱交換器及び冷凍サイクル装置 - Google Patents

熱交換器及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2020178965A1
WO2020178965A1 PCT/JP2019/008506 JP2019008506W WO2020178965A1 WO 2020178965 A1 WO2020178965 A1 WO 2020178965A1 JP 2019008506 W JP2019008506 W JP 2019008506W WO 2020178965 A1 WO2020178965 A1 WO 2020178965A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
flat tubes
gas header
flat
Prior art date
Application number
PCT/JP2019/008506
Other languages
English (en)
French (fr)
Inventor
洋次 尾中
松本 崇
教将 上村
加藤 央平
典宏 米田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/008506 priority Critical patent/WO2020178965A1/ja
Priority to US17/426,126 priority patent/US20220099343A1/en
Priority to JP2019548346A priority patent/JP6641542B1/ja
Priority to CN201980092865.6A priority patent/CN113474600B/zh
Priority to EP19918474.8A priority patent/EP3936791A4/en
Publication of WO2020178965A1 publication Critical patent/WO2020178965A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/02Heat exchange conduits with particular branching, e.g. fractal conduit arrangements

Definitions

  • the present invention relates to a heat exchanger and a refrigeration cycle device including a plurality of flat tubes and a gas header.
  • a gas-liquid two-phase state refrigerant in which a gas refrigerant and a liquid refrigerant are mixed flows in, and the refrigerant is distributed to a plurality of heat transfer tubes by a refrigerant distributor. Then, in the plurality of heat transfer tubes, the refrigerant absorbs heat from the air and becomes in a gas-rich or gas single-phase state, after which the refrigerant flows into the gas header and merges, and the combined refrigerant flows out of the evaporator to the refrigerant pipe. Spill through.
  • the present invention is to solve the above problems, and an object of the present invention is to provide a heat exchanger and a refrigeration cycle device that can reduce the pressure loss of the refrigerant while achieving a simple structure.
  • the heat exchanger according to the present invention is connected to a plurality of flat pipes in which heat is supplied from the outside and a gas-liquid two-phase state refrigerant flowing inside becomes a gas refrigerant, and one end of the plurality of flat pipes.
  • a heat exchanger comprising a gas header in which gas refrigerants flowing out of a plurality of flat pipes merge, and when the directions orthogonal to each other in the space are defined as the X direction and the Y direction, the gas header is in the Y direction.
  • the plurality of flat pipes are arranged at intervals in the Y direction, and each of the tips of the plurality of flat pipes has an X on the gas header.
  • a connection portion is provided to be inserted from the direction, and a space between the plurality of connection portions is formed by mixing a narrow portion and a wide portion.
  • the refrigeration cycle device includes the above heat exchanger.
  • the interval between the plurality of connecting portions is formed by mixing the narrow portion and the wide portion.
  • any one of the plurality of connecting portions of the plurality of flat tubes connected to the gas header comes close to each other.
  • the distance between the adjacent connecting portions is short, and the space between the adjacent connecting portions inside the gas header has a stable size, so that expansion or reduction of the space in the flow direction of the refrigerant is not sufficiently accompanied. Therefore, the fluid resistance due to the expansion or contraction of the space is reduced, the vortex region of the refrigerant can be reduced, the pressure loss of the refrigerant inside the gas header can be reduced, and the heat exchange performance can be improved. Therefore, the pressure loss of the refrigerant can be reduced while achieving a simple structure.
  • FIG. 3 is an explanatory diagram showing a connecting portion of two flat tubes in the gas header according to the first embodiment of the present invention in a cross section taken along the line AA of FIG. 1. It is explanatory drawing which shows the refrigerant
  • FIG. 5 is a diagram showing a vortex thickness ⁇ when 0.35 ⁇ tin/Di ⁇ 1.00 according to the first embodiment of the present invention. It is a schematic block diagram which shows the heat exchanger which concerns on Embodiment 2 of this invention. It is a figure which shows an example of another flow path cross section of the gas header which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a schematic configuration diagram showing a heat exchanger 100 according to Embodiment 1 of the present invention.
  • directions orthogonal to each other in space are defined as an X direction, a Y direction, and a Z direction.
  • the Z direction in the drawing is schematically represented as an obliquely upward direction with respect to the X direction and the Y direction.
  • the heat exchanger 100 includes a gas header 4, a plurality of flat pipes 3, fins 6, a refrigerant distributor 2, an inflow pipe 1, and an outflow pipe 5.
  • the gas header 4 is connected to one end of a plurality of flat pipes 3. In the gas header 4, the gas refrigerants flowing out from the plurality of flat pipes 3 merge.
  • the gas header 4 extends longitudinally in the Y direction and forms a refrigerant flow direction in the Y direction.
  • the flow path cross section of the gas header 4 is circular.
  • the refrigerant distributor 2 is connected to the other end of the flat tube 3 to which the gas header 4 is not connected.
  • the refrigerant distributor 2 distributes the gas-liquid two-phase refrigerant to the plurality of flat tubes 3.
  • a plurality of fins 6 are connected to the plurality of flat tubes 3.
  • the fins 6 here are not limited to the types of fins such as plate fins or corrugated fins.
  • the gas-liquid two-phase state refrigerant to which heat is supplied from the outside and flows inside becomes the gas refrigerant.
  • the plurality of flat tubes 3 are linear in the X direction.
  • the plurality of flat tubes 3 are arranged at intervals in the Y direction.
  • Each of the tips of the plurality of flat tubes 3 is provided with a connecting portion for inserting the flat tube 3 from the X direction into the gas header 4.
  • the interval between the plurality of connecting portions is formed by a mixture of a narrow portion and a wide portion.
  • a plurality of fins 6 are provided in the plurality of flat tubes 3 at intervals in the X direction, and the fins 6 are joined on the outer tube surface of the flat tubes 3.
  • At least one outflow pipe 5 is connected to the end of the gas header 4. At least one inflow pipe 1 is connected to the end of the refrigerant distributor 2. The position or number of the outflow pipe 5 or the inflow pipe 1 of the refrigerant is not limited.
  • FIG. 2 is an explanatory view showing a connecting portion of two flat pipes 3 in the gas header 4 according to the first embodiment of the present invention in a cross section taken along the line AA of FIG. Dp in FIG. 2 represents the step pitch of the flat pipes 3 and is the distance between the centers of the minor axes of the adjacent flat pipes 3.
  • the arrow in FIG. 1 represents the flow of the refrigerant when the heat exchanger 100 functions as an evaporator.
  • the refrigerant in the gas-liquid two-phase state flows into the refrigerant distributor 2 via the inflow pipe 1.
  • the refrigerant in the gas-liquid two-phase state is sequentially distributed from the inflow pipe 1 to the flat tubes 3 close to the plurality of flat pipes 3 connected to the refrigerant distributor 2.
  • the gas-liquid two-phase refrigerant distributed to each flat tube 3 exchanges heat with the surrounding air via the fins 6, becomes a gas-rich or gas refrigerant, and flows into the gas header 4.
  • the refrigerant flows from the plurality of flat tubes 3 and joins.
  • the refrigerant flows from the gas header 4 through the outflow pipe 5 and out of the heat exchanger 100.
  • the flat pipes 3 are connected to the gas header 4 so that adjacent flat pipes 3 have a narrow gap and a wide gap.
  • the interval between the adjacent flat tubes 3 shown in FIG. 1 is defined as tp.
  • the narrowest gaps between the adjacent flat tubes 3 satisfy the relation of tp ⁇ Dp.
  • the widest part of the adjacent flat tubes 3 satisfies the relation of tp>2 ⁇ Dp.
  • the interval of the narrowest part is defined as tp1
  • the interval of the widest part is tp2
  • the step pitch of the plurality of flat tubes 3 is defined as Dp.
  • FIG. 3 is an explanatory diagram showing a refrigerant flow in a connection portion of the flat tubes 3 arranged at equal intervals in the comparative example to the gas header 4.
  • the comparative example of FIG. 3 is a configuration for comparison with the configuration of the first embodiment.
  • FIG. 4 is an explanatory diagram showing a refrigerant flow in a connecting portion of the flat tubes 3 arranged in proximity to each other according to the first embodiment of the present invention to the gas header 4.
  • the mechanism by which the pressure loss found by the experiments and analyzes by the inventors is reduced will be described below with reference to FIGS. 3 and 4.
  • FIGS. 3 and 4 represent the flow of the refrigerant.
  • the white arrow indicates the refrigerant input side
  • the black arrow indicates the refrigerant output side.
  • the hatched semicircles in FIGS. 3 and 4 represent the vortex regions 15 before and after the flat tube 3.
  • the refrigerant flow continuously expands or contracts upstream and downstream of each flat pipe 3.
  • the vortex region 15 is continuously generated in each flat tube 3, and the pressure loss of the refrigerant increases.
  • the distance between the flat tubes 3 is short due to the close proximity. For this reason, the space between the adjacent spaces is stabilized without sufficient expansion or contraction of the refrigerant flow. As a result, the fluid resistance due to the expansion or contraction of the refrigerant flow is reduced, and the vortex region 15 can be reduced.
  • the inventors have found that the pressure loss of the refrigerant in the gas header 4 can be reduced by reducing the vortex region 15 in this way.
  • the pressure loss of the refrigerant is smaller than when the intervals between the connecting portions of the adjacent flat pipes 3 are arranged at equal intervals. it can.
  • FIG. 5 is a diagram showing the relationship when the flow passage cross-sectional area of the gas header 4 according to the first embodiment of the present invention is defined as Ai and the area closed by the flat tubes 3 is defined as AL.
  • FIG. 6 is a diagram showing a pressure loss reduction effect when the flat tube 3 according to Embodiment 1 of the present invention satisfies AL/Ai ⁇ 0.12.
  • the flow path cross-sectional area of the gas header 4 is defined as Ai.
  • the area of obstruction by the flat tube 3 is defined as AL.
  • AL / Ai ⁇ 0.12 the effect of reducing the pressure loss of the refrigerant in the gas header 4 due to the mixture of the narrow portion and the wide portion at the connecting portion of the adjacent flat pipes 3 is obtained. It was found to be particularly remarkable.
  • FIG. 7 shows the relationship when the insertion length of the flat tube 3 according to Embodiment 1 of the present invention into the gas header 4 is defined as tin and the interval between the plurality of flat tubes 3 in the narrow portion is defined as tp. It is a figure.
  • the insertion length of the flat tube 3 into the gas header 4 is defined as tin.
  • the interval between the adjacent flat tubes 3 when the interval between the adjacent flat tubes 3 is narrow is defined as tp. At this time, if tp ⁇ 2.0 ⁇ tin, some of the vortex regions 15 formed between the adjacent flat tubes 3 overlap each other.
  • the insertion length into the gas header 4 at the end of the flat tube 3 is defined as tin, and the distance of the flat tube 3 having a plurality of connecting portions forming a narrow portion is defined as tp.
  • the distance between the two flat tubes 3 adjacent to the narrowest part of the plurality of connecting portions is satisfied with tp ⁇ 2.0 ⁇ tin.
  • FIG. 8 is a flow diagram of the refrigerant flow in which the vortex regions 15 overlap when defining the insertion length of the flat tube 3 into the gas header 4 as tin and defining the inner diameter of the gas header 4 as Di according to Embodiment 1 of the present invention. It is a figure which shows a line.
  • FIG. 9 is a diagram showing the vortex thickness ⁇ when 0.35 ⁇ tin/Di ⁇ 1.00 according to the first embodiment of the present invention.
  • the vortex regions 15 indicated by the swirling arrows in the figure overlap to form a vortex thickness ⁇ .
  • the overlapping of the vortex regions 15 prevents the refrigerant flow from expanding or contracting by the vortex thickness ⁇ .
  • the pressure loss of the refrigerant due to the expansion or contraction of the refrigerant flow can be reduced by the vortex thickness ⁇ .
  • FIG. 9 according to the experiments and analysis by the inventors, it was found that the vortex thickness ⁇ rapidly increased in the region of 0.35 ⁇ tin/Di ⁇ 1.00. On the other hand, it was also found that the vortex thickness ⁇ is small in the region of 0 ⁇ 0.35. Therefore, in the range of 0.35 ⁇ tin/Di ⁇ 1.00, the effect of reducing the pressure loss of the refrigerant in the gas header 4 becomes large.
  • the insertion length of the flat tube 3 into the gas header 4 is defined as tin.
  • the inner diameter of the cross section of the gas header 4 orthogonal to the coolant flow path is defined as Di. At this time, the relationship of 0.35 ⁇ tin/Di ⁇ 1.00 is satisfied.
  • the type of refrigerant is not limited.
  • the refrigerant flowing inside the gas header 4 is more effective when it is an olefin-based refrigerant such as HFO1234yf or HFO1234ze(E), or a low-pressure refrigerant whose saturation pressure is lower than that of the R32 refrigerant such as propane refrigerant or dimethyl ether refrigerant (DME). Is the target. Also, of course, these are not limited to pure refrigerants.
  • the refrigerant flowing inside the gas header 4 may be a mixed refrigerant containing at least one of an olefin refrigerant such as HFO1234yf and HFO1234ze(E), a propane refrigerant or a dimethyl ether refrigerant (DME).
  • an olefin refrigerant such as HFO1234yf and HFO1234ze(E)
  • propane refrigerant or a dimethyl ether refrigerant (DME).
  • DME dimethyl ether refrigerant
  • the heat exchanger 100 includes a plurality of flat tubes 3 in which the gas-liquid two-phase refrigerant that is supplied with heat from the outside and flows inside is a gas refrigerant.
  • the heat exchanger 100 includes a gas header 4 that is connected to one end of the plurality of flat tubes 3 and joins the gas refrigerant flowing out from the plurality of flat tubes 3.
  • the directions orthogonal to each other in the space are defined as the X direction and the Y direction.
  • the gas header 4 extends longitudinally in the Y direction and forms a refrigerant flow direction in the Y direction.
  • the plurality of flat tubes 3 are arranged at intervals in the Y direction.
  • Each of the tips of the plurality of flat tubes 3 is provided with a connecting portion that is inserted into the gas header 4 from the X direction.
  • the interval between the plurality of connecting portions is formed by mixing a narrow portion and a wide portion.
  • a plurality of connecting portions of the plurality of flat pipes 3 connected to the gas header 4 are close to each other.
  • the distance between the adjacent connecting portions is short, the space between the adjacent connecting portions inside the gas header 4 has a stable size, and expansion or contraction of the space with respect to the flow direction of the refrigerant is not sufficiently accompanied. .. Therefore, the fluid resistance associated with the expansion or reduction of the space is reduced, the vortex region 15 of the refrigerant can be reduced, the pressure loss of the refrigerant inside the gas header 4 can be reduced, and the heat exchange performance can be improved. Therefore, the pressure loss of the refrigerant can be reduced while achieving a simple structure.
  • the heat exchanger 100 includes the fins 6 connected to the plurality of flat tubes 3.
  • the distance between the plurality of connecting portions is defined as tp1 for the narrowest part, tp2 for the widest part, and Dp for the step pitch of the plurality of flat tubes 3.
  • tp1 ⁇ Dp and tp2> 2 ⁇ Dp are satisfied.
  • the fluid resistance associated with the expansion or contraction of the space in the flow direction of the refrigerant becomes smaller, the vortex region 15 of the refrigerant can be reduced, the pressure loss of the refrigerant inside the gas header 4 can be further reduced, and the heat exchange can be performed. Performance can be further improved.
  • the plurality of flat tubes 3 are linear in the X direction.
  • a plurality of flat tubes 3 can be easily manufactured, and the heat exchanger 100 has a simple structure while reducing the pressure loss of the refrigerant.
  • the insertion length into the gas header 4 at the end of the flat tube 3 is defined as tin, and the distance of the flat tube 3 having a plurality of connecting portions forming a narrow portion is defined as tp.
  • the distance between the two flat tubes 3 adjacent to the narrowest part of the plurality of connecting portions is satisfied with tp ⁇ 2.0 ⁇ tin.
  • the space can be regarded as a stable size without expanding or contracting in the direction of flow of the refrigerant by the vortex thickness, and the refrigerant is affected by the expansion or contraction of the space by that amount.
  • the pressure loss of can be reduced.
  • the insertion length of the end of the flat tube 3 into the gas header 4 is defined as tin, and the inner diameter of the cross section of the gas header 4 orthogonal to the refrigerant passage is defined as Di. At this time, the relationship of 0.35 ⁇ tin/Di ⁇ 1.00 is satisfied.
  • the vortex thickness of the space is significantly increased with respect to the flow direction of the refrigerant, and the space can be regarded as a stable size without expanding or reducing by the vortex thickness, and the space can be expanded or reduced accordingly.
  • the pressure loss of the refrigerant can be reduced without being affected by.
  • the refrigerant flowing inside the gas header 4 is either an olefin-based refrigerant, a propane refrigerant, or a dimethyl ether refrigerant.
  • the saturated pressure is a low pressure refrigerant which is lower than that of the R32 refrigerant, the pressure loss of the refrigerant can be reduced more effectively.
  • the refrigerant flowing inside the gas header 4 is a mixed refrigerant containing at least one of an olefin-based refrigerant, a propane refrigerant, and dimethyl ether in the composition.
  • the heat exchanger 100 includes a refrigerant distributor 2 connected to the other end of the plurality of flat pipes 3 to distribute the gas-liquid two-phase refrigerant to the plurality of flat pipes 3.
  • the refrigerant distributor 2 can distribute the refrigerant in the gas-liquid two-phase state to the plurality of flat tubes 3.
  • FIG. 10 is a schematic block diagram which shows the heat exchanger 100 which concerns on Embodiment 2 of this invention.
  • items similar to those in the first embodiment will be omitted, and only the characteristic parts will be described.
  • the two adjacent flat tubes 3 connected to the gas header 4 have a symmetrical shape across the line BB when the line BB, which is the virtual center line, is drawn.
  • the two adjacent flat tubes 3 have a bent portion 20 so that the end connected to the refrigerant distributor 2 is separated from the line BB.
  • the space between the plurality of connecting parts is formed alternately with narrow parts and wide parts.
  • the plurality of connecting portions forming the narrow portion are configured by a group of two flat tubes 3 among the plurality of flat tubes 3.
  • a group of two flat tubes 3 formed with a narrow space between a plurality of connecting portions is formed in a symmetrical shape with a line BB, which is a virtual center line that is the center of each group in the Y direction, sandwiched therebetween.
  • BB which is a virtual center line that is the center of each group in the Y direction, sandwiched therebetween.
  • the heat exchanging portions 3a in which the fins 6 other than the plurality of connecting portions are arranged are arranged at equal intervals in the Y direction.
  • the two flat tubes 3 formed with a narrow space between the plurality of connecting portions form a bent portion 20 that folds back the end portion connected to the refrigerant distributor 2 in a direction away from the BB line which is the virtual center line. Have.
  • the two flat pipes 3 connected to the gas header 4 can be brought close to each other, and the pressure loss of the refrigerant in the gas header 4 can be reduced.
  • FIG. 11 is a diagram showing an example of another flow path cross section of the gas header 4 according to the second embodiment of the present invention.
  • the gas header 4 has a D-shaped flow path cross section.
  • the connecting portion between the flat tube 3 and the gas header 4 is formed in a straight line.
  • FIG. 12 is a schematic configuration diagram showing another example of the heat exchanger 100 according to Embodiment 2 of the present invention.
  • the refrigerant distributor 2 may be a header-type refrigerant distributor, for example, a collision-type refrigerant distributor using a distributor 16 and a capillary tube 17 as shown in FIG. Is not particularly limited.
  • ⁇ Effects of Second Embodiment> According to the second embodiment, the intervals between the plurality of connecting portions are formed such that narrow portions and wide portions are alternately formed.
  • some of the vortex regions 15 formed between the plurality of connecting portions forming the narrow portion overlap with each other by some of the plurality of connecting portions forming the narrow portion, and spread smoothly in the Y direction. .. Since the vortex region 15 spreads smoothly in the Y direction in this manner, the space can be regarded as a stable size without expanding or contracting in the direction of flow of the refrigerant by the vortex thickness, and the space can be expanded or contracted accordingly. The pressure loss of the refrigerant can be reduced without being affected.
  • the plurality of connecting portions forming the narrow portion are composed of a group of two flat tubes 3 out of the plurality of flat tubes 3.
  • a plurality of connecting portions forming a narrow portion can be formed by the group of the two flat tubes 3, and some of the vortex regions 15 formed between the plurality of connecting portions forming the narrow portion overlap each other. And spread smoothly in the Y direction.
  • the group of two flat tubes 3 is formed in a symmetrical shape with the line BB, which is the virtual center line that is the center of each group in the Y direction, being sandwiched.
  • the vortex region 15 that spreads smoothly in the Y direction can be formed with a stable size, and the space is stable without expanding or contracting by the vortex thickness of the vortex region 15 in the flow direction of the refrigerant. It can be regarded as a size, and the pressure loss of the refrigerant can be reduced without being affected by the expansion or contraction of the space.
  • the heat exchange portions 3a other than the plurality of connecting portions of the plurality of flat tubes 3 are arranged at equal intervals in the Y direction.
  • the heat exchange portions 3a of the plurality of flat tubes 3 are arranged at equal intervals in the Y direction, the ventilation resistance of the entire heat exchanger can be reduced and the uneven heat exchange of each flat tube 3 can be suppressed.
  • the heat exchange efficiency can be improved.
  • the two flat tubes 3 forming one group in which the intervals between the plurality of connecting portions are formed in the narrow portion are arranged such that the other end connected to the refrigerant distributor 2 is a virtual center line. It has a bent portion 20 which is folded back in a direction away from a certain BB line.
  • FIG. 13 is a schematic block diagram which shows the heat exchanger 100 which concerns on Embodiment 3 of this invention.
  • the same items as those in the first and second embodiments are omitted, and only the characteristic part will be described.
  • the two flat tubes 3 having adjacent connecting portions have a symmetrical shape with the BB line in between when the BB line, which is a virtual center line, is drawn.
  • the two flat pipes 3 having adjacent connecting portions have a bent portion 20 so that the ends connected to the refrigerant distributor 2 are separated from the BB line.
  • the number of bent portions 20 of the flat pipe 3 is larger as it is closer to the outflow pipe 5. That is, the number of the bent portions 20 is larger in the flat pipe 3 closer to the outflow pipe 5 which is the outlet of the gas header 4.
  • the number of bent portions 20 is larger in the flat pipe 3 closer to the outflow port connected to the outflow pipe 5 of the gas header 4.
  • the flattened pipe 3 closer to the outlet of the gas header 4 has a larger number of bent portions 20, so that when the outlet is downward in the Y direction, the flow connected to the outlet pipe 5 due to the influence of gravity.
  • the liquid refrigerant flows into the flat tube 3 closer to the outlet.
  • the flat tubes 3 having a large number of bent portions 20 have more opportunities for heat exchange and become a gas-rich or gas refrigerant. Therefore, the heat exchange efficiency of the heat exchanger 100 can be improved.
  • FIG. 14 is an enlarged view which shows the bending part of the edge part of the flat tube 3 which concerns on Embodiment 4 of this invention.
  • the same items as those in the first, second and third embodiments are omitted, and only the characteristic parts will be described.
  • the plurality of connecting portions are configured by bending the end portion of any one of the plurality of flat pipes 3.
  • the first group which is formed in a symmetrical shape with the line BB that is the virtual center line interposed therebetween, is formed by the two flat tubes 3.
  • the ends of the two flat tubes 3 that form one group are bent in a direction that approaches the BB line, which is the virtual center line.
  • the heat exchange portions 3a of the plurality of flat tubes 3 in which the fins 6 other than the plurality of connection portions are arranged may be arranged at equal intervals in the Y direction.
  • the flat tubes 3 can be arranged close to each other without being limited by the size restrictions of the fins 6, and the pressure loss of the refrigerant can be reduced, which is good.
  • Dp represents a step pitch in the heat exchange portions 3a of the plurality of flat tubes 3.
  • interval tp of the connection part of the flat tube 3 which adjoins a narrow part satisfies tp ⁇ Dp.
  • the plurality of connecting portions are configured by bending the end portion of any one of the plurality of flat tubes 3.
  • a plurality of flat tubes 3 can be easily manufactured simply by bending the ends of the flat tubes 3, and the pressure loss of the refrigerant can be reduced while achieving a simple structure.
  • one group formed in a symmetrical shape with the BB line, which is a virtual center line, interposed therebetween, is composed of two flat tubes 3.
  • the two flat pipes 3 constituting one group are bent in a direction in which the end connected to the gas header 4 is brought closer to the BB line which is a virtual center line.
  • a plurality of connecting portions of the plurality of flat pipes 3 connected to the gas header 4 can be brought close to each other.
  • FIG. 15 is a schematic block diagram which shows the heat exchanger 100 which concerns on Embodiment 5 of this invention.
  • FIG. 16 is an enlarged view showing a bent portion at the end of the flat tube 3 according to the fifth embodiment of the present invention.
  • matters similar to those in the above-described first, second, third and fourth embodiments will be omitted, and only characteristic portions thereof will be described.
  • one group configured in a symmetrical shape with the BB line being a virtual center line interposed therebetween is configured by three flat tubes 3.
  • the three flat tubes 3 forming one group are bent in a direction in which the ends of the flat tubes 3 at both ends in the Y direction of the group are brought closer to the BB line which is the virtual center line.
  • one group formed in a symmetrical shape with the BB line, which is a virtual center line may be formed by four or more flat tubes 3.
  • one group formed in a symmetrical shape with the BB line which is the virtual center line interposed therebetween is formed by three or more flat tubes 3.
  • the three or more flat tubes 3 forming one group are bent in a direction in which at least the ends of the flat tubes 3 on both ends in the Y direction of the group are brought closer to the BB line which is the virtual center line.
  • a plurality of connecting portions of the plurality of flat pipes 3 connected to the gas header 4 can be brought close to each other.
  • FIG. 17 is a schematic configuration diagram showing the heat exchanger 100 according to Embodiment 6 of the present invention.
  • matters similar to those in the first, second, third, fourth and fifth embodiments are omitted, and only the characteristic parts will be described.
  • a partition 7 is provided inside the gas header 4.
  • the partition 7 is provided with a first opening 18 and a second opening 8.
  • the partition 7 separates the refrigerant flow path and the bypass flow path, in which the connecting portions of the plurality of flat tubes 3 are inserted inside the gas header 4.
  • the first opening 18 of the bypass flow path with respect to the refrigerant flow path partially overlaps the opening end of the flat pipe 3 inserted into the gas header 4 in the X direction.
  • the second opening 8 for the refrigerant flow path of the bypass flow path is provided so as to overlap in the X direction with a set of a plurality of connection parts forming a narrow portion. It should be noted that a plurality of second openings 8 may be provided.
  • a bypass 7 is provided inside the gas header 4 with a partition 7.
  • the pressure loss inside the gas header 4 can be suppressed by the bypass flow path that is not affected by the plurality of connecting portions.
  • the first opening portion 18 of the bypass passage with respect to the refrigerant passage partially overlaps with the opening end portion of the flat tube 3 inserted into the gas header 4 in the X direction.
  • the first opening 18 facilitates the smooth inflow of the refrigerant from the refrigerant flow path inside the gas header 4 into the bypass flow path. Thereby, the pressure loss inside the gas header 4 can be suppressed.
  • At least one second opening 8 for the refrigerant channel of the bypass channel is provided so as to overlap in the X direction with respect to one set of a plurality of connecting portions forming a narrow portion.
  • At least one set of the refrigerant of the plurality of connecting portions forming the narrow portion by the second opening 8 can be bypassed, and the pressure loss of the refrigerant inside the gas header 4 can be reduced.
  • FIG. 18 is a schematic configuration diagram showing a heat exchanger 100 according to Embodiment 7 of the present invention.
  • FIG. 19 is an explanatory diagram showing a relationship between the second opening 8 of the gas header 4 and the flat tube 3 according to the seventh embodiment of the present invention in a cross section taken along the line CC of FIG.
  • the same items as those of the first, second, third, fourth, fifth and sixth embodiments are omitted, and only the characteristic parts will be described. To do.
  • the gas header 4 is provided with a plurality of second openings 8.
  • each of the plurality of second openings 8 is provided so as to overlap at least a part of the opening ends of the plurality of flat tubes 3. Thereby, the pressure loss of the refrigerant due to the collision of the refrigerant with the partition 7 can be reduced, which is good.
  • FIG. 20 is a schematic configuration diagram showing a heat exchanger 100 according to Embodiment 8 of the present invention.
  • the same matters as those in the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment, the sixth embodiment and the seventh embodiment are omitted, and Only the feature part will be described.
  • the gas header 4 provided with the plurality of second openings 8 has a partition 7 inside the gas header 4.
  • the gas header 4 has at least one partition 19 near the connection portion of the plurality of flat pipes 3 inside the gas header 4.
  • partitioning partitions 19 are provided for each of the connecting portions of the two adjacent flat tubes 3. That is, the gas header 4 is partitioned and divided in at least one region of each of the plurality of connecting portions forming the narrow portion.
  • the gas header 4 is partitioned and partitioned by at least one region of each of the plurality of connecting portions forming the narrow portion.
  • the refrigerant at a plurality of connecting portions forming a narrow portion can be divided, and the pressure loss of the refrigerant inside the gas header 4 can be reduced.
  • FIG. 21 is a schematic block diagram which shows the heat exchanger 100 which concerns on Embodiment 9 of this invention.
  • the ninth embodiment is similar to the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment, the sixth embodiment, the seventh embodiment, and the eighth embodiment. Is omitted, and only its characteristic part will be described.
  • the inside of the gas header 4 is divided by some of a plurality of connecting portions forming a narrow portion.
  • the plurality of outflow pipes 9, 10 and 11 are provided in the respective divided flow paths inside the gas header 4.
  • FIG. 22 is a schematic configuration diagram showing another example of the heat exchanger 100 according to Embodiment 9 of the present invention.
  • the gas header 4 was internally divided into three.
  • a plurality of gas headers 4 may simply constitute the divided areas.
  • FIG. 23 is a refrigerant circuit diagram showing a refrigeration cycle device 101 to which the heat exchanger 100 according to Embodiment 10 of the present invention is applied.
  • the refrigeration cycle apparatus 101 includes a compressor 102, a condenser 103, an expansion valve 104, and a heat exchanger 100 as an evaporator.
  • the compressor 102, the condenser 103, the expansion valve 104 and the heat exchanger 100 are connected by a refrigerant pipe to form a refrigeration cycle circuit. Then, the refrigerant flowing out of the heat exchanger 100 is sucked into the compressor 102 and becomes high temperature and high pressure.
  • the high-temperature and high-pressure refrigerant is condensed in the condenser 103 to become a liquid.
  • the liquid refrigerant is decompressed and expanded by the expansion valve 104 to become a low temperature and low pressure gas-liquid two-phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the heat exchanger 100.
  • the heat exchanger 100 of Embodiments 1 to 9 can be applied to such a refrigeration cycle device 101.
  • the refrigeration cycle device 101 include an air conditioner, a refrigeration device, a water heater, and the like.
  • the refrigeration cycle device 101 includes the heat exchanger 100 described above.
  • the refrigeration cycle device 101 since the refrigeration cycle device 101 includes the heat exchanger 100, the pressure loss of the refrigerant can be reduced while maintaining a simple structure.
  • the first to tenth embodiments of the present invention may be combined or applied to other parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

熱交換器は、複数の扁平管と、ガスヘッダと、を備える熱交換器であって、空間内にて互いに直交する方向がX方向及びY方向と定義されたとき、ガスヘッダは、Y方向に長手に延出されてY方向に冷媒の流れ方向を形成し、複数の扁平管は、Y方向に間隔をあけて並び、複数の扁平管の先端のそれぞれには、ガスヘッダにX方向から挿入する接続部が設けられ、複数の接続部間の間隔は、狭い部分と広い部分とが混在して形成される。

Description

熱交換器及び冷凍サイクル装置
 本発明は、複数の扁平管と、ガスヘッダと、を備える熱交換器及び冷凍サイクル装置に関する。
 従来の空気調和装置の蒸発器となる熱交換器では、ガス冷媒と液冷媒とが混在する気液二相状態の冷媒が流入し、冷媒分配器によって複数の伝熱管に冷媒が分配される。そして、複数の伝熱管にて、冷媒が空気から吸熱してガスリッチ又はガス単相の状態となり、その後に冷媒がガスヘッダに流入して合流され、合流した冷媒が蒸発器の外へと冷媒配管を通って流出する。
 近年のエネルギー消費性能の向上と冷媒量の削減とに対応するため、熱交換器に用いられる伝熱管の細径化と多パス化とが進められている。また、それに伴って伝熱管を従来の円管から細径の流路で構成された扁平管を用いることが多くなっている。
 扁平管を用いる場合には、扁平管とガスヘッダとの接続部にて、ロウ付け性といった製造性能を確保するため、ガスヘッダに対して扁平管を内部に突き差した構造とする必要がある。扁平管がガスヘッダの内部に突き差された場合には、ガスヘッダ内部にて合流冷媒が扁平管の突き差し部を通過する際に、冷媒流路の拡大又は縮小によって圧力損失が増大し、エネルギー効率が低下するという課題がある。
 このようなガスヘッダ内部の圧力損失を抑制するために、バイパス流路を設ける方法がある(特許文献1参照)。
特開2014-122770号公報
 しかしながら、特許文献1の技術では、バイパス流路が設けられたことにより、ガスヘッダが大型化し、その分熱交換器の実装面積が減少する課題がある。また、バイパス流路が設けられたことにより、製造コストが増加する課題がある。
 本発明は、上記課題を解決するためのものであり、簡素な構造が図られつつ、冷媒の圧力損失が低減できる熱交換器及び冷凍サイクル装置を提供することを目的とする。
 本発明に係る熱交換器は、外部から熱が供給されて内部に流れる気液二相状態の冷媒がガス冷媒となる複数の扁平管と、前記複数の扁平管の一端部に接続されて前記複数の扁平管から流出するガス冷媒が合流するガスヘッダと、を備える熱交換器であって、空間内にて互いに直交する方向がX方向及びY方向と定義されたとき、前記ガスヘッダは、Y方向に長手に延出されてY方向に冷媒の流れ方向を形成し、前記複数の扁平管は、Y方向に間隔をあけて並び、前記複数の扁平管の先端のそれぞれには、前記ガスヘッダにX方向から挿入する接続部が設けられ、前記複数の接続部間の間隔は、狭い部分と広い部分とが混在して形成されるものである。
 本発明に係る冷凍サイクル装置は、上記の熱交換器を備えるものである。
 本発明に係る熱交換器及び冷凍サイクル装置によれば、複数の接続部間の間隔は、狭い部分と広い部分とが混在して形成されている。これにより、ガスヘッダに接続された複数の扁平管の接続部のうちいずれかの複数の接続部が近接する。この近接部分では、隣接する接続部間の距離が短く、ガスヘッダ内部での隣接する接続部間の空間が安定した大きさになって冷媒の流れ方向に対する空間の拡大又は縮小が十分に伴わない。このため、空間の拡大又は縮小に伴う流体抵抗が小さくなって冷媒の渦領域が削減でき、ガスヘッダ内部での冷媒の圧力損失が低減でき、熱交換性能が向上できる。したがって、簡素な構造が図られつつ、冷媒の圧力損失が低減できる。
本発明の実施の形態1に係る熱交換器を示す概略構成図である。 本発明の実施の形態1に係るガスヘッダにて2つの扁平管の接続部を図1のA-A線の断面にて示す説明図である。 比較例での等間隔配置された扁平管のガスヘッダへの接続部における冷媒流れを示す説明図である。 本発明の実施の形態1に係る近接配置された扁平管のガスヘッダへの接続部における冷媒流れを示す説明図である。 本発明の実施の形態1に係るガスヘッダの流路断面積をAiと定義して扁平管による閉塞面積をALと定義したときの関係を示す図である。 本発明の実施の形態1に係る扁平管がAL/Ai≧0.12となるときの圧力損失低減効果を示す図である。 本発明の実施の形態1に係る扁平管のガスヘッダへの差し込み長さをtinと定義して狭い部分の複数の扁平管の間隔をtpと定義したときの関係を示す図である。 本発明の実施の形態1に係る扁平管のガスヘッダへの差し込み長さをtinと定義してガスヘッダの内径をDiと定義したときの渦領域が重なり合う冷媒流れの流線を示す図である。 本発明の実施の形態1に係る0.35≦tin/Di<1.00となるときの渦厚さδを示す図である。 本発明の実施の形態2に係る熱交換器を示す概略構成図である。 本発明の実施の形態2に係るガスヘッダの別の流路断面の一例を示す図である。 本発明の実施の形態2に係る熱交換器の別の一例を示す概略構成図である。 本発明の実施の形態3に係る熱交換器を示す概略構成図である。 本発明の実施の形態4に係る扁平管の端部の曲げ部を示す拡大図である。 本発明の実施の形態5に係る熱交換器を示す概略構成図である。 本発明の実施の形態5に係る扁平管の端部の曲げ部を示す拡大図である。 本発明の実施の形態6に係る熱交換器を示す概略構成図である。 本発明の実施の形態7に係る熱交換器を示す概略構成図である。 本発明の実施の形態7に係るガスヘッダの第2開口部と扁平管との関係を図18のC-C線の断面にて示す説明図である。 本発明の実施の形態8に係る熱交換器を示す概略構成図である。 本発明の実施の形態9に係る熱交換器を示す概略構成図である。 本発明の実施の形態9に係る熱交換器の別の一例を示す概略構成図である。 本発明の実施の形態10に係る熱交換器を適用した冷凍サイクル装置を示す冷媒回路図である。
 以下、図面に基づいて本発明の実施の形態が説明されている。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図の図面においては、視認性に鑑みて適宜ハッチングが省略されている。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
<熱交換器100の構成>
 図1は、本発明の実施の形態1に係る熱交換器100を示す概略構成図である。図1では、空間内にて互いに直交する方向がX方向、Y方向及びZ方向と定義されている。なお、図中のZ方向は、模式的にX方向及びY方向に対して斜上方向に表されている。
 図1に示すように、熱交換器100は、ガスヘッダ4と、複数の扁平管3と、フィン6と、冷媒分配器2と、流入管1と、流出管5と、を備える。
 ガスヘッダ4は、複数の扁平管3の一端部に接続されている。ガスヘッダ4では、複数の扁平管3から流出するガス冷媒が合流する。ガスヘッダ4は、Y方向に長手に延出されてY方向に冷媒の流れ方向を形成する。ガスヘッダ4の流路断面は、円形状である。
 冷媒分配器2は、扁平管3のガスヘッダ4が接続されてない他端部に接続されている。冷媒分配器2は、複数の扁平管3に気液二相状態の冷媒を分配する。
 フィン6は、複数の扁平管3に複数接続されている。なお、ここでのフィン6は、プレートフィン又はコルゲートフィンなどといったフィンの種類に限定されるものではない。
 複数の扁平管3では、外部から熱が供給されて内部に流れる気液二相状態の冷媒がガス冷媒となる。複数の扁平管3は、X方向に直線状である。複数の扁平管3は、Y方向に間隔をあけて並んでいる。複数の扁平管3の先端のそれぞれには、ガスヘッダ4に扁平管3をX方向から挿入する接続部が設けられている。複数の接続部間の間隔は、狭い部分と広い部分とが混在して形成されている。複数の扁平管3には、フィン6がX方向に間隔をあけて複数設けられ、フィン6が扁平管3の外管表面にて接合されている。
 ガスヘッダ4の端部には、流出管5が少なくとも1つ接続されている。冷媒分配器2の端部には、流入管1が少なくとも1つ接続されている。なお、冷媒の流出管5又は流入管1の位置又は本数は、限定されない。
 図2は、本発明の実施の形態1に係るガスヘッダ4にて2つの扁平管3の接続部を図1のA-A線の断面にて示す説明図である。図2中のDpは、扁平管3の段ピッチを表し、隣り合う扁平管3の短軸中心の距離である。
<熱交換器100内を流通する冷媒の流れ>
 図1の矢印は、熱交換器100が蒸発器として機能する場合の冷媒の流れを表している。気液二相状態の冷媒は、流入管1を介し、冷媒分配器2に流入する。冷媒が冷媒分配器2に流入した後に、気液二相状態の冷媒が冷媒分配器2に接続された複数の扁平管3に流入管1から近い扁平管3へと順次分配されて行く。各扁平管3に分配された気液二相状態の冷媒は、フィン6を介して、周囲の空気と熱交換し、ガスリッチ又はガスの冷媒となり、ガスヘッダ4に流入する。ガスヘッダ4では、冷媒が複数の扁平管3から流入して合流する。冷媒は、ガスヘッダ4から流出管5を通り、熱交換器100から流出する。
 この際、図1に示すように、ガスヘッダ4には、隣り合う扁平管3の間隔が狭い部分と広い部分とが混在するように扁平管3が接続されている。これにより、ガスヘッダ4での冷媒流れにおいて発生する流体抵抗が抑制でき、ガスヘッダ4内での冷媒の圧力損失が低減できる。図1に示す隣り合う扁平管3の間隔がtpと定義される。この場合には、隣り合う扁平管3の最も間隔の狭い部分は、tp<Dpの関係を満たす。また、隣り合う扁平管3の最も間隔の広い部分は、tp>2×Dpの関係を満たす。
 すなわち、最も狭い部分の間隔がtp1、最も広い部分の間隔がtp2、複数の扁平管3の段ピッチがDpと定義される。このとき、複数の扁平管3がガスヘッダ4に接続された接続部の間隔は、tp1<Dpかつtp2>2×Dpが満たされる。
<実施の形態1でのガスヘッダ4内での冷媒の圧力損失低減のメカニズム>
 図3は、比較例での等間隔配置された扁平管3のガスヘッダ4への接続部における冷媒流れを示す説明図である。図3の比較例は、実施の形態1の構成と対比するための構成である。図4は、本発明の実施の形態1に係る近接配置された扁平管3のガスヘッダ4への接続部における冷媒流れを示す説明図である。図3及び図4を用いて、発明者らの実験と解析とによって見出した圧力損失が低減するメカニズムを以下に説明する。図3及び図4中の矢印は、冷媒の流れを表している。なお、白矢印が冷媒の入力側を示し、黒矢印が冷媒の出力側を示す。また、図3及び図4中のハッチングの半円は、扁平管3の前後の渦領域15を表している。
 比較例の等間隔配置では、各扁平管3の上流と下流とに冷媒流れの拡大又は縮小が連続して発生する。これにより、渦領域15が各扁平管3に連続して発生し、冷媒の圧力損失が増加する。
 一方、実施の形態1の近接配置では、扁平管3と扁平管3との間の距離が近接して短い。このため、近接した間の空間は、冷媒流れの拡大又は縮小が十分に伴なわず安定化する。これにより、冷媒流れの拡大又は縮小に伴う流体抵抗が小さくなり、渦領域15が削減できる。このように渦領域15を削減することによって、ガスヘッダ4内の冷媒の圧力損失を低減できることが発明者らによって見出せた。したがって、隣り合う扁平管3の接続部の間隔が狭い部分と広い部分とが混在されると、隣り合う扁平管3の接続部の間隔が等間隔に配置されるよりも冷媒の圧力損失が小さくできる。
 また、発明者らの実験と計算とによると、ガスヘッダ4においては、冷媒の流入条件によって、ガスヘッダ4内の冷媒の圧力損失のうち、摩擦の流体抵抗よりも冷媒流れの縮小又は拡大による圧力損失が約50%以上を占めることも見出せた。
<ガスヘッダ4の流路断面積Aiと扁平管3による閉塞面積ALとの関係>
 図5は、本発明の実施の形態1に係るガスヘッダ4の流路断面積をAiと定義して扁平管3による閉塞面積をALと定義したときの関係を示す図である。図6は、本発明の実施の形態1に係る扁平管3がAL/Ai≧0.12となるときの圧力損失低減効果を示す図である。
 図5に示すように、ガスヘッダ4の流路断面積がAiと定義される。扁平管3による閉塞面積がALと定義される。図6に示すように、AL/Ai≧0.12となるときには、隣り合う扁平管3の接続部に狭い部分と広い部分とが混在することによるガスヘッダ4内の冷媒の圧力損失の低減効果が特に顕著となることが見出せた。
<扁平管3のガスヘッダ4への差し込み長さtinと狭い部分の複数の扁平管3の間隔tpとの関係>
 図7は、本発明の実施の形態1に係る扁平管3のガスヘッダ4への差し込み長さをtinと定義して狭い部分の複数の扁平管3の間隔をtpと定義したときの関係を示す図である。
 図7に示すように、扁平管3のガスヘッダ4への差し込み長さがtinと定義される。隣り合う扁平管3の間隔が狭い部分であるときの隣り合う扁平管3の間隔がtpと定義される。このとき、tp<2.0×tinであると、隣り合う扁平管3の間に形成される渦領域15のうち、一部が重なり合う。
 すなわち、扁平管3の端部におけるガスヘッダ4への差し込み長さがtin、狭い部分を形成した複数の接続部を有する扁平管3の距離がtpと定義される。このとき、複数の接続部のうち最も狭い部分に近接する2つの扁平管3の距離は、tp<2.0×tinが満たされる。
<扁平管3のガスヘッダ4への差し込み長さtinとガスヘッダ4の内径Diとの関係>
 図8は、本発明の実施の形態1に係る扁平管3のガスヘッダ4への差し込み長さをtinと定義してガスヘッダ4の内径をDiと定義したときの渦領域15が重なり合う冷媒流れの流線を示す図である。図9は、本発明の実施の形態1に係る0.35≦tin/Di<1.00となるときの渦厚さδを示す図である。
 図8に示すように、図示の旋回矢印で示された渦領域15が重なり合って渦厚さδが形成されている。渦領域15が重なることにより、冷媒が渦厚さδ分だけ冷媒流れが拡大又は縮小することがない。これにより、渦厚さδの分、冷媒流れの拡大又は縮小による冷媒の圧力損失が低減できる。図9に示すように、発明者らの実験と解析とによると、渦厚さδは、0.35≦tin/Di<1.00の領域で急激に大きくなることが見出せた。一方、0≦δ<0.35の領域では、渦厚さδが小さいことも見出せた。したがって、0.35≦tin/Di<1.00の範囲であると、ガスヘッダ4内の冷媒の圧力損失の低減効果が大きくなる。
 すなわち、扁平管3のガスヘッダ4への差し込み長さがtinと定義される。ガスヘッダ4の冷媒流路に対する直交断面の内径がDiと定義される。このとき、0.35≦tin/Di<1.00の関係が満たされる。
<その他>
 冷媒の種類は、限定されない。しかし、ガスヘッダ4の内部を流れる冷媒は、HFO1234yf、HFO1234ze(E)などのオレフィン系冷媒、プロパン冷媒又はジメチルエーテル冷媒(DME)などのような飽和圧力がR32冷媒よりも低い低圧冷媒であるとより効果的である。また、これらは、当然、純冷媒のみに限定されない。ガスヘッダ4の内部を流れる冷媒は、HFO1234yf、HFO1234ze(E)などのオレフィン系冷媒、プロパン冷媒又はジメチルエーテル冷媒(DME)の少なくとも1つを組成に含む混合冷媒でも良い。
<実施の形態1の効果>
 実施の形態1によれば、熱交換器100は、外部から熱が供給されて内部に流れる気液二相状態の冷媒がガス冷媒となる複数の扁平管3を備える。熱交換器100は、複数の扁平管3の一端部に接続されて複数の扁平管3から流出するガス冷媒が合流するガスヘッダ4を備える。熱交換器100は、空間内にて互いに直交する方向がX方向及びY方向と定義される。ガスヘッダ4は、Y方向に長手に延出されてY方向に冷媒の流れ方向を形成する。複数の扁平管3は、Y方向に間隔をあけて並んでいる。複数の扁平管3の先端のそれぞれには、ガスヘッダ4にX方向から挿入する接続部が設けられている。複数の接続部間の間隔は、狭い部分と広い部分とが混在して形成されている。
 この構成によれば、ガスヘッダ4に接続された複数の扁平管3の接続部のうちいずれかの複数の接続部が近接する。この近接部分では、隣接する接続部間の距離が短く、ガスヘッダ4内部での隣接する接続部間の空間が安定した大きさになって冷媒の流れ方向に対する空間の拡大又は縮小が十分に伴わない。このため、空間の拡大又は縮小に伴う流体抵抗が小さくなって冷媒の渦領域15が削減でき、ガスヘッダ4内部での冷媒の圧力損失が低減でき、熱交換性能が向上できる。したがって、簡素な構造が図られつつ、冷媒の圧力損失が低減できる。
 実施の形態1によれば、熱交換器100は、複数の扁平管3に接続されたフィン6を備える。複数の接続部の間隔は、最も狭い部分の間隔がtp1、最も広い部分の間隔がtp2、複数の扁平管3の段ピッチがDpと定義される。このとき、tp1<Dpかつtp2>2×Dpが満たされる。
 この構成によれば、冷媒の流れ方向に対する空間の拡大又は縮小に伴う流体抵抗がより小さくなって冷媒の渦領域15が削減でき、ガスヘッダ4内部での冷媒の圧力損失がより低減でき、熱交換性能がより向上できる。
 実施の形態1によれば、複数の扁平管3は、X方向に直線状である。
 この構成によれば、複数の扁平管3が容易に製造でき、熱交換器100が簡素な構造が図られつつ、冷媒の圧力損失が低減できる。
 実施の形態1によれば、扁平管3の端部におけるガスヘッダ4への差し込み長さがtin、狭い部分を形成した複数の接続部を有する扁平管3の距離がtpと定義される。このとき、複数の接続部のうち最も狭い部分に近接する2つの扁平管3の距離は、tp<2.0×tinが満たされる。
 この構成によれば、隣り合う扁平管3の接続部間に形成される渦領域15のうち一部が重なり合う。このように渦領域15が重なることにより、空間が渦厚さ分だけ冷媒の流れ方向に対して拡大又は縮小せずに安定した大きさとみなせ、その分空間の拡大又は縮小に影響されずに冷媒の圧力損失が低減できる。
 実施の形態1によれば、扁平管3の端部におけるガスヘッダ4への差し込み長さがtin、ガスヘッダ4の冷媒流路に対する直交断面の内径がDiと定義される。このとき、0.35≦tin/Di<1.00の関係が満たされる。
 この構成によれば、空間の渦厚さが冷媒の流れ方向に対して大幅に大きくなり、空間が渦厚さ分だけ拡大又は縮小せずに安定した大きさとみなせ、その分空間の拡大又は縮小に影響されずに冷媒の圧力損失が低減できる。
 実施の形態1によれば、ガスヘッダ4内部を流れる冷媒は、オレフィン系冷媒、プロパン冷媒又はジメチルエーテル冷媒のいずれかである。
 この構成によれば、飽和圧力がR32冷媒よりも低い低圧冷媒であるので、冷媒の圧力損失がより効果的に低減できる。
 実施の形態1によれば、ガスヘッダ4内部を流れる冷媒は、オレフィン系冷媒、プロパン冷媒又はジメチルエーテルの少なくとも1つを組成に含む混合冷媒である。
 この構成によれば、飽和圧力がR32冷媒よりも低い低圧冷媒であるので、冷媒の圧力損失がより効果的に低減できる。
 実施の形態1によれば、熱交換器100は、複数の扁平管3の他端部に接続されて複数の扁平管3に気液二相状態の冷媒を分配する冷媒分配器2を備える。
 この構成によれば、冷媒分配器2が複数の扁平管3に気液二相状態の冷媒を分配できる。
実施の形態2.
<熱交換器100の構成>
 図10は、本発明の実施の形態2に係る熱交換器100を示す概略構成図である。実施の形態2は、上記実施の形態1と同様の事項を省略し、その特徴部分のみを説明する。
 図10に示すように、ガスヘッダ4に接続された近接する2つの扁平管3は、仮想の中心線であるB-B線を引いたとき、B-B線を挟んで対称な形状である。近接する2つの扁平管3は、冷媒分配器2に接続された端部をB-B線から離れるように折り曲げ部20を有する。
 複数の接続部間の間隔は、狭い部分と広い部分とが交互に形成されている。狭い部分を形成した複数の接続部は、複数の扁平管3のうち2つの扁平管3の群によって構成されている。複数の接続部間の間隔を狭い部分に形成した2つの扁平管3の群は、各群のY方向での中心である仮想の中心線であるB-B線を挟んで対称な形状に構成されている。複数の扁平管3のうち複数の接続部以外のフィン6の配置された熱交換部分3aは、Y方向に等間隔に並んでいる。複数の接続部間の間隔を狭い部分に形成した2つの扁平管3は、冷媒分配器2に接続された端部を仮想の中心線であるB-B線から離れる方向に折り返す折り曲げ部20を有する。
 この構成であると、ガスヘッダ4に接続する2つの扁平管3を近接させられ、ガスヘッダ4内の冷媒の圧力損失が低減できる。
<ガスヘッダ4の流路断面>
 なお、ここでガスヘッダ4の流路断面は、円形状である場合について説明した。しかし、ここでガスヘッダ4の流路断面は、後述のようにこれに限定するものではない。
 図11は、本発明の実施の形態2に係るガスヘッダ4の別の流路断面の一例を示す図である。図11に示すように、ガスヘッダ4は、D型形状の流路断面である。D型形状の流路断面では、扁平管3とガスヘッダ4との接続部分が直線に形成されている。
 この構成であると、扁平管3の最小ロウ付け代が確保し易く、ロウ付け性が向上し、良い。また、円形状ではない、図11のようなD型形状においても、Diが扁平管3の差し込みのない位置での流路断面積であるAiを用いた場合の等価代表直径を用いると、AiがAi=(Di/2)2×πと定義される。なお、ガスヘッダ4は、ここでは代表としてD型形状について説明を行った。しかし、ガスヘッダ4は、これらの形状に限定されるものではない。
<熱交換器100の構成>
 図12は、本発明の実施の形態2に係る熱交換器100の別の一例を示す概略構成図である。冷媒分配器2は、ヘッダタイプのもの以外に、たとえば、図12に示すようにディストリビュータ16とキャピラリチューブ17とを用いた衝突型などの冷媒分配器でも良く、更には、冷媒分配器2の種類を特に限定するものではない。
<実施の形態2の効果>
 実施の形態2によれば、複数の接続部間の間隔は、狭い部分と広い部分とが交互に形成されている。
 この構成によれば、狭い部分を形成する複数の接続部のいくつかによって、狭い部分を形成する複数の接続部間に形成される渦領域15のうち一部が重なり合ってY方向に滑らかに広がる。このように渦領域15がY方向に滑らかに広がることにより、空間が渦厚さ分だけ冷媒の流れ方向に対して拡大又は縮小せずに安定した大きさとみなせ、その分空間の拡大又は縮小に影響されずに冷媒の圧力損失が低減できる。
 実施の形態2によれば、狭い部分を形成した複数の接続部は、複数の扁平管3のうち2つの扁平管3の群によって構成されている。
 この構成によれば、2つの扁平管3の群によって狭い部分を形成する複数の接続部が形成でき、狭い部分を形成する複数の接続部間に形成される渦領域15のうち一部が重なり合ってY方向に滑らかに広がる。
 実施の形態2によれば、2つの扁平管3の群は、各群のY方向での中心である仮想の中心線であるB-B線を挟んで対称な形状に構成されている。
 この構成によれば、Y方向に滑らかに広がる渦領域15が安定した大きさで形成でき、空間が渦領域15の渦厚さ分だけ冷媒の流れ方向に対して拡大又は縮小せずに安定した大きさとみなせ、その分空間の拡大又は縮小に影響されずに冷媒の圧力損失が低減できる。
 実施の形態2によれば、複数の扁平管3のうち複数の接続部以外の熱交換部分3aは、Y方向に等間隔に並んでいる。
 この構成によれば、複数の扁平管3の熱交換部分3aがY方向に等間隔に並ぶので、熱交換器全体の通風抵抗が低減できるとともに各扁平管3の熱交換の偏りが抑制でき、熱交換効率が向上できる。
 実施の形態2によれば、複数の接続部間の間隔を狭い部分に形成した1群を構成した2つの扁平管3は、冷媒分配器2に接続された他端部を仮想の中心線であるB-B線から離れる方向に折り返す折り曲げ部20を有する。
 この構成によれば、1つの扁平管3の熱交換部分3aの距離が長く稼げ、熱交換効率が向上できる。
実施の形態3.
<熱交換器100の構成>
 図13は、本発明の実施の形態3に係る熱交換器100を示す概略構成図である。実施の形態3は、上記実施の形態1及び実施の形態2と同様の事項を省略し、その特徴部分のみを説明する。
 図13に示すように、近接する接続部を有する2つの扁平管3は、仮想の中心線であるB-B線を引いたとき、B-B線を挟んで対称な形状である。近接する接続部を有する2つの扁平管3は、冷媒分配器2に接続された端部をそれぞれB-B線から離れるように折り曲げ部20を有する。
 扁平管3の折り曲げ部20の数は、流出管5に近いものほど、多い。すなわち、折り曲げ部20の数は、ガスヘッダ4の流出口である流出管5に近い扁平管3ほど多い。
 この構成であると、ガスヘッダ4においてガスリッチ又はガスの冷媒が合流され、冷媒流量が大きくなる流出管5に近い位置での冷媒の圧力損失が扁平管3の近接配置によって低減できる。
<実施の形態3の効果>
 実施の形態3によれば、折り曲げ部20の数は、ガスヘッダ4の流出管5と繋がった流出口に近い扁平管3ほど多い。
 この構成によれば、ガスヘッダ4の流出口に近い扁平管3ほど折り曲げ部20の数が多いので、流出口がY方向において下方向である場合に、重力の影響によって流出管5に繋がった流出口に近い扁平管3ほど液冷媒が流入する。しかし、折り曲げ部20の数が多い扁平管3ほど熱交換機会が多くなってガスリッチ又はガスの冷媒になる。したがって、熱交換器100の熱交換効率が向上できる。
実施の形態4.
<熱交換器100の構成>
 図14は、本発明の実施の形態4に係る扁平管3の端部の曲げ部を示す拡大図である。実施の形態4は、上記実施の形態1、実施の形態2及び実施の形態3と同様の事項を省略し、その特徴部分のみを説明する。
 図14に示すように、ガスヘッダ4に接続される扁平管3の端部が曲げ加工されている。これにより、隣り合う扁平管3が近接している。
 複数の接続部は、複数の扁平管3のうちいずれかの扁平管3の端部を曲げて構成されている。仮想の中心線であるB-B線を挟んで対称な形状に構成された1群は、2つの扁平管3によって構成されている。1群を構成した2つの扁平管3は、端部を仮想の中心線であるB-B線に近づける方向に曲げている。なお、複数の扁平管3のうち複数の接続部以外のフィン6の配置された熱交換部分3aは、Y方向に等間隔に並んでも良い。
 この構成であると、扁平管3は、フィン6の寸法制約に限定されることなく近接配置でき、冷媒の圧力損失が低減でき、良い。ここで、Dpは、複数の扁平管3の熱交換部分3aでの段ピッチを表す。そして、狭い部分の隣り合う扁平管3の接続部の間隔tpは、tp<Dpを満足する。
<実施の形態4の効果>
 実施の形態4によれば、複数の接続部は、複数の扁平管3のうちいずれかの扁平管3の端部を曲げて構成されている。
 この構成によれば、扁平管3の端部を曲げるだけで複数の扁平管3が容易に製造でき、簡素な構造が図られつつ、冷媒の圧力損失が低減できる。
 実施の形態4によれば、仮想の中心線であるB-B線を挟んで対称な形状に構成された1群は、2つの扁平管3によって構成されている。1群を構成した2つの扁平管3は、ガスヘッダ4に接続された端部を仮想の中心線であるB-B線に近づける方向に曲げている。
 この構成によれば、ガスヘッダ4に接続された複数の扁平管3の接続部のうちいずれかの複数の接続部が近接できる。
実施の形態5.
<熱交換器100の構成>
 図15は、本発明の実施の形態5に係る熱交換器100を示す概略構成図である。図16は、本発明の実施の形態5に係る扁平管3の端部の曲げ部を示す拡大図である。実施の形態5は、上記実施の形態1、実施の形態2、実施の形態3及び実施の形態4と同様の事項を省略し、その特徴部分のみを説明する。
 図15及び図16に示すように、仮想の中心線であるB-B線を挟んで対称な形状に構成された1群は、3つの扁平管3によって構成されている。1群を構成した3つの扁平管3は、1群のうちY方向の両端側の扁平管3の端部を仮想の中心線であるB-B線に近づける方向に曲げている。なお、仮想の中心線であるB-B線を挟んで対称な形状に構成された1群は、4以上の扁平管3によって構成されても良い。
<実施の形態5の効果>
 実施の形態5によれば、仮想の中心線であるB-B線を挟んで対称な形状に構成された1群は、3以上の扁平管3によって構成されている。1群を構成した3以上の扁平管3は、1群のうち少なくともY方向の両端側の扁平管3の端部を仮想の中心線であるB-B線に近づける方向に曲げている。
 この構成によれば、ガスヘッダ4に接続された複数の扁平管3の接続部のうちいずれかの複数の接続部が近接できる。
実施の形態6.
<熱交換器100の構成>
 図17は、本発明の実施の形態6に係る熱交換器100を示す概略構成図である。実施の形態6は、上記実施の形態1、実施の形態2、実施の形態3、実施の形態4及び実施の形態5と同様の事項を省略し、その特徴部分のみを説明する。
 図17に示すように、ガスヘッダ4の内部には、仕切り7が設けられている。仕切り7には、第1開口部18と第2開口部8とが設けられている。
 仕切り7は、ガスヘッダ4の内部に複数の扁平管3の接続部の挿入された冷媒流路とバイパス流路とを仕切る。バイパス流路の冷媒流路に対する第1開口部18は、ガスヘッダ4に差し込まれた扁平管3の開口端部とX方向にて一部が重なっている。バイパス流路の冷媒流路に対する第2開口部8は、狭い部分を形成した複数の接続部の1組に対してX方向にて重なって設けられている。なお、第2開口部8は、複数設けられても良い。
 この構成であると、複数の扁平管3の接続部を通過する冷媒の一部がガスヘッダ4内にてバイパスでき、ガスヘッダ4内の冷媒の圧力損失が低減でき、良い。仕切り7によってバイパス流路が形成されたガスヘッダ4であっても、複数の扁平管3が近接配置でき、冷媒の圧力損失が低減できる。また、流出管5が上部に設けられた場合には、重力によってガスヘッダ4の底部に溜まった圧縮機油が冷媒のバイパス流れによって冷凍サイクル装置101の圧縮機102へ返油でき、良い。
<実施の形態6の効果>
 実施の形態6によれば、ガスヘッダ4内部には、仕切り7を有してバイパス流路が設けられている。
 この構成によれば、複数の接続部の影響を受けないバイパス流路によってガスヘッダ4内部の圧力損失が抑制できる。
 実施の形態6によれば、バイパス流路の冷媒流路に対する第1開口部18は、ガスヘッダ4に差し込まれた扁平管3の開口端部とX方向にて一部が重なっている。
 この構成によれば、第1開口部18によってガスヘッダ4内部の冷媒流路からバイパス流路に冷媒がスムーズに流入し易くなる。これにより、ガスヘッダ4内部の圧力損失が抑制できる。
 実施の形態6によれば、バイパス流路の冷媒流路に対する第2開口部8は、狭い部分を形成した複数の接続部の1組に対して少なくとも1つX方向にて重なって設けられている。
 この構成によれば、第2開口部8によって狭い部分を形成した複数の接続部の少なくとも1組の冷媒がバイパスでき、ガスヘッダ4内部の冷媒の圧力損失が低減できる。
実施の形態7.
<熱交換器100の構成>
 図18は、本発明の実施の形態7に係る熱交換器100を示す概略構成図である。図19は、本発明の実施の形態7に係るガスヘッダ4の第2開口部8と扁平管3との関係を図18のC-C線の断面にて示す説明図である。実施の形態7は、上記実施の形態1、実施の形態2、実施の形態3、実施の形態4、実施の形態5及び実施の形態6と同様の事項を省略し、その特徴部分のみを説明する。
 図18及び図19に示すように、ガスヘッダ4には、複数の第2開口部8が設けられている。第2開口部8が多いほど、複数の扁平管3との接続部を通過する冷媒の流れが抑制でき、ガスヘッダ4内部の冷媒の圧力損失が低減でき、良い。
 図19に示すように、複数の第2開口部8のそれぞれは、複数の扁平管3の開口端部と少なくとも一部が重なるように設けられている。これにより、仕切り7に冷媒が衝突することによる冷媒の圧力損失が低減でき、良い。
実施の形態8.
<熱交換器100の構成>
 図20は、本発明の実施の形態8に係る熱交換器100を示す概略構成図である。実施の形態8は、上記実施の形態1、実施の形態2、実施の形態3、実施の形態4、実施の形態5、実施の形態6及び実施の形態7と同様の事項を省略し、その特徴部分のみを説明する。
 図20に示すように、複数の第2開口部8が設けられたガスヘッダ4は、ガスヘッダ4内部に仕切り7を有する。
 これに加えて、ガスヘッダ4は、ガスヘッダ4内部の複数の扁平管3の接続部付近に、少なくとも1つの区画仕切り19を有する。ここでは、近接する2つの扁平管3の接続部ごとにそれぞれ区画仕切り19が設けられている。すなわち、ガスヘッダ4は、狭い部分を形成した複数の接続部それぞれのうち少なくとも1つの領域にて区画して仕切られている。
 この構成であると、複数の扁平管3の接続部を通過する冷媒の流れが減少し、ガスヘッダ4内部での冷媒の圧力損失が低減でき、良い。
<実施の形態8の効果>
 実施の形態8によれば、ガスヘッダ4は、狭い部分を形成した複数の接続部それぞれのうち少なくとも1つの領域にて区画して仕切られている。
 この構成によれば、区画して仕切られたガスヘッダ4では、狭い部分を形成した複数の接続部の冷媒が分割でき、ガスヘッダ4内部の冷媒の圧力損失が低減できる。
実施の形態9.
<熱交換器100の構成>
 図21は、本発明の実施の形態9に係る熱交換器100を示す概略構成図である。実施の形態9は、上記実施の形態1、実施の形態2、実施の形態3、実施の形態4、実施の形態5、実施の形態6、実施の形態7及び実施の形態8と同様の事項を省略し、その特徴部分のみを説明する。
 図21に示すように、ガスヘッダ4内部は、狭い部分を形成した複数の接続部のいくつかで分割されている。複数の流出管9、流出管10及び流出管11は、ガスヘッダ4内部のそれぞれの分割された流路に設けられている。
 この構成であると、近接する複数の扁平管3を通過する冷媒の流れが減少でき、これによってガスヘッダ4内部での冷媒の圧力損失が低減でき、良い。
<他の熱交換器100の構成>
 図22は、本発明の実施の形態9に係る熱交換器100の別の一例を示す概略構成図である。図21では、ガスヘッダ4が内部にて3つに分割されていた。しかし、図22に示すように、分割領域を単に複数のガスヘッダ4が構成しても良い。
実施の形態10.
<冷凍サイクル装置101>
 図23は、本発明の実施の形態10に係る熱交換器100を適用した冷凍サイクル装置101を示す冷媒回路図である。
 図23に示すように、冷凍サイクル装置101は、圧縮機102、凝縮器103、膨張弁104及び蒸発器としての熱交換器100を備える。これら圧縮機102、凝縮器103、膨張弁104及び熱交換器100が冷媒配管で接続されて冷凍サイクル回路を形成している。そして、熱交換器100から流出した冷媒は、圧縮機102に吸入されて高温高圧となる。高温高圧となった冷媒は、凝縮器103において凝縮されて液体になる。液体となった冷媒は、膨張弁104で減圧膨張されて低温低圧の気液二相となり、気液二相の冷媒が熱交換器100において熱交換される。
 実施の形態1~9の熱交換器100は、このような冷凍サイクル装置101に適用できる。なお、冷凍サイクル装置101としては、たとえば空気調和装置、冷凍装置又は給湯器などが挙げられる。
<実施の形態10の効果>
 実施の形態10によれば、冷凍サイクル装置101は、上記の熱交換器100を備える。
 この構成によれば、冷凍サイクル装置101は、熱交換器100を備えるので、簡素な構造が図られつつ、冷媒の圧力損失が低減できる。
 なお、本発明の実施の形態1~10は、組み合わされても良いし、他の部分に適用しても良い。
 1 流入管、2 冷媒分配器、3 扁平管、3a 熱交換部分、4 ガスヘッダ、5 流出管、6 フィン、7 仕切り、8 第2開口部、9 流出管、10 流出管、11 流出管、15 渦領域、16 ディストリビュータ、17 キャピラリチューブ、18 第1開口部、19 区画仕切り、20 折り曲げ部、100 熱交換器、101 冷凍サイクル装置、102 圧縮機、103 凝縮器、104 膨張弁。

Claims (22)

  1.  外部から熱が供給されて内部に流れる気液二相状態の冷媒がガス冷媒となる複数の扁平管と、
     前記複数の扁平管の一端部に接続されて前記複数の扁平管から流出するガス冷媒が合流するガスヘッダと、
    を備える熱交換器であって、
     空間内にて互いに直交する方向がX方向及びY方向と定義されたとき、
     前記ガスヘッダは、Y方向に長手に延出されてY方向に冷媒の流れ方向を形成し、
     前記複数の扁平管は、Y方向に間隔をあけて並び、
     前記複数の扁平管の先端のそれぞれには、前記ガスヘッダにX方向から挿入する接続部が設けられ、
     前記複数の接続部間の間隔は、狭い部分と広い部分とが混在して形成される熱交換器。
  2.  前記複数の接続部間の間隔は、前記狭い部分と前記広い部分とが交互に形成される請求項1に記載の熱交換器。
  3.  前記複数の扁平管に接続された複数のフィンを備え、
     前記複数の接続部の間隔は、最も狭い部分の間隔がtp1、最も広い部分の間隔がtp2、前記複数の接続部の段ピッチがDpと定義されたとき、
     tp1<Dpかつtp2>2×Dpが満たされる請求項1又は請求項2に記載の熱交換器。
  4.  前記狭い部分を形成した前記複数の接続部は、前記複数の扁平管のうち2以上の前記扁平管の群によって構成される請求項1~請求項3のいずれか1項に記載の熱交換器。
  5.  前記2以上の扁平管の群は、各群のY方向での中心である仮想の中心線を挟んで対称な形状に構成される請求項4に記載の熱交換器。
  6.  前記複数の扁平管は、X方向に直線状である請求項1~請求項5のいずれか1項に記載の熱交換器。
  7.  前記複数の接続部は、前記複数の扁平管のうちいずれかの前記扁平管の端部をY方向に曲げて構成される請求項1~請求項5のいずれか1項に記載の熱交換器。
  8.  前記仮想の中心線を挟んで対称な形状に構成された1群は、2つの前記扁平管によって構成され、
     1群を構成した前記2つの扁平管は、前記端部をY方向の前記仮想の中心線に近づける方向に曲げる請求項7に記載の熱交換器。
  9.  前記仮想の中心線を挟んで対称な形状に構成された1群は、3以上の前記扁平管によって構成され、
     1群を構成した前記3以上の扁平管は、前記1群のうち少なくともY方向の両端側の前記扁平管の前記端部を前記仮想の中心線に近づける方向に曲げる請求項7に記載の熱交換器。
  10.  1群を構成した前記扁平管は、前記扁平管の他端部をY方向にて前記仮想の中心線から離れる方向に折り返す折り曲げ部を有する請求項5又は請求項5に従属する請求項6~請求項9のいずれか1項に記載の熱交換器。
  11.  前記折り曲げ部の数は、前記ガスヘッダの流出口に近い前記扁平管ほど多い請求項10に記載の熱交換器。
  12.  前記複数の扁平管のうち前記複数の接続部以外の熱交換部分は、Y方向に等間隔に並ぶ請求項7~請求項10のいずれか1項に記載の熱交換器。
  13.  前記扁平管の前記端部における前記ガスヘッダへの差し込み長さがtin、前記狭い部分を形成した前記複数の接続部を有する前記扁平管の距離がtpと定義されたとき、
     前記複数の接続部のうち最も狭い部分に近接する2つの前記扁平管の距離は、tp<2.0×tinが満たされる請求項1~請求項12のいずれか1項に記載の熱交換器。
  14.  前記扁平管の前記端部における前記ガスヘッダへの差し込み長さがtin、前記ガスヘッダの冷媒流路に対する直交断面の内径がDiと定義されたとき、
     0.35≦tin/Di<1.00の関係が満たされる請求項1~請求項13のいずれか1項に記載の熱交換器。
  15.  前記ガスヘッダの内部には、仕切りを有してバイパス流路が設けられる請求項1~14のいずれか1項に記載の熱交換器。
  16.  前記バイパス流路の冷媒流路に対する第1開口部は、前記ガスヘッダに差し込まれた前記扁平管の開口端部とX方向にて一部が重なる請求項15に記載の熱交換器。
  17.  前記バイパス流路の冷媒流路に対する第2開口部は、前記狭い部分を形成した前記複数の接続部の1組に対して少なくとも1つX方向にて重なって設けられる請求項15又は請求項16に記載の熱交換器。
  18.  前記ガスヘッダの内部を流れる冷媒は、オレフィン系冷媒、プロパン冷媒又はジメチルエーテル冷媒のいずれかである請求項1~請求項17のいずれか1項に記載の熱交換器。
  19.  前記ガスヘッダの内部を流れる冷媒は、オレフィン系冷媒、プロパン冷媒又はジメチルエーテルの少なくとも1つを組成に含む混合冷媒である請求項1~請求項17のいずれか1項に記載の熱交換器。
  20.  前記複数の扁平管の他端部に接続されて前記複数の扁平管に気液二相状態の冷媒を分配する冷媒分配器を備える請求項1~請求項19のいずれか1項に記載の熱交換器。
  21.  前記ガスヘッダは、前記狭い部分を形成した前記複数の接続部それぞれのうち少なくとも1つの領域にて区画して仕切られる請求項1~請求項20のいずれか1項に記載の熱交換器。
  22.  請求項1~請求項21のいずれか1項に記載の熱交換器を備える冷凍サイクル装置。
PCT/JP2019/008506 2019-03-05 2019-03-05 熱交換器及び冷凍サイクル装置 WO2020178965A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/008506 WO2020178965A1 (ja) 2019-03-05 2019-03-05 熱交換器及び冷凍サイクル装置
US17/426,126 US20220099343A1 (en) 2019-03-05 2019-03-05 Heat exchanger and refrigeration cycle apparatus
JP2019548346A JP6641542B1 (ja) 2019-03-05 2019-03-05 熱交換器及び冷凍サイクル装置
CN201980092865.6A CN113474600B (zh) 2019-03-05 2019-03-05 热交换器以及制冷循环装置
EP19918474.8A EP3936791A4 (en) 2019-03-05 2019-03-05 HEAT EXCHANGER AND REFRIGERATION CYCLE DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008506 WO2020178965A1 (ja) 2019-03-05 2019-03-05 熱交換器及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2020178965A1 true WO2020178965A1 (ja) 2020-09-10

Family

ID=69320974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008506 WO2020178965A1 (ja) 2019-03-05 2019-03-05 熱交換器及び冷凍サイクル装置

Country Status (5)

Country Link
US (1) US20220099343A1 (ja)
EP (1) EP3936791A4 (ja)
JP (1) JP6641542B1 (ja)
CN (1) CN113474600B (ja)
WO (1) WO2020178965A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204913A (ja) * 2012-03-28 2013-10-07 Sharp Corp 熱交換器
JP2015052444A (ja) * 2013-09-09 2015-03-19 ダイキン工業株式会社 熱交換器
WO2015140886A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
WO2016009565A1 (ja) * 2014-07-18 2016-01-21 三菱電機株式会社 冷凍サイクル装置
WO2018225252A1 (ja) * 2017-06-09 2018-12-13 三菱電機株式会社 熱交換器及び冷凍サイクル装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516408Y2 (ja) * 1990-04-27 1996-11-06 昭和アルミニウム株式会社 熱交換器
DE19729239A1 (de) * 1997-07-09 1999-01-14 Behr Gmbh & Co Rohr-/Rippenblock für einen Wärmeübertrager und Herstellungsverfahren hierfür
TW495012U (en) * 2001-08-02 2002-07-11 Ho-Hsin Wu Heat exchanger featured with parallel coils
US7281387B2 (en) * 2004-04-29 2007-10-16 Carrier Commercial Refrigeration Inc. Foul-resistant condenser using microchannel tubing
JP4561305B2 (ja) * 2004-10-18 2010-10-13 三菱電機株式会社 熱交換器
JP5777622B2 (ja) * 2010-08-05 2015-09-09 三菱電機株式会社 熱交換器、熱交換方法及び冷凍空調装置
WO2013160954A1 (ja) * 2012-04-26 2013-10-31 三菱電機株式会社 熱交換器及びこの熱交換器を備えた冷凍サイクル装置
EP2955464A4 (en) * 2013-01-22 2016-11-09 Mitsubishi Electric Corp COOLANT DISTRIBUTOR AND HEAT PUMP DEVICE WITH COOLANT DISTRIBUTION
EP3032182B1 (en) * 2013-09-11 2018-09-05 Daikin Industries, Ltd. Heat exchanger and air conditioner
JP6259703B2 (ja) * 2014-04-10 2018-01-10 株式会社ケーヒン・サーマル・テクノロジー コンデンサ
JP6661880B2 (ja) * 2014-09-01 2020-03-11 株式会社富士通ゼネラル 空気調和機
JP6020610B2 (ja) * 2015-01-19 2016-11-02 ダイキン工業株式会社 空気調和装置
CN104913548B (zh) * 2015-06-26 2017-05-24 上海交通大学 单集流管平行流换热器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204913A (ja) * 2012-03-28 2013-10-07 Sharp Corp 熱交換器
JP2015052444A (ja) * 2013-09-09 2015-03-19 ダイキン工業株式会社 熱交換器
WO2015140886A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
WO2016009565A1 (ja) * 2014-07-18 2016-01-21 三菱電機株式会社 冷凍サイクル装置
WO2018225252A1 (ja) * 2017-06-09 2018-12-13 三菱電機株式会社 熱交換器及び冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3936791A4 *

Also Published As

Publication number Publication date
EP3936791A1 (en) 2022-01-12
US20220099343A1 (en) 2022-03-31
JPWO2020178965A1 (ja) 2021-03-11
CN113474600A (zh) 2021-10-01
JP6641542B1 (ja) 2020-02-05
CN113474600B (zh) 2023-02-17
EP3936791A4 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
JP6012857B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
US8235101B2 (en) Parallel flow heat exchanger for heat pump applications
JP6202451B2 (ja) 熱交換器及び空気調和機
JP6664558B1 (ja) 熱交換器、熱交換器を備えた空気調和装置、および熱交換器を備えた冷媒回路
WO2014184916A1 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
WO2017150126A1 (ja) 熱交換器及び空気調和機
US20030102113A1 (en) Heat exchanger for providing supercritical cooling of a working fluid in a transcritical cooling cycle
JP6005268B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
CN110595111B (zh) 换热器和多制冷系统空调机组
JPWO2018225252A1 (ja) 熱交換器及び冷凍サイクル装置
JP6425829B2 (ja) 熱交換器及び冷凍サイクル装置
US11874034B2 (en) Heat exchanger
JP6169199B2 (ja) 熱交換器及び冷凍サイクル装置
EP3224565B1 (en) Frost tolerant microchannel heat exchanger
WO2020178965A1 (ja) 熱交換器及び冷凍サイクル装置
CN210320743U (zh) 换热器和多制冷系统空调机组
KR100606332B1 (ko) 공조기기의 열교환기용 납작튜브
JPWO2020178966A1 (ja) ガスヘッダ、熱交換器及び冷凍サイクル装置
JP7370501B1 (ja) 熱交換器及び空気調和装置
EP3760957B1 (en) Air conditioner
WO2022064554A1 (ja) 熱交換器、及び熱交換器を備えた空気調和装置
WO2020234931A1 (ja) 熱交換器および冷凍サイクル装置
CN115111953A (zh) 微通道换热器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019548346

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019918474

Country of ref document: EP

Effective date: 20211005