WO2022064554A1 - 熱交換器、及び熱交換器を備えた空気調和装置 - Google Patents

熱交換器、及び熱交換器を備えた空気調和装置 Download PDF

Info

Publication number
WO2022064554A1
WO2022064554A1 PCT/JP2020/035720 JP2020035720W WO2022064554A1 WO 2022064554 A1 WO2022064554 A1 WO 2022064554A1 JP 2020035720 W JP2020035720 W JP 2020035720W WO 2022064554 A1 WO2022064554 A1 WO 2022064554A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
refrigerant
heat exchanger
header
transfer tube
Prior art date
Application number
PCT/JP2020/035720
Other languages
English (en)
French (fr)
Inventor
七海 岸田
洋次 尾中
崇 松本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/035720 priority Critical patent/WO2022064554A1/ja
Priority to US18/025,939 priority patent/US20230358479A1/en
Priority to CN202080103603.8A priority patent/CN116157644A/zh
Priority to EP20955148.0A priority patent/EP4220064A4/en
Priority to JP2021506590A priority patent/JP6940027B1/ja
Publication of WO2022064554A1 publication Critical patent/WO2022064554A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Definitions

  • the present disclosure relates to a heat exchanger with a header for collecting or distributing the refrigerant, and an air conditioner with a heat exchanger.
  • a heat exchanger having a header in which a plurality of heat transfer tubes are connected, the inside of the header is divided into a first space in which a plurality of heat transfer tubes are inserted by a partition plate and a second space in which a plurality of heat transfer tubes are not inserted.
  • Heat exchangers configured to be used are known.
  • the partition plate is formed with a communication hole that communicates the first space and the second space (see, for example, Patent Document 1).
  • Patent Document 1 in order to solve the problem caused by the passage resistance of the communication hole of the partition plate, the communication hole is inclined with respect to the refrigerant flow direction, and the flow of the refrigerant is allowed to flow to the downstream side edge portion in the flow direction of the refrigerant.
  • a guide is formed to guide.
  • the present disclosure has been made to solve the above-mentioned problems, and even in a heat exchanger in which a heat transfer tube is inserted inside a header and an air conditioner provided with the heat exchanger. It is an object of the present invention to reduce the pressure loss of the refrigerant inside the header, to provide a heat exchanger having excellent heat exchange performance, and to provide an air conditioner equipped with the heat exchanger.
  • a plurality of heat transfer tubes provided at intervals in the first direction and the tips of the heat transfer tubes of the plurality of heat transfer tubes from the second direction orthogonal to the first direction are inserted.
  • It is a heat exchanger provided with a header having an insertion hole and fins attached to a heat transfer tube.
  • the header has a first space inside the header on the side where the insertion hole is provided, and a refrigerant pipe.
  • a partition plate for partitioning from the connected second space is provided, and the partition plate is provided with an opening surrounding the outer periphery of the tip of the heat transfer tube when viewed from the second direction.
  • the air conditioner according to the present disclosure is a refrigerant circuit in which a compressor, a condenser, an expansion valve, an evaporator, and a four-way valve are connected by pipes and a refrigerant flows, and the above-mentioned condenser or evaporator is used. It is equipped with a heat exchanger.
  • the inside of the header is divided into a first space on the side where the insertion hole is provided and a second space to which the refrigerant pipe is connected, and the outer periphery of the tip of the heat transfer tube when viewed from the second direction.
  • FIG. It is a schematic block diagram of the heat exchanger which concerns on Embodiment 1.
  • FIG. It is a perspective view which partially shows the structure of the set header which concerns on Embodiment 1.
  • FIG. It is sectional drawing when the set header which concerns on Embodiment 1 is seen from the 2nd direction. It is a figure which shows the width of the opening of the partition plate which concerns on Embodiment 1.
  • FIG. It is a figure which shows the relationship between the width of the opening of the partition plate which concerns on Embodiment 1 and pressure loss.
  • It is sectional drawing seen from the cutting line AA of FIG. 1 of the heat exchanger which concerns on Embodiment 1.
  • FIG. FIG. 6 is a partially enlarged view of FIG. 6 of the heat exchanger according to the first embodiment.
  • FIG. 6 is a partially enlarged view of FIG. 6 of the heat exchanger according to the first embodiment.
  • FIG. 6 is a partially enlarged view of FIG. 6 of the heat exchanger according to the first embodiment.
  • It is sectional drawing which cut the heat exchanger which concerns on Embodiment 1 in the plane parallel to the 1st direction.
  • It is a schematic diagram which shows the flow of the refrigerant in the assembly header which concerns on Embodiment 1.
  • FIG. is a schematic diagram which shows the flow of the refrigerant in the assembly header which concerns on Embodiment 1.
  • FIG. It is a figure which shows the change of the flow rate and the pressure loss of the refrigerant in the assembly header which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the flow of the refrigerant of the distribution header which concerns on Embodiment 1.
  • FIG. It is sectional drawing which cut the heat exchanger which concerns on Embodiment 2 in the plane parallel to the 1st direction.
  • FIG. It is sectional drawing which cut the heat exchanger which concerns on Embodiment 3 in the plane parallel to the 1st direction.
  • FIG. It is sectional drawing which cut the heat exchanger which concerns on Embodiment 4 in the plane parallel to the 1st direction.
  • FIG. It is a refrigerant circuit diagram which shows the air conditioner which concerns on Embodiment 5.
  • the directions orthogonal to each other are the first direction, the second direction, and the third direction.
  • the first direction is the horizontal direction
  • the second direction is the vertical direction
  • the third direction is the width direction of the header
  • the direction is not limited to the direction of the flow of the refrigerant.
  • the X direction corresponds to the first direction
  • the Y direction corresponds to the second direction
  • the Z direction corresponds to the third direction.
  • FIG. 1 is a schematic configuration diagram of the heat exchanger 100 according to the first embodiment of the present disclosure.
  • the heat exchanger 100 includes a header 1 (1a, 1b), a plurality of heat transfer tubes 2, fins 3, and a refrigerant pipe 4 (4a, 4b). ..
  • the header 1 (1a, 1b) has a tubular shape, and is composed of a header upper plate 11, a header main body 12, a side lid 13 and a partition plate 14 (not shown), and is a length of the header 1 (1a, 1b). Arranged so that the direction is horizontal.
  • the header 1 (1a, 1b) is arranged so as to be orthogonal to the longitudinal direction of the header 1 (1a, 1b) with respect to the flow of air flowing from the front side to the back side of the paper.
  • the vertical cross-sectional view of the header 1 (1a, 1b) shows an example of a D-shape, but it may be a rectangular shape or a circular shape.
  • the header 1 (1a, 1b) is connected to the refrigerant pipe 4 (4a, 4b) and the plurality of heat transfer tubes 2, and the refrigerant flows inside.
  • the header 1 to which the refrigerant inflow pipe 4a is connected and distributes the refrigerant flowing from the refrigerant inflow pipe 4a to each of the heat transfer pipes 2 of the plurality of heat transfer pipes 2 is referred to as a distribution header 1a.
  • the header 1 for collecting the refrigerant is referred to as the collecting header 1b so that the refrigerant outflow pipe 4b is connected and the refrigerant flowing out from the plurality of heat transfer tubes 2 can be discharged to the outside of the heat exchanger 100 via the refrigerant outflow pipe 4b. Call. A detailed description of the configuration of the header 1 (1a, 1b) will be described later.
  • the plurality of heat transfer tubes 2 are arranged at intervals in the first direction (X direction). One of both ends of the heat transfer tube 2 is connected to the distribution header 1a, and the other is connected to the collective header 1b.
  • Each of the heat transfer tubes 2 is a metal pipe having a hollow inside, and for example, a flat tube having a flat cross section is used. Since it is made of metal, it has good thermal conductivity, and heat exchange between the refrigerant flowing inside the heat transfer tube 2 and the air outside the heat transfer tube 2 is easy. By exchanging heat between the refrigerant flowing inside the heat transfer tube 2 and the air outside the heat transfer tube 2, the refrigerant can be cooled and vaporized, or the refrigerant can be heated and liquefied.
  • FIG. 1 shows an example of a flat tube as an example of a heat transfer tube, the shape of the heat transfer tube 2 is not limited to this, and air may be another fluid.
  • the fin 3 is, for example, a corrugated metal plate, inserted between a plurality of heat transfer tubes 2 and joined to the surfaces of adjacent heat transfer tubes 2 to be attached to the heat transfer tubes 2. Since the fin 3 is made of a material that conducts heat such as metal, heat can be guided from the bonded heat transfer tube 2 and exchanged with air or the like flowing through the gap. Further, by forming the corrugated shape, the surface area in contact with the fluid for heat exchange such as air is large, and heat can be exchanged efficiently.
  • the refrigerant pipes 4 (4a, 4b) are connected to the side lids 13 which are the side surfaces of the header 1 (1a, 1b), respectively.
  • the refrigerant pipe 4 connected to the distribution header 1a is the refrigerant inflow pipe 4a
  • the refrigerant pipe 4 connected to the collective header 1b is the refrigerant outflow pipe 4b.
  • the refrigerant inflow pipe 4a causes the refrigerant to flow into the distribution header 1a from the outside of the heat exchanger 100
  • the refrigerant outflow pipe 4b causes the refrigerant collected in the collective header 1b to flow out to the outside of the heat exchanger 100.
  • the refrigerant inflow pipe 4a and the refrigerant outflow pipe 4b are connected to, for example, one side surface different from each other.
  • the refrigerant flowing through the heat exchanger 100 flows into the distribution header 1a from the refrigerant inflow pipe 4a, and is distributed to the heat transfer tubes 2 of the plurality of heat transfer tubes 2 by the distribution header 1a. ..
  • the distributed refrigerant flows through the heat transfer tube 2 is collected by the collective header 1b, and is discharged from the refrigerant outflow pipe 4b.
  • the heat exchanger 100 is in a gas-liquid two-phase state in which the inflowing refrigerant is a mixture of a gas refrigerant and a liquid refrigerant, and is called an evaporator when the gas-liquid two-phase refrigerant is evaporated through the heat transfer tube 2. Further, the heat exchanger 100 is called a condenser when the inflowing refrigerant is a gas and passes through the heat transfer tube 2 to condense the refrigerant. When the heat exchanger 100 is used as a condenser, the flow direction of the refrigerant is opposite to the solid arrow in FIG.
  • the set header 1b will be described as an example in the description, the present disclosure is not limited to the set header 1b, and may be a distribution header 1a.
  • FIG. 2 is a perspective view partially showing the configuration of the header according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the header according to the first embodiment when viewed from the second direction, and shows the positional relationship between the heat transfer tube 2 and the opening 14a of the partition plate 14.
  • FIG. 4 is a diagram showing the width of the opening of the partition plate according to the first embodiment.
  • FIG. 5 is a diagram showing the relationship between the width of the opening 14a of the partition plate 14 and the pressure loss according to the first embodiment.
  • the header upper plate 11 of the collective header 1b is provided at intervals in the first direction (X direction), and each of the plurality of heat transfer tubes 2 is provided from the second direction (Y direction).
  • An insertion hole 11a into which the tip of the heat transfer tube is inserted is provided.
  • the heat transfer tube 2 is inserted into the insertion hole 11a from the header upper plate 11 toward the header main body 12, and is fixed so as to be hermetically sealed between the header upper plate 11 and the insertion hole 11a by brazing or the like.
  • the header That is, the heat transfer tube 2 has a vertical direction (second direction) as a longitudinal direction.
  • the partition plate 14 is a flat plate made of metal such as aluminum, and is fixed to the header main body 12 and the side lid 13 of the collective header 1b by brazing or the like.
  • the entire circumference of the partition plate 14 does not necessarily have to be fixed to the inner wall of the header main body 12, so that the refrigerant flowing inside the collective header passes between the partition plate 14 and the inner wall of the header main body 12. May be good.
  • the partition plate 14 may be integrally formed with the collective header 1b.
  • the partition plate 14 is provided with a plurality of openings 14a into which a plurality of heat transfer tubes 2 can be inserted.
  • FIG. 3 is a view of the inside of the collective header 1b viewed from the lower side in the second direction (Y direction), and is a schematic view showing the positional relationship between the heat transfer tube 2 and the opening 14a of the partition plate 14.
  • the partition plate 14 is provided with an opening 14a surrounding the outer periphery of the tip of the heat transfer tube 2, that is, an opening 14a having an opening into which the heat transfer tube 2 can be inserted when viewed from a second direction.
  • the opening 14a provided in the partition plate 14 has a shape having a gap between the opening 14a and the outer periphery of the tip of the heat transfer tube 2 when viewed from the second direction (Y direction). That is, when the inside of the set header 1b is viewed from the second direction (Y direction), the opening 14a surrounds the heat transfer tube 2 with a space from the outer periphery of the tip of the heat transfer tube 2.
  • the shape of the opening 14a is not limited to the same shape as the heat transfer tube 2 as long as it has a gap between it and the outer periphery of the tip of the heat transfer tube 2 when viewed from the second direction (Y direction).
  • FIG. 4 is a view of the inside of the set header 1b as viewed from the lower side in the second direction (Y direction), as in FIG.
  • the width of the opening 14a in the first direction (X direction) is defined as K
  • the distance between adjacent heat transfer tubes 2 among the plurality of heat transfer tubes 2 is defined as W.
  • FIG. 5 is a diagram showing the relationship between the width K of the opening 14a and the pressure loss.
  • the vertical axis represents the pressure loss inside the set header, and the horizontal axis represents the width K of the opening 14a in the first direction (X direction). From FIG. 5, it can be seen that the pressure loss changes depending on the width K of the opening 14a. At a certain width K, the pressure loss shows a minimum value, and when the width K becomes smaller or larger than the width, the pressure loss increases.
  • the opening 14a provided in the partition plate 14 has an opening area larger than the cross-sectional area of the tip of the heat transfer tube 2, but as shown in FIG. 5, if the width K of the opening 14a is too large, the pressure loss increases. Tend to do.
  • the opening 14a provided in the partition plate 14 satisfies the relationship of K ⁇ W. That is, the width K of the opening 14a in the first direction (X direction) is smaller than the distance W between the adjacent heat transfer tubes 2 among the plurality of heat transfer tubes 2.
  • the width K when the pressure loss showed the minimum value was about twice the width of the heat transfer tube 2. That is, when the shape of the heat transfer tube 2 and the opening is flat as shown in FIG. 4, the pressure loss is minimized by doubling the width K of the opening 14a with respect to the width of the heat transfer tube 2. can. Therefore, it is most preferable that the width K of the opening 14a provided in the partition plate 14 in the first direction (X direction) is twice the width of the heat transfer tube 2.
  • FIG. 6 is a cross-sectional view taken from the cutting line AA of FIG. 1 of the heat exchanger 100 according to the first embodiment.
  • 7, 8 and 9 are partially enlarged views of FIG. 6 of the heat exchanger 100 according to the first embodiment.
  • FIG. 7 is an enlarged view of the header when the tip of the heat transfer tube 2 is in the first space 15.
  • FIG. 8 is an enlarged view of the header when the tip of the heat transfer tube 2 is in the second space 16.
  • FIG. 9 is an enlarged view of the header when the tip of the heat transfer tube 2 is at the same height as the partition plate 14.
  • the collective header 1b has a first space 15 on the header upper plate 11 side and provided with an insertion hole 11a for the heat transfer tube 2 and a refrigerant outflow pipe 4b (not shown). It is partitioned from the connected second space 16.
  • the first space 15 and the second space 16 are different spaces, and the partition plate 14 is installed so that the first space 15 and the second space 16 are arranged in the vertical direction. Further, as shown in FIG. 6, it is preferable to install the partition plate 14 so that the second space 16 is larger than the first space 15.
  • the first space 15 and the second space 16 are each a refrigerant flow path communicating with each other in the depth direction of the paper surface in FIG. 6, that is, in the longitudinal direction of the assembly header 1b.
  • the tip of the heat transfer tube 2 of the partition plate 14 is the first space 15. Alternatively, it is installed so as to be located at the same position as the partition plate 14 or in the second space 16.
  • the distance between the insertion hole 11a and the tip of the heat transfer tube 2 is defined as the "insertion length D", and the insertion hole 11a.
  • the distance between the partition plate 14 and the partition plate 14 is "first space height H"
  • the distance between the partition plate 14 and the tip of the heat transfer tube 2 is "gap distance L”
  • the thickness of the partition plate 14 is "t”. Is defined as.
  • the gap distance L is smaller than the insertion length D and larger than the first space height H. It is provided so as to be small. That is, the partition plate 14 is installed so as to satisfy the relationship of L ⁇ D and L ⁇ H. In this case, the tip of the heat transfer tube 2 is in the first space 15 or the second space 16.
  • the gap distance L is larger than the distance of half the height H of the first space. It is more preferable to install the partition plate 14 so as to be smaller. That is, it is more preferable to install the partition plate 14 so as to satisfy L ⁇ D / 2.
  • the gap distance L is larger than the distance of half the height H of the second space. It is more preferable to install the partition plate 14 so as to be smaller. That is, it is more preferable to install the partition plate 14 so as to satisfy L ⁇ H / 2.
  • the partition plate 14 is installed in the second space 16 when the partition plate 14 is installed so that the tip of the heat transfer tube 2 is located in the first space 15 (FIG. 7).
  • the case where the partition plate 14 is installed so as to be (FIG. 8) is preferable. That is, it is preferable to install the partition plate 14 so that the tip of the heat transfer tube 2 is in the second space 16.
  • the partition plate 14 it is more preferable to install the partition plate 14 so that the gap distance L is equal to or less than the thickness t of the partition plate 14. That is, it is most preferable to install the partition plate 14 so as to satisfy L ⁇ t.
  • FIG. 10 is a cross-sectional view of the heat exchanger 100 according to the first embodiment cut along a plane parallel to the first direction (X direction).
  • 11 and 12 are views showing the flow of the refrigerant inside the collective header according to the first embodiment.
  • FIG. 11 is a diagram showing the flow of the refrigerant when the partition plate 14 is not installed
  • FIG. 12 is a diagram showing the flow of the refrigerant when the partition plate 14 is installed.
  • solid arrows schematically indicate the flow of the refrigerant.
  • the refrigerant flowing through the heat transfer tube 2 flows into the second space 16 through the opening 14a provided in the partition plate 14.
  • the opening area of the opening 14a is larger than the cross-sectional area of the tip of the heat transfer tube 2
  • the refrigerant flowing out of the heat transfer tube 2 flows into the second space 16 without colliding with the partition plate 14.
  • the refrigerant flowing out of the heat transfer tube 2 merges in the second space 16 and is discharged to the outside of the heat exchanger 100 from the refrigerant outflow pipe 4b provided on the side surface of the second space 16.
  • the refrigerant flow path expands and contracts, the refrigerant suffers pressure loss. Further, when a plurality of heat transfer tubes 2 are inserted, expansion and contraction of the refrigerant flow path repeatedly occur, and the pressure loss of the refrigerant flowing inside the collective header 1b further increases.
  • the heat transfer tube 2 is provided inside the assembly header 1b.
  • the refrigerant flowing out from the tip flows into the collective header 1b through the opening 14a without colliding with the partition plate 14.
  • the refrigerant flowing into the collective header 1b mainly flows through the second space 16 toward the refrigerant outflow pipe 4b. That is, the main flow path of the refrigerant is the second space 16, which is the space between the partition plate 14 and the main body of the collective header.
  • the opening 14a provided in the partition plate 14 is larger than the cross-sectional area of the tip of the heat transfer tube 2, a part of the refrigerant flowing inside the collective header 1b flows in the first space 15.
  • the tip of the heat transfer tube 2 becomes a convex portion, and the surface of the partition plate 14 facing the second space 16 becomes a concave portion. That is, the uneven portion generated by inserting the heat transfer tube 2 becomes smaller than that in the case where the partition plate 14 is not installed.
  • the uneven portion By reducing the uneven portion, the expansion and contraction of the refrigerant flow path can be reduced, and the pressure loss of the refrigerant flowing inside the collective header can be reduced.
  • the refrigerant mainly flows in the second space inside the collective header, it is generated from the insertion of the heat transfer tube even when the partition plate 14 is installed so that the tip of the heat transfer tube is located in the first space 15.
  • the heat exchanger 100 has a partition plate 14 provided with an opening 14a surrounding the outer periphery of the tip of the heat transfer tube 2 when viewed from the second direction (Y direction), and the inside of the header is the heat transfer tube 2.
  • the partition plate 14 the expansion and contraction of the refrigerant flow path are reduced, so that the change in the cross-sectional area of the refrigerant flow path is small inside the collective header, and the pressure loss received by the refrigerant flowing inside can be reduced. ..
  • the partition plate 14 by providing the partition plate 14, the refrigerant flowing out from the tip of the heat transfer tube 2 inserted into the header can flow into the second space 16 which is the main flow path without colliding with the partition plate 14.
  • the communication hole since the communication hole is inclined, the heat transfer tube 2 and the communication hole do not overlap with each other, and the refrigerant flowing out from the tip of the heat transfer tube 2 collides with the partition plate 14, resulting in pressure loss.
  • the partition plate 14 having the above-mentioned configuration inside the collective header 1b, the refrigerant flowing out from the tip of the heat transfer tube 2 can be discharged. It is possible to suppress the pressure loss that occurs when the partition plate 14 collides with the partition plate 14. From the above, it becomes possible to provide the heat exchanger 100 having excellent heat exchange performance.
  • the opening 14a has a shape having a gap between the opening 14a and the outer periphery of the tip of the heat transfer tube 2 when viewed from the second direction, the refrigerant flowing out from the tip of the heat transfer tube 2 further reaches the partition plate 14. Collision can be easily avoided and pressure loss can be reduced.
  • the partition plate 14 is installed so that the tip of the heat transfer tube 2 is in the second space 16, the refrigerant can flow through the gap formed between the opening 14a and the outer periphery of the heat transfer tube 2. There is no need to separately provide a communication hole, which leads to cost reduction.
  • the opening 14a is configured such that the width K of the opening 14a is smaller than the distance W of the adjacent heat transfer tubes 2.
  • the opening area of the opening 14a is larger than the cross-sectional area of the tip of the heat transfer tube 2, but if the opening area becomes too large, most of the refrigerant flowing in the second space 16 flows into the first space through the opening 14a. .. That is, if the opening area of the opening 14a becomes too large, it approaches the unevenness when the partition plate 14 is not provided, so that the refrigerant flow path expands and contracts, which may increase the pressure loss. .. Therefore, by configuring the opening 14a to satisfy the relationship of K ⁇ W, the pressure loss inside the collective header 1b can be further reduced.
  • the partition plate 14 by installing the partition plate 14 so as to satisfy the relationship of L ⁇ D and L ⁇ H, the unevenness caused by the insertion of the heat transfer tube 2 is further reduced, and the expansion and contraction of the refrigerant flow path are further reduced.
  • the distance L between the tips of the plurality of heat transfer tubes 2 inserted into the header and the partition plate 14 in the second direction (Y direction) is the second direction (Y direction) between the tips of the plurality of heat transfer tubes 2 and the insertion holes. )
  • the partition plate 14 When the tip of the heat transfer tube 2 is in the first space 15, the partition plate 14 is installed so as to satisfy the relationship of L ⁇ D / 2, so that the tip of the heat transfer tube 2 and the second space 16 can be connected to each other. Since the distance becomes shorter and the refrigerant easily flows into the second space 16, the pressure loss can be reduced. That is, the distance L in the second direction (Y direction) between the tips of the plurality of heat transfer tubes 2 inserted into the header and the partition plate 14 is set to be smaller than the distance L which is half of the insertion length D. The distance between the tip of the heat transfer tube 2 and the opening 14a of the partition plate 14 becomes short, the refrigerant easily flows from the heat transfer tube 2 into the second space 16, and the increase in pressure loss can be further suppressed.
  • the partition plate 14 is installed so as to satisfy the relationship of L ⁇ H / 2, so that the distance between the tip of the heat transfer tube 2 and the partition plate 14 is satisfied. Is closer, and the unevenness due to the insertion of the heat transfer tube 2 can be further reduced, so that the pressure loss can be further reduced.
  • the tip of the heat transfer tube 2 is set so that the distance L between the tip of the heat transfer tube 2 inserted into the header and the opening 14a in the second direction (Y direction) is equal to or less than the thickness t of the partition plate 14. Is substantially the same height as the partition plate 14, and there is almost no unevenness. That is, the cross-sectional area of the flow path of the refrigerant inside the collective header 1b is almost constant. As a result, the refrigerant flowing in the first direction (X direction) in the second space 16 is not affected by the expansion and contraction of the flow path, and the pressure loss received by the refrigerant flowing inside the collective header can be further reduced.
  • the partition plate 14 by installing the partition plate 14 so that the second space 16 is larger than the first space, the refrigerant can easily flow in the second space 16 which is the main flow path, which leads to the improvement of the heat exchange performance.
  • the partition plate 14 so that the tip of the heat transfer tube 2 is in the second space 16 the refrigerant flowing out from the tip of the heat transfer tube 2 can directly flow into the second space 16, so that the partition plate 14 can be used. It is possible to suppress the pressure loss caused by the collision.
  • FIG. 13 is a diagram showing changes in the refrigerant flow rate and pressure loss inside the assembly header when the partition plate 14 is installed in the assembly header 1b according to the first embodiment and when the partition plate 14 is not installed. ..
  • the vertical axis represents the pressure loss inside the collective header
  • the horizontal axis represents the amount of refrigerant flowing into the collective header 1b.
  • the pressure loss when the partition plate 14 is installed inside the assembly header is shown by a square plot
  • the pressure loss when the partition plate 14 is not installed inside the assembly header is shown by a circle plot.
  • the partition plate 14 was installed at a position where L ⁇ D and L ⁇ H were satisfied, and the tip of the heat transfer tube 2 was in the second space 16.
  • the pressure loss is smaller when the partition plate 14 is installed (square plot) than when the partition plate 14 is not installed (round plot). That is, by installing the partition plate 14 according to the first embodiment on the collective header 1b, it is possible to reduce the pressure loss.
  • the pressure loss is smaller in the case where the partition plate 14 is installed (square plot) than in the case where the partition plate 14 is not installed (round plot). That is, it can be seen that the larger the flow rate of the refrigerant, the greater the effect of reducing the pressure loss by installing the partition plate 14.
  • the heat exchanger 100 has a plurality of heat transfer tubes 2 provided at intervals in the first direction (X direction) and a first orthogonal to the first direction (X direction).
  • a header 1 having an insertion hole 11a into which the tips of the heat transfer tubes of the plurality of heat transfer tubes 2 are inserted from two directions (Y direction), and fins 3 attached to the heat transfer tubes 2 are provided.
  • the header 1 is provided with a partition plate 14 that partitions the inside of the header into a first space 15 on which the insertion hole 11a is provided and a second space 16 to which the refrigerant pipe 4 is connected.
  • the partition plate 14 is provided with an opening 14a that surrounds the outer periphery of the tip of the heat transfer tube when viewed from the second direction (Y direction).
  • FIG. 14 is a diagram showing the flow of the refrigerant in the distribution header of the heat exchanger 100 according to the first embodiment.
  • the refrigerant flowing through the heat exchanger 100 is, for example, a propane refrigerant, an HFO refrigerant, an ammonia refrigerant, a dimethyl ether refrigerant, or the like.
  • a refrigerant having a lower density than the commonly used R32 or a mixed refrigerant having these added to one of the components was used. In some cases, the effect of reducing the pressure loss can be particularly increased.
  • the heat transfer tubes are not limited to the single row arrangement, and the heat transfer tubes may be arranged in two rows or a plurality of rows.
  • Embodiment 2 The heat exchanger 100 according to the second embodiment of the present disclosure will be described with reference to FIGS. 15 and 16.
  • the heat exchanger 100 according to the second embodiment has a different number of openings 14a of the partition plate 14 from the heat exchanger 100 according to the first embodiment.
  • the description of the configuration overlapping with the first embodiment will be omitted, and the same reference numerals will be given to the same or corresponding parts as those of the first embodiment.
  • FIG. 15 is a cross-sectional view of the set header 1b according to the second embodiment cut along a plane parallel to the first direction (X direction).
  • FIG. 16 is a perspective view showing the partition plate 14 according to the second embodiment, and the position of the heat transfer tube 2 is shown by a broken line.
  • the case where the number of the heat transfer tubes 2 inserted into the collective header 1b and the number of the openings 14a of the partition plate 14 are equal has been described as an example, but in the second embodiment, as shown in FIG.
  • the number of openings 14a is less than the number of heat transfer tubes 2.
  • the opening 14a according to the second embodiment is provided at a position where two adjacent heat transfer tubes 2 can be inserted into one opening 14a when viewed from a second direction.
  • the refrigerant flowing out from the tip of the heat transfer tube 2 can flow into the second space 16 without colliding with the partition plate 14, and the pressure loss can be reduced. Therefore, it is possible to provide the heat exchanger 100 having excellent heat exchange performance.
  • Embodiment 3 The heat exchanger 100 according to the third embodiment of the present disclosure will be described with reference to FIGS. 17 and 18.
  • the third embodiment has a different shape of the opening 14a of the partition plate 14 according to the first embodiment.
  • the description of the configuration overlapping with the first embodiment will be omitted, and the same or corresponding parts as those of the first embodiment will be designated by the same reference numerals.
  • FIG. 17 is a cross-sectional view of the set header 1b according to the third embodiment cut along a plane parallel to the first direction (X direction).
  • FIG. 18 is a perspective view showing the partition plate 14 according to the third embodiment.
  • the partition opening 14a of the third embodiment has a shape provided with a tapered portion that gradually expands the opening area of the opening 14a from the first space to the second space 16. That is, the opening 14a gradually expands from the first space to the second space 16.
  • it has an inclined shape extending toward the end of the heat transfer tube 2.
  • Embodiment 4 The heat exchanger 100 according to the fourth embodiment of the present disclosure will be described with reference to FIGS. 19 and 20.
  • the fourth embodiment has a different shape of the partition plate 14 according to the first embodiment.
  • the description of the configuration overlapping with the first embodiment will be omitted, and the same or corresponding parts as those of the first embodiment will be designated by the same reference numerals.
  • FIG. 19 is a cross-sectional view of the set header 1b according to the fourth embodiment cut along a plane parallel to the first direction (X direction).
  • FIG. 20 is a perspective view showing the partition plate 14 according to the fourth embodiment.
  • the partition 14 of the fourth embodiment has a corrugated shape having uneven portions at intervals smaller than the width of the adjacent heat transfer tubes 2. That is, the corrugated unevenness is smaller than the pitch of the heat transfer tube 2.
  • the opening 14a is provided at the top of the corrugated convex portion and the concave portion has a flat bottom. The partition plate 14 is fixed so that the corrugated convex portion is in contact with the header upper plate 11.
  • the first space 15 is divided in the first direction for each heat transfer tube 2. Further, the gap between the heat transfer tube 2 and the opening 14a is closed by the header upper plate 11. Therefore, the width of the partition plate 14 in the third direction (Z direction) is made smaller than the width inside the header, or a notch is partially formed at the end of the partition plate 14 in the third direction (Z direction). It is desirable that the first space 15 and the second space 16 communicate with each other. With such a configuration, not only the same effect as that of the first embodiment can be obtained, but also the fixed cost of the partition plate 14 can be reduced.
  • Embodiment 5 The air conditioner 200 according to the fifth embodiment of the present disclosure will be described with reference to FIG.
  • the fifth embodiment is an air conditioner 200 including the heat exchanger 100 according to the embodiment of any one of the first to fourth embodiments as a condenser or an evaporator.
  • the description of the configuration overlapping with the first embodiment will be omitted, and the same or corresponding parts as those of the first embodiment will be designated by the same reference numerals.
  • FIG. 21 is a refrigerant circuit diagram showing an air conditioner 200 equipped with a heat exchanger 100 (100a, 100b) according to the embodiment of any one of the first to fourth embodiments.
  • the solid line arrow in FIG. 21 indicates the flow of the refrigerant during the heating operation, and here, the heating operation will be described as an example.
  • the heat exchangers 100 (100a, 100b) described in the first to fourth embodiments are used as a condenser or an evaporator as an indoor unit or an outdoor unit. Install on the machine.
  • the heat exchanger 100a serves as a condenser
  • the heat exchanger 100b serves as a condenser.
  • the refrigerant circuit included in the air conditioner 200 includes a compressor 22, a condenser, an expansion valve 21, an evaporator, and a four-way valve 23 connected by pipes.
  • the refrigerant is compressed by the compressor 22 and becomes a high-temperature and high-pressure gas refrigerant. After that, the gas refrigerant flows into the condenser.
  • the gas refrigerant is a heat exchanger 100b that functions as a condenser, exchanges heat with a fluid such as air and condenses, and becomes a high-pressure liquid refrigerant.
  • the liquid refrigerant is then depressurized by the expansion valve 21 to become a low-temperature low-pressure gas-liquid two-phase refrigerant, which flows into the evaporator.
  • the gas-liquid two-phase refrigerant is a heat exchanger 100a that functions as an evaporator, and exchanges heat with a fluid such as air to evaporate and become a gas refrigerant.
  • the refrigerant that has become a gas refrigerant returns to the compressor 22. Further, by switching the circuit with the four-way valve 23, the flow of the refrigerant is reversed and the cooling operation becomes possible.
  • the heat exchanger 100a serves as a condenser and the heat exchanger 100b serves as an evaporator.
  • the same effect as that of the first to fourth embodiments is obtained by mounting the heat exchanger 100 according to the embodiment of any one of the first to fourth embodiments on the evaporator or the condenser. It is possible to provide an air conditioner 200 provided with heat exchangers 100 (100a, 100b) having excellent heat exchange performance.
  • the air conditioner 200 according to the fifth embodiment is a refrigerant circuit in which the compressor 22, the condenser, the expansion valve 21, the evaporator, and the four-way valve 23 are connected by pipes and the refrigerant flows. Therefore, the condenser or the evaporator is provided with the heat exchanger 100 according to the embodiment of any one of the first to fourth embodiments. This makes it possible to provide an air conditioner 200 provided with a heat exchanger 100 having excellent heat exchange performance.
  • the heat exchanger 100 according to the first to fourth embodiments is applied to the condenser or the evaporator has been described, but in particular, the gas refrigerant is collected from the plurality of heat transfer tubes 2.
  • the configuration of the heat exchanger 100 according to the first to fourth embodiments may be applied to the evaporator provided with the collective header 1b or the condenser provided with the distribution header for distributing the gas refrigerant to the plurality of heat transfer tubes 2. Most preferred.
  • the speed of the refrigerant flowing out or flowing in from the tip of the heat transfer tube 2 is higher than that in the header 1 in which the gas-liquid two-phase refrigerant flows, so that the refrigerant flowing out from the tip of the heat transfer tube 2 flows.
  • the influence of the pressure loss caused by the collision with the partition plate 14 tends to be large.
  • the pressure loss due to the collision with the partition plate 14 can be reduced, and the pressure loss of expansion and contraction caused by the unevenness of the insertion of the heat transfer tube 2 is reduced, so that the heat exchange can be performed. This is because the heat exchanger 100 having excellent performance can be provided.
  • the heat applied to the first embodiment is applied to the evaporator provided with the distribution header 1a for distributing the refrigerant to the plurality of heat transfer tubes 2 or the condenser provided with the collective header 1b for collecting the refrigerant from the plurality of heat transfer tubes 2.
  • the configuration of the exchanger 100 may be applied. Also in this case, the pressure loss due to the collision with the partition plate 14 is reduced, and the expansion and contraction pressure loss caused by the unevenness of the insertion of the heat transfer tube 2 is reduced, so that the heat exchanger 100 having excellent heat exchange performance can be provided. .. Further, since the pressure loss can be reduced, it is also effective when the size of the header 1 is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

伝熱管が差し込まれた熱交換器であっても、冷媒の圧力損失を低減し、熱交換性能に優れた熱交換器及び熱交換器を備えた空気調和装置を提供することができる。 熱交換器(100)は、第1方向に互いに間隔を空けて設けられた複数の伝熱管(2)と、第1方向と直交する第2方向から複数の伝熱管(2)のそれぞれの伝熱管(2)の先端が差し込まれる差し込み孔(11a)を有するヘッダ(1)と、伝熱管(2)に取り付けられたフィン(3)と、を備えた。さらに、ヘッダ(1)は、ヘッダ内部を、差し込み孔(11a)が設けられる側である第1空間(15)と、冷媒配管(4)が接続された第2空間(16)とに仕切る仕切り板(13)を備えた。仕切り板(14)には、第2方向から見て伝熱管(2)の先端の外周を囲う開口部(14a)を設けた。また、空気調和装置(200)は、凝縮器または蒸発器に熱交換器(100)を備えた。

Description

熱交換器、及び熱交換器を備えた空気調和装置
 本開示は、冷媒を集合または分配するヘッダを備えた熱交換器、および熱交換器を備えた空気調和装置に関する。
 複数の伝熱管が接続されたヘッダを有する熱交換器において、ヘッダ内部を仕切り板によって複数の伝熱管が差し込まれた第1空間と、複数の伝熱管が差し込まれていない第2空間とに分割されるように構成された熱交換器が知られている。仕切り板には、第1空間と第2空間とを連通する連通穴が形成されている(例えば、特許文献1参照)。
 また、特許文献1では、仕切り板の連通穴の通路抵抗によって生じる問題を解決するために、連通穴が冷媒流れ方向に対して傾斜し、冷媒の流れ方向の下流側縁部に冷媒の流れを案内するガイドが形成されている。
特開2016-57036号公報
従来の熱交換器では、伝熱管をヘッダに接続しロウ付けで固定するために、伝熱管をヘッダの内部に突き出させる必要があった。ヘッダの内部に伝熱管を突き出すと、突き出し部によって凹凸が形成され、これにより、ヘッダを流れる冷媒の圧力損失が増大するおそれがあった。また、特許文献1では伝熱管からヘッダ内部に流入する冷媒が仕切り板に衝突し、圧力損失を生じるおそれがあった。
 本開示は、上記のような課題を解決するためになされたものであって、伝熱管がヘッダ内部に差し込まれた熱交換器、及び当該熱交換器を備えた空気調和装置であっても、ヘッダ内部での冷媒の圧力損失を低減し、熱交性能に優れた熱交換器、及び当該熱交換器を備えた空気調和装置を提供することを目的とする。
 本開示にかかる熱交換器は、第1方向に互いに間隔を空けて設けられた複数の伝熱管と、第1方向と直交する第2方向から複数の伝熱管のそれぞれの伝熱管の先端が差し込まれる差し込み孔を有するヘッダと、伝熱管に取り付けられたフィンと、を備えた熱交換器であって、ヘッダは、ヘッダ内部を、差し込み孔が設けられる側である第1空間と、冷媒配管が接続された第2空間とに仕切る仕切り板を備え、仕切り板には、第2方向から見て伝熱管の先端の外周を囲う開口部が設けられたものである。
 また、本開示にかかる空気調和装置は、圧縮機、凝縮器、膨張弁、蒸発器、および、四方弁が配管で接続され、冷媒が流れる冷媒回路であって、凝縮器または蒸発器に上記の熱交換器を備えたものである。
本開示によれば、ヘッダ内部を、差し込み孔が設けられる側である第1空間と、冷媒配管が接続された第2空間とに仕切り、かつ、第2方向から見て伝熱管の先端の外周を囲う開口部を設けた仕切り板を備えたことにより、冷媒の圧力損失を低減でき、熱交性能に優れた熱交換器、及び当該熱交換器を備えた空気調和装置を提供することができる。
実施の形態1に係る熱交換器の概略構成図である。 実施の形態1に係る集合ヘッダの構成を部分的に示す斜視図である。 実施の形態1に係る集合ヘッダを第二方向からみたときの断面図である。 実施の形態1に係る仕切り板の開口部の幅を示す図である。 実施の形態1に係る仕切り板の開口部の幅と圧力損失との関係を示す図である。 実施の形態1に係る熱交換器の図1の切断線A-Aから見た断面図である。 実施の形態1に係る熱交換器の図6の部分拡大図である。 実施の形態1に係る熱交換器の図6の部分拡大図である。 実施の形態1に係る熱交換器の図6の部分拡大図である。 実施の形態1に係る熱交換器を第1方向と平行な面で切断した断面図である。 実施の形態1に係る集合ヘッダ内部の冷媒の流れを示す模式図である。 実施の形態1に係る集合ヘッダ内部の冷媒の流れを示す模式図である。 実施の形態1に係る集合ヘッダ内部の冷媒の流量と圧力損失の変化を示す図である。 実施の形態1に係る分配ヘッダの冷媒の流れを示す模式図である。 実施の形態2に係る熱交換器を第1方向と平行な面で切断した断面図である。 実施の形態2に係る仕切り板の斜視図である。 実施の形態3に係る熱交換器を第1方向と平行な面で切断した断面図である。 実施の形態3に係る仕切り板の斜視図である。 実施の形態4に係る熱交換器を第1方向と平行な面で切断した断面図である。 実施の形態4に係る仕切り板の斜視図である。 実施の形態5に係る空気調和装置を示す冷媒回路図である。
 はじめに、本開示の実施の形態について、図面を参照しながら説明する。各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、このことは明細書の全文において共通する。なお、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
 また、明細書全文においては、互いに直交する方向を第1方向、第2方向、第3方向とする。そして、その一例として、第1方向を水平方向、第2方向を鉛直方向、第3方向をヘッダの幅方向とした場合について説明するが、冷媒の流れの向きなどに限定されるものではない。なお、図面では、X方向が第1方向に対応し、Y方向が第2方向に対応し、Z方向が第3方向に対応する。
 また、以下の説明において、理解を容易にするために方向を表す用語、例えば「上」、「下」、「右」、「左」、などを適宜用いるが、これは説明のためのものであって、これらの用語は本開示を限定するものではない。なお、熱交換器100を側面視した状態において、「上」、「下」、「右」、「左」、などを使用する。
実施の形態1.
 図1は、本開示の実施の形態1である熱交換器100の概略構成図である。
 図1に示すように、実施の形態1にかかる熱交換器100は、ヘッダ1(1a、1b)と、複数の伝熱管2と、フィン3と、冷媒配管4(4a、4b)とを備える。
 ヘッダ1(1a、1b)は、筒状の形状であり、ヘッダ上板11、ヘッダ本体部12、側面フタ13及び仕切り板14(図示なし)で構成され、ヘッダ1(1a、1b)の長手方向が水平方向がとなるように配置される。図1では、紙面手前方向から奥に向かって流れる空気の流れに対して、ヘッダ1(1a、1b)の長手方向が直交するように配置されている。また図1では、ヘッダ1(1a、1b)の鉛直方向の断面図が、D字形状の例を示しているが、矩形形状や円形形状であってもよい。
 また、ヘッダ1(1a、1b)には、冷媒配管4(4a、4b)と複数の伝熱管2が接続されており、内部を冷媒が流れる。冷媒流入管4aが接続され、冷媒流入管4aから流入した冷媒を複数の伝熱管2のそれぞれの伝熱管2に分配するヘッダ1を分配ヘッダ1aと呼ぶ。また、冷媒流出管4bが接続され、複数の伝熱管2から流出した冷媒を冷媒流出管4bを介して熱交換器100の外部へ排出できるように、冷媒を集合させるヘッダ1を集合ヘッダ1bと呼ぶ。なお、ヘッダ1(1a、1b)の構成に関する詳細な説明は後述する。
 複数の伝熱管2は、第1方向(X方向)に互いに間隔を空けて配置される。伝熱管2の両端部は、一方が分配ヘッダ1aに接続され、他方が集合ヘッダ1bに接続される。伝熱管2は、それぞれ、中が空洞である金属製のパイプであり、例えば、断面が扁平した形状である扁平管などが用いられる。金属製であるため熱伝導率がよく、伝熱管2の内部を流れる冷媒と伝熱管2の外部の空気との熱交換が容易である。伝熱管2の内部を流れる冷媒と伝熱管2の外部の空気とが熱交換することにより、冷媒を冷却して気化させたり、冷媒を加熱して液化させたりすることが可能となる。
 なお、図1では伝熱管の一例として扁平管の例を示しているが、伝熱管2の形状はこれに限定されるわけではなく、また、空気も別の流体であってもよい。
 フィン3は、例えば、波形形状の金属板であり、複数の伝熱管2の間に挿入され、隣り合う伝熱管2の表面と接合されることで、伝熱管2に取り付けられている。フィン3は、金属等の熱を伝導する材質で構成させるため、接合された伝熱管2から熱を導き、隙間を流れる空気等と熱交換できる。また、波形形状にすることで、空気等の熱交換する流体と接する表面積が大きく、効率よく熱交換できる。
 冷媒配管4(4a、4b)は、ヘッダ1(1a、1b)の側面である側面フタ13に、それぞれ接続される。上述のとおり、分配ヘッダ1aに接続する冷媒配管4が冷媒流入管4aであり、集合ヘッダ1bに接続する冷媒配管4が冷媒流出管4bである。
 冷媒流入管4aは、熱交換器100の外部から分配ヘッダ1aへと冷媒を流入させ、冷媒流出管4bは、集合ヘッダ1bに集まった冷媒を熱交換器100の外部へと流出させる。図1に示すように、冷媒流入管4aおよび冷媒流出管4bは、例えば互いに異なる一側面に接続される。
 熱交換器100を流れる冷媒は、図1の実線矢印で示すように、冷媒流入管4aから分配ヘッダ1aに流入し、分配ヘッダ1aにて複数の伝熱管2のそれぞれ伝熱管2に分配される。分配された冷媒は、伝熱管2を流通し、集合ヘッダ1bにて集められ、冷媒流出管4bから排出される。
 熱交換器100は、流入する冷媒がガス冷媒と液冷媒とが混在する気液二相状態であり、伝熱管2を通過させ気液二相冷媒を蒸発させる場合は、蒸発器と呼ばれる。また、熱交換器100は、流入する冷媒が気体であり、伝熱管2を通過させ冷媒を凝縮させる場合は、凝縮器と呼ばれる。なお、熱交換器100を凝縮器として使用する場合は、冷媒の流れ方向は、図1の実線矢印と反対方向になる。
 次に、本実施の形態にかかる熱交換器100のヘッダ1の詳細な構成について説明する。以後、説明では集合ヘッダ1bを例に説明するが、本開示は集合ヘッダ1bに限定されるものではなく、分配ヘッダ1aであってもよい。
 図2は、実施の形態1に係るヘッダの構成を部分的に示す斜視図である。図3は、実施の形態1に係るヘッダを第二方向からみたときの断面図であり、伝熱管2と仕切り板14の開口部14aとの位置関係を示す。図4は、実施の形態1に係る仕切り板の開口部の幅を示す図である。図5は、実施の形態1に係る仕切り板14の開口部14aの幅と圧力損失の関係を示す図である。
 図2に示すように、集合ヘッダ1bのヘッダ上板11には、第1方向(X方向)に互いに間隔をあけて設けられ、第2方向(Y方向)から複数の伝熱管2のそれぞれの伝熱管の先端が差し込まれる差し込み孔11aが設けられている。伝熱管2は、ヘッダ上板11からヘッダ本体部12に向かって差し込み孔11aに差し込まれ、ヘッダ上板11と差し込み孔11aとの間をロウ付けなどで、隙間なく密閉されるように固定される。つまり、伝熱管2は鉛直方向(第2方向)が長手方向となる。
 仕切り板14は、アルミニウムなどの金属製の平板であり、集合ヘッダ1bのヘッダ本体部12や側面フタ13にロウ付けなどで固定される。なお、仕切り板14は必ずしも全周囲がヘッダ本体部12の内壁に固定されていなくてもよく、集合ヘッダ内部を流れる冷媒が仕切り板14とヘッダ本体部12の内壁との間を通じるようにしてもよい。また仕切り板14は、集合ヘッダ1bと一体形成されてもよい。また、図2に示すように、仕切り板14には、複数の伝熱管2がそれぞれ差し込める複数の開口部14aが設けられている。
 図3は、集合ヘッダ1bの内部を第2方向(Y方向)下側から見た図であり、伝熱管2と仕切り板14の開口部14aとの位置関係を示す模式図である。仕切り板14には、伝熱管2の先端の外周を囲う開口部14a、すなわち、第二方向から見たときに伝熱管2が差し込み可能な開口を有する開口部14aが、設けられている。
 また、図3に示すように、仕切り板14に設けられた開口部14aは、第2方向(Y方向)から見て伝熱管2の先端の外周との間に隙間を有する形状である。すなわち、集合ヘッダ1bの内部を第2方向(Y方向)から見たときに、開口部14aが伝熱管2を伝熱管2の先端の外周から間隔を空けて囲む形状である。開口部14aの形状は、第2方向(Y方向)から見て伝熱管2の先端の外周との間に隙間を有する形状であれば、伝熱管2と同じ形状に限定されない。
 図4は、図3と同様に、集合ヘッダ1bの内部を第2方向(Y方向)下側から見た図である。ここで、図4に示すように、開口部14aの第1方向(X方向)の幅をKと定義し、複数の伝熱管2のうち隣り合う伝熱管2同士の距離をWと定義する。
 図5は、開口部14aの幅Kと圧力損失の関係を示す図である。縦軸に集合ヘッダ内部の圧力損失をとり、横軸に開口部14aの第1方向(X方向)の幅Kをとった。図5より、開口部14aの幅Kによって圧力損失が変化することがわかる。ある幅Kにおいて、圧力損失が最小値を示し、当該幅よりも幅Kが小さくなる、もしくは大きくなると、圧力損失が増大している。仕切り板14に設けられた開口部14aは、伝熱管2の先端の断面積よりも大きな開口面積を有するが、図5に示すようにその開口部14aの幅Kは大きすぎると圧力損失が増大する傾向にある。そこで、本実施の形態1では、仕切り板14に設けられる開口部14aは、K<Wの関係を満たすようにした。すなわち、開口部14aの第1方向(X方向)の幅Kは、複数の伝熱管2のうち隣り合う伝熱管2の互いの距離Wより小さい。
 なお、圧力損失が最小値を示したときの幅Kは、伝熱管2の幅の約2倍程度であった。すなわち、図4のように伝熱管2及び開口部の形状が扁平形状の場合、伝熱管2の幅に対して開口部14aの幅Kを2倍程度にすることで、圧力損失を最小値にできる。よって、仕切り板14に設けられる開口部14aの第1方向(X方向)の幅Kは、伝熱管2の幅の2倍の大きさにすることが最も好ましい。
 次に、集合ヘッダ内部での仕切り板14の設置位置について説明する。
 図6は、実施の形態1に係る熱交換器100の図1の切断線A-Aから見た断面図である。図7、図8及び図9は、実施の形態1に係る熱交換器100の図6の部分拡大図である。図7は、伝熱管2の先端が第1空間15にある場合のヘッダの拡大図である。図8は、伝熱管2の先端が第2空間16にある場合のヘッダの拡大図である。図9は、伝熱管2の先端が仕切り板14と同じ高さにある場合のヘッダの拡大図である。
 図6に示すように、集合ヘッダ1bは仕切り板14よって、ヘッダ上板11側であり伝熱管2の差し込み孔11aが設けられている第1空間15と、冷媒流出管4b(図示なし)が接続された第2空間16とに仕切られている。第1空間15と第2空間16は異なる空間であり、第1空間15と第2空間16とが上下方向に並ぶように仕切り板14が設置される。また、図6に示すように、第2空間16が第1空間15よりも大きくなるように仕切り板14を設置する方が好ましい。なお、第1空間15および第2空間16はそれぞれ、図6の紙面奥行き方向、すなわち、集合ヘッダ1bの長手方向に連通した冷媒流路である。
 仕切り板14には、第2方向(Y方向)から見て伝熱管2の先端の外周を囲う開口部14aが設けられているため、仕切り板14は伝熱管2の先端が第1空間15、または、仕切り板14と同じ位置、または、第2空間16に位置するように設置される。ここで、図6、図7、図8、及び図9の第2方向(Y方向)において、差し込み孔11aと伝熱管2の先端との間の距離を「差し込み長さD」、差し込み孔11aと仕切り板14との間の距離を「第1空間高さH」、仕切り板14と伝熱管2の先端との間の距離を「ギャップ距離L」、仕切り板14の厚みを「t」、と定義する。
 図7、図8、及び図9に示すように本開示の実施の形態1にかかる仕切り板14は、ギャップ距離Lが、差し込み長さDよりも小さく、かつ、第1空間高さHよりも小さくなるように設けられる。すなわち、仕切り板14は、L<D、かつ、L<Hの関係を満たすように設置される。この場合、伝熱管2の先端は第1空間15もしくは第2空間16にある。
 また、図7に示すように、伝熱管2の先端が第1空間15に位置するように仕切り板14を設置する場合は、ギャップ距離Lが、第1空間高さHの半分の距離よりも小さくなるように仕切り板14を設置する方がより好ましい。すなわち、L<D/2を満たすように仕切り板14を設置する方がより好ましい。
 また、図8に示すように、伝熱管2の先端が第2空間16に位置するように仕切り板14を設置する場合は、ギャップ距離Lが、第2空間高さHの半分の距離よりも小さくなるように仕切り板14を設置する方がより好ましい。すなわち、L<H/2を満たすように仕切り板14を設置する方がより好ましい。
 なお、仕切り板14の設置位置は、伝熱管2の先端が第1空間15に位置するように仕切り板14を設置する場合(図7)と、伝熱管2の先端が第2空間16に位置するように仕切り板14を設置する場合(図8)とを比較すると、伝熱管2の先端が第2空間16に位置するように仕切り板14を設置する場合(図8)の方が好ましい。すなわち、伝熱管2の先端が第2空間16にあるように仕切り板14を設置する方が好ましい。
 さらに、図9に示すように、ギャップ距離Lが仕切り板14の厚みt以下となるように仕切り板14を設置する方がより好ましい。すなわち、L≦tを満たすように仕切り板14を設置するのが最も好ましい。
 次に、集合ヘッダ内部の冷媒の流れ及び圧力損失について説明する。
 図10は、実施の形態1に係る熱交換器100を第1方向(X方向)と平行な面で切断した断面図である。図11及び図12は、実施の形態1に係る集合ヘッダ内部の冷媒の流れを示す図である。図11は、仕切り板14を設置しない場合の冷媒の流れを示す図であり、図12は、仕切り板14を設置した場合の冷媒の流れを示す図である。図10、図11及び図12において、実線矢印が冷媒の流れを模式的に示している。
 図10に示すように、伝熱管2内を流通してきた冷媒は、仕切り板14に設けられた開口部14aを通って、第2空間16へと流入する。このとき、開口部14aの開口面積が伝熱管2の先端の断面積よりも大きいので、伝熱管2から流出した冷媒は仕切り板14へ衝突することなく第2空間16へと流入する。伝熱管2から流出した冷媒は、第2空間16で合流し、第2空間16の側面に設けられた冷媒流出管4bから熱交換器100の外部へ排出される。
 図11に示すように、伝熱管2をヘッダ上板11に固定するためには、伝熱管2を一定の長さ集合ヘッダ1bに差し込む必要がある。しかしながら、伝熱管2の固定に必要な長さまで伝熱管2を差し込むと、差し込んだ伝熱管2により、集合ヘッダ1bの内部に凹凸が形成される。以後、凹凸部と称して説明することもある。伝熱管2の先端が凸部となり、集合ヘッダ1bのうち伝熱管2が差し込まれていない部分が凹部となる。集合ヘッダ内部の冷媒は冷媒流出管に向かって流れるため、伝熱管2の凹凸により冷媒流路の拡大及び収縮が発生する。冷媒流路が拡大及び収縮されることにより、冷媒は圧力損失を受ける。また、伝熱管2が複数差し込まれている場合は、冷媒流路の拡大及び収縮が繰り返し発生し、集合ヘッダ1b内部を流れる冷媒の圧力損失がさらに増大する。
 また、ヘッダ内部では、ヘッダ内部の内壁面と冷媒との摩擦により生じる圧力損失や、伝熱管2から集合ヘッダ1bへ冷媒が流入する際に、集合ヘッダ1bを流れる冷媒と伝熱管2から流入する冷媒とが合流する際に生じる圧力損失もあるが、特に伝熱管2の凹凸部による圧力損失が熱交換器100の性能低下に与える影響が大きい。
 図12に示すように、集合ヘッダ1bの内部に、第2方向(Y方向)から見て伝熱管2の先端の外周を囲う開口部14aを有する仕切り板14を設けた場合、伝熱管2の先端から流出した冷媒は、仕切り板14に衝突することなく、開口部14aを通って、集合ヘッダ1bに流入する。集合ヘッダ1bへ流入した冷媒は主に第2空間16を冷媒流出管4bに向かって流れる。すなわち、冷媒は仕切り板14と集合ヘッダ本体部との間の空間である第2空間16を主流路とする。また、仕切り板14に設けられた開口部14aは伝熱管2の先端の断面積より大きいため、集合ヘッダ1bの内部を流れる冷媒の一部は第1空間15を流れる。
 図12のように仕切り板14を設置した場合、伝熱管2の先端が凸部となり、仕切り板14のうち第2空間16に対向する面が凹部となる。つまり、伝熱管2の差し込みにより発生する凹凸部が仕切り板14を設置しない場合比べて小さくなる。凹凸部が小さくなることで、冷媒流路の拡大及び収縮も軽減され、集合ヘッダ内部を流れる冷媒の圧力損失を低減できる。また、集合ヘッダ内部において冷媒は主に第2空間を流れるため、たとえ伝熱管の先端が第1空間15に位置するように仕切り板14を設置した場合であっても、伝熱管の差し込みより発生する凹凸部が、冷媒の圧力損失に与える影響を低減できる。
 また、伝熱管2の先端から流出した冷媒が、仕切り板14に衝突せずに第2空間16へ流入するため、冷媒の仕切り板14の衝突による圧力損失も低減できる。これにより、集合ヘッダ内部を流れる冷媒の圧力損失を低減できる。
 次に、本実施の形態にかかる熱交換器100の効果について説明する。
 本実施の形態1にかかる熱交換器100は、第2方向(Y方向)から見て伝熱管2の先端の外周を囲う開口部14aを備えた仕切り板14を、ヘッダ内部を伝熱管2の差し込み孔11aが設けられた側である第1空間15と冷媒配管4が接続された第2空間16とに仕切るように配置することによって、集合ヘッダ1bへの伝熱管2の差し込みによって生じる凹凸部が小さくなるため、集合ヘッダ内部の冷媒流路の拡大及び収縮を軽減できる。よって、仕切り板14を設けることで、冷媒流路の拡大及び収縮が軽減されるため、集合ヘッダ内部において冷媒流路の断面積の変化が小さくなり、内部を流れる冷媒が受ける圧力損失を低減できる。
 また、仕切り板14を設けることで、ヘッダ内部に差し込まれた伝熱管2の先端から流出した冷媒が、仕切り板14に衝突することなく、主流路である第2空間16に流れ込むことができる。先行例では、連通穴が傾斜しているため、伝熱管2と連通穴とが重ならない部分を有する構成であり、伝熱管2の先端から流出した冷媒が仕切り板14に衝突し、圧力損失が生じる虞があったが、本実施の形態1にかかる熱交換器100のように、上述の構成の仕切り板14を集合ヘッダ1bの内部に設けることによって、伝熱管2の先端から流出する冷媒が仕切り板14に衝突して発生する圧力損失を抑制することができる。以上より、熱交性能に優れた熱交換器100を提供することが可能となる。
 また、開口部14aは、第二方向から見たときに伝熱管2の先端の外周との間に隙間を有する形状であるため、伝熱管2の先端から流出した冷媒は、さらに仕切り板14への衝突を回避しやすくなり、圧力損失の低減ができる。なお、伝熱管2の先端が第2空間16にあるように仕切り板14を設置した場合には、開口部14aにおいて伝熱管2の外周との間に形成された隙間を冷媒が流通可能となり、別途、連通孔を設ける必要がなくコスト低減にもつながる。
 また、開口部14aは、開口部14aの幅Kが隣り合う伝熱管2の距離Wより小さくなるような構成とした。開口部14aの開口面積は伝熱管2の先端の断面積よりも大きいが、開口面積が大きくなりすぎると、第2空間16を流れる冷媒の多くが開口部14aを介して第1空間へと流れ込む。すわなち、開口部14aの開口面積が大きくなりすぎると、仕切り板14を設けていない場合の凹凸に近づくため、冷媒流路の拡大及び収縮が発生し、圧力損失を増大させる可能性がある。そこで、開口部14aがK<Wの関係を満たす構成とすることで、集合ヘッダ1b内部での圧力損失をさらに低減することができる。
 また、仕切り板14をL<D、かつ、L<Hの関係を満たすように設置することで、伝熱管2の差し込みによって生じる凹凸がさらに小さくなり、冷媒流路の拡大及び収縮もさらに軽減される。つまり、ヘッダに差し込まれた複数の伝熱管2の先端と仕切り板14との第2方向(Y方向)の距離Lが、複数の伝熱管2の先端と差込み孔との第2方向(Y方向)の距離Dよりも小さく、かつ、仕切り板と差込み孔との第2方向(Y方向)の距離Hよりも小さくなるようにすることで、集合ヘッダ1b内部の冷媒の流路断面積の変化が小さくなり、集合ヘッダ内部を流れる冷媒が受ける圧力損失をさらに低減できる。
 また、伝熱管2の先端が第1空間15にある場合は、仕切り板14を、L<D/2の関係を満たすように設置することで、伝熱管2の先端と第2空間16との距離が近くなり、冷媒の第2空間16へ流入が容易になるので、圧力損失が低減できる。つまり、ヘッダに差し込まれた複数の伝熱管2の先端と仕切り板14との第2方向(Y方向)の距離Lが、差し込み長さDの半分の距離よりも小さくなるようにすることで、伝熱管2の先端と仕切り板14の開口部14aとの距離が近くなり、伝熱管2から第2空間16へ冷媒が流入しやすくなり、さらに圧力損失の増大を抑制できる。一方で、伝熱管2の先端が第2空間16にある場合は、仕切り板14をL<H/2の関係を満たすように設置することで、伝熱管2の先端と仕切り板14との距離が近くなり、伝熱管2の差し込みのよる凹凸をさらに小さくできるため、圧力損失をさらに低減できる。
 また、仕切り板14をL≦tの関係を満たすように設置することで、伝熱管2の差し込みによって生じる冷媒流路の拡大及び収縮がほとんどなくなる。つまり、ヘッダに差し込まれた伝熱管2の先端と開口部14aとの第2方向(Y方向)の距離Lが、仕切り板14の厚みt以下になるようにすることで、伝熱管2の先端が仕切り板14と実質的に同じ高さとなり、凹凸がほとんどなくなる。つまり、集合ヘッダ1b内部の冷媒の流路断面積がほとんど一定となる。これにより、第2空間16を第1方向(X方向)に流れる冷媒が流路の拡大及び縮小の影響を受けず、集合ヘッダ内部を流れる冷媒が受ける圧力損失をさらに低減できる。
 また、第2空間16が第1空間よりも大きくなるように仕切り板14を設置することで、主流路である第2空間16で冷媒が流れやすくなり熱交換性能の向上につながる。
 また、伝熱管2の先端が第2空間16にあるように仕切り板14を設置することで、伝熱管2の先端から流出した冷媒は直接、第2空間16へと流入できるため、仕切り板14の衝突で生じる圧損を抑制できる。
 図13は、本実施の形態1にかかる集合ヘッダ1bに仕切り板14設置した場合と、仕切り板14の設置をしなかった場合の集合ヘッダ内部の冷媒流量と圧力損失の変化示した図である。縦軸に集合ヘッダ内部の圧力損失をとり、横軸に集合ヘッダ1bに流入する冷媒量をとった。仕切り板14が集合ヘッダ内部に設置された場合の圧力損失を四角プロットで示し、仕切り板14が集合ヘッダ内部に設置されていない場合の圧力損失を丸プロットで示している。なお、仕切り板14の設置位置は、L<D、かつ、L<Hの関係を満たし、伝熱管2の先端が第2空間16にある位置とした。
 図13より、各冷媒流量において、仕切り板14の設置あり(四角プロット)の方が仕切り板14の設置なし(丸プロット)の場合に比べて、圧力損失が小さいことがわかる。つまり、本実施の形態1にかかる仕切り板14を集合ヘッダ1bに設置することで、圧力損失の低減が可能となった。特に、冷媒流量が増えるほど、仕切り板14の設置あり(四角プロット)の方が仕切り板14の設置なし(丸プロット)に比べて、圧力損失が小さくなっている。すなわち、冷媒流量が多いほど仕切り板14の設置による圧力損失の低減の効果が大きいことがわかる。
 以上より、本実施の形態1にかかる熱交換器100は、第1方向(X方向)に互いに間隔を空けて設けられた複数の伝熱管2と、第1方向(X方向)と直交する第2方向(Y方向)から複数の伝熱管2のそれぞれの伝熱管の先端が差し込まれる差し込み孔11aを有するヘッダ1と、伝熱管2に取り付けられたフィン3と、を備えた。さらに、ヘッダ1は、ヘッダ内部を、差し込み孔11aが設けられる側である第1空間15と、冷媒配管4が接続された第2空間16とに仕切る仕切り板14を備えた。仕切り板14には、第2方向(Y方向)から見て伝熱管の先端の外周を囲う開口部14aを設けた。この構成により、伝熱管2が差し込まれた熱交換器100であっても、冷媒の圧力損失を低減し、熱交換性能に優れた熱交換器100を提供することができる。
 ここで、本実施の形態1にかかる熱交換器100では、ガス冷媒が集合する集合ヘッダ1bを例に説明したが、図14に示すように気液二相冷媒が流れる分配ヘッダ1aでも構わない。図14は、実施の形態1に係る熱交換器100の分配ヘッダの冷媒の流れを示す図である。
 また、本実施の形態1にかかる熱交換器100を流れる冷媒は、例えば、プロパン冷媒やHFO冷媒、アンモニア冷媒、ジメチルエーテル冷媒などである。これらの冷媒のように空気調和装置200で蒸発器として作動する条件下で、一般的に使用されているR32よりも密度が小さい冷媒、またはこれらを成分の1つに加えた混合冷媒を使用した場合に、特に圧力損失の低減効果を大きくすることができる。
 また、本実施の形態1では伝熱管が一列に配置された例で説明したが、一列配置に限られず伝熱管が二列もしくは複数配列されても構わない。
実施の形態2.
 本開示の実施の形態2における熱交換器100について図15及び図16を用いて説明する。実施の形態2に係る熱交換器100は、実施の形態1に係る熱交換器100に対して仕切り板14の開口部14aの数が異なる。なお、実施の形態1と重複する構成については説明を省略し、実施の形態1と同一又は相当する部分には同一符号を付す。
 図15は、実施の形態2にかかる集合ヘッダ1bを第1方向(X方向)と平行な面で切った断面図である。図16は実施の形態2にかかる仕切り板14を示す斜視図であり、伝熱管2の位置を破線で示している。
 実施の形態1では、集合ヘッダ1bに差し込まれた伝熱管2の数と仕切り板14の開口部14aの数が等しい場合を例に説明したが、実施の形態2では図16に示すように、開口部14aの数は伝熱管2の数より少ない。図16に示すように、実施の形態2に係る開口部14aは、第二方向から見たときに、隣り合う二本の伝熱管2が一つの開口部14aに差し込み可能な位置に設けられる。
 このような構成とすることで、伝熱管2の先端から流出した冷媒が仕切り板14に衝突することなく、第2空間16へと流れ込むことが可能となり圧力損失が低減できる。よって、熱交換性能に優れた熱交換器100を提供できる。
実施の形態3.
 本開示の実施の形態3における熱交換器100について図17及び図18を用いて説明する。実施の形態3は、実施の形態1に係る仕切り板14の開口部14aの形状が異なる。なお、実施の形態1と重複する構成については説明を省略し、実施の形態1と同一又は相当する部分には同一符号を付す。
 図17は、実施の形態3にかかる集合ヘッダ1bを第1方向(X方向)と平行な面で切った断面図である。図18は実施の形態3にかかる仕切り板14を示す斜視図である。
 図17に示すように実施の形態3の仕切りの開口部14aは、第1空間から第2空間16に向かって、開口部14aの開口面積を漸次拡大するテーパー部を備えた形状である。すなわち、開口部14aが第1空間から第2空間16に向かって、徐々に拡大する。例えば、図17に示すように、伝熱管2の終端部に向かって延びる傾斜がついた形状である。
 このような構成とすることで、実施の形態1と同様の効果を得られるだけでなくテーパー部によって伝熱管2の差し込みによる凹凸をさらに小さくでき、集合ヘッダ1b内部の冷媒流路の拡大及び収縮がさらに緩やかになる。これにより、ヘッダの第2空間16を流れる冷媒が受ける圧力損失をさらに低減することができ、熱交換性能に優れた熱交換器100を提供することができる。また、テーパー部を設けることで伝熱管2の先端を開口部14aに挿入する場合に、伝熱管2の先端が仕切り板14の開口部14aの縁に衝突しては損することを防止することも可能である。
実施の形態4.
 本開示の実施の形態4における熱交換器100について図19及び図20を用いて説明する。実施の形態4は、実施の形態1に係る仕切り板14の形状が異なる。なお、実施の形態1と重複する構成については説明を省略し、実施の形態1と同一又は相当する部分には同一符号を付す。
 図19は、実施の形態4にかかる集合ヘッダ1bを第1方向(X方向)と平行な面で切った断面図である。図20は実施の形態4にかかる仕切り板14を示す斜視図である。
 図19に示すように実施の形態4の仕切り14は、隣り合う伝熱管2の幅よりも小さい間隔で凹凸部を有する波型の形状である。すなわち、波型の凹凸が伝熱管2のピッチより小さい。図20に示すように、波型の凸部のトップに開口部14aが設けられ、凹部は平坦な底部を有するようにされていると好ましい。仕切り板14は、波型の凸部がヘッダ上板11と接して固定される。
 なお、本実施の形態4では第1空間15が伝熱管2ごとに第一方向において分断されたものとなる。また、伝熱管2と開口部14aとの間の隙間はヘッダ上板11で閉じられている。このため、仕切り板14の第3方向(Z方向)の幅をヘッダ内部の幅より小さくする、または仕切り板14の第3方向(Z方向)の端に部分的に切り欠きを形成するなどして第1空間15と第2空間16とが連通するようにすると望ましい。このような構成とすることで、実施の形態1と同様の効果を得られるだけでなく、仕切り板14の固定費用の削減も可能である。
実施の形態5.
 本開示の実施の形態5における空気調和装置200について図21を用いて説明する。実施の形態5は、実施の形態1から4のいずれか1の実施の形態にかかる熱交換器100を凝縮器または蒸発器として備えた空気調和装置200である。なお、実施の形態1と重複する構成については説明を省略し、実施の形態1と同一又は相当する部分には同一符号を付す。
 図21は、実施の形態1から4のいずれか1の実施の形態にかかる熱交換器100(100a、100b)を搭載した空気調和装置200を示す冷媒回路図である。なお、図21の実線矢印は暖房運転時の冷媒の流れを示しており、ここでは暖房運転を例に説明する。
 図21に示すように、本実施の形態5に係る空気調和装置200では、実施の形態1から4で説明した熱交換器100(100a、100b)を凝縮器または蒸発器として、室内機または室外機に搭載する。暖房運転時には熱交換器100aが凝縮器となり、熱交換器100bが凝縮器となる。空気調和装置200が備える冷媒回路は、図21に示すように、圧縮機22と、凝縮器と、膨張弁21と、蒸発器と、四方弁23が配管で接続され構成される。
 冷媒は、圧縮機22によって圧縮され高温高圧のガス冷媒となる。その後、ガス冷媒は凝縮器に流入する。ガス冷媒は凝縮器として機能する熱交換器100bで、空気などの流体と熱交換して凝縮し、高圧の液冷媒となる。液冷媒はその後、膨張弁21によって減圧され、低温低圧の気液二相冷媒となり、蒸発器に流入する。気液二相冷媒は蒸発器として機能する熱交換器100aで、空気などの流体と熱交換して蒸発し、ガス冷媒となる。ガス冷媒となった冷媒は、圧縮機22へと戻る。
 また、四方弁23で回路を切り替えることによって、冷媒の流れが逆になり冷房運転が可能となる。冷房運転の際は、熱交換器100aが凝縮器となり、熱交換器100bが蒸発器となる。
 空気調和装置200において、実施の形態1から4のいずれか1の実施の形態にかかる熱交換器100を蒸発器または凝縮器に搭載することによって、実施の形態1から4と同様の効果を得られるだけでなく、熱交換性能に優れた熱交換器100(100a、100b)を備えた空気調和装置200を提供することができる。
 以上より、本実施の形態5にかかる空気調和装置200は、圧縮機22と、凝縮器と、膨張弁21と、蒸発器と、四方弁23とが配管で接続され、冷媒が流れる冷媒回路であって、凝縮器または蒸発器に、実施の形態1から4のいずれか1の実施の形態にかかる熱交換器100を備えた。これにより、熱交換性能に優れた熱交換器100を備えた空気調和装置200を提供することが可能となった。
 ここで、実施の形態5では、実施の形態1から4に記載の熱交換器100を凝縮器または蒸発器に適用する例を説明したが、特に、ガス冷媒を複数の伝熱管2から収集する集合ヘッダ1bを備えた蒸発器、またはガス冷媒を複数の伝熱管2へ分配する分配ヘッダを備えた凝縮器に、実施の形態1から4に記載の熱交換器100の構成を適用することが最も好ましい。なぜなら、ガス冷媒が流れるヘッダ1では、伝熱管2の先端から流出又は流入する冷媒の速度が、気液二相冷媒が流れるヘッダ1に比べて大きいため、伝熱管2の先端から流出した冷媒が仕切り板14に衝突して生じる圧力損失の影響も大きくなりやすい。しかし、上記の熱交換器100によれば、仕切り板14への衝突による圧力損失を軽減でき、さらに、伝熱管2の差し込みの凸凹で生じる拡大及び縮小の圧力損失が低減されるため、熱交換性能に優れた熱交換器100が提供できるためである。
 なお、冷媒を複数の伝熱管2へ分配する分配ヘッダ1aを備えた蒸発器、または冷媒を複数の伝熱管2から収集する集合ヘッダ1bを備えた凝縮器に、本実施の形態1にかかる熱交換器100の構成を適用しても構わない。この場合も、仕切り板14への衝突による圧力損失の軽減及び伝熱管2の差し込みの凸凹により生じる拡大及び縮小の圧力損失が低減されるため、熱交換性能に優れた熱交換器100が提供できる。また、圧力損失が低減できるのでヘッダ1のサイズを小型にする場合にも有効である。
 なお、各実施の形態を、適宜、組み合わせたり、変形や省略したりすることも、実施の形態で示された技術的思想の範囲に含まれる。
1 ヘッダ、1a 分配ヘッダ、1b 集合ヘッダ、2 伝熱管、3 フィン、4 冷媒配管、4a 冷媒流入管、4b 冷媒流出管、11 ヘッダ上板、11a 差し込み孔、12 ヘッダ本体部、13 側面フタ、14 仕切り板、14a 開口部、15 第1空間、16 第2空間、21 膨張弁、 22 圧縮機、 23 四方弁、100、100a、100b 熱交換器、200 空気調和装置。

Claims (12)

  1.  第1方向に互いに間隔を空けて設けられた複数の伝熱管と、
     前記第1方向と直交する第2方向から前記複数の伝熱管のそれぞれの伝熱管の先端が差し込まれる差し込み孔を有するヘッダと、
     前記複数の伝熱管のうち隣り合う伝熱管の間に取り付けられたフィンと、
    を備えた熱交換器であって、
     前記ヘッダは、前記ヘッダ内部を、前記差し込み孔が設けられる側である第1空間と、冷媒配管が接続された第2空間とに仕切る仕切り板を備え、
     前記仕切り板には、前記第2方向から見て前記伝熱管の先端の外周を囲う開口部が設けられた
    ことを特徴とする熱交換器。
  2.  前記開口部は、前記第2方向から見て前記伝熱管の先端の外周との間に隙間を有する形状である請求項1に記載の熱交換器。
  3.  前記開口部の前記第1方向の幅は、前記隣り合う伝熱管の互いの距離よりも小さい請求項2に記載の熱交換器。
  4.  前記ヘッダに差し込まれた前記伝熱管の先端と前記開口部との前記第2方向の距離は、前記伝熱管の先端と前記差し込み孔との前記第2方向の距離よりも小さく、かつ、前記開口部と前記差し込み孔との前記第2方向の距離よりも小さい請求項3に記載の熱交換器。
  5.  前記ヘッダに差し込まれた前記伝熱管の先端と前記開口部との前記第2方向の距離は、前記伝熱管の先端が前記第1空間にある場合は、前記伝熱管の先端と前記差し込み孔との前記第2方向の距離の半分よりも小さく、前記伝熱管の先端が前記第2空間にある場合は、前記開口部と前記差し込み孔との前記第2方向の距離の半分よりも小さい、請求項4に記載の熱交換器。
  6.  前記伝熱管の先端と前記開口部との前記第2方向の距離が、前記仕切り板の前記第2方向の厚み以下となる請求項4または請求項5に記載の熱交換器。
  7.  前記伝熱管の先端が前記第2空間にある請求項4または請求項5に記載の熱交換器。
  8.  前記開口部の数は、前記伝熱管の数より少ない請求項1または請求項2に記載の熱交換器。
  9.  前記開口部は、前記第1空間から前記第2空間に向かって、前記開口部の開口面積を漸次拡大するテーパー部を備えた請求項1から請求項8のいずれか1項に記載の熱交換器。
  10.  前記仕切り板は、前記隣り合う伝熱管の幅よりも小さい間隔で凹凸部を有する波型形状である請求項1から請求項9のいずれか1項に記載の熱交換器。
  11.  前記熱交換器を流れる冷媒は、プロパン冷媒、HFO冷媒、アンモニア冷媒、ジメチルエーテル冷媒、または、これらを成分の1つに加えた混合冷媒である請求項1から請求項10のいずれか1項に記載の熱交換器。
  12.  圧縮機と、凝縮器と、膨張弁と、蒸発器と、四方弁とが配管で接続され、前記冷媒が流れる冷媒回路であって、前記凝縮器または前記蒸発器に、請求項1から11のいずれか1項に記載の熱交換器を備えた空気調和装置。
PCT/JP2020/035720 2020-09-23 2020-09-23 熱交換器、及び熱交換器を備えた空気調和装置 WO2022064554A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/035720 WO2022064554A1 (ja) 2020-09-23 2020-09-23 熱交換器、及び熱交換器を備えた空気調和装置
US18/025,939 US20230358479A1 (en) 2020-09-23 2020-09-23 Heat exchanger and air-conditioning apparatus including heat exchanger
CN202080103603.8A CN116157644A (zh) 2020-09-23 2020-09-23 热交换器以及具备热交换器的空调装置
EP20955148.0A EP4220064A4 (en) 2020-09-23 2020-09-23 HEAT EXCHANGER AND AIR CONDITIONER WITH THE HEAT EXCHANGER
JP2021506590A JP6940027B1 (ja) 2020-09-23 2020-09-23 熱交換器、及び熱交換器を備えた空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035720 WO2022064554A1 (ja) 2020-09-23 2020-09-23 熱交換器、及び熱交換器を備えた空気調和装置

Publications (1)

Publication Number Publication Date
WO2022064554A1 true WO2022064554A1 (ja) 2022-03-31

Family

ID=78028284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035720 WO2022064554A1 (ja) 2020-09-23 2020-09-23 熱交換器、及び熱交換器を備えた空気調和装置

Country Status (5)

Country Link
US (1) US20230358479A1 (ja)
EP (1) EP4220064A4 (ja)
JP (1) JP6940027B1 (ja)
CN (1) CN116157644A (ja)
WO (1) WO2022064554A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736B2 (ja) 1979-05-31 1982-01-05
JPH0330068U (ja) * 1989-07-31 1991-03-25
JP2009166529A (ja) * 2008-01-11 2009-07-30 Calsonic Kansei Corp 車両用凝縮器
JP2016125748A (ja) * 2014-12-26 2016-07-11 ダイキン工業株式会社 熱交換器および空気調和装置
EP3150953A1 (en) * 2014-05-28 2017-04-05 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co., Ltd. Heat exchanger
JP2017187256A (ja) * 2016-04-08 2017-10-12 ダイキン工業株式会社 熱交換器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193741B2 (ja) * 2004-03-30 2008-12-10 株式会社デンソー 冷媒蒸発器
KR101090225B1 (ko) * 2005-01-27 2011-12-08 한라공조주식회사 열교환기
JP2008528945A (ja) * 2005-02-02 2008-07-31 キャリア コーポレイション ヘッダ内に多孔プレートを有する熱交換器
JP2009250518A (ja) * 2008-04-07 2009-10-29 Showa Denko Kk 熱交換器
JP5737837B2 (ja) * 2009-10-16 2015-06-17 三菱重工業株式会社 熱交換器およびこれを備えた車両用空気調和装置
JP6005266B2 (ja) * 2013-05-15 2016-10-12 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置
AU2013389570B2 (en) * 2013-05-15 2016-04-07 Mitsubishi Electric Corporation Stacking-type header, heat exchanger, and air-conditioning apparatus
JP6583071B2 (ja) * 2015-03-20 2019-10-02 株式会社デンソー タンク、および熱交換器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736B2 (ja) 1979-05-31 1982-01-05
JPH0330068U (ja) * 1989-07-31 1991-03-25
JP2009166529A (ja) * 2008-01-11 2009-07-30 Calsonic Kansei Corp 車両用凝縮器
EP3150953A1 (en) * 2014-05-28 2017-04-05 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co., Ltd. Heat exchanger
JP2016125748A (ja) * 2014-12-26 2016-07-11 ダイキン工業株式会社 熱交換器および空気調和装置
JP2017187256A (ja) * 2016-04-08 2017-10-12 ダイキン工業株式会社 熱交換器

Also Published As

Publication number Publication date
EP4220064A1 (en) 2023-08-02
US20230358479A1 (en) 2023-11-09
JPWO2022064554A1 (ja) 2022-03-31
CN116157644A (zh) 2023-05-23
JP6940027B1 (ja) 2021-09-22
EP4220064A4 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP6012857B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
US6308527B1 (en) Refrigerant evaporator with condensed water drain structure
JP6664558B1 (ja) 熱交換器、熱交換器を備えた空気調和装置、および熱交換器を備えた冷媒回路
CN100552360C (zh) 冷却热交换器
JP6145189B1 (ja) 熱交換器及び空気調和機
US10041710B2 (en) Heat exchanger and air conditioner
JP5716496B2 (ja) 熱交換器および空気調和機
JP7292510B2 (ja) 熱交換器及び空気調和機
JP7278430B2 (ja) 熱交換器及び冷凍サイクル装置
WO2022064554A1 (ja) 熱交換器、及び熱交換器を備えた空気調和装置
US11874034B2 (en) Heat exchanger
JP6413760B2 (ja) 熱交換器及びそれを用いた熱交換器ユニット
JP6929451B2 (ja) 空気調和機および熱交換器
JPWO2020217271A1 (ja) 冷媒分配器、熱交換器及び冷凍サイクル装置
JP7210744B2 (ja) 熱交換器及び冷凍サイクル装置
JP2019128090A (ja) 熱交換器及び冷凍サイクル装置
WO2021234961A1 (ja) 熱交換器、空気調和装置の室外機及び空気調和装置
JP2020148346A (ja) 熱交換器及び空気調和機
JP6582373B2 (ja) 熱交換器
WO2024023958A1 (ja) 熱交換器及び冷凍サイクル装置
JP7146139B1 (ja) 熱交換器及び空気調和装置
EP4235058A1 (en) Heat exchanger and refrigeration cycle device
WO2023199466A1 (ja) 熱交換器及びこれを有する空気調和装置
WO2020178965A1 (ja) 熱交換器及び冷凍サイクル装置
JP2022044407A (ja) 多穴管、熱交換器、及び冷凍装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021506590

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020955148

Country of ref document: EP

Effective date: 20230424