JP7370501B1 - 熱交換器及び空気調和装置 - Google Patents

熱交換器及び空気調和装置 Download PDF

Info

Publication number
JP7370501B1
JP7370501B1 JP2023535013A JP2023535013A JP7370501B1 JP 7370501 B1 JP7370501 B1 JP 7370501B1 JP 2023535013 A JP2023535013 A JP 2023535013A JP 2023535013 A JP2023535013 A JP 2023535013A JP 7370501 B1 JP7370501 B1 JP 7370501B1
Authority
JP
Japan
Prior art keywords
heat exchanger
space
refrigerant
inner tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023535013A
Other languages
English (en)
Other versions
JPWO2023203683A1 (ja
JPWO2023203683A5 (ja
Inventor
洋次 尾中
理人 足立
七海 岸田
哲二 七種
祐基 中尾
暁 八柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2023203683A1 publication Critical patent/JPWO2023203683A1/ja
Application granted granted Critical
Publication of JP7370501B1 publication Critical patent/JP7370501B1/ja
Publication of JPWO2023203683A5 publication Critical patent/JPWO2023203683A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本開示に係る熱交換器は、複数の伝熱管と、前記複数の伝熱管のそれぞれが接続される複数の接続部が長手方向に間隔を空けて設けられた外管と、外周部に複数の第1オリフィスが形成され、前記外管の内部に設けられた内管と、前記内管が挿入された第1貫通孔が形成され、前記外管の内部を主空間と第1空間とに仕切る第1仕切りと、を備え、前記主空間は、前記複数の第1オリフィス及び前記複数の接続部が連通する空間であり、前記第1空間は、前記複数の第1オリフィス及び前記複数の接続部が開口しておらず、前記内管の一方の端部である第1端部の開口部が連通する空間であり、前記第1空間に供給された冷媒が、前記内管の内部、前記複数の第1オリフィス、前記主空間及び前記複数の接続部を通って、前記複数の伝熱管に流入する構成となっている。

Description

本開示は、2重管構造の冷媒分配器を備えた熱交換器、及び該熱交換器を備えた空気調和装置に関する。
従来、2重管構造の冷媒分配器を備えた熱交換器が知られている(例えば、特許文献1参照)。従来の2重管構造の冷媒分配器は、外管と、該外管の内部に設けられた内管とを備えている。内管には、冷媒流出孔とも呼ばれるオリフィスが形成されている。また、外管には、複数の伝熱管が接続されている。従来の2重管構造の冷媒分配器が気液二相冷媒を各伝熱管に分配する際、まず、外部から二相冷媒が内管の内部に流入する。また、内管の内部に流入した気液二相冷媒は、オリフィスを通って、内管と外管との間の空間に流出する。そして、内管と外管との間の空間に流出した気液二相冷媒は、外管に接続された複数の伝熱管に分配される。このように、従来の2重管構造の冷媒分配器を備えた熱交換器においては、オリフィスを通して内管の内部に流入した気液二相冷媒を内管と外管との間の空間に流出させることにより、気液二相冷媒の液冷媒成分の各伝熱管への均一な分配を図り、熱交換器の熱交換性が低下することの抑制を図っている。
特開2012-2475号公報
しかしながら、従来の2重管構造の冷媒分配器を備えた熱交換器は、気液二相冷媒の液冷媒成分が内管の内部において偏って流れる場合等、内管の内部を流れる気液二相冷媒の状態によっては、未だ、気液二相冷媒の液冷媒成分の各伝熱管への分配が不均一となり、熱交換器の熱交換性が低下してしまうという課題があった。
本開示は、上記実情に鑑みてなされたものであり、従来よりも気液二相冷媒の液冷媒成分の各伝熱管への均一な分配を可能とする熱交換器を提供することを、第1の目的とする。また、本開示は、このような熱交換器を備えた空気調和装置を提供することを、第2の目的とする。
本開示に係る熱交換器は、複数の伝熱管と、前記複数の伝熱管のそれぞれが接続される複数の接続部が長手方向に間隔を空けて設けられた外管と、外周部に複数の第1オリフィスが形成され、前記外管の内部に設けられた内管と、前記内管が挿入された第1貫通孔が形成され、前記外管の内部を主空間と第1空間とに仕切る第1仕切りと、前記内管が挿入された第2貫通孔が形成され、前記外管の内部を前記主空間と第2空間とに仕切る第2仕切りと、を備え、前記主空間は、前記複数の第1オリフィス及び前記複数の接続部が連通する空間であり、前記第1空間は、前記複数の第1オリフィス及び前記複数の接続部が開口しておらず、前記内管の一方の端部である第1端部の開口部が連通する空間であり、前記第1空間に供給された冷媒が、前記内管の内部、前記複数の第1オリフィス、前記主空間及び前記複数の接続部を通って、前記複数の伝熱管に流入する構成であり、前記第2空間は、前記複数の第1オリフィス及び前記複数の接続部が開口しておらず、前記内管における前記第1端部とは反対側の端部である第2端部の開口部が連通する空間である。
また、本開示に係る空気調和装置は、本開示に係る熱交換器を備えている。
本開示に係る熱交換器においては、第1空間に流入した気液二相冷媒は、ガス冷媒成分と液冷媒成分とが該第1空間で混合される。そして、ガス冷媒成分と液冷媒成分とが混合された気液二相冷媒が、内管の内部を流れ、第1オリフィス、主空間、及び外管の接続部を通って、複数の伝熱管に分配される。このため、本開示に係る熱交換器は、従来と比べ、各伝熱管へ、気液二相冷媒の液冷媒成分を均一に分配できる。
本実施の形態1に係る空気調和装置の冷媒回路図である。 本実施の形態1に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。 図2のA-A断面において本実施の形態1に係る熱交換器の冷媒分配器周辺を観察した図である。 本実施の形態2に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。 比較例に係る冷媒分配器を示す断面図である。 本実施の形態2に係る冷媒分配器を示す断面図である。 本実施の形態2に係る冷媒分配器の別の一例を示す断面図である。 本実施の形態3に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。 本実施の形態3に係る熱交換器の冷媒分配器における第2空間周辺を示す断面図である。 本実施の形態3に係る熱交換器の一例の冷媒分配器周辺を観察した断面図である。 本実施の形態3に係る熱交換器の一例の冷媒分配器周辺を観察した断面図である。 本実施の形態4に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。 本実施の形態4に係る熱交換器の別の一例を側方から観察した模式図であり、一部を断面とした図である。 本実施の形態5に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。 本実施の形態6に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。
以下、図面を参照して、各実施の形態において、本開示に係る熱交換器の一例について説明する。また、以下、図面を参照して、実施の形態1において、本開示に係る空気調和装置の一例について説明する。なお、以下の図面では、同一の構成要素には同一符号を付して説明している。また、以下の各実施の形態では、重複説明は必要な場合にのみ行う。ここで、本開示に係る熱交換器及び空気調和装置は、以下の各実施の形態で説明する構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含み得る。
実施の形態1.
[空気調和装置100]
図1は、本実施の形態1に係る空気調和装置の冷媒回路図である。
本実施の形態1に係る空気調和装置100は、本実施の形態1に係る熱交換器1を備えている。なお、図1では、熱交換器1を室外熱交換器として用いている空気調和装置100を例示している。詳しくは、空気調和装置100は、圧縮機101と、暖房運転時に凝縮器として機能する室内熱交換器105と、凝縮器から流出した冷媒を膨張させる膨張弁104と、暖房運転時に蒸発器として機能する室外熱交換器である熱交換器1と、を備えている。そして、圧縮機101、室内熱交換器105、膨張弁104、及び室外熱交換器である熱交換器1が冷媒配管で接続されて、冷媒が循環する冷媒回路が構成されている。なお、以下では、圧縮機101と熱交換器1とを接続する冷媒配管を冷媒配管122と称する。また、膨張弁104と熱交換器1とを接続する冷媒配管を冷媒配管121と称する。
また、本実施の形態1に係る空気調和装置100の冷媒回路には、圧縮機101の吸入側に、余剰冷媒を貯留するアキュムレータ107も設けられている。また、本実施の形態1に係る空気調和装置100は、冷房運転も可能となっている。このため、空気調和装置100は、四方弁102を備えている。四方弁102は、圧縮機101の吐出口に接続される熱交換器を切り換え、圧縮機101の吸入口に接続される熱交換器を切り換えるものである。冷房運転時、室内熱交換器105は蒸発器として機能し、室外熱交換器である熱交換器1は凝縮器として機能する。
空気調和装置100の冷媒回路の各構成は、室外機111又は室内機112に搭載される。具体的には、圧縮機101、四方弁102、室外熱交換器である熱交換器1、アキュムレータ107が、室外機111に搭載されている。室内熱交換器105及び膨張弁104が、室内機112に搭載されている。また、室外機111には、室外熱交換器である熱交換器1に室外空気を供給するファン103も搭載されている。また、室内機112には、室内熱交換器105に室内空気を供給するファン106も搭載されている。なお、空気調和装置100は、少なくとも1つの室内機112を備えている。図1には、3台の室内機112を備えた空気調和装置100を例示している。空気調和装置100が複数台の室内機112を備える場合、例えば、各室内機112は、室外機111に並列に接続される。
空気調和装置100が暖房運転を行う際、冷媒は、図1の破線矢印に示すように循環する。具体的には、空気調和装置100が暖房運転を行う際、四方弁102は、図1に破線で示す流路に切り換わる。これにより、圧縮機101の吐出口が室内熱交換器105と接続され、圧縮機101の吸入口が室外熱交換器である熱交換器1と接続される。すなわち、室内熱交換器105が凝縮器として機能する状態となり、室外熱交換器である熱交換器1が蒸発器として機能する状態となる。この状態において、圧縮機101で圧縮された高温で高圧なガス冷媒が該圧縮機101から吐出されると、この高温で高圧なガス冷媒は、室内熱交換器105に流入する。室内熱交換器105に流入した高温で高圧なガス冷媒は、ファン106から供給される室内空気に放熱しながら凝縮し、高圧な液冷媒となって室内熱交換器105から流出する。この際、室内空気が暖められることとなる。
室内熱交換器105から流出した高圧な液冷媒は、膨張弁104に流入する。そして、膨張弁104に流入した高圧な液冷媒は、膨張弁104で膨張して低温で低圧な気液二相冷媒となり、膨張弁104から流出する。膨張弁104から流出した低温で低圧な気液二相冷媒は、冷媒配管121を通って、室外熱交換器である熱交換器1へ流入する。室外熱交換器である熱交換器1へ流入した低温で低圧な気液二相冷媒は、ファン103から供給される室外空気から吸熱して蒸発し、低圧なガス冷媒として室外熱交換器である熱交換器1から流出する。室外熱交換器である熱交換器1から流出した低圧なガス冷媒は、冷媒配管122を通って圧縮機101に吸入される。そして、圧縮機101に吸入された低圧なガス冷媒は、圧縮機101で圧縮され、高温で高圧なガス冷媒となる。この高温で高圧なガス冷媒は、該圧縮機101から再び吐出される。
空気調和装置100が冷房運転を行う際、冷媒は、図1の実線矢印に示すように循環する。具体的には、空気調和装置100が冷房運転を行う際、四方弁102は、図1に実線で示す流路に切り換わる。これにより、圧縮機101の吐出口が室外熱交換器である熱交換器1と接続され、圧縮機101の吸入口が室内熱交換器105と接続される。すなわち、室外熱交換器である熱交換器1が凝縮器として機能する状態となり、室内熱交換器105が蒸発器として機能する状態となる。この状態において、圧縮機101で圧縮された高温で高圧なガス冷媒が該圧縮機101から吐出されると、この高温で高圧なガス冷媒は、冷媒配管122を通って、室外熱交換器である熱交換器1に流入する。室外熱交換器である熱交換器1に流入した高温で高圧なガス冷媒は、ファン103から供給される室外空気に放熱しながら凝縮し、高圧な液冷媒となって室外熱交換器である熱交換器1から流出する。
室外熱交換器である熱交換器1から流出した高圧な液冷媒は、冷媒配管121を通って、膨張弁104に流入する。そして、膨張弁104に流入した高圧な液冷媒は、膨張弁104で膨張して低温で低圧な気液二相冷媒となり、膨張弁104から流出する。膨張弁104から流出した低温で低圧な気液二相冷媒は、室内熱交換器105へ流入する。室内熱交換器105へ流入した低温で低圧な気液二相冷媒は、ファン106から供給される室内空気から吸熱して蒸発し、低圧なガス冷媒として室内熱交換器105から流出する。この際、室内空気が冷やされることとなる。室内熱交換器105から流出した低圧なガス冷媒は、圧縮機101に吸入される。そして、圧縮機101に吸入された低圧なガス冷媒は、圧縮機101で圧縮され、高温で高圧なガス冷媒となる。この高温で高圧なガス冷媒は、該圧縮機101から再び吐出される。
[熱交換器1]
図2は、本実施の形態1に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。また、図3は、図2のA-A断面において本実施の形態1に係る熱交換器の冷媒分配器周辺を観察した図である。なお、図2以降の図に示されている先端黒塗りの矢印は、熱交換器1が蒸発器として用いられる際の、熱交換器1での冷媒の流れ方向を示している。
熱交換器1は、冷媒分配器10と、複数の伝熱管2と、複数のフィン3と、合流管4とを備えている。空気調和装置100に熱交換器1が搭載された際、冷媒分配器10は、例えば水平方向に配置される。複数の伝熱管2は、間隔を空けて並べられている。各伝熱管2の一方の端部は、冷媒分配器10に接続されている。本実施の形態1では、各伝熱管2の下端が、冷媒分配器10に接続されている。複数のフィン3は、隣接する2つの伝熱管2の間に設けられ、これらの伝熱管2と接続されている。合流管4は、各伝熱管2の他方の端部が接続されるものである。本実施の形態1では、各伝熱管2の上端が、合流管4に接続されている。
熱交換器1が蒸発器として用いられる場合、外部から熱交換器1に流入する冷媒は、まず、冷媒分配器10に流入する。冷媒分配器10に流入した冷媒は、各伝熱管2に分配され、各伝熱管2を流れる。各伝熱管2を流れる冷媒は、伝熱管2及びフィン3を介して、空気と熱交換する。そして、各伝熱管2から流出した冷媒は、合流管4で合流し、合流管4から熱交換器1の外部へ流出する。また、熱交換器1が凝縮器として用いられる場合、外部から熱交換器1に流入する冷媒は、合流管4に流入する。合流管4に流入した冷媒は、各伝熱管2に分配され、各伝熱管2を流れる。各伝熱管2を流れる冷媒は、伝熱管2及びフィン3を介して、空気と熱交換する。そして、各伝熱管2から流出した冷媒は、冷媒分配器10で合流し、冷媒分配器10から熱交換器1の外部へ流出する。このため、冷媒分配器10には冷媒配管121が接続され、合流管4には冷媒配管122が接続されている。
[冷媒分配器10]
上述のように、熱交換器1が蒸発器として用いられる場合、外部から冷媒分配器10に流入した冷媒が、各伝熱管2に分配される。すなわち、冷媒分配器10は、気液二相冷媒を各伝熱管2に分配することとなる。気液二相冷媒を各伝熱管2に分配する際、熱交換器1の熱交換性能が低下することを抑制するには、気液二相冷媒の液冷媒成分を各伝熱管2へ均一に分配することが重要となる。このため、本実施の形態1に係る熱交換器1においては、図2に示すように冷媒分配器10が構成されている。具体的には、冷媒分配器10は、2重管構造となっており、外管20、内管30及び第1仕切り11を備えている。
外管20は、両端部が閉塞された管状部材である。外管20には、該外管20の長手方向に間隔を空けて、複数の伝熱管2のそれぞれが接続される複数の接続部21が設けられている。すなわち、複数の伝熱管2は、外管20の長手方向に間隔を空けて並んでいる。ここで、外管20の長手方向とは、外管20の延びる方向であり、外管20の管軸方向である。図2では、紙面左右方向が外管20の長手方向となっている。なお、外管20は、少なくとも一部が曲がっていてもよい。この場合、外管20の任意の位置で長手方向を規定する場合、当該位置での管軸方向が長手方向となる。
内管30は、一方の端部である第1端部31が少なくとも開口した管状部材である。換言すると、内管30は、少なくとも第1端部31に開口部31aが形成された管状部材である。本実施の形態1では、内管30は、両端部が開口した管状部材となっている。すなわち、本実施の形態1では、内管30における第1端部31とは反対側の端部である第2端部32も開口している。換言すると、本実施の形態1では、内管30の第2端部32には、開口部32aが形成されている。また、内管30は、外管20の内部に設けられている。内管30が外管20の内部に設けられている状態において、第1端部31の開口部31aは、外管20の内部空間に連通している。また、内管30が外管20の内部に設けられている状態において、第2端部32の開口部32aは、外管20の端部で閉塞されている。また、内管30の外周部には、冷媒流出孔とも呼ばれる複数の第1オリフィス30aが形成されている。複数の第1オリフィス30aは、内管30の管軸方向に間隔を空けて形成されている。
詳細は後述するが、このように構成された冷媒分配器10においては、内管30の内部を流れる気液二相冷媒は、複数の第1オリフィス30aを通って、内管30の外周面と外管20の内周面との間の空間に流出する。そして、内管30の外周面と外管20の内周面との間の空間に流出した気液二相冷媒は、外管20の各接続部21を通って、各伝熱管2へ流入していく。
このように各伝熱管2へ気液二相冷媒を分配する場合、複数の第1オリフィス30aの形成位置は特に限定されないが、図2に示す位置に複数の第1オリフィス30aを形成するのが好ましい。詳しくは、各第1オリフィス30aは、内管30の管軸方向において、隣接する2つの伝熱管2の間となる位置に形成されているのが好ましい。図2に示すように各第1オリフィス30aを形成することにより、伝熱管2の直下に第1オリフィス30aを形成した場合と比べ、内管30の外周面と外管20の内周面との間の空間に流出した気液二相冷媒のガス冷媒成分と液冷媒成分とが、該空間で混合された後に各伝熱管2へ流入しやすくなる。このため、図2に示すように各第1オリフィス30aを形成することにより、気液二相冷媒の液冷媒成分を各伝熱管2へより均一に分配することができる。
また、上述のように各伝熱管2へ気液二相冷媒を分配する場合、内管30がたわんでいる場合等、外管20の管軸に対する内管30の管軸の傾きが大きくなっている場合、気液二相冷媒の液冷媒成分を各伝熱管2へ均一に分配することの効果が低減する。内管30の内部において気液二相冷媒の液冷媒成分が偏って流れやすくなり、内管30の外周面と外管20の内周面との間の空間において気液二相冷媒の液冷媒成分が偏って流れやすくなるからである。このため、本実施の形態1に係る冷媒分配器10においては、内管30の両端部周辺を保持し、外管20の管軸に対する内管30の管軸の傾きが大きくなることを抑制している。これにより、気液二相冷媒の液冷媒成分を各伝熱管2へより均一に分配することができる。
具体的には、外管20の内部には、第1仕切り11が設けられている。また、第1仕切り11には、第1貫通孔11aが形成されている。そして、内管30の第1端部31周辺は、第1仕切り11の第1貫通孔11aに挿入されている。これにより、内管30の第1端部31周辺は、第1仕切り11によって保持されている。また、内管30の第2端部32は、外管20の端部に固定される等により、外管20に保持されている。
また、図3に示すように、第1仕切り11は、内管30の外周面と外管20の内周面との間を閉塞している。このため、図2に示すように、第1仕切り11によって、外管20の内部は、主空間40と第1空間41とに仕切られている。主空間40は、複数の第1オリフィス30a及び複数の接続部21が連通する空間である。第1空間41は、複数の第1オリフィス30a及び複数の接続部21が開口しておらず、内管30の第1端部31の開口部31aが連通する空間である。そして、本実施の形態1に係る冷媒分配器10においては、外部から冷媒分配器10に流入した冷媒は、一旦、第1空間41に供給される構成となっている。すなわち、本実施の形態1に係る冷媒分配器10においては、外部から第1空間41に供給された冷媒が、内管30の内部、複数の第1オリフィス30a、主空間40及び複数の接続部21を通って、複数の伝熱管2に流入する構成となっている。
なお、本実施の形態1では、外管20は、第1空間41と連通する接続部22を備えている。そして、当該接続部22に、冷媒配管121が接続されている。これにより、熱交換器1が蒸発器として用いられる場合、冷媒配管121から冷媒分配器10の第1空間41に、気液二相冷媒が供給される。このように外管20に冷媒配管121を接続する場合、図2に示すように、外管20に冷媒配管121を接続するのが好ましい。具体的には、冷媒配管121は、伝熱管2の延伸方向に沿って配置され、外管20に接続されるのが好ましい。このように外管20に冷媒配管121を接続することにより、複数の伝熱管2の並び方向において、冷媒配管121の占有長さが小さくなる。このため、このように外管20に冷媒配管121を接続することにより、空気調和装置100における熱交換器1及び冷媒配管121の設置スペースにおいて、より多くの伝熱管2を並べることができる。したがって、このように外管20に冷媒配管121を接続することにより、熱交換器1における伝熱管2の実装性を向上させることができる。
ここで、従来の熱交換器においても、気液二相冷媒の液冷媒成分の各伝熱管への均一な分配を目的として、2重管構造の冷媒分配器を備えたものが知られている。しかしながら、従来の2重管構造の冷媒分配器は、外管内に第1空間41が形成されておらず、外部の冷媒が内管に直接流入する構成となっている。このため、従来の2重管構造の冷媒分配器を備えた熱交換器は、気液二相冷媒の液冷媒成分が内管の内部において偏って流れる場合等、内管の内部を流れる気液二相冷媒の状態によっては、未だ、気液二相冷媒の液冷媒成分の各伝熱管への分配が不均一となり、熱交換器の熱交換性が低下してしまう。
一方、本実施の形態1に係る熱交換器1においては、外部から冷媒分配器10の第1空間41に流入した気液二相冷媒は、ガス冷媒成分と液冷媒成分とが該第1空間41で混合される。そして、ガス冷媒成分と液冷媒成分とが混合された気液二相冷媒が、内管30の内部を流れ、第1オリフィス30a、主空間40、及び外管20の接続部21を通って、複数の伝熱管2に分配される。このため、本実施の形態1に係る熱交換器1においては、気液二相冷媒の液冷媒成分が内管30の内部において偏って流れることを抑制でき、安定した状態の気液二相冷媒を内管30に流動させることができる。したがって、本実施の形態1に係る熱交換器1は、従来と比べ、各伝熱管2へ、気液二相冷媒の液冷媒成分を均一に分配できる。
以上、本実施の形態1に係る熱交換器1は、複数の伝熱管2と、外管20と、内管30と、第1仕切り11とを備えている。外管20には、複数の伝熱管2のそれぞれが接続される複数の接続部21が長手方向に間隔を空けて設けられている。内管30には、外周部に複数の第1オリフィス30aが形成されている。内管30は、外管20の内部に設けられている。第1仕切り11には、内管30が挿入された第1貫通孔11aが形成されている。第1仕切り11は、外管20の内部を主空間40と第1空間41とに仕切っている。主空間40は、複数の第1オリフィス30a及び複数の接続部21が連通する空間である。第1空間41は、複数の第1オリフィス30a及び複数の接続部21が開口しておらず、内管30の第1端部31の開口部31aが連通する空間である。そして、本実施の形態1に係る冷媒分配器10においては、第1空間41に供給された冷媒が、内管30の内部、複数の第1オリフィス30a、主空間40及び複数の接続部21を通って、複数の伝熱管2に流入する構成となっている。
このように構成された熱交換器1においては、気液二相冷媒の液冷媒成分が内管30の内部において偏って流れることを抑制でき、安定した状態の気液二相冷媒を内管30に流動させることができる。したがって、本実施の形態1に係る熱交換器1は、従来と比べ、各伝熱管2へ、気液二相冷媒の液冷媒成分を均一に分配できる。
なお、本実施の形態1では、熱交換器1は、空気調和装置100の室外熱交換器として用いられていた。これに限らず、熱交換器1は、空気調和装置100の室内熱交換器105として用いられてもよい。また、例えば、空気調和装置100の室外熱交換器及び室内熱交換器105の双方に、熱交換器1が用いられていてもよい。
実施の形態2.
本実施の形態2に示すように、冷媒分配器10の外管20の内部に第2空間42をさらに形成することにより、各伝熱管2へ、気液二相冷媒の液冷媒成分をさらに均一に分配することが可能となる。なお、本実施の形態2において言及されていない事項は、実施の形態1と同様とする。
図4は、本実施の形態2に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。
本実施の形態2に係る熱交換器1は、実施の形態1の構成に加え、冷媒分配器10に第2仕切り12を備えている。第2仕切り12は、外管20の内部に設けられている。また、第2仕切り12には、第2貫通孔12aが形成されている。そして、内管30の第2端部32周辺は、第2仕切り12の第2貫通孔12aに挿入されている。これにより、内管30の第2端部32周辺は、第2仕切り12によって保持されている。
また、第2仕切り12は、内管30の外周面と外管20の内周面との間を閉塞している。このため、第2仕切り12によって、外管20の内部は、主空間40と第2空間42とに仕切られている。主空間40は、実施の形態1で説明したように、複数の第1オリフィス30a及び複数の接続部21が連通する空間である。第2空間42は、複数の第1オリフィス30a及び複数の接続部21が開口しておらず、内管30の第2端部32の開口部32aが連通する空間である。
第2空間42は、内管30の内部空間よりも、内管30の管軸に垂直な方向の断面が大きい空間である。第2空間42が形成された冷媒分配器10においては、内管30を流れる気液二相冷媒は、第2端部32の開口部32aから第2空間42に流入し、外管20の端部に衝突する。このとき、第2空間42に、気液二相冷媒の液冷媒成分が集められることとなる。このため、冷媒分配器10の外管20の内部に第2空間42を形成することにより、複数の第1オリフィス30aのうち、第2端部32付近の第1オリフィス30aに気液二相冷媒の液冷媒成分が多く分配されてしまうことを抑制できる。したがって、冷媒分配器10の外管20の内部に第2空間42を形成することにより、各伝熱管2へ、気液二相冷媒の液冷媒成分をさらに均一に分配することが可能となる。
発明者らは、外管20の内部に第2空間42を形成することによる上述の冷媒分配改善効果のメカニズムを、冷媒分配器10を流れる気液二相冷媒の流動挙動の可視化実験によって解明した。以下、発明者らが解明した上述の冷媒分配改善効果のメカニズムを、図5及び図6を用いて説明する。
図5は、比較例に係る冷媒分配器を示す断面図である。また、図6は、本実施の形態2に係る冷媒分配器を示す断面図である。なお、比較例に係る冷媒分配器210を説明する際、本実施の形態2に係る冷媒分配器10の構成と同一の構成には、本実施の形態2に係る冷媒分配器10の構成と同一の符号を付すこととする。
比較例に係る冷媒分配器210は、外管20の内部に第2空間42が形成されていない。このため、比較例に係る冷媒分配器210においては、内管30の第2端部32の開口部32aは、外管20の端部で閉塞されている。比較例に係る冷媒分配器210のこれ以外の構成は、本実施の形態2に係る冷媒分配器10と同じである。
内管30内の気液二相冷媒の流速が高く、内管30を流れる気液二相冷媒に作用する慣性力が大きい場合等、内管30の第2端部32に、気液二相冷媒の液冷媒成分が過剰に流れ込む場合がある。内管30の第2端部32に気液二相冷媒の液冷媒成分が過剰に流れ込む場合、第2空間42が形成されていない比較例に係る冷媒分配器210においては、内管30の第2端部32に流れてきた気液二相冷媒の液冷媒成分は、外管20の端部に衝突した後、第2端部32付近の第1オリフィス30aから主空間40へ流出する。このため、内管30の第2端部32に気液二相冷媒の液冷媒成分が過剰に流れ込む場合、比較例に係る冷媒分配器210においては、複数の第1オリフィス30aのうち、第2端部32付近の第1オリフィス30aに気液二相冷媒の液冷媒成分が多く分配されてしまう。
一方、第2空間42が形成されている本実施の形態2に係る冷媒分配器10においては、内管30の第2端部32に流れてきた気液二相冷媒の液冷媒成分は、第2端部32の開口部32aから第2空間42に流入し、外管20の端部に衝突する。そして、第2空間42に流入した気液二相冷媒の液冷媒成分は、第2空間42に溜まる。すなわち、第2空間42が気液二相冷媒の液冷媒成分を集める淀み空間として機能する。淀み空間は、バッファタンクと表現することもできる。また、内管30を流れる気液二相冷媒は脈動しているため、ある時間がたつと、第2空間42に溜まった液冷媒成分の一部は、逆流して上流側の内管30の第1オリフィス30aへと流れていく。したがって、時間平均でみると、冷媒分配器10の外管20の内部に第2空間42を形成することにより、各伝熱管2へ、気液二相冷媒の液冷媒成分をさらに均一に分配することが可能となる。
ここで、本実施の形態2のように外管20の内部に第1空間41及び第2空間42を形成する場合、第1空間41及び第2空間42の大きさは、次のような関係になっていることが好ましい。詳しくは、図4に示すように、第1空間41における外管20の長手方向の長さを、長さL1と定義する。また、第2空間42における外管20の長手方向の長さを、長さL2と定義する。このように長さL1及び長さL2を定義した場合、長さL1は長さL2よりも長いことが好ましい。なぜならば、第2空間42は、外管20の内部に形成されていることが重要であって、長さL2が小さくても上述の効果を得ることができる。また、長さL2を小さくすることにより、空気調和装置100における熱交換器1の設置スペースにおいて、より多くの伝熱管2を並べることができる。このため、長さL2を小さくすることにより、熱交換器1における伝熱管2の実装性を向上させることができる。したがって、長さL1は長さL2よりも長いことが好ましい。
また、本実施の形態2のように外管20の内部に第1空間41及び第2空間42を形成する場合、求められる効果に応じて、第1仕切り11に対する内管30の第1端部31の挿入状態、及び、第2仕切り12に対する内管30の第2端部32の挿入状態を、つぎのように決定すればよい。
例えば、冷媒分配器10の組立の容易性が要求される場合、図4に示すように、内管30の第1端部31は第1空間41に突出しており、内管30の第2端部32は第2空間42に突出しているのがよい。これにより、冷媒分配器10を組み立てる際、第1仕切り11及び第2仕切り12から内管30がはずれてしまうことを抑制できる。また、これにより、冷媒分配器10を組み立てた際、外管20の管軸に対する内管30の管軸の傾きが大きくなることを抑制できる。
このとき、内管30の第1端部31の第1空間41への突出長さ、及び、内管30の第2端部32の第2空間42への突出長さは、例えば、次のようになっているのが好ましい。詳しくは、図4に示すように、内管30の第1空間41へ突出している長さを、突出長さt1と定義する。また、内管30の第2空間42へ突出している長さを、突出長さt2と定義する。このように突出長さt1及び突出長さt2を定義した場合、突出長さt1は、突出長さt2よりも短いことが好ましい。突出長さt1を突出長さt2よりも短くすることにより、各伝熱管2へ気液二相冷媒の液冷媒成分を均一に分配するために空間容積が大きい方が好ましい第1空間41を、大きく形成できる。また、突出長さt1を突出長さt2よりも短くする場合、冷媒分配器10の組立時、外管20における第1空間41が形成される側の端部から、内管30を外管20へ挿入する構成とすることが好ましい。第1仕切り11及び第2仕切り12のうち、組立時に奥側となる第2仕切りに内管30を挿入することが容易となり、冷媒分配器10の組立がより容易となるからである。
また、各伝熱管2へ気液二相冷媒の液冷媒成分をさらに均一に分配したい場合には、第1仕切り11に対する内管30の第1端部31の挿入状態、及び、第2仕切り12に対する内管30の第2端部32の挿入状態を、図7に示すようにするとよい。
図7は、本実施の形態2に係る冷媒分配器の別の一例を示す断面図である。
図7に示す冷媒分配器10においては、内管30の第1端部31は、第1仕切り11の第1貫通孔11aの内部に配置されている。換言すると、内管30の第1端部31は、第1空間41に突出していない。同様に、図7に示す冷媒分配器10においては、内管30の第2端部32は、第2仕切り12の第2貫通孔12aの内部に配置されている。換言すると、内管30の第2端部32は、第2空間42に突出していない。
このように冷媒分配器10を構成することにより、第1空間41及び第2空間42に内管30が突出している場合と比べ、第1空間41及び第2空間42を大きく形成することができる。このため、このように冷媒分配器10を構成することにより、各伝熱管2へ気液二相冷媒の液冷媒成分をさらに均一に分配することができる。なお、実施の形態1で示した熱交換器1においても、図7で示すように、第1仕切り11で内管30を保持してもよい。これにより、第1空間41に内管30が突出している場合と比べ、第1空間41を大きく形成することができ、各伝熱管2へ気液二相冷媒の液冷媒成分をさらに均一に分配することができる。
実施の形態3.
熱交換器1が第2仕切り12を備えている場合、本実施の形態3のように、第2仕切り12に第2オリフィス12bを形成してもよい。なお、本実施の形態3において言及されていない事項は、実施の形態1又は実施の形態2と同様とする。
図8は、本実施の形態3に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。図9は、本実施の形態3に係る熱交換器の冷媒分配器における第2空間周辺を示す断面図である。
本実施の形態3に係る熱交換器1は、実施の形態2で示した熱交換器1と同様に第2仕切り12を備え、外管20の内部に第2空間42が形成されている。さらに、本実施の形態3に係る熱交換器1においては、第2仕切り12には、主空間40と第2空間42とを連通させる少なくとも1つの第2オリフィス12bが形成されている。
実施の形態2で説明したように、外管20の内部に第2空間42が形成されていることにより、内管30の第2端部32に気液二相冷媒の液冷媒成分が過剰に流れ込む場合、気液二相冷媒の液冷媒成分を第2空間42に溜めることで、各伝熱管2へ気液二相冷媒の液冷媒成分を均一に分配することができる。この際、実施の形態2で示した熱交換器1においては、内管30を流れる気液二相冷媒の脈動により、第2空間42に溜まった液冷媒成分の一部が逆流して、内管30に戻る。本実施の形態3に係る熱交換器1においては、第2空間42に溜まった液冷媒成分の一部は、さらに、第2オリフィス12bを通って、主空間40に流入することができる。このため、第2仕切り12に第2オリフィス12bを形成することにより、第2空間42を形成して各伝熱管2へ気液二相冷媒の液冷媒成分を均一に分配する際、各伝熱管2へ、より多くの液冷媒成分を分配することができる。このため、第2仕切り12に第2オリフィス12bを形成することにより、熱交換器1の熱交換性能の低下をさらに抑制できる。
なお、上述のように、第2仕切り12には、少なくとも1つの第2オリフィス12bが形成されていればよい。すなわち、第2仕切り12には、1つの第2オリフィス12bが形成されていてもよいし、複数の第2オリフィス12bが形成されていてもよい。ここで、第2仕切り12に第2オリフィス12bを形成する場合、次のような位置に第2オリフィス12bを形成するとよい。以下に、第2オリフィス12bの好適な形成位置を、図10及び図11を用いて説明する。
図10及び図11は、本実施の形態3に係る熱交換器の一例の冷媒分配器周辺を観察した断面図である。これらの図10及び図11は、外管20の長手方向と垂直な断面において、本実施の形態3に係る熱交換器の一例の冷媒分配器周辺を観察した図となっている。さらに詳しくは、これらの図10及び図11は、図8に示すB-B断面において、本実施の形態3に係る熱交換器の一例の冷媒分配器周辺を観察した図となっている。
図10及び図11に示すように、外管20の長手方向と垂直な断面において、第2オリフィス12bは、内管30に形成された第1オリフィス30aと干渉しない位置に形成されているのが好ましい。外管20の長手方向と垂直な断面において第1オリフィス30aと干渉しない位置とは、第1オリフィス30aの軸心30bの延長線上でない位置である。このような位置に第2オリフィス12bを形成することにより、第2オリフィス12bから主空間40に流入する冷媒の流れと、第1オリフィス30aから主空間40に流入する冷媒の流れとが干渉することを、抑制できる。この結果、主空間40内での冷媒の流れが安定し、各伝熱管2へ気液二相冷媒の液冷媒成分をより均一に分配することができる。
また、第2オリフィス12bは、大きく形成されているほど、第2空間42に溜まった液冷媒成分の多くを、第2オリフィス12bから主空間40に流入させることができる。このため、第2オリフィス12bは、例えば、以下のような大きさであることが好ましい。詳しくは、複数の第1オリフィス30aのうちの1つの開口面積を、開口面積S1と定義する。また、全ての第2オリフィス12bの開口面積の総和を、開口面積S2と定義する。このように開口面積S1及び開口面積S2を定義した場合、開口面積S2は、開口面積S1よりも大きいことが好ましい。すなわち、全ての第2オリフィス12bの冷媒の流量の総和が、第1オリフィス30a1つ当たりの冷媒の流量よりも大きくなることが好ましい。
実施の形態4.
熱交換器1は、本実施の形態4のように、中間仕切り13を備えていてもよい。なお、本実施の形態4において言及されていない事項は、実施の形態1~実施の形態3のいずれかと同様とする。
図12は、本実施の形態4に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。
本実施の形態4に係る熱交換器1は、少なくとも1つの中間仕切り13を備えている。中間仕切り13は、外管20の内部において、第1仕切り11と第2仕切り12との間に設けられている。また、中間仕切り13には、中間仕切り貫通孔13aが形成されている。そして、内管30の途中部は、中間仕切り13の中間仕切り貫通孔13aに挿入されている。すなわち、中間仕切り13は、内管30の途中部を保持すると共に、主空間40を複数の空間に仕切っている。以下、これらの空間を主空間部分40aと称する。
中間仕切り13を備えることにより、内管30が長い場合でも、内管30のたわみ等によって外管20の管軸に対する内管30の管軸の傾きが大きくなることを抑制できる。このため、中間仕切り13を備えることにより、内管30が長い場合でも、気液二相冷媒の液冷媒成分を各伝熱管2へ均一に分配することができる。
図13は、本実施の形態4に係る熱交換器の別の一例を側方から観察した模式図であり、一部を断面とした図である。
本実施の形態4に係る熱交換器1においては、図13に示すように中間仕切り13に少なくとも1つの中間仕切りオリフィス13bが形成されていてもよいし、図12に示すように中間仕切り13に中間仕切りオリフィス13bが形成されていなくてもよい。なお、中間仕切りオリフィス13bは、隣接する主空間部分40aを連通させる貫通孔である。
中間仕切り13に中間仕切りオリフィス13bが形成されているか否かによって、それぞれ異なる効果を得ることができる。例えば、図12に示すように、中間仕切り13に中間仕切りオリフィス13bが形成されていない場合、内管30に形成された複数の第1オリフィス30aによる流体抵抗の調整効果が向上する。この結果、気液二相冷媒の液冷媒成分を各伝熱管2へより均一に分配することができる。一方、実施の形態1の空気調和装置100で説明したように、熱交換器1を凝縮器としても使用する場合には、冷媒分配器10は、各伝熱管2から冷媒分配器10へ流出した冷媒を合流させる合流管として機能する。このような場合、図13に示すように、中間仕切り13に少なくとも1つの中間仕切りオリフィス13bが形成されていることで、冷媒分配器10の流体抵抗を低減することができる。
実施の形態5.
熱交換器1が第2仕切り12を備えている場合、本実施の形態5のように熱交換器1を構成してもよい。なお、本実施の形態5において言及されていない事項は、実施の形態1~実施の形態4のいずれかと同様とする。
図14は、本実施の形態5に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。
本実施の形態5に係る熱交換器1においては、第1空間41に加え、第2空間42にも気液二相冷媒が供給される構成となっている。このため、本実施の形態5に係る熱交換器1においては、第1空間41に供給された冷媒、及びら第2空間42に供給された冷媒が、内管30の内部、複数の第1オリフィス30a、主空間40及び複数の接続部21を通って、複数の伝熱管2に流入する構成となっている。
なお、本実施の形態5では、外管20は、第2空間42と連通する接続部23を備えている。そして、当該接続部23に、冷媒配管121が接続されている。これにより、熱交換器1が蒸発器として用いられる場合、冷媒配管121から冷媒分配器10の第2空間42に、気液二相冷媒が供給される。
本実施の形態5のように冷媒分配器10の両端側から気液二相冷媒が流入する構成とすることにより、冷媒分配器10の片側から気液二相冷媒が流入する構成と比べ、以下のような効果が得られる。外管20の管軸に対する内管30の管軸が傾くことに起因する気液二相冷媒の液冷媒成の偏った流れを抑制でき、熱交換器1の熱交換性能の低下を抑制できる。内管30を流れる気液二相冷媒の流れ方向において下流端周辺に位置する第1オリフィス30aに、慣性力の影響によって気液二相冷媒の液冷媒成が偏って分配されることを抑制することができ、熱交換器1の熱交換性能の低下を抑制できる。上述のように、熱交換器1が凝縮器として用いられる場合、冷媒分配器10は、各伝熱管2から冷媒分配器10へ流出した冷媒を合流させる合流管として機能する。このような場合、冷媒分配器10の流体抵抗を大幅に低減することができる。また、本実施の形態5に係る冷媒分配器10は、第2空間42が形成されているので、冷媒分配器10の両端側から気液二相冷媒が流入する構成とする際に、冷媒分配器10の両端への冷媒配管121の接続が容易となる。
実施の形態6.
熱交換器1は、本実施の形態6に示すようにフィンレス熱交換器であってもよい。なお、本実施の形態6において言及されていない事項は、実施の形態1~実施の形態5のいずれかと同様とする。
図15は、本実施の形態6に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。
本実施の形態6に係る熱交換器1は、フィン3が設けられていない、フィンレス熱交換器となっている。具体的には、本実施の形態6に係る熱交換器1は、実施の形態1~実施の形態5のいずれかで示した熱交換器1からフィン3が取り外された構成となっている。なお、図15は、実施の形態5で示した熱交換器1からフィン3が取り外されている例を示している。
フィンレス熱交換器では、伝熱面積を増加させるため、伝熱管の高密度実装が重要となる。このため、フィンレス熱交換器は、フィンを備えた熱交換器と比べ、伝熱管の本数が増加する。このため、フィンレス熱交換器の冷媒分配器として、気液二相冷媒の液冷媒成分を従来よりも均一に各伝熱管2へ分配できる実施の形態1~実施の形態5のいずれかで示した冷媒分配器10は、好適である。
1 熱交換器、2 伝熱管、3 フィン、4 合流管、10 冷媒分配器、11 第1仕切り、11a 第1貫通孔、12 第2仕切り、12a 第2貫通孔、12b 第2オリフィス、13 中間仕切り、13a 中間仕切り貫通孔、13b 中間仕切りオリフィス、20 外管、21 接続部、22 接続部、23 接続部、30 内管、30a 第1オリフィス、30b 軸心、31 第1端部、31a 開口部、32 第2端部、32a 開口部、40 主空間、40a 主空間部分、41 第1空間、42 第2空間、100 空気調和装置、101 圧縮機、102 四方弁、103 ファン、104 膨張弁、105 室内熱交換器、106 ファン、107 アキュムレータ、111 室外機、112 室内機、121 冷媒配管、122 冷媒配管、210 冷媒分配器(比較例)。

Claims (12)

  1. 複数の伝熱管と、
    前記複数の伝熱管のそれぞれが接続される複数の接続部が長手方向に間隔を空けて設けられた外管と、
    外周部に複数の第1オリフィスが形成され、前記外管の内部に設けられた内管と、
    前記内管が挿入された第1貫通孔が形成され、前記外管の内部を主空間と第1空間とに仕切る第1仕切りと、
    前記内管が挿入された第2貫通孔が形成され、前記外管の内部を前記主空間と第2空間とに仕切る第2仕切りと、
    を備え、
    前記主空間は、前記複数の第1オリフィス及び前記複数の接続部が連通する空間であり、
    前記第1空間は、前記複数の第1オリフィス及び前記複数の接続部が開口しておらず、前記内管の一方の端部である第1端部の開口部が連通する空間であり、
    前記第1空間に供給された冷媒が、前記内管の内部、前記複数の第1オリフィス、前記主空間及び前記複数の接続部を通って、前記複数の伝熱管に流入する構成であり、
    前記第2空間は、前記複数の第1オリフィス及び前記複数の接続部が開口しておらず、前記内管における前記第1端部とは反対側の端部である第2端部の開口部が連通する空間である
    熱交換器。
  2. 前記第1空間の前記長手方向の長さを長さL1とし、前記第2空間の前記長手方向の長さを長さL2としたとき、
    前記長さL1は、前記長さL2よりも長い
    請求項に記載の熱交換器。
  3. 前記第1仕切りと前記第2仕切りとの間に設けられ、前記主空間を複数の主空間部分に仕切る中間仕切りを備えている
    請求項又は請求項に記載の熱交換器。
  4. 前記中間仕切りには、隣接する前記主空間部分を連通させる少なくとも1つの中間仕切りオリフィスが形成されている
    請求項に記載の熱交換器。
  5. 前記第2仕切りには、前記主空間と前記第2空間とを連通させる少なくとも1つの第2オリフィスが形成されている
    請求項1又は請求項2に記載の熱交換器。
  6. 前記複数の第1オリフィスのうちの1つの開口面積を開口面積S1とし、
    全ての前記第2オリフィスの開口面積の総和を開口面積S2としたとき、
    前記開口面積S2は、前記開口面積S1よりも大きい
    請求項に記載の熱交換器。
  7. 前記第1空間に供給された冷媒、及び前記第2空間に供給された冷媒が、前記内管の内部、前記複数の第1オリフィス、前記主空間及び前記複数の接続部を通って、前記複数の伝熱管に流入する構成である
    請求項1又は請求項2に記載の熱交換器。
  8. 前記内管の前記第1端部は、前記第1空間に突出しており、
    前記内管の前記第2端部は、前記第2空間に突出している
    請求項1又は請求項2に記載の熱交換器。
  9. 前記内管の前記第1空間へ突出している長さを突出長さt1とし、
    前記内管の前記第2空間へ突出している長さを突出長さt2としたとき、
    前記突出長さt1は、前記突出長さt2よりも短い
    請求項に記載の熱交換器。
  10. 前記内管の前記第2端部は、前記第2仕切りの前記第2貫通孔の内部に配置されている
    請求項1又は請求項2に記載の熱交換器。
  11. 前記内管の前記第1端部は、前記第1仕切りの前記第1貫通孔の内部に配置されている
    請求項1又は請求項2に記載の熱交換器。
  12. 請求項1又は請求項2に記載の熱交換器を備えている
    空気調和装置。
JP2023535013A 2022-04-20 2022-04-20 熱交換器及び空気調和装置 Active JP7370501B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018298 WO2023203683A1 (ja) 2022-04-20 2022-04-20 熱交換器及び空気調和装置

Publications (3)

Publication Number Publication Date
JPWO2023203683A1 JPWO2023203683A1 (ja) 2023-10-26
JP7370501B1 true JP7370501B1 (ja) 2023-10-27
JPWO2023203683A5 JPWO2023203683A5 (ja) 2024-03-29

Family

ID=88419460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023535013A Active JP7370501B1 (ja) 2022-04-20 2022-04-20 熱交換器及び空気調和装置

Country Status (2)

Country Link
JP (1) JP7370501B1 (ja)
WO (1) WO2023203683A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533819A (ja) 2011-11-18 2014-12-15 エルジー エレクトロニクス インコーポレイティド 熱交換器
JP2018162901A (ja) 2017-03-24 2018-10-18 日立ジョンソンコントロールズ空調株式会社 熱交換器、および、それを用いた空気調和機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6015229B2 (ja) * 2012-08-10 2016-10-26 ダイキン工業株式会社 熱交換器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533819A (ja) 2011-11-18 2014-12-15 エルジー エレクトロニクス インコーポレイティド 熱交換器
JP2018162901A (ja) 2017-03-24 2018-10-18 日立ジョンソンコントロールズ空調株式会社 熱交換器、および、それを用いた空気調和機

Also Published As

Publication number Publication date
JPWO2023203683A1 (ja) 2023-10-26
WO2023203683A1 (ja) 2023-10-26

Similar Documents

Publication Publication Date Title
US8235101B2 (en) Parallel flow heat exchanger for heat pump applications
EP2144028B1 (en) Heat exchanger and refrigerating air conditioner
JP6202451B2 (ja) 熱交換器及び空気調和機
US20110203308A1 (en) Heat exchanger including multiple tube distributor
WO2020161761A1 (ja) 熱交換器およびこれを備えた空気調和装置
JP4358981B2 (ja) 空調用凝縮器
WO2006053311A2 (en) Parallel flow evaporator with shaped manifolds
US20160223231A1 (en) Heat exchanger and air conditioner
JP2021017991A (ja) 熱交換器、空気調和装置、室内機および室外機
CN111936815A (zh) 分配器以及热交换器
JP5716496B2 (ja) 熱交換器および空気調和機
JPH0886591A (ja) 熱交換器、および冷媒蒸発器
EP3647711B1 (en) Heat exchanger
JP7370501B1 (ja) 熱交換器及び空気調和装置
JPWO2019003428A1 (ja) 熱交換器、及び冷凍サイクル装置
US11614260B2 (en) Heat exchanger for heat pump applications
JP2001174103A (ja) 冷媒凝縮器
JP6766980B1 (ja) 熱交換器及び熱交換器を搭載した空気調和装置
CN115298507A (zh) 换热器
JP7341340B2 (ja) 冷凍サイクル装置
JP6977184B1 (ja) 空気調和機、冷凍機及び分配器
JPH10170188A (ja) 熱交換器
WO2020178965A1 (ja) 熱交換器及び冷凍サイクル装置
KR20040067003A (ko) 열교환기
KR20230027403A (ko) 열교환기

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230608

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231017

R150 Certificate of patent or registration of utility model

Ref document number: 7370501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150