WO2023203683A1 - 熱交換器及び空気調和装置 - Google Patents

熱交換器及び空気調和装置 Download PDF

Info

Publication number
WO2023203683A1
WO2023203683A1 PCT/JP2022/018298 JP2022018298W WO2023203683A1 WO 2023203683 A1 WO2023203683 A1 WO 2023203683A1 JP 2022018298 W JP2022018298 W JP 2022018298W WO 2023203683 A1 WO2023203683 A1 WO 2023203683A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
space
refrigerant
inner tube
tube
Prior art date
Application number
PCT/JP2022/018298
Other languages
English (en)
French (fr)
Inventor
洋次 尾中
理人 足立
七海 岸田
哲二 七種
祐基 中尾
暁 八柳
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/018298 priority Critical patent/WO2023203683A1/ja
Priority to JP2023535013A priority patent/JP7370501B1/ja
Publication of WO2023203683A1 publication Critical patent/WO2023203683A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Definitions

  • the present disclosure relates to a heat exchanger equipped with a refrigerant distributor having a double pipe structure, and an air conditioner equipped with the heat exchanger.
  • a heat exchanger equipped with a refrigerant distributor having a double pipe structure is known (for example, see Patent Document 1).
  • a conventional refrigerant distributor having a double tube structure includes an outer tube and an inner tube provided inside the outer tube. An orifice, also called a refrigerant outlet, is formed in the inner tube. Further, a plurality of heat transfer tubes are connected to the outer tube.
  • a conventional double-tube structure refrigerant distributor distributes gas-liquid two-phase refrigerant to each heat transfer tube, the two-phase refrigerant first flows into the inner tube from the outside. Further, the gas-liquid two-phase refrigerant that has flowed into the inner tube passes through the orifice and flows out into the space between the inner tube and the outer tube.
  • the gas-liquid two-phase refrigerant that has flowed into the space between the inner tube and the outer tube is distributed to the plurality of heat transfer tubes connected to the outer tube.
  • the gas-liquid two-phase refrigerant that flows into the inner tube through the orifice flows out into the space between the inner tube and the outer tube.
  • a first object of the present disclosure is to provide a heat exchanger that enables a liquid refrigerant component of a gas-liquid two-phase refrigerant to be distributed to each heat transfer tube more uniformly than conventionally. 1 purpose.
  • a second object of the present disclosure is to provide an air conditioner including such a heat exchanger.
  • the heat exchanger includes a plurality of heat exchanger tubes, an outer tube in which a plurality of connection parts to which each of the plurality of heat exchanger tubes is connected are provided at intervals in the longitudinal direction, and a plurality of heat exchanger tubes in the outer circumference.
  • a first orifice is formed, an inner tube provided inside the outer tube, and a first through hole into which the inner tube is inserted, partitioning the inside of the outer tube into a main space and a first space.
  • a first partition the main space is a space in which the plurality of first orifices and the plurality of connection parts communicate, and the first space is a space in which the plurality of first orifices and the plurality of connection parts communicate with each other.
  • the plurality of The heat exchanger is configured to flow into the plurality of heat exchanger tubes through the first orifice, the main space, and the plurality of connection parts.
  • an air conditioner according to the present disclosure includes a heat exchanger according to the present disclosure.
  • the gas-liquid two-phase refrigerant that has flowed into the first space is mixed with a gas refrigerant component and a liquid refrigerant component in the first space. Then, the gas-liquid two-phase refrigerant, which is a mixture of the gas refrigerant component and the liquid refrigerant component, flows inside the inner tube, passes through the first orifice, the main space, and the connection part of the outer tube, and is transferred to the plurality of heat transfer tubes. distributed. Therefore, the heat exchanger according to the present disclosure can uniformly distribute the liquid refrigerant component of the gas-liquid two-phase refrigerant to each heat exchanger tube, compared to the conventional heat exchanger.
  • FIG. 3 is a refrigerant circuit diagram of the air conditioner according to the first embodiment.
  • FIG. 2 is a schematic view of the heat exchanger according to the first embodiment, viewed from the side, with a portion thereof being a cross section.
  • FIG. 3 is a diagram illustrating the area around the refrigerant distributor of the heat exchanger according to the first embodiment taken along the AA cross section in FIG. 2;
  • FIG. 2 is a schematic diagram of a heat exchanger according to Embodiment 2 observed from the side, and is a partially cross-sectional view.
  • FIG. 3 is a cross-sectional view showing a refrigerant distributor according to a comparative example.
  • FIG. 3 is a sectional view showing a refrigerant distributor according to a second embodiment.
  • FIG. 7 is a sectional view showing another example of the refrigerant distributor according to the second embodiment.
  • FIG. 7 is a schematic diagram of a heat exchanger according to Embodiment 3 observed from the side, and is a partially cross-sectional view.
  • FIG. 7 is a cross-sectional view showing the vicinity of a second space in a refrigerant distributor of a heat exchanger according to Embodiment 3;
  • FIG. 7 is a cross-sectional view of the vicinity of a refrigerant distributor of an example of a heat exchanger according to Embodiment 3;
  • FIG. 7 is a cross-sectional view of the vicinity of a refrigerant distributor of an example of a heat exchanger according to Embodiment 3;
  • FIG. 7 is a cross-sectional view of the vicinity of a refrigerant distributor of an example of a heat exchanger according to Embodiment 3;
  • FIG. 7 is a schematic diagram of a heat exchanger according to Embodiment 4 observed from the side, with a portion thereof being a cross section.
  • FIG. 7 is a schematic diagram of another example of the heat exchanger according to Embodiment 4, viewed from the side, and is a partially cross-sectional view.
  • FIG. 7 is a schematic view of a heat exchanger according to Embodiment 5 observed from the side, with a portion thereof being a cross section.
  • FIG. 7 is a schematic view of a heat exchanger according to Embodiment 6 observed from the side, with a portion thereof being a cross section.
  • heat exchanger and air conditioner according to the present disclosure may include any combination of structures that can be combined among the structures described in each embodiment below.
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner according to the first embodiment.
  • the air conditioner 100 according to the first embodiment includes the heat exchanger 1 according to the first embodiment.
  • FIG. 1 illustrates an air conditioner 100 that uses the heat exchanger 1 as an outdoor heat exchanger.
  • the air conditioner 100 includes a compressor 101, an indoor heat exchanger 105 that functions as a condenser during heating operation, an expansion valve 104 that expands the refrigerant flowing out from the condenser, and an evaporator that functions as an evaporator during heating operation.
  • a heat exchanger 1, which is an outdoor heat exchanger, is provided.
  • the compressor 101, the indoor heat exchanger 105, the expansion valve 104, and the heat exchanger 1, which is an outdoor heat exchanger, are connected by refrigerant piping to form a refrigerant circuit in which refrigerant circulates.
  • the refrigerant pipe which connects the compressor 101 and the heat exchanger 1 is called the refrigerant pipe 122.
  • a refrigerant pipe connecting the expansion valve 104 and the heat exchanger 1 is referred to as a refrigerant pipe 121.
  • the refrigerant circuit of the air conditioner 100 according to the first embodiment is also provided with an accumulator 107 on the suction side of the compressor 101 for storing surplus refrigerant.
  • the air conditioner 100 according to the first embodiment is also capable of cooling operation.
  • the air conditioner 100 includes a four-way valve 102.
  • the four-way valve 102 switches the heat exchanger connected to the discharge port of the compressor 101, and switches the heat exchanger connected to the suction port of the compressor 101.
  • indoor heat exchanger 105 functions as an evaporator
  • heat exchanger 1 which is an outdoor heat exchanger, functions as a condenser.
  • Each component of the refrigerant circuit of the air conditioner 100 is installed in the outdoor unit 111 or the indoor unit 112. Specifically, a compressor 101, a four-way valve 102, a heat exchanger 1 which is an outdoor heat exchanger, and an accumulator 107 are mounted on an outdoor unit 111. An indoor heat exchanger 105 and an expansion valve 104 are mounted on the indoor unit 112. The outdoor unit 111 is also equipped with a fan 103 that supplies outdoor air to the heat exchanger 1, which is an outdoor heat exchanger. Further, the indoor unit 112 is also equipped with a fan 106 that supplies indoor air to the indoor heat exchanger 105. Note that the air conditioner 100 includes at least one indoor unit 112. FIG. 1 illustrates an air conditioner 100 including three indoor units 112. When the air conditioner 100 includes a plurality of indoor units 112, each indoor unit 112 is connected to the outdoor unit 111 in parallel, for example.
  • the refrigerant circulates as shown by the broken line arrow in FIG. Specifically, when the air conditioner 100 performs heating operation, the four-way valve 102 switches to the flow path shown by the broken line in FIG. Thereby, the discharge port of the compressor 101 is connected to the indoor heat exchanger 105, and the suction port of the compressor 101 is connected to the heat exchanger 1, which is an outdoor heat exchanger. That is, the indoor heat exchanger 105 is in a state of functioning as a condenser, and the heat exchanger 1, which is an outdoor heat exchanger, is in a state of functioning as an evaporator.
  • the high-pressure liquid refrigerant flowing out from the indoor heat exchanger 105 flows into the expansion valve 104.
  • the high-pressure liquid refrigerant that has flowed into the expansion valve 104 is expanded by the expansion valve 104 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant, which flows out from the expansion valve 104.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant flowing out from the expansion valve 104 passes through the refrigerant pipe 121 and flows into the heat exchanger 1, which is an outdoor heat exchanger.
  • the low-pressure gas refrigerant sucked into the compressor 101 is compressed by the compressor 101 to become a high-temperature, high-pressure gas refrigerant. This high temperature and high pressure gas refrigerant is discharged from the compressor 101 again.
  • the refrigerant circulates as shown by solid arrows in FIG.
  • the four-way valve 102 switches to the flow path shown by the solid line in FIG.
  • the discharge port of the compressor 101 is connected to the heat exchanger 1 which is an outdoor heat exchanger
  • the suction port of the compressor 101 is connected to the indoor heat exchanger 105.
  • the heat exchanger 1 which is an outdoor heat exchanger
  • the indoor heat exchanger 105 functions as an evaporator.
  • the high-pressure liquid refrigerant that has flowed into the expansion valve 104 is expanded by the expansion valve 104 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant, which flows out from the expansion valve 104.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant flowing out from the expansion valve 104 flows into the indoor heat exchanger 105 .
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 105 absorbs heat from the indoor air supplied from the fan 106, evaporates, and flows out of the indoor heat exchanger 105 as a low-pressure gas refrigerant. At this time, the indoor air will be cooled.
  • the low-pressure gas refrigerant flowing out of the indoor heat exchanger 105 is sucked into the compressor 101.
  • the low-pressure gas refrigerant sucked into the compressor 101 is compressed by the compressor 101 to become a high-temperature, high-pressure gas refrigerant. This high temperature and high pressure gas refrigerant is discharged from the compressor 101 again.
  • FIG. 2 is a schematic view of the heat exchanger according to the first embodiment, viewed from the side, and is a partially cross-sectional view. Further, FIG. 3 is a view of the area around the refrigerant distributor of the heat exchanger according to the first embodiment taken along the AA cross section in FIG. Note that the arrows with black tips shown in the figures after FIG. 2 indicate the flow direction of the refrigerant in the heat exchanger 1 when the heat exchanger 1 is used as an evaporator.
  • the heat exchanger 1 includes a refrigerant distributor 10, a plurality of heat transfer tubes 2, a plurality of fins 3, and a merging tube 4.
  • the refrigerant distributor 10 is arranged, for example, in a horizontal direction.
  • the plurality of heat exchanger tubes 2 are arranged at intervals. One end of each heat transfer tube 2 is connected to a refrigerant distributor 10 . In the first embodiment, the lower end of each heat transfer tube 2 is connected to a refrigerant distributor 10 .
  • the plurality of fins 3 are provided between two adjacent heat exchanger tubes 2 and connected to these heat exchanger tubes 2.
  • the merging pipe 4 is to which the other end of each heat transfer tube 2 is connected. In the first embodiment, the upper end of each heat exchanger tube 2 is connected to the merging tube 4.
  • the refrigerant flowing into the heat exchanger 1 from the outside first flows into the refrigerant distributor 10.
  • the refrigerant that has flowed into the refrigerant distributor 10 is distributed to each heat exchanger tube 2 and flows through each heat exchanger tube 2 .
  • the refrigerant flowing through each heat exchanger tube 2 exchanges heat with air via the heat exchanger tube 2 and the fins 3.
  • the refrigerant flowing out from each heat exchanger tube 2 joins together in a merging tube 4 and flows out from the merging tube 4 to the outside of the heat exchanger 1.
  • the heat exchanger 1 is used as a condenser
  • the refrigerant flowing into the heat exchanger 1 from the outside flows into the confluence pipe 4.
  • the refrigerant that has flowed into the merging pipe 4 is distributed to each heat exchanger tube 2 and flows through each heat exchanger tube 2 .
  • the refrigerant flowing through each heat exchanger tube 2 exchanges heat with air via the heat exchanger tube 2 and the fins 3.
  • the refrigerants flowing out from each heat transfer tube 2 join together at the refrigerant distributor 10 and flow out from the refrigerant distributor 10 to the outside of the heat exchanger 1 .
  • a refrigerant pipe 121 is connected to the refrigerant distributor 10
  • a refrigerant pipe 122 is connected to the confluence pipe 4.
  • refrigerant distributor 10 As described above, when the heat exchanger 1 is used as an evaporator, the refrigerant that has flowed into the refrigerant distributor 10 from the outside is distributed to each heat transfer tube 2 . That is, the refrigerant distributor 10 distributes the gas-liquid two-phase refrigerant to each heat exchanger tube 2. When distributing the gas-liquid two-phase refrigerant to each heat exchanger tube 2, in order to suppress the heat exchange performance of the heat exchanger 1 from deteriorating, it is necessary to uniformly distribute the liquid refrigerant component of the gas-liquid two-phase refrigerant to each heat exchanger tube 2. Distribution is important. For this reason, in the heat exchanger 1 according to the first embodiment, a refrigerant distributor 10 is configured as shown in FIG. Specifically, the refrigerant distributor 10 has a double pipe structure and includes an outer pipe 20, an inner pipe 30, and a first partition 11.
  • the outer tube 20 is a tubular member with both ends closed.
  • the outer tube 20 is provided with a plurality of connecting portions 21 to which the plurality of heat transfer tubes 2 are respectively connected at intervals in the longitudinal direction of the outer tube 20. That is, the plurality of heat exchanger tubes 2 are arranged at intervals in the longitudinal direction of the outer tube 20.
  • the longitudinal direction of the outer tube 20 is the direction in which the outer tube 20 extends, and is the tube axis direction of the outer tube 20.
  • the left-right direction on the paper surface is the longitudinal direction of the outer tube 20.
  • at least a portion of the outer tube 20 may be bent. In this case, when defining the longitudinal direction at any position of the outer tube 20, the tube axis direction at that position becomes the longitudinal direction.
  • the inner tube 30 is a tubular member in which at least one end, a first end 31, is open.
  • the inner tube 30 is a tubular member in which an opening 31a is formed at least at the first end 31.
  • the inner tube 30 is a tubular member with both ends open. That is, in the first embodiment, the second end 32 of the inner tube 30, which is the end opposite to the first end 31, is also open. In other words, in the first embodiment, the second end 32 of the inner tube 30 is formed with the opening 32a.
  • the inner tube 30 is provided inside the outer tube 20. In a state where the inner tube 30 is provided inside the outer tube 20, the opening 31a of the first end 31 communicates with the internal space of the outer tube 20.
  • first orifices 30a also called refrigerant outlet holes, are formed on the outer circumference of the inner tube 30.
  • the plurality of first orifices 30a are formed at intervals in the tube axis direction of the inner tube 30.
  • the gas-liquid two-phase refrigerant flowing inside the inner tube 30 passes through the plurality of first orifices 30a and is connected to the outer circumferential surface of the inner tube 30. It flows out into the space between the inner peripheral surface of the outer tube 20 and the inner circumferential surface of the outer tube 20. Then, the gas-liquid two-phase refrigerant that has flowed out into the space between the outer circumferential surface of the inner tube 30 and the inner circumferential surface of the outer tube 20 flows into each heat transfer tube 2 through each connection part 21 of the outer tube 20. To go.
  • each first orifice 30a is preferably formed at a position between two adjacent heat exchanger tubes 2 in the tube axis direction of the inner tube 30.
  • the refrigerant distributor 10 according to the first embodiment, the periphery of both ends of the inner tube 30 is held, and the inclination of the tube axis of the inner tube 30 with respect to the tube axis of the outer tube 20 is suppressed from increasing. ing. Thereby, the liquid refrigerant component of the gas-liquid two-phase refrigerant can be more uniformly distributed to each heat transfer tube 2.
  • the first partition 11 is provided inside the outer tube 20. Further, the first partition 11 has a first through hole 11a formed therein. The periphery of the first end 31 of the inner tube 30 is inserted into the first through hole 11a of the first partition 11. Thereby, the periphery of the first end 31 of the inner tube 30 is held by the first partition 11. Further, the second end 32 of the inner tube 30 is held by the outer tube 20 by being fixed to the end of the outer tube 20 or the like.
  • the first partition 11 closes off the space between the outer circumferential surface of the inner tube 30 and the inner circumferential surface of the outer tube 20. Therefore, as shown in FIG. 2, the inside of the outer tube 20 is partitioned into a main space 40 and a first space 41 by the first partition 11.
  • the main space 40 is a space in which the plurality of first orifices 30a and the plurality of connection parts 21 communicate.
  • the first space 41 is a space where the plurality of first orifices 30a and the plurality of connection parts 21 are not open, and the opening 31a of the first end 31 of the inner tube 30 communicates with each other.
  • the refrigerant that has flowed into the refrigerant distributor 10 from the outside is temporarily supplied to the first space 41 . That is, in the refrigerant distributor 10 according to the first embodiment, the refrigerant supplied from the outside to the first space 41 is distributed to the inside of the inner pipe 30, the plurality of first orifices 30a, the main space 40, and the plurality of connection parts. 21, and flows into the plurality of heat exchanger tubes 2.
  • the outer tube 20 includes a connecting portion 22 that communicates with the first space 41.
  • a refrigerant pipe 121 is connected to the connection portion 22 .
  • gas-liquid two-phase refrigerant is supplied from the refrigerant pipe 121 to the first space 41 of the refrigerant distributor 10 .
  • the refrigerant pipe 121 is arranged along the extending direction of the heat transfer tube 2 and connected to the outer pipe 20.
  • the length occupied by the refrigerant pipe 121 becomes smaller in the direction in which the plurality of heat transfer tubes 2 are arranged. Therefore, by connecting the refrigerant pipes 121 to the outer tube 20 in this way, more heat transfer tubes 2 can be arranged in the installation space of the heat exchanger 1 and the refrigerant pipes 121 in the air conditioner 100. Therefore, by connecting the refrigerant pipe 121 to the outer tube 20 in this manner, the ease of mounting the heat transfer tube 2 in the heat exchanger 1 can be improved.
  • the gas-liquid two-phase refrigerant that has flowed into the first space 41 of the refrigerant distributor 10 from the outside has a gas refrigerant component and a liquid refrigerant component in the first space. 41. Then, a gas-liquid two-phase refrigerant in which a gas refrigerant component and a liquid refrigerant component are mixed flows inside the inner tube 30, passes through the first orifice 30a, the main space 40, and the connecting portion 21 of the outer tube 20, It is distributed to a plurality of heat exchanger tubes 2.
  • the liquid refrigerant component of the gas-liquid two-phase refrigerant can be prevented from flowing unevenly inside the inner pipe 30, and the gas-liquid two-phase refrigerant can be maintained in a stable state. can be made to flow into the inner tube 30. Therefore, the heat exchanger 1 according to the first embodiment can uniformly distribute the liquid refrigerant component of the gas-liquid two-phase refrigerant to each heat exchanger tube 2 compared to the conventional one.
  • the heat exchanger 1 includes a plurality of heat transfer tubes 2, an outer tube 20, an inner tube 30, and a first partition 11.
  • the outer tube 20 is provided with a plurality of connecting portions 21 to which the plurality of heat exchanger tubes 2 are respectively connected at intervals in the longitudinal direction.
  • a plurality of first orifices 30a are formed in the outer circumference of the inner tube 30.
  • the inner tube 30 is provided inside the outer tube 20.
  • the first partition 11 has a first through hole 11a into which the inner tube 30 is inserted.
  • the first partition 11 partitions the inside of the outer tube 20 into a main space 40 and a first space 41.
  • the main space 40 is a space in which the plurality of first orifices 30a and the plurality of connection parts 21 communicate.
  • the first space 41 is a space where the plurality of first orifices 30a and the plurality of connection parts 21 are not open, and the opening 31a of the first end 31 of the inner tube 30 communicates with each other.
  • the refrigerant supplied to the first space 41 flows through the inside of the inner pipe 30, the plurality of first orifices 30a, the main space 40, and the plurality of connection parts 21.
  • the heat exchanger passes through the heat exchanger tubes 2 and flows into the plurality of heat exchanger tubes 2.
  • the heat exchanger 1 configured in this way, it is possible to suppress the liquid refrigerant component of the gas-liquid two-phase refrigerant from flowing unevenly inside the inner tube 30, and to transfer the gas-liquid two-phase refrigerant in a stable state to the inner tube 30. can be made to flow. Therefore, the heat exchanger 1 according to the first embodiment can uniformly distribute the liquid refrigerant component of the gas-liquid two-phase refrigerant to each heat exchanger tube 2 compared to the conventional one.
  • the heat exchanger 1 was used as an outdoor heat exchanger of the air conditioner 100.
  • the present invention is not limited to this, and the heat exchanger 1 may be used as the indoor heat exchanger 105 of the air conditioner 100. Further, for example, the heat exchanger 1 may be used as both the outdoor heat exchanger and the indoor heat exchanger 105 of the air conditioner 100.
  • Embodiment 2 As shown in the second embodiment, by further forming the second space 42 inside the outer tube 20 of the refrigerant distributor 10, the liquid refrigerant component of the gas-liquid two-phase refrigerant is more uniformly distributed to each heat transfer tube 2. It becomes possible to distribute to Note that matters not mentioned in the second embodiment are the same as those in the first embodiment.
  • FIG. 4 is a schematic view of the heat exchanger according to the second embodiment, viewed from the side, and is a partially cross-sectional view.
  • the heat exchanger 1 according to the second embodiment includes a second partition 12 in the refrigerant distributor 10 in addition to the configuration of the first embodiment.
  • the second partition 12 is provided inside the outer tube 20. Further, a second through hole 12a is formed in the second partition 12. The periphery of the second end 32 of the inner tube 30 is inserted into the second through hole 12a of the second partition 12. Thereby, the periphery of the second end 32 of the inner tube 30 is held by the second partition 12.
  • the second partition 12 closes off the space between the outer circumferential surface of the inner tube 30 and the inner circumferential surface of the outer tube 20. Therefore, the inside of the outer tube 20 is partitioned into a main space 40 and a second space 42 by the second partition 12 .
  • the main space 40 is a space in which the plurality of first orifices 30a and the plurality of connecting portions 21 communicate with each other.
  • the second space 42 is a space in which the plurality of first orifices 30a and the plurality of connecting portions 21 are not open, and the opening 32a of the second end portion 32 of the inner tube 30 communicates.
  • the second space 42 is a space whose cross section in the direction perpendicular to the tube axis of the inner tube 30 is larger than the internal space of the inner tube 30.
  • the gas-liquid two-phase refrigerant flowing through the inner pipe 30 flows into the second space 42 from the opening 32a of the second end 32, and the end of the outer pipe 20. collide with the department. At this time, the liquid refrigerant component of the gas-liquid two-phase refrigerant is collected in the second space 42 .
  • gas-liquid two-phase refrigerant is placed in the first orifice 30a near the second end 32 among the plurality of first orifices 30a. It is possible to prevent a large amount of the liquid refrigerant component from being distributed. Therefore, by forming the second space 42 inside the outer tube 20 of the refrigerant distributor 10, it becomes possible to more uniformly distribute the liquid refrigerant component of the gas-liquid two-phase refrigerant to each heat transfer tube 2.
  • the inventors have elucidated the mechanism of the above-mentioned refrigerant distribution improvement effect by forming the second space 42 inside the outer tube 20 through a visualization experiment of the flow behavior of the gas-liquid two-phase refrigerant flowing through the refrigerant distributor 10. .
  • the mechanism of the above-mentioned refrigerant distribution improvement effect elucidated by the inventors will be explained using FIGS. 5 and 6.
  • FIG. 5 is a sectional view showing a refrigerant distributor according to a comparative example.
  • FIG. 6 is a sectional view showing a refrigerant distributor according to the second embodiment.
  • the same configuration as the refrigerant distributor 10 according to the second embodiment includes the same configuration as the refrigerant distributor 10 according to the second embodiment.
  • the symbol shall be given as follows.
  • the refrigerant distributor 210 according to the comparative example the second space 42 is not formed inside the outer tube 20. Therefore, in the refrigerant distributor 210 according to the comparative example, the opening 32a of the second end 32 of the inner tube 30 is closed by the end of the outer tube 20.
  • the other configurations of the refrigerant distributor 210 according to the comparative example are the same as the refrigerant distributor 10 according to the second embodiment.
  • the second end 32 of the inner pipe 30 When the flow rate of the gas-liquid two-phase refrigerant in the inner pipe 30 is high and the inertial force acting on the gas-liquid two-phase refrigerant flowing through the inner pipe 30 is large, the second end 32 of the inner pipe 30 The liquid refrigerant component of the refrigerant may flow in excess.
  • the liquid refrigerant component of the gas-liquid two-phase refrigerant flowing into the second end 32 of the inner pipe 30 is It flows into the second space 42 from the opening 32 a of the second end 32 and collides with the end of the outer tube 20 . Then, the liquid refrigerant component of the gas-liquid two-phase refrigerant that has flowed into the second space 42 accumulates in the second space 42 . That is, the second space 42 functions as a stagnation space that collects the liquid refrigerant component of the gas-liquid two-phase refrigerant.
  • the stagnation space can also be expressed as a buffer tank.
  • the gas-liquid two-phase refrigerant flowing through the inner pipe 30 is pulsating, after a certain period of time, some of the liquid refrigerant components accumulated in the second space 42 flow backwards and flow into the inner pipe 30 on the upstream side. It flows into the first orifice 30a. Therefore, on a time average basis, by forming the second space 42 inside the outer tube 20 of the refrigerant distributor 10, the liquid refrigerant component of the gas-liquid two-phase refrigerant is distributed more uniformly to each heat transfer tube 2. becomes possible.
  • the sizes of the first space 41 and the second space 42 have the following relationship. It is preferable that the Specifically, as shown in FIG. 4, the length of the outer tube 20 in the first space 41 in the longitudinal direction is defined as a length L1. Further, the length in the longitudinal direction of the outer tube 20 in the second space 42 is defined as a length L2. When the length L1 and the length L2 are defined in this way, it is preferable that the length L1 is longer than the length L2. This is because it is important that the second space 42 is formed inside the outer tube 20, and the above-mentioned effects can be obtained even if the length L2 is small.
  • length L1 is preferably longer than length L2.
  • the first end of the inner tube 30 relative to the first partition 11 may be 31 and the insertion state of the second end 32 of the inner tube 30 with respect to the second partition 12 may be determined as follows.
  • the first end 31 of the inner tube 30 protrudes into the first space 41, and the second end of the inner tube 30 It is preferable that the portion 32 protrudes into the second space 42 .
  • the refrigerant distributor 10 it is possible to suppress the inner tube 30 from coming off from the first partition 11 and the second partition 12.
  • the refrigerant distributor 10 is assembled, the inclination of the tube axis of the inner tube 30 with respect to the tube axis of the outer tube 20 can be suppressed from increasing.
  • the protrusion length of the first end 31 of the inner tube 30 into the first space 41 and the protrusion length of the second end 32 of the inner tube 30 into the second space 42 are, for example, as follows. It is preferable that the Specifically, as shown in FIG. 4, the length of the inner tube 30 protruding into the first space 41 is defined as a protrusion length t1. Further, the length of the inner tube 30 protruding into the second space 42 is defined as a protrusion length t2. When the protrusion length t1 and the protrusion length t2 are defined in this way, it is preferable that the protrusion length t1 is shorter than the protrusion length t2.
  • the first space 41 preferably has a large space volume in order to uniformly distribute the liquid refrigerant component of the gas-liquid two-phase refrigerant to each heat transfer tube 2. Can be formed large.
  • the inner tube 30 is connected to the outer tube 20 from the end of the outer tube 20 on the side where the first space 41 is formed. It is preferable to have a configuration in which it is inserted into. This is because it becomes easier to insert the inner tube 30 into the second partition, which is on the back side of the first partition 11 and the second partition 12 during assembly, and the assembly of the refrigerant distributor 10 becomes easier.
  • FIG. 7 is a sectional view showing another example of the refrigerant distributor according to the second embodiment.
  • the first end 31 of the inner tube 30 is arranged inside the first through hole 11a of the first partition 11. In other words, the first end 31 of the inner tube 30 does not protrude into the first space 41.
  • the second end 32 of the inner tube 30 is arranged inside the second through hole 12a of the second partition 12. In other words, the second end 32 of the inner tube 30 does not protrude into the second space 42 .
  • the first space 41 and the second space 42 can be formed larger than when the inner tube 30 protrudes into the first space 41 and the second space 42. . Therefore, by configuring the refrigerant distributor 10 in this manner, the liquid refrigerant component of the gas-liquid two-phase refrigerant can be more uniformly distributed to each heat transfer tube 2.
  • the inner tube 30 may be held by the first partition 11.
  • the first space 41 can be formed larger than when the inner tube 30 protrudes into the first space 41, and the liquid refrigerant component of the gas-liquid two-phase refrigerant is distributed more uniformly to each heat transfer tube 2. can do.
  • Embodiment 3 When the heat exchanger 1 includes the second partition 12, the second orifice 12b may be formed in the second partition 12 as in the third embodiment. Note that matters not mentioned in the third embodiment are the same as those in the first embodiment or the second embodiment.
  • FIG. 8 is a schematic view of the heat exchanger according to the third embodiment, viewed from the side, and is a partially cross-sectional view.
  • FIG. 9 is a sectional view showing the vicinity of the second space in the refrigerant distributor of the heat exchanger according to the third embodiment.
  • the heat exchanger 1 according to the third embodiment includes a second partition 12 similarly to the heat exchanger 1 shown in the second embodiment, and a second space 42 is formed inside the outer tube 20. Furthermore, in the heat exchanger 1 according to the third embodiment, the second partition 12 is formed with at least one second orifice 12b that communicates the main space 40 and the second space 42.
  • the liquid refrigerant component of the gas-liquid two-phase refrigerant is not excessively present in the second end 32 of the inner tube 30.
  • the liquid refrigerant component of the gas-liquid two-phase refrigerant can be uniformly distributed to each heat transfer tube 2 by storing the liquid refrigerant component of the gas-liquid two-phase refrigerant in the second space 42 .
  • the heat exchanger 1 shown in the second embodiment due to the pulsation of the gas-liquid two-phase refrigerant flowing through the inner pipe 30, a part of the liquid refrigerant component accumulated in the second space 42 flows backward, and Return to tube 30.
  • a part of the liquid refrigerant component accumulated in the second space 42 can further flow into the main space 40 through the second orifice 12b. Therefore, by forming the second orifice 12b in the second partition 12, when forming the second space 42 and uniformly distributing the liquid refrigerant component of the gas-liquid two-phase refrigerant to each heat exchanger tube 2, each heat exchanger tube 2, more liquid refrigerant components can be distributed. Therefore, by forming the second orifice 12b in the second partition 12, it is possible to further suppress the deterioration of the heat exchange performance of the heat exchanger 1.
  • the second partition 12 only needs to have at least one second orifice 12b formed therein. That is, the second partition 12 may be formed with one second orifice 12b or a plurality of second orifices 12b.
  • the second orifice 12b when forming the second orifice 12b in the second partition 12, it is preferable to form the second orifice 12b at the following position. Below, a suitable formation position of the second orifice 12b will be explained using FIGS. 10 and 11.
  • FIGS. 10 and 11 are cross-sectional views of the vicinity of the refrigerant distributor of an example of the heat exchanger according to the third embodiment. These FIGS. 10 and 11 are views of the vicinity of the refrigerant distributor of an example of the heat exchanger according to the third embodiment in a cross section perpendicular to the longitudinal direction of the outer tube 20. More specifically, these FIGS. 10 and 11 are views of the vicinity of the refrigerant distributor of an example of the heat exchanger according to the third embodiment, taken along the BB cross section shown in FIG. 8.
  • the second orifice 12b is formed at a position that does not interfere with the first orifice 30a formed in the inner tube 30.
  • a position that does not interfere with the first orifice 30a in a cross section perpendicular to the longitudinal direction of the outer tube 20 is a position that is not on an extension of the axis 30b of the first orifice 30a.
  • the second orifice 12b has the following size, for example.
  • the opening area of one of the plurality of first orifices 30a is defined as opening area S1.
  • the sum total of the opening areas of all the second orifices 12b is defined as opening area S2.
  • opening area S2 is preferably larger than opening area S1. That is, it is preferable that the sum of the refrigerant flow rates of all the second orifices 12b be larger than the refrigerant flow rate per one first orifice 30a.
  • the heat exchanger 1 may include an intermediate partition 13 as in the fourth embodiment. Note that matters not mentioned in the fourth embodiment are the same as in any of the first to third embodiments.
  • FIG. 12 is a schematic view of the heat exchanger according to the fourth embodiment, viewed from the side, and is a partially cross-sectional view.
  • the heat exchanger 1 according to the fourth embodiment includes at least one intermediate partition 13.
  • the intermediate partition 13 is provided inside the outer tube 20 between the first partition 11 and the second partition 12. Further, the intermediate partition 13 is formed with an intermediate partition through hole 13a.
  • the middle portion of the inner tube 30 is inserted into the intermediate partition through hole 13a of the intermediate partition 13. That is, the intermediate partition 13 holds the middle part of the inner tube 30 and partitions the main space 40 into a plurality of spaces.
  • these spaces will be referred to as main space portions 40a.
  • the intermediate partition 13 By providing the intermediate partition 13, even if the inner tube 30 is long, the inclination of the tube axis of the inner tube 30 with respect to the tube axis of the outer tube 20 can be suppressed from increasing due to deflection of the inner tube 30 or the like. Therefore, by providing the intermediate partition 13, even when the inner tube 30 is long, the liquid refrigerant component of the gas-liquid two-phase refrigerant can be uniformly distributed to each heat transfer tube 2.
  • FIG. 13 is a schematic view of another example of the heat exchanger according to Embodiment 4, viewed from the side, and is a partially cross-sectional view.
  • at least one intermediate partition orifice 13b may be formed in the intermediate partition 13 as shown in FIG. 13, or in the intermediate partition 13 as shown in FIG.
  • the intermediate partition orifice 13b may not be formed.
  • the intermediate partition orifice 13b is a through hole that allows the adjacent main space portions 40a to communicate with each other.
  • the intermediate partition 13 is formed with the intermediate partition orifice 13b, different effects can be obtained.
  • the intermediate partition orifice 13b is not formed in the intermediate partition 13
  • the effect of adjusting the fluid resistance by the plurality of first orifices 30a formed in the inner tube 30 is improved.
  • the liquid refrigerant component of the gas-liquid two-phase refrigerant can be more uniformly distributed to each heat transfer tube 2.
  • the refrigerant distributor 10 is configured such that the It functions as a merging pipe for merging refrigerants. In such a case, as shown in FIG. 13, the fluid resistance of the refrigerant distributor 10 can be reduced by forming at least one intermediate partition orifice 13b in the intermediate partition 13.
  • Embodiment 5 When the heat exchanger 1 includes the second partition 12, the heat exchanger 1 may be configured as in the fifth embodiment. Note that matters not mentioned in the fifth embodiment are the same as in any of the first to fourth embodiments.
  • FIG. 14 is a schematic view of the heat exchanger according to the fifth embodiment, viewed from the side, and is a partially cross-sectional view.
  • the gas-liquid two-phase refrigerant is supplied to the second space 42 in addition to the first space 41 . Therefore, in the heat exchanger 1 according to the fifth embodiment, the refrigerant supplied to the first space 41 and the refrigerant supplied to the second space 42 are The heat exchanger is configured to flow into the plurality of heat exchanger tubes 2 through the orifice 30a, the main space 40, and the plurality of connecting portions 21.
  • the outer tube 20 is equipped with the connection part 23 which communicates with the 2nd space 42.
  • a refrigerant pipe 121 is connected to the connection portion 23 .
  • the refrigerant distributor 10 functions as a merging pipe that joins the refrigerants flowing out from each heat transfer tube 2 to the refrigerant distributor 10. In such a case, the fluid resistance of the refrigerant distributor 10 can be significantly reduced.
  • the refrigerant distributor 10 since the refrigerant distributor 10 according to the fifth embodiment has the second space 42 formed, when the refrigerant distributor 10 is configured to have a gas-liquid two-phase refrigerant flowing from both ends, the refrigerant distributor The refrigerant pipes 121 can be easily connected to both ends of the vessel 10.
  • the heat exchanger 1 may be a finless heat exchanger as shown in the sixth embodiment. Note that matters not mentioned in the sixth embodiment are the same as in any of the first to fifth embodiments.
  • FIG. 15 is a schematic view of the heat exchanger according to the sixth embodiment, viewed from the side, and is a partially cross-sectional view.
  • the heat exchanger 1 according to the sixth embodiment is a finless heat exchanger in which the fins 3 are not provided.
  • the heat exchanger 1 according to the sixth embodiment has a configuration in which the fins 3 are removed from the heat exchanger 1 shown in any of the first to fifth embodiments. Note that FIG. 15 shows an example in which the fins 3 are removed from the heat exchanger 1 shown in the fifth embodiment.

Abstract

本開示に係る熱交換器は、複数の伝熱管と、前記複数の伝熱管のそれぞれが接続される複数の接続部が長手方向に間隔を空けて設けられた外管と、外周部に複数の第1オリフィスが形成され、前記外管の内部に設けられた内管と、前記内管が挿入された第1貫通孔が形成され、前記外管の内部を主空間と第1空間とに仕切る第1仕切りと、を備え、前記主空間は、前記複数の第1オリフィス及び前記複数の接続部が連通する空間であり、前記第1空間は、前記複数の第1オリフィス及び前記複数の接続部が開口しておらず、前記内管の一方の端部である第1端部の開口部が連通する空間であり、前記第1空間に供給された冷媒が、前記内管の内部、前記複数の第1オリフィス、前記主空間及び前記複数の接続部を通って、前記複数の伝熱管に流入する構成となっている。

Description

熱交換器及び空気調和装置
 本開示は、2重管構造の冷媒分配器を備えた熱交換器、及び該熱交換器を備えた空気調和装置に関する。
 従来、2重管構造の冷媒分配器を備えた熱交換器が知られている(例えば、特許文献1参照)。従来の2重管構造の冷媒分配器は、外管と、該外管の内部に設けられた内管とを備えている。内管には、冷媒流出孔とも呼ばれるオリフィスが形成されている。また、外管には、複数の伝熱管が接続されている。従来の2重管構造の冷媒分配器が気液二相冷媒を各伝熱管に分配する際、まず、外部から二相冷媒が内管の内部に流入する。また、内管の内部に流入した気液二相冷媒は、オリフィスを通って、内管と外管との間の空間に流出する。そして、内管と外管との間の空間に流出した気液二相冷媒は、外管に接続された複数の伝熱管に分配される。このように、従来の2重管構造の冷媒分配器を備えた熱交換器においては、オリフィスを通して内管の内部に流入した気液二相冷媒を内管と外管との間の空間に流出させることにより、気液二相冷媒の液冷媒成分の各伝熱管への均一な分配を図り、熱交換器の熱交換性が低下することの抑制を図っている。
特開2012-2475号公報
 しかしながら、従来の2重管構造の冷媒分配器を備えた熱交換器は、気液二相冷媒の液冷媒成分が内管の内部において偏って流れる場合等、内管の内部を流れる気液二相冷媒の状態によっては、未だ、気液二相冷媒の液冷媒成分の各伝熱管への分配が不均一となり、熱交換器の熱交換性が低下してしまうという課題があった。
 本開示は、上記実情に鑑みてなされたものであり、従来よりも気液二相冷媒の液冷媒成分の各伝熱管への均一な分配を可能とする熱交換器を提供することを、第1の目的とする。また、本開示は、このような熱交換器を備えた空気調和装置を提供することを、第2の目的とする。
 本開示に係る熱交換器は、複数の伝熱管と、前記複数の伝熱管のそれぞれが接続される複数の接続部が長手方向に間隔を空けて設けられた外管と、外周部に複数の第1オリフィスが形成され、前記外管の内部に設けられた内管と、前記内管が挿入された第1貫通孔が形成され、前記外管の内部を主空間と第1空間とに仕切る第1仕切りと、を備え、前記主空間は、前記複数の第1オリフィス及び前記複数の接続部が連通する空間であり、前記第1空間は、前記複数の第1オリフィス及び前記複数の接続部が開口しておらず、前記内管の一方の端部である第1端部の開口部が連通する空間であり、前記第1空間に供給された冷媒が、前記内管の内部、前記複数の第1オリフィス、前記主空間及び前記複数の接続部を通って、前記複数の伝熱管に流入する構成となっている。
 また、本開示に係る空気調和装置は、本開示に係る熱交換器を備えている。
 本開示に係る熱交換器においては、第1空間に流入した気液二相冷媒は、ガス冷媒成分と液冷媒成分とが該第1空間で混合される。そして、ガス冷媒成分と液冷媒成分とが混合された気液二相冷媒が、内管の内部を流れ、第1オリフィス、主空間、及び外管の接続部を通って、複数の伝熱管に分配される。このため、本開示に係る熱交換器は、従来と比べ、各伝熱管へ、気液二相冷媒の液冷媒成分を均一に分配できる。
本実施の形態1に係る空気調和装置の冷媒回路図である。 本実施の形態1に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。 図2のA-A断面において本実施の形態1に係る熱交換器の冷媒分配器周辺を観察した図である。 本実施の形態2に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。 比較例に係る冷媒分配器を示す断面図である。 本実施の形態2に係る冷媒分配器を示す断面図である。 本実施の形態2に係る冷媒分配器の別の一例を示す断面図である。 本実施の形態3に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。 本実施の形態3に係る熱交換器の冷媒分配器における第2空間周辺を示す断面図である。 本実施の形態3に係る熱交換器の一例の冷媒分配器周辺を観察した断面図である。 本実施の形態3に係る熱交換器の一例の冷媒分配器周辺を観察した断面図である。 本実施の形態4に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。 本実施の形態4に係る熱交換器の別の一例を側方から観察した模式図であり、一部を断面とした図である。 本実施の形態5に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。 本実施の形態6に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。
 以下、図面を参照して、各実施の形態において、本開示に係る熱交換器の一例について説明する。また、以下、図面を参照して、実施の形態1において、本開示に係る空気調和装置の一例について説明する。なお、以下の図面では、同一の構成要素には同一符号を付して説明している。また、以下の各実施の形態では、重複説明は必要な場合にのみ行う。ここで、本開示に係る熱交換器及び空気調和装置は、以下の各実施の形態で説明する構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含み得る。
実施の形態1.
[空気調和装置100]
 図1は、本実施の形態1に係る空気調和装置の冷媒回路図である。
 本実施の形態1に係る空気調和装置100は、本実施の形態1に係る熱交換器1を備えている。なお、図1では、熱交換器1を室外熱交換器として用いている空気調和装置100を例示している。詳しくは、空気調和装置100は、圧縮機101と、暖房運転時に凝縮器として機能する室内熱交換器105と、凝縮器から流出した冷媒を膨張させる膨張弁104と、暖房運転時に蒸発器として機能する室外熱交換器である熱交換器1と、を備えている。そして、圧縮機101、室内熱交換器105、膨張弁104、及び室外熱交換器である熱交換器1が冷媒配管で接続されて、冷媒が循環する冷媒回路が構成されている。なお、以下では、圧縮機101と熱交換器1とを接続する冷媒配管を冷媒配管122と称する。また、膨張弁104と熱交換器1とを接続する冷媒配管を冷媒配管121と称する。
 また、本実施の形態1に係る空気調和装置100の冷媒回路には、圧縮機101の吸入側に、余剰冷媒を貯留するアキュムレータ107も設けられている。また、本実施の形態1に係る空気調和装置100は、冷房運転も可能となっている。このため、空気調和装置100は、四方弁102を備えている。四方弁102は、圧縮機101の吐出口に接続される熱交換器を切り換え、圧縮機101の吸入口に接続される熱交換器を切り換えるものである。冷房運転時、室内熱交換器105は蒸発器として機能し、室外熱交換器である熱交換器1は凝縮器として機能する。
 空気調和装置100の冷媒回路の各構成は、室外機111又は室内機112に搭載される。具体的には、圧縮機101、四方弁102、室外熱交換器である熱交換器1、アキュムレータ107が、室外機111に搭載されている。室内熱交換器105及び膨張弁104が、室内機112に搭載されている。また、室外機111には、室外熱交換器である熱交換器1に室外空気を供給するファン103も搭載されている。また、室内機112には、室内熱交換器105に室内空気を供給するファン106も搭載されている。なお、空気調和装置100は、少なくとも1つの室内機112を備えている。図1には、3台の室内機112を備えた空気調和装置100を例示している。空気調和装置100が複数台の室内機112を備える場合、例えば、各室内機112は、室外機111に並列に接続される。
 空気調和装置100が暖房運転を行う際、冷媒は、図1の破線矢印に示すように循環する。具体的には、空気調和装置100が暖房運転を行う際、四方弁102は、図1に破線で示す流路に切り換わる。これにより、圧縮機101の吐出口が室内熱交換器105と接続され、圧縮機101の吸入口が室外熱交換器である熱交換器1と接続される。すなわち、室内熱交換器105が凝縮器として機能する状態となり、室外熱交換器である熱交換器1が蒸発器として機能する状態となる。この状態において、圧縮機101で圧縮された高温で高圧なガス冷媒が該圧縮機101から吐出されると、この高温で高圧なガス冷媒は、室内熱交換器105に流入する。室内熱交換器105に流入した高温で高圧なガス冷媒は、ファン106から供給される室内空気に放熱しながら凝縮し、高圧な液冷媒となって室内熱交換器105から流出する。この際、室内空気が暖められることとなる。
 室内熱交換器105から流出した高圧な液冷媒は、膨張弁104に流入する。そして、膨張弁104に流入した高圧な液冷媒は、膨張弁104で膨張して低温で低圧な気液二相冷媒となり、膨張弁104から流出する。膨張弁104から流出した低温で低圧な気液二相冷媒は、冷媒配管121を通って、室外熱交換器である熱交換器1へ流入する。室外熱交換器である熱交換器1へ流入した低温で低圧な気液二相冷媒は、ファン103から供給される室外空気から吸熱して蒸発し、低圧なガス冷媒として室外熱交換器である熱交換器1から流出する。室外熱交換器である熱交換器1から流出した低圧なガス冷媒は、冷媒配管122を通って圧縮機101に吸入される。そして、圧縮機101に吸入された低圧なガス冷媒は、圧縮機101で圧縮され、高温で高圧なガス冷媒となる。この高温で高圧なガス冷媒は、該圧縮機101から再び吐出される。
 空気調和装置100が冷房運転を行う際、冷媒は、図1の実線矢印に示すように循環する。具体的には、空気調和装置100が冷房運転を行う際、四方弁102は、図1に実線で示す流路に切り換わる。これにより、圧縮機101の吐出口が室外熱交換器である熱交換器1と接続され、圧縮機101の吸入口が室内熱交換器105と接続される。すなわち、室外熱交換器である熱交換器1が凝縮器として機能する状態となり、室内熱交換器105が蒸発器として機能する状態となる。この状態において、圧縮機101で圧縮された高温で高圧なガス冷媒が該圧縮機101から吐出されると、この高温で高圧なガス冷媒は、冷媒配管122を通って、室外熱交換器である熱交換器1に流入する。室外熱交換器である熱交換器1に流入した高温で高圧なガス冷媒は、ファン103から供給される室外空気に放熱しながら凝縮し、高圧な液冷媒となって室外熱交換器である熱交換器1から流出する。
 室外熱交換器である熱交換器1から流出した高圧な液冷媒は、冷媒配管121を通って、膨張弁104に流入する。そして、膨張弁104に流入した高圧な液冷媒は、膨張弁104で膨張して低温で低圧な気液二相冷媒となり、膨張弁104から流出する。膨張弁104から流出した低温で低圧な気液二相冷媒は、室内熱交換器105へ流入する。室内熱交換器105へ流入した低温で低圧な気液二相冷媒は、ファン106から供給される室内空気から吸熱して蒸発し、低圧なガス冷媒として室内熱交換器105から流出する。この際、室内空気が冷やされることとなる。室内熱交換器105から流出した低圧なガス冷媒は、圧縮機101に吸入される。そして、圧縮機101に吸入された低圧なガス冷媒は、圧縮機101で圧縮され、高温で高圧なガス冷媒となる。この高温で高圧なガス冷媒は、該圧縮機101から再び吐出される。
[熱交換器1]
 図2は、本実施の形態1に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。また、図3は、図2のA-A断面において本実施の形態1に係る熱交換器の冷媒分配器周辺を観察した図である。なお、図2以降の図に示されている先端黒塗りの矢印は、熱交換器1が蒸発器として用いられる際の、熱交換器1での冷媒の流れ方向を示している。
 熱交換器1は、冷媒分配器10と、複数の伝熱管2と、複数のフィン3と、合流管4とを備えている。空気調和装置100に熱交換器1が搭載された際、冷媒分配器10は、例えば水平方向に配置される。複数の伝熱管2は、間隔を空けて並べられている。各伝熱管2の一方の端部は、冷媒分配器10に接続されている。本実施の形態1では、各伝熱管2の下端が、冷媒分配器10に接続されている。複数のフィン3は、隣接する2つの伝熱管2の間に設けられ、これらの伝熱管2と接続されている。合流管4は、各伝熱管2の他方の端部が接続されるものである。本実施の形態1では、各伝熱管2の上端が、合流管4に接続されている。
 熱交換器1が蒸発器として用いられる場合、外部から熱交換器1に流入する冷媒は、まず、冷媒分配器10に流入する。冷媒分配器10に流入した冷媒は、各伝熱管2に分配され、各伝熱管2を流れる。各伝熱管2を流れる冷媒は、伝熱管2及びフィン3を介して、空気と熱交換する。そして、各伝熱管2から流出した冷媒は、合流管4で合流し、合流管4から熱交換器1の外部へ流出する。また、熱交換器1が凝縮器として用いられる場合、外部から熱交換器1に流入する冷媒は、合流管4に流入する。合流管4に流入した冷媒は、各伝熱管2に分配され、各伝熱管2を流れる。各伝熱管2を流れる冷媒は、伝熱管2及びフィン3を介して、空気と熱交換する。そして、各伝熱管2から流出した冷媒は、冷媒分配器10で合流し、冷媒分配器10から熱交換器1の外部へ流出する。このため、冷媒分配器10には冷媒配管121が接続され、合流管4には冷媒配管122が接続されている。
[冷媒分配器10]
 上述のように、熱交換器1が蒸発器として用いられる場合、外部から冷媒分配器10に流入した冷媒が、各伝熱管2に分配される。すなわち、冷媒分配器10は、気液二相冷媒を各伝熱管2に分配することとなる。気液二相冷媒を各伝熱管2に分配する際、熱交換器1の熱交換性能が低下することを抑制するには、気液二相冷媒の液冷媒成分を各伝熱管2へ均一に分配することが重要となる。このため、本実施の形態1に係る熱交換器1においては、図2に示すように冷媒分配器10が構成されている。具体的には、冷媒分配器10は、2重管構造となっており、外管20、内管30及び第1仕切り11を備えている。
 外管20は、両端部が閉塞された管状部材である。外管20には、該外管20の長手方向に間隔を空けて、複数の伝熱管2のそれぞれが接続される複数の接続部21が設けられている。すなわち、複数の伝熱管2は、外管20の長手方向に間隔を空けて並んでいる。ここで、外管20の長手方向とは、外管20の延びる方向であり、外管20の管軸方向である。図2では、紙面左右方向が外管20の長手方向となっている。なお、外管20は、少なくとも一部が曲がっていてもよい。この場合、外管20の任意の位置で長手方向を規定する場合、当該位置での管軸方向が長手方向となる。
 内管30は、一方の端部である第1端部31が少なくとも開口した管状部材である。換言すると、内管30は、少なくとも第1端部31に開口部31aが形成された管状部材である。本実施の形態1では、内管30は、両端部が開口した管状部材となっている。すなわち、本実施の形態1では、内管30における第1端部31とは反対側の端部である第2端部32も開口している。換言すると、本実施の形態1では、内管30の第2端部32には、開口部32aが形成されている。また、内管30は、外管20の内部に設けられている。内管30が外管20の内部に設けられている状態において、第1端部31の開口部31aは、外管20の内部空間に連通している。また、内管30が外管20の内部に設けられている状態において、第2端部32の開口部32aは、外管20の端部で閉塞されている。また、内管30の外周部には、冷媒流出孔とも呼ばれる複数の第1オリフィス30aが形成されている。複数の第1オリフィス30aは、内管30の管軸方向に間隔を空けて形成されている。
 詳細は後述するが、このように構成された冷媒分配器10においては、内管30の内部を流れる気液二相冷媒は、複数の第1オリフィス30aを通って、内管30の外周面と外管20の内周面との間の空間に流出する。そして、内管30の外周面と外管20の内周面との間の空間に流出した気液二相冷媒は、外管20の各接続部21を通って、各伝熱管2へ流入していく。
 このように各伝熱管2へ気液二相冷媒を分配する場合、複数の第1オリフィス30aの形成位置は特に限定されないが、図2に示す位置に複数の第1オリフィス30aを形成するのが好ましい。詳しくは、各第1オリフィス30aは、内管30の管軸方向において、隣接する2つの伝熱管2の間となる位置に形成されているのが好ましい。図2に示すように各第1オリフィス30aを形成することにより、伝熱管2の直下に第1オリフィス30aを形成した場合と比べ、内管30の外周面と外管20の内周面との間の空間に流出した気液二相冷媒のガス冷媒成分と液冷媒成分とが、該空間で混合された後に各伝熱管2へ流入しやすくなる。このため、図2に示すように各第1オリフィス30aを形成することにより、気液二相冷媒の液冷媒成分を各伝熱管2へより均一に分配することができる。
 また、上述のように各伝熱管2へ気液二相冷媒を分配する場合、内管30がたわんでいる場合等、外管20の管軸に対する内管30の管軸の傾きが大きくなっている場合、気液二相冷媒の液冷媒成分を各伝熱管2へ均一に分配することの効果が低減する。内管30の内部において気液二相冷媒の液冷媒成分が偏って流れやすくなり、内管30の外周面と外管20の内周面との間の空間において気液二相冷媒の液冷媒成分が偏って流れやすくなるからである。このため、本実施の形態1に係る冷媒分配器10においては、内管30の両端部周辺を保持し、外管20の管軸に対する内管30の管軸の傾きが大きくなることを抑制している。これにより、気液二相冷媒の液冷媒成分を各伝熱管2へより均一に分配することができる。
 具体的には、外管20の内部には、第1仕切り11が設けられている。また、第1仕切り11には、第1貫通孔11aが形成されている。そして、内管30の第1端部31周辺は、第1仕切り11の第1貫通孔11aに挿入されている。これにより、内管30の第1端部31周辺は、第1仕切り11によって保持されている。また、内管30の第2端部32は、外管20の端部に固定される等により、外管20に保持されている。
 また、図3に示すように、第1仕切り11は、内管30の外周面と外管20の内周面との間を閉塞している。このため、図2に示すように、第1仕切り11によって、外管20の内部は、主空間40と第1空間41とに仕切られている。主空間40は、複数の第1オリフィス30a及び複数の接続部21が連通する空間である。第1空間41は、複数の第1オリフィス30a及び複数の接続部21が開口しておらず、内管30の第1端部31の開口部31aが連通する空間である。そして、本実施の形態1に係る冷媒分配器10においては、外部から冷媒分配器10に流入した冷媒は、一旦、第1空間41に供給される構成となっている。すなわち、本実施の形態1に係る冷媒分配器10においては、外部から第1空間41に供給された冷媒が、内管30の内部、複数の第1オリフィス30a、主空間40及び複数の接続部21を通って、複数の伝熱管2に流入する構成となっている。
 なお、本実施の形態1では、外管20は、第1空間41と連通する接続部22を備えている。そして、当該接続部22に、冷媒配管121が接続されている。これにより、熱交換器1が蒸発器として用いられる場合、冷媒配管121から冷媒分配器10の第1空間41に、気液二相冷媒が供給される。このように外管20に冷媒配管121を接続する場合、図2に示すように、外管20に冷媒配管121を接続するのが好ましい。具体的には、冷媒配管121は、伝熱管2の延伸方向に沿って配置され、外管20に接続されるのが好ましい。このように外管20に冷媒配管121を接続することにより、複数の伝熱管2の並び方向において、冷媒配管121の占有長さが小さくなる。このため、このように外管20に冷媒配管121を接続することにより、空気調和装置100における熱交換器1及び冷媒配管121の設置スペースにおいて、より多くの伝熱管2を並べることができる。したがって、このように外管20に冷媒配管121を接続することにより、熱交換器1における伝熱管2の実装性を向上させることができる。
 ここで、従来の熱交換器においても、気液二相冷媒の液冷媒成分の各伝熱管への均一な分配を目的として、2重管構造の冷媒分配器を備えたものが知られている。しかしながら、従来の2重管構造の冷媒分配器は、外管内に第1空間41が形成されておらず、外部の冷媒が内管に直接流入する構成となっている。このため、従来の2重管構造の冷媒分配器を備えた熱交換器は、気液二相冷媒の液冷媒成分が内管の内部において偏って流れる場合等、内管の内部を流れる気液二相冷媒の状態によっては、未だ、気液二相冷媒の液冷媒成分の各伝熱管への分配が不均一となり、熱交換器の熱交換性が低下してしまう。
 一方、本実施の形態1に係る熱交換器1においては、外部から冷媒分配器10の第1空間41に流入した気液二相冷媒は、ガス冷媒成分と液冷媒成分とが該第1空間41で混合される。そして、ガス冷媒成分と液冷媒成分とが混合された気液二相冷媒が、内管30の内部を流れ、第1オリフィス30a、主空間40、及び外管20の接続部21を通って、複数の伝熱管2に分配される。このため、本実施の形態1に係る熱交換器1においては、気液二相冷媒の液冷媒成分が内管30の内部において偏って流れることを抑制でき、安定した状態の気液二相冷媒を内管30に流動させることができる。したがって、本実施の形態1に係る熱交換器1は、従来と比べ、各伝熱管2へ、気液二相冷媒の液冷媒成分を均一に分配できる。
 以上、本実施の形態1に係る熱交換器1は、複数の伝熱管2と、外管20と、内管30と、第1仕切り11とを備えている。外管20には、複数の伝熱管2のそれぞれが接続される複数の接続部21が長手方向に間隔を空けて設けられている。内管30には、外周部に複数の第1オリフィス30aが形成されている。内管30は、外管20の内部に設けられている。第1仕切り11には、内管30が挿入された第1貫通孔11aが形成されている。第1仕切り11は、外管20の内部を主空間40と第1空間41とに仕切っている。主空間40は、複数の第1オリフィス30a及び複数の接続部21が連通する空間である。第1空間41は、複数の第1オリフィス30a及び複数の接続部21が開口しておらず、内管30の第1端部31の開口部31aが連通する空間である。そして、本実施の形態1に係る冷媒分配器10においては、第1空間41に供給された冷媒が、内管30の内部、複数の第1オリフィス30a、主空間40及び複数の接続部21を通って、複数の伝熱管2に流入する構成となっている。
 このように構成された熱交換器1においては、気液二相冷媒の液冷媒成分が内管30の内部において偏って流れることを抑制でき、安定した状態の気液二相冷媒を内管30に流動させることができる。したがって、本実施の形態1に係る熱交換器1は、従来と比べ、各伝熱管2へ、気液二相冷媒の液冷媒成分を均一に分配できる。
 なお、本実施の形態1では、熱交換器1は、空気調和装置100の室外熱交換器として用いられていた。これに限らず、熱交換器1は、空気調和装置100の室内熱交換器105として用いられてもよい。また、例えば、空気調和装置100の室外熱交換器及び室内熱交換器105の双方に、熱交換器1が用いられていてもよい。
実施の形態2.
 本実施の形態2に示すように、冷媒分配器10の外管20の内部に第2空間42をさらに形成することにより、各伝熱管2へ、気液二相冷媒の液冷媒成分をさらに均一に分配することが可能となる。なお、本実施の形態2において言及されていない事項は、実施の形態1と同様とする。
 図4は、本実施の形態2に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。
 本実施の形態2に係る熱交換器1は、実施の形態1の構成に加え、冷媒分配器10に第2仕切り12を備えている。第2仕切り12は、外管20の内部に設けられている。また、第2仕切り12には、第2貫通孔12aが形成されている。そして、内管30の第2端部32周辺は、第2仕切り12の第2貫通孔12aに挿入されている。これにより、内管30の第2端部32周辺は、第2仕切り12によって保持されている。
 また、第2仕切り12は、内管30の外周面と外管20の内周面との間を閉塞している。このため、第2仕切り12によって、外管20の内部は、主空間40と第2空間42とに仕切られている。主空間40は、実施の形態1で説明したように、複数の第1オリフィス30a及び複数の接続部21が連通する空間である。第2空間42は、複数の第1オリフィス30a及び複数の接続部21が開口しておらず、内管30の第2端部32の開口部32aが連通する空間である。
 第2空間42は、内管30の内部空間よりも、内管30の管軸に垂直な方向の断面が大きい空間である。第2空間42が形成された冷媒分配器10においては、内管30を流れる気液二相冷媒は、第2端部32の開口部32aから第2空間42に流入し、外管20の端部に衝突する。このとき、第2空間42に、気液二相冷媒の液冷媒成分が集められることとなる。このため、冷媒分配器10の外管20の内部に第2空間42を形成することにより、複数の第1オリフィス30aのうち、第2端部32付近の第1オリフィス30aに気液二相冷媒の液冷媒成分が多く分配されてしまうことを抑制できる。したがって、冷媒分配器10の外管20の内部に第2空間42を形成することにより、各伝熱管2へ、気液二相冷媒の液冷媒成分をさらに均一に分配することが可能となる。
 発明者らは、外管20の内部に第2空間42を形成することによる上述の冷媒分配改善効果のメカニズムを、冷媒分配器10を流れる気液二相冷媒の流動挙動の可視化実験によって解明した。以下、発明者らが解明した上述の冷媒分配改善効果のメカニズムを、図5及び図6を用いて説明する。
 図5は、比較例に係る冷媒分配器を示す断面図である。また、図6は、本実施の形態2に係る冷媒分配器を示す断面図である。なお、比較例に係る冷媒分配器210を説明する際、本実施の形態2に係る冷媒分配器10の構成と同一の構成には、本実施の形態2に係る冷媒分配器10の構成と同一の符号を付すこととする。
 比較例に係る冷媒分配器210は、外管20の内部に第2空間42が形成されていない。このため、比較例に係る冷媒分配器210においては、内管30の第2端部32の開口部32aは、外管20の端部で閉塞されている。比較例に係る冷媒分配器210のこれ以外の構成は、本実施の形態2に係る冷媒分配器10と同じである。
 内管30内の気液二相冷媒の流速が高く、内管30を流れる気液二相冷媒に作用する慣性力が大きい場合等、内管30の第2端部32に、気液二相冷媒の液冷媒成分が過剰に流れ込む場合がある。内管30の第2端部32に気液二相冷媒の液冷媒成分が過剰に流れ込む場合、第2空間42が形成されていない比較例に係る冷媒分配器210においては、内管30の第2端部32に流れてきた気液二相冷媒の液冷媒成分は、外管20の端部に衝突した後、第2端部32付近の第1オリフィス30aから主空間40へ流出する。このため、内管30の第2端部32に気液二相冷媒の液冷媒成分が過剰に流れ込む場合、比較例に係る冷媒分配器210においては、複数の第1オリフィス30aのうち、第2端部32付近の第1オリフィス30aに気液二相冷媒の液冷媒成分が多く分配されてしまう。
 一方、第2空間42が形成されている本実施の形態2に係る冷媒分配器10においては、内管30の第2端部32に流れてきた気液二相冷媒の液冷媒成分は、第2端部32の開口部32aから第2空間42に流入し、外管20の端部に衝突する。そして、第2空間42に流入した気液二相冷媒の液冷媒成分は、第2空間42に溜まる。すなわち、第2空間42が気液二相冷媒の液冷媒成分を集める淀み空間として機能する。淀み空間は、バッファタンクと表現することもできる。また、内管30を流れる気液二相冷媒は脈動しているため、ある時間がたつと、第2空間42に溜まった液冷媒成分の一部は、逆流して上流側の内管30の第1オリフィス30aへと流れていく。したがって、時間平均でみると、冷媒分配器10の外管20の内部に第2空間42を形成することにより、各伝熱管2へ、気液二相冷媒の液冷媒成分をさらに均一に分配することが可能となる。
 ここで、本実施の形態2のように外管20の内部に第1空間41及び第2空間42を形成する場合、第1空間41及び第2空間42の大きさは、次のような関係になっていることが好ましい。詳しくは、図4に示すように、第1空間41における外管20の長手方向の長さを、長さL1と定義する。また、第2空間42における外管20の長手方向の長さを、長さL2と定義する。このように長さL1及び長さL2を定義した場合、長さL1は長さL2よりも長いことが好ましい。なぜならば、第2空間42は、外管20の内部に形成されていることが重要であって、長さL2が小さくても上述の効果を得ることができる。また、長さL2を小さくすることにより、空気調和装置100における熱交換器1の設置スペースにおいて、より多くの伝熱管2を並べることができる。このため、長さL2を小さくすることにより、熱交換器1における伝熱管2の実装性を向上させることができる。したがって、長さL1は長さL2よりも長いことが好ましい。
 また、本実施の形態2のように外管20の内部に第1空間41及び第2空間42を形成する場合、求められる効果に応じて、第1仕切り11に対する内管30の第1端部31の挿入状態、及び、第2仕切り12に対する内管30の第2端部32の挿入状態を、つぎのように決定すればよい。
 例えば、冷媒分配器10の組立の容易性が要求される場合、図4に示すように、内管30の第1端部31は第1空間41に突出しており、内管30の第2端部32は第2空間42に突出しているのがよい。これにより、冷媒分配器10を組み立てる際、第1仕切り11及び第2仕切り12から内管30がはずれてしまうことを抑制できる。また、これにより、冷媒分配器10を組み立てた際、外管20の管軸に対する内管30の管軸の傾きが大きくなることを抑制できる。
 このとき、内管30の第1端部31の第1空間41への突出長さ、及び、内管30の第2端部32の第2空間42への突出長さは、例えば、次のようになっているのが好ましい。詳しくは、図4に示すように、内管30の第1空間41へ突出している長さを、突出長さt1と定義する。また、内管30の第2空間42へ突出している長さを、突出長さt2と定義する。このように突出長さt1及び突出長さt2を定義した場合、突出長さt1は、突出長さt2よりも短いことが好ましい。突出長さt1を突出長さt2よりも短くすることにより、各伝熱管2へ気液二相冷媒の液冷媒成分を均一に分配するために空間容積が大きい方が好ましい第1空間41を、大きく形成できる。また、突出長さt1を突出長さt2よりも短くする場合、冷媒分配器10の組立時、外管20における第1空間41が形成される側の端部から、内管30を外管20へ挿入する構成とすることが好ましい。第1仕切り11及び第2仕切り12のうち、組立時に奥側となる第2仕切りに内管30を挿入することが容易となり、冷媒分配器10の組立がより容易となるからである。
 また、各伝熱管2へ気液二相冷媒の液冷媒成分をさらに均一に分配したい場合には、第1仕切り11に対する内管30の第1端部31の挿入状態、及び、第2仕切り12に対する内管30の第2端部32の挿入状態を、図7に示すようにするとよい。
 図7は、本実施の形態2に係る冷媒分配器の別の一例を示す断面図である。
 図7に示す冷媒分配器10においては、内管30の第1端部31は、第1仕切り11の第1貫通孔11aの内部に配置されている。換言すると、内管30の第1端部31は、第1空間41に突出していない。同様に、図7に示す冷媒分配器10においては、内管30の第2端部32は、第2仕切り12の第2貫通孔12aの内部に配置されている。換言すると、内管30の第2端部32は、第2空間42に突出していない。
 このように冷媒分配器10を構成することにより、第1空間41及び第2空間42に内管30が突出している場合と比べ、第1空間41及び第2空間42を大きく形成することができる。このため、このように冷媒分配器10を構成することにより、各伝熱管2へ気液二相冷媒の液冷媒成分をさらに均一に分配することができる。なお、実施の形態1で示した熱交換器1においても、図7で示すように、第1仕切り11で内管30を保持してもよい。これにより、第1空間41に内管30が突出している場合と比べ、第1空間41を大きく形成することができ、各伝熱管2へ気液二相冷媒の液冷媒成分をさらに均一に分配することができる。
実施の形態3.
 熱交換器1が第2仕切り12を備えている場合、本実施の形態3のように、第2仕切り12に第2オリフィス12bを形成してもよい。なお、本実施の形態3において言及されていない事項は、実施の形態1又は実施の形態2と同様とする。
 図8は、本実施の形態3に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。図9は、本実施の形態3に係る熱交換器の冷媒分配器における第2空間周辺を示す断面図である。
 本実施の形態3に係る熱交換器1は、実施の形態2で示した熱交換器1と同様に第2仕切り12を備え、外管20の内部に第2空間42が形成されている。さらに、本実施の形態3に係る熱交換器1においては、第2仕切り12には、主空間40と第2空間42とを連通させる少なくとも1つの第2オリフィス12bが形成されている。
 実施の形態2で説明したように、外管20の内部に第2空間42が形成されていることにより、内管30の第2端部32に気液二相冷媒の液冷媒成分が過剰に流れ込む場合、気液二相冷媒の液冷媒成分を第2空間42に溜めることで、各伝熱管2へ気液二相冷媒の液冷媒成分を均一に分配することができる。この際、実施の形態2で示した熱交換器1においては、内管30を流れる気液二相冷媒の脈動により、第2空間42に溜まった液冷媒成分の一部が逆流して、内管30に戻る。本実施の形態3に係る熱交換器1においては、第2空間42に溜まった液冷媒成分の一部は、さらに、第2オリフィス12bを通って、主空間40に流入することができる。このため、第2仕切り12に第2オリフィス12bを形成することにより、第2空間42を形成して各伝熱管2へ気液二相冷媒の液冷媒成分を均一に分配する際、各伝熱管2へ、より多くの液冷媒成分を分配することができる。このため、第2仕切り12に第2オリフィス12bを形成することにより、熱交換器1の熱交換性能の低下をさらに抑制できる。
 なお、上述のように、第2仕切り12には、少なくとも1つの第2オリフィス12bが形成されていればよい。すなわち、第2仕切り12には、1つの第2オリフィス12bが形成されていてもよいし、複数の第2オリフィス12bが形成されていてもよい。ここで、第2仕切り12に第2オリフィス12bを形成する場合、次のような位置に第2オリフィス12bを形成するとよい。以下に、第2オリフィス12bの好適な形成位置を、図10及び図11を用いて説明する。
 図10及び図11は、本実施の形態3に係る熱交換器の一例の冷媒分配器周辺を観察した断面図である。これらの図10及び図11は、外管20の長手方向と垂直な断面において、本実施の形態3に係る熱交換器の一例の冷媒分配器周辺を観察した図となっている。さらに詳しくは、これらの図10及び図11は、図8に示すB-B断面において、本実施の形態3に係る熱交換器の一例の冷媒分配器周辺を観察した図となっている。
 図10及び図11に示すように、外管20の長手方向と垂直な断面において、第2オリフィス12bは、内管30に形成された第1オリフィス30aと干渉しない位置に形成されているのが好ましい。外管20の長手方向と垂直な断面において第1オリフィス30aと干渉しない位置とは、第1オリフィス30aの軸心30bの延長線上でない位置である。このような位置に第2オリフィス12bを形成することにより、第2オリフィス12bから主空間40に流入する冷媒の流れと、第1オリフィス30aから主空間40に流入する冷媒の流れとが干渉することを、抑制できる。この結果、主空間40内での冷媒の流れが安定し、各伝熱管2へ気液二相冷媒の液冷媒成分をより均一に分配することができる。
 また、第2オリフィス12bは、大きく形成されているほど、第2空間42に溜まった液冷媒成分の多くを、第2オリフィス12bから主空間40に流入させることができる。このため、第2オリフィス12bは、例えば、以下のような大きさであることが好ましい。詳しくは、複数の第1オリフィス30aのうちの1つの開口面積を、開口面積S1と定義する。また、全ての第2オリフィス12bの開口面積の総和を、開口面積S2と定義する。このように開口面積S1及び開口面積S2を定義した場合、開口面積S2は、開口面積S1よりも大きいことが好ましい。すなわち、全ての第2オリフィス12bの冷媒の流量の総和が、第1オリフィス30a1つ当たりの冷媒の流量よりも大きくなることが好ましい。
実施の形態4.
 熱交換器1は、本実施の形態4のように、中間仕切り13を備えていてもよい。なお、本実施の形態4において言及されていない事項は、実施の形態1~実施の形態3のいずれかと同様とする。
 図12は、本実施の形態4に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。
 本実施の形態4に係る熱交換器1は、少なくとも1つの中間仕切り13を備えている。中間仕切り13は、外管20の内部において、第1仕切り11と第2仕切り12との間に設けられている。また、中間仕切り13には、中間仕切り貫通孔13aが形成されている。そして、内管30の途中部は、中間仕切り13の中間仕切り貫通孔13aに挿入されている。すなわち、中間仕切り13は、内管30の途中部を保持すると共に、主空間40を複数の空間に仕切っている。以下、これらの空間を主空間部分40aと称する。
 中間仕切り13を備えることにより、内管30が長い場合でも、内管30のたわみ等によって外管20の管軸に対する内管30の管軸の傾きが大きくなることを抑制できる。このため、中間仕切り13を備えることにより、内管30が長い場合でも、気液二相冷媒の液冷媒成分を各伝熱管2へ均一に分配することができる。
 図13は、本実施の形態4に係る熱交換器の別の一例を側方から観察した模式図であり、一部を断面とした図である。
 本実施の形態4に係る熱交換器1においては、図13に示すように中間仕切り13に少なくとも1つの中間仕切りオリフィス13bが形成されていてもよいし、図12に示すように中間仕切り13に中間仕切りオリフィス13bが形成されていなくてもよい。なお、中間仕切りオリフィス13bは、隣接する主空間部分40aを連通させる貫通孔である。
 中間仕切り13に中間仕切りオリフィス13bが形成されているか否かによって、それぞれ異なる効果を得ることができる。例えば、図12に示すように、中間仕切り13に中間仕切りオリフィス13bが形成されていない場合、内管30に形成された複数の第1オリフィス30aによる流体抵抗の調整効果が向上する。この結果、気液二相冷媒の液冷媒成分を各伝熱管2へより均一に分配することができる。一方、実施の形態1の空気調和装置100で説明したように、熱交換器1を凝縮器としても使用する場合には、冷媒分配器10は、各伝熱管2から冷媒分配器10へ流出した冷媒を合流させる合流管として機能する。このような場合、図13に示すように、中間仕切り13に少なくとも1つの中間仕切りオリフィス13bが形成されていることで、冷媒分配器10の流体抵抗を低減することができる。
実施の形態5.
 熱交換器1が第2仕切り12を備えている場合、本実施の形態5のように熱交換器1を構成してもよい。なお、本実施の形態5において言及されていない事項は、実施の形態1~実施の形態4のいずれかと同様とする。
 図14は、本実施の形態5に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。
 本実施の形態5に係る熱交換器1においては、第1空間41に加え、第2空間42にも気液二相冷媒が供給される構成となっている。このため、本実施の形態5に係る熱交換器1においては、第1空間41に供給された冷媒、及びら第2空間42に供給された冷媒が、内管30の内部、複数の第1オリフィス30a、主空間40及び複数の接続部21を通って、複数の伝熱管2に流入する構成となっている。
 なお、本実施の形態5では、外管20は、第2空間42と連通する接続部23を備えている。そして、当該接続部23に、冷媒配管121が接続されている。これにより、熱交換器1が蒸発器として用いられる場合、冷媒配管121から冷媒分配器10の第2空間42に、気液二相冷媒が供給される。
 本実施の形態5のように冷媒分配器10の両端側から気液二相冷媒が流入する構成とすることにより、冷媒分配器10の片側から気液二相冷媒が流入する構成と比べ、以下のような効果が得られる。外管20の管軸に対する内管30の管軸が傾くことに起因する気液二相冷媒の液冷媒成の偏った流れを抑制でき、熱交換器1の熱交換性能の低下を抑制できる。内管30を流れる気液二相冷媒の流れ方向において下流端周辺に位置する第1オリフィス30aに、慣性力の影響によって気液二相冷媒の液冷媒成が偏って分配されることを抑制することができ、熱交換器1の熱交換性能の低下を抑制できる。上述のように、熱交換器1が凝縮器として用いられる場合、冷媒分配器10は、各伝熱管2から冷媒分配器10へ流出した冷媒を合流させる合流管として機能する。このような場合、冷媒分配器10の流体抵抗を大幅に低減することができる。また、本実施の形態5に係る冷媒分配器10は、第2空間42が形成されているので、冷媒分配器10の両端側から気液二相冷媒が流入する構成とする際に、冷媒分配器10の両端への冷媒配管121の接続が容易となる。
実施の形態6.
 熱交換器1は、本実施の形態6に示すようにフィンレス熱交換器であってもよい。なお、本実施の形態6において言及されていない事項は、実施の形態1~実施の形態5のいずれかと同様とする。
 図15は、本実施の形態6に係る熱交換器を側方から観察した模式図であり、一部を断面とした図である。
 本実施の形態6に係る熱交換器1は、フィン3が設けられていない、フィンレス熱交換器となっている。具体的には、本実施の形態6に係る熱交換器1は、実施の形態1~実施の形態5のいずれかで示した熱交換器1からフィン3が取り外された構成となっている。なお、図15は、実施の形態5で示した熱交換器1からフィン3が取り外されている例を示している。
 フィンレス熱交換器では、伝熱面積を増加させるため、伝熱管の高密度実装が重要となる。このため、フィンレス熱交換器は、フィンを備えた熱交換器と比べ、伝熱管の本数が増加する。このため、フィンレス熱交換器の冷媒分配器として、気液二相冷媒の液冷媒成分を従来よりも均一に各伝熱管2へ分配できる実施の形態1~実施の形態5のいずれかで示した冷媒分配器10は、好適である。
 1 熱交換器、2 伝熱管、3 フィン、4 合流管、10 冷媒分配器、11 第1仕切り、11a 第1貫通孔、12 第2仕切り、12a 第2貫通孔、12b 第2オリフィス、13 中間仕切り、13a 中間仕切り貫通孔、13b 中間仕切りオリフィス、20 外管、21 接続部、22 接続部、23 接続部、30 内管、30a 第1オリフィス、30b 軸心、31 第1端部、31a 開口部、32 第2端部、32a 開口部、40 主空間、40a 主空間部分、41 第1空間、42 第2空間、100 空気調和装置、101 圧縮機、102 四方弁、103 ファン、104 膨張弁、105 室内熱交換器、106 ファン、107 アキュムレータ、111 室外機、112 室内機、121 冷媒配管、122 冷媒配管、210 冷媒分配器(比較例)。

Claims (13)

  1.  複数の伝熱管と、
     前記複数の伝熱管のそれぞれが接続される複数の接続部が長手方向に間隔を空けて設けられた外管と、
     外周部に複数の第1オリフィスが形成され、前記外管の内部に設けられた内管と、
     前記内管が挿入された第1貫通孔が形成され、前記外管の内部を主空間と第1空間とに仕切る第1仕切りと、
     を備え、
     前記主空間は、前記複数の第1オリフィス及び前記複数の接続部が連通する空間であり、
     前記第1空間は、前記複数の第1オリフィス及び前記複数の接続部が開口しておらず、前記内管の一方の端部である第1端部の開口部が連通する空間であり、
     前記第1空間に供給された冷媒が、前記内管の内部、前記複数の第1オリフィス、前記主空間及び前記複数の接続部を通って、前記複数の伝熱管に流入する構成である
     熱交換器。
  2.  前記内管が挿入された第2貫通孔が形成され、前記外管の内部を前記主空間と第2空間とに仕切る第2仕切りを備え、
     前記第2空間は、前記複数の第1オリフィス及び前記複数の接続部が開口しておらず、前記内管における前記第1端部とは反対側の端部である第2端部の開口部が連通する空間である
     請求項1に記載の熱交換器。
  3.  前記第1空間の前記長手方向の長さを長さL1とし、前記第2空間の前記長手方向の長さを長さL2としたとき、
     前記長さL1は、前記長さL2よりも長い
     請求項2に記載の熱交換器。
  4.  前記第1仕切りと前記第2仕切りとの間に設けられ、前記主空間を複数の主空間部分に仕切る中間仕切りを備えている
     請求項2又は請求項3に記載の熱交換器。
  5.  前記中間仕切りには、隣接する前記主空間部分を連通させる少なくとも1つの中間仕切りオリフィスが形成されている
     請求項4に記載の熱交換器。
  6.  前記第2仕切りには、前記主空間と前記第2空間とを連通させる少なくとも1つの第2オリフィスが形成されている
     請求項2~請求項5のいずれか一項に記載の熱交換器。
  7.  前記複数の第1オリフィスのうちの1つの開口面積を開口面積S1とし、
     全ての前記第2オリフィスの開口面積の総和を開口面積S2としたとき、
     前記開口面積S2は、前記開口面積S1よりも大きい
     請求項6に記載の熱交換器。
  8.  前記第1空間に供給された冷媒、及び前記第2空間に供給された冷媒が、前記内管の内部、前記複数の第1オリフィス、前記主空間及び前記複数の接続部を通って、前記複数の伝熱管に流入する構成である
     請求項2~請求項5のいずれか一項に記載の熱交換器。
  9.  前記内管の前記第1端部は、前記第1空間に突出しており、
     前記内管の前記第2端部は、前記第2空間に突出している
     請求項2~請求項8のいずれか一項に記載の熱交換器。
  10.  前記内管の前記第1空間へ突出している長さを突出長さt1とし、
     前記内管の前記第2空間へ突出している長さを突出長さt2としたとき、
     前記突出長さt1は、前記突出長さt2よりも短い
     請求項9に記載の熱交換器。
  11.  前記内管の前記第2端部は、前記第2仕切りの前記第2貫通孔の内部に配置されている
     請求項2~請求項10のいずれか一項に記載の熱交換器。
  12.  前記内管の前記第1端部は、前記第1仕切りの前記第1貫通孔の内部に配置されている
     請求項1~請求項11のいずれか一項に記載の熱交換器。
  13.  請求項1~請求項12のいずれか一項に記載の熱交換器を備えている
     空気調和装置。
PCT/JP2022/018298 2022-04-20 2022-04-20 熱交換器及び空気調和装置 WO2023203683A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/018298 WO2023203683A1 (ja) 2022-04-20 2022-04-20 熱交換器及び空気調和装置
JP2023535013A JP7370501B1 (ja) 2022-04-20 2022-04-20 熱交換器及び空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018298 WO2023203683A1 (ja) 2022-04-20 2022-04-20 熱交換器及び空気調和装置

Publications (1)

Publication Number Publication Date
WO2023203683A1 true WO2023203683A1 (ja) 2023-10-26

Family

ID=88419460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018298 WO2023203683A1 (ja) 2022-04-20 2022-04-20 熱交換器及び空気調和装置

Country Status (2)

Country Link
JP (1) JP7370501B1 (ja)
WO (1) WO2023203683A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037898A (ja) * 2012-08-10 2014-02-27 Daikin Ind Ltd 熱交換器
JP2014533819A (ja) * 2011-11-18 2014-12-15 エルジー エレクトロニクス インコーポレイティド 熱交換器
JP2018162901A (ja) * 2017-03-24 2018-10-18 日立ジョンソンコントロールズ空調株式会社 熱交換器、および、それを用いた空気調和機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533819A (ja) * 2011-11-18 2014-12-15 エルジー エレクトロニクス インコーポレイティド 熱交換器
JP2014037898A (ja) * 2012-08-10 2014-02-27 Daikin Ind Ltd 熱交換器
JP2018162901A (ja) * 2017-03-24 2018-10-18 日立ジョンソンコントロールズ空調株式会社 熱交換器、および、それを用いた空気調和機

Also Published As

Publication number Publication date
JPWO2023203683A1 (ja) 2023-10-26
JP7370501B1 (ja) 2023-10-27

Similar Documents

Publication Publication Date Title
US8235101B2 (en) Parallel flow heat exchanger for heat pump applications
EP2144028B1 (en) Heat exchanger and refrigerating air conditioner
JP6202451B2 (ja) 熱交換器及び空気調和機
US20110203308A1 (en) Heat exchanger including multiple tube distributor
CN112204312A (zh) 空气调节装置的室外机及空气调节装置
WO2020161761A1 (ja) 熱交換器およびこれを備えた空気調和装置
EP1809968A2 (en) Parallel flow evaporator with shaped manifolds
CN111936815B (zh) 分配器以及热交换器
JP4358981B2 (ja) 空調用凝縮器
US20160223231A1 (en) Heat exchanger and air conditioner
JP2021017991A (ja) 熱交換器、空気調和装置、室内機および室外機
CN110595111B (zh) 换热器和多制冷系统空调机组
US20050006070A1 (en) Heat exchanger
EP3647711B1 (en) Heat exchanger
CN110832260B (zh) 热交换器及制冷循环装置
US11614260B2 (en) Heat exchanger for heat pump applications
WO2023203683A1 (ja) 熱交換器及び空気調和装置
JP2001174103A (ja) 冷媒凝縮器
JP6766980B1 (ja) 熱交換器及び熱交換器を搭載した空気調和装置
CN210320743U (zh) 换热器和多制冷系统空调机组
CN115298507A (zh) 换热器
WO2021214849A1 (ja) 空気調和機、冷凍機及び分配器
WO2020178965A1 (ja) 熱交換器及び冷凍サイクル装置
KR20040067003A (ko) 열교환기
KR20230027403A (ko) 열교환기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023535013

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938485

Country of ref document: EP

Kind code of ref document: A1