WO2017149950A1 - 熱交換器及び空気調和機 - Google Patents

熱交換器及び空気調和機 Download PDF

Info

Publication number
WO2017149950A1
WO2017149950A1 PCT/JP2017/000974 JP2017000974W WO2017149950A1 WO 2017149950 A1 WO2017149950 A1 WO 2017149950A1 JP 2017000974 W JP2017000974 W JP 2017000974W WO 2017149950 A1 WO2017149950 A1 WO 2017149950A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
heat exchanger
header portion
pipe
heat transfer
Prior art date
Application number
PCT/JP2017/000974
Other languages
English (en)
French (fr)
Inventor
将之 左海
青木 泰高
秀哲 立野井
洋平 葛山
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to CN201780003725.8A priority Critical patent/CN108351188A/zh
Priority to EP17759422.3A priority patent/EP3355023A4/en
Priority to AU2017228091A priority patent/AU2017228091B2/en
Publication of WO2017149950A1 publication Critical patent/WO2017149950A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Definitions

  • the present invention relates to a heat exchanger and an air conditioner.
  • Priority is claimed on Japanese Patent Application No. 2016-038404, filed Feb. 29, 2016, the content of which is incorporated herein by reference.
  • a plurality of heat transfer tubes extending in the horizontal direction are arranged at intervals in the vertical direction, and fins are provided on the outer surface of each heat transfer tube. Both ends of the plurality of heat transfer tubes are respectively connected to a pair of vertically extending headers.
  • a heat exchanger is again introduced into one of the headers, the refrigerant flowing through the heat transfer pipe and circulating to the other header is folded back by the other header, and the heat transfer pipe is again carried out.
  • Patent Document 1 discloses a heat exchanger provided with a connecting pipe having one main pipe and a branch pipe extending from the main pipe into a plurality of branches.
  • the main pipe section is connected to the area in one header, and the branch pipe sections are each connected to any of a plurality of other areas in the header.
  • An object of this invention is to provide the heat exchanger which can suppress performance fall, and the air conditioner using this heat exchanger.
  • the heat exchanger adopts the following means in order to solve the above problems.
  • the heat exchanger comprises: a first tube group having a first heat transfer tube which extends in the horizontal direction so that the refrigerant flows inside and a plurality of the heat transfer tubes are arranged at intervals in the vertical direction; A first header portion of the first heat transfer tube connected in communication with one end of each of the first heat transfer tubes in a tubular shape extending in a direction, and extending horizontally while refrigerant flows in the vertical direction while extending horizontally
  • a plurality of second pipe groups having a plurality of second heat transfer pipes arranged in a plurality at intervals and a plurality corresponding to the plurality of second pipe groups are provided to form a cylindrical shape extending in the vertical direction.
  • a plurality of second header portions are connected to one end of each of the second heat transfer tubes of the second tube group in a communicating state, and a plurality of second header portions are provided corresponding to a plurality of the second header portions.
  • One end is the same upper and lower sides of the first header portion so as to communicate with each of the second header portions.
  • Comprising a communication passage whose other end is connected to one of each of said second header portion is connected to the direction position.
  • the refrigerant introduced into the first header portion via the first heat transfer pipes of the first pipe group is a communication path connected to the same vertical position in the first header portion.
  • the liquid phase is easily accumulated in the lower portion in the first header portion due to the density difference of the gas and liquid in the refrigerant, and the gas phase is easily accumulated in the upper portion. Therefore, a difference occurs in the gas-liquid ratio of the refrigerant in the vertical direction in the first header portion.
  • the refrigerant having the same vapor phase liquid phase ratio is almost the same. Is introduced into each communication passage. Therefore, the refrigerant flow rate can be equalized in each of the plurality of communication paths. As a result, the flow rates of the refrigerant introduced into the plurality of second heat transfer pipes can be equalized.
  • the heat exchanger has one end connected to the first header portion, and a main pipe portion in which a plurality of divided flow paths arranged in parallel in the horizontal direction are formed inside, and a plurality from the other end side of the main pipe portion
  • a branched connecting pipe is formed to branch on the inner side and forming a branched flow path communicating with the divided flow path and having a branched pipe portion connected to each of the second header portions, and each of the communication paths is It may be a flow path formed by each of the divided flow paths and each of the branch flow paths.
  • each communication passage is configured with a separate connection pipe
  • the installation location on the first header portion is one, thus facilitating the installation.
  • the number of the second heat transfer pipes of each of the second pipe groups is different from each other, and the plurality of communication paths are connected to the second pipe groups having a large number of the second heat transfer pipes.
  • the cross-sectional area of the flow path may be larger as the communication path connected to the second header portion.
  • the heat exchanger includes an air blower for blowing air to each of the second tube groups, and the speed of air blast received by each of the second tube groups by the air blower is different for each of the second tube groups,
  • the plurality of communication paths may have a larger flow path cross-sectional area as the communication path connected to the second header portion to which the second pipe group having a higher speed of air flow is connected is connected.
  • heat exchange in the second pipe group is promoted as the speed of air flow received by the second pipe group is larger. Therefore, the heat exchange efficiency of the heat exchanger as a whole can be improved by introducing a large amount of refrigerant into the second header portion connected to the second pipe group having a high air blowing speed.
  • the heat exchanger has one end at the same height position as the communication passage connected to the first header portion so as to connect the first header portion to any of the plurality of second header portions. Even if it is connected to the first header portion and further includes another communication path whose other end is connected to the second header portion at a height position different from the communication path connected to the second header portion Good.
  • the refrigerant is introduced into the second header portion from a plurality of different points in the vertical direction. Therefore, since the gas-liquid ratio of the refrigerant in the vertical direction in the second header portion can be equalized, the flow rate of the refrigerant diverted to each second heat transfer pipe can be equalized.
  • the heat exchanger includes a header having a cylindrical header body extending in the vertical direction, and a plurality of main partition plates dividing the inside of the header body into a plurality of regions in the vertical direction, and the first header portion An area including the lowermost area of the plurality of areas in the header, wherein each of the second header portions includes an area other than the lowermost area of the plurality of areas in the header It may be a part.
  • the heat exchanger having the first header portion and the plurality of second header portions can be easily configured. be able to.
  • An air conditioner according to a second aspect of the present invention includes any one of the heat exchangers described above.
  • the reduction in efficiency can be suppressed.
  • FIG. 1 It is a figure which shows the flow-path cross-sectional shape of the main pipe part in the branch connection pipe of the heat exchanger which concerns on 2nd embodiment of this invention.
  • the air conditioner 1 includes a compressor 2, an indoor heat exchanger 3 (heat exchanger 10), an expansion valve 4, an outdoor heat exchanger 5 (heat exchanger 10), a four-way valve 6, and And a pipe 7 for connecting them, and constitute a refrigerant circuit composed of these.
  • the compressor 2 compresses the refrigerant and supplies the compressed refrigerant to the refrigerant circuit.
  • the indoor heat exchanger 3 exchanges heat between the refrigerant and the indoor air.
  • the indoor heat exchanger 3 is used as an evaporator at the time of cooling operation, absorbs heat from the room, and is used as a condenser at the time of heating operation, and releases heat to the room.
  • the expansion valve 4 reduces the pressure by expanding a high pressure refrigerant liquefied by heat exchange in the condenser.
  • the outdoor heat exchanger 5 performs heat exchange between the refrigerant and the air outside the room.
  • the refrigerant circulates in the order of the compressor 2, the outdoor heat exchanger 5, the expansion valve 4, and the indoor heat exchanger 3.
  • the refrigerant circulates in the order of the compressor 2, the indoor heat exchanger 3, the expansion valve 4, and the outdoor heat exchanger 5.
  • the heat exchanger 10 includes a plurality of heat transfer pipes 20, a plurality of fins 28, a pair of headers 30, a first connection pipe 60, and a second connection pipe 70.
  • the heat transfer tube 20 is a tubular member extending linearly in the horizontal direction, and a flow passage in which the refrigerant flows is formed inside.
  • a plurality of such heat transfer tubes 20 are arranged at intervals in the vertical direction, and are arranged in parallel to each other.
  • each heat transfer tube 20 has a flat tubular shape, and inside the heat transfer tube 20, a plurality of flow paths arranged in parallel in the horizontal direction orthogonal to the extending direction of the heat transfer tube 20 are formed There is.
  • the plurality of flow paths are arranged in parallel to one another.
  • the outer shape of the cross section orthogonal to the extending direction of the heat transfer tube 20 is flat with the horizontal direction orthogonal to the extending direction of the heat transfer tube 20 as the longitudinal direction.
  • the fins 28 are respectively disposed between the heat transfer tubes 20 arranged as described above, and in the present embodiment, the heat transfer tubes 20 vertically adjacent to each other in the extending direction of each heat transfer tube 20 are alternately arranged. It extends in a so-called corrugated shape extending to contact.
  • the shape of the fins 28 is not limited to this, and may be any shape as long as it is provided so as to project from the outer peripheral surface of the heat transfer tube 20.
  • the pair of headers 30 is provided at both ends of the plurality of heat transfer tubes 20 so as to sandwich the heat transfer tubes 20.
  • One of the pair of headers 30 is an inlet / outlet header 40 serving as an inlet / outlet of the refrigerant into the heat exchanger 10 from the outside, and the other is a return side header 50 for the refrigerant to be folded back in the heat exchanger 10. It is assumed.
  • the inlet / outlet side header 40 is a cylindrical member extending in the vertical direction, and the upper end and the lower end are closed and the inside is divided by the partition plate 41 into upper and lower two regions.
  • the lower region partitioned by the partition plate 41 is a lower entrance / exit region 42, and the upper region is an upper entrance / exit region 43.
  • the lower access area 42 and the upper access area 43 are in communication with each other in the access header 40.
  • the lower entry / exit area 42 and the upper entry / exit area 43 are connected to the piping 7 constituting the refrigerant circuit.
  • the heat transfer pipe 20 connected in communication with the lower entrance / exit area 42 is taken as a first heat transfer pipe 21 and is connected in communication with the upper entrance / exit area 43.
  • the heat transfer tube 20 is a second heat transfer tube 23.
  • the return side header 50 includes a header body 51 and a main partition plate 58.
  • the header body 51 is a cylindrical member extending in the vertical direction, and the upper end and the lower end are closed.
  • the main partition plate 58 is provided in the header main body 51, and divides the space in the header main body 51 into upper and lower areas.
  • two main partition plates 58 disposed at an interval in the vertical direction in the header main body 51 are provided. By this, the inside of the header main body 51 is divided into three regions juxtaposed vertically.
  • a portion including the lowermost one of the three areas in the header main body 51 is a first header portion 52. Further, among the above three regions, a portion including the upper two regions other than the lowermost region is set as a second header portion 53, respectively. That is, in the present embodiment, by dividing the inside of the header main body 51 by the two main partition plates 58, the first header portion 52 and the two second headers each having a space in the return side header 50. The part 53 is formed. In other words, the first header 52 and the two second headers 53 constitute the return side header 50.
  • the first heat transfer tubes 21 are connected to the first header 52 so as to be in communication with the inside of the first header 52, respectively.
  • the plurality of first heat transfer tubes 21 constitute a first tube group 22.
  • the heat transfer pipe 20 connected to the first header portion 52 is used as the first heat transfer pipe 21.
  • the second heat transfer tubes 23 are connected to the second header portion 53 so as to be in communication with the insides of the respective second header portions 53. That is, the heat transfer pipe 20 connected to the second header portion 53 is used as the second heat transfer pipe 23.
  • the second heat transfer pipe 23 is configured such that a second pipe group 24 is formed by the plurality of second heat transfer pipes 23 connected to the respective second header portions 53. That is, in the present embodiment, since the two second header portions 53 are provided, the two second tube groups 24 are configured to be paired with the two second header portions 53.
  • the second header portion 53 disposed below is referred to as the lower second header portion 54 and the second header portion disposed above 53 is referred to as the upper second header portion 55.
  • a second tube group 24 constituted of the second heat transfer tubes 23 connected to the lower second header portion 54 is referred to as a lower second tube group 25, and a second tube group 24 connected to the upper second header portion 55.
  • the second tube group 24 composed of the heat transfer tubes 23 is referred to as an upper second tube group 26.
  • the first connection pipe 60 is a tubular member having a flow passage formed therein, and one end of the first connection pipe 60 is connected to the first header 52 in communication with the inside of the first header 52, The end is connected to the lower second header portion 54 in communication with the inside of the lower second header portion 54. More specifically, one end of the first connection pipe 60 is connected to the upper portion of the first header portion 52. Further, the other end of the first connection pipe 60 is connected to the lower portion of the lower second header portion 54.
  • the flow passage in the first connection pipe 60 is a series passage 61 (communication passage) connecting the first header portion 52 and the lower second header portion 54.
  • the second connection pipe 70 is a tubular member in which a flow passage is formed in the inside, and like the first connection pipe 60, one end is in communication with the inside of the first header portion 52 with respect to the first header portion 52. Connected by On the other hand, unlike the first connection pipe 60, the other end of the second connection pipe 70 is connected to the upper second header portion 55 in communication with the inside of the upper second header portion 55. More specifically, one end of the second connection pipe 70 is connected to the upper portion of the first header portion 52. The other end of the first connection pipe 60 is connected to the lower portion of the upper second header portion 55.
  • the flow passage in the second connection pipe 70 is a second communication passage 71 (communication passage) connecting the first header portion 52 and the upper second header portion 55.
  • connection points of the first connection pipe 60 and the second connection pipe 70 to the first header portion 52 are at the same vertical position. That is, the connection portion of the first connection pipe 60 to the first header portion 52 is disposed adjacent to or separated from the connection portion of the second connection pipe 70 to the first header portion 52 in the horizontal direction.
  • the position is considered identical.
  • “the same vertical position” is not limited to the case where the vertical positions of the centers of the connection points of the first connection pipe 60 and the second connection pipe 70 to the first header portion 52 are the same, and at least The positions in the vertical direction of at least a part of the connection points of the first connection pipe 60 and the second connection pipe 70 to the first header portion 52 may be overlapped with each other in the vertical direction.
  • the heat exchanger 10 When the heat exchanger 10 is the indoor heat exchanger 3, it is used as an evaporator during the cooling operation of the air conditioner 1, and in the case of the outdoor heat exchanger 5, it evaporates during the heating operation of the air conditioner 1. It will be used as a container.
  • a gas-liquid two-phase refrigerant having a large amount of liquid phase is supplied from the pipe 7 to the lower entrance / exit area 42 of the entrance / exit side header 40 shown in FIG.
  • the refrigerant is distributed and supplied into the plurality of first heat transfer pipes 21 in the lower entrance / exit area 42, and exchanges heat with the atmosphere outside the first heat transfer pipes 21 in the process of flowing through the first heat transfer pipes 21.
  • the refrigerant supplied from the first heat transfer pipe 21 into the first header portion 52 of the return side header 50 is a gas-liquid two-phase gas in which the liquid phase ratio is reduced by the partial change from the liquid phase to the gas phase. It becomes a refrigerant.
  • the refrigerant having a large liquid phase and a large density is collected under the first header 52 by gravity, and the refrigerant having a large gas phase and a small density is It gathers in the upper part of the 1st header part 52.
  • the connection positions of the first connection pipe 60 and the second connection pipe 70 to the first header portion 52 are different in the vertical direction, they are introduced into the first connection pipe 60 and the second connection pipe 70.
  • the gas-liquid ratio of the refrigerant will be different.
  • the refrigerant having a high density is introduced to the first connection pipe 60 and the second connection pipe 70 which are connected to the lower side of the first header portion 52.
  • the mass flow rate of the refrigerant is large.
  • the mass flow rate of the refrigerant decreases.
  • connection positions of the first connection pipe 60 and the second connection pipe 70 to the first header portion 52 are the same vertical position. Therefore, refrigerants having substantially the same gas-liquid ratio are introduced into the first connection pipe 60 and the second connection pipe 70, respectively. As a result, the gas-liquid proportions of the refrigerant introduced to the lower second header portion 54 and the upper second header portion 55 via the first connection pipe 60 and the second connection pipe 70 become substantially the same. That is, the mass flow rate of the refrigerant flowing through the first connection pipe 60 and the second connection pipe 70 can be equalized.
  • the refrigerant introduced to the lower second header portion 54 and the upper second header portion 55 through the first connection pipe 60 or the second connection pipe 70 is transferred to the plurality of second heat transfer pipes 23 connected thereto.
  • the liquid phase remaining in the refrigerant in the second heat transfer pipe 23 changes to the gas phase, and the refrigerant in the gas phase is supplied to the upper entry / exit area 43 of the inlet / outlet side header 40.
  • the refrigerant is introduced into the pipe 7 from the upper entrance / exit area 43 and circulates in the refrigerant circuit.
  • the first series passage 61 of the first connection pipe 60 and the second communication passage 71 of the second connection pipe 70 respectively connected to the plurality of second header portions 53 Since the first header portion 52 is connected to the same vertical position, refrigerant having substantially the same vapor phase liquid phase ratio is introduced into each communication passage. Therefore, the refrigerant flow rate can be equalized in each of the plurality of communication paths. As a result, for example, when the heat exchanger 10 is used in an air conditioner, the cooling performance and the heating performance are not impaired.
  • the heat exchanger 80 of the second embodiment includes one branch connection pipe 81 instead of the first connection pipe 60 and the second connection pipe 70 of the first embodiment. It differs from the first embodiment.
  • the branch connection pipe 81 has a main pipe portion 82 and a plurality (two in the present embodiment) of branch pipe portions 85.
  • One end of the main pipe portion 82 is connected to the first header portion 52.
  • two divided flow paths formed in the first header portion 52 so that the inside of the first header portion 52 is divided into two regions in the horizontal direction. 83 are formed.
  • the divided flow channels 83 extend horizontally in parallel from one end to the other end in the main pipe portion 82.
  • the main pipe portion 82 may have a structure in which two divided flow paths 83 are formed by providing a divided wall portion 84 at the horizontal center of the flow path having a circular cross section.
  • the divided flow channels 83 in which a part of the flow channel having a circular cross section is cut in a straight line are arranged in parallel to each other by the divided wall portion 84 that constitutes the straight line. It may be a provided structure.
  • Two branch pipe portions 85 are provided so as to be branched into a plurality from the other end side of the main pipe portion 82.
  • the branch pipe portion 85 is connected to the lower second header portion 54 and the upper second header portion 55, respectively.
  • branch flow channels 86 which are flow channels inside the branch pipe sections 85, communicate with the divided flow channels 83 in the main pipe section 82 in a one-to-one relationship.
  • one of the two divided flow paths 83 of the main pipe portion 82 is in communication with the inside of the lower second header portion 54 through the one branched flow path 86, that is,
  • a series of passages 61 communicating the first header portion 52 with the lower second header portion 54 is formed by the one divided flow path 83 and the one branched flow path 86.
  • the other divided flow passage 83 is in communication with the inside of the upper second header portion 55 via the other branched flow passage 86, that is, by the other divided flow passage 83 and the other branched flow passage 86.
  • a second communication passage 71 is formed to communicate the inside of the first header portion 52 with the upper second header portion 55.
  • the two divided flow paths 83 in the main pipe portion 82 of the branch connection pipe 81 are arranged in parallel in the horizontal direction, these two divided flow paths 83 At the same time, refrigerant of almost the same density is introduced. Then, the refrigerant is introduced into the lower second header portion 54 and the upper second header portion 55 through the branch flow path 86, respectively. Therefore, as in the first embodiment, the mass flow rate of the refrigerant introduced to the lower second header portion 54 and the upper second header portion 55 can be equalized.
  • first connection pipe 60 and the second connection pipe 70 are provided separately as in the first embodiment, only one connection point to the first header portion 52 is provided. It can be easier.
  • a heat exchanger 90 according to a third embodiment of the present invention will be described with reference to FIGS. 6 and 7.
  • the same components as those in the first embodiment are denoted by the same reference numerals as in the first embodiment, and the detailed description will be omitted.
  • the number of the second heat transfer tubes 23 of the lower second tube group 25 and the number of the second heat transfer tubes 23 of the upper second tube group 26 are different. It differs from the first embodiment in that the numbers are different from each other and the flow passage cross-sectional areas of the first connection pipe 60 and the second connection pipe 70 are different from each other.
  • the number of second heat transfer pipes 23 of the upper second pipe group 26 is larger than the number of second heat transfer pipes 23 of the lower second pipe group 25.
  • interval of the up-down direction of each 2nd heat exchanger tube 23 is the same, the difference of the number of the 2nd heat exchanger tube 23 of the lower 2nd tube group 25 and the 2nd heat exchanger tube 23 of the upper 2nd tube group 26 Accordingly, the dimension of the upper second header portion 55 in the vertical direction is larger than that of the lower second header portion 54.
  • the flow passage cross sectional area of the second connection pipe 70 is set larger than the flow passage cross sectional area of the first connection pipe 60 over the entire extension direction of the first connection pipe 60 and the second connection pipe 70.
  • a flow-path cross-sectional area is the area of the flow path in the cross section orthogonal to each extension direction of the 1st connection pipe
  • the cross-sectional area is set relatively small.
  • the flow passage cross-sectional area of the second connection pipe 70 connected to the upper second header portion 55 corresponding to the upper second pipe group 26 in which the number of second heat transfer pipes 23 is relatively large is set relatively large. ing.
  • a larger amount of refrigerant is introduced into the upper second header portion 55 in which the number of connected second heat transfer pipes 23 is relatively large.
  • a smaller amount of refrigerant is introduced into the lower second header portion 54 in which the number of connected second heat transfer pipes 23 is relatively small.
  • a heat exchanger 100 according to a fourth embodiment of the present invention will be described with reference to FIGS. 8 to 10.
  • the same components as those in the first embodiment are denoted by the same reference numerals as in the first embodiment, and the detailed description will be omitted.
  • the speed of the air flow received by the heat pipe 23 is different, and the flow passage cross-sectional areas of the first connection pipe 60 and the second connection pipe 70 are different from each other in the first embodiment.
  • the speed of the air flow received by the upper second pipe group 26 is larger than the speed of the air flow received by the lower second pipe group 25.
  • the difference in the speed of the received air is caused, for example, by the air blower 103 as shown in FIG. That is, as shown in FIG. 10, the heat exchanger 100 of the present embodiment has a casing 101 for housing the heat exchanger 100.
  • the casing 101 includes a casing main body 102, a ventilation unit 104, and the blower unit 103.
  • the casing main body 102 is a box having a substantially rectangular parallelepiped shape extending in the vertical direction, and has, for example, a ventilating portion 104 through which air can flow in and out of the casing main body 102 on two side surfaces adjacent to each other among four side surfaces. There is. Further, on the top surface of the casing main body 102, a blower unit 103 composed of a fan rotatable around the vertical axis is provided. When the fan of the ventilation portion 104 is operated, the air in the casing main body 102 is sent toward the outside of the casing 101, that is, from the lower side to the upper side.
  • air is sent from the outside of the casing main body 102 into the casing main body 102 via the ventilation portion 104.
  • the ventilating unit 104 is operated to discharge air from above the casing 101
  • the heat exchanger 100 disposed in the casing main body 102 receives air of different wind speeds in the vertical direction.
  • the speed of the air flow which the upper side 2nd pipe group 26 receives becomes larger than the speed of the air flow which the lower side 2nd pipe group 25 receives.
  • the flow passage cross-sectional area of the second connection tube 70 is greater than the flow passage cross-sectional area of the first connection tube 60 than the first connection tube 60 and the second connection tube 70. It is set large over the extension direction of.
  • the flow passage cross-sectional area of the first connection pipe 60 connected to the lower second header portion 54 corresponding to the lower second pipe group 25 having a low speed of received air is relatively It is set small.
  • the flow passage cross-sectional area of the second connection pipe 70 connected to the upper second header portion 55 corresponding to the upper second pipe group 26 in which the number of the second heat transfer pipes 23 having a high air blowing speed is relatively large is It is set relatively large.
  • the heat exchange in the second pipe group 24 is promoted as the speed of the air flow received by the second pipe group 24 increases. Therefore, the heat exchange efficiency of the heat exchanger 100 as a whole can be improved by introducing a large amount of refrigerant to the second header portion 53 connected to the upper second pipe group 26 having a high air blowing speed.
  • a heat exchanger 110 according to a fifth embodiment of the present invention will be described with reference to FIGS. 11 and 12.
  • the same components as those of the first embodiment are denoted by the same reference numerals as the first embodiment, and the detailed description thereof is omitted.
  • three partition plates 58 are provided in the folded header 50. That is, these partition plates 58 are installed at intervals in the vertical direction, thereby dividing the area in the header 30 into four in the vertical direction.
  • a portion including the lowermost one of the four regions is a first header 52 as in the first embodiment.
  • a portion including the upper three regions excluding the lowermost one of the four regions is a second header portion 53, respectively.
  • one first header portion 52 and three second header portions 53 are provided.
  • connection pipe 120 that connects the first header portion 52 and the lowermost second header portion 53 of the three second header portions 53, the first header portion 52, and the three second headers
  • a total of three connection pipes 120 are provided.
  • a communication passage 121 for communicating the first header portion 52 with any one of the second header portions 53 is formed.
  • tube 120 is made into the mutually same up-down direction position similarly to 1st embodiment.
  • the mass flow rate of the refrigerant introduced from the first header portion 52 to the second header portions 53 can be equalized.
  • the example which provided the three 2nd header parts 53 was demonstrated in this embodiment, four or more 2nd header parts 53 may exist. In that case, the number of connection pipes 120 also increases according to the number of second header portions 53.
  • a heat exchanger 130 according to a sixth embodiment of the present invention will be described with reference to FIG.
  • the same components as those of the first embodiment are denoted by the same reference numerals as the first embodiment, and the detailed description thereof is omitted.
  • the sixth embodiment is different from the first embodiment in that a plurality of first connection pipes 60 and a plurality of second connection pipes 70 are provided.
  • a plurality of (three in the present embodiment) first connection pipes 60 are provided.
  • the connection points of the first connection pipes 60 with the first header portion 52 are at the same vertical position, while the connection points to the lower second header portion 54 are at different positions in the vertical direction.
  • the first first connection pipe 60 of the three first connection pipes 60 is connected to the lower portion of the lower second header portion 54, and the second second connection pipe 70 is lower.
  • a third first connection pipe 60 is connected to the central portion of the side second header portion 54, and a third first connection pipe 60 is connected to the upper portion of the lower second header portion 54.
  • a plurality of (two in the present embodiment) second connection pipes 70 are also provided.
  • the connection points of the second connection pipes 70 to the first header portion 52 are at the same vertical position, while the connection points to the upper second header portion 55 are at different positions in the vertical direction.
  • the first first connection pipe 60 of the three first connection pipes 60 is connected to the lower portion of the upper second header portion 55, and the second second connection pipe 70 is the upper first
  • the third connection pipe 60 is connected to the central portion of the second header portion 55, and the third first connection pipe 60 is connected to the upper portion of the upper second header portion 55.
  • the mass flow rate of the refrigerant introduced into the lower second header portion 54 and the upper second header portion 55 can be equalized. Furthermore, in the present embodiment, the refrigerant is introduced into the first header 52 and the second header 53 from a plurality of different height positions. Therefore, the refrigerant is mixed in the vertical direction in the first header portion 52 and the second header portion 53, thereby promoting the uniformity of the refrigerant in the first header portion 52 and the second header portion 53. Can. By this, equalization of the mass flow of a refrigerant introduced into each 2nd heat transfer tube 23 can be attained.
  • the branch connection pipe 81 of the second embodiment may be applied to the third to fifth embodiments.
  • the third embodiment and the fourth embodiment are combined with each other, and according to the number of second heat transfer tubes 23 constituting the second tube group 24 and the air volume of the air flow received by each second heat transfer tube 23, the first The flow passage cross-sectional areas of the connection pipe 60 and the second connection pipe 70 may be adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

複数が配列された第一伝熱管(21)を有する第一管群(22)と、上下方向に延びる筒状をなして第一管群(22)の各第一伝熱管(21)の一端が連通状態で接続される第一ヘッダ部(52)と、複数が配列された第二伝熱管(23)を有する複数の第二管群(24)と、これら複数の第二管群(24)に対応して複数が設けられ、上下方向に延びる筒状をなしてそれぞれに第二管群(24)の各第二伝熱管(23)の一端が連通状態で接続される第二ヘッダ部(53)と、複数の第二ヘッダ部53)に対応して複数が設けられて、第一ヘッダ部(52)と各第二ヘッダ部(53)とを連通させるように、一端が第一ヘッダ部(52)の同一の上下方向位置に接続されるとともに他端が各第二ヘッダ部(53)のいずれかに接続された連通路と、を備える熱交換器。

Description

熱交換器及び空気調和機
 本発明は、熱交換器及び空気調和機に関する。
 本願は、2016年2月29日に出願された特願2016-038404号について優先権を主張し、その内容をここに援用する。
 空気調和機の熱交換器として、水平方向に延びる伝熱管を上下方向に間隔をあけて複数配置し、各伝熱管の外面にフィンを設けたものが知られている。複数の伝熱管の両端は上下方向に延びる一対のヘッダにそれぞれ接続されている。このような熱交換器は、冷媒の流路長さを確保するため、一方のヘッダに導入されて伝熱管を経て他方のヘッダに流通した冷媒を、他方のヘッダで折り返すようにして再度伝熱管を経て一方のヘッダに戻すように構成されている。
 折り返し側のヘッダ内は、ヘッダ内を上下方向に区画する仕切板によって複数の領域に区画されている。これによって、一の領域内に伝熱管を経て導入された冷媒は、接続管を介して他の領域に導入された後に、他の領域に接続された複数の伝熱管を経由して出入口側の一方のヘッダに戻される。
 例えば特許文献1には、一の主管部と主管部から複数に分岐して延びる分岐管部とを有する接続管を備えた熱交換器が開示されている。この熱交換器では、主管部が一のヘッダ内の領域に接続されており、分岐管部はそれぞれヘッダ内の複数の他の領域のいずれかに接続されている。そして、この熱交換器を蒸発器として用いる場合には、伝熱管を介してヘッダの一の領域に導入された冷媒は、接続管における主管部及び分岐管部を経て複数の他の領域に導入される。
特開2015-55404号公報
 ところで、特許文献1の熱交換器では、接続管の主管部から分岐管部に冷媒を分流する際に、各分岐管部にそれぞれ乾き度の異なる冷媒が導入されることがある。即ち、冷媒の流量や分岐の方向によっては、複数の分岐管のうちの一部のみに液相の冷媒が多く流れることがあり、均等に分流されないという問題がある。また、接続管内の冷媒は気液の密度差によっても気相と液相とに分離することがあり、流量や乾き度に偏りが生じた状態で冷媒が分流されてしまうこともある。
 このように均等に分流が行われないと、流量によって各分岐管内の流動様相が異なるため、分流時の冷媒分配割合にも変化が生じてしまう。
 そのため、ヘッダを介して再度伝熱管に冷媒が導入される際には、液相の冷媒がほとんど通過しない伝熱管が生じることになり、熱交換器の伝熱領域を十分に活用することができない。その結果、例えば熱交換器を空気調和機に用いた場合には、冷房性能や暖房性能が低くなってしまい、室内快適性が損なわれる。
 本発明は、性能低下を抑制することができる熱交換器、及び、この熱交換器を用いた空気調和機を提供することを目的とする。
 本発明は、上記課題を解決するため、以下の手段を採用している。
 本発明の第一態様に係る熱交換器は、水平方向に延びて内部に冷媒が流通するとともに上下方向に間隔をあけて複数が配列された第一伝熱管を有する第一管群と、上下方向に延びる筒状をなして前記第一管群の各前記第一伝熱管の一端が連通状態で接続される第一ヘッダ部と、水平方向に延びて内部に冷媒が流通するとともに上下方向に間隔をあけて複数が配列された第二伝熱管を有する複数の第二管群と、これら複数の第二管群に対応して複数が設けられ、上下方向に延びる筒状をなしてそれぞれに前記第二管群の各前記第二伝熱管の一端が連通状態で接続される第二ヘッダ部と、複数の前記第二ヘッダ部に対応して複数が設けられて、前記第一ヘッダ部と各前記第二ヘッダ部とを連通させるように、一端が前記第一ヘッダ部の同一の上下方向位置に接続されるとともに他端が各前記第二ヘッダ部のいずれかに接続された連通路と、を備える。
 このような熱交換器によれば、第一管群の各第一伝熱管を介して第一ヘッダ部に導入された冷媒は、第一ヘッダ部における同一の上下方向位置に接続された連通路に導入される。ここで、第一ヘッダ部内では、冷媒における気液の密度差により、第一ヘッダ部内の下部に液相が溜まり易く、上部に気相が溜まり易くなる。そのため、第一ヘッダ部内の上下方向でそれぞれ冷媒の気液割合に差が生じる。本発明の熱交換器では、複数の第二ヘッダ部にそれぞれ接続された連通路が、第一ヘッダ部の同一の上下方向位置に接続されているため、気相液相割合がほぼ同一の冷媒が各連通路に導入される。そのため、複数の連通路毎での冷媒流量の均等化を図ることができる。その結果、複数の第二伝熱管に導入される冷媒流量を均等化することができる。
 上記熱交換器は、一端が第一ヘッダ部に接続されるとともに、水平方向に複数に並設された分割流路が内側に形成された主管部と、前記主管部の他端側から複数に分岐して内側に前記分割流路に連通する分岐流路が形成されるとともにそれぞれ各前記第二ヘッダ部に接続された分岐管部とを有する分岐接続管を備え、各前記連通路は、それぞれ各前記分割流路及び各前記分岐流路によって形成された流路であってもよい。
 これにより、各連通路をそれぞれ別個の接続管で構成した場合に比べて、分岐接続管の場合には第一ヘッダ部への施工箇所が一か所となるため、施工が容易となる。
 上記熱交換器では、各前記第二管群の前記第二伝熱管の数が互いに異なり、複数の前記連通路は、前記第二伝熱管の数の多い前記第二管群が接続された前記第二ヘッダ部に接続される前記連通路ほど、流路断面積が大きくてもよい。
 これにより、接続される第二伝熱管の数が相対的に多い第二ヘッダ部にはより多い量の冷媒が導入されることになる。一方で、接続される第二伝熱管の数が相対的に少ない第二ヘッダ部にはより少ない量の冷媒が導入される。その結果、各第二伝熱管に分流して導入される冷媒の量の均等化を図ることができる。
 上記熱交換器は、各前記第二管群に送風する送風部を備え、前記送風部により各前記第二管群が受ける送風の速度は、各前記第二管群毎に互いに異なっており、複数の前記連通路は、受ける送風の速度が大きい前記第二管群が接続された前記第二ヘッダ部に接続される前記連通路ほど、流路断面積が大きくてもよい。
 このような熱交換器では、第二管群の受ける送風の速度が大きい程、第二管群での熱交換が促進される。したがって、受ける送風の速度が大きい第二管群に接続された第二ヘッダ部により多くの冷媒を導入することで、熱交換器全体としての熱交換効率を向上させることができる。
 上記熱交換器は、前記第一ヘッダ部と複数の前記第二ヘッダ部のいずれかとを連通させるように、前記第一ヘッダ部に接続された前記連通路と同一の高さ位置で一端が前記第一ヘッダ部に接続されるとともに、前記第二ヘッダ部に接続された前記連通路と異なる高さ位置で他端が前記第二ヘッダ部に接続された他の連通路をさらに備えていてもよい。
 これにより、第二ヘッダ部には上下方向の異なる複数の箇所から冷媒が導入されることになる。したがって、第二ヘッダ部内での上下方向での冷媒の気液割合の均一化を図ることができるため、各第二伝熱管に分流される冷媒流量の均等化することができる。
 上記熱交換器では、上下方向に延びる筒状をなすヘッダ本体と、前記ヘッダ本体内を上下に複数の領域に区画する複数の主仕切板と、を有するヘッダを備え、前記第一ヘッダ部は、前記ヘッダにおける複数の前記領域のうち最も下方の領域を含む部分であって、各前記第二ヘッダ部は、前記ヘッダにおける複数の前記領域のうち最も下方の領域以外のいずれかの領域を含む部分であってもよい。
 一のヘッダ部内に主仕切板を介して第一ヘッダ部及び複数の第二ヘッダ部を形成することで、これら第一ヘッダ部及び複数の第二ヘッダ部を有する熱交換器を容易に構成することができる。
 本発明の第二態様に係る空気調和機は、上記いずれかの熱交換器を備えることを特徴とする。
 これによって、冷媒の不均一分配による熱交換性能の低下を抑制し、効率の高い空気調和機を提供することができる。
 本発明の熱交換器及び空気調和機によれば、効率低下の抑制を図ることができる。
本発明の第一実施形態に係る空気調和機の全体構成図である。 本発明の第一実施形態に係る熱交換器の縦断面図である。 本発明の第一実施形態に係る熱交換器の斜視図である。 本発明の第二実施形態に係る熱交換器の折り返し側ヘッダ及び分岐接続管の側面図である。 本発明の第二実施形態に係る熱交換器の分岐接続管における主管部の流路断面形状を示す図である。 本発明の第二実施形態に係る熱交換器の分岐接続管における主管部の流路断面形状を示す図である。 本発明の第三実施形態に係る熱交換器の斜視図である。 本発明の第三実施形態に係る熱交換器の折り返し側ヘッダ及び接続管の側面図である。 本発明の第四実施形態に係る熱交換器の斜視図である。 本発明の第四実施形態に係る熱交換器の折り返し側ヘッダ及び接続管の側面図である。 本発明の第四実施形態に係る送風部の一例を示す斜視図である。 本発明の第五実施形態に係る熱交換器の斜視図である。 本発明の第五実施形態に係る熱交換器の折り返し側ヘッダ及び接続管の側面図である。 本発明の第六実施形態に係る熱交換器の折り返し側ヘッダ及び接続管の側面図である。
 以下、本発明の第一実施形態に係る熱交換器を備えた空気調和機について図1~5を参照して説明する。
 図1に示すように、空気調和機1は、圧縮機2、室内熱交換器3(熱交換器10)、膨張弁4、室外熱交換器5(熱交換器10)、四方弁6、及び、これらを接続する配管7を備えており、これらからなる冷媒回路を構成している。
 圧縮機2は、冷媒を圧縮し、圧縮した冷媒を冷媒回路に供給する。
 室内熱交換器3は、冷媒と室内の空気との間で熱交換を行う。室内熱交換器3は、冷房運転時には蒸発器として用いられ室内から吸熱し、暖房運転時には凝縮器として用いられ室内へ放熱する。
 膨張弁4は、凝縮器で熱交換をすることで液化した高圧の冷媒を膨張させることで低圧化する。
 室外熱交換器5は、室外熱交換器5は、冷媒と室外の空気との間で熱交換を行う。冷房運転時には、凝縮器として用いられ室外へ放熱し、暖房運転時には、蒸発器として用いられ室外から吸熱する。
 四方弁6は、暖房運転時と冷房運転時とで冷媒の流通する方向を切り替える。これにより、冷房運転時には、冷媒が、圧縮機2、室外熱交換器5、膨張弁4及び室内熱交換器3の順に循環する。一方、暖房運転時には、冷媒が、圧縮機2、室内熱交換器3、膨張弁4及び室外熱交換器5、の順に循環する。
 次に、上記室内熱交換器3及び室外熱交換器5として用いられる熱交換器10について、図2~図3を参照して説明する。
 熱交換器10は、複数の伝熱管20、複数のフィン28、一対のヘッダ30、第一接続管60、及び第二接続管70を備える。
 伝熱管20は、水平方向に直線状に延びる管状の部材であって、内部に冷媒が流通する流路が形成されている。このような伝熱管20は、上下方向に間隔をあけて複数が配列されており、互いに平行に配置されている。
 本実施形態では、各伝熱管20は扁平管状をなしており、伝熱管20の内部には、伝熱管20の延在方向に直交する水平方向に並設された複数の流路が形成されている。これら複数の流路は互いに平行に配列されている。これにより、伝熱管20の延在方向に直交する断面の外形は、伝熱管20の延在方向に直交する水平方向を長手方向とした扁平状とされている。
 フィン28は、上記のように配列された伝熱管20の間にそれぞれ配置されており、本実施形態では、各伝熱管20の延在方向に向かうにしたがって上下に隣り合う伝熱管20に交互に接触するように延びるいわゆるコルゲート状に延びている。なお、フィン28の形状はこれに限定されることはなく、伝熱管20の外周面から張り出すように設けられていれば、いかなる形状であってもよい。
 一対のヘッダ30は、上記複数の伝熱管20の両端にこれら伝熱管20を挟み込むように設けられている。これら一対のヘッダ30の一方は、外部から熱交換器10内への冷媒の出入り口となる出入口側ヘッダ40とされており、他方は、熱交換器10内で冷媒が折り返すための折り返し側ヘッダ50とされている。
 出入口側ヘッダ40は、上下方向に延びる筒状の部材であって、上端及び下端が閉塞されるとともに内部が仕切板41によって上下二つの領域に区画されている。仕切板41によって区画された下方の領域は下部出入領域42とされ、上方の領域は上部出入領域43とされている。これら下部出入領域42と上部出入領域43とは出入口ヘッダ内40で互いに非連通状態とされている。下部出入領域42及び上部出入領域43は、冷媒回路を構成する配管7がそれぞれ接続されている。
 ここで、複数の伝熱管20のうち、下部出入領域42と連通状態で接続されている伝熱管20は、第一伝熱管21とされており、上部出入領域43と連通状態で接続されている伝熱管20は、第二伝熱管23とされている。
 折り返し側ヘッダ50は、ヘッダ本体51及び主仕切板58を備えている。
 ヘッダ本体51は、上下方向に延びる筒状をなす部材であって、上端及び下端が閉塞されている。主仕切板58は、ヘッダ本体51内に設けられ、ヘッダ本体51内の空間を上下の領域に区画している。本実施形態では、ヘッダ本体51内に上下方向に間隔をあけて配置された二つの主仕切板58が設けられている。これによって、ヘッダ本体51内は、上下に並設された三つの領域に区画されている。
 ヘッダ本体51内の上記三つの領域のうちの最も下方の領域を含む部分は第一ヘッダ部52とされている。また、上記三つの領域のうち、最も下方の領域以外の上方の二つの領域を含む部分は、それぞれ第二ヘッダ部53とされている。即ち、本実施形態では、ヘッダ本体51内が二つの主仕切板58によって区画されることで、折り返し側ヘッダ50に、それぞれ内部に空間を有する一つの第一ヘッダ部52及び二つの第二ヘッダ部53が形成されている。換言すれば、一の第一ヘッダ部52及び二つの第二ヘッダ部53によって折り返し側ヘッダ50が構成されている。
 第一伝熱管21は、それぞれ第一ヘッダ部52内と連通状態となるように第一ヘッダ部52に接続されている。これら複数の第一伝熱管21によって第一管群22が構成されている。換言すれば、第一ヘッダ部52に接続されている伝熱管20が第一伝熱管21とされている。
 第二伝熱管23は、それぞれ各第二ヘッダ部53内と連通状態となるように第二ヘッダ部53に接続されている。即ち、第二ヘッダ部53に接続されている伝熱管20が第二伝熱管23とされている。
 そして、第二伝熱管23は、それぞれ各第二ヘッダ部53に接続されている複数の第二伝熱管23によってそれぞれ第二管群24が構成されている。即ち、本実施形態では、二つの第二ヘッダ部53を有しているため、これら二つの第二ヘッダ部53と対になるようにして、二つの第二管群24が構成されている。
 なお、本実施形態では、以下、上下二つの第二ヘッダ部53のうち、下方に配置された第二ヘッダ部53を下側第二ヘッダ部54と称し、上方に配置された第二ヘッダ部53を上側第二ヘッダ部55と称する。
 また、下側第二ヘッダ部54に接続された第二伝熱管23から構成される第二管群24を下側第二管群25と称し、上側第二ヘッダ部55に接続された第二伝熱管23から構成される第二管群24を上側第二管群26と称する。
 第一接続管60は、内部に流路が形成された管状の部材であって、その一端が第一ヘッダ部52に対して第一ヘッダ部52の内部と連通状態で接続されており、他端が下側第二ヘッダ部54に対して下側第二ヘッダ部54の内部と連通状態で接続されている。より詳細には、第一接続管60の一端は、第一ヘッダ部52における上部に接続されている。また、第一接続管60の他端は、下側第二ヘッダ部54における下部に接続されている。本実施形態では、第一接続管60内の流路が、第一ヘッダ部52と下側第二ヘッダ部54とを接続する第一連通路61(連通路)とされている。
 第二接続管70は、内部に流路が形成された管状の部材であって、第一接続管60と同様、一端が第一ヘッダ部52に対して第一ヘッダ部52の内部と連通状態で接続されている。一方で、第二接続管70の他端は、第一接続管60と異なり、上側第二ヘッダ部55に対して上側第二ヘッダ部55の内部と連通状態で接続されている。より詳細には、第二接続管70の一端は、第一ヘッダ部52における上部に接続されている。また、第一接続管60の他端は、上側第二ヘッダ部55における下部に接続されている。本実施形態では、第二接続管70内の流路が、第一ヘッダ部52と上側第二ヘッダ部55とを接続する第二連通路71(連通路)とされている。
 ここで、本実施形態では、第一接続管60及び第二接続管70の第一ヘッダ部52への接続箇所が、互いに同一の上下方向位置とされている。即ち、第一接続管60における第一ヘッダ部52への接続箇所は、第二接続管70の第一ヘッダ部52への接続箇所と水平方向に隣接又は離間して配置されており、上下方向位置は同一とされている。
 なお、「上下方向位置が同一」とは、第一接続管60及び第二接続管70の第一ヘッダ部52への接続箇所の中心の上下方向位置が同一である場合に限られず、少なくとも、第一接続管60及び第二接続管70の第一ヘッダ部52への接続箇所の少なくとも一部の上下方向位置が、互いに上下方向で重なっていればよい。
 次に上記熱交換器10が蒸発器として用いられる場合の作用・効果について説明する。
 なお、熱交換器10が室内熱交換器3の場合は空気調和機1の冷房運転時に蒸発器として用いられることになり、室外熱交換器5の場合には空気調和機1の暖房運転時に蒸発器として用いられることになる。
 熱交換器10が蒸発器として用いられる際には、図2に示す出入口側ヘッダ40の下部出入領域42に配管7から液相分の多い気液二相冷媒が供給される。この冷媒は、下部出入領域42で複数の第一伝熱管21内に分配供給され、第一伝熱管21を流通する過程で第一伝熱管21の外部雰囲気との間で熱交換することで蒸発が促される。これにより、第一伝熱管21から折り返し側ヘッダ50の第一ヘッダ部52内に供給される冷媒は、一部が液相から気相に変化したことで液相割合が減少した気液二相冷媒となる。
 第一ヘッダ部52内に供給される気液二相冷媒のうち、液相分が多く密度の大きい冷媒が重力により第一ヘッダ部52の下部に集まり、気相分が多く密度の小さい冷媒が第一ヘッダ部52の上部に集まることになる。即ち、第一ヘッダ部52内では、冷媒の気液割合、即ち、密度が上下方向位置で異なることになる。ここで、仮に第一接続管60及び第二接続管70の第一ヘッダ部52への接続位置が互いに上下方向に異なっていれば、第一接続管60と第二接続管70に導入される冷媒の気液割合が異なることになる。その結果、第一接続管60と第二接続管70とのうち第一ヘッダ部52のより下方に接続されている方には、密度の大きい冷媒が導入される結果、冷媒の質量流量は多くなる。一方、より上方に接続されている方には、密度の小さい冷媒が導入される結果、冷媒の質量流量は少なくなる。
 これに対して、本実施形態では、第一接続管60、第二接続管70の第一ヘッダ部52への接続位置が、互いに同一の上下方向位置とされている。そのため、第一接続管60、第二接続管70には、それぞれほぼ同一の気液割合の冷媒が導入される。その結果、第一接続管60、第二接続管70をそれぞれ介して下側第二ヘッダ部54、上側第二ヘッダ部55に導入される冷媒の気液割合は互いにほぼ同一となる。即ち、第一接続管60、第二接続管70を流通する冷媒の質量流量の均等化が図られる。
 その後、第一接続管60又は第二接続管70を介して下側第二ヘッダ部54、上側第二ヘッダ部55に導入された冷媒は、これらに接続された複数の第二伝熱管23に分流してこれら第二伝熱管23内を流通する。そして、冷媒は、第二伝熱管23を流通する過程で第二伝熱管23の外部雰囲気との間で熱交換することで、再度蒸発が促される。これにより、第二伝熱管23内にて、冷媒における残存していた液相が気相に変化し、出入口側ヘッダ40の上部出入領域43には気相状態の冷媒が供給される。そして、この冷媒は上部出入領域43から配管7に導入され、冷媒回路を循環することになる。
 以上のように、本発明の熱交換器10では、複数の第二ヘッダ部53にそれぞれ接続された第一接続管60の第一連通路61、第二接続管70の第二連通路71が、第一ヘッダ部52の同一の上下方向位置に接続されているため、気相液相割合がほぼ同一の冷媒が各連通路に導入される。そのため、複数の連通路毎での冷媒流量の均等化を図ることができる。その結果、例えば熱交換器10を空気調和機に用いた場合には、冷房性能や暖房性能が損なわれることはない。
 次に本発明の第二実施形態に係る熱交換器80について、図4、図5A及び図5Bを参照して説明する。なお、第二実施形態では、第一実施形態と同様の構成要素については、第一実施形態同一の符号を付して詳細な説明を省略する。
 図4に示すように、第二実施形態の熱交換器80は、第一実施形態の第一接続管60及び第二接続管70に代えて、一の分岐接続管81を備えている点で第一実施形態と相違する。
 分岐接続管81は、主管部82及び複数(本実施形態では二つ)の分岐管部85を有している。
 主管部82は、一端が第一ヘッダ部52に接続されている。そして、この第一ヘッダ部52内には、図5A及び図5Bに示すように、第一ヘッダ部52内を水平方向に二つの領域に分割されるようにして形成された二つの分割流路83が形成されている。この分割流路83は、主管部82内の一端から他端にわたって、水平方向に並設して延在している。なお、主管部82は、図5Aに示すように、断面円形の流路の水平方向中央に分割壁部84が設けられることで二つの分割流路83が形成された構造であってもよい。また、図5Bに示すように、断面円形の流路の一部が直線状に切り欠かれた分割流路83が、当該直線状の部分を構成する分割壁部84によって互いに並設するように設けられた構造であってもよい。
 分岐管部85は、主管部82の他端側から複数に分岐するようにして二つが設けられている。この分岐管部85はそれぞれ下側第二ヘッダ部54及び上側第二ヘッダ部55に接続されている。また、各分岐管部85の内側の流路である分岐流路86は、主管部82における分割流路83に一対一の関係で連通している。これによって、主管部82の二つの分割流路83のうち、一方の分割流路83は一方の分岐流路86を介して下側第二ヘッダ部54内と連通状態とされており、即ち、一方の分割流路83と一方の分岐流路86とによって第一ヘッダ部52と下側第二ヘッダ部54とを連通させる第一連通路61を形成している。また、他方の分割流路83は他方の分岐流路86を介して上側第二ヘッダ部55内と連通状態とされており、即ち、他方の分割流路83と他方の分岐流路86とによって、第一ヘッダ部52内と上側第二ヘッダ部55とを連通させる第二連通路71を形成している。
 このような第二実施形態の熱交換器80では、分岐接続管81の主管部82における二つの分割流路83は、互いに水平方向に並設されているため、これら二つの分割流路83には、ほぼ同一の密度の冷媒が導入される。そして、この冷媒は、分岐流路86を介して下側第二ヘッダ部54、上側第二ヘッダ部55にそれぞれ導入される。したがって、第一実施形態同様、下側第二ヘッダ部54及び上側第二ヘッダ部55に導入される冷媒の質量流量の均等化を図ることができる。
 また、第一実施形態のように、第一接続管60及び第二接続管70を別個に設ける場合に比べて、第一ヘッダ部52への接続箇所が一か所のみとなるため、施工をより容易にすることができる。
 次に本発明の第三実施形態に係る熱交換器90について、図6及び図7を参照して説明する。なお、第三実施形態では、第一実施形態と同様の構成要素については、第一実施形態同一の符号を付して詳細な説明を省略する。
 図6及び図7に示すように、第三実施形態の熱交換器90は、下側第二管群25の第二伝熱管23の数と上側第二管群26の第二伝熱管23の数が互いに異なるとともに、第一接続管60と第二接続管70との流路断面積が互いに異なる点で第一実施形態と相違する。
 本実施形態の熱交換器90は下側第二管群25の第二伝熱管23の数よりも上側第二管群26の第二伝熱管23の数が多く設けられている。なお、各第二伝熱管23の上下方向の間隔は同一であるため、下側第二管群25の第二伝熱管23と上側第二管群26の第二伝熱管23との数の違いに応じて、下側第二ヘッダ部54よりも上側第二ヘッダ部55の方が上下方向の寸法が大きい。
 さらに、第一接続管60の流路断面積よりも第二接続管70の流路断面積の方がこれら第一接続管60及び第二接続管70の延在方向全域にわたって大きく設定されている。なお、流路断面積とは、第一接続管60及び第二接続管70それぞれの延在方向に直交する断面における流路の面積である。
 このように、本実施形態では、第二伝熱管23の数が相対的に少ない下側第二管群25に対応する下側第二ヘッダ部54に接続された第一接続管60の流路断面積は相対的に小さく設定されている。また、第二伝熱管23の数が相対的に多い上側第二管群26に対応する上側第二ヘッダ部55に接続された第二接続管70の流路断面積は相対的に大きく設定されている。
 第三実施形態の熱交換器90によれば、接続される第二伝熱管23の数が相対的に多い上側第二ヘッダ部55にはより多い量の冷媒が導入されることになる。一方で、接続される第二伝熱管23の数が相対的に少ない下側第二ヘッダ部54にはより少ない量の冷媒が導入される。接続される第二伝熱管23の数が多い程、より多くの冷媒を第二伝熱管23内に流通させて熱交換を促すことができるため、第二伝熱管23全体として流通する冷媒の質量流量の均等化を図ることができる。
 次に本発明の第四実施形態に係る熱交換器100について、図8~図10を参照して説明する。なお、第三実施形態では、第一実施形態と同様の構成要素については、第一実施形態同一の符号を付して詳細な説明を省略する。
 図8及び図9に示すように、第四実施形態の熱交換器100は、下側第二管群25の第二伝熱管23が受ける送風の速度と上側第二管群26の第二伝熱管23が受ける送風の速度が異なり、さらに、第一接続管60と第二接続管70との流路断面積が互いに異なる点で第一実施形態と相違する。
 本実施形態では、下側第二管群25が受ける送風の速度よりも上側第二管群26が受ける送風の速度の方が大きい。受ける送風の速度の違いは、例えば、図10に示すような送風部103によって生じる。
 即ち、図10に示すように、本実施形態の熱交換器100は、熱交換器100を収容するケーシング101を有している。
 このケーシング101は、ケーシング本体102、通風部104、及び上記送風部103を有している。ケーシング本体102は、上下方向に延びる略直方体形状の箱体であって、例えば4つの側面のうちの互いに隣り合う二つの側面にケーシング本体102内外で空気が流通可能な通風部104を有している。また、ケーシング本体102の天面には、鉛直軸線周りに回転可能なファンからなる送風部103が設けられている。この通風部104のファンが稼働すると、ケーシング本体102内の空気がケーシング101外部に向かって、即ち、下方から上方に向かって送られる。これに伴って、通風部104を介してケーシング本体102の外部からケーシング本体102内に空気が送られる。このように、ケーシング101の上方から空気を吐き出すようにして通風部104が稼働されると、ケーシング本体102内に配置された熱交換器100は上下方向で異なる風速の送風を受けることになる。これによって、本実施形態では、下側第二管群25が受ける送風の速度よりも上側第二管群26が受ける送風の速度が大きくなる。
 そして、本実施形態では、第三実施形態同様、第一接続管60の流路断面積よりも第二接続管70の流路断面積の方がこれら第一接続管60及び第二接続管70の延在方向全域にわたって大きく設定されている。
 このように、本実施形態では、受ける送風の速度が小さい下側第二管群25に対応する下側第二ヘッダ部54に接続された第一接続管60の流路断面積は相対的に小さく設定されている。また、受ける送風の速度が大きい第二伝熱管23の数が相対的に多い上側第二管群26に対応する上側第二ヘッダ部55に接続された第二接続管70の流路断面積は相対的に大きく設定されている。
 このような熱交換器100では、第二管群24の受ける送風の速度が大きい程、第二管群24での熱交換が促進される。したがって、受ける送風の速度が大きい上側第二管群26に接続された第二ヘッダ部53により多くの冷媒を導入することで、熱交換器100全体としての熱交換効率を向上させることができる。
 次に本発明の第五実施形態に係る熱交換器110について、図11及び図12を参照して説明する。なお、第五実施形態では、第一実施形態と同様の構成要素については、第一実施形態同一の符号を付して詳細な説明を省略する。
 図11及び図12に示すように、本実施形態の熱交換器110は、折り返しヘッダ50内に3つの仕切板58が設けられている。即ち、これら仕切板58は上下方向に間隔をあけて設置されており、これによってヘッダ30内の領域に上下方向に4つに区画している。4つの領域のうちの最も下方の領域を含む部分は、第一実施形態同様、第一ヘッダ部52とされている。また、4つの領域のうちの最も下方の領域を除く上方の3つの領域を含む部分は、それぞれ第二ヘッダ部53とされている。本実施形態では、一つの第一ヘッダ部52と三つの第二ヘッダ部53が設けられている。
 さらに、本実施形態では、第一ヘッダ部52と3つの第二ヘッダ部53のうちの最も下方の第二ヘッダ部53とを接続する接続管120、第一ヘッダ部52と3つの第二ヘッダ部53のうちの中央の第二ヘッダ部53とを接続する接続管120、第一ヘッダ部52と3つの第二ヘッダ部53のうちの最も上方の第二ヘッダ部53を接続する接続管120の計3つの接続管120が設けられている。各接続管120内には、第一ヘッダ部52といずれかの第二ヘッダ部53とを連通させる連通路121が形成されている。
 また、各接続管120における第一ヘッダ部52との接続箇所は、第一実施形態同様に、互いに同一の上下方向位置とされている。
 このような熱交換器110でも、第一実施形態と同様、第一ヘッダ部52から各第二ヘッダ部53に導入される冷媒の質量流量の均等化を図ることができる。
 なお、本実施形態では、3つの第二ヘッダ部53を設けた例について説明したが、第二ヘッダ部53が4つ以上あってもよい。その場合には、第二ヘッダ部53の数に応じて接続管120の数も増加する。
 次に本発明の第六実施形態に係る熱交換器130について、図13を参照して説明する。なお、第六実施形態では、第一実施形態と同様の構成要素については、第一実施形態同一の符号を付して詳細な説明を省略する。
 第六実施形態は、第一接続管60及び第二接続管70がそれぞれ複数設けられている点で、第一実施形態と相違する。
 即ち、第六実施形態では、第一接続管60が複数(本実施形態では3つ)設けられている。各第一接続管60における第一ヘッダ部52との接続箇所は互いに同一の上下方向位置とされている一方、下側第二ヘッダ部54への接続箇所は、互いに上下方向の異なる位置とされている。本実施形態では3つの第一接続管60のうちの一つ目の第一接続管60が下側第二ヘッダ部54の下部に接続されており、二つ目の第二接続管70が下側第二ヘッダ部54の中央部に接続されており、三つ目の第一接続管60が下側第二ヘッダ部54の上部に接続されている。
 また、第六実施形態では、第二接続管70も複数(本実施形態では3つ)設けられている。各第二接続管70における第一ヘッダ部52との接続箇所は互いに同一の上下方向位置とされている一方、上側第二ヘッダ部55への接続箇所は、互いに上下方向の異なる位置とされている。本実施形態では3つの第一接続管60のうちの一つ目の第一接続管60が上側第二ヘッダ部55の下部に接続されており、二つ目の第二接続管70が上側第二ヘッダ部55の中央部に接続されており、三つ目の第一接続管60が上側第二ヘッダ部55の上部に接続されている。
 このような熱交換器130によれば、第一実施形態同様、下側第二ヘッダ部54及び上側第二ヘッダ部55に導入される冷媒の質量流量の均等化を図ることができる。
 さらに、特に本実施形態では、第一ヘッダ部52内及び第二ヘッダ部53内には、高さ位置の異なる複数個所から冷媒が導入される。そのため、第一ヘッダ部52、第二ヘッダ部53内でそれぞれ冷媒が上下方向で混合されることにより、これら第一ヘッダ部52及び第二ヘッダ部53内での冷媒の均一化を促進させることができる。これによって、各第二伝熱管23に導入される冷媒の質量流量の均等化を図ることができる。
 以上、本発明の実施の形態について説明したが、本発明はこれに限定されることなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、第二実施形態の分岐接続管81は、第三~第五実施形態に適用してもよい。
 また、第三実施形態と第四実施形態とを互いに組み合わせて、第二管群24を構成する第二伝熱管23の数及び各第二伝熱管23が受ける送風の風量に応じて、第一接続管60、第二接続管70の流路断面積を調整してもよい。
1  空気調和機
2  圧縮機
3  室内熱交換器
4  膨張弁
5  室外熱交換器
6  四方弁
7  配管
10 熱交換器
20 伝熱管
21 第一伝熱管
22 第一管群
23 第二伝熱管
24 第二管群
25 下側第二管群
26 上側第二管群
28 フィン
30 ヘッダ
40 出入口側ヘッダ
41 仕切板
42 下部出入領域
43 上部出入領域
50 折り返し側ヘッダ
51 ヘッダ本体
52 第一ヘッダ部
53 第二ヘッダ部
54 下側第二ヘッダ部
55 上側第二ヘッダ部
58 主仕切板
60 第一接続管
61 第一連通路
70 第二接続管
71 第二連通路
80 熱交換器
81 分岐接続管
82 主管部
83 分割流路
84 分割壁部
85 分岐管部
86 分岐流路
90 熱交換器
100   熱交換器
101   ケーシング
102   ケーシング本体
103   送風部
104   通風部
110   熱交換器
120   接続管
121   連通路
130   熱交換器

Claims (7)

  1.  水平方向に延びて内部に冷媒が流通するとともに上下方向に間隔をあけて複数が配列された第一伝熱管を有する第一管群と、
     上下方向に延びる筒状をなして前記第一管群の各前記第一伝熱管の一端が連通状態で接続される第一ヘッダ部と、
     水平方向に延びて内部に冷媒が流通するとともに上下方向に間隔をあけて複数が配列された第二伝熱管を有する複数の第二管群と、
     これら複数の第二管群に対応して複数が設けられ、上下方向に延びる筒状をなしてそれぞれに前記第二管群の各前記第二伝熱管の一端が連通状態で接続される第二ヘッダ部と、
     複数の前記第二ヘッダ部に対応して複数が設けられて、前記第一ヘッダ部と各前記第二ヘッダ部とを連通させるように、それぞれの一端が互いに前記第一ヘッダ部の同一の上下方向位置に接続されるとともにそれぞれの他端が各前記第二ヘッダ部のいずれかに接続された連通路と、
     を備える熱交換器。
  2.  一端が第一ヘッダ部に接続されるとともに、水平方向に複数に並設された分割流路が内側に形成された主管部と、前記主管部の他端側から複数に分岐して内側に前記分割流路に連通する分岐流路が形成されるとともにそれぞれいずれかの前記第二ヘッダ部に接続された分岐管部とを有する分岐接続管を備え、
     各前記連通路は、それぞれ各前記分割流路及び各前記分岐流路によって形成された流路である請求項1に記載の熱交換器。
  3.  各前記第二管群の前記第二伝熱管の数が互いに異なり、
     前記連通路は、前記第二伝熱管の数の多い前記第二管群が接続された前記第二ヘッダ部に接続される前記連通路ほど、流路断面積が大きい請求項1又は2に記載の熱交換器。
  4.  各前記第二管群に送風する送風部を備え、
     前記送風部により各前記第二管群が受ける送風の速度は、各前記第二管群毎に互いに異なっており、
     前記連通路は、受ける送風の速度が大きい前記第二管群が接続された前記第二ヘッダ部に接続される前記連通路ほど、流路断面積が大きい請求項1から3のいずれか一項に記載の熱交換器。
  5.  前記第一ヘッダ部と複数の前記第二ヘッダ部のいずれかとを連通させるように、一端が前記第一ヘッダ部に接続された前記連通路と同一の高さ位置で、前記第一ヘッダ部に接続されるとともに、他端が、前記第二ヘッダ部に接続された前記連通路と異なる高さ位置で、前記第二ヘッダ部に接続された他の連通路をさらに備える請求項1から4のいずれか一項に記載の熱交換器。
  6.  上下方向に延びる筒状をなすヘッダ本体と、前記ヘッダ本体内を上下に複数の領域に区画する複数の主仕切板と、を有するヘッダを備え、
     前記第一ヘッダ部は、前記ヘッダにおける複数の前記領域のうち最も下方の領域を含む部分であって、
     各前記第二ヘッダ部は、前記ヘッダにおける複数の前記領域のうち最も下方の領域以外のいずれかの領域を含む部分である請求項1から5のいずれか一項に記載の熱交換器。
  7.  請求項1から6のいずれか一項に記載の熱交換器を備える空気調和機。
PCT/JP2017/000974 2016-02-29 2017-01-13 熱交換器及び空気調和機 WO2017149950A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780003725.8A CN108351188A (zh) 2016-02-29 2017-01-13 热交换器及空调
EP17759422.3A EP3355023A4 (en) 2016-02-29 2017-01-13 Heat exchanger and air conditioner
AU2017228091A AU2017228091B2 (en) 2016-02-29 2017-01-13 Heat exchanger and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-038404 2016-02-29
JP2016038404A JP6742112B2 (ja) 2016-02-29 2016-02-29 熱交換器及び空気調和機

Publications (1)

Publication Number Publication Date
WO2017149950A1 true WO2017149950A1 (ja) 2017-09-08

Family

ID=59742708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000974 WO2017149950A1 (ja) 2016-02-29 2017-01-13 熱交換器及び空気調和機

Country Status (5)

Country Link
EP (1) EP3355023A4 (ja)
JP (1) JP6742112B2 (ja)
CN (1) CN108351188A (ja)
AU (1) AU2017228091B2 (ja)
WO (1) WO2017149950A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281731A1 (ja) * 2021-07-09 2023-01-12 三菱電機株式会社 熱交換器及び空気調和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100568A (ja) * 2017-11-29 2019-06-24 株式会社デンソー 熱交換器
KR102063630B1 (ko) * 2018-01-22 2020-01-08 엘지전자 주식회사 실외 열교환기
JP7392757B2 (ja) * 2022-03-30 2023-12-06 株式会社富士通ゼネラル 空気調和機の室内機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098917A1 (ja) * 2011-01-21 2012-07-26 ダイキン工業株式会社 熱交換器および空気調和機
JP2014137177A (ja) * 2013-01-16 2014-07-28 Daikin Ind Ltd 熱交換器および冷凍装置
JP2014228199A (ja) * 2013-05-22 2014-12-08 ダイキン工業株式会社 熱交換器
JP2015052440A (ja) * 2013-09-09 2015-03-19 ダイキン工業株式会社 熱交換器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543965Y2 (ja) * 1990-06-04 1997-08-13 東洋ラジエーター株式会社 熱交換器の分岐部構造
JP5609916B2 (ja) * 2012-04-27 2014-10-22 ダイキン工業株式会社 熱交換器
ES2700604T3 (es) * 2013-09-11 2019-02-18 Daikin Ind Ltd Intercambiador de calor y aparato de aire acondicionado
WO2015178097A1 (ja) * 2014-05-19 2015-11-26 三菱電機株式会社 空気調和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098917A1 (ja) * 2011-01-21 2012-07-26 ダイキン工業株式会社 熱交換器および空気調和機
JP2014137177A (ja) * 2013-01-16 2014-07-28 Daikin Ind Ltd 熱交換器および冷凍装置
JP2014228199A (ja) * 2013-05-22 2014-12-08 ダイキン工業株式会社 熱交換器
JP2015052440A (ja) * 2013-09-09 2015-03-19 ダイキン工業株式会社 熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3355023A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281731A1 (ja) * 2021-07-09 2023-01-12 三菱電機株式会社 熱交換器及び空気調和装置

Also Published As

Publication number Publication date
EP3355023A1 (en) 2018-08-01
EP3355023A4 (en) 2018-12-26
AU2017228091B2 (en) 2019-07-18
AU2017228091A1 (en) 2018-05-10
JP6742112B2 (ja) 2020-08-19
CN108351188A (zh) 2018-07-31
JP2017155993A (ja) 2017-09-07

Similar Documents

Publication Publication Date Title
WO2017149989A1 (ja) 熱交換器及び空気調和機
US10309701B2 (en) Heat exchanger and air conditioner
US20160327343A1 (en) Heat exchanger of air conditioner
US10041710B2 (en) Heat exchanger and air conditioner
WO2013160952A1 (ja) 冷媒分配器及びこの冷媒分配器を備えた熱交換器
US9518788B2 (en) Heat exchanger
US10168083B2 (en) Refrigeration system and heat exchanger thereof
WO2020161761A1 (ja) 熱交換器およびこれを備えた空気調和装置
WO2017149950A1 (ja) 熱交換器及び空気調和機
WO2018116929A1 (ja) 熱交換器及び空気調和機
US11022372B2 (en) Air conditioner
WO2017150219A1 (ja) 熱交換器及び空気調和機
JP2020051632A (ja) 熱交換器、及び、これを備える空気調和機
WO2017150221A1 (ja) 熱交換器及び空気調和機
JP6853867B2 (ja) 熱交換器及び空気調和機
KR102169284B1 (ko) 열교환기 및 이를 갖는 공기조화기
JP2020115070A (ja) 熱交換器
WO2023199466A1 (ja) 熱交換器及びこれを有する空気調和装置
JP2013185757A (ja) 冷媒分配器およびヒートポンプ装置
KR102148722B1 (ko) 열교환기 및 이를 갖는 공기조화기
WO2021234955A1 (ja) 熱交換器及び空気調和機
WO2021117107A1 (ja) 分配装置、分配装置を備えた熱交換器およびその熱交換器を備えた空気調和機
JP2020085268A (ja) 熱交換器
CN117063021A (zh) 热交换器、具备该热交换器的室外机
CN111750730A (zh) 热交换器分流器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017759422

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017228091

Country of ref document: AU

Date of ref document: 20170113

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE