WO2013160952A1 - 冷媒分配器及びこの冷媒分配器を備えた熱交換器 - Google Patents

冷媒分配器及びこの冷媒分配器を備えた熱交換器 Download PDF

Info

Publication number
WO2013160952A1
WO2013160952A1 PCT/JP2012/002860 JP2012002860W WO2013160952A1 WO 2013160952 A1 WO2013160952 A1 WO 2013160952A1 JP 2012002860 W JP2012002860 W JP 2012002860W WO 2013160952 A1 WO2013160952 A1 WO 2013160952A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
room
distributor
header
Prior art date
Application number
PCT/JP2012/002860
Other languages
English (en)
French (fr)
Inventor
拓也 松田
石橋 晃
相武 李
岡崎 多佳志
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/395,875 priority Critical patent/US20150101363A1/en
Priority to JP2014512021A priority patent/JP5901748B2/ja
Priority to PCT/JP2012/002860 priority patent/WO2013160952A1/ja
Priority to EP12875000.7A priority patent/EP2853843B1/en
Priority to ES12875000T priority patent/ES2784132T3/es
Priority to CN201280072638.5A priority patent/CN104272040B/zh
Priority to CN2013202178315U priority patent/CN203274373U/zh
Publication of WO2013160952A1 publication Critical patent/WO2013160952A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Definitions

  • the present invention relates to a refrigerant distributor that distributes refrigerant and is attached to a heat exchanger used in a refrigeration cycle apparatus such as an air conditioner, and a heat exchanger that includes the refrigerant distributor.
  • a pair of headers extending in the up-down direction are arranged apart from each other in the left-right direction, a plurality of flat tubes are arranged in parallel between the pair of headers, and both ends of the plurality of heat exchange tubes communicate with the pair of headers.
  • a heat exchanger configured as described above.
  • the refrigerant when used as an evaporator, the refrigerant flows in a gas-liquid two-phase flow, so that liquid accumulates in the gravitational direction in the header on the inlet side, while gas accumulates in the header. . Accordingly, there is a problem that the refrigerant cannot be evenly distributed to the respective flat tubes and the performance of the heat exchanger is deteriorated.
  • a function for evenly distributing the refrigerant to the header on the inlet side is required.
  • a refrigerant distributor a loop-shaped flow path that folds up and down inside the header is configured, and the two-phase refrigerant flow that flows in is circulated inside the header and homogenized, and distributed to each of the plurality of heat transfer tubes.
  • a refrigerant distributor configured to do so (for example, see Patent Document 1).
  • a pair of headers extending in the left-right direction (horizontal direction) are arranged apart from each other, and a plurality of flat tubes are arranged in parallel between the pair of headers.
  • a plurality of refrigerant inlets are provided in the header on the inlet side at intervals in the left-right direction, and the refrigerant is injected from each refrigerant inlet into the header through an orifice (for example, Patent Document 2).
  • JP 2011-85324 A (summary, FIG. 1) JP 2000-249428 A (summary, FIG. 4)
  • Patent Document 1 Although a certain amount of refrigerant distribution effect can be seen, all of the plurality of heat transfer tubes communicate with each other inside the header, and thus are affected by the head difference in the header. For this reason, it cannot be said that the refrigerant distribution effect is sufficient, and further improvement is required.
  • the present invention has been made in view of the above points, and provides a refrigerant distributor capable of evenly distributing the refrigerant while suppressing the influence of the head difference and a heat exchanger provided with the refrigerant distributor. With the goal.
  • a refrigerant distributor according to the present invention is connected to one end of a plurality of heat transfer tubes of a heat exchanger that allows a refrigerant to flow in parallel to a plurality of heat transfer tubes arranged in parallel, and the inside is a plurality of heat transfer tubes by one or more partition plates. Having a configuration partitioned in a parallel direction and having a header installed upright in the vertical direction and a distributor for distributing and flowing the refrigerant into each of the rooms in the header partitioned by the partition plate It is.
  • the present invention it is possible to obtain a refrigerant distributor capable of evenly distributing the refrigerant while suppressing the influence of the head difference. A particularly effective effect can be obtained when the header is set up in the vertical direction.
  • FIG. 1 It is a schematic perspective view of the heat exchanger provided with the refrigerant distributor which concerns on one embodiment of this invention. It is a schematic sectional drawing of a part of refrigerant distributor of FIG. It is a perspective view which shows the flat tube of FIG. It is a figure which shows the refrigerant circuit of the refrigerating-cycle apparatus to which the heat exchanger of FIG. 1 was applied. It is a figure which shows the other structural example of a refrigerant distributor. It is explanatory drawing of the determination principle of the height of each room according to wind speed distribution.
  • FIG. 1 is a schematic perspective view of a heat exchanger provided with a refrigerant distributor according to an embodiment of the present invention.
  • FIG. 2 is a schematic sectional view of a part of the refrigerant distributor of FIG.
  • FIG. 1 FIG. 2, and the figure mentioned later, what attached
  • symbol is the same or it corresponds, and this is common in the whole text of a specification.
  • the forms of the constituent elements appearing in the entire specification are merely examples and are not limited to these descriptions.
  • the heat exchanger 1 is a parallel flow heat exchanger that allows refrigerant to flow in parallel.
  • the heat exchanger 1 is spaced apart from each other in the left-right direction, and a pair of headers 10 (10a, 10b) installed in an up-down direction and a pair.
  • the plurality of flat tubes (heat transfer tubes) 20 are arranged between the headers 10 in parallel in the vertical direction, and both ends are connected to the pair of headers 10.
  • the heat exchanger 1 further includes a plurality of fins 30 and a distributor 40.
  • the pair of headers 10, the flat tubes 20, and the fins 30 are all made of aluminum or an aluminum alloy.
  • the distributor 40 is connected to the header 10a via the capillary tube 50, and constitutes a refrigerant distributor together with the header 10a.
  • the fin 30 is a plate-like fin that is stacked between the pair of headers 10 with a space therebetween, and air passes between the fins 30, and the plurality of flat tubes 20 penetrate the fin 30.
  • the fin 30 is not necessarily a plate-like fin.
  • it may be a wave-shaped fin or the like that is alternately stacked with the flat tubes 20 in the vertical direction, and may be any fin that is arranged so that air passes in the air passage direction.
  • the flat tube 20 has a plurality of through-holes 20a serving as refrigerant flow paths as shown in FIG.
  • the header 10 a is partitioned in the vertical direction by one or more partition plates 11 to form a plurality of rooms 12.
  • eight chambers 12 are formed by seven partition plates 11.
  • a plurality of through holes 13 are formed in the vertical direction, and a flat tube 20 is connected to each through hole 13.
  • Each room 12 is connected to the distributor 40 via a capillary tube 50.
  • the distributor 40 has an orifice (not shown) for restricting the flow of the refrigerant, and when the heat exchanger 1 is used as an evaporator, the gas-liquid two-phase flow flowing into the distributor 40 is passed through the orifice.
  • Spray spray homogeneous flow to make it easy to distribute evenly.
  • the sprayed refrigerant is evenly distributed and flows into each capillary tube 50 and flows into the respective chambers 12 through the capillary tubes 50.
  • the capillary tube 50 adjusts the pressure loss in the pipe according to the specifications (length, inner diameter), and adjusts the diversion ratio of the header 10 a to each room 12.
  • specifications length, inner diameter
  • diversion ratio the diversion ratio of the header 10 a
  • the flat tube 20, the fins 30, and the pair of headers 10 are all assembled and simultaneously brazed in the furnace, and then the distributor 40 and each capillary tube 50. Connect.
  • FIG. 4 is a diagram showing a refrigerant circuit of a refrigeration cycle apparatus to which the heat exchanger of FIG. 1 is applied.
  • the refrigeration cycle device 60 includes a compressor 61, a condenser 62, an expansion valve 63 as a decompression device, and an evaporator 64.
  • the heat exchanger 1 is used for at least one of the condenser 62 and the evaporator 64.
  • the gas refrigerant discharged from the compressor 61 flows into the condenser 62, exchanges heat with the air passing through the condenser 62, and flows out as high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the condenser 62 is decompressed by the expansion valve 63 to become a low-pressure gas-liquid two-phase refrigerant and flows into the evaporator 64.
  • the low-pressure gas-liquid two-phase refrigerant flowing into the evaporator 64 exchanges heat with the air passing through the evaporator 64 to become a low-pressure gas refrigerant, and is sucked into the compressor 61 again.
  • FIG. 1 a solid line arrow indicates the flow of refrigerant when used as an evaporator.
  • the gas-liquid two-phase refrigerant flow flowing out from the expansion valve 63 first flows into the distributor 40 and is sprayed.
  • the sprayed refrigerant is distributed evenly to each capillary tube 50 and flows.
  • Each refrigerant that has passed through each capillary tube 50 flows into each chamber 12 of the header 10a.
  • the partition plate 11 is provided to partition the inside of the header 10a so that each refrigerant flows into each room 12 where the head difference is reduced. Therefore, the influence of the head difference on each refrigerant flowing into each room 12 is reduced, and each refrigerant in each room 12 flows evenly distributed to each flat tube 20 connected to that room 12.
  • Each refrigerant that has flowed into each flat tube 20 flows toward the header 10b through the through hole 20a of the flat tube 20, merges at the header 10b, and flows out of the heat exchanger 1 from the external connection pipe 14.
  • the flow of the refrigerant when the heat exchanger 1 is used as a condenser will be described with reference to FIGS. 1 and 4.
  • the dotted line arrows indicate the flow of refrigerant when used as a condenser.
  • the gas refrigerant flow that has flowed out of the compressor 61 flows into the header 10 b, where it is evenly distributed and flows into each flat tube 20. Since equal distribution is easy when the refrigerant is in a gas state, a refrigerant distributor such as a distributor is unnecessary, and the gas refrigerant flow flowing out from the compressor 61 is directly introduced into the header 10b.
  • coolant which flowed into each flat tube 20 flows toward the header 10a side through the through-hole 20a of the flat tube 20, and flows into each room 12 of the header 10a.
  • the respective refrigerants flowing into the respective chambers 12 flow into the distributor 40 through the respective capillary tubes 50, merge here and flow out of the heat exchanger 1.
  • the two-phase refrigerant flow that flows in is evenly distributed by the distributor 40, and each equally distributed refrigerant is It was made to flow into each room 12 which aimed at reduction.
  • the influence of the head difference with respect to each refrigerant that has flowed into each room 12 is reduced, and can be distributed evenly to each flat tube 20 and flow can be suppressed. Therefore, by using the refrigerant distributor having the distributor 40 and the header 10a, the ability of the evaporator can be maximized, and the heat exchange efficiency of the heat exchanger 1 as the evaporator can be increased. .
  • the position of the partition plate 11 may be determined in consideration of the head difference that can be evenly distributed. By providing the partition plate 11 only as much as necessary, the cost can be reduced.
  • the refrigerant distributor and the heat exchanger of the present invention are not limited to the structure shown in FIG. 1, and, for example, as in the following (1) to (3) without departing from the gist of the present invention: Various modifications are possible.
  • a drift suppression member for suppressing distribution drift may be further provided in the refrigerant inflow portion of each room 12. Any drift suppressing member may be used as long as it can suppress the distributed drift.
  • an orifice 70 may be provided as shown in FIG.
  • the orifice 70 is provided at the connection port of the capillary tube 50 in the room 12 and has a through hole 71 having an inner diameter smaller than the inner diameter of the capillary tube 50.
  • the orifice 70 promotes spray flow by further restricting the flow of the refrigerant flowing in from the capillary tube 50 through the through hole 71. By promoting the spray flow in this way, the distribution to the flat tubes 20 in the room 12 becomes more uniform, and the distribution drift can be further suppressed.
  • each room 12 (the length in the parallel direction of the plurality of flat tubes 20) may be determined according to the wind speed distribution in the heat exchanger 1.
  • the wind speed from the blower fan that blows air to the heat exchanger 1 is not necessarily uniform over the entire surface of the heat exchanger 1, and there is a wind speed distribution.
  • the wind speed is higher at the top of the heat exchanger 1 than at the bottom.
  • the heat exchanger 1 is used as an evaporator, the refrigerant that passes through the portion where the wind speed is high is more easily gasified and becomes easier to dry than the refrigerant that passes through the portion where the wind speed is low.
  • the refrigerant that has passed through the portion with the fast wind speed has a higher dryness than the refrigerant that has passed through the portion with the slow wind speed, and the state of the refrigerant flowing into the header 10b varies. Arise.
  • the refrigerant state flowing out from the external connection pipe 14 becomes unstable. Therefore, for the header 10a portion to which the flat tube 20 located at a portion where the wind speed is fast is connected, the height of the room 12 is reduced so that the heat exchange area per room is reduced, and the flat connected to the room 12 is connected. Reduce the number of tubes. This will be specifically described with reference to FIG.
  • FIG. 6 is an explanatory diagram of the principle of determining the height of each room according to the wind speed distribution, and shows an example in which the wind speed on the upper side is fast and the wind speed on the lower side is slow.
  • the height of the upper side room 12A where the wind speed is fast is made smaller than the height of the lower side room 12B where the wind speed is slow, and the number of flat tubes connected to the room 12A is flattened. The number is less than the number of tubes.
  • the heat exchange area A on the room 12A side is smaller than the heat exchange area B on the room 12B side, so to speak, the heat transfer area is reduced. Therefore, the substantial heat exchange amount becomes substantially the same in the heat exchange area A and the heat exchange area B, and the refrigerant state at the outlet can be made uniform.
  • coolant amount which flows in into each room 12 is the same here and the example which arrange
  • the amount of allocation to the room 12 to which the flat tube 20 located in the portion where the wind speed is fast is connected is large, and the amount of distribution to the room 12 to which the flat tube 20 located in the portion where the wind speed is slow is reduced.
  • the capillary tube 50 is selected.
  • the heat exchanger 1 has an overall substantially I shape, but an overall substantially L shape, an overall substantially U shape, and an overall substantially rectangular shape may be used.
  • the shape of the heat exchanger 1 can be determined according to the mounting space of the heat exchanger 1 in the housing in which the heat exchanger 1 is installed, and the mounting space can be maximized and mounted with high density. The shape can be made.
  • the heat transfer tube is a flat tube in the present embodiment, it is not necessarily a flat tube and may be a circular tube.
  • Heat exchanger 10 header, 10a header, 10b header, 11 partition plate, 12 room, 12A room, 12B room, 13 through hole, 14 external connection piping, 20 flat tube (heat transfer tube), 30 fin, 40 distributor, 50 capillary tube, 60 refrigeration cycle apparatus, 61 compressor, 62 condenser, 63 expansion valve, 64 evaporator, 70 orifice, 71 through hole, A heat exchange area, B heat exchange area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

 並列に配置された複数の扁平管20に冷媒を並列に流す熱交換器1の複数の扁平管20の一端に接続され、内部が1以上の仕切板11により複数の伝熱管20の並列方向に仕切られた構成を有し、上下方向に立てて設置されるヘッダ10aと、仕切板11により仕切られたヘッダ10a内の各部屋のそれぞれに、冷媒を分配して流入させるディストリビュータ40とを有する。

Description

冷媒分配器及びこの冷媒分配器を備えた熱交換器
 本発明は、例えば空気調和機等の冷凍サイクル装置に用いられる熱交換器に取り付けられ、冷媒を分配する冷媒分配器及びこの冷媒分配器を備えた熱交換器に関する。
 従来より、上下方向に延びる一対のヘッダが左右方向に離間して配置され、一対のヘッダ間に複数の扁平管を並列に配置し、複数の熱交換管の両端部を一対のヘッダに連通するように構成した熱交換器がある。この種の熱交換器では、蒸発器として用いる場合に、冷媒が気液二相流で流入するため、入口側のヘッダ内で重力方向に液が溜まり、一方でガスがヘッダ内の上方に溜まる。よって、各扁平管に冷媒を均等に分配することができず、熱交換器の性能が低下する課題がある。
 そこで、熱交換器を蒸発器として用いる場合には、入口側のヘッダに対し、冷媒を均等に分配する機能が求められる。このような冷媒分配器として、従来より、ヘッダ内部に上下方向に折り返すループ状流路を構成し、流入した二相冷媒流をヘッダ内部で循環させて均質化し、複数の伝熱管のそれぞれに分配するようにした冷媒分配器がある(例えば、特許文献1参照)。
 また、冷媒の均一な分配を図った蒸発器として、左右方向(水平方向)に延びる一対のヘッダが互いに離間して配置され、一対のヘッダ間に複数の扁平管を並列に配置した構成を有し、入口側のヘッダに、左右方向に間隔を空けて複数の冷媒入口を設け、各冷媒入口からオリフィスを介してヘッダ内部に冷媒を噴射させて流入させるようにした蒸発器がある(例えば、特許文献2参照)。
特開2011-85324号公報(要約、図1) 特開2000-249428号公報(要約、図4)
 特許文献1の構造では、ある程度の冷媒均等分配効果は見られるものの、複数の伝熱管の全てがヘッダ内部で連通しているため、ヘッダ内においてヘッド差の影響を受ける。このため、冷媒分配効果が十分とは言い切れず、更なる改良が求められている。
 特許文献2では、ヘッダを水平に設置しているため、ヘッド差の影響を受けない。しかし、ヘッダを上下方向に立てて設置する場合、ヘッド差の影響を受けて下側に液が溜まり易いという課題がある。
 本発明はこのような点に鑑みなされたもので、ヘッド差の影響を抑制して冷媒を均等に分配することが可能な冷媒分配器及びこの冷媒分配器を備えた熱交換器を提供することを目的とする。
 本発明に係る冷媒分配器は、並列に配置された複数の伝熱管に冷媒を並列に流す熱交換器の複数の伝熱管の一端に接続され、内部が1以上の仕切板により複数の伝熱管の並列方向に仕切られた構成を有し、上下方向に立てて設置されるヘッダと、仕切板により仕切られたヘッダ内の各部屋のそれぞれに、冷媒を分配して流入させるディストリビュータとを有するものである。
 本発明によれば、ヘッド差の影響を抑制して冷媒を均等に分配することが可能な冷媒分配器を得ることができる。ヘッダを上下方向に立てて設置する場合に特に有効な効果を得ることができる。
本発明の一実施の形態に係る冷媒分配器を備えた熱交換器の概略斜視図である。 図1の冷媒分配器の一部の概略断面図である。 図1の扁平管を示す斜視図である。 図1の熱交換器が適用された冷凍サイクル装置の冷媒回路を示す図である。 冷媒分配器の他の構成例を示す図である。 風速分布に応じた各部屋の高さの決定原理の説明図である。
 図1は、本発明の一実施の形態に係る冷媒分配器を備えた熱交換器の概略斜視図である。図2は、図1の冷媒分配器の一部の概略断面図である。図1、図2及び後述の図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。更に、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
 熱交換器1は、冷媒を並列に流すパラレルフローの熱交換器であって、左右方向に離間して配置され、上下方向に立てて設置された一対のヘッダ10(10a、10b)と、一対のヘッダ10間に上下方向に並列に配置され、両端が一対のヘッダ10に接続された複数の扁平管(伝熱管)20とを有している。そして、熱交換器1は更に、複数のフィン30と、ディストリビュータ40とを有している。一対のヘッダ10、扁平管20及びフィン30は、何れもアルミ又はアルミ合金で構成されている。ディストリビュータ40は、ヘッダ10aにキャピラリチューブ50を介して接続され、ヘッダ10aと共に冷媒分配器を構成している。
 フィン30は、一対のヘッダ10間に互いに間隔を空けて積層され、その間を空気が通過する板状フィンであり、フィン30には複数の扁平管20が貫通している。なお、フィン30は必ずしも板状フィンでなくてもよい。例えば上下方向に扁平管20と交互に積層して配置される波形状のフィン等でもよく、要は空気通過方向に空気が通過するように配置されたフィンであればよい。
 扁平管20は、図3に示すように冷媒流路となる貫通孔20aを複数有している。
 ヘッダ10aは、内部が1以上の仕切板11で上下方向に仕切られて複数の部屋12を形成している。ここでは7枚の仕切板11により8個の部屋12が形成されている。各部屋12のそれぞれには、上下方向に複数の貫通孔13が形成され、この各貫通孔13に扁平管20が接続されている。また、各部屋12のそれぞれは、キャピラリチューブ50を介してディストリビュータ40に接続されている。
 ディストリビュータ40は、冷媒の流れを絞るオリフィス(図示せず)を内部に有しており、熱交換器1を蒸発器として用いる場合に、自身に流入する気液二相流をオリフィスに通すことで噴霧流化(均質流化)し、均等分配し易い状態にする。ここで噴霧流化された冷媒は各キャピラリチューブ50に均等に分配されて流入し、キャピラリチューブ50内を通って各部屋12のそれぞれに流入する。
 キャピラリチューブ50は、その仕様(長さ、内径)で管内圧損を調整し、ヘッダ10aの各部屋12への分流比を調整する。ここでは、全てのキャピラリチューブ50の仕様は同じとし、同量の冷媒を各部屋12に流入させるものとする。
 このような構成の熱交換器1を製造する際には、扁平管20、フィン30、一対のヘッダ10を全て組み立てた状態で同時に炉中ロウ付け接合し、その後、ディストリビュータ40及び各キャピラリチューブ50を接続する。
 図4は、図1の熱交換器が適用された冷凍サイクル装置の冷媒回路を示す図である。
 冷凍サイクル装置60は、圧縮機61と、凝縮器62と、減圧装置としての膨張弁63と、蒸発器64とを備えている。凝縮器62と蒸発器64の少なくとも一方に、熱交換器1が用いられる。圧縮機61から吐出されたガス冷媒は凝縮器62に流入し、凝縮器62を通過する空気と熱交換して高圧液冷媒となって流出する。凝縮器62を流出した高圧液冷媒は膨張弁63で減圧されて低圧の気液二相冷媒となり、蒸発器64に流入する。蒸発器64に流入した低圧の気液二相冷媒は、蒸発器64を通過する空気と熱交換して低圧ガス冷媒となり、再び圧縮機61に吸入される。
 以下、図1及び図4を参照して熱交換器1を蒸発器として用いる場合の冷媒の流れを説明する。図1において実線矢印は蒸発器として用いる場合の冷媒の流れを示している。
 膨張弁63から流出した気液二相冷媒流は、まずディストリビュータ40に流入して噴霧流化される。噴霧流化された冷媒は、各キャピラリチューブ50に均等に分配されて流入する。各キャピラリチューブ50を通過した各冷媒は、ヘッダ10aの各部屋12にそれぞれ流入する。
 ここで、ヘッダ内に仕切板を設けない従来構成の場合、ヘッダ内部全体が連通しているため、重力によるヘッド差が大きく偏流が生じやすい。しかし本実施の形態では、仕切板11を設けてヘッダ10a内部を仕切り、ヘッド差を小さくした各部屋12に各冷媒を流入させるようにしている。よって、各部屋12に流入した各冷媒に対するヘッド差の影響は低減され、各部屋12の各冷媒は、その部屋12に接続された各扁平管20に、均等に分配されて流入する。
 各扁平管20に流入した各冷媒は、扁平管20の貫通孔20aを介してヘッダ10b側に向けて流れ、ヘッダ10bで合流し、外部接続配管14から熱交換器1外に流出する。
 以下、図1及び図4を参照して熱交換器1を凝縮器として用いる場合の冷媒の流れを説明する。図1において点線矢印は凝縮器として用いる場合の冷媒の流れを示している。
 圧縮機61から流出したガス冷媒流は、ヘッダ10b内に流入し、ここで均等分配されて各扁平管20に流入する。冷媒がガス状態の場合は均等分配が容易であるため、ディストリビュータ等の冷媒分配器は不要であり、圧縮機61から流出したガス冷媒流を直接、ヘッダ10bに流入させる構成としている。
 そして、各扁平管20に流入した各冷媒は、扁平管20の貫通孔20aを介してヘッダ10a側に向けて流れ、ヘッダ10aの各部屋12のそれぞれに流入する。各部屋12のそれぞれに流入した各冷媒は、各キャピラリチューブ50を介してディストリビュータ40に流入し、ここで合流して熱交換器1外に流出する。
 以上説明したように本実施の形態によれば、熱交換器1を蒸発器として用いる場合に、流入した二相冷媒流をディストリビュータ40により均等分配し、均等分配された各冷媒を、ヘッド差の低減を図った各部屋12に流入させるようにした。これにより、各部屋12に流入した各冷媒に対するヘッド差の影響が低減され、各扁平管20に均等分配して流入させることができ、偏流を抑制できる。よって、このディストリビュータ40とヘッダ10aとを有する冷媒分配器を用いることで、蒸発器の能力を最大限に発揮することができ、蒸発器としての熱交換器1の熱交換効率を高めることができる。
 なお、仕切板11の位置は、均等分配が可能なヘッド差を考慮して決定すればよい。仕切板11を必要最低限だけ設けるようにすることで、コスト低減が可能となる。
 また、本発明の冷媒分配器及び熱交換器は、図1に示した構造に限定されるものではなく、本発明の要旨を逸脱しない範囲で例えば以下の(1)~(3)のように種々変形実施可能である。
(1)各部屋12の冷媒流入部に更に、分配偏流を抑制するための偏流抑制部材を設けてもよい。
 偏流抑制部材としては、分配偏流を抑制することが可能なものであればよく、例えば図5に示すようにオリフィス70を設けるようにしてもよい。オリフィス70は、部屋12のキャピラリチューブ50の接続口に設けられ、キャピラリチューブ50の内径よりも小さい内径の貫通孔71を有する。オリフィス70は、キャピラリチューブ50から流入した冷媒の流れを貫通孔71で更に絞ることで噴霧流化を促進する。このように噴霧流化を促進することで、部屋12内における各扁平管20への分配がより均等になり、分配偏流をより抑制することが可能となる。
(2)熱交換器1における風速分布に応じて各部屋12の高さ(複数の扁平管20の並列方向の長さ)を決定するようにしてもよい。
 熱交換器1に空気を送風する送風ファンからの風速は、熱交換器1の全面において均一とは限らず、風速分布が存在する。 例えばビル用マルチエアコンの場合、熱交換器1の上部に送風ファンが設置されるため、熱交換器1の上部の方が下部に比べて風速が速くなる。熱交換器1を蒸発器として用いる場合において、風速が速い部分を通過する冷媒は、風速が遅い部分を通過する冷媒に比べてガス化が進んで乾きやすくなる。よって、各部屋12に流入する冷媒量が同じ場合、風速が速い部分を通過した冷媒は、風速が遅い部分を通過した冷媒よりも乾き度が高くなり、ヘッダ10bに流入する冷媒状態にばらつきが生じる。
 このように冷媒状態にばらつきが生じると、外部接続配管14から外部へ流出する冷媒状態が安定しなくなる。よって、風速が速い部分に位置する扁平管20が接続するヘッダ10a部分については、一部屋あたりの熱交換領域が小さくなるように、部屋12の高さを小さくし、その部屋12に接続する扁平管数を少なくする。次の図6で具体的に説明する。
 図6は、風速分布に応じた各部屋の高さの決定原理の説明図で、ここでは、上部側の風速が速く、下部側の風速が遅い場合の例を示している。
 図6に示すように、風速が速い上部側の部屋12Aの高さを、風速が遅い下部側の部屋12Bの高さよりも小さくし、部屋12Aに接続する扁平管数を部屋12Bに接続する扁平管数よりも少なくしている。これにより、部屋12A側の熱交換領域Aが部屋12B側の熱交換領域Bによりも小さくなり、いわば伝熱面積が小さくなっている。したがって、実質的な熱交換量が熱交換領域Aと熱交換領域Bとで略同じとなり、出口の冷媒状態を揃えることができる。
 なお、ここでは各部屋12に流入する冷媒量が同じであり、部屋12の高さを変えることで出口の冷媒状態を揃える例を示したが、次のようにしてもよい。すなわち、各部屋12の高さを同じとし、各部屋12に流入する冷媒の配分量を変える。この場合、各部屋12に流入する冷媒の配分量を風速分布に応じて決め、この決められた配分量となるように、キャピラリチューブ50の仕様(長さ、内径)を決めればよい。具体的には、風速が速い部分に位置する扁平管20が接続される部屋12に対する配分量が多く、風速が遅い部分に位置する扁平管20が接続される部屋12に対する配分量が少なくするように、キャピラリチューブ50を選定することになる。
(3)本実施の形態では、熱交換器1が全体略I字状の例を示したが、全体略L字状、全体略U字状、全体略矩形状としてもよい。熱交換器1をどの形状とするかは、熱交換器1が設置される筐体内における熱交換器1の実装スペースを応じて決めればよく、実装スペースを最大限に利用して高密度に実装できる形状とすればよい。
(4)本実施の形態では伝熱管を扁平管としたが、必ずしも扁平管でなくてもよく、円管としてもよい。
 1 熱交換器、10 ヘッダ、10a ヘッダ、10b ヘッダ、11 仕切板、12 部屋、12A 部屋、12B 部屋、13 貫通孔、14 外部接続配管、20 扁平管(伝熱管)、30 フィン、40 ディストリビュータ、50 キャピラリチューブ、60 冷凍サイクル装置、61 圧縮機、62 凝縮器、63 膨張弁、64 蒸発器、70 オリフィス、71 貫通孔、A 熱交換領域、B 熱交換領域。

Claims (7)

  1.  並列に配置された複数の伝熱管に冷媒を並列に流す熱交換器の前記複数の伝熱管の一端に接続され、内部が1以上の仕切板により前記複数の伝熱管の並列方向に仕切られた構成を有し、上下方向に立てて設置されるヘッダと、
     前記仕切板により仕切られた前記ヘッダ内の各部屋のそれぞれに、冷媒を分配して流入させるディストリビュータと
    を有することを特徴とする冷媒分配器。
  2.  前記各部屋のそれぞれの冷媒流入部には、冷媒の偏流を抑制する偏流抑制部材が設けられていることを特徴とする請求項1記載の冷媒分配器。
  3.  前記偏流抑制部材は、冷媒の流れを絞るオリフィスであることを特徴とする請求項2記載の冷媒分配器。
  4.  前記仕切板の位置は、前記熱交換器における風速分布に応じて設定されており、風速が速い部分を通過する前記伝熱管が接続される前記部屋の前記並列方向の長さが、風速が遅い部分を通過する前記伝熱管が接続される前記部屋の前記並列方向の長さよりも短くなるように前記仕切板の位置が設定されていることを特徴とする請求項1乃至請求項3の何れか一項に記載の冷媒分配器。
  5.  前記ディストリビュータは、冷媒流量の調整が可能な複数のキャピラリチューブのそれぞれを介して前記各部屋のそれぞれに接続されており、前記各部屋に流入させる冷媒の配分量は、前記熱交換器における風速分布に応じて設定されており、風速が速い部分に位置する前記伝熱管が接続される前記部屋に対する配分量は、風速が遅い部分に位置する前記伝熱管が接続される前記部屋に対する配分量よりも多くなるように前記複数のキャピラリチューブが選定されていることを特徴とする請求項1乃至請求項3の何れか一項に記載の冷媒分配器。
  6.  請求項1乃至請求項5の何れか一項に記載の冷媒分配器を備えたことを特徴とする熱交換器。
  7.  前記複数の伝熱管の並列方向は上下方向であり、前記ヘッダが上下方向に立てて設置され、前記伝熱管が、冷媒流路となる貫通孔を複数有する扁平管であることを特徴とする請求項6記載の熱交換器。
PCT/JP2012/002860 2012-04-26 2012-04-26 冷媒分配器及びこの冷媒分配器を備えた熱交換器 WO2013160952A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/395,875 US20150101363A1 (en) 2012-04-26 2012-04-26 Refrigerant distributing device and heat exchanger including the same
JP2014512021A JP5901748B2 (ja) 2012-04-26 2012-04-26 冷媒分配器、この冷媒分配器を備えた熱交換器、冷凍サイクル装置及び空気調和機
PCT/JP2012/002860 WO2013160952A1 (ja) 2012-04-26 2012-04-26 冷媒分配器及びこの冷媒分配器を備えた熱交換器
EP12875000.7A EP2853843B1 (en) 2012-04-26 2012-04-26 A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device
ES12875000T ES2784132T3 (es) 2012-04-26 2012-04-26 Dispositivo distribuidor de refrigerante e intercambiador de calor equipado con tal dispositivo distribuidor de refrigerante
CN201280072638.5A CN104272040B (zh) 2012-04-26 2012-04-26 制冷剂分配器、具备此制冷剂分配器的热交换器、冷冻循环装置和空调机
CN2013202178315U CN203274373U (zh) 2012-04-26 2013-04-26 制冷剂分配器及具备此制冷剂分配器的热交换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/002860 WO2013160952A1 (ja) 2012-04-26 2012-04-26 冷媒分配器及びこの冷媒分配器を備えた熱交換器

Publications (1)

Publication Number Publication Date
WO2013160952A1 true WO2013160952A1 (ja) 2013-10-31

Family

ID=49482329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002860 WO2013160952A1 (ja) 2012-04-26 2012-04-26 冷媒分配器及びこの冷媒分配器を備えた熱交換器

Country Status (6)

Country Link
US (1) US20150101363A1 (ja)
EP (1) EP2853843B1 (ja)
JP (1) JP5901748B2 (ja)
CN (2) CN104272040B (ja)
ES (1) ES2784132T3 (ja)
WO (1) WO2013160952A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015124992A (ja) * 2013-12-27 2015-07-06 ダイキン工業株式会社 熱交換器
JP2015206481A (ja) * 2014-04-17 2015-11-19 株式会社デンソー 熱交換器
JP2016014504A (ja) * 2014-07-02 2016-01-28 三菱電機株式会社 熱交換器及びそれを備えた冷凍サイクル装置
WO2016121123A1 (ja) * 2015-01-30 2016-08-04 三菱電機株式会社 冷凍サイクル装置
JP2017180884A (ja) * 2016-03-29 2017-10-05 株式会社デンソー 蒸発器
WO2018173356A1 (ja) * 2017-03-24 2018-09-27 日立ジョンソンコントロールズ空調株式会社 熱交換器、および、それを用いた空気調和機
WO2019150851A1 (ja) 2018-01-31 2019-08-08 ダイキン工業株式会社 熱交換器又は熱交換器を有する冷凍装置
JP2019132535A (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 熱交換器又は熱交換器を有する冷凍装置
WO2019150852A1 (ja) 2018-01-31 2019-08-08 ダイキン工業株式会社 熱交換器又は熱交換器を有する冷凍装置
US10527366B2 (en) 2016-09-13 2020-01-07 Samsung Electronics Co., Ltd. Heat exchanger, header for the same and manufacturing method thereof
WO2022209919A1 (ja) * 2021-03-29 2022-10-06 株式会社富士通ゼネラル 熱交換器、この熱交換器を備えた室外機
JP2023148248A (ja) * 2022-03-30 2023-10-13 株式会社富士通ゼネラル 空気調和機の室内機

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6688555B2 (ja) * 2013-11-25 2020-04-28 三星電子株式会社Samsung Electronics Co.,Ltd. 空気調和機
US10168083B2 (en) 2014-07-11 2019-01-01 Hangzhou Sanhua Research Institute Co., Ltd. Refrigeration system and heat exchanger thereof
CN106152614B (zh) * 2014-07-11 2019-11-19 杭州三花研究院有限公司 一种制冷系统及其换热器
EP3370000B1 (en) * 2015-10-28 2022-07-20 Mitsubishi Electric Corporation Outdoor unit for air conditioner
WO2017168669A1 (ja) * 2016-03-31 2017-10-05 三菱電機株式会社 熱交換器及び冷凍サイクル装置
EP3460358A4 (en) * 2016-05-19 2019-05-15 Mitsubishi Electric Corporation EXTERNAL UNIT AND REFRIGERATION CYCLE DEVICE COMPRISING THE SAME
CN106016682B (zh) * 2016-06-02 2019-01-15 青岛海尔空调器有限总公司 自然风空调换热装置及其控制方法、自然风空调
WO2018047330A1 (ja) * 2016-09-12 2018-03-15 三菱電機株式会社 空気調和装置
WO2018055826A1 (ja) * 2016-09-23 2018-03-29 東芝キヤリア株式会社 熱交換器及び冷凍サイクル装置
JP6746234B2 (ja) * 2017-01-25 2020-08-26 日立ジョンソンコントロールズ空調株式会社 熱交換器、及び、空気調和機
JP2018136092A (ja) * 2017-02-22 2018-08-30 ダイキン工業株式会社 熱交換ユニット
US11543185B2 (en) * 2017-03-24 2023-01-03 Mitsubishi Electric Corporation Air-conditioning apparatus
CN108731538A (zh) * 2017-04-20 2018-11-02 山西汾西重工有限责任公司 一种适用于摇晃工况的板翅式换热器封头
JP6843256B2 (ja) * 2017-09-25 2021-03-17 三菱電機株式会社 冷媒分配器、及び、空気調和装置
JP6956868B2 (ja) * 2018-05-24 2021-11-02 三菱電機株式会社 シェルアンドチューブ式熱交換器
WO2020039513A1 (ja) * 2018-08-22 2020-02-27 三菱電機株式会社 熱交換器及び空気調和装置
CN111271999B (zh) * 2018-12-04 2021-04-27 浙江三花智能控制股份有限公司 换热器
CN109631419A (zh) * 2018-12-20 2019-04-16 广州美的华凌冰箱有限公司 热交换装置和冰箱
EP3884232B1 (en) * 2019-03-06 2023-05-03 Samsung Electronics Co., Ltd. Distributor, heat exchanger unit and air conditioner
EP3757498A1 (en) * 2019-06-26 2020-12-30 Valeo Autosystemy SP. Z.O.O. Heat exchanger
JP7470909B2 (ja) * 2020-02-03 2024-04-19 東芝ライフスタイル株式会社 マイクロチャネル熱交換器および空気調和機
CN112880432A (zh) * 2021-02-02 2021-06-01 格力电器(武汉)有限公司 换热管组件、微通道换热器、空调系统及换热器设计方法
CN112944755B (zh) * 2021-03-31 2022-07-08 哈尔滨商业大学 一种用于空调的制冷剂调节装置
JP2023080713A (ja) * 2021-11-30 2023-06-09 三星電子株式会社 冷媒分配器及びこの冷媒分配器を備える熱交換器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145187A (ja) * 1995-11-24 1997-06-06 Hitachi Ltd 空気調和装置
JPH10132423A (ja) * 1996-10-30 1998-05-22 Daikin Ind Ltd 熱交換器
JP2000249428A (ja) 1997-10-20 2000-09-14 Modine Mfg Co 蒸発器
JP2003214726A (ja) * 2002-01-22 2003-07-30 Mitsubishi Heavy Ind Ltd 積層型蒸発器およびその積層型蒸発器を備えた空気調和機
JP2006316747A (ja) * 2005-05-16 2006-11-24 Toyota Motor Corp 車両用熱交換装置
JP2006336936A (ja) * 2005-06-01 2006-12-14 Kobe Steel Ltd フィンチューブ型熱交換器の冷媒供給方法
JP2009222366A (ja) * 2008-03-19 2009-10-01 Hitachi Appliances Inc 冷媒分配器
JP2010133644A (ja) * 2008-12-04 2010-06-17 Hitachi Appliances Inc 分配器
JP2010276313A (ja) * 2009-05-29 2010-12-09 Daikin Ind Ltd 空気調和機の室外機
JP2011085324A (ja) 2009-10-15 2011-04-28 Mitsubishi Electric Corp 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2139297A (en) * 1937-03-06 1938-12-06 York Ice Machinery Corp Refrigeration
DE19515527A1 (de) * 1995-04-27 1996-10-31 Thermal Werke Beteiligungen Gm Verdampfer in Flachrohr- oder Plattenbauweise für den Kältemittelkreislauf einer Kraftfahrzeugklimaanlage
CN100575857C (zh) * 2005-02-02 2009-12-30 开利公司 在集管中带有多级流体膨胀的热交换器
WO2009018150A1 (en) * 2007-07-27 2009-02-05 Johnson Controls Technology Company Multichannel heat exchanger
US20090277196A1 (en) * 2008-05-01 2009-11-12 Gambiana Dennis S Apparatus and method for modulating cooling
JP2011106738A (ja) * 2009-11-17 2011-06-02 Mitsubishi Electric Corp 熱交換器およびヒートポンプシステム
US9003827B2 (en) * 2009-12-18 2015-04-14 Danfoss A/S Expansion unit for a vapour compression system
CN102062499A (zh) * 2010-12-22 2011-05-18 广东美的电器股份有限公司 平行流换热器装置及其控制方法
CN102278908B (zh) * 2011-09-16 2013-06-26 四川长虹空调有限公司 微通道换热器
CN102374704B (zh) * 2011-09-30 2013-08-21 深圳麦克维尔空调有限公司 空调空气热交换器
KR101615445B1 (ko) * 2014-08-14 2016-04-25 엘지전자 주식회사 공기 조화기

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145187A (ja) * 1995-11-24 1997-06-06 Hitachi Ltd 空気調和装置
JPH10132423A (ja) * 1996-10-30 1998-05-22 Daikin Ind Ltd 熱交換器
JP2000249428A (ja) 1997-10-20 2000-09-14 Modine Mfg Co 蒸発器
JP2003214726A (ja) * 2002-01-22 2003-07-30 Mitsubishi Heavy Ind Ltd 積層型蒸発器およびその積層型蒸発器を備えた空気調和機
JP2006316747A (ja) * 2005-05-16 2006-11-24 Toyota Motor Corp 車両用熱交換装置
JP2006336936A (ja) * 2005-06-01 2006-12-14 Kobe Steel Ltd フィンチューブ型熱交換器の冷媒供給方法
JP2009222366A (ja) * 2008-03-19 2009-10-01 Hitachi Appliances Inc 冷媒分配器
JP2010133644A (ja) * 2008-12-04 2010-06-17 Hitachi Appliances Inc 分配器
JP2010276313A (ja) * 2009-05-29 2010-12-09 Daikin Ind Ltd 空気調和機の室外機
JP2011085324A (ja) 2009-10-15 2011-04-28 Mitsubishi Electric Corp 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015124992A (ja) * 2013-12-27 2015-07-06 ダイキン工業株式会社 熱交換器
JP2015206481A (ja) * 2014-04-17 2015-11-19 株式会社デンソー 熱交換器
JP2016014504A (ja) * 2014-07-02 2016-01-28 三菱電機株式会社 熱交換器及びそれを備えた冷凍サイクル装置
WO2016121123A1 (ja) * 2015-01-30 2016-08-04 三菱電機株式会社 冷凍サイクル装置
JP2017180884A (ja) * 2016-03-29 2017-10-05 株式会社デンソー 蒸発器
US10527366B2 (en) 2016-09-13 2020-01-07 Samsung Electronics Co., Ltd. Heat exchanger, header for the same and manufacturing method thereof
WO2018173356A1 (ja) * 2017-03-24 2018-09-27 日立ジョンソンコントロールズ空調株式会社 熱交換器、および、それを用いた空気調和機
JP2018162901A (ja) * 2017-03-24 2018-10-18 日立ジョンソンコントロールズ空調株式会社 熱交換器、および、それを用いた空気調和機
JP2019132535A (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 熱交換器又は熱交換器を有する冷凍装置
WO2019150852A1 (ja) 2018-01-31 2019-08-08 ダイキン工業株式会社 熱交換器又は熱交換器を有する冷凍装置
JP2019132536A (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 熱交換器又は熱交換器を有する冷凍装置
WO2019150851A1 (ja) 2018-01-31 2019-08-08 ダイキン工業株式会社 熱交換器又は熱交換器を有する冷凍装置
US11181305B2 (en) 2018-01-31 2021-11-23 Daikin Industries, Ltd. Heat exchanger or refrigeration apparatus including heat exchanger
WO2022209919A1 (ja) * 2021-03-29 2022-10-06 株式会社富士通ゼネラル 熱交換器、この熱交換器を備えた室外機
JP2022153026A (ja) * 2021-03-29 2022-10-12 株式会社富士通ゼネラル 熱交換器、この熱交換器を備えた室外機
JP7279730B2 (ja) 2021-03-29 2023-05-23 株式会社富士通ゼネラル 熱交換器、この熱交換器を備えた室外機
JP2023148248A (ja) * 2022-03-30 2023-10-13 株式会社富士通ゼネラル 空気調和機の室内機
JP7392757B2 (ja) 2022-03-30 2023-12-06 株式会社富士通ゼネラル 空気調和機の室内機

Also Published As

Publication number Publication date
US20150101363A1 (en) 2015-04-16
CN104272040A (zh) 2015-01-07
ES2784132T3 (es) 2020-09-22
CN104272040B (zh) 2016-06-15
EP2853843A4 (en) 2016-02-24
JPWO2013160952A1 (ja) 2015-12-21
EP2853843B1 (en) 2020-03-11
EP2853843A1 (en) 2015-04-01
JP5901748B2 (ja) 2016-04-13
CN203274373U (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5901748B2 (ja) 冷媒分配器、この冷媒分配器を備えた熱交換器、冷凍サイクル装置及び空気調和機
WO2013161799A1 (ja) 熱交換器及びこの熱交換器を備えた冷凍サイクル装置
JP6061994B2 (ja) 熱交換器、この熱交換器を備えた冷凍サイクル装置及び空気調和機
US10670344B2 (en) Heat exchanger, air-conditioning apparatus, refrigeration cycle apparatus and method for manufacturing heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
WO2017149989A1 (ja) 熱交換器及び空気調和機
US10168083B2 (en) Refrigeration system and heat exchanger thereof
US10288363B2 (en) Laminated header, heat exchanger, and air-conditioning apparatus
EP2865983B1 (en) Heat-exchanger header and heat exchanger provided therewith
WO2018173356A1 (ja) 熱交換器、および、それを用いた空気調和機
KR102148724B1 (ko) 열교환기 및 이를 갖는 공기조화기
JP5716496B2 (ja) 熱交換器および空気調和機
WO2017149950A1 (ja) 熱交換器及び空気調和機
JP6611335B2 (ja) 熱交換器及び空気調和機
KR102169284B1 (ko) 열교환기 및 이를 갖는 공기조화기
JP2020115070A (ja) 熱交換器
JP2013185757A (ja) 冷媒分配器およびヒートポンプ装置
JP5840291B2 (ja) 熱交換器、この熱交換器を備えた冷凍サイクル装置及び空気調和機
JP6817996B2 (ja) 熱交換器用のヘッダ、熱交換器、室外機及び空気調和機
KR102148722B1 (ko) 열교환기 및 이를 갖는 공기조화기
WO2019207806A1 (ja) 冷媒分配器、熱交換器および空気調和機
JP2020115069A (ja) 熱交換器
JP2020085268A (ja) 熱交換器
JP2012082983A (ja) 並列流熱交換器及びヒートポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512021

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14395875

Country of ref document: US