WO2021005682A1 - 冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置 - Google Patents

冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2021005682A1
WO2021005682A1 PCT/JP2019/026994 JP2019026994W WO2021005682A1 WO 2021005682 A1 WO2021005682 A1 WO 2021005682A1 JP 2019026994 W JP2019026994 W JP 2019026994W WO 2021005682 A1 WO2021005682 A1 WO 2021005682A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
refrigerant
heat exchanger
divided
divided flow
Prior art date
Application number
PCT/JP2019/026994
Other languages
English (en)
French (fr)
Inventor
篤史 ▲高▼橋
繁佳 松井
真哉 東井上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/026994 priority Critical patent/WO2021005682A1/ja
Priority to JP2021530375A priority patent/JP7195434B2/ja
Publication of WO2021005682A1 publication Critical patent/WO2021005682A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Definitions

  • the present invention relates to a refrigerant distributor, a heat exchanger, a heat exchanger unit, and a refrigeration cycle device, and more particularly to a structure for adjusting a refrigerant flow rate in a heat transfer tube by a refrigerant distributor.
  • the diameter of the heat transfer tube of the heat exchanger has been reduced in order to reduce the amount of refrigerant in the refrigerant circuit and improve the performance of the heat exchanger.
  • the diameter of the heat transfer tube is reduced, it is necessary to suppress an increase in the pressure loss of the refrigerant passing through the heat transfer tube. Therefore, the number of passes (number of branches) of the heat exchanger is increasing.
  • the heat exchanger is provided with a refrigerant distributor (header), and it is required to appropriately distribute the refrigerant according to the operating state.
  • the heat exchanger includes a cylindrical header in which heat transfer tubes extending in the horizontal direction are vertically arranged and extending in the vertical direction to allow a gas-liquid two-phase refrigerant to flow upward.
  • the header In the header, the refrigerant flows in the horizontal direction from the lower part, the refrigerant collides with the wall surface, and the refrigerant rises in the vertical direction.
  • the header is composed of a main header chamber for raising the gas-liquid two-phase refrigerant in the vertical direction and a sub-header chamber for branching in the horizontal direction to distribute the refrigerant to each heat transfer tube.
  • the header is configured so that the refrigerant reaches the upper part even when the flow rate of the refrigerant is low by reducing the cross-sectional area of the flow path of the main header chamber (see, for example, Patent Document 1).
  • the present invention is for solving the above-mentioned problems, and suppresses the bias of the refrigerant distribution to each heat transfer tube with respect to the change in the refrigerant flow rate or the dryness of the refrigerant depending on the operating state of the refrigeration cycle apparatus. It is an object of the present invention to obtain a refrigerant distributor, a heat exchanger, a heat exchanger unit, and a refrigeration cycle device that can be used.
  • the refrigerant distributor according to the present invention includes a first refrigerant inlet, a second refrigerant inlet, a plurality of confluence portions arranged at intervals in the first direction, and the first one extending in the first direction.
  • a first divided flow path that distributes the refrigerant that has flowed in from the refrigerant inlet to the plurality of confluences, and a second that extends in the first direction and distributes the refrigerant that has flowed in from the second refrigerant inlet to the plurality of confluences.
  • the first divided flow path includes the divided flow path, and the first divided flow path is formed at a position corresponding to the first flow path portion extending in the first direction and flowing the refrigerant inside, and the plurality of confluence portions.
  • the second flow path portion has a plurality of first flow path holes for communicating the flow path portion and the plurality of confluence portions, and the second divided flow path has a second flow path portion extending in the first direction and flowing a refrigerant inside.
  • a plurality of second flow path holes formed at positions corresponding to the plurality of confluence portions and communicating the second flow path portion and the plurality of confluence portions, and the plurality of first flow path holes.
  • the path length from the first refrigerant inflow port to the third flow path hole including the path hole is different from the path length from the second refrigerant inflow port to the fourth flow path hole.
  • the heat exchanger according to the present invention includes the above-mentioned refrigerant distributor and a plurality of heat transfer tubes connected to the plurality of confluence portions.
  • the heat exchanger unit according to the present invention includes the above heat exchanger.
  • the refrigeration cycle apparatus includes the above heat exchanger unit.
  • the refrigerant distributor merges the refrigerants from the third flow path holes and the fourth inflow holes, which are different in distance from the refrigerant inflow port, and flows them into the first heat transfer tube.
  • the flow rate of the refrigerant flowing through one heat transfer tube can be changed with respect to a plurality of other heat transfer tubes.
  • the refrigerant distributor can adjust the flow rate of the refrigerant flowing into each of the plurality of heat transfer tubes from the plurality of divided flow paths.
  • the refrigerant distributor, the heat exchanger, the heat exchanger unit, and the refrigerating cycle device have a bias in the distribution of the refrigerant to the plurality of heat transfer tubes even if the refrigerant flow rate or the refrigerant state changes depending on the operating state of the refrigerating cycle device. Can be suppressed.
  • FIG. 1 It is a refrigerant circuit diagram which shows the structure of the refrigerating cycle apparatus 100 provided with the refrigerant distributor 60 which concerns on Embodiment 1.
  • FIG. It is an exploded perspective view which shows the main part structure of the heat exchanger 10 of the refrigeration cycle apparatus 100 which concerns on Embodiment 1.
  • FIG. It is a side view which shows the main part structure of the heat exchanger 10 of the refrigeration cycle apparatus 100 which concerns on Embodiment 1.
  • FIG. It is sectional drawing of the main part structure of the heat exchanger 10 of the refrigeration cycle apparatus 100 which concerns on Embodiment 1.
  • FIG. 10 It is a schematic diagram of the refrigerant distributor 1060 of the heat exchanger 1010 of FIG. It is explanatory drawing which showed the relationship between the arrangement of the plurality of division flow paths 220 of the refrigerant distributor 260 of the heat exchanger 210 which concerns on Embodiment 2, and the distribution flow rate of a heat transfer tube 30.
  • FIG. 5 is an air volume distribution diagram of a blower 108 arranged around the heat exchanger 210 of the refrigeration cycle device 100 according to the second embodiment. It is explanatory drawing which showed the relationship between the arrangement of the plurality of division flow paths 320 of the refrigerant distributor 360 of the heat exchanger 310 which concerns on Embodiment 3 and the distribution flow rate of a heat transfer tube 30. It is a schematic diagram of an example of the heat exchanger 310 peripheral structure of the refrigeration cycle apparatus 100 according to the third embodiment. It is an air volume distribution map of the blower 108 arranged around the heat exchanger 310 of the refrigeration cycle apparatus 100 which concerns on Embodiment 2. FIG. It is explanatory drawing which showed the relationship between the arrangement of the plurality of division flow paths 420 of the refrigerant distributor 460 of the heat exchanger 410 which concerns on Embodiment 4, and the distribution flow rate of a heat transfer tube 30.
  • 24 is a general term for 24a, 24b, 24ax, 24bx, 24ax1, and 24bx
  • 24a is a general term for 24a
  • 24ax is a general term for 24ax1 and the like. is there.
  • terms that indicate directions for example, “top”, “bottom”, “right”, “left”, “front”, “rear”, etc.) are used as appropriate for ease of understanding. For convenience of explanation, it is described as such, and does not limit the arrangement and orientation of the device or component. Further, in the drawings below, the relationship between the sizes of the constituent members may differ from the actual one.
  • FIG. 1 is a refrigerant circuit diagram showing a configuration of a refrigerating cycle device 100 provided with a refrigerant distributor 60 according to the first embodiment.
  • the refrigeration cycle device 100 provided with the refrigerant distributor 60 will be described with reference to FIG.
  • the arrow indicated by the dotted line indicates the direction in which the refrigerant flows in the refrigerant circuit 110 during the cooling operation
  • the arrow indicated by the solid line indicates the direction in which the refrigerant flows during the heating operation. ..
  • the air conditioner is illustrated as the refrigerating cycle device 100, but the refrigerating cycle device 100 is, for example, a refrigerator or a freezer, a vending machine, an air conditioner, a refrigerating device, a water heater, and the like. Used for applications or air conditioning applications.
  • the refrigerating cycle device 100 has a refrigerant circuit 110 in which a compressor 101, a flow path switching device 102, an indoor heat exchanger 103, a decompression device 104, and an outdoor heat exchanger 105 are cyclically connected via a refrigerant pipe. .. Further, the refrigeration cycle device 100 has a refrigerant distributor 60 connected to either one or both of the indoor heat exchanger 103 and the outdoor heat exchanger 105. The refrigeration cycle device 100 has an outdoor unit 106 and an indoor unit 107.
  • the outdoor unit 106 includes a compressor 101, a flow path switching device 102, an outdoor heat exchanger 105, a refrigerant distributor 60 and a decompression device 104, and an outdoor blower 108 that supplies outdoor air to the outdoor heat exchanger 105.
  • the indoor unit 107 includes an indoor heat exchanger 103, a refrigerant distributor 60, and an indoor blower 109 that supplies air to the indoor heat exchanger 103.
  • the outdoor unit 106 and the indoor unit 107 are connected to each other via two extension pipes 111 and 112 which are a part of the refrigerant pipe.
  • the outdoor blower 108 and the indoor blower 109 may be collectively referred to as a blower.
  • a device having a heat exchanger 10 (see FIG. 2) inside, such as the outdoor unit 106 and the indoor unit 107 may be referred to as a heat exchanger unit.
  • the compressor 101 is a fluid machine that compresses and discharges the sucked refrigerant.
  • the flow path switching device 102 is, for example, a four-way valve, and is a device that switches the flow path of the refrigerant between the cooling operation and the heating operation by controlling the control device (not shown).
  • the indoor heat exchanger 103 is a heat exchanger that exchanges heat between the refrigerant circulating inside and the indoor air supplied by the indoor blower 109.
  • the indoor heat exchanger 103 functions as a condenser during the heating operation and as an evaporator during the cooling operation.
  • the pressure reducing device 104 is, for example, an expansion valve, which is a device for reducing the pressure of the refrigerant.
  • the outdoor heat exchanger 105 is a heat exchanger that exchanges heat between the refrigerant circulating inside and the air supplied by the outdoor blower 108.
  • the outdoor heat exchanger 105 functions as an evaporator during the heating operation and as a condenser during the cooling operation.
  • a heat exchanger 10 (see FIG. 2), which will be described later, is used for at least one of the outdoor heat exchanger 105 and the indoor heat exchanger 103. It is desirable that the refrigerant distributor 60 included in the heat exchanger 10 is arranged at a position in the heat exchanger 10 where the amount of the liquid phase refrigerant is larger. Specifically, the refrigerant distributor 60 is arranged on the inlet side of the heat exchanger 10 that functions as an evaporator, that is, on the outlet side of the heat exchanger 10 that functions as a condenser in the flow of the refrigerant in the refrigerant circuit 110. Is desirable. That is, in the first embodiment, as shown in FIG.
  • the refrigerant distributor 60 is arranged on the decompression device 104 side of the indoor heat exchanger 103 and the outdoor heat exchanger 105 in the refrigerant circuit 110.
  • the refrigerant distributor 60 is used in both the indoor heat exchanger 103 and the outdoor heat exchanger 105, but the heat of either the indoor heat exchanger 103 or the outdoor heat exchanger 105 is used. It may be used only in the exchanger. Further, even if the refrigerant distributor 60 is arranged on the outlet side of the heat exchanger 10 that functions as an evaporator, that is, the inlet side of the heat exchanger 10 that functions as a condenser in the flow of the refrigerant in the refrigerant circuit 110. good. That is, the refrigerant distributor 60 may be arranged on the flow path switching device 102 side of the indoor heat exchanger 103 and the outdoor heat exchanger 105 in the refrigerant circuit 110.
  • the configuration of the refrigerant circuit 110 of the refrigeration cycle device 100 according to the first embodiment will be described based on the flow of the refrigerant in the operating state of cooling and heating.
  • the refrigerant flows in the direction indicated by the broken line arrow in the figure.
  • the refrigerant discharged from the compressor 101 flows into the heat exchange section 32 of the outdoor heat exchanger 105 via the flow path switching device 102.
  • the refrigerant flowing out from the heat exchange unit 32 flows out from the outdoor heat exchanger 105 via the refrigerant distributor 60.
  • the refrigerant passes through the decompression device 104, flows out from the outdoor unit 106, and flows into the indoor unit 107 via the extension pipe 112.
  • the refrigerant that has entered the indoor unit 107 flows into the refrigerant distributor 60.
  • the refrigerant distributed to each heat transfer tube in the refrigerant distributor 60 passes through the heat exchange section 32 of the indoor heat exchanger 103 and flows out from the indoor unit 107.
  • the refrigerant flowing out of the indoor unit 107 flows into the outdoor unit 106 again through the extension pipe 111.
  • the refrigerant that has flowed into the outdoor unit 106 is sucked into the compressor 101 via the flow path switching device 102.
  • the refrigerant flows in the direction indicated by the solid arrow in the figure.
  • the refrigerant discharged from the compressor 101 flows out from the outdoor unit 106 via the flow path switching device 102, and flows into the indoor unit 107 via the extension pipe 111.
  • the refrigerant that has flowed into the indoor unit 107 passes through the heat exchange section 32 of the indoor heat exchanger 103, passes through the refrigerant distributor 60, and flows out of the indoor unit 107.
  • the refrigerant flowing out of the indoor unit 107 passes through the extension pipe 112 and flows into the outdoor unit 106.
  • the refrigerant that has flowed into the outdoor unit 106 passes through the decompression device 104, is distributed to each heat transfer tube by the refrigerant distributor 60, and passes through the heat exchange section 32 of the outdoor heat exchanger 105.
  • the refrigerant that has passed through the outdoor heat exchanger 105 is sucked into the compressor 101 via the flow path switching device 102.
  • the refrigerant circuit 110 of the refrigeration cycle device 100 is an example, and the circuit configurations other than the indoor heat exchanger 103, the outdoor heat exchanger 105, and the refrigerant distributor 60 may be changed.
  • FIG. 2 is an exploded perspective view showing a main configuration of the heat exchanger 10 of the refrigeration cycle device 100 according to the first embodiment.
  • FIG. 3 is a side view showing a main configuration of the heat exchanger 10 of the refrigeration cycle device 100 according to the first embodiment.
  • the refrigerant distributor 60 of the heat exchanger 10 used as the indoor heat exchanger 103 or the outdoor heat exchanger 105 of the refrigerant circuit 110 of the refrigeration cycle device 100 is connected to the heat exchange unit 32. It is explanatory drawing of the structure of a part.
  • the heat exchanger 10 includes a heat exchange unit 32 and a refrigerant distributor 60.
  • the heat exchange unit 32 is composed of a plurality of heat transfer tubes 30 and heat transfer fins 40.
  • the plurality of heat transfer tubes 30 are arranged at intervals in the y direction with the tube axis direction facing the z direction.
  • the y direction may be referred to as a first direction.
  • the y direction coincides with the upward direction of the gravity direction, but the arrangement of the heat exchanger 10 is not limited to this, and the y direction may be inclined with respect to the gravity direction. good.
  • the plurality of heat transfer tubes 30 are composed of flat tubes.
  • the flat tube is arranged so that the long axis direction of the cross-sectional shape is directed to the x direction and the minor axis direction is directed to the y direction.
  • the sides of the plurality of flat tubes in the long axis direction are connected to each other by heat transfer fins 40.
  • the heat transfer fin 40 is a thin plate-shaped metal member, and is attached to a plurality of heat transfer tubes so that the plate surface intersects the tube axes of the plurality of heat transfer tubes 30.
  • a plurality of heat transfer fins 40 are arranged in the z direction, and are configured so that air passes between the plurality of heat transfer fins 40.
  • the heat exchange unit 32 exchanges heat between the refrigerant and the fluid flowing inside the plurality of heat transfer tubes 30 by passing a fluid such as air between the plurality of heat transfer tubes 30 and the plurality of heat transfer fins 40. This is the part to do.
  • the refrigerant distributor 60 is connected to the z-direction end of the heat exchange unit 32.
  • the refrigerant distributor 60 is connected to the piping of the refrigerant circuit 110 via a plurality of refrigerant inlets 50, and has a function of distributing the refrigerant flowing into the heat exchanger 10 to each of the plurality of heat transfer tubes 30.
  • the refrigerant distributor 60 includes a first member 21 provided with a refrigerant inflow port 50, a second member 22 located on the side of a plurality of heat transfer tubes 30 with respect to the first member 21, and a plurality of second members 22.
  • a third member 23 located between the heat pipe 30 and the third member 23 is provided.
  • the first member 21, the second member 22, and the third member 23 are laminated and joined in the z direction.
  • a refrigerant inflow pipe 51 is connected to each of the refrigerant inflow ports 50 provided in the first member 21.
  • FIG. 4 is a cross-sectional view of a main part configuration of the heat exchanger 10 of the refrigeration cycle device 100 according to the first embodiment.
  • FIG. 4 shows a cross section of a portion AA of FIG.
  • the first member 21 includes a plurality of distribution flow paths 29.
  • Each of the plurality of distribution flow paths 29 is a semi-cylindrical refrigerant flow path extending in the y direction, and is arranged in parallel in the x direction.
  • the plurality of distribution flow paths 29 are composed of two distribution flow paths 29a and 29b.
  • the first distribution flow path 29a and the second distribution flow path 29b extend in the y direction in the longitudinal direction and are arranged in parallel in the x direction.
  • the first member 21 is configured such that grooves 21a and 21b are formed in the flat plate 21c, and a semi-cylindrical member 21d is joined to the flat plate 21c so as to cover each of the grooves 21a and 21b. Further, both ends of the two semi-cylindrical members 21d joined to the flat plate 21c in the y direction are closed by joining the plate members 21e.
  • the first member 21 is formed by a flat plate 21c, a semi-cylindrical member 21d, and a plate member 21e to form a flow path portion 26 which is a semi-cylindrical space extending in the y direction and open in the z direction.
  • the internal flow path portion 26 is divided by the partition member 21f, and a plurality of division flow paths 20 are formed. That is, the first member 21 includes a plurality of semi-cylindrical flow path portions 26 formed by dividing each of the plurality of distribution flow paths 29 in the y direction and opening in the z direction. The plurality of flow path portions 26 form the internal spaces of the plurality of divided flow paths 20a to 20h, and the refrigerant flows.
  • the second member 22 is composed of a flat plate 22a provided with a plurality of flow path holes 24 penetrating the second member 22.
  • the plurality of flow path holes 24 are formed corresponding to the plurality of distribution flow paths 29 included in the first member 21.
  • the flat plate 22a corresponds to a plurality of first flow path holes 24a arranged in a row in the y direction corresponding to the first distribution flow path 29a, and corresponds to the second distribution flow path 29b.
  • a plurality of second flow path holes 24b arranged in a row in the y direction are provided.
  • the plurality of flow path holes 24 are arranged in the y direction with the same interval as the interval in which the plurality of heat transfer tubes 30 are arranged.
  • the second member 22 is joined to the surface of the flat plate 21c of the first member 21 on the z direction side.
  • the open z-direction side surfaces of the plurality of semi-cylindrical flow path portions 26 included in the first member 21 are covered with the second member 22.
  • the plurality of flow path portions 26 communicate with the external space through the plurality of flow path holes 24.
  • the third member 23 is composed of a flat plate 23a provided with a plurality of refrigerant outlets 23b arranged in the y direction with the longitudinal direction facing the x direction.
  • the plurality of refrigerant outlets 23b are provided corresponding to each of the plurality of heat transfer tubes 30, and the end portions of the heat transfer tubes 30 are inserted and joined. Further, the third member 23 is joined by the second member 22 coming into contact with the surface on the side opposite to the side into which the end portion of the heat transfer tube 30 is inserted.
  • a plurality of confluence portions 25 are formed by the end surface 33 of the heat transfer tube 30, the plurality of refrigerant outlets 23b of the third member 23, and the surfaces of the second member 22.
  • the plurality of merging portions 25 are spaces in which a refrigerant flow path having an opening in the end surface 33 of the heat transfer tube 30, a plurality of first flow path holes 24a, and a plurality of second flow path holes 24b communicate with each other.
  • the refrigerant from the plurality of refrigerant inlets 50 is passed through the plurality of divided flow paths 20 formed by dividing the plurality of distribution flow paths 29, and the plurality of flow path holes 24 are formed. It has a structure in which the heat transfer tubes 30 are distributed to each of the plurality of heat transfer tubes 30 by flowing into the plurality of confluence portions 25 from each.
  • FIG. 5 is an explanatory diagram showing the relationship between the arrangement of the plurality of divided flow paths 20 of the refrigerant distributor 60 according to the first embodiment and the distribution flow rate of the heat transfer tube 30.
  • FIG. 5A shows the arrangement of the plurality of divided flow paths 20, the plurality of flow path holes 24, the plurality of confluence portions 25, and the plurality of refrigerant inlets 50 when the refrigerant distributor 60 is viewed from the z-direction viewpoint. It is a schematic diagram.
  • the refrigerant distributor 60 includes a first distribution flow path 29a and a second distribution flow path 29b, which are a plurality of distribution flow paths 29 extending in the y direction and parallel to the x direction.
  • the first distribution flow path 29a is divided into a plurality of division flow paths 20a, 20c, 20e, 20g, and 20i in the y direction by the partition member 21f.
  • the second distribution flow path 29b is also divided into a plurality of division flow paths 20b, 20d, 20f, 20h, and 20j in the y direction by the partition member 21f.
  • the plurality of divided flow paths 20a to 20j may be collectively referred to as the divided flow paths 20.
  • each of the plurality of divided flow paths 20a to 20h schematically represents the plurality of refrigerant inlets 50a to 50h.
  • the refrigerant inflow ports 50a to 50h are pipes connected to the lower ends of the plurality of divided flow paths 20a to 20h, and the refrigerant distributed from the refrigerant pipes constituting the refrigerant circuit 110. Is flowed into each of the plurality of divided flow paths 20a to 20h.
  • the plurality of divided flow paths 20a, 20c, 20e, and 20 g formed by dividing the inner flow path portion 26 of the first distribution flow path 29a into a plurality of divided flow paths 20a, 20c, 20e, And 20g.
  • the plurality of divided flow paths 20b, 20d, 20f, and 20h formed by dividing the flow path portion 26 inside the second distribution flow path 29b into a plurality of divided flow paths 20b, 20d, 20f, and 20h are referred to as the second divided flow paths 20b, 20d, 20f, and 20h.
  • the first divided flow paths 20a, 20c, 20e, and 20g include a first flow path portion 26a and a plurality of first flow path holes 24a, and are provided from the first refrigerant inlets 50a, 50c, 50e, and 50g.
  • the inflowing refrigerant is distributed to a plurality of merging portions 25.
  • the second divided flow paths 20b, 20d, 20f, and 20h are provided with a second flow path portion 26b and a plurality of second flow path holes 24b, and flow in from the second refrigerant inlets 50b, 50d, 50f, and 50h.
  • the refrigerant is distributed to the plurality of merging portions 25.
  • the first divided flow path 20a formed in the first distribution flow path 29a is arranged at the bottom of the first distribution flow path 29a.
  • the first divided flow path 20a communicates with the eight merging portions 25 via the eight flow path holes 24a.
  • the eight flow path holes 24a of the divided flow path 20a are arranged above the refrigerant inflow port 50a and are arranged in a row in the y direction.
  • FIG. 5B the flow rate of the refrigerant flowing through each of the plurality of flow path holes 24 is shown on the left side, and the flow rate of the refrigerant flowing through each of the plurality of heat transfer tubes 30 is shown on the right side.
  • the curve a shown by the solid line in FIG. 5B shows the flow rate of the refrigerant flowing through each of the plurality of first flow path holes 24a provided in the first division flow path 20a.
  • the flow rate of the refrigerant flowing through the plurality of first flow path holes 24a of the first divided flow path 20a increases as the distance from the first refrigerant inflow port 50a in the y direction increases.
  • a refrigerant containing a liquid phase refrigerant such as a gas-liquid two-phase refrigerant is placed in the upper first flow path hole 24a far from the refrigerant inlet. It is distributed a lot. Further, the higher the flow velocity of the refrigerant flowing upward, the more the refrigerant is distributed to the flow path holes 24a located on the upper side.
  • the curves a to h shown in FIG. 5A are examples of the flow rates of the refrigerant flowing through the plurality of flow path holes 24, and the heights of the plurality of flow path holes 24 are increased according to the flow rate of the refrigerant and the dryness of the refrigerant.
  • the value of the refrigerant flow rate may change depending on the longitudinal position, but in the operating state of the refrigeration cycle device 100, the amount of the refrigerant distributed in the flow path hole 24 located on the upper side tends to be large.
  • the second divided flow path 20b formed in the second distribution flow path 29b is parallel to the first divided flow path 20a in the x direction.
  • the lower half of the second divided flow path 20b is located adjacent to the upper half of the first divided flow path 20a in the x direction.
  • the flow rate of the refrigerant flowing through the plurality of second flow path holes 24b provided in the second divided flow path 20b also increases as the distance from the refrigerant inflow port 50b in the y direction increases, similarly to the first divided flow path 20a.
  • the second divided flow path 20b is provided with eight second flow path holes 24b like the first divided flow path 20a.
  • Each of the four second flow path holes 24b below the second division flow path 20b is adjacent to each of the four first flow path holes 24a above the first division flow path 20a in the x direction. It is located and communicates with each other by each of the four first flow path holes 24a on the upper side of the first division flow path 20a by the four merging portions 25.
  • the other divided flow path 20j parallel to the first divided flow path 20a in the x direction is not provided with the flow path hole 24, and the refrigerant does not flow from the divided flow path 20j to the heat transfer tube 30.
  • the divided flow path 20i provided at the y-direction end of the first distribution flow path 29a is also not provided with the flow path hole 24, and the refrigerant does not flow from the divided flow path 20i to the heat transfer tube 30.
  • the first divided flow path 20a of the first distribution flow path 29a is a plurality of first flow path holes 24a.
  • the second divided flow path 20b of the second distribution flow path 29b communicates with the first merging portion 25a1 via the third flow path hole 24ax1 which is one of the second distribution flow paths 29b, and is among the plurality of second flow path holes 24b. It communicates with the first merging portion 25a1 through one fourth flow path hole 24bx1.
  • the third flow path hole 24ax1 of the first divided flow path 20a is farthest from the refrigerant inflow port 50a in the first divided flow path 20a in the y direction, and is provided in the first divided flow path 20a.
  • the refrigerant flow rate is the highest in 24a.
  • the fourth flow path hole 24bx1 of the second division flow path 20b is the second flow path hole 24b located at the fourth position in the second division flow path 20b in the y direction from the refrigerant inlet 50b, and is the second division.
  • the refrigerant flow rate is moderate in the second flow path hole 24b provided in the flow path 20b.
  • the flow rate of the refrigerant flowing into the heat transfer tube 30 through the first confluence portion 25a is the point r1 shown in FIG. 5 (b).
  • the first divided flow path 20a is a divided flow path 20 provided with a third flow path hole 24ax
  • the second divided flow path 20b is a divided flow path 20 provided with a fourth flow path hole 24bx.
  • the third flow path hole 24ax and the fourth flow path hole 24bx are arranged along the x direction and communicate with the same first junction 25a, and the path lengths from the refrigerant inlets 50a or 50b are different, respectively. It's different.
  • the first heat transfer tube 30a is a heat transfer tube 30 into which the refrigerant flows from the third flow path hole 24ax and the fourth flow path hole 24bx.
  • the third flow path hole 24ax is a general term for the third flow path holes 24ax1, 24ax2, 24ax3, and the like.
  • the fourth flow path hole 24bx is a general term for the fourth flow path hole 24bx1, 24bx2, 24bx3, and the like.
  • the first merging portion 25a is a general term for the first merging portions 25a1, 25a2, 25a3, ....
  • the third flow path hole 24ax2 of the first division flow path 20a is located at the fifth position in the first division flow path 20a in the y direction from the refrigerant inlet 50a. It is one flow path hole 24a, and the refrigerant flow rate is medium in the plurality of flow path holes 24a provided in the first divided flow path 20a.
  • the fourth flow path hole 24bx2 of the second divided flow path 20b is the second flow path hole 24b closest to the refrigerant inflow port 50b in the second divided flow path 20b, and is provided in the second divided flow path 20b.
  • the refrigerant flow rate is the smallest among the second flow path holes 24b. Therefore, the flow rate of the refrigerant flowing into the heat transfer tube 30 through the first confluence portion 25a is the point r2 shown in FIG. 5 (b).
  • each of the flow path holes 24 shown in FIG. 5B The curves a to h showing the refrigerant flow rate are substantially the same.
  • the second divided flow path 20b parallel in the x direction when viewed from one specific first divided flow path 20a out of a plurality of divided flow paths 20a to 20h overlaps with the first divided flow path 20a in the x direction.
  • the portion is half the length of the first divided flow path 20a and the second divided flow path 20b in the y direction.
  • the relationship is similarly configured for each of the plurality of divided flow paths 20a to 20h.
  • the lower half of the first divided flow path 20c is the upper half of the second divided flow path 20b. And overlap in the x direction. Further, for example, focusing on one specific first divided flow path 20c among the plurality of divided flow paths 20a to 20h, the lower half of the second divided flow path 20d is the upper half of the first divided flow path 20c. It overlaps in the x direction.
  • the divided flow path 20d and the divided flow path 20e, the divided flow path 20e and the divided flow path 20f, the divided flow path 20f and the divided flow path 20 g, and the divided flow path 20 g and the divided flow path 20h are parallel in the x direction.
  • the relationship between the first divided flow path 20a and the second divided flow path 20b is similarly established for each combination of. That is, in the first embodiment, the divided flow paths 20c, 20e, and 20 g correspond to the first divided flow path like the divided flow path 20a. Further, the divided flow paths 20d, 20f, and 20h correspond to the second divided flow path like the divided flow path 20b.
  • the first divided flow path 20a and the second divided flow path 20b overlap in the x direction, it is at least one of the first flow path holes 24a for flowing the refrigerant into one first confluence portion 25a.
  • the third flow path hole 24ax and the fourth flow path hole 24bx which is one of the second flow path holes 24b, have different path lengths from the refrigerant inlet 50. Therefore, the flow rate of the refrigerant flowing from the third flow path hole 24ax into the first merging portion 25a is different from the flow rate of the refrigerant flowing from the fourth flow path hole 24bx into the first merging portion 25a.
  • the refrigerants having different flow rates merge at the first merging portion 25a and flow into each of the plurality of heat transfer tubes 30.
  • the refrigerant flow rate in each of the flow path holes 24 provided in each of the plurality of divided flow paths 20a to 20h varies depending on the height position of the flow path holes 24 from the refrigerant inflow port 50.
  • the first connection portion 25a is connected to the first merging portion 25a by communicating the third flow path hole 24ax and the fourth flow path hole 24bx having different path lengths from the refrigerant inlet 50 with each other by the first merging portion 25a.
  • the difference between the refrigerant flow rate of the heat transfer tube 30a and the refrigerant flow rate of the heat transfer tube 30 connected to the plurality of other merging portions 25 is suppressed to be small.
  • the first merging portion 25a of the portion where the plurality of divided flow paths 20 are parallel to each other has the refrigerant flow rate of the third flow path hole 24ax and the refrigerant flow rate of the fourth flow path hole 24bx. Therefore, the flow rate of the refrigerant flowing into the first heat transfer tube 30a connected to the first confluence portion 25a can be suppressed to a small deviation from the average value.
  • the curve R shown in FIG. 5B shows an example of the refrigerant flow rate of each of the plurality of heat transfer tubes 30.
  • the refrigerant flow rate in the first heat transfer tube 30a is set to a value close to the average flow rate P obtained by dividing the refrigerant flow rate flowing into the heat exchanger 10 by the number of the plurality of heat transfer tubes 30. be able to.
  • FIG. 6 is an exploded perspective view showing a main configuration of the heat exchanger 1010, which is a comparative example of the heat exchanger 10 of the refrigeration cycle apparatus 100 according to the first embodiment.
  • FIG. 7 is a schematic view of the refrigerant distributor 1060 of the heat exchanger 1010 of FIG.
  • the refrigerant flowing in from the refrigerant inflow port 1050 flows into one distribution flow path 1029 and flows in the space 1026 extending in the y direction toward the y direction.
  • a plurality of flow dividing portions 1025 provided according to the arrangement of the plurality of heat transfer tubes 30 are connected to the space 1026, and the plurality of heat transfer tubes 30 are connected to the space 1026.
  • Each of the plurality of diversion portions 1025 branches from the space 1026.
  • the refrigerant flowing in the space 1026 in the y direction is largely distributed to the upper heat transfer tube 30 far from the refrigerant inflow port 1050.
  • the heat transfer tube 30 farthest in the y direction from the refrigerant inlet 1050 due to inertial force has the largest refrigerant flow rate, and the heat transfer tube 30 closest in the y direction has the largest flow rate. The lowest refrigerant flow rate.
  • the refrigerant distributor 60 can suppress the bias of the refrigerant flow rate flowing through each of the plurality of heat transfer tubes 30, and the heat exchange performance is improved.
  • the second refrigerant inlets 50b, 50d, 50f, or 50h connected to 20h are arranged at different positions in the y direction, that is, in the first direction.
  • the position of the y-direction end of the first divided flow path 20a, 20c, 20e, or 20 g and the position of the y-direction end of the second divided flow path 20b, 20d, 20f, or 20h are the y-direction, that is, the first.
  • the third flow path hole 24ax which is one of the first flow path holes 24a provided in the first division flow path 20a, 20c, 20e, or 20g, and the second division flow path 20b, 20d
  • the length of the path from the refrigerant inlet 50 is the same as that of the fourth flow path hole 24bx, which is one of the second flow path holes 24b provided in 20f or 20h, even if they are at the same position in the y direction. Is different. Therefore, the refrigerants from the third flow path hole 24ax and the fourth flow path hole 24bx, which have different refrigerant flow rates, merge at the first confluence portion 25a and flow into the first heat transfer tube 30a.
  • each of the plurality of flow path holes 24 provided in each of the plurality of divided flow paths 20 has a different refrigerant flow rate depending on the position in the y direction, but flows into each of the plurality of heat transfer tubes 30.
  • the flow rate of the refrigerant to be used is less biased.
  • the distribution flow path 29 is configured by arranging the first distribution flow path 29a and the second distribution flow path 29b in parallel in the x direction, that is, the second direction, but is limited to this embodiment only. It is not something that is done.
  • a plurality of distribution flow paths 29 in two or more rows may be arranged in parallel in the x direction.
  • the refrigerant distributor 60 is not limited to the structure shown in FIGS. 2 to 5.
  • any two or three of the first member 21, the second member 22, and the third member 23 may be integrally molded, or the refrigerant distributor 60 may be configured from more members. ..
  • the shape of the refrigerant distributor 60 can be changed as appropriate.
  • the plurality of heat transfer tubes 30 have been described using flat tubes, heat transfer tubes having a circular or elliptical cross section may be used.
  • the first distribution flow path 29a may be composed of one divided flow path 20 and the second distribution flow path 29b may be composed of two divided flow paths 20.
  • one divided flow path 20 formed in the first distribution flow path 29a becomes the first divided flow path
  • the second distribution flow path 29b becomes the second divided flow path 20
  • the second divided flow path 20 becomes the second divided flow path, and the x direction. They are arranged in the second direction so as to overlap each other.
  • the heat exchanger 10 may arrange a plurality of such refrigerant distributors 60 in the first direction and connect them to a plurality of heat transfer tubes 30.
  • the heat exchanger 210 according to the second embodiment is a modification of the structure of the refrigerant distributor 60 of the heat exchanger 10 according to the first embodiment.
  • the changes to the first embodiment will be mainly described.
  • those having the same function in each drawing shall be labeled with the same reference numerals as those used in the description of the first embodiment.
  • FIG. 8 is an explanatory diagram showing the relationship between the arrangement of the plurality of divided flow paths 220 of the refrigerant distributor 260 of the heat exchanger 210 and the distribution flow rate of the heat transfer tube 30 according to the second embodiment.
  • FIG. 8A shows the arrangement of the plurality of divided flow paths 220, the plurality of flow path holes 24, the plurality of merging portions 25, and the plurality of refrigerant inlets 50 when the refrigerant distributor 260 is viewed from the z-direction viewpoint. It is a schematic diagram. In FIG.
  • the flow rate of the refrigerant flowing through each of the plurality of flow path holes 24 is shown on the left side, and the flow rate of the refrigerant flowing through each of the plurality of heat transfer tubes 30 is shown on the right side.
  • the number of flow path holes 24 provided in each of the plurality of divided flow paths 220 is changed according to the position of the divided flow paths 220 in the y direction. It was done.
  • the plurality of divided flow paths 20a to 20h are each provided with a plurality of flow path holes 24 having the same number.
  • the refrigerant distributor 260 of the heat exchanger 210 according to the second embodiment has a plurality of divided flow paths 220c and 220d connected to a plurality of heat transfer tubes 30 located at the center of the heat exchanger 210 in the y direction.
  • 220e, and 220f are provided with a plurality of flow path holes 24 having a smaller number than the plurality of flow path holes 24 provided in the other plurality of divided flow paths 220a, 220b, 220g, and 220h.
  • the first divided flow paths 220c and 220e and the second divided flow paths 220d and 220f provided with the small number of the plurality of flow path holes 24 may be referred to as a third divided flow path.
  • the plurality of flow path holes 24 provided in the plurality of divided flow paths 220c, 220d, 220e, and 220f are in the y direction as shown by the curves c, d, e, and f.
  • the amount of increase in the refrigerant flow rate with respect to the amount of change in the height position of is large. That is, the farther the y-direction positions of the plurality of flow path holes 24 are from the refrigerant inflow port 50, the greater the amount of increase in the refrigerant flow rate in the flow path holes 24. Therefore, in FIG. 8B, the curves c, d, e, and f sleep more than the curves a, b, g, and h.
  • the refrigerant having substantially the same flow rate flows into the plurality of divided flow paths 220a to 220h. Therefore, among the plurality of flow path holes 24 provided in the plurality of divided flow paths 220c, 220d, 220e, and 220f, the refrigerant flow rate in the flow path hole 24 located farthest from the refrigerant inflow port 50 in the y direction is determined. Among the plurality of other divided flow paths 220a, 220b, 220g, and 220h, the flow rate is larger than the refrigerant flow rate in the flow path hole 24 located farthest from the refrigerant inflow port 50 in the y direction.
  • the plurality of first flow path holes 24a included in the plurality of divided flow paths 220c, 220d, 220e, and 220f are the plurality of first flow paths included in the other plurality of divided flow paths 220a, 220b, 220g, and 220h. Since it is smaller than the number of holes 24a, the flow rate of the refrigerant per one flow path hole 24 is large.
  • the second divided flow path 220d formed in the second distribution flow path 29b is the fourth flow path hole 24bx3.
  • the first dividing flow path 220e of the first distribution flow path 29a communicates with the first merging part 25a3 via the third flow path hole 24ax3.
  • the refrigerant flow rate is the highest among the second flow path holes 24b provided in the road 220d.
  • the third flow path hole 24ax3, which is one of the first flow path holes 24a of the first divided flow path 220e is located at the fourth position in the first divided flow path 220e in the y direction from the refrigerant inlet 50e.
  • the refrigerant flow rate is medium in the first flow path hole 24a provided in the first divided flow path 220e. Therefore, the flow rate of the refrigerant flowing into the first heat transfer tube 30a through the first confluence portion 25a3 is the point r3 shown in FIG. 8B.
  • the number of the first flow path holes 24a provided in the divided flow paths 220c, 220d, 220e, and 220f is smaller than that of the divided flow paths 220a, 220b, 220g, and 220h, respectively, each of the flow path holes 24 Therefore, the total flow rate of the refrigerant flowing into the plurality of connected heat transfer tubes 30 is also large. Therefore, the curves of the refrigerant flow rates of the plurality of heat transfer tubes 30 displayed on the right side of FIG. 8B have many portions where the refrigerant flow rate is high in the central portion of the heat exchanger 210 in the y direction.
  • FIG. 9 is a schematic view of an example of the peripheral structure of the heat exchanger 210 of the refrigeration cycle device 100 according to the second embodiment.
  • FIG. 9 is a diagram showing the positional relationship between the heat exchanger 210 and the blower 108 arranged inside the outdoor unit 106, which is a heat exchange unit included in the refrigeration cycle device 100 as an example.
  • the blower 108 is a side flow fan whose rotation axis is directed in the horizontal direction.
  • FIG. 10 is an air volume distribution diagram of the blower 108 arranged around the heat exchanger 210 of the refrigeration cycle device 100 according to the second embodiment.
  • the blower 108 positions the rotation center L at the center of the heat exchanger 210 in the height direction.
  • the air sent from the blower 108 to the heat exchanger 210 is not uniform in the height direction of the heat exchanger 210, and the air volume differs depending on the distance from the rotation center of the blower 108.
  • the heat exchanger 210 according to the second embodiment has the largest inflow air volume at the same height as the rotation center of the blower 108, and the air volume decreases as the distance from the rotation center increases. Therefore, in the heat exchange section 32 of the heat exchanger 210, the closer to the center of rotation of the blower 108, the larger the amount of air flowing in.
  • the heat transfer tube 30 connected to the first confluence portion 25a3 described above is located at the center of the heat exchanger 210 in the y direction.
  • the portion where the heat transfer tube 30 having the highest refrigerant flow rate is arranged is arranged at a position closest to the rotation center of the blower 108. Therefore, the heat exchanger 210 has improved heat exchange performance.
  • the first heat transfer tube 30a connected to the first confluence portion 25a3 of the heat exchanger 210 according to the second embodiment does not need to be strictly aligned with the rotation axis of the blower 108.
  • the merging portion 25 around the first merging portion 25a3 also corresponds to the first merging portion 25a, and the divided flow paths 220c, 220d, 220e, and 220f having a relatively short length in the y direction.
  • the refrigerant flow rate is relatively high. Therefore, if the heat transfer tube 30 connected to the first merging portion 25a around the first merging portion 25a3 is arranged at the position closest to the rotation center of the blower 108, the heat exchanger 210 has a heat exchange performance. improves.
  • the heat transfer tube 30 having a relatively large flow rate of the refrigerant is referred to as the first heat transfer tube 30a.
  • the first heat transfer tube 30a is connected to the split flow path 20 in which the number of the plurality of heat transfer tubes 30 connected is smaller than that of the other plurality of split flow paths 20.
  • at least one of the first divided flow paths 220a, 220c, 220e, or 220 g to which the first heat transfer tube 30a is connected and the second divided flow paths 220b, 220d, 220f, or 220h is connected.
  • the number of heat tubes 30 is less than at least one of the other divided flow paths 220a to 220h.
  • At least one of the two divided flow paths 220a to 220h to which the first heat transfer tube 30a is connected is the divided flow paths 220c, 220d, 220e, or 220f shown in FIG. 8A, that is, the first. It is a three-divided flow path.
  • the heat exchanger 310 according to the third embodiment is a modification of the structure of the refrigerant distributor 60 of the heat exchanger 10 according to the first embodiment.
  • the changes to the first embodiment will be mainly described.
  • those having the same function in each drawing shall be labeled with the same reference numerals as those used in the description of the first embodiment.
  • FIG. 11 is an explanatory diagram showing the relationship between the arrangement of the plurality of divided flow paths 320 of the refrigerant distributor 360 of the heat exchanger 310 according to the third embodiment and the distribution flow rate of the heat transfer tube 30.
  • FIG. 11A shows the arrangement of the plurality of divided flow paths 220, the plurality of flow path holes 24, the plurality of confluence portions 25, and the plurality of refrigerant inlets 50 when the refrigerant distributor 360 is viewed from the z-direction viewpoint. It is a schematic diagram. In FIG.
  • the flow rate of the refrigerant flowing through each of the plurality of flow path holes 24 is shown on the left side, and the flow rate of the refrigerant flowing through each of the plurality of heat transfer tubes 30 is shown on the right side.
  • the refrigerant distributor 360 of the heat exchanger 310 according to the third embodiment changes the number of flow path holes 24 provided in each of the plurality of divided flow paths 320 according to the position of the divided flow paths 320 in the y direction. It was done.
  • the plurality of divided flow paths 20a to 20h are each provided with the same number of flow path holes 24.
  • the refrigerant distributor 360 of the heat exchanger 310 according to the third embodiment has at least 320 g and 320 h of the plurality of divided flow paths connected to the heat transfer tube 30 located at the end in the y direction of the heat exchanger 310.
  • One is provided with a smaller number of flow path holes 24 than the other divided flow paths 320a to 320f.
  • the number of flow path holes 24 in which the divided flow path 320h is smaller than that of the other divided flow paths 320a to 320g is provided.
  • the divided flow path 320h having few flow path holes 24 is referred to as a third divided flow path.
  • the plurality of flow path holes 24 provided in the divided flow path 320h have a large increase in the refrigerant flow rate with respect to the amount of change in the height position in the y direction as shown by the curve h. That is, the farther the y-direction position of the flow path hole 24 is from the refrigerant inflow port 50, the greater the increase in the refrigerant flow rate of the flow path hole 24. Therefore, the curve h sleeps more than the curves a to g.
  • the refrigerant having substantially the same flow rate flows into the plurality of divided flow paths 320a to 320h. Therefore, among the plurality of flow path holes 24 provided in the second split flow path 320h, the refrigerant flow rate in the second flow path hole 24b located farthest from the refrigerant inflow port 50 in the y direction is the other plurality of splits. It is larger than the refrigerant flow rate in the flow path hole 24 located farthest from the refrigerant inflow port 50 in the y direction among the plurality of flow path holes 24 of the flow paths 320a to 320 g. That is, since the flow path holes 24 included in the second divided flow path 320h are smaller than the number of flow path holes 24 included in the other divided flow paths 320a to 320g, the flow rate of the refrigerant per one flow path hole 24 is large.
  • the second divided flow path 320h of the second distribution flow path 29b passes through the fourth flow path hole 24bx4. It communicates with the first confluence portion 25a4, and the first division flow path 320g of the first distribution flow path 29a communicates with the first confluence portion 25a4 via the third flow path hole 24ax4.
  • the fourth flow path hole 24bx4 of the second divided flow path 320h is farthest from the refrigerant inflow port 50h in the second divided flow path 320h in the y direction, and is provided in the second divided flow path 320h.
  • the refrigerant flow rate is the highest in 24b.
  • the third flow path hole 24ax4 of the first division flow path 320g is also the first flow path hole 24a farthest from the refrigerant inlet 50g in the first division flow path 320g in the y direction, and is the first division flow path.
  • the refrigerant flow rate is the highest.
  • the flow rate of the refrigerant flowing into the first heat transfer tube 30a via the first merging portion 25a4 is the point r4 shown in FIG. 11B. That is, among the plurality of heat transfer tubes 30 of the heat exchanger 310, the refrigerant flow rate of the heat transfer tube 30 located at the end in the y direction is the largest.
  • the flow rate of the refrigerant per one of the flow path holes 24 is large. Further, since the number of the flow path holes 24 provided in the first divided flow path 320 g is smaller than that of the other divided flow paths 320a to 320c, the flow rate of the refrigerant per one of the flow path holes 24 is the divided flow path 320a. More than ⁇ 320c. Therefore, the total flow rate of the refrigerant flowing into the plurality of heat transfer tubes 30 connected to the first divided flow path 320 g and the second divided flow path 320 h also increases. Therefore, in the curve of the refrigerant flow rate of the plurality of heat transfer tubes 30 displayed on the right side of FIG. 11B, the refrigerant flow rate is high at the end in the y direction.
  • the divided flow path 320 g obtained by dividing the first distribution flow path 29a of the refrigerant distributor 360 and the second divided flow path 320h are in the x direction. They are lined up next to each other. The ends of the first divided flow paths 320 g arranged next to each other in the x direction and the refrigerant inlets 50 g and 50 h connected to the second divided flow paths 320h are respectively in the y direction, that is, in the first direction. They are located in different positions.
  • the third flow path hole 24ax4 and the fourth flow path hole 24bx4 have different distances from the refrigerant inlets 50g and 50h, and have different refrigerant flow rates.
  • the plurality of divided flow paths 320a to 320h are configured to reduce the number of flow path holes 24 provided as they go in the y direction. Therefore, in the heat exchanger 310, the flow rate of the refrigerant flowing through the heat transfer tube 30 increases toward the y direction.
  • FIG. 12 is a schematic view of an example of the peripheral structure of the heat exchanger 310 of the refrigeration cycle device 100 according to the third embodiment.
  • FIG. 12 is a diagram showing the positional relationship between the heat exchanger 310 and the blower 108 arranged inside the outdoor unit 106, which is a heat exchange unit included in the refrigeration cycle device 100 as an example.
  • the blower 108 is a top flow fan whose rotation axis is directed in the vertical direction.
  • FIG. 13 is an air volume distribution diagram of the blower 108 arranged around the heat exchanger 310 of the refrigeration cycle device 100 according to the third embodiment.
  • the blower 108 positions the rotation center L above the heat exchanger 310.
  • the air sent from the blower 108 to the heat exchanger 310 is not uniform in the height direction of the heat exchanger 310, and the air volume differs depending on the distance from the rotation center of the blower 108.
  • the heat exchanger 310 according to the third embodiment has the largest inflow air volume on the blower 108 side, and the air volume decreases as the distance from the rotation center increases. Therefore, in the heat exchange section 32 of the heat exchanger 310, the closer to the center of rotation of the blower 108, the larger the amount of air flowing in. That is, the amount of air flowing into the heat exchanger 310 increases toward the end in the y direction.
  • the first heat transfer tube 30a connected to the first confluence portion 25a4 described above is located at the y-direction end of the heat exchanger 310.
  • the portion where the first heat transfer tube 30a having the highest refrigerant flow rate is arranged is arranged at a position closest to the rotation center of the blower 108. Therefore, the heat exchanger 310 has improved heat exchange performance.
  • the heat exchanger 410 according to the fourth embodiment is a modification of the flow path hole 24 of the refrigerant distributor 60 of the heat exchanger 10 according to the first embodiment.
  • the changes to the first embodiment will be mainly described.
  • those having the same function in each drawing shall be labeled with the same reference numerals as those used in the description of the first embodiment.
  • FIG. 14 is an explanatory diagram showing the relationship between the arrangement of the plurality of divided flow paths 420 of the refrigerant distributor 460 of the heat exchanger 410 and the distribution flow rate of the heat transfer tube 30 according to the fourth embodiment.
  • FIG. 14A shows the arrangement of the plurality of divided flow paths 20, the plurality of flow path holes 24, the plurality of merging portions 25, and the plurality of refrigerant inlets 50 when the refrigerant distributor 460 is viewed from the z-direction viewpoint. It is a schematic diagram. In FIG.
  • the flow rate of the refrigerant flowing through each of the plurality of flow path holes 24 is shown on the left side, and the flow rate of the refrigerant flowing through each of the plurality of heat transfer tubes 30 is shown on the right side.
  • the cross-sectional area of the flow path holes 24 provided in each of the plurality of divided flow paths 20 is adjusted according to the position of the divided flow paths 20 in the y direction. It is a modified version.
  • the plurality of divided flow paths 20a to 20h are each provided with the same number of flow path holes 24.
  • the refrigerant distributor 460 of the heat exchanger 410 according to the fourth embodiment has a plurality of divided flow paths 20c and 20d connected to a plurality of heat transfer tubes 30 located at the center of the heat exchanger 410 in the y direction.
  • 20e, and 20f have a larger cross-sectional area of the flow path of the flow path hole 24 than the other plurality of divided flow paths 20a, 20b, 20g, and 20h.
  • the plurality of flow path holes 24 provided in the divided flow paths 20c, 20d, 20e, and 20f are in the y direction as shown in the curves c, d, e, and f.
  • the amount of increase in the refrigerant flow rate with respect to the amount of change in the height position of is larger than the curves a, b, g, and h. That is, in the divided flow paths 20c, 20d, 20e, and 20f, the larger the y-direction position of the flow path hole 24 is from the refrigerant inflow port 50, the greater the increase in the refrigerant flow rate of the flow path hole 24. Therefore, in FIG. 14 (b), the curves c, d, e, and f sleep more than the curves a, b, g, and h.
  • the flow path holes 24 provided in the divided flow paths 20a, 20b, 20g, and 20h are cut off. Since the area is smaller than the flow path holes 24 of the divided flow paths 20c, 20d, 20e, and 20f, the flow rates of the refrigerant flowing into the divided flow paths 20a, 20b, 20g, and 20h are larger than those of the divided flow paths 20c to 20f, respectively. small.
  • the refrigerant flow rate in the flow path hole 24 located farthest from the refrigerant inflow port 50 in the y direction is determined.
  • the flow rate is larger than the refrigerant flow rate in the flow path hole 24 located farthest from the refrigerant inflow port 50 in the y direction.
  • the second divided flow path 20d of the second distribution flow path 29b passes through the fourth flow path hole 24bx5. It communicates with the first confluence 25a5, and the first division flow path 20e of the first distribution flow path 29a communicates with the first confluence 25a5 via the third flow path hole 24ax5.
  • the fourth flow path hole 24bx5 of the second divided flow path 20d is the farthest from the refrigerant inflow port 50d in the second divided flow path 20d in the y direction, and the flow path hole 24b provided in the second divided flow path 20d.
  • the refrigerant flow rate is the highest among them.
  • the third flow path hole 24ax5 of the first division flow path 20e is the first flow path hole 24a located at the fourth position in the y-direction from the refrigerant inlet 50e in the first division flow path 20e, and is the first division.
  • the refrigerant flow rate is medium in the first flow path hole 24a provided in the flow path 20e. Therefore, the flow rate of the refrigerant flowing into the first heat transfer tube 30a via the first confluence portion 25a is the point r5 shown in FIG. 14 (b).
  • the cross-sectional areas of the plurality of flow path holes 24 provided in the divided flow paths 20c, 20d, 20e, and 20f are larger than those of the divided flow paths 20a, 20b, 20g, and 20h, a plurality of flow path holes are provided.
  • the flow rate of the refrigerant per one of the 24 is relatively large, and therefore the total flow rate of the refrigerant flowing into the plurality of connected heat transfer tubes 30 is also large.
  • the cross-sectional areas of the plurality of flow path holes 24 provided in the divided flow paths 20a, 20b, 20g, and 20h are smaller than those of the divided flow paths 20c, 20d, 20e, and 20f, one of the flow path holes 24
  • the flow rate of refrigerant per area is relatively low. Therefore, the curves of the refrigerant flow rates of the plurality of heat transfer tubes 30 displayed on the right side of FIG. 14B have many portions where the refrigerant flow rate is high in the central portion in the y direction.
  • the blower 108 is a side flow fan whose rotation axis is directed in the horizontal direction.
  • the blower 108 positions the rotation center L at the center of the heat exchanger 410 in the height direction.
  • the air sent from the blower 108 to the heat exchanger 410 is not uniform in the height direction of the heat exchanger 410, and the air volume varies depending on the distance from the rotation center of the blower 108. ..
  • the first heat transfer tube 30a connected to the first merging portion 25a5 described above is located at the center of the heat exchanger 210 in the y direction.
  • the portion where the heat transfer tube 30 having the highest refrigerant flow rate is arranged is arranged at a position closest to the rotation center of the blower 108. Therefore, the heat exchanger 410 has improved heat exchange performance.
  • the first heat transfer tube 30a connected to the first confluence portion 25a5 of the heat exchanger 210 according to the second embodiment does not need to be strictly aligned with the rotation axis of the blower 108.
  • the merging portion 25 around the first merging portion 25a5 also corresponds to the first merging portion 25a and has divided flow paths 20c, 20d, 20e having a flow path hole 24 having a relatively large cross-sectional area.
  • And 20f, and the refrigerant flow rate is relatively high. Therefore, if the first heat transfer tube 30a connected to the first merging portion 25a around the first merging portion 25a5 is arranged at the position closest to the rotation center of the blower 108, the heat exchanger 410 heat exchanges.
  • the first heat transfer tube 30a is connected to a divided flow path 20 provided with a flow path hole 24 having a cross-sectional area larger than that of the other plurality of divided flow paths 20.
  • a flow path hole 24 having a cross-sectional area larger than that of the other plurality of divided flow paths 20.
  • the cross-sectional area of the path hole 24 is larger than at least one of the other divided flow paths 20a to 20h. That is, at least one of the two divided flow paths 20a to 20h to which the first heat transfer tube 30a is connected is the divided flow paths 20c, 20d, 20e, or 20f shown in FIG. 14 (a).
  • the present invention is not limited to the configuration described above.
  • the number of the plurality of flow path holes 24 provided in the divided flow paths 20, 220, and 320 may be changed. Further, the quantity of the plurality of divided flow paths 20, 220, 320 may be changed. Further, the present invention may be configured by combining each embodiment.
  • the number of flow path holes 24 provided in the divided flow paths 220 and 320 is changed according to the y-direction position of the divided flow paths 220 and 320, but the fourth embodiment further As described above, the cross-sectional area of the flow path hole 24 may be changed according to the positions of the divided flow paths 220 and 320 in the y direction.
  • the heat exchangers 10, 210, 310, and 410 can appropriately adjust the flow rates of the refrigerants of the plurality of heat transfer tubes 30, and the wind speed distribution of the inflowing air. It can be configured according to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本発明は、冷凍サイクル装置の運転状態に依存する冷媒流量又は冷媒の乾き度の変化に対し、各伝熱管への冷媒分配の偏りを抑制できる、冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置を得ることを目的とする。本発明の冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置は、第1冷媒流入口と、第2冷媒流入口と、第1方向に互いに間隔を空けて配置された複数の合流部と、第1方向に延び第1冷媒流入口から流入した冷媒を複数の合流部に分配する第1分割流路と、第1方向に延び第2冷媒流入口から流入した冷媒を複数の合流部に分配する第2分割流路と、を備え、第1分割流路は、第1方向に延び内部に冷媒が流れる第1流路部と、複数の合流部に対応する位置に形成され、第1流路部と複数の合流部を連通させる複数の第1流路孔と、を有し、第2分割流路は、第1方向に延び内部に冷媒が流れる第2流路部と、複数の合流部に対応する位置に形成され、第2流路部と複数の合流部を連通させる複数の第2流路孔と、を有し、複数の第1流路孔は、複数の合流部のうちの1つである第1合流部に接続する第3流路孔を含み、複数の第2流路孔は、第1合流部に接続する第4流路孔を含み、第1冷媒流入口から第3流路孔までの経路長さは、第2冷媒流入口から第4流路孔までの経路長さと異なる。

Description

冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置
 本発明は、冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置に関し、特に冷媒分配器により伝熱管の冷媒流量を調整する構造に関する。
 近年、空気調和装置は、冷媒回路内の冷媒量の削減、熱交換器の高性能化のため、熱交換器の伝熱管の細径化が進んでいる。伝熱管を細径化させる場合、伝熱管を通過する冷媒の圧力損失の増加を抑制する必要がある。そのため熱交換器は、パス数(分岐数)が増加している。熱交換器の冷媒分岐数の多数化に対応して、熱交換器には冷媒分配器(ヘッダ)が設けられ、運転状態に合わせて冷媒を適正に分配することが求められる。
 例えば、各伝熱管への冷媒の分配を適正にするための構造を有する熱交換器としては以下のものが知られている。熱交換器は、水平方向に延びる伝熱管が垂直方向に配列され、垂直方向に延びて気液二相冷媒が上向きに流れる円筒状のヘッダを備える。ヘッダは、下部から水平方向に冷媒が流入し、冷媒が壁面に衝突し、垂直方向に上昇する。ヘッダは、気液二相冷媒を垂直方向に上昇させるメインヘッダ室と、水平方向へ分岐させて各伝熱管に冷媒を分配するサブヘッダ室と、によって構成される。ヘッダは、メインヘッダ室の流路断面積を小さくすることで、冷媒が低流量となった場合でも冷媒が上部まで到達するように構成されている(例えば、特許文献1を参照)。
特開2017-133820号公報
 しかし、特許文献1に開示されているヘッダにおいて、例えば冷凍サイクル装置の運転状態によって冷媒流量が高くなった場合又は冷媒の乾き度が変化し液相冷媒が増加した場合に、ヘッダ内の冷媒の垂直方向上向きの慣性力が増加する。これにより、ヘッダ内の上部に冷媒が滞留し、各伝熱管への冷媒分配に偏りが生じ、熱交換器性能が低下する、という課題があった。
 本発明は、上記のような課題を解決するためのものであり、冷凍サイクル装置の運転状態に依存する冷媒流量又は冷媒の乾き度の変化に対し、各伝熱管への冷媒分配の偏りを抑制できる、冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置を得ることを目的とする。
 本発明に係る冷媒分配器は、第1冷媒流入口と、第2冷媒流入口と、第1方向に互いに間隔を空けて配置された複数の合流部と、前記第1方向に延び前記第1冷媒流入口から流入した冷媒を前記複数の合流部に分配する第1分割流路と、前記第1方向に延び前記第2冷媒流入口から流入した冷媒を前記複数の合流部に分配する第2分割流路と、を備え、前記第1分割流路は、前記第1方向に延び内部に冷媒が流れる第1流路部と、前記複数の合流部に対応する位置に形成され、前記第1流路部と前記複数の合流部を連通させる複数の第1流路孔と、を有し、前記第2分割流路は、前記第1方向に延び内部に冷媒が流れる第2流路部と、前記複数の合流部に対応する位置に形成され、前記第2流路部と前記複数の合流部を連通させる複数の第2流路孔と、を有し、前記複数の第1流路孔は、前記複数の合流部のうちの1つである第1合流部に接続する第3流路孔を含み、前記複数の第2流路孔は、前記第1合流部に接続する第4流路孔を含み、前記第1冷媒流入口から前記第3流路孔までの経路長さは、前記第2冷媒流入口から前記第4流路孔までの経路長さと異なる。
 本発明に係る熱交換器は、上記の冷媒分配器と、前記複数の合流部に接続された複数の伝熱管と、を備える。
 本発明に係る熱交換器ユニットは、上記の熱交換器を備える。
 本発明に係る冷凍サイクル装置は、上記熱交換器ユニットを備える。
 本発明によれば、上記構成により、冷媒分配器は、冷媒流入口からの距離が異なる第3流路孔及び第4流入孔からの冷媒を合流させて第1伝熱管に流入させるため、第1伝熱管に流れる冷媒流量を他の複数の伝熱管に対し変化させることができる。これにより、冷媒分配器は、複数の分割流路から複数の伝熱管のそれぞれに流れ込む冷媒流量を調整することができる。従って、冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置は、冷凍サイクル装置の運転状態による冷媒流量又は冷媒の状態が変化しても複数の伝熱管への冷媒分配の偏りを抑制できる。
実施の形態1に係る冷媒分配器60を備えた冷凍サイクル装置100の構成を示す冷媒回路図である。 実施の形態1に係る冷凍サイクル装置100の熱交換器10の要部構成を示す分解斜視図である。 実施の形態1に係る冷凍サイクル装置100の熱交換器10の要部構成を示す側面図である。 実施の形態1に係る冷凍サイクル装置100の熱交換器10の要部構成の断面図である。 実施の形態1に係る冷媒分配器60の複数の分割流路20の配置と伝熱管30の分配流量との関係を示した説明図である。 実施の形態1に係る冷凍サイクル装置100の熱交換器10の比較例である熱交換器1010の要部構成を示す分解斜視図である。 図6の熱交換器1010の冷媒分配器1060の模式図である。 実施の形態2に係る熱交換器210の冷媒分配器260の複数の分割流路220の配置と伝熱管30の分配流量との関係を示した説明図である。 実施の形態2に係る冷凍サイクル装置100の熱交換器210周辺構造の一例の模式図である。 実施の形態2に係る冷凍サイクル装置100の熱交換器210の周辺に配置された送風機108の風量分布図である。 実施の形態3に係る熱交換器310の冷媒分配器360の複数の分割流路320の配置と伝熱管30の分配流量との関係を示した説明図である。 実施の形態3に係る冷凍サイクル装置100の熱交換器310周辺構造の一例の模式図である。 実施の形態2に係る冷凍サイクル装置100の熱交換器310の周辺に配置された送風機108の風量分布図である。 実施の形態4に係る熱交換器410の冷媒分配器460の複数の分割流路420の配置と伝熱管30の分配流量との関係を示した説明図である。
 以下に、冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置の実施の形態について説明する。なお、図面の形態は一例であり、本発明を限定するものではない。また、各図において同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、例えば24a、24b、24ax、24bx、24ax1、24bx1等の添字を付けた符号がある場合、添字を付けていない符号は、添字を付けた符号が指すものを総称している。例えば、24は、24a、24b、24ax、24bx、24ax1、及び24bx1を総称するものであり、24aは、24a、24ax、及び24ax1を総称するものであり、24axは、24ax1等を総称するものである。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。更に、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態1.
 図1は、実施の形態1に係る冷媒分配器60を備えた冷凍サイクル装置100の構成を示す冷媒回路図である。まず、図1を用いて冷媒分配器60を備えた冷凍サイクル装置100について説明する。なお、図1において、点線で示す矢印は、冷媒回路110において、冷房運転時における冷媒の流れる方向を示すものであり、実線で示す矢印は、暖房運転時における冷媒の流れる方向を示すものである。実施の形態1では、冷凍サイクル装置100として空気調和装置を例示しているが、冷凍サイクル装置100は、例えば、冷蔵庫あるいは冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器などの、冷凍用途または空調用途に使用される。
 冷凍サイクル装置100は、圧縮機101、流路切替装置102、室内熱交換器103、減圧装置104及び室外熱交換器105が冷媒配管を介して環状に接続された冷媒回路110を有している。また、冷凍サイクル装置100は、室内熱交換器103、室外熱交換器105のいずれか一方又は双方に接続された冷媒分配器60を有する。冷凍サイクル装置100は、室外機106及び室内機107を有している。室外機106には、圧縮機101、流路切替装置102、室外熱交換器105、冷媒分配器60及び減圧装置104と、室外熱交換器105に室外空気を供給する室外送風機108と、が収容されている。室内機107には、室内熱交換器103と、冷媒分配器60と、室内熱交換器103に空気を供給する室内送風機109と、が収容されている。室外機106と室内機107との間は、冷媒配管の一部である2本の延長配管111及び延長配管112を介して接続されている。なお、室外送風機108及び室内送風機109を総称して送風機と称する場合がある。また、室外機106及び室内機107のように内部に熱交換器10(図2参照)を備える機器を、熱交換器ユニットと称する場合がある。
 圧縮機101は、吸入した冷媒を圧縮して吐出する流体機械である。流路切替装置102は、例えば四方弁であり、制御装置(図示は省略)の制御により、冷房運転時と暖房運転時とで冷媒の流路を切り替える装置である。室内熱交換器103は、内部を流通する冷媒と、室内送風機109により供給される室内空気と、の熱交換を行う熱交換器である。室内熱交換器103は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。減圧装置104は、例えば膨張弁であり、冷媒を減圧させる装置である。減圧装置104としては、制御装置の制御により開度が調節される電子膨張弁を用いることができる。室外熱交換器105は、内部を流通する冷媒と、室外送風機108により供給される空気と、の熱交換を行う熱交換器である。室外熱交換器105は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。
 室外熱交換器105及び室内熱交換器103の少なくとも一方には、後述する熱交換器10(図2参照)が用いられている。熱交換器10が備える冷媒分配器60は、熱交換器10において液相冷媒がより多くなる位置に配置されるのが望ましい。具体的には、冷媒分配器60は、冷媒回路110での冷媒の流れにおいて、蒸発器として機能する熱交換器10の入口側、すなわち凝縮器として機能する熱交換器10の出口側に配置されるのが望ましい。つまり、実施の形態1においては、図1に示される様に冷媒分配器60は、冷媒回路110において室内熱交換器103及び室外熱交換器105の減圧装置104側に配置されている。なお、冷媒分配器60は、室内熱交換器103と室外熱交換器105との両方の熱交換器に用いられているが、室内熱交換器103又は室外熱交換器105のいずれか一方の熱交換器にのみ用いられてもよい。また、冷媒分配器60は、冷媒回路110での冷媒の流れにおいて、蒸発器として機能する熱交換器10の出口側、すなわち凝縮器として機能する熱交換器10の入口側に配置されていても良い。つまり、冷媒分配器60は、冷媒回路110において室内熱交換器103及び室外熱交換器105の流路切替装置102側に配置されていても良い。
 実施の形態1に係る冷凍サイクル装置100の冷媒回路110の構成について、冷房及び暖房の運転状態の冷媒の流れを基に説明する。図1に示される様に、冷房運転時には、冷媒は、図中の破線矢印が示す方向に流れる。冷房運転では、圧縮機101から吐出された冷媒は、流路切替装置102を経て、室外熱交換器105の熱交換部32に流入する。熱交換部32から流出した冷媒は、冷媒分配器60を経て室外熱交換器105から流出する。その後、冷媒は、減圧装置104を通過し、室外機106から流出し、延長配管112を経て室内機107に流入する。室内機107に入った冷媒は、冷媒分配器60に流入する。冷媒分配器60において各伝熱管に分配された冷媒は、室内熱交換器103の熱交換部32を通過し、室内機107から流出する。室内機107を流出した冷媒は、延長配管111を経て再び室外機106に流入する。室外機106に流入した冷媒は、流路切替装置102を経て圧縮機101に吸入される。
 一方、図1に示される様に、暖房運転時には、冷媒は、図中の実線矢印が示す方向に流れる。圧縮機101から吐出された冷媒は、流路切替装置102を経て、室外機106から流出し、延長配管111を経て室内機107に流入する。室内機107に流入した冷媒は、室内熱交換器103の熱交換部32を通過し、冷媒分配器60を経て室内機107から流出する。室内機107から流出した冷媒は、延長配管112を通過し、室外機106に流入する。室外機106に流入した冷媒は、減圧装置104を通過し、冷媒分配器60で各伝熱管に分配され、室外熱交換器105の熱交換部32を通過する。室外熱交換器105を通過した冷媒は、流路切替装置102を経て圧縮機101に吸入される。
 なお、冷凍サイクル装置100の冷媒回路110は、一例であり、室内熱交換器103、室外熱交換器105、冷媒分配器60以外の回路構成を変更しても良い。
 (熱交換器10の構造)
 図2は、実施の形態1に係る冷凍サイクル装置100の熱交換器10の要部構成を示す分解斜視図である。図3は、実施の形態1に係る冷凍サイクル装置100の熱交換器10の要部構成を示す側面図である。図2及び図3は、冷凍サイクル装置100の冷媒回路110の室内熱交換器103又は室外熱交換器105として用いられる熱交換器10の冷媒分配器60と熱交換部32とが接続している部分の構造の説明図である。図3に示されるように、熱交換器10は、熱交換部32と冷媒分配器60とを備える。
 (熱交換部32)
 熱交換部32は、複数の伝熱管30及び伝熱フィン40により構成される。複数の伝熱管30は、管軸方向をz方向に向けて、y方向に間隔を空けて配列されている。y方向は、第1方向と称する場合がある。なお、実施の形態1においては、y方向が重力方向上向きに一致しているが、熱交換器10の配置は、これに限定されるものではなく、y方向を重力方向に対し傾斜させても良い。
 実施の形態1において、複数の伝熱管30は、扁平管により構成されている。扁平管は、断面形状の長軸方向をx方向に向け、短軸方向をy方向に向けて配置されている。複数の扁平管の長軸方向の側面同士は、伝熱フィン40により接続されている。
 伝熱フィン40は、薄い板状の金属部材であり、板面を複数の伝熱管30の管軸に交差させるように複数の伝熱管に取り付けられている。伝熱フィン40は、z方向に複数配列されており、複数の伝熱フィン40の間を空気が通過するように構成されている。熱交換部32は、複数の伝熱管30及び複数の伝熱フィン40の間に空気等の流体を通過させることにより、複数の伝熱管30の内部を流れる冷媒と流体との間で熱交換を行う部分である。
 (冷媒分配器60)
 冷媒分配器60は、熱交換部32のz方向端部に接続されている。冷媒分配器60は、冷媒回路110の配管と複数の冷媒流入口50を介して接続されており、熱交換器10に流入する冷媒を複数の伝熱管30のそれぞれに分配する機能を有する。冷媒分配器60は、冷媒流入口50が設けられている第1部材21と、第1部材21に対し複数の伝熱管30側に位置する第2部材22と、第2部材22と複数の伝熱管30との間に位置する第3部材23と、を備える。第1部材21、第2部材22、第3部材23は、z方向に積層して接合されている。第1部材21に設けられている冷媒流入口50には、それぞれに冷媒流入管51が接続されている。
 図4は、実施の形態1に係る冷凍サイクル装置100の熱交換器10の要部構成の断面図である。図4は、図3のA-A部の断面を示している。第1部材21は、複数の分配流路29を備える。複数の分配流路29のそれぞれは、y方向に延びる半円筒形状の冷媒流路であり、x方向に並列して配置されている。実施の形態1においては、複数の分配流路29は、第1分配流路29a及び第2分配流路29bの2つから構成されている。第1分配流路29a及び第2分配流路29bは、長手方向がy方向に延び、x方向に並列して配置されている。
 第1部材21は、平板21cに溝21a及び21bが形成され、その溝21a及び21bのそれぞれを覆う様に平板21cに半円筒部材21dが接合されて構成されている。また、平板21cに接合された2つの半円筒部材21dのy方向の両端は、板部材21eが接合されて塞がれている。第1部材21は、平板21c、半円筒部材21d、及び板部材21eにより、y方向に延びz方向が開放された半円筒形状の空間である流路部26を形成している。
 図2に示される様に、第1部材21が備える複数の分配流路29のそれぞれは、仕切部材21fにより内部の流路部26が分割され、複数の分割流路20が形成されている。つまり、第1部材21は、複数の分配流路29のそれぞれをy方向に分割して形成され、z方向に開放された半円筒形状の複数の流路部26を備えている。複数の流路部26は、複数の分割流路20a~20hの内部空間を構成し、冷媒が流動するものである。
 第2部材22は、複数の流路孔24が貫通して設けられている平板22aにより構成されている。複数の流路孔24は、第1部材21が有する複数の分配流路29に対応して形成されている。実施の形態1においては、平板22aは、第1分配流路29aに対応してy方向に1列に並べられた複数の第1流路孔24aと、第2分配流路29bに対応してy方向に1列に並べられた複数の第2流路孔24bと、が設けられている。複数の流路孔24は、複数の伝熱管30が配置される間隔と同じ間隔を持ってy方向に並べられている。
 第2部材22は、第1部材21の平板21cのz方向側の面に接合されている。第1部材21が備える半円筒形状の複数の流路部26の開放されているz方向側の面は、第2部材22により覆われる。これにより、複数の流路部26は、複数の流路孔24により外部の空間と連通する。
 第3部材23は、長手方向をx方向に向けy方向に配列された複数の冷媒流出口23bが設けられている平板23aにより構成されている。複数の冷媒流出口23bは、複数の伝熱管30のそれぞれに対応して設けられており、伝熱管30の端部が挿し込まれ、接合される。また、第3部材23は、伝熱管30の端部が挿し込まれる側とは反対側の面に第2部材22が接触し、接合される。そして、図4に示される様に、伝熱管30の端面33と第3部材23の複数の冷媒流出口23bと第2部材22の面とにより複数の合流部25が形成される。複数の合流部25は、伝熱管30の端面33に開口を有する冷媒流路と複数の第1流路孔24aと複数の第2流路孔24bとを相互に連通する空間である。
 以上のように、冷媒分配器60は、複数の冷媒流入口50からの冷媒を、複数の分配流路29を分割して形成された複数の分割流路20を経て複数の流路孔24のそれぞれから複数の合流部25に流入させることにより、複数の伝熱管30のそれぞれに分配する構造を有する。
 (冷媒分配器60の冷媒分配構造の作用)
 図5は、実施の形態1に係る冷媒分配器60の複数の分割流路20の配置と伝熱管30の分配流量との関係を示した説明図である。図5(a)は、冷媒分配器60をz方向視点で見たときの複数の分割流路20、複数の流路孔24、複数の合流部25、及び複数の冷媒流入口50の配置の模式図である。冷媒分配器60は、y方向に延びx方向に並列された複数の分配流路29である第1分配流路29a及び第2分配流路29bを備える。第1分配流路29aは、仕切部材21fによりy方向に複数の分割流路20a、20c、20e、20g、及び20iに分割されている。また、第2分配流路29bも、仕切部材21fによりy方向に複数の分割流路20b、20d、20f、20h、及び20jに分割されている。以下、複数の分割流路20a~20jを総称して分割流路20と称する場合がある。
 複数の分割流路20a~20hのそれぞれの下端部に示されている実線矢印は、複数の冷媒流入口50a~50hを模式的に表したものである。図2に示される様に、冷媒流入口50a~50hは、複数の分割流路20a~20hのそれぞれの下端部に接続された管であり、冷媒回路110を構成する冷媒配管から分配された冷媒を複数の分割流路20a~20hのそれぞれに流入させる。ここで、第1分配流路29aの内部の流路部26を複数に分割して形成された複数の分割流路20a、20c、20e、及び20gを第1分割流路20a、20c、20e、及び20gと称する。第2分配流路29bの内部の流路部26を複数に分割して形成された複数の分割流路20b、20d、20f、及び20hを第2分割流路20b、20d、20f、及び20hと称する。また、第1分割流路20a、20c、20e、及び20gは、第1流路部26aと複数の第1流路孔24aとを備え、第1冷媒流入口50a、50c、50e、及び50gから流入した冷媒を複数の合流部25に分配する。第2分割流路20b、20d、20f、及び20hは、第2流路部26bと複数の第2流路孔24bとを備え、第2冷媒流入口50b、50d、50f、及び50hから流入した冷媒を複数の合流部25に分配する。
 第1分配流路29aに形成された第1分割流路20aは、第1分配流路29aの最も下に配置されている。第1分割流路20aは、8個の流路孔24aを経由して8個の合流部25に連通している。分割流路20aの8個の流路孔24aは、冷媒流入口50aに対し上方に配置されておりy方向に1列に配置されている。
 図5(b)は、左側に複数の流路孔24のそれぞれに流れる冷媒流量が示されており、右側に複数の伝熱管30のそれぞれに流れる冷媒流量が示されている。図5(b)に実線で示されている曲線aは、第1分割流路20aに設けられた複数の第1流路孔24aのそれぞれに流れる冷媒流量を示している。第1分割流路20aの複数の第1流路孔24aに流れる冷媒の流量は、第1冷媒流入口50aからのy方向の距離が離れる程増加する。一般的に、第1分割流路20aのような冷媒流路においては、気液二相冷媒等の液相の冷媒が含まれる冷媒は、冷媒流入口から遠い上側の第1流路孔24aに多く分配される。また、上向きに流れる冷媒流速が高いほど、上側に位置する流路孔24aに冷媒が多く分配される。図5(a)に示される曲線a~hは、複数の流路孔24に流れる冷媒流量の一例であり、冷媒の流量及び冷媒の乾き度に応じて複数の流路孔24のそれぞれの高さ方向位置による冷媒流量の値が変わる場合があるが、冷凍サイクル装置100の運転状態においては上側に位置する流路孔24の冷媒の分配量が多いという傾向を有するものである。
 第2分配流路29bに形成された第2分割流路20bは、x方向において第1分割流路20aに並列されている。第2分割流路20bの下側の半分は、第1分割流路20aの上側の半分とx方向に隣合って位置している。第2分割流路20bに設けられている複数の第2流路孔24bを流れる冷媒流量も、第1分割流路20aと同様に、冷媒流入口50bからy方向に離れる程増加する。第2分割流路20bは、第1分割流路20aと同様に8個の第2流路孔24bが設けられている。第2分割流路20bの下側の4個の第2流路孔24bのそれぞれは、第1分割流路20aの上側の4個の第1流路孔24aのそれぞれとx方向において隣合って位置しており、4個の合流部25により第1分割流路20aの上側の4個の第1流路孔24aのそれぞれと互いに連通している。なお、x方向において第1分割流路20aに並列されているもう一つの分割流路20jは、流路孔24が設けられておらず、分割流路20jから伝熱管30へ冷媒が流通しない。また、第1分配流路29aのy方向端部に設けられている分割流路20iも流路孔24が設けられておらず、分割流路20iから伝熱管30へ冷媒が流通しない。
 ここで、複数の合流部25のうちの1つである第1合流部25a1に着目したときに、第1分配流路29aの第1分割流路20aは、複数の第1流路孔24aのうちの1つである第3流路孔24ax1を介して第1合流部25a1に連通し、第2分配流路29bの第2分割流路20bは、複数の第2流路孔24bのうちの1つである第4流路孔24bx1を介して第1合流部25a1に連通している。
 第1分割流路20aの第3流路孔24ax1は、第1分割流路20aにおいて冷媒流入口50aから最もy方向に離れており、第1分割流路20aに設けられた第1流路孔24aの中で最も冷媒流量が多い。一方、第2分割流路20bの第4流路孔24bx1は、第2分割流路20bにおいて冷媒流入口50bからy方向に4番目の位置にある第2流路孔24bであり、第2分割流路20bに設けられた第2流路孔24bの中では冷媒流量が中程度である。従って、第1合流部25aを経て伝熱管30に流入する冷媒流量は、図5(b)に示される点r1となる。第1分割流路20aは、第3流路孔24axが設けられた分割流路20であり、第2分割流路20bは、第4流路孔24bxが設けられた分割流路20である。第3流路孔24axと第4流路孔24bxとは、x方向に沿って並んでおり、同じ第1合流部25aに連通しており、それぞれ冷媒流入口50a又は50bからの経路長さが異なるものである。また、第1伝熱管30aは、第3流路孔24axと第4流路孔24bxとから冷媒が流入する伝熱管30である。なお、第3流路孔24axは、第3流路孔24ax1、24ax2、24ax3、・・・等を総称したものである。また、第4流路孔24bxは、第4流路孔24bx1、24bx2、24bx3・・・等を総称したものである。また、第1合流部25aは、第1合流部25a1、25a2、25a3、・・・等を総称したものである。
 また、第1合流部25a2に着目したときに、第1分割流路20aの第3流路孔24ax2は、第1分割流路20aにおいて冷媒流入口50aからy方向に5番目の位置にある第1流路孔24aであり、第1分割流路20aに設けられた複数の流路孔24aの中では冷媒流量が中程度である。一方、第2分割流路20bの第4流路孔24bx2は、第2分割流路20bにおいて冷媒流入口50bに最も近い第2流路孔24bであり、第2分割流路20bに設けられた第2流路孔24bの中で最も冷媒流量が少ない。従って、第1合流部25aを経て伝熱管30に流入する冷媒流量は、図5(b)に示される点r2となる。
 実施の形態1に係る冷媒分配器60においては、複数の分割流路20a~20hは、同じ数量の複数の流路孔24を備えるため、図5(b)に示される各流路孔24の冷媒流量を示す曲線a~hは、実質的に同じである。また、ある複数の分割流路20a~20hのうちある1つの特定の第1分割流路20aから見てx方向において並列する第2分割流路20bがx方向に第1分割流路20aと重なり合う部分は、第1分割流路20a及び第2分割流路20bのy方向長さの半分である。実施の形態1において、その関係は、複数の分割流路20a~20hのそれぞれについて同様に構成されている。つまり、例えば、ある複数の分割流路20a~20hのうちある1つの特定の第1分割流路20cに着目すると、第1分割流路20cの下半分は、第2分割流路20bの上半分とx方向に重なり合っている。また、例えば、複数の分割流路20a~20hのうちある1つの特定の第1分割流路20cに着目すると、第2分割流路20dの下半分は、第1分割流路20cの上半分とx方向に重なり合っている。以下、x方向において並列している、分割流路20dと分割流路20e、分割流路20eと分割流路20f、分割流路20fと分割流路20g、及び分割流路20gと分割流路20hのそれぞれの組み合わせについて、第1分割流路20aと第2分割流路20bとの関係が同様に成立する。つまり、実施の形態1においては、分割流路20c、20e、20gは、分割流路20aと同様に第1分割流路に相当する。また、分割流路20d、20f、20hは、分割流路20bと同様に第2分割流路に相当する。
 また、第1分割流路20aと第2分割流路20bとがx方向に重なっている部分において、1つの第1合流部25aに冷媒を流入させる第1流路孔24aの少なくとも1つである第3流路孔24axと第2流路孔24bの1つである第4流路孔24bxとは、それぞれ冷媒流入口50からの経路長さが異なる。よって、第3流路孔24axから第1合流部25aに流れ込む冷媒流量と、第4流路孔24bxから第1合流部25aに流れ込む冷媒流量とが異なる。その異なる流量の冷媒が第1合流部25aにて合流し、複数の伝熱管30のそれぞれに流入する。複数の分割流路20a~20hのそれぞれに設けられているそれぞれの流路孔24における冷媒流量は、冷媒流入口50からの流路孔24の高さ位置に応じて変動する。しかし、冷媒流入口50からの経路長さが異なる第3流路孔24ax及び第4流路孔24bxを第1合流部25aにより互いに連通させることにより、第1合流部25aに接続された第1伝熱管30aの冷媒流量は、その他の複数の合流部25に接続された伝熱管30の冷媒流量との差異が小さく抑えられる。
 実施の形態1においては、複数の分割流路20同士が並列されている部分のそれぞれの第1合流部25aは、第3流路孔24axの冷媒流量と第4流路孔24bxの冷媒流量とが異なるため、第1合流部25aに接続されている第1伝熱管30aに流入する冷媒流量は、平均値からの乖離が小さく抑えられる。図5(b)において示される曲線Rは、複数の伝熱管30のそれぞれの冷媒流量の一例を示している。実施の形態1に係る熱交換器10においては、第1伝熱管30aにおける冷媒流量は、熱交換器10に流れ込む冷媒流量を複数の伝熱管30の本数で除した平均流量Pに近い値にすることができる。
 図6は、実施の形態1に係る冷凍サイクル装置100の熱交換器10の比較例である熱交換器1010の要部構成を示す分解斜視図である。図7は、図6の熱交換器1010の冷媒分配器1060の模式図である。比較例に係る熱交換器1010においては、冷媒流入口1050から流入する冷媒は、1つの分配流路1029に流入し、y方向に延びる空間1026をy方向に向かって流れる。空間1026には、複数の伝熱管30の配置に応じて設けられた複数の分流部1025が接続しており、複数の伝熱管30が接続されている。複数の分流部1025のそれぞれは、空間1026から分岐している。このような冷媒分配器1060の場合、空間1026をy方向に向かって流れる冷媒は、冷媒流入口1050から遠い上側の伝熱管30に多く分配される。特に、気液二相冷媒等の液相を含む冷媒は、慣性力により冷媒流入口1050からy方向に最も遠く離れた伝熱管30が最も冷媒流量が多く、y方向において最も近い伝熱管30が最も冷媒流量が少ない。
 以上のように、比較例に係る熱交換器1010においては、上方に位置する伝熱管30と下方に位置する伝熱管30とで冷媒流量が大きく異なるため、熱交換性能が低下してしまう。一方、実施の形態1に係る冷凍サイクル装置100の熱交換器10は、冷媒分配器60により複数の伝熱管30のそれぞれを流れる冷媒流量の偏りを抑えることができ、熱交換性能が向上する。
 また、冷媒分配器60の第1分割流路20a、20c、20e、又は20gに接続されている第1冷媒流入口50a、50c、50e、又は50gと第2分割流路20b、20d、20f、又は20hに接続されている第2冷媒流入口50b、50d、50f、又は50hは、y方向即ち第1方向において異なる位置に配置されている。また、第1分割流路20a、20c、20e、又は20gのy方向端部の位置と第2分割流路20b、20d、20f、又は20hのy方向端部の位置とは、y方向即ち第1方向において異なる位置に配置されている。これにより、第1分割流路20a、20c、20e、又は20gに設けられている第1流路孔24aのうちの1つである第3流路孔24axと第2分割流路20b、20d、20f、又は20hに設けられている第2流路孔24bのうちの1つである第4流路孔24bxとは、y方向において同じ位置にあっても、冷媒流入口50からの経路長さが異なる。従って、異なる冷媒流量である第3流路孔24axと第4流路孔24bxとからの冷媒が第1合流部25aにおいて合流して第1伝熱管30aに流入する。そのため、熱交換器10において、複数の分割流路20のそれぞれに設けられている複数の流路孔24のそれぞれは、y方向位置により冷媒流量が異なるが、複数の伝熱管30のそれぞれに流入する冷媒流量は偏りが抑えられる。
 なお、実施の形態1において、分配流路29は、第1分配流路29aと第2分配流路29bとをx方向即ち第2方向に並列させて構成しているが、この形態のみに限定されるものではない。例えば、x方向に2列以上の複数の分配流路29を並列させてもよい。
 また、冷媒分配器60は、図2~図5に示される構造のみに限定するものではない。例えば、第1部材21、第2部材22、及び第3部材23の何れか2つ又は3つを一体に成形しても良いし、更に多くの部材から冷媒分配器60を構成しても良い。また、冷媒分配器60の形状も適宜変更することができる。また、複数の伝熱管30は、扁平管を用いて説明したが、断面が円形又は楕円形である伝熱管を用いても良い。
 また、冷媒分配器60は、第1分配流路29aが1つの分割流路20から構成され、第2分配流路29bが2つの分割流路20から構成されていても良い。このとき、第1分配流路29aに形成された1つの分割流路20が第1分割流路となり、第2分配流路29bが2つの分割流路20が第2分割流路となり、x方向において重なるように第2方向に並べられる。さらに、熱交換器10は、このような冷媒分配器60を第1方向に複数並べて複数の伝熱管30に接続させても良い。
 実施の形態2.
 実施の形態2に係る熱交換器210は、実施の形態1に係る熱交換器10の冷媒分配器60の構造を変更したものである。実施の形態2に係る熱交換器210においては、実施の形態1に対する変更点を中心に説明する。実施の形態2に係る熱交換器210の各部については、各図面において同一の機能を有するものは実施の形態1の説明で使用した図面と同一の符号を付して表示するものとする。
 図8は、実施の形態2に係る熱交換器210の冷媒分配器260の複数の分割流路220の配置と伝熱管30の分配流量との関係を示した説明図である。図8(a)は、冷媒分配器260をz方向視点で見たときの複数の分割流路220、複数の流路孔24、複数の合流部25、及び複数の冷媒流入口50の配置の模式図である。図8(b)は、左側に複数の流路孔24のそれぞれに流れる冷媒流量が示されており、右側に複数の伝熱管30のそれぞれに流れる冷媒流量が示されている。実施の形態2に係る熱交換器210の冷媒分配器260は、複数の分割流路220のそれぞれに設けられている流路孔24の数量を分割流路220のy方向における位置に応じて変更したものである。
 実施の形態1に係る熱交換器10の冷媒分配器60においては、複数の分割流路20a~20hは、それぞれ同じ数量の複数の流路孔24が設けられている。しかし、実施の形態2に係る熱交換器210の冷媒分配器260は、熱交換器210のy方向の中央部に位置する複数の伝熱管30に接続されている複数の分割流路220c、220d、220e、及び220fは、その他の複数の分割流路220a、220b、220g、及び220hに設けられた複数の流路孔24よりも少ない数量の複数の流路孔24が設けられている。この少ない数量の複数の流路孔24が設けられている第1分割流路220c及び220eと第2分割流路220d及び220fを、第3分割流路と称する場合がある。
 図8(b)に示される様に、複数の分割流路220c、220d、220e、及び220fに設けられた複数の流路孔24は、曲線c、d、e、及びfのようにy方向の高さ位置の変化量に対する冷媒流量の増加量が大きい。つまり、複数の流路孔24のy方向位置が冷媒流入口50から離れる程、流路孔24における冷媒流量の増加量が大きい。従って、図8(b)において、曲線c、d、e、及びfは、曲線a、b、g、及びhよりも寝ている。
 また、複数の分割流路220a~220hには、概ね同じ流量の冷媒が流れ込む。従って、複数の分割流路220c、220d、220e、及び220fに設けられた複数の流路孔24のうち、y方向において最も冷媒流入口50から離れて位置する流路孔24における冷媒流量は、その他の複数の分割流路220a、220b、220g、及び220hの複数の流路孔24のうち、y方向において最も冷媒流入口50から離れて位置する流路孔24における冷媒流量よりも多い。つまり、複数の分割流路220c、220d、220e、及び220fが有する複数の第1流路孔24aは、その他の複数の分割流路220a、220b、220g、及び220hが有する複数の第1流路孔24aの数量より少ないため、1つの流路孔24当たりの冷媒流量が多い。
 ここで、複数の合流部25のうちの1つである第1合流部25a3に着目したときに、第2分配流路29bに形成された第2分割流路220dは、第4流路孔24bx3を介して第1合流部25a3に連通し、第1分配流路29aの第1分割流路220eは、第3流路孔24ax3を介して第1合流部25a3に連通している。
 第2分割流路220dの第2流路孔24bの1つである第4流路孔24bx3は、第2分割流路220dにおいて冷媒流入口50dから最もy方向に離れており、第2分割流路220dに設けられた第2流路孔24bの中で最も冷媒流量が多い。一方、第1分割流路220eの第1流路孔24aの1つである第3流路孔24ax3は、第1分割流路220eにおいて冷媒流入口50eからy方向に4番目の位置にある第1流路孔24aであり、第1分割流路220eに設けられた第1流路孔24aの中では冷媒流量が中程度である。従って、第1合流部25a3を経て第1伝熱管30aに流入する冷媒流量は、図8(b)に示される点r3となる。
 分割流路220c、220d、220e、及び220fは、それぞれ設けられている第1流路孔24aの数量が分割流路220a、220b、220g、及び220hより少ないため、流路孔24の1つあたりの冷媒流量が比較的多く、従って、接続されている複数の伝熱管30に流入する冷媒の合計流量も多くなる。よって、図8(b)の右側に表示されている複数の伝熱管30の冷媒流量の曲線は、熱交換器210のy方向の中央部において冷媒流量が高い部分が多い。
 図9は、実施の形態2に係る冷凍サイクル装置100の熱交換器210周辺構造の一例の模式図である。図9は、一例として冷凍サイクル装置100が有する熱交換ユニットである室外機106の内部に配置された熱交換器210と送風機108との位置関係を示す図である。実施の形態2に係る冷凍サイクル装置100の室外機106においては、送風機108は、回転軸を水平方向に向けているサイドフローファンである。
 図10は、実施の形態2に係る冷凍サイクル装置100の熱交換器210の周辺に配置された送風機108の風量分布図である。送風機108は、回転中心Lを熱交換器210の高さ方向の中央に位置させている。送風機108から熱交換器210に送り込まれる空気は、熱交換器210の高さ方向において均等ではなく、送風機108の回転中心からの距離に応じて風量に差がある。実施の形態2に係る熱交換器210は、送風機108の回転中心と同じ高さにおいて最も流入する風量が多く、回転中心から離れる程風量が少なくなる。従って、熱交換器210の熱交換部32においては、送風機108の回転中心に近いほど流入する空気の量が多い。
 熱交換器210は、上記で説明した第1合流部25a3に接続している伝熱管30が熱交換器210のy方向の中央に位置している。熱交換器210は、最も冷媒流量が高い伝熱管30が配置されている部分を送風機108の回転中心から最も近い位置に配置している。そのため、熱交換器210は、熱交換性能が向上する。
 なお、実施の形態2に係る熱交換器210の第1合流部25a3に接続している第1伝熱管30aは、厳密に送風機108の回転軸に合わせて配置する必要は無い。図8に示される様に、第1合流部25a3の周辺の合流部25も、第1合流部25aに相当し、y方向の長さが比較的短い分割流路220c、220d、220e、及び220fに接続しており、比較的冷媒流量が高い。そのため、第1合流部25a3の周辺の第1合流部25aに接続されている伝熱管30が送風機108の回転中心に最も近い位置に配置されていれば、熱交換器210は、熱交換性能が向上する。これらの冷媒流量が比較的多い伝熱管30を第1伝熱管30aとする。第1伝熱管30aは、他の複数の分割流路20よりも接続されている複数の伝熱管30の数が少ない分割流路20に接続されているものである。言い換えると、第1伝熱管30aが接続されている第1分割流路220a、220c、220e、又は220g及び第2分割流路220b、220d、220f、又は220hの少なくとも一方は、接続されている伝熱管30の数が他の分割流路220a~220hの少なくとも1つよりも少ない。即ち、第1伝熱管30aが接続されている2つの分割流路220a~220hのうち少なくとも一方は、図8(a)に示されている分割流路220c、220d、220e、又は220f、つまり第3分割流路である。
 実施の形態3.
 実施の形態3に係る熱交換器310は、実施の形態1に係る熱交換器10の冷媒分配器60の構造を変更したものである。実施の形態3に係る熱交換器310においては、実施の形態1に対する変更点を中心に説明する。実施の形態3に係る熱交換器310の各部については、各図面において同一の機能を有するものは実施の形態1の説明で使用した図面と同一の符号を付して表示するものとする。
 図11は、実施の形態3に係る熱交換器310の冷媒分配器360の複数の分割流路320の配置と伝熱管30の分配流量との関係を示した説明図である。図11(a)は、冷媒分配器360をz方向視点で見たときの複数の分割流路220、複数の流路孔24、複数の合流部25、及び複数の冷媒流入口50の配置の模式図である。図11(b)は、左側に複数の流路孔24のそれぞれに流れる冷媒流量が示されており、右側に複数の伝熱管30のそれぞれに流れる冷媒流量が示されている。実施の形態3に係る熱交換器310の冷媒分配器360は、複数の分割流路320のそれぞれに設けられている流路孔24の数量を分割流路320のy方向における位置に応じて変更したものである。
 実施の形態1に係る熱交換器10の冷媒分配器60においては、複数の分割流路20a~20hは、それぞれ同じ数量の流路孔24が設けられている。しかし、実施の形態3に係る熱交換器310の冷媒分配器360は、熱交換器310のy方向の端部に位置する伝熱管30に接続されている複数の分割流路320g、320hの少なくとも一方は、その他の分割流路320a~320fよりも少ない数量の流路孔24が設けられている。図11に示されている例では、分割流路320hが他の分割流路320a~320gよりも少ない数量の流路孔24が設けられている。この流路孔24が少ない分割流路320hを第3分割流路と称する。
 図11(b)に示される様に、分割流路320hに設けられた複数の流路孔24は、曲線hのようにy方向の高さ位置の変化量に対する冷媒流量の増加量が大きい。つまり、流路孔24のy方向位置が冷媒流入口50から離れる程、流路孔24の冷媒流量の増加量が大きい。従って、曲線hは、曲線a~gよりも寝ている。
 また、複数の分割流路320a~320hには、概ね同じ流量の冷媒が流れ込む。従って、第2分割流路320hに設けられた複数の流路孔24のうち、y方向において最も冷媒流入口50から離れて位置する第2流路孔24bにおける冷媒流量は、その他の複数の分割流路320a~320gの複数の流路孔24のうちy方向において最も冷媒流入口50から離れて位置する流路孔24における冷媒流量よりも多い。つまり、第2分割流路320hが有する流路孔24は、その他の分割流路320a~320gが有する流路孔24の数量より少ないため、1つの流路孔24当たりの冷媒流量が多い。
 ここで、複数の合流部25のうちの1つである第1合流部25a4に着目したときに、第2分配流路29bの第2分割流路320hは、第4流路孔24bx4を介して第1合流部25a4に連通し、第1分配流路29aの第1分割流路320gは、第3流路孔24ax4を介して第1合流部25a4に連通している。
 第2分割流路320hの第4流路孔24bx4は、第2分割流路320hにおいて冷媒流入口50hから最もy方向に離れており、第2分割流路320hに設けられた第2流路孔24bの中で最も冷媒流量が多い。一方、第1分割流路320gの第3流路孔24ax4も、第1分割流路320gにおいて冷媒流入口50gから最もy方向に離れている第1流路孔24aであり、第1分割流路320gに設けられた第1流路孔24aの中では冷媒流量が最も多い。従って、第1合流部25a4を経て第1伝熱管30aに流入する冷媒流量は、図11(b)に示される点r4となる。つまり、熱交換器310の複数の伝熱管30の中で、y方向の端部に位置する伝熱管30の冷媒流量が最も多い。
 第2分割流路320hは、その他の分割流路320a~320gよりも設けられている流路孔24の数量が少ないため、流路孔24の1つあたりの冷媒流量が多い。また、第1分割流路320gは、その他の分割流路320a~320cよりも設けられている流路孔24の数量が少ないため、流路孔24の1つあたりの冷媒流量が分割流路320a~320cよりも多い。従って、第1分割流路320g及び第2分割流路320hに接続されている複数の伝熱管30に流入する冷媒の合計流量も多くなる。よって、図11(b)の右側に表示されている複数の伝熱管30の冷媒流量の曲線は、y方向の端部において冷媒流量が高い。
 また、実施の形態3に係る冷凍サイクル装置100の熱交換器310は、冷媒分配器360の第1分配流路29aを分割した分割流路320gと第2分割流路320hとは、x方向において隣合って並べられている。そして、x方向において隣合って並べられている第1分割流路320gの端部と第2分割流路320hに接続された冷媒流入口50g及び50hのそれぞれは、y方向、即ち第1方向において異なる位置に配置されている。従って、第3流路孔24ax4と第4流路孔24bx4とは、冷媒流入口50g及び50hからの距離が異なり、異なる冷媒流量となっている。分割流路20において異なる冷媒流量である第3流路孔24axと第4流路孔24bxとからの冷媒が第1合流部25aにおいて合流して第1伝熱管30aに流入する。そのため、熱交換器310は、分割流路20に設けられている複数の流路孔24のy方向位置に応じて流路孔24を流れる冷媒流量が異なるが、複数の伝熱管30のそれぞれに流入する冷媒流量は、偏りが抑えられる。
 また、複数の分割流路320a~320hは、y方向に行くほど設けられている流路孔24の数量を減少するように構成されている。そのため、熱交換器310において、y方向に向かうに従い、伝熱管30に流れる冷媒流量は多くなる。
 図12は、実施の形態3に係る冷凍サイクル装置100の熱交換器310周辺構造の一例の模式図である。図12は、一例として冷凍サイクル装置100が有する熱交換ユニットである室外機106の内部に配置された熱交換器310と送風機108との位置関係を示す図である。実施の形態3に係る冷凍サイクル装置100の室外機106においては、送風機108は、回転軸を垂直方向に向けているトップフローファンである。
 図13は、実施の形態3に係る冷凍サイクル装置100の熱交換器310の周辺に配置された送風機108の風量分布図である。送風機108は、回転中心Lを熱交換器310の上方に位置させている。送風機108から熱交換器310に送り込まれる空気は、熱交換器310の高さ方向において均等ではなく、送風機108の回転中心からの距離に応じて風量に差がある。実施の形態3に係る熱交換器310は、送風機108側において最も流入する風量が多く、回転中心から離れる程風量が少なくなる。従って、熱交換器310の熱交換部32においては、送風機108の回転中心に近いほど流入する空気の量が多い。即ち、熱交換器310は、y方向の端部に向かうに従い流入する空気の量が増加する。
 熱交換器310は、上記で説明した第1合流部25a4に接続している第1伝熱管30aが熱交換器310のy方向端部に位置している。熱交換器310は、最も冷媒流量が高い第1伝熱管30aが配置されている部分を送風機108の回転中心から最も近い位置に配置している。そのため、熱交換器310は、熱交換性能が向上する。
 実施の形態4.
 実施の形態4に係る熱交換器410は、実施の形態1に係る熱交換器10の冷媒分配器60の流路孔24を変更したものである。実施の形態4に係る熱交換器410においては、実施の形態1に対する変更点を中心に説明する。実施の形態4に係る熱交換器410の各部については、各図面において同一の機能を有するものは実施の形態1の説明で使用した図面と同一の符号を付して表示するものとする。
 図14は、実施の形態4に係る熱交換器410の冷媒分配器460の複数の分割流路420の配置と伝熱管30の分配流量との関係を示した説明図である。図14(a)は、冷媒分配器460をz方向視点で見たときの複数の分割流路20、複数の流路孔24、複数の合流部25、及び複数の冷媒流入口50の配置の模式図である。図14(b)は、左側に複数の流路孔24のそれぞれに流れる冷媒流量が示されており、右側に複数の伝熱管30のそれぞれに流れる冷媒流量が示されている。実施の形態4に係る熱交換器410の冷媒分配器460は、複数の分割流路20のそれぞれに設けられている流路孔24の断面積を分割流路20のy方向における位置に応じて変更したものである。
 実施の形態1に係る熱交換器10の冷媒分配器60においては、複数の分割流路20a~20hは、それぞれ同じ数量の流路孔24が設けられている。これに対し、実施の形態4に係る熱交換器410の冷媒分配器460は、熱交換器410のy方向の中央部に位置する複数の伝熱管30に接続する複数の分割流路20c、20d、20e、及び20fは、その他の複数の分割流路20a、20b、20g、及び20hよりも流路孔24の流路の断面積が大きい。
 図14(b)に示される様に、分割流路20c、20d、20e、及び20fに設けられた複数の流路孔24は、曲線c、d、e、及びfに示されるようにy方向の高さ位置の変化量に対する冷媒流量の増加量が曲線a、b、g、及びhよりも大きい。つまり、分割流路20c、20d、20e、及び20fは、流路孔24のy方向位置が冷媒流入口50から離れる程、流路孔24の冷媒流量の増加量が大きい。従って、図14(b)は、曲線c、d、e、及びfは、曲線a、b、g、及びhよりも寝ている。
 また、複数の分割流路20a~20hには、同じ数の流路孔24が設けられているが、分割流路20a、20b、20g、及び20hに設けられている流路孔24は、断面積が分割流路20c、20d、20e、及び20fの流路孔24よりも小さいため、分割流路20a、20b、20g、及び20hは流入する冷媒流量が分割流路20c~20fのそれぞれよりも小さい。従って、複数の分割流路20c、20d、20e、及び20fに設けられた複数の流路孔24のうち、y方向において最も冷媒流入口50から離れて位置する流路孔24における冷媒流量は、その他の分割流路20a、20b、20g、及び20hの流路孔24のうちy方向において最も冷媒流入口50から離れて位置する流路孔24における冷媒流量よりも多い。つまり、分割流路20c、20d、20e、及び20fが有する流路孔24の断面積は、その他の分割流路20a、20b、20g、及び20hが有する流路孔24の断面積より大きいため、1つの流路孔24当たりの冷媒流量が多い。
 ここで、複数の合流部25のうちの1つである第1合流部25a5に着目したときに、第2分配流路29bの第2分割流路20dは、第4流路孔24bx5を介して第1合流部25a5に連通し、第1分配流路29aの第1分割流路20eは、第3流路孔24ax5を介して第1合流部25a5に連通している。
 第2分割流路20dの第4流路孔24bx5は、第2分割流路20dにおいて冷媒流入口50dから最もy方向に離れており、第2分割流路20dに設けられた流路孔24bの中で最も冷媒流量が多い。一方、第1分割流路20eの第3流路孔24ax5は、第1分割流路20eにおいて冷媒流入口50eからy方向に4番目の位置にある第1流路孔24aであり、第1分割流路20eに設けられた第1流路孔24aの中では冷媒流量が中程度である。従って、第1合流部25aを経て第1伝熱管30aに流入する冷媒流量は、図14(b)に示される点r5となる。
 分割流路20c、20d、20e、及び20fは、それぞれ設けられている複数の流路孔24のそれぞれの断面積が分割流路20a、20b、20g、及び20hより多いため、複数の流路孔24の1つあたりの冷媒流量が比較的多く、従って、接続されている複数の伝熱管30に流入する冷媒の合計流量も多くなる。そして、分割流路20a、20b、20g、及び20hは、設けられている複数の流路孔24の断面積が分割流路20c、20d、20e、及び20fより少ないため、流路孔24の1つあたりの冷媒流量が比較的少ない。よって、図14(b)の右側に表示されている複数の伝熱管30の冷媒流量の曲線は、y方向の中央部において冷媒流量が高い部分が多い。
 図9に示される様に、実施の形態4に係る冷凍サイクル装置100の室外機106においては、送風機108は、回転軸を水平方向に向けているサイドフローファンである。そして、送風機108は、回転中心Lを熱交換器410の高さ方向の中央に位置させている。図10に示される様に、送風機108から熱交換器410に送り込まれる空気は、熱交換器410の高さ方向において均等ではなく、送風機108の回転中心からの距離に応じて風量に差がある。熱交換器410は、上記で説明した第1合流部25a5に接続している第1伝熱管30aが熱交換器210のy方向の中央に位置している。熱交換器410は、最も冷媒流量が高い伝熱管30が配置されている部分を送風機108の回転中心から最も近い位置に配置している。そのため、熱交換器410は、熱交換性能が向上する。
 なお、実施の形態2に係る熱交換器210の第1合流部25a5に接続している第1伝熱管30aは、厳密に送風機108の回転軸に合わせて配置する必要は無い。図14に示される様に、第1合流部25a5の周辺の合流部25も、第1合流部25aに相当し、断面積の比較的大きい流路孔24を有する分割流路20c、20d、20e、及び20fに接続しており、比較的冷媒流量が高い。そのため、第1合流部25a5の周辺の第1合流部25aに接続されている第1伝熱管30aが送風機108の回転中心に最も近い位置に配置されていれば、熱交換器410は、熱交換性能が向上する。第1伝熱管30aは、他の複数の分割流路20よりも断面積が大きい流路孔24が設けられている分割流路20に接続されているものである。言い換えると、第1伝熱管30aが接続されている第1分割流路20a、20c、20e、又は20g及び第2分割流路20b、20d、20f、又は20hの少なくとも一方は、設けられている流路孔24の断面積が他の分割流路20a~20hの少なくとも1つよりも大きい。即ち、第1伝熱管30aが接続されている2つの分割流路20a~20hのうち少なくとも一方は、図14(a)に示されている分割流路20c、20d、20e、又は20fである。
 本発明は、上記において説明した構成のみに限定されるものではない。例えば、実施の形態1~4に係る冷媒分配器60、260、360、460は、分割流路20、220、320に設けられている複数の流路孔24の数を変更しても良い。また、複数の分割流路20、220、320の数量も変更しても良い。更に、本発明は各実施の形態を組み合わせて構成されていても良い。例えば、実施の形態2及び3で分割流路220、320に設けられている流路孔24の数量を分割流路220、320のy方向位置に応じて変更したが、更に実施の形態4のように流路孔24の断面積を分割流路220、320のy方向位置に応じて変更しても良い。上記の各実施の形態を適宜変更又は組み合わせることにより、熱交換器10、210、310、410は、複数の伝熱管30のそれぞれの冷媒流量を適宜調整することができ、流入する空気の風速分布に応じた構成にすることができる。
 10 熱交換器、20 分割流路、20a (第1)分割流路、20b (第2)分割流路、20c (第1)分割流路、20d (第2)分割流路、20e (第1)分割流路、20f (第2)分割流路、20g (第1)分割流路、20h (第2)分割流路、21 第1部材、21a 溝、21c 平板、21d 半円筒部材、21e 板部材、21f 仕切部材、22 第2部材、22a 平板、23 第3部材、23a 平板、23b 溝、24 流路孔、24a 第1流路孔、24ax 第3流路孔、24ax1 第3流路孔、24ax2 第3流路孔、24ax3 第3流路孔、24ax4 第3流路孔、24ax5 第3流路孔、24b 第2流路孔、24bx 第4流路孔、24bx1 第4流路孔、24bx2 第4流路孔、24bx3 第4流路孔、24bx4 第4流路孔、24bx5 第4流路孔、24bx6 第4流路孔、25 合流部、25a 第1合流部、25a1 第1合流部、25a2 第1合流部、25a3 第1合流部、25a4 第1合流部、25a5 第1合流部、25a6 第1合流部、26 流路部、29 分配流路、29a 第1分配流路、29b 第2分配流路、30 伝熱管、30a 第1伝熱管、30a 第1伝熱管、32 熱交換部、33 端面、40 伝熱フィン、50 冷媒流入口、50a (第1)冷媒流入口、50b (第2)冷媒流入口、50c (第1)冷媒流入口、50d (第2)冷媒流入口、50e (第1)冷媒流入口、50f (第2)冷媒流入口、50g (第1)冷媒流入口、50h (第2)冷媒流入口、60 冷媒分配器、100 冷凍サイクル装置、101 圧縮機、102 流路切替装置、103 室内熱交換器、104 減圧装置、105 室外熱交換器、105a 室外熱交換器、106 室外機、107 室内機、108 (室外)送風機、109 (室内)送風機、110 冷媒回路、111 延長配管、112 延長配管、200 冷凍サイクル装置、210 (室外)熱交換器、220 分割流路、220a (第1)分割流路、220b (第2)分割流路、220c (第1)分割流路、220d (第2)分割流路、220e (第1)分割流路、220f (第2)分割流路、220g (第1)分割流路、220h (第2)分割流路、260 冷媒分配器、300 冷凍サイクル装置、310 (室外)熱交換器、320 分割流路、320a 分割流路、320b 分割流路、320c 分割流路、320d 分割流路、320e 分割流路、320f 分割流路、320g (第1)分割流路、320h (第2)分割流路、345 二分岐管、360 冷媒分配器、410 熱交換器、420 分割流路、460 冷媒分配器、1010 熱交換器、1025 分流部、1026 空間、1029 分配流路、1050 冷媒流入口、1060 冷媒分配器、L 回転中心、P 平均流量。

Claims (17)

  1.  第1冷媒流入口と、
     第2冷媒流入口と、
     第1方向に互いに間隔を空けて配置された複数の合流部と、
     前記第1方向に延び前記第1冷媒流入口から流入した冷媒を前記複数の合流部に分配する第1分割流路と、
     前記第1方向に延び前記第2冷媒流入口から流入した冷媒を前記複数の合流部に分配する第2分割流路と、を備え、
     前記第1分割流路は、
     前記第1方向に延び内部に冷媒が流れる第1流路部と、
     前記複数の合流部に対応する位置に形成され、前記第1流路部と前記複数の合流部を連通させる複数の第1流路孔と、を有し、
     前記第2分割流路は、
     前記第1方向に延び内部に冷媒が流れる第2流路部と、
     前記複数の合流部に対応する位置に形成され、前記第2流路部と前記複数の合流部を連通させる複数の第2流路孔と、を有し、
     前記複数の第1流路孔は、
     前記複数の合流部のうちの1つである第1合流部に接続する第3流路孔を含み、
     前記複数の第2流路孔は、
     前記第1合流部に接続する第4流路孔を含み、
     前記第1冷媒流入口から前記第3流路孔までの経路長さは、
     前記第2冷媒流入口から前記第4流路孔までの経路長さと異なる、冷媒分配器。
  2.  前記第1分割流路の端部は、
     前記第1方向において、前記第2分割流路の端部と異なる位置に配置されている、請求項1に記載の冷媒分配器。
  3.  前記第1冷媒流入口は、
     前記第1方向において、前記第2冷媒流入口と異なる位置に配置されている、請求項1に記載の冷媒分配器。
  4.  前記第1分割流路の端部は、
     前記第1方向において、前記第2分割流路の端部と異なる位置に配置され、
     前記第1冷媒流入口は、
     前記第1方向において、前記第2冷媒流入口の端部と異なる位置に配置されている、請求項1に記載の冷媒分配器。
  5.  前記第1分割流路は、
     前記第1方向に複数設けられた複数の前記第1分割流路を含み、
     複数の前記第1分割流路のうちの少なくとも1つである第3分割流路は、
     接続されている前記複数の合流部の数が前記第1分割流路よりも少ない、請求項1~4の何れか1項に記載の冷媒分配器。
  6.  前記第1分割流路は、
     前記第1方向に複数設けられた複数の前記第1分割流路を含み、
     複数の前記第1分割流路のうちの少なくとも1つである第3分割流路の前記複数の第1流路孔は、
     前記第3分割流路を除く前記第1分割流路が備える前記複数の第1流路孔よりも断面積が大きい、請求項1~5の何れか1項に記載の冷媒分配器。
  7.  前記第3分割流路は、
     前記第1方向に並ぶ複数の前記第1分割流路の中央に配置されている、請求項5又は6に記載の冷媒分配器。
  8.  前記第3分割流路は、
     前記第1方向に並ぶ複数の前記第1分割流路の端に配置されている、請求項5又は6に記載の冷媒分配器。
  9.  前記第1分割流路と前記第2分割流路を備える第1部材と、
     前記第1部材の一方の面側に位置し、前記複数の第1流路孔及び前記複数の第2流路孔を備える第2部材と、
     前記第2部材に対し前記第1部材とは反対側に位置し前記複数の合流部を備える第3部材と、を備える、請求項1~8の何れか1項に記載の冷媒分配器。
  10.  前記第1分割流路は、
     前記第1方向に延びて形成される第1分配流路を複数の空間に仕切ることにより形成され、
     前記第2分割流路は、
     前記第1方向に延びて形成される第2分配流路を複数の空間に仕切ることにより形成され、
     前記第1分配流路と前記第2分配流路とは、
     前記第1方向に交差する第2方向に並列して配置されている、請求項1~9の何れか1項に記載の冷媒分配器。
  11.  請求項1~10の何れか1項に記載の冷媒分配器と、
     前記複数の合流部に接続された複数の伝熱管と、を備える、熱交換器。
  12.  請求項11に記載の熱交換器を備える、熱交換器ユニット。
  13.  請求項7を引用する請求項11に記載の熱交換器と、
     前記冷媒と熱交換を行う流体を前記熱交換器に送り込む送風機と、を備える、熱交換器ユニット。
  14.  前記送風機は、
     サイドフローファンである、請求項13に記載の熱交換器ユニット。
  15.  請求項8を引用する請求項11に記載の熱交換器と、
     前記冷媒と熱交換を行う流体を前記熱交換器に送り込む送風機と、を備える、熱交換器ユニット。
  16.  前記送風機は、
     トップフローファンである、請求項15に記載の熱交換器ユニット。
  17.  請求項12~16の何れか1項に記載の熱交換器ユニットを備える、冷凍サイクル装置。
PCT/JP2019/026994 2019-07-08 2019-07-08 冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置 WO2021005682A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/026994 WO2021005682A1 (ja) 2019-07-08 2019-07-08 冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置
JP2021530375A JP7195434B2 (ja) 2019-07-08 2019-07-08 冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/026994 WO2021005682A1 (ja) 2019-07-08 2019-07-08 冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2021005682A1 true WO2021005682A1 (ja) 2021-01-14

Family

ID=74113987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026994 WO2021005682A1 (ja) 2019-07-08 2019-07-08 冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP7195434B2 (ja)
WO (1) WO2021005682A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118706A (ja) * 1991-03-01 1993-05-14 Modine Mfg Co 蒸発器
JPH09264693A (ja) * 1996-03-29 1997-10-07 Sanden Corp 分配装置を備えた熱交換器
JP2006064201A (ja) * 2004-08-24 2006-03-09 Calsonic Kansei Corp 熱交換器のヘッダタンク及び熱交換器のヘッダタンクと冷媒流通配管との接続構造
JP2014052135A (ja) * 2012-09-07 2014-03-20 Daikin Ind Ltd 冷媒熱交換器
JP2016200312A (ja) * 2015-04-08 2016-12-01 株式会社デンソー 熱交換器、および熱交換器の製造方法
JP2017044428A (ja) * 2015-08-27 2017-03-02 株式会社東芝 熱交換器、分流部品、および熱交換装置
WO2017150126A1 (ja) * 2016-02-29 2017-09-08 三菱重工業株式会社 熱交換器及び空気調和機
JP2019052784A (ja) * 2017-09-13 2019-04-04 三菱電機株式会社 熱交換器及び空気調和機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8082551B2 (en) 2006-10-30 2011-12-20 Hewlett-Packard Development Company, L.P. System and method for sharing a trusted platform module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118706A (ja) * 1991-03-01 1993-05-14 Modine Mfg Co 蒸発器
JPH09264693A (ja) * 1996-03-29 1997-10-07 Sanden Corp 分配装置を備えた熱交換器
JP2006064201A (ja) * 2004-08-24 2006-03-09 Calsonic Kansei Corp 熱交換器のヘッダタンク及び熱交換器のヘッダタンクと冷媒流通配管との接続構造
JP2014052135A (ja) * 2012-09-07 2014-03-20 Daikin Ind Ltd 冷媒熱交換器
JP2016200312A (ja) * 2015-04-08 2016-12-01 株式会社デンソー 熱交換器、および熱交換器の製造方法
JP2017044428A (ja) * 2015-08-27 2017-03-02 株式会社東芝 熱交換器、分流部品、および熱交換装置
WO2017150126A1 (ja) * 2016-02-29 2017-09-08 三菱重工業株式会社 熱交換器及び空気調和機
JP2019052784A (ja) * 2017-09-13 2019-04-04 三菱電機株式会社 熱交換器及び空気調和機

Also Published As

Publication number Publication date
JPWO2021005682A1 (ja) 2021-01-14
JP7195434B2 (ja) 2022-12-23

Similar Documents

Publication Publication Date Title
JP6352401B2 (ja) 空気調和装置
EP2853843B1 (en) A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device
JP6104893B2 (ja) 熱交換器、冷凍サイクル装置、空気調和機及び熱交換方法
US10168083B2 (en) Refrigeration system and heat exchanger thereof
US10041710B2 (en) Heat exchanger and air conditioner
CN105209846A (zh) 热交换器
JP7102686B2 (ja) 熱交換器
JPWO2020039513A1 (ja) 熱交換器及び空気調和装置
EP1553370B1 (en) Full plate alternating layered refrigerant flow evaporator
JP6793831B2 (ja) 熱交換器、及び冷凍サイクル装置
JP7278430B2 (ja) 熱交換器及び冷凍サイクル装置
JP7086279B2 (ja) 冷媒分配器、熱交換器及び冷凍サイクル装置
JP7113974B2 (ja) 空気調和機
WO2021005682A1 (ja) 冷媒分配器、熱交換器、熱交換器ユニット、及び冷凍サイクル装置
CN203785346U (zh) 膨胀阀及使用该膨胀阀的制冷循环装置
CN111902683B (zh) 热交换器及制冷循环装置
JP7146139B1 (ja) 熱交換器及び空気調和装置
WO2023119468A1 (ja) 熱交換器及び空気調和装置
WO2024023891A1 (ja) 熱交換器
JP7142806B1 (ja) 分配器、熱交換器およびヒートポンプ装置
WO2021214849A1 (ja) 空気調和機、冷凍機及び分配器
JP6817996B2 (ja) 熱交換器用のヘッダ、熱交換器、室外機及び空気調和機
WO2023218621A1 (ja) 熱交換器及び冷凍サイクル装置
WO2023199466A1 (ja) 熱交換器及びこれを有する空気調和装置
KR102088826B1 (ko) 열교환기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530375

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936865

Country of ref document: EP

Kind code of ref document: A1