WO2017135649A1 - 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기 - Google Patents

렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기 Download PDF

Info

Publication number
WO2017135649A1
WO2017135649A1 PCT/KR2017/001014 KR2017001014W WO2017135649A1 WO 2017135649 A1 WO2017135649 A1 WO 2017135649A1 KR 2017001014 W KR2017001014 W KR 2017001014W WO 2017135649 A1 WO2017135649 A1 WO 2017135649A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
coil
sensing coil
disposed
magnet
Prior art date
Application number
PCT/KR2017/001014
Other languages
English (en)
French (fr)
Inventor
신승택
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160013946A external-priority patent/KR102634908B1/ko
Priority claimed from KR1020160013947A external-priority patent/KR102634909B1/ko
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Priority to CN202110187910.5A priority Critical patent/CN112994397B/zh
Priority to US16/072,783 priority patent/US10928607B2/en
Priority to CN201780018014.8A priority patent/CN108781033B/zh
Publication of WO2017135649A1 publication Critical patent/WO2017135649A1/ko
Priority to US17/153,339 priority patent/US11656427B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/225Detecting coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • Embodiments relate to a lens driving device, a camera module and an optical device including the same.
  • the embodiment can prevent the deterioration of the bonding reliability of the sensing coil, facilitate the soldering operation for bonding the sensing coil, implement a sensing coil having a predetermined resistance with a small winding, and by interacting with a magnet
  • a lens driving device capable of improving electromagnetic force
  • a camera module and an optical device including the same.
  • the lens driving apparatus includes a housing; A bobbin disposed inside the housing and configured to mount a lens; A first coil disposed in the bobbin; A magnet disposed in the housing; An upper elastic member and a lower elastic member coupled to the bobbin and the housing; And a sensing coil spaced apart from the magnet, the sensing coil generating an induced voltage by interacting with the first coil, wherein the sensing coil is disposed at the side of the housing to rotate about an optical axis.
  • the housing may include a plurality of sides, and the sensing coil may be disposed on outer surfaces of the sides of the housing.
  • a seating groove may be formed on the outer side surfaces of the sides of the housing, and the sensing coil may be wound around the seating groove.
  • the housing may include a first stepped portion protruding from an outer surface of any one of the side portions to guide the line of sight of the sensing coil; And a second step portion protruding from an outer surface of any one of the side parts to guide the vertical line of the sensing coil.
  • the sensing coil may be disposed below the upper elastic member and disposed on the magnet.
  • the sensing coil may not overlap with the magnet in a direction parallel to the optical axis.
  • the sensing coil may not overlap with the magnet in a direction perpendicular to the optical axis.
  • the sensing coil may not overlap with the first coil in a direction perpendicular to the optical axis.
  • a driving signal in the form of an AC signal or a pulse signal may be applied to the first coil.
  • the upper elastic member may be divided into two or more, the first coil may be electrically connected to two selected from the divided upper elastic members, and the sensing coil may be configured to exclude the two upper elastic members. It may be electrically connected with two selected from the upper elastic members.
  • the upper elastic member may include first and second upper elastic members separated from each other, each of the first and second upper elastic members may be an inner frame coupled to the bobbin, an outer frame coupled to the housing, And a frame connecting portion connecting the inner frame and the outer frame, wherein the line of sight of the sensing coil is directly bonded to the outer frame of the first upper elastic member, and the vertical line portion of the sensing coil is the second upper elastic. It can be bonded directly to the outer frame of the member.
  • the lens driving device may include a circuit board positioned below the lower elastic member;
  • the apparatus may further include support members for electrically connecting the divided upper elastic members and the circuit board, and the sensing coil may be disposed between the support members and an outer side of the housing.
  • a lens driving device in another embodiment, includes a housing; A bobbin disposed inside the housing and configured to mount a lens; A first coil disposed in the bobbin; An upper elastic member coupled to the bobbin and the housing; A support member whose one end is connected to the upper elastic member; And a sensing coil for generating an induced voltage by interacting with the first coil, wherein the sensing coil is spaced apart from the magnet and is disposed at a side of the housing such that at least a portion thereof is located outside the support member.
  • the outer side of the support member is opposite to the center of the housing relative to the support member.
  • the housing may include first side parts of the magnet; And a second side on which the support member is disposed and connecting two adjacent first sides of the first sides to each other, wherein the sensing coil is disposed on an outer surface of the first and second sides. Can be.
  • the sensing coil may include first portions disposed on outer surfaces of the first sides; And a second portion disposed on the outer surfaces of the second sides, each of the second portions may be curved.
  • Each of the second portions of the sensing coil may be located outside the support member.
  • the separation distance from the center of the housing to the support member may be smaller than the separation distance from the center of the housing to the second portion of the sensing coil.
  • the housing may include a seating groove including a first groove provided in the first side parts, and a second groove provided in the second side parts, and the sensing coil may be disposed in the seating groove. And a first distance may be greater than a second distance, wherein the first distance is a distance between the virtual straight line and the second groove passing through the center of the housing and parallel to the optical axis, and the second distance is the virtual straight line and the It may be a separation distance between the apertures.
  • the camera module according to the embodiment includes a lens barrel; A lens driving device according to the embodiment for moving the lens barrel; And an image sensor for converting an image incident through the lens driving device into an electrical signal.
  • An optical device includes a display module including a plurality of pixels whose color is changed by an electrical signal; A camera module for converting an image incident through a lens into an electrical signal; And a controller for controlling the operation of the display module and the camera module.
  • the embodiment can prevent the deterioration of the bonding reliability of the sensing coil, facilitate the soldering operation for bonding the sensing coil, implement a sensing coil having a predetermined resistance with a small winding, and by interacting with a magnet Improve electromagnetic force.
  • FIG. 1 is an exploded perspective view of the lens driving apparatus shown in FIG. 1.
  • FIG. 2 is a perspective view of the lens driving apparatus except for the cover member of FIG. 1.
  • FIG. 3 shows a perspective view of the bobbin of FIG. 1.
  • FIG. 4 shows a first exploded perspective view of the housing and magnet shown in FIG. 1.
  • FIG. 5 shows a second exploded perspective view of the housing and magnet shown in FIG. 1.
  • FIG. 6 is a perspective view illustrating a coupling of an upper elastic member, a lower elastic member, a base, a support member, and a circuit board shown in FIG. 1.
  • FIG. 7 is an exploded perspective view of the base, the second coil, and the circuit board shown in FIG. 1.
  • FIG. 8 is a cross-sectional view taken along line II ′ of the lens driving apparatus shown in FIG. 2.
  • FIG. 9 is a sectional view taken along line II-II 'of the lens driving device shown in FIG.
  • FIG. 10 is an enlarged view of a sensing coil guide unit according to an exemplary embodiment.
  • FIG. 11 is an exploded perspective view of a lens driving apparatus according to another exemplary embodiment.
  • FIG. 12 is a perspective view of the lens driving apparatus except for the cover member of FIG. 11.
  • FIG. 13 shows a perspective view of the bobbin shown in FIG. 12.
  • FIG. 14 is a first exploded perspective view of the housing and the magnet shown in FIG. 11.
  • FIG. 15 shows a second exploded perspective view of the housing and magnet shown in FIG. 11;
  • FIG. 16 is a perspective view illustrating a coupling of the upper elastic member, the lower elastic member, the base, the supporting member, and the circuit board shown in FIG. 11.
  • FIG. 17 is an exploded perspective view of the base, the second coil, and the circuit board shown in FIG. 11.
  • FIG. 18 is a side perspective view of the lens driving apparatus shown in FIG. 12.
  • 19A is a sectional view taken along the line II ′ of the lens driving device shown in FIG. 12.
  • 19B is a sectional view taken along the line II-II 'of the lens driving device shown in FIG.
  • 20 is a partial cross-sectional view taken along line II-II ′ for explaining a relative position between the sensing coil and the support member according to the embodiment.
  • FIG. 21 is a partial cross-sectional view taken along line II ′ of the present invention to explain a relative position between a sensing coil and a support member.
  • FIG. 22 is a top view illustrating an arrangement of the sensing coil illustrated in FIG. 20A.
  • FIG. 23 is a top view illustrating an arrangement of the sensing coil illustrated in FIG. 20B.
  • 24A is an exploded perspective view of a camera module according to an embodiment.
  • 24B is a block diagram according to an exemplary embodiment of the image sensor illustrated in FIG. 24A.
  • 25 is a perspective view of a portable terminal according to an embodiment.
  • FIG. 26 shows a configuration diagram of the portable terminal shown in FIG. 25.
  • each layer (region), region, pattern, or structure is “on” or “under” the substrate, each layer (film), region, pad, or pattern.
  • “up” and “under” include both “directly” or “indirectly” formed through another layer. do.
  • the criteria for up / down or down / down each layer will be described with reference to the drawings.
  • Like reference numerals denote like elements throughout the description of the drawings.
  • the lens driving apparatus will be described using the Cartesian coordinate system (x, y, z), but may be described using other coordinate systems, but the embodiment is not limited thereto.
  • the x-axis and the y-axis are directions perpendicular to the z-axis, which is the optical axis direction
  • the z-axis direction which is the optical axis direction
  • the x-axis direction is called a 'second direction'
  • the axial direction may be referred to as a 'third direction'.
  • the image stabilization device which is applied to a small camera module of a mobile device such as a smartphone or a tablet PC, prevents the outline of a captured image from being clearly formed due to vibration caused by user's hand shake when shooting a still image. It may mean a device configured to be.
  • an "auto focusing device” is an apparatus which automatically forms the focus of an image of a subject on an image sensor surface.
  • the image stabilization device and the auto focusing device may be configured in various ways.
  • the lens driving device according to the embodiment may move an optical module including at least one lens in a first direction parallel to an optical axis,
  • the image stabilizer and / or the auto focusing operation may be performed by moving with respect to the surfaces formed by the second and third directions perpendicular to the second direction.
  • FIG. 1 is an exploded perspective view of the lens driving apparatus 100 according to the embodiment
  • FIG. 2 is a perspective view of the lens driving apparatus except for the cover member 300 of FIG. 1
  • FIG. 3 is a bobbin 110 of FIG. 1. ) Is a perspective view.
  • the lens driving apparatus 100 includes a bobbin 110, a first coil 120, a magnet 130, a housing 140, an upper elastic member 150, and And a lower elastic member 160 and a sensing coil 170.
  • the lens driving apparatus 100 may further include a support member 220, a second coil 230, an optical image stabilization (OIS) position sensor 240, and a circuit board 250.
  • the lens driving apparatus 100 may further include a base 210 and a cover member 300.
  • the cover member 300 includes a bobbin 110, a first coil 120, a magnet 130, a housing 140, an upper elastic member 150, and a lower elasticity in an accommodation space formed together with the base 210.
  • the member 160, the sensing coil 170, the support member 220, the second coil 230, the OIS position sensor 240, and the circuit board 250 are accommodated.
  • the cover member 300 may be in the form of a box having an open bottom and an upper end and sidewalls, and a lower portion of the cover member 300 may be coupled to an upper portion of the base 210.
  • the shape of the upper end of the cover member 300 may be polygonal, for example, rectangular or octagonal.
  • the cover member 300 may have a hollow at an upper end thereof to expose a lens (not shown) coupled to the bobbin 110 to external light.
  • a hollow window of the cover member 300 may further include a window made of a light transmissive material.
  • the material of the cover member 300 may be a nonmagnetic material such as SUS to prevent sticking with the magnet 130, but may be formed of a magnetic material to function as a yoke.
  • the bobbin 110 is located inside the housing 140, and has a first direction (eg, Z-axis direction or optical axis direction) parallel to the optical axis or the optical axis by electromagnetic interaction between the coil 120 and the magnet 130. Can be moved to
  • the bobbin 110 may include a lens barrel (not shown) having at least one lens installed therein, and the lens barrel may be coupled to the inside of the bobbin 110 in various ways. .
  • the bobbin 110 may have a hollow for mounting a lens or lens barrel.
  • the hollow shape of the bobbin 110 may coincide with the shape of the lens or lens barrel to be mounted, and may be, for example, circular, elliptical, or polygonal, but is not limited thereto.
  • the outer circumferential surface 110b of the bobbin 110 may include first side surfaces 110b-1 and first sides 141 corresponding to or facing the first sides 141 of the housing 140 in which the magnet 130 is disposed. It may include a second side (110b-2) disposed between the (110b-1) and connecting the first side (110b-1).
  • the bobbin 110 may include first and second protrusions 111 and 112 on the outer surface 110b.
  • the first protrusion 111 of the bobbin 110 may include a guide part 111a and a first stopper 111b.
  • the guide portion 111a of the bobbin 110 may serve to guide the installation position of the frame connecting portion of the upper elastic member 150.
  • the second protrusion 112 of the bobbin 110 may protrude from the outer circumferential surface 110b of the bobbin 110 in second and third directions perpendicular to the first direction.
  • a coupling protrusion 113a may be provided on the upper surface 112a of the second protrusion 112 of the bobbin 110 to engage with the inner frame 151 of the upper elastic member 150.
  • the bobbin 110 may be provided with at least one coupling protrusion disposed on the lower surface and coupled and fixed to the inner frame 161 of the lower elastic member 160.
  • the bobbin 110 may include at least one groove (not shown) in which the first coil 120 is disposed or installed on an outer circumferential surface thereof.
  • the first coil 120 may be disposed or seated in the groove, or the first coil 120 may be directly wound in the groove.
  • the shape and number of the grooves may correspond to the shape and number of coils disposed on the outer circumferential surface of the bobbin 110.
  • the bobbin 110 may not include a seating groove for the coil, and the first coil 120 may be directly wound and fixed on the outer circumferential surface of the bobbin 110.
  • the first coil 120 may be disposed on an outer circumferential surface of the bobbin 110, and may be a driving coil for electromagnetic interaction with the magnet 130 disposed on the housing 140.
  • a driving signal eg, a driving current
  • a driving current may be applied to the first coil 120.
  • the AF may move in the first direction by the electromagnetic force caused by the electromagnetic interaction between the first coil 120 and the magnet 130.
  • By controlling the electromagnetic force by controlling the driving signal applied to the first coil 120, it is possible to control the movement in the first direction of the AF movable portion, thereby performing an auto focusing function.
  • the AF movable part may include bobbins 110 elastically supported by the upper and lower elastic members 150 and 160, and components mounted on the bobbin 110 and moving together with the bobbin 110.
  • the AF movable unit may include a bobbin 110, a first coil 120, and a lens (not shown) mounted on the bobbin 110.
  • the first coil 120 may be wound to surround the outer circumferential surface of the bobbin 110 to rotate clockwise or counterclockwise about the optical axis.
  • the first coil 120 may be implemented as a coil ring wound in a clockwise or counterclockwise direction about an axis perpendicular to the optical axis, and the number of coil rings may be the same as the number of magnets 130. It may be, but is not limited thereto.
  • the first coil 120 may be electrically connected to at least one of the upper elastic member 150 and the lower elastic member 160 to receive the driving signal.
  • the housing 140 supports the magnet 130 and the sensing coil 170, and moves the bobbin 110 in the first direction by electromotive force caused by electromagnetic interaction between the first coil 120 and the magnet 130. It can accommodate the bobbin 110 to the inside.
  • FIG. 4 illustrates a first exploded perspective view of the housing 140 and the magnet 130 illustrated in FIG. 1
  • FIG. 5 illustrates a second exploded perspective view of the housing 140 and the magnet 130 illustrated in FIG. 1.
  • the housing 140 may have a hollow pillar shape as a whole.
  • the housing 140 may have a polygonal (eg, rectangular, or octagonal) or circular hollow.
  • the housing 140 may include a plurality of sides 141 and 142.
  • the housing 140 may include four first sides 141 and four second sides 142, the width of each of the first sides 141 being the second sides ( 142) may be greater than each width.
  • the first side parts 141 of the housing 140 may correspond to a portion where the magnet 130 is installed.
  • Each of the second side portions 142 of the housing 140 may be positioned between two adjacent first side portions, and may correspond to a portion where the supporting member 220 is disposed.
  • first sides 141 may be portions corresponding to sides of the housing 140
  • second sides 142 may be portions corresponding to corners of the housing 140.
  • the first side portions 141 of the housing 140 interconnect the second side portions 142 of the housing 140 and may include a plane having a predetermined depth. Each of the first side portions 141 of the housing 140 may have an area equal to or larger than that of the magnet 130 corresponding thereto.
  • the housing 140 may include a magnet seating portion 141a for accommodating the magnet 130.
  • the magnet seating part 141a may be provided at an inner lower end of at least one of the first side parts 141 of the housing 140.
  • the magnet seating part 141a may be provided at an inner lower end of each of the four first side parts, and each of the magnets 130 may be inserted into and fixed to a corresponding one of the magnet seating parts 141a. .
  • the magnet seating portion 141a of the housing 140 may be formed as a recess corresponding to the size of the magnet 130.
  • An opening may be formed in the bottom surface of the magnet seating portion 141a of the housing 140 facing the second coil 240, and the bottom surface of the magnet 130 fixed to the magnet seating portion 141a may have a second surface. It may face the coil 230.
  • the first side portion 141 of the housing 140 may be disposed in parallel with the side surface of the cover member 300. In addition, an area of the first side portion 141 of the housing 140 may be larger than an area of the second side portion 142.
  • the second side portion 142 of the housing 140 may include through holes 147 (147a and 147b) forming a path through which the support member 220 passes.
  • the housing 140 may include a through hole 147 penetrating the upper portion of the second side portion 142.
  • the number of through holes 147 may be equal to the number of support members.
  • the stopper 144 may be provided at the upper or upper surface of the housing 140.
  • the housing 140 may include at least one upper support protrusion 143 (143-1 to 143-4) coupled to the outer frame 152 of the upper elastic member 150 on the upper or upper surface thereof.
  • the upper support protrusion 143 of the housing 140 may be formed on an upper surface of at least one of the first side portion 141 or the second side portion 142 of the housing 140.
  • the upper support protrusion 143 of the housing 140 may be disposed adjacent to each corner of the upper surface of the housing 140.
  • the housing 140 may include a lower support protrusion 145 coupled to and fixed to the outer frame 162 of the lower elastic member 160 on the lower surface.
  • the housing 140 has a recess formed in the second side 142 in order to secure a space for filling the gel-type silicon, which may act as a damping function. 142a). That is, damping silicon may be filled in the recess 142a of the housing 140.
  • the housing 140 may have at least one stopper 149 protruding from the outer side surfaces of the first sides 141.
  • the stopper 149 may protrude from the first sides 141 in the second or third direction to prevent the housing 140 from colliding with the cover member 300 when the housing 140 moves in the second and / or third direction. Can be.
  • the housing 140 may further include a stopper (not shown) protruding from the bottom surface.
  • the housing 140 may be spaced apart from the base 210 by a stopper formed on the upper and lower surfaces of the housing 140, and spaced apart from the cover member 300 to the upper side thereof.
  • Directional height can be maintained. Therefore, the housing 140 may perform the shifting operation in the second and third directions, which are front, rear, left, and right directions, in a plane perpendicular to the optical axis.
  • the housing 140 may include a mounting groove 141b for the sensing coil for winding or accommodating the sensing coil 170.
  • the mounting groove 141b for the sensing coil of the housing 140 may be formed in a shape recessed from an outer side surface of at least one of the first side portions 141 or the second side portions 142 of the housing 140.
  • One end of each of the first side parts 141 and / or the second side parts 142 may be formed.
  • the depth of the sensing coil seating groove 141b may be greater than or equal to the thickness of the sensing coil to be wound.
  • the sensing groove mounting groove 141b may be positioned below the upper end of the housing 140, and may be provided on the magnet seating portion 141a on which the magnet 130 is seated.
  • the sensing coil seating groove 141b may not overlap the magnet seating portion 141a in the first direction, and may not overlap the magnet seating portion 141a in the direction perpendicular to the first direction. It is not limited.
  • the mounting groove 141b for the sensing coil may overlap the magnet seating portion 141a in the first direction.
  • the magnet 130 may be disposed in the housing 140 such that at least a portion of the magnet 130 overlaps with the first coil 120 in a direction perpendicular to the optical axis.
  • the magnet 130 may be inserted or disposed in the seating portion 141a of the housing 140.
  • the magnet 130 may be spaced apart from the sensing coil 170 in which the housing 140 is mounted, and a portion of the housing 140 may be disposed between the sensing coil and the magnet 130.
  • the magnet 130 may be disposed below the sensing coil 170.
  • the magnet 130 and the sensing coil 170 may be disposed in the first direction so as not to overlap each other in the initial position, but are not limited thereto. In another embodiment, the magnet 130 and the sensing coil 170 may overlap each other in the first direction at an initial position.
  • the sensing coil 170 may be disposed on the outer side of the first and second sides 141 and 142 of the housing 140, and the magnet 130 may be inside the first side 141 of the housing 140. It can be placed on the side.
  • the magnet 130 may be spaced apart from the sensing coil 170 on the outer side of the first side portion 141 of the housing 140.
  • the magnet 130 may be disposed inside the second side 142 of the housing 140 or spaced apart from the sensing coil 170 on the outside of the second side 142.
  • the shape of the magnet 130 may be a shape corresponding to the first side portion 141 of the housing 140, for example, a rectangular parallelepiped shape, but is not limited thereto.
  • the magnet 130 may be configured as a single body, and the surface facing the first coil 120 may be disposed at the S pole and the opposite side thereof at the N pole. However, not limited to this, it is also possible to configure the reverse.
  • At least two or more magnets 130 may be installed and disposed to face each other.
  • two pairs of magnets 130 facing each other to intersect may be disposed in the housing 140.
  • the magnet 130 may be substantially rectangular in plan, or alternatively, may be triangular or rhombus-shaped.
  • the magnet 130 may be disposed on each of the two first sides 141 of the first sides 141 of the housing 140 facing each other.
  • the upper elastic member 150 and the lower elastic member 160 support the bobbin 110 by elasticity.
  • the upper elastic member 150 is connected to the upper portion of the bobbin 110 and the upper portion of the housing 140 to support the upper portion of the bobbin 110 and the upper portion of the housing 140.
  • the lower elastic member 160 is connected to the lower portion of the bobbin 110 and the lower portion of the housing 140 to support the lower portion of the bobbin 110 and the lower portion of the housing 140.
  • the support member 220 may movably support the housing 140 in a direction perpendicular to the optical axis with respect to the base 210.
  • the support member 220 may support at least one of the upper and lower elastic members 150 and 160 and the circuit board 250. Can be electrically connected
  • the support member 220 may electrically connect the upper elastic member 150 and the circuit board 250.
  • FIG. 6 is a perspective view of the upper elastic member 150, the lower elastic member 160, the base 210, the support member 220, and the circuit board 250 illustrated in FIG. 1.
  • the upper elastic member 150 may be divided into two or more.
  • the upper elastic members 150 may be electrically separated from each other, and may include a plurality of upper elastic members 150-1 to 150-6 spaced apart from each other.
  • the upper elastic members 150-1 to 150-6 may be disposed to form point symmetry on the x-y plane with respect to the center of the bobbin 110.
  • point symmetry means symmetry in which two shapes overlap each other when two shapes are rotated by 180 ° with respect to one rotation center point.
  • At least one of the plurality of upper elastic members 150-1 to 150-6 may be electrically connected to a corresponding at least one of the support members 220.
  • Each of the first to fourth upper elastic members 150-1 to 150-4 has an inner frame 151 connected with the bobbin 110, an outer frame 152 connected with the housing 140, and an inner frame 151. ) And a frame connector 153 connecting the outer frame 152.
  • Each of the fifth and sixth upper elastic members 150-5 and 150-6 may be coupled to the housing 140, and may be electrically connected to the support members 220-5 to 220-8.
  • the fifth and sixth upper elastic members 150-5 and 150-6 may not be coupled to the bobbin 110, may be coupled only to the housing 140, and may elastically support the housing 140.
  • the fifth and sixth upper elastic members 150-5 and 150-6 may include an outer frame 152 that couples with the housing 140.
  • the inner frame 151 of each of the first to fourth upper elastic members 150-1 to 150-4 may be provided with a through hole 151a coupled to the upper support protrusion 113 of the bobbin 110.
  • the outer frame 152 of each of the first to sixth upper elastic members 150-1 to 150-6 may be provided with a through hole 152a coupled to the upper support protrusion 143 of the housing 140.
  • the through hole 152a of the outer frame 152 and the upper support protrusion 143 of the housing 140 may be attached or fixed by an adhesive member, for example, silicon.
  • the inner frames of the two upper elastic members selected from the first to fourth upper elastic members 150-1 to 150-4 may be electrically connected to both ends of the first coil 120.
  • outer frames of the other two upper elastic members selected from the first to fourth upper elastic members 150-1 to 150-4 may be electrically connected to both ends of the sensing coil 170.
  • one end of the first coil 120 is electrically connected to one end 11a of the inner frame 152 of the second upper elastic member 150-2, and the other end of the first coil 120 is the fourth upper side. It may be electrically connected to one end 11b of the inner frame 152 of the elastic member 150-4.
  • one end 17a of the sensing coil 170 is directly bonded to one end 159a of the outer frame 151 of the first upper elastic member 150-1 through solders 16a and 16b, and the sensing coil.
  • the other end 17b of the 170 may be directly bonded to one end 159b of the outer frame 151 of the third upper elastic member 150-3.
  • one end 159a of the outer frame 151 of the first upper elastic member 150-1 is coupled to the first frame of the outer frame 152 of the first upper elastic member 150-1 having the through hole 152a. It may extend from the unit 510 in the direction of the eye portion 17a of the sensing coil 170 (see FIG. 10).
  • one end 159b of the outer frame 151 of the third upper elastic member 150-3 may include a first end of the outer frame 152 of the third upper elastic member 150-3 provided with the through hole 152a.
  • the coupling unit 510 may extend in the direction of the vertical line portion 17b of the sensing coil 170.
  • each of the first to fourth upper elastic members 150-1 to 150-4 may be connected to at least one of the support members 220-1 to 220-4.
  • each of the outer frames 152 of the first to fourth upper elastic members 150-1 to 150-4 may be connected to a corresponding one of the support members 220-1 to 220-4. .
  • the frame connection part 153 may be bent at least once to form a pattern of a predetermined shape.
  • the position change and fine deformation of the frame connector 153 may allow the bobbin 110 to elastically support the lifting and / or lowering operation in the first direction parallel to the optical axis.
  • the outer frame 152 of each of the first to sixth upper elastic members 150-1 to 150-6 may include a first coupling part 510 coupled to the housing 140, and a second coupling portion corresponding to the corresponding support member.
  • the coupling part 520 and a connection part 530 connecting the first coupling part 510 and the second coupling part 520 may be included.
  • the through hole 152a engaging with the upper support protrusion 143 of the housing 140 may include a first coupling portion of the outer frame 152 of each of the first to sixth upper elastic members 150-1 to 150-6. 510 may be provided.
  • Each of the support members 220-1 to 220-8 may be electrically connected to the second coupling part 520 of the outer frame 152 of the upper elastic members 150-1 to 150-6.
  • At least one of the first to sixth upper elastic members 150-1 to 150-6 may be electrically connected to the circuit board 250 through at least one of the support members 220-1 to 220-8. .
  • first coil 120 and the upper elastic members 150-2 and 150-4 between the sensing coil 170 and the upper elastic members 150-1 and 150-3, and the upper elastic members 150.
  • Electrical connection between -1 to 150-4 and the support members 220-1 to 220-4 may be made by soldering or a conductive adhesive member (eg, a conductive epoxy) or the like.
  • connection part 530 may be straight or bent at least once, and the width of the connection part 530 may be narrower than the width of the frame connection part 153 of the upper elastic member 150. Since the width of the connection portion 530 is narrower than the width of the frame connection portion 153 of the upper elastic member 150, the connection portion 530 can be easily moved in the first direction parallel to the optical axis or the optical axis, thereby the upper elastic The stress applied to the member 150 and the stress applied to the support member 220 may be dispersed.
  • the lower elastic member 160 connects the inner frame 161 coupled with the lower support protrusion of the bobbin 110, the outer frame 162 coupled with the lower support protrusion of the housing 140, and connects the inner frame 161 with the outer frame. It may include a connecting portion 163 to.
  • the lower elastic member 160 may include first and second lower elastic members 160-1 and 160-2, which are electrically separated from each other.
  • Each of the first and second lower elastic members 160-1 and 160-2 includes at least one inner frame 161-1 and 161-2, at least one outer frame 162-1 and 162-2, and at least One frame connection part 163-1 and 163-2 may be included.
  • the lower elastic member 160 is divided into a plurality, but may not be divided in other embodiments.
  • the sensing coil 170 is disposed on the side of the housing 140, for example, on the outer side of the sides 141, 142 of the housing 140.
  • the sensing coil 170 is directly connected to the mounting coil 141b for the sensing coil provided in the first and second sides 141 and 142 of the housing 140 to rotate clockwise or counterclockwise with respect to the optical axis.
  • the sensing coil 170 may be directly wound on the housing 140 in a ring shape.
  • the sensing coil When the sensing coil is implemented in the form of a coil block to bond the upper end of the housing 140, manual work for mounting and bonding the sensing coil is required. In this case, it is not easy to implement the sensing coil in the form of a block according to the shape of the upper surface of the housing, and since the sensing coil is bonded to the housing through manual operation, the reliability of adhesion between the sensing coil and the housing may be deteriorated. In addition, since the sensing coil is disposed adjacent to the upper elastic member at the upper end of the housing, it may be restricted in the installation of the upper elastic member, and bonding and soldering with the upper elastic member is not easy.
  • the sensing coil 170 since the sensing coil 170 is directly wound around the seating groove 141b for the sensing coil provided in the middle region of the first and second sides 141 and 142 of the housing 140, the sensing coil 170 may be wound around the housing ( Since no manual work of mounting or bonding on the upper end of the 140 may be required, deterioration in bonding reliability between the sensing coil 170 and the housing 140 and between the sensing coil 170 and the upper elastic member 150 may be prevented.
  • the sensing coil 170 since the sensing coil 170 is disposed below the upper elastic member 150 to be spaced apart from the upper elastic member 150, the sensing coil 170 may not be spatially restricted to install the upper elastic member 150 on the housing 140.
  • each of the gaze portion and the vertical line portion of the sensing coil 170 is disposed to be in contact with one region of the first side portion 141 or the second side portion 142 of the housing 140, and the upper elastic member is formed through soldering. Since bonding to one region of the outer frame 152 of the 150, the embodiment can easily perform the soldering operation.
  • At least one of the sensing coil 170 may be provided with a sensing coil guide for guiding the gaze portion 17a and the vertical line portion 17b of the sensing coil 170.
  • FIG. 10 is an enlarged view of a sensing coil guide unit according to an exemplary embodiment.
  • the housing 140 protrudes from the outer surface of the first step portion 149a protruding from the outer side surface of any one first side portion 141, and the other first side portion 141. It may have a second stepped portion 149b (see FIG. 2).
  • Each of the first stepped part 149a and the second stepped part 149b may be adjacent to the mounting groove 141b for the sensing coil.
  • the first stepped portion 149a and the second stepped portion 149b may be provided at first sides of the housing 140 facing each other.
  • the first stepped part 149a may guide the line of sight 17a of the sensing coil 170
  • the second stepped part 149b may guide the longitudinal line 17b of the sensing coil 170.
  • Each of the first and second stepped portions 149a and 149b may be any one of the plurality of stoppers 149, but is not limited thereto and may be provided separately from the stopper 149 in another embodiment.
  • the first and second stepped portions 149a and 149b may be positioned adjacent to the sensing coil seating groove 141b and for the sensing coil. It may be located in each of the upper and lower portion of the seating groove (141b).
  • first and second stepped portions 149a and 149b protrude from the outer side surfaces of the first side portions 141 of the housing 140, the outer side surfaces of the first side portions 141 of the housing 140 and the first and second stepped portions 149a and 149b are formed.
  • a step may exist between the top surfaces of the first and second stepped portions 149a and 149b, and side surfaces of the first and second stepped portions 149a and 149b may form a stepped surface.
  • the sensing coil 170 can serve as a guide part for guiding the gaze portion 17a and the vertical line portion 17b of 170.
  • the sensing coil guide unit 18a may have a protrusion shape protruding from an outer surface of the first side portion 141 adjacent to the step surface of each of the first and second stepped portions 149a and 149b. Between the portion 18a and the stepped surfaces of each of the first and second stepped portions 149a and 149b, a groove 18 on which the line of sight 17a and the vertical line portion 17b of the sensing coil 170 can be seated is provided. Can be formed.
  • the sensing coil guide part may have a groove shape provided in the first side part 141 of the housing 140.
  • the sensing coil guide part may have a groove shape formed at an interface between an outer surface of the first side portion 141 of the housing 140 and a step surface of each of the first and second stepped portions 149a and 149b.
  • the guide coil 18a for the sensing coil may prevent the gaze portion 17a and the vertical line portion 17b of the sensing coil 170 from being separated from the housing 140, and may be sensed when bonding to the upper elastic member 150. It may serve to prevent the flow of the coil 120, thereby stably winding the sensing coil 170 on the side of the housing 140 directly.
  • the driving signal applied to the first coil 120 may be an AC signal, for example, a sine wave signal or a pulse signal (eg, a pulse width modulation (PWM) signal).
  • the driving signal applied to the first coil 120 may include an AC signal and a DC signal.
  • the application of the AC signal to the first coil 120 is to induce electromotive force or voltage to the sensing coil 170 by mutual induction.
  • the first coil 120 may move together with the bobbin 110 in the first direction by the electromagnetic force caused by the electromagnetic interaction between the current flowing through the first coil 120 by the driving signal and the magnet 130.
  • a separation distance between the first coil 120 and the sensing coil 170 changes, and an induced voltage may occur in the sensing coil 170 as the separation distance changes.
  • an induced voltage may occur in the sensing coil 170 as the separation distance changes.
  • the separation distance decreases, the induced voltage generated in the sensing coil 170 may increase.
  • the separation distance increases, the induced voltage generated in the sensing coil 170 may decrease.
  • the displacement of the first coil 120 and the bobbin 110 may be detected, and the displacement of the bobbin 110 or the first coil 120 based on the detected displacement.
  • the driving signal provided at) may be feedback controlled.
  • the sensing coil 170 may be disposed below the upper elastic member 150 disposed on the upper surface of the housing 140, and may be disposed above the magnet 130 disposed in the housing 140.
  • each of the plurality of support members 220-1 to 220-8 may be disposed to correspond to the second sides 142 of the housing 140.
  • each of the plurality of support members 220-1 to 220-8 may be disposed adjacent to a corresponding one of the four second sides 142, and one end of the support member 220 is disposed. It may be bonded to the outer frame 152 of the upper elastic member 150 disposed on the corresponding second side.
  • the support member 220 may be disposed in the form of a leaf spring on the first side portion 141 of the housing 140.
  • the plurality of support members 220-1 to 220-8 may form a path for transmitting a driving signal from the circuit board 250 to the first coil 120, and the induced voltage output from the sensing coil 170. May be formed to transfer a path to the circuit board 250.
  • the plurality of support members 220-1 to 220-8 may be implemented as a member that can be supported by elasticity, for example, a leaf spring, a coil spring, a suspension wire, or the like.
  • the support member 220 may be integrally formed with the upper elastic member.
  • the plurality of support members 220-1 to 220-8 may be spaced apart from the housing 140, and are not fixed to the housing 140, but are connected to the outer frame 153 of the upper elastic member 150. 530 may be directly connected.
  • connection part 530 of the outer frame 153 of the upper elastic member 150 is spaced apart from the housing 140, it can be easily moved in the first direction parallel to the optical axis or the optical axis.
  • connection part 530 which can be easily moved in the first direction
  • an optical axis or It can be moved more easily in the first direction parallel to the optical axis, thereby improving the accuracy of image stabilization.
  • stress can be dispersed against drops and impacts, thereby suppressing deformation and disconnection of the support members 220-1 to 220-8.
  • each of the first to fourth supporting members 220-1 to 220-4 may be a second coupling of a corresponding one of the first to fourth upper elastic members 150-1 to 150-4. It may be bonded to the unit 520, and the other end may be bonded to the circuit board 250.
  • each of the fifth and seventh support members 220-5 and 220-7 may include a second of the outer frame of any one of the fifth and sixth upper elastic members 150-5 and 150-6. It may be bonded to the coupling portion, the other end may be bonded to the circuit board 250.
  • each of the sixth and eighth support members 220-6 and 220-8 may be bonded to the first engaging portion of the outer frame of the corresponding one of the fifth and sixth upper elastic members, and The other end may be bonded to a corresponding one of the first and second lower elastic members.
  • At least one of the first to fourth upper elastic members 150-1 to 150-6 may be electrically connected to the circuit board 250 through the support members 220-1 to 220-8.
  • Both ends of the first coil 120 may be connected to inner frames of the second and fourth upper elastic members 150-2 and 150-4, and the second and fourth upper elastic members 150-2 to 150-4.
  • the second and fourth support members 220-2 and 220-4 may be electrically connected to the circuit board 250.
  • Both ends of the sensing coil 170 may be connected to outer frames of the first and third upper elastic members 150-1 and 150-3, and the first and third upper elastic members 150-1 and 150-3. And first and third support members 220-1 and 220-3 to be electrically connected to the circuit board 250.
  • the base 210 may have a hollow corresponding to the hollow of the bobbin 110 and / or the hollow of the housing 140, and may have a shape coinciding with or corresponding to the cover member 300, for example, a rectangular shape. .
  • FIG. 7 is an exploded perspective view of the base 210, the second coil 230, and the circuit board 250 illustrated in FIG. 1.
  • the base 210 may include a step 211 to which an adhesive may be applied when fixing the cover member 300.
  • the step 211 may guide the cover member 300 coupled to the upper side, and the end of the cover member 300 may be in surface contact with the step 211.
  • a base portion 255 having a corresponding size may be formed on a surface of the base 210 facing the portion where the terminal 251 of the circuit board 250 is formed.
  • the support 255 of the base 210 may be formed on the outer surface of the base 210 without the step 211 in a predetermined cross section, and support the terminal surface 253 of the circuit board 250.
  • An edge of the base 210 may have a recess 212.
  • the protrusion of the cover member 300 may be fastened to the base 210 in the recess 212.
  • seating grooves 215-1 and 215-2 on which the OIS position sensor 240 may be disposed may be provided on the upper surface of the base 210.
  • two mounting grooves 215-1 and 215-2 may be provided in the base 210, and the OIS position sensor 240 may include the mounting grooves 215-1 of the base 210. 215-2, the degree of movement of the housing 140 in the second direction and the third direction can be detected.
  • virtual lines connecting the centers of the mounting grooves 215-1 and 215-2 of the base 210 and the center of the base 210 may cross each other, for example, the seating of the base 210.
  • An angle formed by virtual lines connecting the centers of the grooves 215-1 and 215-2 with the center of the base 210 may be 90 °, but is not limited thereto.
  • the second coil 230 may be disposed above the circuit board 250 and the OIS position sensor 240 may be disposed below the circuit board 250.
  • the OIS position sensor 240 may detect a displacement of the housing 140 with respect to the base 210 in a direction perpendicular to the optical axis (eg, Z axis) (eg, X axis or Y axis).
  • the OIS position sensor 240 may include a first OIS position sensor 240a and a second OIS position sensor 240b which are disposed to be orthogonal to each other to detect a displacement of the housing 140 in a direction perpendicular to the optical axis. have.
  • the circuit board 250 may be disposed on an upper surface of the base 210 and may include a hollow corresponding to the hollow of the bobbin 110, the hollow of the housing 140, and / or the hollow of the base 210. Can be.
  • the shape of the outer circumferential surface of the circuit board 250 may be a shape coinciding with or corresponding to the upper surface of the base 210, for example, a rectangular shape.
  • the circuit board 250 may be provided with at least one terminal surface 253 that is bent from the top surface and receives a plurality of terminals 251 or pins from which electrical signals are supplied from the outside. .
  • the second coil 230 is implemented in a form provided in the circuit member 250 and the circuit member 231 separate from the circuit board 250, but is not limited thereto.
  • the second coil 230 may have a ring shape. May be implemented in the form of a coil block, or in the form of a FP coil, or in the form of a circuit pattern formed on the circuit board 250.
  • the second coil 230 may include a through hole 230a penetrating the circuit member 231.
  • the support member 220 may be electrically connected to the circuit board 250 through the through hole 230a.
  • the second coil 230 is disposed on the circuit board 250 so as to face the magnet 130 disposed in the housing 140.
  • Four second coils 230 may be installed on four sides of the circuit board 250, but the present invention is not limited thereto. Only two second coils 230 may be installed, one for the second direction and one for the third direction. 4 or more can be installed.
  • the housing 140 may move in the second and / or third directions by the interaction of the magnet 130 and the second coil 230 disposed to face each other, and thus the image stabilization may be performed.
  • the OIS position sensors 240a and 240b may be provided as hall sensors, and any sensor capable of detecting magnetic field strength may be used.
  • the OIS position sensors 240a and 240b may be implemented in the form of a driver including a hall sensor or may be implemented by a position detection sensor alone such as a hall sensor.
  • a plurality of terminals 251 may be installed on the terminal surface 253 of the circuit board 250.
  • the first and second coils 120 and 230 and the first and OIS position sensors 170 are applied with external power through a plurality of terminals 251 installed on the terminal surface 253 of the circuit board 250.
  • 240 may supply power, may receive an induced voltage output from the sensing coil 170, and may output the external signal, or may receive output signals output from the first and OIS position sensors 170 and 240. You can also output externally.
  • the circuit board 250 may be provided as an FPCB, but is not limited thereto.
  • the terminals of the circuit board 250 may be directly formed on the surface of the base 210 using a surface electrode method or the like. Do.
  • the circuit board 250 may include through holes 250a1 and 250a2 through which the support member 220 may pass.
  • the support member 220 may be electrically connected to a circuit pattern that may be disposed on the bottom surface of the circuit board 250 through the through holes 250a1 and 250a2 of the circuit board 250 through soldering or the like.
  • the circuit board 250 may not include the through holes 250a1 and 250a2, and the support member 220 may be electrically connected to a circuit pattern or pad formed on the upper surface of the circuit board 250 through soldering or the like. May be connected.
  • the circuit board 250 may further include a through hole coupled to a protrusion provided on an upper surface of the base 210.
  • the protrusion of the base 210 and the through hole of the circuit board 250 may be fixed by an adhesive member such as epoxy.
  • FIG. 8 is a sectional view taken along the line II ′ of the lens drive device shown in FIG. 2
  • FIG. 9 is a sectional view taken along the line II-II ′ of the lens drive device shown in FIG. 2.
  • the sensing coil 170 is disposed or directly wound in the mounting groove 141b for the sensing coil provided in the first side surfaces 141 of the housing 140.
  • the sensing coil 170 may not overlap with the magnet 130 in the first direction. In addition, in the initial position, the sensing coil 170 may not overlap with the magnet 130 in a direction perpendicular to the first direction. This is to reduce the interference between the magnet 130 and the sensing coil 170.
  • the initial position is the initial position of the AF movable portion without applying power to the first coil 120, or the position where the AF movable portion is placed as the upper and lower elastic members 150 and 160 are elastically deformed only by the weight of the AF movable portion.
  • the AF movable unit may include components mounted to the bobbin 110 and the bobbin 110.
  • the sensing coil 170 may be spaced apart from the first coil 120 in a first direction by a predetermined interval, and may not overlap with the first coil 120 in a direction perpendicular to the first direction. . This is to ensure the linearity of the induced voltage induced in the sensing coil 170 by the current of the first coil 120.
  • the relative positions between the sensing coils and the magnets described with reference to FIGS. 8 and 9 are one embodiment, and in another embodiment, the sensing coil 170 may overlap the magnets 130 in the first direction at an initial position.
  • the sensing coil 170 may be located between the support member 220 and the second side of the housing 140.
  • the sensing coil 170 may be located toward the second side 142 of the housing 140 with respect to the support member 220.
  • the sensing coil 170 and the housing 140 or the sensing coil 170 are wound because the sensing coil 170 is directly wound on the first and second sides 141 and 142 of the housing 140. Deterioration in the bonding reliability between the upper elastic member 150 can be prevented.
  • the embodiment provides a space constraint for installing the upper elastic member 150 on the housing 140. Do not receive.
  • each of the gaze portion and the vertical line portion of the sensing coil 170 is seated on the sensing coil guide portion 18 provided in one region of the first side portion 141 or the second side portion 142 of the housing 140, Since one end 159a or 159b of the outer frame 152 of the elastic member 150 is connected through soldering, the embodiment can easily perform a soldering operation.
  • FIG. 11 is an exploded perspective view of the lens driving apparatus 1100 according to another exemplary embodiment
  • FIG. 12 is a perspective view of the lens driving apparatus 1100 excluding the cover member 1300 of FIG. 11.
  • the lens driving apparatus 1100 may include a bobbin 1110, a first coil 1120, a magnet 1130, a housing 1140, an upper elastic member 1150, and a lower elastic member ( 1160, and sensing coil 1170.
  • the lens driving apparatus 1100 may further include a support member 1220, a second coil 1230, an optical image stabilization (OIS) position sensor 1240, and a circuit board 1250.
  • the lens driving apparatus 1100 may further include a base 1210 and a cover member 1300.
  • the cover member 1300 may be applied to the description of the cover member 300 of FIG. 1.
  • FIG. 13 shows a perspective view of the bobbin 1110 shown in FIG. 12.
  • the bobbin 1110 is located inside the housing 1140 and is movable in a first direction (eg, Z-axis direction) by electromagnetic interaction between the coil 1120 and the magnet 1130. .
  • the bobbin 1110 may include a lens barrel (not shown) having at least one lens installed therein, and the lens barrel may be coupled to the inside of the bobbin 1110 in various ways. .
  • the bobbin 1110 may have a hollow for mounting a lens or lens barrel.
  • the hollow shape of the bobbin 1110 may match the shape of the lens or lens barrel to be mounted, and may be, for example, circular, elliptical, or polygonal, but is not limited thereto.
  • the bobbin 1110 is disposed on the upper surface of the at least one upper support protrusion 1113, which is coupled to and fixed to the inner frame 1151 of the upper elastic member 1150, and the lower elastic member of the lower elastic member 1160 At least one lower support protrusion (not shown) coupled to and fixed to the inner frame 161 may be provided.
  • the bobbin 1110 may include an upper escape groove 1112 provided in one region of the upper surface that corresponds to or is aligned with the frame connection portion 1153 of the upper elastic member 1150.
  • the bobbin 1110 may include a lower escape groove (not shown) in one region of the lower surface corresponding to or aligned with the connection portion 163 of the lower elastic member 1150.
  • the connecting portion and the bobbin of the upper elastic member may be designed so as not to interfere with each other, the upper escape groove and / or the lower escape groove of the bobbin may not be provided.
  • the bobbin 1110 may include at least one groove (not shown) in which the first coil 1120 is disposed on an outer circumferential surface thereof.
  • the first coil 1120 may be disposed or seated in the groove, or the first coil 1120 may be directly wound in the groove to rotate clockwise or counterclockwise with respect to the optical axis.
  • the shape and number of grooves may correspond to the shape and number of coils disposed on the outer circumferential surface of the bobbin 1110.
  • the bobbin 1110 may not include a seating groove for the coil, and the first coil 1120 may be directly wound and fixed on the outer circumferential surface of the bobbin 1110.
  • the first coil 1120 may be disposed on an outer circumferential surface of the bobbin 1110 and may be a driving coil for electromagnetic interaction with the magnet 1130 disposed on the housing 1140.
  • a driving signal eg, a driving current
  • a driving current may be applied to the first coil 1120.
  • the AF (Auto Focus) movable unit may move in the first direction by the electromagnetic force caused by the interaction between the first coil 1120 and the magnet 1130.
  • the electromagnetic force By controlling the electromagnetic force by controlling the driving signal applied to the first coil 1120, it is possible to control the movement in the first direction of the AF movable part, thereby performing an auto focusing function.
  • the AF movable part may include bobbins 1110 elastically supported by the upper and lower elastic members 1150 and 1160, and components mounted on the bobbins 1110 and moving together with the bobbins 1110.
  • the AF movable unit may include a bobbin 1110, a first coil 1120, and a lens (not shown) mounted to the bobbin 1110.
  • the first coil 1120 may be wound to surround the outer circumferential surface of the bobbin 1110 to rotate clockwise or counterclockwise about the optical axis.
  • the first coil 1120 may be implemented as a coil ring wound in a clockwise or counterclockwise direction about an axis perpendicular to the optical axis, and the number of coil rings may be the same as the number of magnets 1130. It may be, but is not limited thereto.
  • the first coil 1120 may be electrically connected to at least one of the upper elastic member 1150 or the lower elastic member 1160 to receive the driving signal.
  • the housing 1140 supports the magnet 1130 and the sensing coil 1170, and the bobbin 1110 may move in the first direction by electromagnetic power due to the interaction between the first coil 1120 and the magnet 1130.
  • the bobbin 1110 may be accommodated inward so that the bobbin 1110 may be accommodated.
  • FIG. 14 illustrates a first exploded perspective view of the housing 1140 and the magnet 1130 illustrated in FIG. 11, and FIG. 15 illustrates a second exploded perspective view of the housing 1140 and the magnet 1130 illustrated in FIG. 11.
  • the housing 1140 may have a hollow pillar shape as a whole.
  • the housing 1140 may have a polygonal (eg, rectangular, or octagonal) or circular hollow.
  • the housing 1140 may include a plurality of sides 1141 and 1142.
  • the housing 1140 may include first sides 1141 spaced apart from each other and second sides 1142 spaced apart from each other.
  • the width of each of the first sides 1141 of the housing 1140 may be greater than the width of each of the second sides 1142.
  • the magnet 1130 may be disposed or installed on the first sides 1141 of the housing 1140.
  • Each of the second sides 1142 of the housing 1140 may be located between two adjacent first sides, and may connect the first sides 1141 to each other.
  • Support members 1220 may be disposed on the second sides 1142 of the housing 1140.
  • the support member 1220 may be coupled to the outer frame 1152 of the upper elastic member 1150 by passing through the through hole 1147 provided in the second sides 1142.
  • the first sides 1141 of the housing 1140 interconnect the second sides 1142 of the housing 1140 and may include a plane of a predetermined depth.
  • Each of the first sides 1141 of the housing 1140 may have an area equal to or larger than that of the magnet 1130 corresponding thereto.
  • the housing 1140 may include a magnet seating portion 1141a for accommodating the magnet 1130, and a seating groove 1141b for the sensing coil for winding or accommodating the sensing coil 1170.
  • the magnet seating part 1141a may be provided at an inner lower end of at least one of the first side parts 1141 of the housing 1140.
  • the magnet seating part 1141a may be provided at an inner bottom of each of the four first sides, and each of the magnets 1130 may be inserted into and fixed to a corresponding one of the magnet seating parts 1141a. .
  • the magnet seating portion 1141a of the housing 1140 may be formed as a recess corresponding to the size of the magnet 1130.
  • An opening may be formed in a bottom surface of the magnet seating portion 1141a of the housing 1140 facing the second coil 1230, and a bottom surface of the magnet 1130 fixed to the magnet seating portion 1141a may be formed in the second surface of the housing 1140. It may face the coil 1230.
  • the seating groove 1141b for the sensing coil of the housing 1140 may be formed to be recessed from an outer side surface of at least one of the first side parts 1141 or the second side parts 1142 of the housing 1140. One end of each of the first sides 1141 and / or the second sides 1142 may be formed.
  • the mounting groove 1141b for the sensing coil of the housing 1140 may be formed at an upper end of an outer surface of the first and second side parts 1141 and 1142.
  • the depth of the sensing coil mounting groove 1141b may be greater than or equal to the thickness of the sensing coil 1170 to be wound.
  • the mounting coil 1141b for the sensing coil may be provided on the magnet seating portion 1141a on which the magnet 1130 is seated.
  • the sensing coil mounting groove 1141b may not overlap the magnet seating portion 1141a in a direction perpendicular to the optical axis, but is not limited thereto.
  • the first side 1141 of the housing 1140 may be disposed in parallel with the side surface of the cover member 1300. In addition, an area of the first side 1141 of the housing 1140 may be larger than an area of the second side 1142.
  • the second side 1142 of the housing 1140 may have a through hole 1147 forming a path through which the support member 1220 passes.
  • the housing 1140 may include a through hole 1147 penetrating the upper portion of the second side 1142.
  • the number of through holes 1147 may be equal to the number of support members.
  • a stopper 1144 may be provided at the top or the top surface of the housing 1140.
  • the stopper 1144 may include first stoppers 1144a1 to 1144a4 disposed on an upper surface or an upper surface of the first sides 1141 of the housing 1140, and a second surface disposed on an upper surface or an upper surface of the second sides 1142. It may include two stoppers 1144b1 to 1144b4.
  • the first stoppers 1144a1 to 1144a4 may be spaced apart from each other, and the second stoppers 1144b1 to 1144b4 may be spaced apart from each other. In addition, the first stoppers 1144a1 to 1144a4 and the second stoppers 1144b1 to 1144b4 may be spaced apart from each other.
  • an upper end of the mounting coil 1141b for the sensing coil may contact the lower end of the first stoppers 1144a1 to 1144a4 and the second stoppers 1144b1 to 1144b4.
  • the seating groove 1141b for the sensing coil may include a first groove 1144-1 provided in the first side parts 1141, and a second groove 1144-2 provided in the second side parts 1142. Can be.
  • the second groove 1144-2 of the mounting coil 1141b for the sensing coil may be located outside the through hole 1147 through which the support member 1220 passes.
  • the second groove 1144-2 of the seating groove 1141b for the sensing coil may be located farther than the through hole 1147 based on an imaginary straight line passing through the hollow center of the housing 1140 and parallel to the optical axis. .
  • a first separation distance between the virtual straight line passing through the hollow center of the housing 1140 and parallel to the optical axis and the second groove 1144-2 of the seating groove 1141b for the sensing coil is the center of the hollow of the housing 1140. It may be greater than the second separation distance between the imaginary straight line and the through hole 1147 parallel to the optical axis.
  • the housing 1140 may include at least one upper support protrusion 1143 at the top or the top surface thereof, which is coupled to the outer frame 1152 of the upper elastic member 1150.
  • the upper support protrusion 1143 of the housing 1140 may be formed on an upper surface of at least one of the first sides 1141 or the second sides 1142 of the housing 1140.
  • the upper support protrusion 1143 may be disposed on the upper or upper surface of the first sides 1141 between the first stoppers 1144a1 to 1144a4 and the second stoppers 1144b1 to 1144b4.
  • the housing 1140 may include a lower support protrusion 1145 coupled to and fixed to the outer frame 1162 of the lower elastic member 1160 on the lower surface thereof.
  • the housing 1140 is formed with a recess formed in the second side 1142 to secure a space for filling a gel-type silicon that may act as a damping function. 1142a). That is, damping silicon may be filled in the recesses 1142a of the housing 1140.
  • the housing 1140 may have at least one stopper 1149 protruding from the outer side surfaces of the first sides 1141.
  • the stopper 1149 may protrude from the first sides 1141 in the second or third direction to prevent the housing 1140 from colliding with the cover member 1300 when the housing 1140 moves in the second and / or third direction. Can be.
  • the housing 1140 may further include a stopper (not shown) protruding from the bottom surface.
  • the stopper is formed on the upper and lower surfaces of the housing 1140 to allow the housing 1140 to be spaced apart from the base 1210 downward, and to be spaced apart from the cover member 1300 upward to prevent the optical axis from interfering with the vertical axis.
  • Directional height can be maintained.
  • the housing 1140 may perform the shifting operation in the second and third directions, which are front, rear, left, and right directions, in a plane perpendicular to the optical axis.
  • the magnet 1130 may be disposed in the housing 1140 such that at least a portion of the magnet 1130 overlaps with the first coil 1120 in a direction perpendicular to the optical axis.
  • the magnet 1130 may be inserted or disposed in the seating portion 1141a of the housing 1140.
  • the magnet 1130 may be spaced apart from the sensing coil 1170 mounted in the housing 1140, and a part of the housing 1140 may be disposed between the sensing coil 1170 and the magnet 1130.
  • the magnet 1130 may be disposed below the sensing coil 1170.
  • the magnet 1130 and the sensing coil 1170 may be disposed so as not to overlap each other in the optical axis direction, but is not limited thereto.
  • the sensing coil 1170 may be disposed on the outer sides of the first and second sides 1141 and 1142 of the housing 1140, and the magnet 1130 may be disposed on the first side 1141 of the housing 1140. It may be disposed on the inner side of the.
  • the magnet 1130 may be spaced apart from the sensing coil 1170 on an outer surface of the first side portion 1141 of the housing 1140.
  • the shape of the magnet 1130 may be a shape corresponding to the first side portion 1141 of the housing 1140, for example, a rectangular parallelepiped shape, but is not limited thereto.
  • the magnet 1130 may be configured as a single body, and the surface facing the first coil 1120 may be disposed at the S pole and the opposite side thereof at the N pole. However, not limited to this, it is also possible to configure the reverse.
  • At least two or more magnets 1130 may be installed and disposed to face each other.
  • two pairs of magnets 1130 facing each other to cross may be disposed in the housing 1140.
  • the magnet 1130 may have a substantially planar quadrangular shape, or alternatively, may have a triangular or rhombus shape.
  • the magnet 1130 may be disposed at two first sides of the first sides 1141 of the housing 1140 facing each other.
  • the upper elastic member 1150 and the lower elastic member 1160 support the bobbin 1110 by elasticity.
  • the upper elastic member 1150 is connected to the upper portion of the bobbin 1110 and the upper portion of the housing 1140 to support the upper portion of the bobbin 1110 and the upper portion of the housing 1140.
  • the lower elastic member 1160 is connected to the lower part of the bobbin 1110 and the lower part of the housing 1140 to support the lower part of the bobbin 110 and the lower part of the housing 1140.
  • the support member 1220 may movably support the housing 1140 in a direction perpendicular to the optical axis with respect to the base 1210, and may include at least one of the upper and lower elastic members 1150 and 1160 and the circuit board 2150. ) Can be electrically connected.
  • the support member 220 may electrically connect the upper elastic member 1150 and the circuit board 1250.
  • FIG. 16 illustrates a perspective view of the upper elastic member 1150, the lower elastic member 1160, the base 1210, the support member 1220, and the circuit board 1250 illustrated in FIG. 11.
  • the upper elastic member 1150 may be divided into two or more.
  • the upper elastic members 1150 may be electrically separated from each other, and may include first to fourth upper elastic members 1150-1 to 1150-4 spaced apart from each other.
  • the separated first to fourth upper elastic members 1150-1 to 1150-4 may be arranged to be point symmetrical on the x-y plane with respect to the center of the bobbin 1110 or the housing 1140.
  • point symmetry means symmetry where two shapes overlap each other when the two shapes rotate 180 ° with respect to one rotation center point.
  • any one of the first to fourth upper elastic members 1150-1 to 1150-4 may be electrically connected to a corresponding one of the support members 1220.
  • each of the first to fourth upper elastic members 1150-1 to 1150-4 may be directly connected to a corresponding one of the first to fourth support members 1220-1 to 1220-4.
  • Each of the first to fourth upper elastic members 1150-1 to 1150-4 has an inner frame 1151 connected to the bobbin 1110, an outer frame 1152 and an inner frame 1151 connected to the housing 1140, respectively. ) And a frame connector 1153 connecting the outer frame 1152.
  • the inner frame 1151 may be provided with a through hole 1151a coupled to the upper support protrusion 1113 of the bobbin 1110, and the outer frame 1152 may be provided at the upper support protrusion 1143 of the housing 1140.
  • a through hole 1152a to be coupled may be provided.
  • the inner frames of the two upper elastic members selected from the first to fourth upper elastic members 1150-1 to 1150-4 may be electrically connected to both ends of the first coil 120.
  • outer frames of the other two upper elastic members selected from the first to fourth upper elastic members 1150-1 to 1150-4 may be electrically connected to both ends of the sensing coil 1170.
  • the line of sight of the sensing coil 1170 is directly bonded to an outer frame of any one of the first to fourth upper elastic members 1150-1 to 1150-4 by soldering, and a vertical line of the sensing coil 1170.
  • the portion may be directly bonded to the outer frame of the other of the first to fourth upper elastic members 1150-1 to 1150-4.
  • each of the first to fourth upper elastic members 1150-1 to 1150-4 may be connected to at least one of the supporting members 220-1 to 220-4.
  • each of the outer frames 152 of the first to fourth upper elastic members 1150-1 to 1510-4 may be connected to one end of a corresponding one of the supporting members 1220-1 to 1220-4. Can be.
  • the frame connection part 1153 may be bent at least once to form a pattern of a predetermined shape.
  • the position change and the micro deformation of the frame connector 1153 may elastically support the lifting and / or lowering of the bobbin 1110 in the first direction.
  • the outer frame 1152 of each of the first and fourth upper elastic members 1150-1 to 1150-4 is coupled to a first coupling portion 1510 and a corresponding support member 1220 coupled to the housing 1140.
  • the second coupling part 1520, and a connection part 1530 connecting the first coupling part 1510 and the second coupling part 1520, may be included.
  • the support members 1220-1 through 1220-4 may be directly bonded to the second coupling portion 1520 of the outer frame 1152 by soldering or a conductive adhesive member (eg, a conductive epoxy).
  • a conductive adhesive member eg, a conductive epoxy
  • connection part 1530 may be straight or bent at least once, and the width of the connection part 1530 may be narrower than the width of the frame connection part 1153 of the upper elastic member 1150. Since the width of the connecting portion 1530 is narrower than the width of the frame connecting portion 1153 of the upper elastic member 1150, the connecting portion 1530 may be easily moved in the first direction, and thus is applied to the upper elastic member 1150. Can be dispersed, and the stress applied to the support member 1220 can be dispersed
  • the lower elastic member 1160 includes an inner frame 1161 that engages with the lower support protrusion of the bobbin 1110, an outer frame 1162 that engages with the lower support protrusion of the housing 1140, and an inner frame 1161 and an outer frame 1162. It may include a connecting portion (1163) for connecting.
  • the lower elastic member 1160 is not divided, but may be divided into two or more in other embodiments.
  • the sensing coil 1170 is wound directly to the side of the housing 1140, eg, the sides 1141 and 1142 of the housing 1140.
  • the sensing coil 1170 is directly connected to the sensing coil seating groove 1141b provided in the first and second sides 1141 and 1142 of the housing 1140 to rotate in a clockwise or counterclockwise direction with respect to the optical axis.
  • the sensing coil 1170 may be directly wound on the housing 1140 in a ring shape.
  • the sensing coil When the sensing coil is implemented in the form of a coil block and bonded to the upper end of the housing 1140, manual work for mounting and bonding the sensing coil is required. In this case, it is not easy to implement the sensing coil in the form of a block according to the shape of the upper surface of the housing, and since the sensing coil is bonded to the housing through manual operation, the reliability of adhesion between the sensing coil and the housing may be deteriorated. In addition, since the sensing coil is disposed adjacent to the upper elastic member at the upper end of the housing, installation of the upper elastic member may be restricted, and bonding and soldering with the upper elastic member is not easy.
  • the sensing coil 1170 since the sensing coil 1170 is directly wound on the seating groove 1141b for the sensing coil provided in the first and second sides 1141 and 1142 of the housing 1140, the sensing coil 1170 may be wound. Since no manual work of mounting or bonding on the upper end of the housing 1140 is required, deterioration in bonding reliability between the sensing coil 1170 and the housing 1140 and between the sensing coil 1170 and the upper elastic member 1150 may be prevented. .
  • the sensing coil 1170 is disposed below the upper elastic member 1150, the sensing coil 1170 is not limited in space to install the upper elastic member 1150 on the top of the housing 1140.
  • each of the gaze portion and the vertical line portion of the sensing coil 1170 may be disposed to be in contact with one region of the first sidewall 1141 or the second sidewall 1142 of the housing 1140, and the upper elastic member may be soldered. Since the bonding is performed with one region of the outer frame 1152 of 1150, the embodiment can easily perform a soldering operation.
  • the driving signal applied to the first coil 1120 may be an AC signal, for example, a sine wave signal or a pulse signal (eg, a pulse width modulation (PWM) signal).
  • the driving signal applied to the first coil 1120 may include an AC signal and a DC signal.
  • the application of the AC signal to the first coil 1120 is to generate an electromotive force or an induced voltage to the sensing coil 1170 by mutual induction.
  • the first coil 1120 may move together with the bobbin 1110 in the first direction by the electromagnetic force caused by the electromagnetic interaction between the current flowing through the first coil 1120 by the driving signal and the magnet 1130.
  • the separation distance between the first coil 1120 and the sensing coil 1170 is changed, and as the separation distance is changed, an induced voltage may occur in the sensing coil 1170. have.
  • the induced voltage generated in the sensing coil 1170 may increase.
  • the separation distance increases, the induced voltage generated in the sensing coil 1170 may decrease.
  • the displacement of the first coil 1120 and the bobbin 1110 may be detected, and the displacement or drive signal of the bobbin 1110 is controlled based on the detected displacement. Can be.
  • the sensing coil 1170 may be disposed under the upper elastic member 1150 disposed on the upper surface of the housing 1410, and may be disposed above the magnet 1130 disposed in the housing 1140.
  • each of the plurality of support members 1220-1-1220-4 can be disposed adjacent to a corresponding one of the four second sides 1142, and one end of the support member 1220 is It may be bonded to the outer frame 1152 of the upper elastic member 1150 disposed on the corresponding second side.
  • the support member 1220 may be disposed in the form of a leaf spring on the first side 1141 of the housing 1140.
  • the plurality of support members 1220-1 to 1220-4 may form a path for transmitting a driving signal from the circuit board 1250 to the first coil 1120, and the induced voltage output from the sensing coil 1170. To form a path for transferring the circuit board 1250 to the circuit board 1250.
  • the plurality of support members 1220-1 to 1220-4 may be implemented as a member that can be supported by elasticity, for example, a leaf spring, a coil spring, a suspension wire, or the like.
  • the support member 220 may be integrally formed with the upper elastic member.
  • the plurality of support members 1220-1 to 1220-4 may be spaced apart from the housing 1140, and are not fixed to the housing 1140, but are connected to the outer frame 1153 of the upper elastic member 1150. 1530 may be directly connected.
  • connecting portion 1530 of the outer frame 1153 of the upper elastic member 1150 is spaced apart from the housing 140, it can be easily moved in the first direction.
  • the support members 1220-1 to 1220-4 are directly connected to the connection part 1530 that can be easily moved in the first direction, the support members 1220-1 to 1220-4 are first compared to the general support member fixed to the housing 1140. It can move more easily in the direction, thereby improving the accuracy of image stabilization. In particular, stress can be dispersed against drops and impacts, thereby suppressing deformation and disconnection of the support members 220-1 to 220-4.
  • the first to fourth upper elastic members 1150-1 to 1150-4 may be electrically connected to the circuit board 1250 through the support members 1220-1 to 1220-4.
  • both ends of the first coil 1120 may be connected to inner frames of the first and second upper elastic members 1150-1 and 1150-2, and the first and second upper elastic members 1150-1.
  • both ends of the sensing coil 1170 may be connected to inner frames of the third and fourth upper elastic members 1150-3 and 1150-4, and the third and fourth upper elastic members 1150-3. 1150-4 to 1150-4 and support members 1220-3 to 1220-4 to electrically connect the circuit board 1250.
  • the support members 1220-1 to 1220-4 may be located inside the ring-shaped sensing coil 1170.
  • the base 1210 may have a hollow corresponding to the hollow of the bobbin 1110, and / or the hollow of the housing 1140, and may have a shape coinciding with or corresponding to the cover member 1300, eg, a rectangular shape. .
  • FIG. 17 is an exploded perspective view of the base 1210, the second coil 1230, and the circuit board 1250 shown in FIG. 1.
  • the base 1210 may include a step 1211 to which an adhesive may be applied when fixing the cover member 1300.
  • the step 1211 may guide the cover member 1300 coupled to the upper side, and the end of the cover member 1300 may be coupled to face contact.
  • a base portion 1255 having a corresponding size may be formed on a surface of the base 1210 facing the portion where the terminal 1251 of the circuit board 1250 is formed.
  • the supporting part 1255 of the base 1210 may be formed without the step 1211 in a predetermined cross section from the outer surface of the base 1210, and may support the terminal surface 1253 of the circuit board 1250.
  • An edge of the base 1210 may have a recess 1212.
  • the protrusion of the cover member 1300 may be fastened to the base 1210 in the recess 1212.
  • seating grooves 1215-1 and 1215-2 on which the OIS position sensor 1240 may be disposed may be provided on an upper surface of the base 1210.
  • two mounting grooves 1215-1 and 1215-2 may be provided in the base 1210, and the OIS position sensor 1240 may include the mounting grooves 1215-1, of the base 1210. 1215-2, the degree of movement of the housing 1140 in the second and third directions can be sensed.
  • virtual lines connecting the centers of the mounting grooves 1215-1 and 1215-2 of the base 1210 and the center of the base 1210 may cross each other, for example, the mounting of the base 1210.
  • An angle formed by the imaginary lines connecting the centers of the grooves 1215-1 and 1215-2 and the center of the base 1210 may be 90 °, but is not limited thereto.
  • the second coil 1230 may be disposed above the circuit board 1250, and the OIS position sensor 1240 may be disposed below the circuit board 1250.
  • the OIS position sensor 1240 may detect a displacement of the housing 1140 relative to the base 1210 in a direction perpendicular to the optical axis (eg, Z axis) (eg, X axis or Y axis). For example, the OIS position sensor 1240 may detect a change in the magnetic force of the magnet 1130 according to the movement of the housing 1140, and may output a signal according to the detected result.
  • the optical axis eg, Z axis
  • the OIS position sensor 1240 may detect a change in the magnetic force of the magnet 1130 according to the movement of the housing 1140, and may output a signal according to the detected result.
  • the OIS position sensor 1240 may include a first OIS position sensor 1240a and a second OIS position sensor 1240b which are disposed to be orthogonal to each other to sense a displacement of the housing 1140 in a direction perpendicular to the optical axis. have.
  • the circuit board 1250 may be disposed on an upper surface of the base 1210 and may have a hollow corresponding to the hollow of the bobbin 1110, the hollow of the housing 1140, and / or the hollow of the base 1210. Can be.
  • the outer circumferential surface of the circuit board 1250 may have a shape coinciding with or corresponding to the upper surface of the base 1210, for example, a quadrangular shape.
  • the circuit board 1250 may be provided with at least one terminal surface 1253 which is bent from the top surface and has a plurality of terminals 251 or pins for receiving electrical signals from the outside. .
  • the second coil 1230 is implemented in a form provided in a circuit member 1231 separate from the circuit board 1250, but is not limited thereto.
  • the second coil 1230 may have a ring shape. May be implemented in the form of a coil block, or in the form of a FP coil, or in the form of a circuit pattern formed on the circuit board 1250.
  • the second coil 1130 may include a through hole 1230a penetrating the circuit member 231.
  • the support member 1220 may be electrically connected to the circuit board 1250 through the through hole 1230a.
  • the second coil 1230 is disposed above the circuit board 250 to face the magnet 1130 disposed in the housing 1140.
  • Four second coils 1230 may be installed on four sides of the circuit board 1250, but the present invention is not limited thereto. Only two second coils 1230 may be installed, one for the second direction and one for the third direction. 4 or more can be installed.
  • the housing 1140 may move in the second and / or third directions, thereby performing image stabilization.
  • the OIS position sensors 1240a and 1240b may be provided as hall sensors, and any sensor capable of detecting magnetic field strength may be used.
  • the OIS position sensors 1240a and 1240b may be implemented in the form of a driver including a hall sensor or may be implemented by a position detection sensor such as a hall sensor alone.
  • a plurality of terminals 1251 may be installed on the terminal surface 1253 of the circuit board 1250.
  • external power is applied through a plurality of terminals 1251 provided on the terminal surface 1253 of the circuit board 1250 to supply power to the first and second coils 1120 and 1230 and the OIS position sensor 1240. It may be supplied, or may receive an induction voltage output from the sensing coil 1170 and output it to the outside, or may receive an output signal output from the OIS position sensor 1240 and output it to the outside.
  • the circuit board 1250 may be provided as an FPCB, but is not limited thereto.
  • the terminals of the circuit board 1250 may be directly formed on the surface of the base 1210 using a surface electrode method or the like. Do.
  • the circuit board 2150 may include a through hole or a groove (not shown) through which the support member 1220 can pass.
  • the support member 1220 may be electrically connected to the bottom surface of the circuit board 1250 through soldering or the like, which may be disposed on the bottom surface of the circuit board 1250 through a hole or a groove of the circuit board 1250.
  • the circuit board 1250 may not have a through hole, and the support member 1220 may be electrically connected to a circuit pattern or a pad formed on an upper surface of the circuit board 1250 through soldering or the like.
  • FIG. 18 is a side perspective view of the lens driving device shown in FIG. 12
  • FIG. 19A is a cutaway cross-sectional view of II ′ of the lens driving device shown in FIG. 12
  • FIG. 19B is a lens driving device shown in FIG. 12.
  • the sectional drawing of II-II 'of the following is shown.
  • the sensing coil 1170 may include mounting grooves 1141b for sensing coils provided in the first side surfaces 1141 and the second side surfaces 1142 of the housing 1140. Is wound directly in.
  • the sensing coil 1170 may not overlap with the magnet 1130 in a direction perpendicular to the first direction. This is to reduce the interference between the magnet 1130 and the sensing coil 1710.
  • the sensing coil 1170 may be spaced apart from the first coil 1120 by a predetermined interval in a first direction, and may not overlap the first coil 120 in a direction perpendicular to the first direction. . Maintaining a predetermined distance between the first coil and the sensing coil 1170 in the first direction is to ensure the linearity of the induced voltage induced in the sensing coil 1170 by the current of the first coil 1120.
  • the sensing coil 1170 may overlap the magnet 1130 in the first direction, but is not limited thereto. In another embodiment, the sensing coil 1170 may not overlap each other in the first direction.
  • the sensing coil 1170 may be directly wound to the side of the housing 1140 such that at least one portion is positioned outside the support member 1220.
  • the outside of the support member 1220 may be opposite to the center of the hollow of the housing 1140 with respect to the support member 1220.
  • the support member 1220 may be positioned between the first coil 1120 and the sensing coil 1170 in a direction perpendicular to the optical axis.
  • the sensing coil 1170 may include first portions 1170-1 (see FIG. 18) disposed on the outer side surfaces of the first sides 1141, and a second portion disposed on the outer side surfaces of the second sides 1142. And 1170-2 (see FIG. 18).
  • each of the first portions 1170-1 of the sensing coil 1170 may be linear, and each of the second portions 1170-2 may be curved.
  • the second portions 1170-2 of the sensing coil 1170 may be located outside the support member 1220.
  • each of the second portions 1170-2 of the sensing coil 1170 may be located outside of a corresponding one of the support members 1220-1 to 1220-4.
  • the distance from the center of the housing 1140 to each of the support members 1220-1 through 1220-4 is the distance from the center of the housing 1140 to each of the second portions 1170-2 of the sensing coil 1170. Less than distance
  • the separation distance of any one support member (eg, 1220-1) relative to the center of the housing 1140 is a second portion of the sensing coil 1170 corresponding to any one support member (eg, 1220-1). It may be less than the separation distance of (1170-2).
  • the sensing coil 1170 does not overlap with the frame connecting portion 1153 of each of the first to fourth upper elastic members 1150-1 to 1150-4 in the first direction.
  • FIG. 20 is a partial cross-sectional view taken along line II-II 'for explaining a relative position between the sensing coil 1170 and the support member 1220 according to the embodiment
  • FIG. 21 is a sensing coil 1170 according to the embodiment.
  • a partial cutaway cross-sectional view of II 'for explaining the relative position between the support members 1220 is shown.
  • FIGS. 20 and 21 (a) show a partial cross-sectional view of the lens driving device including the sensing coil 1170 disposed inside the support member 220-1, and FIGS. 20 and 21 (b) are implemented.
  • Some sectional drawing of another lens drive apparatus is shown to an example. Assume that the upper end of the housing 1140 of FIGS. 20 and 21 (a) and the upper end of the housing 1140 of FIGS. 20 and 21 (b) are aligned with the same reference line 1101.
  • the sensing coil 1170 is disposed in the housing 1140 such that the second portion 1170-2 of the sensing coil 1170 is located outside the support members 1220-1 to 1220-4. Because it is wound directly to the side of the), an embodiment can wind the sensing coil 1170 to the top of the outer side of the first and second sides 1141, 1142 of the housing 1140, and to the housing 1140 The length of the once coiled sensing coil 1170 may be increased. As the length of the once coil 1170 is increased, the number of windings of the housing 1140 for implementing the sensing coil 1170 having a predetermined resistance value may be reduced.
  • an area of the housing 1140 required for the sensing coil 1170 may be reduced, and an area for arranging the magnet 1130 may be increased, and thus mounted in the housing 1140. You can increase the magnet size.
  • the resistance value of the sensing coil is affected by the temperature change, and the sensing current may change due to the change in the resistance value of the sensing coil. Since the influence of the sensing current due to this temperature change can cause malfunction of the AF drive, temperature compensation is required.
  • This temperature compensation can be easily performed by setting the resistance of the sensing coil to be greater than or equal to a predetermined resistance value (for example, 30 mA).
  • the embodiment may implement a predetermined resistance value to facilitate temperature compensation with a small number of turns.
  • the embodiment may increase the electromagnetic force due to interaction with the magnet 1130.
  • FIG. 21A While the magnet 1130 having the first width L1 and the first height H1 may be disposed in the housing 1140 in which the sensing coil 1170 illustrated in FIG. 21A is disposed, FIG. A magnet 1130 having a second width L2> L1 and a second height H2> H1 may be disposed in the housing 1140 in which the sensing coil 1170 illustrated in FIG. 21B is disposed. .
  • FIG. 22 is a top view illustrating an arrangement of the sensing coil 1170 illustrated in FIG. 20A
  • FIG. 23 is a top view illustrating an arrangement of the sensing coil 1170 illustrated in FIG. 20B.
  • the embodiment is the sensing coil 1170 and the housing 1140 or because the sensing coil 1170 is directly wound on the outer surface of the first and second sides 1141 and 1142 of the housing 1140. Degradation of the bonding reliability between the sensing coil 1170 and the upper elastic member 1150 may be prevented.
  • the embodiment provides a space constraint for installing the upper elastic member 1150 on the top of the housing 1140. Do not receive.
  • the sensing coil 1170 since the sensing coil 1170 is disposed outside the support member 1220, the sensing coil 1170 can increase the length of the outermost circumference of the sensing coil 1170 to the maximum and have a predetermined resistance with a small winding. It may be implemented, and by increasing the size of the magnet 1130 that can be disposed in the housing 1140 may increase the electromagnetic force for driving the AF or OIS.
  • 24A is an exploded perspective view of the camera module 200 according to the embodiment.
  • the camera module includes a lens barrel 400, a lens driving device 100, an adhesive member 612, a filter 610, a first holder 600, a second holder 800, and an image sensor ( 810, a motion sensor 820, a controller 830, and a connector 840.
  • the camera module may include the lens driving apparatus 1100 of FIG. 11 instead of the lens driving apparatus 100.
  • the lens barrel 400 may be mounted to the bobbin 110 of the lens driving apparatus 100.
  • the first holder 600 may be disposed under the base 210 of the lens driving apparatus 100.
  • the filter 610 may be mounted on the first holder 600, and the first holder 600 may include a protrusion 500 on which the filter 610 is seated.
  • the adhesive member 612 may couple or attach the bases 210 and 1210 of the lens driving apparatuses 100 and 1100 to the first holder 600.
  • the adhesive member 612 may serve to prevent foreign substances from flowing into the lens driving apparatus 100 in addition to the above-described adhesive role.
  • the adhesive member 612 may be an epoxy, a thermosetting adhesive, an ultraviolet curable adhesive, or the like.
  • the filter 610 may serve to block light of a specific frequency band from light passing through the lens barrel 400 from entering the image sensor 810.
  • the filter 610 may be an infrared cut filter, but is not limited thereto. In this case, the filter 610 may be disposed to be parallel to the x-y plane.
  • a hollow may be formed at a portion of the first holder 600 on which the filter 610 is mounted so that light passing through the filter 610 may be incident on the image sensor 810.
  • the second holder 800 may be disposed under the first holder 600, and the image sensor 810 may be mounted on the second holder 600.
  • the image sensor 810 is a portion at which light passing through the filter 610 is incident to form an image included in the light.
  • the second holder 800 may be provided with various circuits, elements, controllers, etc. in order to convert the image formed in the image sensor 810 into an electrical signal to transmit to the external device.
  • the second holder 800 may be mounted with an image sensor, a circuit pattern may be formed, and may be implemented as a circuit board to which various elements are coupled.
  • the image sensor 810 may receive an image included in light incident through the lens driving apparatus 100, and may convert the received image into an electrical signal.
  • the filter 610 and the image sensor 810 may be spaced apart from each other in a first direction.
  • the motion sensor 820 may be mounted on the second holder 800, and may be electrically connected to the controller 830 through a circuit pattern provided in the second holder 800.
  • the motion sensor 820 outputs rotational angular velocity information by the movement of the camera module 200.
  • the motion sensor 820 may be implemented as a two-axis or three-axis gyro sensor or an angular velocity sensor.
  • the controller 820 may be mounted on the second holder 800 and may be electrically connected to the second position sensor 240 and the second coil 230 of the lens driving apparatus 100.
  • the second holder 800 may be electrically connected to the circuit board 250 of the lens driving apparatus 100, and the controller 820 mounted on the second holder 800 may be formed through the circuit board 250.
  • the second position sensor 240 and the second coil 230 may be electrically connected to each other.
  • the controller 830 may generate a driving signal for performing image stabilization of the OIS movable part of the lens driving apparatus 100 based on the feedback signals provided from the second position sensor 240 of the lens driving apparatus 100. You can print
  • the connector 840 is electrically connected to the second holder 800 and may have a port for electrically connecting with an external device.
  • the lens driving apparatus 100 forms an image of an object in space using reflection, refraction, absorption, interference, diffraction, etc., which are characteristics of light, and aims to increase the visual power of the eye, or
  • the present invention can be applied to an optical instrument for the purpose of recording and reproducing an image by the image, or for optical measurement, image propagation or transmission.
  • the optical device according to the embodiment may be a portable terminal equipped with a smartphone and a camera.
  • 24B illustrates a block diagram of an image sensor 810 illustrated in FIG. 24A.
  • the image sensor 810 includes a sensing controller 905, a pixel array 910, and an analog-digital converting block 920.
  • the sensing controller 905 controls signals (eg, a reset signal RX, a transmission signal TX, and a selection signal SX) for controlling the transistors included in the pixel array 120, and an analog-digital conversion block. Control signals Sc for controlling 130 are output.
  • signals eg, a reset signal RX, a transmission signal TX, and a selection signal SX
  • the pixel array unit 910 includes a plurality of unit pixels (a natural number of P11 to Pnm, n, m> 1), and the plurality of unit pixels P11 to Pnm are matrixes formed of rows and columns. ) May be arranged to have a shape.
  • Each of the unit pixels P11 to Pnm may be a photoelectric conversion element that detects light and converts it into an electrical signal.
  • the pixel array 120 may include sensing lines connected to output terminals of the unit pixels P11 to Pnm.
  • each of the unit pixels P11 to Pnm may include a photodiode, a transfer transistor, a reset transistor, a drive transistor, and a select transistor. It is not limited to this.
  • the number of transistors included in the unit pixel is not limited to four, but may be three or five.
  • the photodiode absorbs light and can generate a charge by the absorbed light.
  • the transfer transistor may transfer charges generated by the photodiode to a sensing node (eg, a floating diffusion region) in response to the transmission signal TX.
  • the reset transistor can reset the unit pixel in response to the reset signal RX.
  • the drive transistor can be controlled in response to the voltage of the sense node, can be implemented as a source follower, and can act as a buffer.
  • the select transistor may be controlled by the selection signal SE, and output the sensing signal Va to an output terminal of the unit pixel.
  • the analog-digital conversion block 920 samples the sensing signal Va, which is an analog signal output from the pixel array unit 905, and converts the sampled sensing signal into a digital signal Ds.
  • the analog-to-digital conversion block 920 may perform correlated double sampling (CDS) to remove pixel-specific fixed pattern noise.
  • CDS correlated double sampling
  • the above-described sensing control unit 905 and the analog-digital conversion block 920 may be implemented separately from the control unit 830, but are not limited thereto.
  • the sensing control unit 905, the analog-digital conversion block 920, and the control unit ( 830 may be implemented as a single controller.
  • FIG. 25 is a perspective view of a portable terminal 200A according to an embodiment
  • FIG. 26 is a block diagram of the portable terminal illustrated in FIG. 25.
  • the portable terminal 200A (hereinafter referred to as a “terminal”) includes a body 850, a wireless communication unit 710, an A / V input unit 720, a sensing unit 740, and input / output.
  • the output unit 750 may include a memory unit 760, an interface unit 770, a controller 780, and a power supply unit 790.
  • the body 850 illustrated in FIG. 25 has a bar shape, but is not limited thereto, and includes a slide type, a folder type, and a swing type in which two or more sub-bodies are relatively movable. It may have various structures, such as a swivel type.
  • the body 850 may include a case (casing, housing, cover, etc.) forming an appearance.
  • the body 850 may be divided into a front case 851 and a rear case 852.
  • Various electronic components of the terminal may be built in a space formed between the front case 851 and the rear case 852.
  • the wireless communication unit 710 may include one or more modules that enable wireless communication between the terminal 200A and the wireless communication system or between the terminal 200A and the network in which the terminal 200A is located.
  • the wireless communication unit 710 may include a broadcast receiving module 711, a mobile communication module 712, a wireless internet module 713, a short range communication module 714, and a location information module 715. have.
  • the A / V input unit 720 is for inputting an audio signal or a video signal, and may include a camera 721 and a microphone 722.
  • the camera 721 may be the camera 200 according to the embodiment shown in FIG. 24.
  • the sensing unit 740 detects the current state of the terminal 200A such as the open / closed state of the terminal 200A, the position of the terminal 200A, the presence or absence of a user contact, the orientation of the terminal 200A, the acceleration / deceleration of the terminal 200A, and the like. Sensing may generate a sensing signal for controlling the operation of the terminal 200A. For example, when the terminal 200A is in the form of a slide phone, it may sense whether the slide phone is opened or closed. In addition, it is responsible for sensing functions related to whether the power supply unit 790 is supplied with power or whether the interface unit 770 is coupled to an external device.
  • the input / output unit 750 is for generating an input or output related to sight, hearing, or touch.
  • the input / output unit 750 may generate input data for controlling the operation of the terminal 200A, and may also display information processed by the terminal 200A.
  • the input / output unit 750 may include a key pad unit 730, a display module 751, a sound output module 752, and a touch screen panel 753.
  • the keypad 730 may generate input data by a keypad input.
  • the display module 751 may include a plurality of pixels whose color changes according to an electrical signal.
  • the display module 751 may be a liquid crystal display, a thin film transistor-liquid crystal display, an organic light-emitting diode, a flexible display, or a three-dimensional display. It may include at least one of a display (3D display).
  • the sound output module 752 may output audio data received from the wireless communication unit 710 in a call signal reception, call mode, recording mode, voice recognition mode, or broadcast reception mode, or may be stored in the memory unit 760. Audio data can be output.
  • the touch screen panel 753 may convert a change in capacitance generated due to a user's touch on a specific area of the touch screen into an electrical input signal.
  • the memory unit 760 may store a program for processing and controlling the control unit 780 and stores input / output data (for example, a phone book, a message, an audio, a still image, a picture, a video, etc.). Can be stored temporarily.
  • the memory unit 760 may store an image captured by the camera 721, for example, a picture or a video.
  • the interface unit 770 serves as a path for connecting with an external device connected to the terminal 200A.
  • the interface unit 770 receives data from an external device, receives power, transfers the power to each component inside the terminal 200A, or transmits data inside the terminal 200A to the external device.
  • the interface unit 770 may include a wired / wireless headset port, an external charger port, a wired / wireless data port, a memory card port, a port for connecting a device equipped with an identification module, and audio I / O. Output) port, video I / O (Input / Output) port, and earphone port.
  • the controller 780 may control the overall operation of the terminal 200A.
  • the controller 780 may perform related control and processing for voice call, data communication, video call, and the like.
  • the controller 780 may include a multimedia module 781 for playing multimedia.
  • the multimedia module 781 may be implemented in the controller 180 or may be implemented separately from the controller 780.
  • the controller 780 may perform a pattern recognition process for recognizing a writing input or a drawing input performed on a touch screen as text and an image, respectively.
  • the power supply unit 790 may receive an external power source or an internal power source under the control of the controller 780 to supply power required for the operation of each component.
  • the embodiment can prevent the deterioration of the bonding reliability of the sensing coil, facilitate the soldering operation for bonding the sensing coil, implement a sensing coil having a predetermined resistance with a small winding, and by interacting with a magnet It can be used in a lens driving device that can improve the electromagnetic force, and a camera module and an optical device including the same.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Lens Barrels (AREA)

Abstract

실시 예는 마그네트를 지지하는 하우징, 외주면에 제1 코일이 배치되고, 상기 마그네트와 상기 제1 코일의 상호 작용에 의하여 이동하는 보빈, 상기 보빈과 상기 하우징에 결합되는 상측 탄성 부재 및 하측 탄성 부재, 및 상기 마그네트와 이격하여 상기 하우징에 배치되며, 상기 제1 코일과 상호 작용에 의하여 유도 전압이 발생하는 센싱 코일을 포함하며, 상기 센싱 코일은 광축을 기준으로 시계 방향 또는 시계 반대 방향으로 회전하도록 상기 하우징의 측부에 권선된다.

Description

렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
실시 예는 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기에 관한 것이다.
초소형, 저전력 소모를 위한 카메라 모듈은 기존의 일반적인 카메라 모듈에 사용된 보이스 코일 모터(VCM:Voice Coil Motor)의 기술을 적용하기 곤란하여, 이와 관련 연구가 활발히 진행되어 왔다.
스마트폰 및 카메라가 장착된 휴대폰과 같은 전자 제품의 수요 및 생산이 증가되고 있다. 휴대폰용 카메라는 고화소화 및 소형화 추세이며, 그에 따라 액츄에이터도 소형화, 대구경화, 멀티 기능화되고 있다. 고화소화의 휴대폰용 카메라를 구현하기 위하여 휴대폰용 카메라의 성능 향상 및 오토 포커싱, 셔터 흔들림 개선, 및 줌(Zoom) 기능 등의 추가적인 기능이 요구된다.
실시 예는 센싱 코일의 본딩 신뢰성 저하를 방지하고, 센싱 코일 본딩을 위한 솔더링 작업을 용이하게 수행할 수 있고, 적은 권선으로 기설정된 저항을 갖는 센싱 코일을 구현할 수 있고, 마그네트와의 상호 작용에 의한 전자기력을 향상시킬 수 있는 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기를 제공한다.
실시 예에 따른 렌즈 구동 장치는 하우징(Housing); 상기 하우징 내측에 배치되고, 렌즈를 장착하기 위한 보빈; 상기 보빈에 배치되는 제1 코일; 상기 하우징에 배치되는 마그네트; 상기 보빈과 상기 하우징에 결합되는 상측 탄성 부재 및 하측 탄성 부재; 및 상기 마그네트와 이격하여 상기 하우징에 배치되며, 상기 제1 코일과 상호 작용에 의하여 유도 전압이 발생하는 센싱 코일을 포함하며, 상기 센싱 코일은 광축을 기준으로 회전하도록 상기 하우징의 측부에 배치된다.
상기 하우징은 복수의 측부들을 포함하며, 상기 센싱 코일은 상기 하우징의 측부들의 외측면에 배치될 수 있다.
상기 하우징의 측부들의 외측면에는 안착홈이 형성되며, 상기 센싱 코일은 상기 안착홈에 권선될 수 있다.
상기 하우징은 상기 센싱 코일의 시선을 가이드하기 위하여 상기 측부들 중 어느 하나의 외측면으로부터 돌출되는 제1 단차부; 및 상기 센싱 코일의 종선을 가이드하기 위하여 상기 측부들 중 다른 어느 하나의 외측면으로부터 돌출되는 제2 단차부를 포함할 수 있다.
상기 센싱 코일은 상기 상측 탄성 부재 아래에 배치되고, 상기 마그네트 위에 배치될 수 있다.
초기 위치에서 상기 센싱 코일은 상기 광축과 평행한 방향으로 마그네트와 오버랩되지 않을 수 있다.
초기 위치에서 상기 센싱 코일은 상기 광축과 수직인 방향으로 상기 마그네트와 오버랩되지 않을 수 있다.
초기 위치에서 상기 센싱 코일은 상기 광축과 수직인 방향으로 상기 제1 코일과 오버랩되지 않을 수 있다.
상기 제1 코일에는 교류 신호 또는 펄스 신호 형태의 구동 신호가 인가될 수 있다.
상기 상측 탄성 부재는 2개 이상으로 분할될 수 있고, 상기 제1 코일은 상기 분할된 상측 탄성 부재들 중에서 선택된 2개와 전기적으로 연결될 수 있고, 상기 센싱 코일은 상기 선택된 2개의 상측 탄성 부재들을 제외한 나머지 상측 탄성 부재들 중에서 선택된 2개와 전기적으로 연결될 수 있다.
상기 상측 탄성 부재는 서로 분리된 제1 및 제2 상측 탄성 부재들을 포함할 수 있고, 상기 제1 및 제2 상측 탄성 부재들 각각은 상기 보빈에 결합하는 내측 프레임, 상기 하우징에 결합하는 외측 프레임, 및 상기 내측 프레임과 상기 외측 프레임을 연결하는 프레임 연결부를 포함하며, 상기 센싱 코일의 시선 부분은 상기 제1 상측 탄성 부재의 외측 프레임에 직접 본딩되고, 상기 센싱 코일의 종선 부분은 상기 제2 상측 탄성 부재의 외측 프레임에 직접 본딩될 수 있다.
상기 렌즈 구동 장치는 상기 하측 탄성 부재 아래에 위치하는 회로 기판; 및
상기 분할된 상측 탄성 부재들과 상기 회로 기판을 전기적으로 연결하는 지지 부재들을 더 포함할 수 있고, 상기 센싱 코일은 상기 지지 부재들과 상기 하우징의 외측 측부 사이에 배치될 수 있다.
다른 실시 예에 따른 렌즈 구동 장치는 하우징; 상기 하우징 내측에 배치되고, 렌즈를 장착하기 위한 보빈; 상기 보빈에 배치되는 제1 코일; 상기 보빈과 상기 하우징에 결합되는 상측 탄성 부재; 일단이 상기 상측 탄성 부재와 연결되는 지지 부재; 및 상기 제1 코일과 상호 작용에 의하여 유도 전압을 발생하는 센싱 코일을 포함하며, 상기 센싱 코일은 상기 마그네트와 이격하고, 적어도 일 부분이 상기 지지 부재의 외측에 위치하도록 상기 하우징의 측부에 배치되고, 상기 지지 부재의 외측은 상기 지지 부재를 기준으로 상기 하우징의 중앙의 반대편이다.
상기 하우징은 상기 마그네트가 배치되는 제1 측부들; 및 상기 지지 부재가 배치되고, 상기 제1 측부들 중 인접하는 2개의 제1 측부들을 서로 연결하는 제2 측부들을 포함할 수 있고, 상기 센싱 코일은 상기 제1 및 제2 측부들의 외측면에 배치될 수 있다.
상기 센싱 코일은 상기 제1 측부들의 외측면에 배치되는 제1 부분들; 및 상기 제2 측부들의 외측면에 배치되는 제2 부분을 포함할 수 있고, 상기 제2 부분들 각각은 곡선일 수 있다.
상기 센싱 코일의 제2 부분들 각각은 상기 지지 부재의 외측에 위치할 수 있다.
상기 하우징의 중앙으로부터 상기 지지 부재까지의 이격 거리는 상기 하우징의 중앙으로부터 상기 센싱 코일의 제2 부분까지의 이격 거리보다 작을 수 있다.
상기 하우징은 상기 제1 측부들에 마련되는 제1 홈, 및 상기 제2 측부들에 마련되는 제2 홈을 포함하는 안착홈을 구비할 수 있고, 상기 센싱 코일은 상기 안착홈에 배치될 수 있고, 제1 거리는 제2 거리보다 더 클 수 있고, 상기 제1 거리는 상기 하우징의 중앙을 지나고 광축과 평행한 가상의 직선과 상기 제2 홈 간의 이격 거리이고, 상기 제2 거리는 상기 가상의 직선과 상기 통공 간의 이격 거리일 수 있다.
실시 예에 따른 카메라 모듈은 렌즈 배럴; 상기 렌즈 배럴을 이동시키는 실시 예에 따른 렌즈 구동 장치; 및 상기 렌즈 구동 장치를 통하여 입사되는 이미지를 전기적 신호로 변환하는 이미지 센서를 포함한다.
실시 예에 따른 광학 기기는 전기적 신호에 의하여 색이 변화하는 복수 개의 픽셀들을 포함하는 디스플레이 모듈; 렌즈를 통하여 입사되는 이미지를 전기적 신호로 변환하는 실시 예에 따른 카메라 모듈; 및 상기 디스플레이 모듈, 및 상기 카메라 모듈의 동작을 제어하는 제어부를 포함한다.
실시 예는 센싱 코일의 본딩 신뢰성 저하를 방지하고, 센싱 코일 본딩을 위한 솔더링 작업을 용이하게 수행할 수 있고, 적은 권선으로 기설정된 저항을 갖는 센싱 코일을 구현할 수 있고, 마그네트와의 상호 작용에 의한 전자기력을 향상시킬 수 있다.
도 1은 도 1에 도시된 렌즈 구동 장치의 분해 사시도를 나타낸다.
도 2는 도 1의 커버 부재를 제외한 렌즈 구동 장치의 결합 사시도를 나타낸다.
도 3은 도 1의 보빈의 사시도를 나타낸다.
도 4는 도 1에 도시된 하우징 및 마그네트의 제1 분해 사시도를 나타낸다.
도 5는 도 1에 도시된 하우징 및 마그네트의 제2 분해 사시도를 나타낸다.
도 6은 도 1에 도시된 상측 탄성 부재, 하측 탄성 부재, 베이스, 지지 부재 및 회로 기판의 결합 사시도를 나타낸다.
도 7은 도 1에 도시된 베이스, 제2 코일 및 회로 기판의 분해 사시도를 나타낸다.
도 8은 도 2에 도시된 렌즈 구동 장치의 Ⅰ-Ⅰ'의 절단 단면도를 나타낸다.
도 9는 도 2에 도시된 렌즈 구동 장치의 Ⅱ-Ⅱ'의 절단 단면도를 나타낸다.
도 10은 일 실시 예에 따른 센싱 코일 가이드부의 확대도를 나타낸다.
도 11은 다른 실시 예에 따른 렌즈 구동 장치의 분해 사시도를 나타낸다.
도 12는 도 11의 커버 부재를 제외한 렌즈 구동 장치의 결합 사시도를 나타낸다.
도 13은 도 12에 도시된 보빈의 사시도를 나타낸다.
도 14는 도 11에 도시된 하우징 및 마그네트의 제1 분해 사시도를 나타낸다.
도 15는 도 11에 도시된 하우징 및 마그네트의 제2 분해 사시도를 나타낸다.
도 16은 도 11에 도시된 상측 탄성 부재, 하측 탄성 부재, 베이스, 지지 부재 및 회로 기판의 결합 사시도를 나타낸다.
도 17은 도 11에 도시된 베이스, 제2 코일 및 회로 기판의 분해 사시도를 나타낸다.
도 18은 도 12에 도시된 렌즈 구동 장치의 측면 사시도를 나타낸다.
도 19a는 도 12에 도시된 렌즈 구동 장치의 Ⅰ-Ⅰ'의 절단 단면도를 나타낸다.
도 19b는 도 12에 도시된 렌즈 구동 장치의 Ⅱ-Ⅱ'의 절단 단면도를 나타낸다.
도 20은 실시 예에 따른 센싱 코일과 지지 부재 사이의 상대적 위치를 설명하기 위한 Ⅱ-Ⅱ'의 절단 일부 단면도를 나타낸다.
도 21은 실시 예에 따른 센싱 코일과 지지 부재 사이의 상대적 위치를 설명하기 위한 Ⅰ-Ⅰ'의 절단 일부 단면도를 나타낸다.
도 22는 도 20의 (a)에 도시된 센싱 코일의 배치를 나타내는 상면도이다.
도 23은 도 20의 (b)에 도시된 센싱 코일의 배치를 나타내는 상면도이다.
도 24a는 실시 예에 따른 카메라 모듈의 분해 사시도를 나타낸다.
도 24b은 도 24a에 도시된 이미지 센서의 일 실시 예에 따른 블록도를 나타낸다.
도 25는 실시 예에 따른 휴대용 단말기의 사시도를 나타낸다.
도 26은 도 25에 도시된 휴대용 단말기의 구성도를 나타낸다.
이하, 실시 예들은 첨부된 도면 및 실시 예들에 대한 설명을 통하여 명백하게 드러나게 될 것이다. 실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on)"에 또는 "하/아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on)"와 "하/아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다. 또한 동일한 참조번호는 도면의 설명을 통하여 동일한 요소를 나타낸다.
이하, 첨부된 도면을 참조하여 실시 예에 의한 렌즈 구동 장치에 대해 다음과 같이 살펴본다. 설명의 편의상, 실시 예에 의한 렌즈 구동 장치는 데카르트 좌표계(x, y, z)를 사용하여 설명하지만, 다른 좌표계를 사용하여 설명할 수도 있으며, 실시 예는 이에 국한되지 않는다. 각 도면에서 x축과 y축은 광축 방향인 z축에 대하여 수직한 방향을 의미하며, 광축 방향인 z축 방향을 '제1 방향'이라 칭하고, x축 방향을 '제2 방향'이라 칭하고, y축 방향을 '제3 방향'이라 칭할 수 있다.
스마트폰 또는 태블릿 PC 등과 같은 모바일 디바이스의 소형 카메라 모듈에 적용되는 '손떨림 보정 장치'란 정지 화상의 촬영 시 사용자의 손떨림에 의해 기인한 진동으로 인해 촬영된 이미지의 외곽선이 또렷하게 형성되지 못하는 것을 방지할 수 있도록 구성된 장치를 의미할 수 있다.
또한, '오토 포커싱 장치'란, 피사체의 화상의 초점을 자동으로 이미지 센서 면에 결상시키는 장치이다. 이와 같은 손떨림 보정 장치와 오토 포커싱 장치는 다양하게 구성할 수 있는데, 실시 예에 의한 렌즈 구동 장치는, 적어도 한 장의 렌즈로 구성된 광학 모듈을 광축에 대해 평행한 제1 방향으로 움직이거나, 제1 방향에 수직인 제2 및 제3 방향에 의해 형성되는 면에 대하여 움직여 손떨림 보정 동작 및/또는 오토 포커싱 동작을 수행할 수 있다.
도 1은 실시 예에 따른 렌즈 구동 장치(100)의 분해 사시도를 나타내고, 도 2는 도 1의 커버 부재(300)를 제외한 렌즈 구동 장치의 결합 사시도를 나타내고, 도 3은 도 1의 보빈(110)의 사시도를 나타낸다.
도 1 및 도 2를 참조하면, 렌즈 구동 장치(100)는 보빈(bobbin, 110), 제1 코일(120), 마그네트(magnet, 130), 하우징(140), 상측 탄성 부재(150), 및 하측 탄성 부재(160), 및 센싱 코일(170)을 포함한다.
또한 렌즈 구동 장치(100)는 지지 부재(220), 제2 코일(230), OIS(Optical Image Stabilization) 위치 센서(240), 및 회로 기판(250)을 더 포함할 수 있다. 또한 렌즈 구동 장치(100)는 베이스(210), 및 커버 부재(300)를 더 포함할 수 있다.
먼저 커버 부재(300)에 대하여 설명한다.
커버 부재(300)는 베이스(210)와 함께 형성되는 수용 공간 내에 보빈(bobbin, 110), 제1 코일(120), 마그네트(130), 하우징(140), 상측 탄성 부재(150), 하측 탄성 부재(160), 센싱 코일(170), 지지 부재(220), 제2 코일(230), OIS 위치 센서(240), 및 회로 기판(250)을 수용한다.
커버 부재(300)는 하부가 개방되고, 상단부 및 측벽들을 포함하는 상자 형태일 수 있으며, 커버 부재(300)의 하부는 베이스(210)의 상부와 결합될 수 있다. 커버 부재(300)의 상단부의 형상은 다각형, 예컨대, 사각형 또는 팔각형 등일 수 있다.
커버 부재(300)는 보빈(110)과 결합하는 렌즈(미도시)를 외부광에 노출시키는 중공을 상단부에 구비할 수 있다. 또한, 카메라 모듈의 내부에 먼지나 수분 등의 이물질이 침투하는 것을 방지하기 위하여 커버 부재(300)의 중공에는 광투과성 물질로 이루어진 윈도우(Window)가 추가적으로 구비될 수 있다.
커버 부재(300)의 재질은 마그네트(130)와 붙는 현상을 방지하기 위하여 SUS 등과 같은 비자성체일 수 있으나, 자성 재질로 형성하여 요크(yoke) 기능을 할 수도 있다.
다음으로 보빈(110)에 대하여 설명한다.
보빈(110)은 하우징(140)의 내측에 위치하고, 코일(120)과 마그네트(130) 간의 전자기적 상호 작용에 의하여 광축 방향 또는 광축과 평행한 제1 방향(예컨대, Z축 방향 또는 광축 방향)으로 이동 가능하다.
보빈(110)은 도시하지는 않았으나, 내부에 적어도 하나 이상의 렌즈가 설치되는 렌즈 배럴(lens barrel, 미도시)을 포함할 수 있으며, 렌즈 배럴은 보빈(110)의 내측에 다양한 방식으로 결합할 수 있다.
보빈(110)은 렌즈 또는 렌즈 배럴의 장착을 위하여 중공을 가질 수 있다. 보빈(110)의 중공 형상은 장착되는 렌즈 또는 렌즈 배럴의 형상과 일치할 수 있으며, 예컨대, 원형, 타원형, 또는 다각형일 수 있으나, 이에 한정되는 것은 아니다. 보빈(110)의 외주면(110b)은 마그네트(130)가 배치되는 하우징(140)의 제1 측부들(141)과 대응 또는 마주보는 제1 측면들(110b-1), 및 제1 측면들(110b-1) 사이에 배치되고 제1 측면들(110b-1)을 연결하는 제2 측면들(110b-2)을 포함할 수 있다.
보빈(110)은 외부면(110b)에 제1 및 제2 돌출부들(111, 112)을 포함할 수 있다.
보빈(110)의 제1 돌출부(111)는 가이드(guide)부(111a) 및 제1 스토퍼(stopper)(111b)를 포함할 수 있다. 보빈(110)의 가이드부(111a)는 상측 탄성 부재(150)의 프레임 연결부의 설치 위치를 가이드 하는 역할을 수행할 수 있다.
보빈(110)의 제2 돌출부(112)는 보빈(110)의 외주면(110b)에서 제1 방향과 직교하는 제2 및 제3 방향으로 돌출되어 형성될 수 있다. 또한, 보빈(110)의 제2 돌출부(112)의 상부면(112a)에는 상측 탄성 부재(150)의 내측 프레임(151)과 결합하는 결합 돌기(113a)가 마련될 수 있다. 또한 보빈(110)은 하부면에 배치되고 하측 탄성 부재(160)의 내측 프레임(161)에 결합 및 고정되는 적어도 하나의 결합 돌기를 구비할 수 있다.
보빈(110)은 외주면에 제1 코일(120)이 배치 또는 설치되는 적어도 하나의 홈(미도시)을 구비할 수 있다. 상기 홈에 제1 코일(120)이 배치 또는 안착되거나, 상기 홈에 제1 코일(120)이 직접 권선될 수 있다. 홈의 형상 및 개수는 보빈(110)의 외주면에 배치되는 코일의 형상 및 개수에 상응할 수 있다. 다른 실시 예에서는 보빈(110)은 코일용 안착홈을 구비하지 않을 수 있고, 제1 코일(120)은 보빈(110)의 외주면에 직접 권선되어 고정될 수도 있다.
다음으로 제1 코일(120)에 대하여 설명한다.
제1 코일(120)은 보빈(110)의 외주면에 배치되며, 하우징(140)에 배치되는 마그네트(130)와 전자기적 상호 작용을 하는 구동용 코일일 수 있다. 마그네트(130)와 전자기적 상호 작용에 의한 전자기력을 생성하기 위하여 제1 코일(120)에는 구동 신호(예컨대, 구동 전류)가 인가될 수 있다.
제1 코일(120)과 마그네트(130) 간의 전자기적 상호 작용에 의한 전자기력에 의하여 AF(Auto Focus) 가동부는 제1 방향으로 이동할 수 있다. 제1 코일(120)에 인가되는 구동 신호를 제어하여 전자기력을 조절함으로써, AF 가동부의 제1 방향으로의 움직임을 제어할 수 있으며, 이로 인하여 오토 포커싱 기능이 수행될 수 있다.
AF 가동부는 상측 및 하측 탄성 부재들(150,160)에 의하여 탄성 지지되는 보빈(110), 및 보빈(110)에 장착되어 보빈(110)과 함께 이동하는 구성들을 포함할 수 있다. 예컨대 AF 가동부는 보빈(110), 제1 코일(120), 및 보빈(110)에 장착되는 렌즈(미도시)를 포함할 수 있다.
제1 코일(120)은 광축을 중심으로 시계 방향 또는 시계 반대 방향으로 회전하도록 보빈(110)의 외주면을 감싸도록 권선될 수 있다. 다른 실시 예에서 제1 코일(120)은 광축과 수직인 축을 중심으로 시계 방향 또는 시계 반대 방향으로 권선되는 코일 링 형태로 구현될 수 있으며, 코일 링의 개수는 마그네트(130)의 개수와 동일할 수 있으나, 이에 한정되는 것은 아니다.
제1 코일(120)은 구동 신호를 수신하기 위하여 상측 탄성 부재(150) 또는 하측 탄성 부재(160) 중 적어도 하나와 전기적으로 연결될 수 있다.
다음으로 하우징(140)에 대하여 설명한다.
하우징(140)은 마그네트(130) 및 센싱 코일(170)을 지지하며, 제1 코일(120) 및 마그네트(130)의 전자기적 상호 작용에 의한 기전력에 의하여 제1 방향으로 보빈(110)이 이동할 수 있도록 내측에 보빈(110)을 수용할 수 있다.
도 4는 도 1에 도시된 하우징(140) 및 마그네트(130)의 제1 분해 사시도를 나타내고, 도 5는 도 1에 도시된 하우징(140) 및 마그네트(130)의 제2 분해 사시도를 나타낸다.
도 4 및 도 5를 참조하면, 하우징(140)은 전체적으로 중공 기둥 형상일 수 있다. 예컨대, 하우징(140)은 다각형(예컨대, 사각형, 또는 팔각형) 또는 원형의 중공을 구비할 수 있다.
하우징(140)은 복수의 측부들(141,142)을 포함할 수 있다. 예를 들어, 하우징(140)은 4개의 제1 측부들(141)과 4개의 제2 측부들(142)을 포함할 수 있으며, 제1 측부들(141) 각각의 폭은 제2 측부들(142) 각각의 폭보다 클 수 있다.
하우징(140)의 제1 측부들(141)은 마그네트(130)가 설치되는 부분에 해당할 수 있다. 하우징(140)의 제2 측부들(142) 각각은 인접하는 2개의 제1 측부들 사이에 위치할 수 있고, 지지 부재(220)가 배치되는 부분에 해당할 수 있다.
예컨대, 제1 측부들(141)은 하우징(140)의 변들에 대응하는 부분일 수 있고, 제2 측부들(142)은 하우징(140)의 코너들(corners)에 대응하는 부분일 수 있다.
하우징(140)의 제1 측부들(141)은 하우징(140)의 제2 측부들(142)을 상호 연결하며, 일정 깊이의 평면을 포함할 수 있다. 하우징(140)의 제1 측부들(141) 각각은 이와 대응되는 마그네트(130)의 면적과 동일하거나 넓은 면적을 가질 수 있다.
하우징(140)은 마그네트(130)를 수용하기 위한 마그네트 안착부(141a)를 구비할 수 있다. 마그네트 안착부(141a)는 하우징(140)의 제1 측부들(141) 중 적어도 하나의 내측 하단에 마련될 수 있다. 예컨대, 마그네트 안착부(141a)는 4개의 제1 측부들 각각의 내측 하단에 마련될 수 있고, 마그네트들(130) 각각은 마그네트 안착부들(141a) 중 대응하는 어느 하나에 삽입, 고정될 수 있다.
하우징(140)의 마그네트 안착부(141a)는 마그네트(130)의 크기와 대응되는 요홈으로 형성될 수 있다. 제2 코일(240)과 마주보는 하우징(140)의 마그네트 안착부(141a)의 바닥면에는 개구가 형성될 수 있고, 마그네트 안착부(141a)에 고정된 마그네트(130)의 바닥면은 제2 코일(230)과 마주볼 수 있다.
하우징(140)의 제1 측부(141)는 커버 부재(300)의 측면과 평행하게 배치될 수 있다. 또한, 하우징(140)의 제1 측부(141)의 면적은 제2 측부(142)의 면적보다 클 수 있다.
하우징(140)의 제2 측부(142)는 지지 부재(220)가 지나가는 경로를 형성하는 통공(147; 147a 및 147b)을 구비할 수 있다. 예컨대, 하우징(140)은 제2 측부(142)의 상부를 관통하는 통공(147)을 포함할 수 있다. 통공(147)의 개수는 지지 부재의 개수와 동일할 수 있다.
또한, 도 1에 도시된 커버 부재(300)의 내면에 직접 충돌하는 것을 방지하기 위하여, 하우징(140)은 상단 또는 상부면에는 스토퍼(144)가 마련될 수 있다.
하우징(140)은 상측 탄성 부재(150)의 외측 프레임(152)과 결합하는 적어도 하나의 상측 지지 돌기(143; 143-1 내지 143-4)를 상단 또는 상부면에 구비할 수 있다.
예컨대, 하우징(140)의 상측 지지 돌기(143)는 하우징(140)의 제1 측부(141) 또는 제2 측부(142) 중 적어도 하나의 상부면에 형성될 수 있다. 예컨대, 하우징(140)의 상측 지지 돌기(143)는 하우징(140)의 상부면의 각 모서리에 인접하여 배치될 수 있다. 하우징(140)은 하측 탄성 부재(160)의 외측 프레임(162)에 결합 및 고정되는 하측 지지 돌기(145)를 하부면에 구비할 수 있다.
지지 부재(220)가 지나가는 경로를 형성하기 위해서일 뿐만 아니라, 댐핑 역할을 할 수 있는 젤 형태의 실리콘을 채우기 위한 공간을 확보하기 위하여 하우징(140)은 제2 측부(142)에 형성되는 요홈(142a)를 구비할 수 있다. 즉, 하우징(140)의 요홈(142a)에는 댐핑 실리콘이 채워질 수 있다.
하우징(140)은 제1 측부들(141)의 외측면으로부터 돌출된 적어도 하나의 스토퍼(149)를 구비할 수 있다. 스토퍼(149)는 하우징(140)이 제2 및/또는 제3 방향으로 움직일 때 커버 부재(300)와 충돌하는 것을 방지하기 위하여 제1 측부들(141)로부터 제2 또는 제3 방향으로 돌출될 수 있다.
하우징(140)의 바닥면이 후술할 베이스(210) 및/또는 회로 기판(250)과 충돌하는 것을 방지하기 위하여 하우징(140)은 하부면으로부터 돌출되는 스토퍼(미도시)를 더 구비할 수도 있으며, 하우징(140)의 상부면 및 하부면에 형성되는 스토퍼에 의하여 하우징(140)은 아래쪽으로는 베이스(210)와 이격될 수 있고, 상측으로는 커버 부재(300)와 이격되어 상하 간섭 없이 광축 방향 높이가 유지되도록 할 수 있다. 따라서 하우징(140)은 광축에 수직한 평면에서 전후좌후 방향인 제2 및 제 3 방향으로 쉬프팅 동작을 수행할 수 있다.
하우징(140)은 센싱 코일(170)을 권선하거나 또는 수용하기 위한 센싱 코일용 안착홈(141b)을 구비할 수 있다. 하우징(140)의 센싱 코일용 안착홈(141b)은 하우징(140)의 제1 측부들(141) 또는 제2 측부들(142) 중 적어도 하나의 외측 측면으로부터 함몰된 형태로 형성될 수 있으며, 제1 측부들(141) 또는/및 제2 측부들(142) 각각의 일단에서 타단까지 형성될 수 있다.
하우징(140)의 측부에 센싱 코일(170)을 직접 권선하기 위하여 센싱 코일용 안착홈(141b)의 깊이는 권선되는 센싱 코일의 두께보다 크거나 동일할 수 있다.
센싱 코일용 안착홈(141b)은 하우징(140)의 상단 아래에 위치할 수 있으며, 마그네트(130)가 안착되는 마그네트 안착부(141a) 위에 마련될 수 있다. 예컨대, 센싱 코일용 안착홈(141b)은 제1 방향으로 마그네트 안착부(141a)와 오버랩되지 않을 수 있으며, 제1 방향과 수직인 방향으로 마그네트 안착부(141a)와 오버랩되지 않을 수 있으나, 이에 한정되는 것은 아니다. 다른 실시 예에서는 센싱 코일용 안착홈(141b)은 제1 방향으로 마그네트 안착부(141a)와 오버랩될 수도 있다.
다음으로 마그네트(130)에 대하여 설명한다.
마그네트(130)는 광축과 수직인 방향으로 제1 코일(120)과 적어도 일부가 오버랩되도록 하우징(140)에 배치될 수 있다. 예컨대, 마그네트(130)는 하우징(140)의 안착부(141a) 내에 삽입 또는 배치될 수 있다.
마그네트(130)는 하우징(140)예 장착된 센싱 코일(170)과 이격하여 배치되며, 센싱 코일과 마그네트(130) 사이에는 하우징(140)의 일부가 배치될 수 있다.
예컨대, 마그네트(130)는 센싱 코일(170) 아래에 배치될 수 있다.
마그네트(130)와 센싱 코일(170)의 상호 간의 간섭을 줄이기 위하여 초기 위치에서 마그네트(130)와 센싱 코일(170)은 제1 방향으로 서로 오버랩되지 않도록 배치될 수 있으나, 이에 한정되는 것은 아니며, 다른 실시 예에서는 초기 위치에서 마그네트(130)와 센싱 코일(170)은 제1 방향으로 서로 오버랩될 수도 있다.
예컨대, 센싱 코일(170)은 하우징(140)의 제1 및 제2 측부들(141,142)의 외측 측면에 배치될 수 있고, 마그네트(130)는 하우징(140)의 제1 측부(141)의 내측 측면에 배치될 수 있다.
다른 실시 예에서 마그네트(130)는 하우징(140)의 제1 측부(141)의 외측 측면에 센싱 코일(170)과 이격하여 배치될 수도 있다.
또한 다른 실시 예에서 마그네트(130)는 하우징(140)의 제2 측부(142)의 내측에 배치되거나 또는 제2 측부(142)의 외측에 센싱 코일(170)과 이격하여 배치될 수도 있다.
마그네트(130)의 형상은 하우징(140)의 제1 측부(141)에 대응되는 형상, 예컨대, 직육면체 형상일 수 있으나, 이에 한정되는 것은 아니다.
마그네트(130)는 한 몸으로 구성될 수 있으며, 제1 코일(120)을 마주보는 면은 S극, 그 반대쪽 면은 N극이 되도록 배치할 수 있다. 그러나 이를 한정하는 것은 아니며, 반대로 구성하는 것도 가능하다.
마그네트(130)는 적어도 2개 이상이 설치될 수 있으며, 서로 마주 보도록 배치될 수 있다. 예컨대, 교차하도록 서로 마주보는 2쌍의 마그네트(130)가 하우징(140)에 배치될 수 있다. 이때, 마그네트(130)는 평면이 대략 사각형상일 수 있으며, 또는 이와 달리 삼각형상, 마름모 형상일 수도 있다.
예컨대, 하우징(140)의 제1 측부들(141) 중 서로 마주보는 2개의 제1 측부들 각각에 마그네트(130)가 배치될 수 있다.
다음으로 상측 탄성 부재(150), 하측 탄성 부재(160), 및 지지 부재(220)에 대하여 설명한다.
상측 탄성 부재(150) 및 하측 탄성 부재(160)는 보빈(110)을 탄성에 의하여 지지한다. 상측 탄성 부재(150)는 보빈(110)의 상부 및 하우징(140)의 상부와 연결되어 보빈(110)의 상부 및 하우징(140)의 상부를 지지한다.\
하측 탄성 부재(160)는 보빈(110)의 하부 및 하우징(140)의 하부와 연결되어 보빈(110)의 하부 및 하우징(140)의 하부를 지지한다.
지지 부재(220)는 하우징(140)을 베이스(210)에 대하여 광축과 수직인 방향으로 이동 가능하게 지지할 수 있고, 상측 또는 하측 탄성 부재들(150,160) 중 적어도 하나와 회로 기판(250)을 전기적으로 연결할 수 있다. 예컨대, 지지 부재(220)는 상측 탄성 부재(150)와 회로 기판(250)을 전기적으로 연결할 수 있다.
도 6은 도 1에 도시된 상측 탄성 부재(150), 하측 탄성 부재(160), 베이스(210), 지지 부재(220) 및 회로 기판(250)의 결합 사시도를 나타낸다.
도 6을 참조하면, 상측 탄성 부재(150)는 2개 이상으로 분할될 수 있다. 예컨대, 상측 탄성 부재(150)는 서로 전기적으로 분리되고, 서로 이격된 복수의 상측 탄성 부재들(150-1 내지 150-6)을 포함할 수 있다.
예컨대, 상측 탄성 부재들(150-1 내지 150-6)은 보빈(110)의 중심을 기준으로 x-y평면상에서 점대칭을 이루도록 배치될 수 있다. 여기서 점대칭이란, 두 개의 형상이 하나의 회전 중심점을 기준으로 180°회전시키는 경우, 두 개의 형상이 서로 겹쳐지는 대칭을 의미한다.
복수의 상측 탄성 부재들(150-1 내지 150-6) 중 적어도 하나는 지지 부재들(220) 중 대응하는 적어도 하나와 전기적으로 연결될 수 있다.
제1 내지 제4 상측 탄성 부재들(150-1 내지 150-4) 각각은 보빈(110)과 연결되는 내측 프레임(151), 하우징(140)과 연결되는 외측 프레임(152) 및 내측 프레임(151)과 외측 프레임(152)을 연결하는 프레임 연결부(153)를 포함할 수 있다.
제5 및 제6 상측 탄성 부재들(150-5, 150-6) 각각은 하우징(140)과 결합되며, 지지 부재들(220-5 내지 220-8)과 전기적으로 연결될 수 있다.
제5 및 제6 상측 탄성 부재들(150-5, 150-6)은 보빈(110)과 결합되지 않고, 하우징(140)에만 결합될 수 있고, 하우징(140)을 탄력적으로 지지할 수 있다.
예컨대, 제5 및 제6 상측 탄성 부재들(150-5, 150-6)은 하우징(140)과 결합하는 외측 프레임(152)을 구비할 수 있다.
예컨대, 제1 내지 제4 상측 탄성 부재들(150-1 내지 150-4) 각각의 내측 프레임(151)에는 보빈(110)의 상측 지지 돌기(113)에 결합되는 통공(151a)이 마련될 수 있고, 제1 내지 제6 상측 탄성 부재들(150-1 내지 150-6) 각각의 외측 프레임(152)에는 하우징(140)의 상측 지지 돌기(143)에 결합되는 통공(152a)이 마련될 수 있다. 예컨대, 외측 프레임(152)의 통공(152a)과 하우징(140)의 상측 지지 돌기(143)는 접착 부재, 예컨대, 실리콘 등에 의하여 부착 또는 고정될 수 있다.
제1 내지 제4 상측 탄성 부재들(150-1 내지 150-4) 중에서 선택된 2개의 상측 탄성 부재들의 내측 프레임들은 제1 코일(120)의 양단과 전기적으로 연결될 수 있다.
또한 제1 내지 제4 상측 탄성 부재들(150-1 내지 150-4) 중에서 선택된 다른 2개의 상측 탄성 부재들의 외측 프레임들은 센싱 코일(170)의 양단과 전기적으로 연결될 수 있다.
예컨대, 제1 코일(120)의 일단은 제2 상측 탄성 부재(150-2)의 내측 프레임(152)의 일단(11a)에 전기적으로 연결되고, 제1 코일(120)의 타단은 제4 상측 탄성 부재(150-4)의 내측 프레임(152)의 일단(11b)에 전기적으로 연결될 수 있다.
예컨대, 솔더(16a, 16b) 등을 통하여 센싱 코일(170)의 일단(17a)은 제1 상측 탄성 부재(150-1)의 외측 프레임(151)의 일단(159a)에 직접 본딩되고, 센싱 코일(170)의 타단(17b)은 제3 상측 탄성 부재(150-3)의 외측 프레임(151)의 일단(159b)에 직접 본딩될 수 있다.
예컨대, 제1 상측 탄성 부재(150-1)의 외측 프레임(151)의 일단(159a)은 통공(152a)이 마련된 제1 상측 탄성 부재(150-1)의 외측 프레임(152)의 제1 결합부(510)로부터 센싱 코일(170)의 시선 부분(17a) 방향으로 확장될 수 있다(도 10 참조).
또한 예컨대, 제3 상측 탄성 부재(150-3)의 외측 프레임(151)의 일단(159b)은 통공(152a)이 마련된 제3 상측 탄성 부재(150-3)의 외측 프레임(152)의 제1 결합부(510)로부터 센싱 코일(170)의 종선 부분(17b) 방향으로 확장될 수 있다.
또한 예컨대, 제1 내지 제4 상측 탄성 부재들(150-1 내지 150-4) 각각의 외측 프레임(152)은 지지 부재들(220-1 내지 220-4) 중 적어도 하나와 연결될 수 있다. 예컨대, 제1 내지 제4 상측 탄성 부재들(150-1 내지 150-4)의 외측 프레임들(152) 각각은 지지 부재들(220-1 내지 220-4) 중 대응하는 어느 하나와 연결될 수 있다.
프레임 연결부(153)는 적어도 한 번 이상 절곡 형성되어 일정 형상의 패턴을 형성할 수 있다. 프레임 연결부(153)의 위치 변화 및 미세 변형을 통해 보빈(110)은 광축에 평행한 제1 방향으로의 상승 및/또는 하강 동작이 탄력 지지될 수 있다.
제1 내지 제6 상측 탄성 부재들(150-1 내지 150-6) 각각의 외측 프레임(152)은 하우징(140)에 결합되는 제1 결합부(510), 대응하는 지지 부재에 결합되는 제2 결합부(520), 및 제1 결합부(510)와 제2 결합부(520)를 연결하는 연결부(530)를 포함할 수 있다. 하우징(140)의 상측 지지 돌기(143)과 결합하는 통공(152a)은 제1 내지 제6 상측 탄성 부재들(150-1 내지 150-6) 각각의 외측 프레임(152)의 제1 결합부(510)에 마련될 수 있다.
지지 부재들(220-1 내지 220-8) 각각은 상측 탄성 부재들(150-1 내지 150-6)의 외측 프레임(152)의 제2 결합부(520)와 전기적으로 연결될 수 있다.
제1 내지 제6 상측 탄성 부재들(150-1 내지 150-6) 중 적어도 하나는 지지 부재들(220-1 내지 220-8) 중 적어도 하나를 통하여 회로 기판(250)에 전기적으로 연결될 수 있다.
예컨대, 제1 코일(120)과 상측 탄성 부재들(150-2,150-4) 사이, 센싱 코일(170)과 상측 탄성 부재들(150-1, 150-3) 사이, 및 상측 탄성 부재들(150-1 내지 150-4)과 지지 부재들(220-1 내지 220-4) 사이의 전기적 연결은 납땜 또는 전도성 접착 부재(예컨대, 전도성 에폭시) 등에 의해서 이루어질 수 있다.
연결부(530)는 직선 또는 적어도 한 번 절곡된 형태일 수 있으며, 연결부(530)의 폭은 상측 탄성 부재(150)의 프레임 연결부(153)의 폭보다 좁을 수 있다. 연결부(530)의 폭이 상측 탄성 부재(150)의 프레임 연결부(153)의 폭보다 좁기 때문에 연결부(530)는 광축 또는 광축과 평행한 제1 방향으로 움직이기 용이할 수 있고, 이로 인하여 상측 탄성 부재(150)에 인가되는 응력, 및 지지 부재(220)에 인가되는 응력을 분산시킬 수 있다.
하측 탄성 부재(160)는 보빈(110)의 하측 지지 돌기와 결합하는 내측 프레임(161), 하우징(140)의 하측 지지 돌기와 결합하는 외측 프레임(162), 및 내측 프레임(161)과 외측 프레임을 연결하는 연결부(163)를 포함할 수 있다.
하측 탄성 부재(160)는 서로 전기적으로 분리된 제1 및 제2 하측 탄성 부재(160-1, 160-2)를 포함할 수 있다.
제1 및 제2 하측 탄성 부재(160-1, 160-2) 각각은 적어도 하나의 내측 프레임(161-1, 161-2), 적어도 하나의 외측 프레임(162-1, 162-2) 및 적어도 하나의 프레임 연결부(163-1, 163-2)를 포함할 수 있다. 도 6에서 하측 탄성 부재(160)는 복수 개로 분할되지만, 다른 실시 예에서는 분할되지 않을 수도 있다.
다음으로 센싱 코일(170)에 대하여 설명한다.
센싱 코일(170)은 하우징(140)의 측부, 예컨대, 하우징(140)의 측부들(141,142)의 외측면에 배치된다
예컨대, 센싱 코일(170)은 광축을 기준으로 시계 방향 또는 시계 반대 방향으로 회전하도록 하우징(140)의 제1 및 제2 측부들(141, 142)에 마련된 센싱 코일용 안착홈(141b)에 직접 권선될 수 있다. 예컨대, 센싱 코일(170)은 링 형상으로 하우징(140)에 직접 권선될 수 있다.
센싱 코일을 코일 블록 형태로 구현하여, 하우징(140)의 상단에 본딩시키는 경우에는 센싱 코일의 안착 및 본딩을 위한 수작업이 필요하다. 이 경우 센싱 코일을 하우징의 상면 형상에 맞추어 블록 형태로 구현하기가 쉽지 않고, 수작업을 통하여 센싱 코일을 하우징에 본딩하기 때문에 센싱 코일과 하우징의 접착의 신뢰성이 떨어질 수 있다. 또한 센싱 코일이 하우징의 상단에 상측 탄성 부재와 인접하여 배치되기 때문에 상측 탄성 부재의 설치에 제약을 받을 수 있고, 상측 탄성 부재와의 본딩, 솔더링 작업이 용이하지 않다.
실시 예에서는 센싱 코일(170)이 하우징(140)의 제1 및 제2 측부들(141,142) 중간 영역에 마련된 센싱 코일용 안착홈(141b)에 직접 권선되기 때문에, 센싱 코일(170)을 하우징(140)의 상단에 안착 또는 본딩하는 수작업이 필요하지 않아 센싱 코일(170)과 하우징(140) 사이 및 센싱 코일(170)과 상측 탄성 부재(150) 사이의 본딩 신뢰성 저하를 방지할 수 있다.
또한 센싱 코일(170)은 상측 탄성 부재(150)의 아래에 상측 탄성 부재(150)와 이격하여 배치되기 때문에, 상측 탄성 부재(150)를 하우징(140) 상단에 설치하는데 공간적 제약을 받지 않는다.
또한 센싱 코일(170)의 시선 부분 및 종선 부분 각각을 하우징(140)의 제1 측부(141) 또는 제2 측부(142)의 일 영역에 접하도록 배치시키고, 솔더링(soldering)을 통하여 상측 탄성 부재(150)의 외측 프레임(152)의 일 영역에 본딩시키기 때문에, 실시 예는 솔더링 작업을 용이하게 수행할 수 있다.
센싱 코일(170)의 시선 부분(17a) 및 종선 부분(17b)이 본딩되는 상측 탄성 부재들(예컨대, 150-1, 150-3))과 인접하는 하우징(140)의 제1 측부들(141) 중 적어도 하나에는 센싱 코일(170)의 시선 부분(17a)과 종선 부분(17b)을 가이드하는 센싱 코일용 가이드부가 마련될 수 있다.
도 10은 일 실시 예에 따른 센싱 코일 가이드부의 확대도를 나타낸다.
도 10을 참조하면, 하우징(140)은 어느 하나의 제1 측부(141)의 외측면으로부터 돌출되는 제1 단차부(149a), 및 다른 어느 하나의 제1 측부(141)의 외측면으로부터 돌출되는 제2 단차부(149b, 도 2 참조)를 가질 수 있다. 제1 단차부(149a) 및 제2 단차부(149b) 각각은 센싱 코일용 안착홈(141b)에 인접하여 위치할 수 있다. 예컨대, 제1 단차부(149a) 및 제2 단차부(149b)는 하우징(140)의 서로 마주보는 제1 측부들에 마련될 수 있다.
제1 단차부(149a)는 센싱 코일(170)의 시선 부분(17a)을 가이드할 수 있고, 제2 단차부(149b)는 센싱 코일(170)의 종선 부분(17b)을 가이드할 수 있다.
제1 및 제2 단차부들(149a, 149b) 각각은 복수 개의 스토퍼들(149) 중 어느 하나일 수 있으나, 이에 한정되는 것은 아니며 다른 실시 예에서는 스토퍼(149)와 별도로 마련될 수도 있다.
예컨대, 하우징(140)에 센싱 코일(170)을 직접 권선하기 위하여, 제1 및 제2 단차부들(149a, 149b)은 센싱 코일용 안착홈(141b)에 인접하여 위치할 수 있으며, 센싱 코일용 안착홈(141b)의 상부 및 하부 각각에 위치할 수 있다.
제1 및 제2 단차부들(149a, 149b)은 하우징(140)의 제1 측부들(141)의 외측면로부터 돌출되기 때문에, 하우징(140)의 제1 측부들(141)의 외측면과 제1 및 제2 단차부들(149a, 149b)의 상부면 사이에는 단차가 존재하며, 제1 및 제2 단차부들(149a, 149b)의 측면은 단차면을 형성할 수 있다.
센싱 코일용 안착홈(141b)의 상부 및 하부 각각에 위치하는 제1 및 제2 단차부들(149a, 149b)의 단차면은 하우징(140)에 센싱 코일(170)을 직접 권선할 때, 센싱 코일(170)의 시선 부분(17a)과 종선 부분(17b)을 가이드하는 가이드부로서의 역할을 할 수 있다.
예컨대, 센싱 코일 가이드부(18a)는 제1 및 제2 단차부들(149a,149b) 각각의 단차면에 인접하는 제1 측부(141)의 외측면으로부터 돌출되는 돌기 형상일 수 있으며, 센싱 코일 가이드부(18a)와 제1 및 제2 단차부들(149a,149b) 각각의 단차면 사이에는 센싱 코일(170)의 시선 부분(17a) 및 종선 부분(17b)이 안착할 수 있는 홈(18)이 형성될 수 있다.
또한 다른 실시 예에서 센싱 코일용 가이드부는 하우징(140)의 제1 측부(141)에 마련되는 홈 형태일 수도 있다. 예컨대, 센싱 코일 가이드부는 하우징(140)의 제1 측부(141)의 외측면과 제1 및 제2 단차부들(149a,149b) 각각의 단차면 사이의 경계면에 형성되는 홈 형태일 수도 있다.
센싱 코일용 가이드부(18a)는 센싱 코일(170)의 시선 부분(17a)과 종선 부분(17b)이 하우징(140)에서 이탈되는 것을 방지할 수 있고, 상측 탄성 부재(150)에 본딩시 센싱 코일(120)의 유동을 방지하는 역할을 할 수 있으며, 이로 인하여 하우징(140)의 측부에 센싱 코일(170)을 안정적으로 직접 권선할 수 있다.
제1 코일(120)에 인가되는 구동 신호는 교류 신호, 예컨대, 정현파 신호 또는 펄스 신호(예컨대, PWM(Pulse Width Modulation) 신호)일 수 있다. 또는 다른 실시 예에서는 제1 코일(120)에 인가되는 구동 신호는 교류 신호 및 직류 신호를 포함할 수 있다. 제1 코일(120)에 교류 신호를 인가하는 것은 상호 유도 작용에 의하여 센싱 코일(170)에 기전력 또는 전압을 유도하기 위함이다.
구동 신호에 의하여 제1 코일(120)에 흐르는 전류와 마그네트(130) 간의 전자기적 상호 작용에 의한 전자기력에 의하여 제1 코일(120)은 보빈(110)과 함께 제1 방향으로 이동할 수 있다.
제1 코일(120)이 제1 방향으로 이동함에 따라 제1 코일(120)과 센싱 코일(170) 간의 이격 거리가 변화하며, 이격 거리가 변화함에 따라 센싱 코일(170)에는 유도 전압이 발생할 수 있다. 예컨대, 이격 거리가 감소할수록 센싱 코일(170)에 발생하는 유도 전압은 증가할 수 있고, 반대로 이격 거리가 증가할수록 센싱 코일(170)에 발생하는 유도 전압은 감소될 수 있다.
센싱 코일(170)에 유도되는 전압에 기초하여, 제1 코일(120) 및 보빈(110)의 변위가 감지될 수 있고, 감지된 변위에 기초하여 보빈(110)의 변위 또는 제1 코일(120)에 제공되는 구동 신호가 피드백 제어될 수 있다.
센싱 코일(170)은 하우징(140)의 상부면 상에 배치되는 상측 탄성 부재(150)의 아래에 배치될 수 있고, 하우징(140)에 배치되는 마그네트(130) 상측에 배치될 수 있다.
다음으로 지지 부재(220)에 대하여 설명한다.
지지 부재(220)는 복수 개일 수 있으며, 복수의 지지 부재들(220-1 내지 220-8)은 하우징(140)의 제2 측부들(142)에 대응되도록 배치될 수 있다. 예를 들어, 복수의 지지 부재들(220-1 내지 220-8) 각각은 4개의 제2 측부들(142) 중 대응하는 어느 하나에 인접하여 배치될 수 있고, 지지 부재(220)의 일단은 대응하는 제2 측부에 배치되는 상측 탄성 부재(150)의 외측 프레임(152)에 본딩될 수 있다. 또는 다른 실시 예에서 지지 부재(220)는 하우징(140)의 제1 측부(141)에 판스프링 형태로 배치될 수도 있다.
복수의 지지 부재들(220-1 내지 220-8)은 회로 기판(250)으로부터 제1 코일(120)로 구동 신호를 전달하는 경로를 형성할 수 있고, 센싱 코일(170)로부터 출력되는 유도 전압을 회로 기판(250)으로 전달하는 경로를 형성할 수 있다.
복수의 지지 부재들(220-1 내지 220-8)은 탄성에 의하여 지지할 수 있는 부재, 예컨대, 판스프링(leaf spring), 코일스프링(coil spring), 서스펜션와이어 등으로 구현될 수 있다. 또한 다른 실시 예에 지지 부재(220)는 상측 탄성 부재와 일체로 형성될 수도 있다.
복수의 지지 부재들(220-1 내지 220-8)은 하우징(140)과 이격될 수 있고, 하우징(140)에 고정되는 것이 아니라, 상측 탄성 부재(150)의 외측 프레임(153)의 연결부(530)에 직접 연결될 수 있다.
상측 탄성 부재(150)의 외측 프레임(153)의 연결부(530)는 하우징(140)과 이격하기 때문에, 광축 또는 광축과 평행한 제1 방향으로 용이하게 움직일 수 있다.
실시 예에 따른 지지 부재들(220-1 내지 220-8)은 제1 방향으로 용이하게 움직일 수 있는 연결부(530)와 직접 연결되기 때문에, 하우징(140)에 고정되는 일반적인 지지 부재에 비하여 광축 또는 광축과 평행한 제1 방향으로 보다 용이하게 움직일 수 있으며, 이로 인하여 손떨림 보정의 정확도를 향상시킬 수 있다. 특히 낙하 및 충격에 대하여 응력이 분산될 수 있고, 이로 인하여 지지 부재들(220-1 내지 220-8)의 변형 및 단선을 억제할 수 있다.
예컨대, 제1 내지 제4 지지 부재들(220-1 내지 220-4) 각각의 일단은 제1 내지 제4 상측 탄성 부재들(150-1 내지 150-4) 중 대응하는 어느 하나의 제2 결합부(520)에 본딩될 수 있고, 타단은 회로 기판(250)에 본딩될 수 있다.
예컨대, 제5 및 제7 지지 부재들(220-5,220-7) 각각의 일단은 제5 및 제6 상측 탄성 부재들(150-5, 150-6) 중 대응하는 어느 하나의 외측 프레임의 제2 결합부에 본딩될 수 있고, 타단은 회로 기판(250)에 본딩될 수 있다.
예컨대, 제6 및 제8 지지 부재들(220-6, 220-8) 각각의 일단은 제5 및 제6 상측 탄성 부재들 중 대응하는 어느 하나의 외측 프레임의 제1 결합부에 본딩될 수 있고, 타단은 제1 및 제2 하측 탄성 부재들 중 대응하는 어느 하나에 본딩될 수 있다.
제1 내지 제4 상측 탄성 부재들(150-1 내지 150-6) 중 적어도 하나는 지지 부재들(220-1 내지 220-8)를 통해 회로 기판(250)에 전기적으로 연결될 수 있다.
제1 코일(120)의 양단은 제2 및 제4 상측 탄성 부재들(150-2,150-4)의 내측 프레임과 연결될 수 있고, 제2 및 제4 상측 탄성 부재들(150-2 내지 150-4) 및 제2 및 제4 지지 부재들(220-2, 220-4)에 의하여 회로 기판(250)과 전기적으로 연결될 수 있다.
센싱 코일(170)의 양단은 제1 및 제3 상측 탄성 부재들(150-1,150-3)의 외측 프레임과 연결될 수 있고, 제1 및 제3 상측 탄성 부재들(150-1, 150-3) 및 제1 및 제3 지지 부재들(220-1, 220-3)에 의하여 회로 기판(250)과 전기적으로 연결될 수 있다.
다음으로 베이스(210), 회로 기판(250), 및 제2 코일(230)에 대하여 설명한다.
베이스(210)는 보빈(110)의 중공, 또는/및 하우징(140)의 중공에 대응하는 중공을 구비할 수 있고, 커버 부재(300)와 일치 또는 대응되는 형상, 예컨대, 사각형 형상일 수 있다.
도 7은 도 1에 도시된 베이스(210), 제2 코일(230) 및 회로 기판(250)의 분해 사시도를 나타낸다.
도 7을 참조하면, 베이스(210)는 커버 부재(300)를 접착 고정할 때, 접착제가 도포될 수 있는 단턱(211)을 구비할 수 있다. 이때, 단턱(211)은 상측에 결합되는 커버 부재(300)를 가이드할 수 있으며, 커버 부재(300)의 단부는 단턱(211)에 면 접촉할 수 있다.
회로 기판(250)의 단자(251)가 형성된 부분과 마주하는 베이스(210)의 면에는 대응되는 크기의 받침부(255)가 형성될 수 있다. 베이스(210)의 받침부(255)는 베이스(210)의 외측면에 일정한 단면으로 단턱(211) 없이 형성되어, 회로 기판(250)의 단자면(253)을 지지할 수 있다.
베이스(210)의 모서리는 요홈(212)을 가질 수 있다. 커버 부재(300)의 모서리가 돌출된 형태를 가질 경우, 커버 부재(300)의 돌출부는 요홈(212)에서 베이스(210)와 체결될 수 있다.
또한, 베이스(210)의 상부면에는 OIS 위치 센서(240)가 배치될 수 있는 안착홈(215-1, 215-2)이 마련될 수 있다. 실시 예에 따르면, 베이스(210)에는 2개의 안착홈들(215-1, 215-2)이 마련될 수 있고, OIS 위치 센서(240)가 베이스(210)의 안착홈들(215-1, 215-2)에 배치됨으로써, 하우징(140)이 제2 방향과 제3 방향으로 움직이는 정도를 감지할 수 있다. 이를 위해 베이스(210)의 안착홈들(215-1, 215-2)의 중심들과 베이스(210)의 중심을 연결하는 가상의 선들은 서로 교차할 수 있다, 예컨대, 베이스(210)의 안착홈들(215-1, 215-2)의 중심들과 베이스(210)의 중심을 연결하는 가상의 선들이 이루는 각도는 90°일 수 있으나, 이에 한정되는 것은 아니다.
회로 기판(250)을 기준으로 상부에는 제2 코일(230)이, 하부에는 OIS 위치 센서(240)가 배치될 수 있다. OIS 위치 센서(240)는 광축(예컨대, Z축)과 수직인 방향(예컨대, X축 또는 Y축)으로 베이스(210)에 대한 하우징(140)의 변위를 감지할 수 있다.
OIS 위치 센서(240)는 광축과 수직인 방향으로의 하우징(140)의 변위를 감지하기 위하여 서로 직교하도록 배치되는 제1 OIS 위치 센서(240a) 및 제2 OIS 위치 센서(240b)를 포함할 수 있다.
회로 기판(250)은 베이스(210)의 상부면 상에 배치될 수 있고, 보빈(110)의 중공, 하우징(140)의 중공, 또는/및 베이스(210)의 중공에 대응하는 중공을 구비할 수 있다. 회로 기판(250)의 외주면의 형상은 베이스(210)의 상부면과 일치 또는 대응되는 형상, 예컨대, 사각형 형상일 수 있다.
회로 기판(250)은 상부면으로부터 절곡되고, 외부로부터 전기적 신호들을 공급받는 복수 개의 단자들(terminals, 251), 또는 핀들(pins)이 형성되는 적어도 하나의 단자면(253)을 구비할 수 있다.
도 7에서는 제2 코일(230)은 회로 기판(250)과 별도의 회로 부재(231)에 마련되는 형태로 구현되지만, 이에 한정되는 것은 아니며, 다른 실시 예에서는 제2 코일(230)은 링 형상의 코일 블록 형태로 구현되거나, 또는 FP 코일 형태로 구현되거나, 또는 회로 기판(250)에 형성되는 회로 패턴 형태로 구현될 수도 있다.
제2 코일(230)은 회로 부재(231)를 관통하는 통공(230a)을 포함할 수 있다. 지지 부재(220)는 통공(230a)을 관통하여 회로 기판(250)에 전기적으로 연결될 수 있다.
제2 코일(230)은 하우징(140)에 배치되는 마그네트(130)와 대향하도록 회로 기판(250)의 상부에 배치된다.
제2 코일(230)은 회로 기판(250)의 네 변에 총 4개 설치될 수 있으나, 이를 한정하는 것은 아니며, 제2 방향용 1개, 제3 방향용 1개 등 2개만이 설치되는 것도 가능하고, 4개 이상 설치될 수도 있다.
전술한 바와 같이 서로 대향하도록 배치된 마그네트(130)와 제2 코일(230)의 상호 작용에 의해 하우징(140)이 제2 및/또는 제3 방향으로 움직여 손떨림 보정이 수행될 수 있다.
OIS 위치 센서(240a, 240b)는 홀 센서로 마련될 수 있으며, 자기장 세기를 감지할 수 있는 센서라면 어떠한 것이든 사용 가능하다. 예컨대, OIS 위치 센서(240a, 240b)는 홀 센서를 포함하는 드라이버 형태로 구현되거나 또는 홀 센서 등과 같은 위치 검출 센서 단독으로 구현될 수도 있다.
회로 기판(250)의 단자면(253)에는 복수 개의 단자(251)가 설치될 수 있다.
예컨대, 회로 기판(250)의 단자면(253)에 설치된 복수 개의 단자(251)를 통해 외부 전원을 인가받아 제1 및 제2 코일들(120, 230), 제1 및 OIS 위치 센서들(170, 240)에 전원을 공급할 수도 있고, 센싱 코일(170)로부터 출력되는 유도 전압을 제공받아 외부로 출력할 수도 있고, 제1 및 OIS 위치 센서들(170, 240)로부터 출력되는 출력 신호들을 제공받아 외부로 출력할 수도 있다.
실시 예에 따르면, 회로 기판(250)은 FPCB로 마련될 수 있으나 이를 한정하는 것은 아니며, 회로 기판(250)의 단자들을 베이스(210)의 표면에 표면 전극 방식 등을 이용하여 직접 형성하는 것도 가능하다.
회로 기판(250)은 지지 부재(220)가 관통 가능한 통공(250a1, 250a2)을 포함할 수 있다. 솔더링 등을 통해 지지 부재(220)는 회로 기판(250)의 통공(250a1, 250a2)을 통하여 회로 기판(250)의 저면에 배치될 수 있는 회로 패턴과 전기적으로 연결될 수 있다.
또한 다른 실시 예에서 회로 기판(250)은 통공(250a1, 250a2)을 구비하지 않을 수 있으며, 지지 부재(220)는 솔더링 등을 통하여 회로 기판(250)의 상면에 형성되는 회로 패턴 또는 패드에 전기적으로 연결될 수도 있다.
회로 기판(250)은 베이스(210)의 상부면에 마련되는 돌기와 결합하는 통공을 더 포함할 수 있다. 베이스(210)의 돌기와 회로 기판(250)의 통공은 에폭시 등과 같은 접착 부재로 고정될 수 있다.
도 8은 도 2에 도시된 렌즈 구동 장치의 Ⅰ-Ⅰ'의 절단 단면도를 나타내고, 도 9는 도 2에 도시된 렌즈 구동 장치의 Ⅱ-Ⅱ'의 절단 단면도를 나타낸다.
도 8 및 도 9를 참조하면, 센싱 코일(170)은 하우징(140)의 제1 측면들(141)에 마련되는 센싱 코일용 안착홈(141b) 내에 배치 또는 직접 권선된다.
초기 위치에서 센싱 코일(170)은 마그네트(130)와 제1 방향으로 오버랩되지 않을 수 있다. 또한 초기 위치에서 센싱 코일(170)은 제1 방향과 수직인 방향으로 마그네트(130)와 오버랩되지 않을 수 있다. 이는 마그네트(130)와 센싱 코일(170)의 상호 간의 간섭을 줄이기 위함이다.
초기 위치는 제1 코일(120)에 전원을 인가하지 않은 상태에서, AF 가동부의 최초 위치이거나 또는 상측 및 하측 탄성 부재(150,160)가 단지 AF 가동부의 무게에 의해서만 탄성 변형됨에 따라 AF 가동부가 놓이는 위치일 수 있다. AF 가동부는 보빈(110) 및 보빈(110)에 장착되는 구성들을 포함할 수 있다.
또한 초기 위치에서 센싱 코일(170)은 제1 방향으로 제1 코일(120)과 기설정된 간격만큼 이격하여 위치하며, 제1 방향과 수직인 방향으로 제1 코일(120)과 오버랩되지 않을 수 있다. 이는 제1 코일(120)의 전류에 의하여 센싱 코일(170)에 유도되는 유도 전압의 선형성을 확보하기 위함이다.
도 8 및 도 9에서 설명한 센싱 코일과 마그네트 상호 간의 상대적 위치는 일 실시 예이며, 다른 실시 예에서는 초기 위치에서 센싱 코일(170)은 마그네트(130)와 제1 방향으로 오버랩될 수도 있다.
센싱 코일(170)은 지지 부재(220)와 하우징(140)의 제2 측부 사이에 위치할 수 있다. 예컨대, 센싱 코일(170)은 지지 부재(220)를 기준으로 하우징(140)의 제2 측부(142) 쪽에 위치할 수 있다.
상술한 바와 같이, 실시 예는 센싱 코일(170)이 하우징(140)의 제1 및 제2 측부들(141,142)에 직접 권선되기 때문에 센싱 코일(170)과 하우징(140) 또는 센싱 코일(170)과 상측 탄성 부재(150) 간의 본딩 신뢰성 저하를 방지할 수 있다.
또한 센싱 코일(170)은 상측 탄성 부재(150)의 아래에 상측 탄성 부재(150)와 이격하여 배치되기 때문에, 실시 예는 상측 탄성 부재(150)를 하우징(140) 상단에 설치하는데 공간적 제약을 받지 않는다.
또한 센싱 코일(170)의 시선 부분 및 종선 부분 각각을 하우징(140)의 제1 측부(141) 또는 제2 측부(142)의 일 영역에 마련된 센싱 코일용 가이드부(18)에 안착시켜, 상측 탄성 부재(150)의 외측 프레임(152)의 일단(159a, 159b)과 솔더링(soldering)을 통하여 연결하기 때문에, 실시 예는 솔더링 작업을 용이하게 수행할 수 있다.
도 11은 다른 실시 예에 따른 렌즈 구동 장치(1100)의 분해 사시도를 나타내고, 도 12는 도 11의 커버 부재(1300)를 제외한 렌즈 구동 장치(1100)의 결합 사시도를 나타낸다.
도 11 및 도 12를 참조하면, 렌즈 구동 장치(1100)는 보빈(1110), 제1 코일(1120), 마그네트(1130), 하우징(1140), 상측 탄성 부재(1150), 및 하측 탄성 부재(1160), 및 센싱 코일(1170)을 포함한다.
또한 렌즈 구동 장치(1100)는 지지 부재(1220), 제2 코일(1230), OIS(Optical Image Stabilization) 위치 센서(1240), 및 회로 기판(1250)을 더 포함할 수 있다. 또한 렌즈 구동 장치(1100)는 베이스(1210), 및 커버 부재(1300)를 더 포함할 수 있다.
커버 부재(1300)는 도 1의 커버 부재(300)에 대한 설명이 적용될 수 있다.
도 13은 도 12에 도시된 보빈(1110)의 사시도를 나타낸다.
도 13을 참조하면, 보빈(1110)은 하우징(1140)의 내측에 위치하고, 코일(1120)과 마그네트(1130) 간의 전자기적 상호 작용에 의하여 제1 방향(예컨대, Z축 방향)으로 이동 가능하다.
보빈(1110)은 도시하지는 않았으나, 내부에 적어도 하나 이상의 렌즈가 설치되는 렌즈 배럴(lens barrel, 미도시)을 포함할 수 있으며, 렌즈 배럴은 보빈(1110)의 내측에 다양한 방식으로 결합할 수 있다.
보빈(1110)은 렌즈 또는 렌즈 배럴의 장착을 위하여 중공을 가질 수 있다. 보빈(1110)의 중공 형상은 장착되는 렌즈 또는 렌즈 배럴의 형상과 일치할 수 있으며, 예컨대, 원형, 타원형, 또는 다각형일 수 있으나, 이에 한정되는 것은 아니다.
보빈(1110)은 상부면에 배치되고 상측 탄성 부재(1150)의 내측 프레임(1151)에 결합 및 고정되는 적어도 하나의 상측 지지 돌기(1113), 및 하부면에 배치되고 하측 탄성 부재(1160)의 내측 프레임(161)에 결합 및 고정되는 적어도 하나의 하측 지지 돌기(미도시)를 구비할 수 있다.
보빈(1110)은 상측 탄성 부재(1150)의 프레임 연결부(1153)에 대응 또는 정렬되는 상부면의 일 영역에 마련되는 상측 도피홈(1112)을 구비할 수 있다. 또한 보빈(1110)은 하측 탄성 부재(1150)의 연결부(163)에 대응 또는 정렬되는 하부면의 일 영역에 하측 도피홈(미도시)을 구비할 수 있다. 또한, 다른 실시 예의 경우, 상측 탄성 부재의 연결부와 보빈이 서로 간섭되지 않게 설계되어 보빈의 상측 도피홈 및/또는 하측 도피홈이 구비되지 않을 수도 있다.
보빈(1110)은 외주면에 제1 코일(1120)이 배치되는 적어도 하나의 홈(미도시)을 구비할 수 있다. 상기 홈에 제1 코일(1120)이 배치 또는 안착되거나, 광축을 기준으로 시계 방향 또는 시계 반대 방향으로 회전하도록 상기 홈에 제1 코일(1120)이 직접 권선될 수 있다. 홈의 형상 및 개수는 보빈(1110)의 외주면에 배치되는 코일의 형상 및 개수에 상응할 수 있다. 다른 실시 예에서는 보빈(1110)은 코일용 안착홈을 구비하지 않을 수 있고, 제1 코일(1120)은 보빈(1110)의 외주면에 직접 권선되어 고정될 수도 있다.
제1 코일(1120)은 보빈(1110)의 외주면에 배치되며, 하우징(1140)에 배치되는 마그네트(1130)와 전자기적 상호 작용을 하는 구동용 코일일 수 있다. 제1 코일(1120)과 마그네트(1130) 간의 상호 작용에 의한 전자기력을 생성하기 위하여 제1 코일(1120)에는 구동 신호(예컨대, 구동 전류)가 인가될 수 있다.
제1 코일(1120)과 마그네트(1130) 간의 상호 작용에 의한 전자기력에 의하여 AF(Auto Focus) 가동부는 제1 방향으로 이동할 수 있다. 제1 코일(1120)에 인가되는 구동 신호를 제어하여 전자기력을 조절함으로써, AF 가동부의 제1 방향으로의 움직임을 제어할 수 있으며, 이로 인하여 오토 포커싱 기능이 수행될 수 있다.
AF 가동부는 상측 및 하측 탄성 부재들(1150,1160)에 의하여 탄성 지지되는 보빈(1110), 및 보빈(1110)에 장착되어 보빈(1110)과 함께 이동하는 구성들을 포함할 수 있다. 예컨대 AF 가동부는 보빈(1110), 제1 코일(1120), 및 보빈(1110)에 장착되는 렌즈(미도시)를 포함할 수 있다.
제1 코일(1120)은 광축을 중심으로 시계 방향 또는 시계 반대 방향으로 회전하도록 보빈(1110)의 외주면을 감싸도록 권선될 수 있다. 다른 실시 예에서 제1 코일(1120)은 광축과 수직인 축을 중심으로 시계 방향 또는 시계 반대 방향으로 권선되는 코일 링 형태로 구현될 수 있으며, 코일 링의 개수는 마그네트(1130)의 개수와 동일할 수 있으나, 이에 한정되는 것은 아니다.
제1 코일(1120)은 구동 신호를 수신하기 위하여 상측 탄성 부재(1150) 또는 하측 탄성 부재(1160) 중 적어도 하나와 전기적으로 연결될 수 있다.
하우징(1140)은 마그네트(1130) 및 센싱 코일(1170)을 지지하며, 제1 코일(1120)과 마그네트(1130) 간의 상호 작용에 의한 전자기전력에 의하여 제1 방향으로 보빈(1110)이 이동할 수 있도록 내측에 보빈(1110)을 수용할 수 있다.
도 14는 도 11에 도시된 하우징(1140) 및 마그네트(1130)의 제1 분해 사시도를 나타내고, 도 15는 도 11에 도시된 하우징(1140) 및 마그네트(1130)의 제2 분해 사시도를 나타낸다.
도 14 및 도 15를 참조하면, 하우징(1140)은 전체적으로 중공 기둥 형상일 수 있다. 예컨대, 하우징(1140)은 다각형(예컨대, 사각형, 또는 팔각형) 또는 원형의 중공을 구비할 수 있다.
하우징(1140)은 복수의 측부들(1141,1142)을 포함할 수 있다. 예를 들어, 하우징(1140)은 서로 이격하는 제1 측부들(1141)과 서로 이격하는 제2 측부들(1142)을 포함할 수 있다.
예컨대, 하우징(1140)의 제1 측부들(1141) 각각의 폭은 제2 측부들(1142) 각각의 폭보다 클 수 있다.
하우징(1140)의 제1 측부들(1141)에는 마그네트(1130)가 배치 또는 설치될 수 있다.
하우징(1140)의 제2 측부들(1142) 각각은 인접하는 2개의 제1 측부들 사이에 위치할 수 있고, 제1 측부들(1141)을 서로 연결할 수 있다. 하우징(1140)의 제2 측부들(1142)에는 지지 부재(1220)가 배치될 수 있다. 예컨대, 지지 부재(1220)는 제2 측부들(1142)에 마련된 통공(1147)을 통과하여 상측 탄성 부재(1150)의 외측 프레임(1152)에 결합할 수 있다.
하우징(1140)의 제1 측부들(1141)은 하우징(1140)의 제2 측부들(1142)을 상호 연결하며, 일정 깊이의 평면을 포함할 수 있다. 하우징(1140)의 제1 측부들(1141) 각각은 이와 대응되는 마그네트(1130)의 면적과 동일하거나 넓은 면적을 가질 수 있다.
하우징(1140)은 마그네트(1130)를 수용하기 위한 마그네트 안착부(1141a), 및 센싱 코일(1170)을 권선하거나 또는 수용하기 위한 센싱 코일용 안착홈(1141b)을 구비할 수 있다.
마그네트 안착부(1141a)는 하우징(1140)의 제1 측부들(1141) 중 적어도 하나의 내측 하단에 마련될 수 있다. 예컨대, 마그네트 안착부(1141a)는 4개의 제1 측부들 각각의 내측 하단에 마련될 수 있고, 마그네트들(1130) 각각은 마그네트 안착부들(1141a) 중 대응하는 어느 하나에 삽입, 고정될 수 있다.
하우징(1140)의 마그네트 안착부(1141a)는 마그네트(1130)의 크기와 대응되는 요홈으로 형성될 수 있다. 제2 코일(1230)과 마주보는 하우징(1140)의 마그네트 안착부(1141a)의 바닥면에는 개구가 형성될 수 있고, 마그네트 안착부(1141a)에 고정된 마그네트(1130)의 바닥면은 제2 코일(1230)과 마주볼 수 있다.
하우징(1140)의 센싱 코일용 안착홈(1141b)은 하우징(1140)의 제1 측부들(1141) 또는 제2 측부들(1142) 중 적어도 하나의 외측 측면으로부터 함몰된 형태로 형성될 수 있으며, 제1 측부들(1141) 또는/및 제2 측부들(1142) 각각의 일단에서 타단까지 형성될 수 있다. 예컨대, 하우징(1140)의 센싱 코일용 안착홈(1141b)은 제1 및 제2 측부들(1141,1142)의 외측면의 상단에 형성될 수 있다.
센싱 코일용 안착홈(1141b)의 깊이는 권선되는 센싱 코일(1170)의 두께보다 크거나 동일할 수 있다.
센싱 코일용 안착홈(1141b)은 마그네트(1130)가 안착되는 마그네트 안착부(1141a) 위에 마련될 수 있다. 예컨대, 센싱 코일용 안착홈(1141b)은 광축과 수직인 방향으로 마그네트 안착부(1141a)와 오버랩되지 않을 수 있으나, 이에 한정되는 것은 아니다.
하우징(1140)의 제1 측부(1141)는 커버 부재(1300)의 측면과 평행하게 배치될 수 있다. 또한, 하우징(1140)의 제1 측부(1141)의 면적은 제2 측부(1142)의 면적보다 클 수 있다.
하우징(1140)의 제2 측부(1142)는 지지 부재(1220)가 지나가는 경로를 형성하는 통공(1147)을 구비할 수 있다. 예컨대, 하우징(1140)은 제2 측부(1142)의 상부를 관통하는 통공(1147)을 포함할 수 있다. 통공(1147)의 개수는 지지 부재의 개수와 동일할 수 있다.
또한, 도 1에 도시된 커버 부재(1300)의 내면에 직접 충돌하는 것을 방지하기 위하여, 하우징(1140)은 상단 또는 상부면에는 스토퍼(1144)가 마련될 수 있다.
예컨대, 스토퍼(1144)는 하우징(1140)의 제1 측부들(1141) 상단 또는 상면에 배치되는 제1 스토퍼들(1144a1 내지 1144a4), 및 제2 측부들(1142) 상단 또는 상면에 배치되는 제2 스토퍼들(1144b1 내지 1144b4)을 포함할 수 있다.
제1 스토퍼들(1144a1 내지 1144a4)은 서로 이격하여 배치될 수 있고, 제2 스토퍼들(1144b1 내지 1144b4)은 서로 이격하여 배치될 수 있다. 또한 제1 스토퍼들(1144a1 내지 1144a4)과 제2 스토퍼들(1144b1 내지 1144b4)은 서로 이격하여 배치될 수 있다.
예컨대, 센싱 코일용 안착홈(1141b)의 상단은 제1 스토퍼들(1144a1 내지 1144a4)의 하단 및 제2 스토퍼들(1144b1 내지 1144b4)과 접할 수 있다.
센싱 코일용 안착홈(1141b)은 제1 측부들(1141)에 마련되는 제1 홈(1144-1), 및 제2 측부들(1142)에 마련되는 제2 홈(1144-2)을 포함할 수 있다.
센싱 코일용 안착홈(1141b)의 제2 홈(1144-2)은 지지 부재(1220)가 관통하는 통공(1147)의 외측에 위치할 수 있다.
예컨대, 하우징(1140)의 중공의 중앙을 지나고 광축과 평행한 가상의 직선을 기준으로 센싱 코일용 안착홈(1141b)의 제2 홈(1144-2)은 통공(1147)보다 멀리 위치할 수 있다.
예컨대, 하우징(1140)의 중공의 중앙을 지나고 광축과 평행한 가상의 직선과 센싱 코일용 안착홈(1141b)의 제2 홈(1144-2) 간의 제1 이격 거리는 하우징(1140)의 중공의 중앙을 지나고 광축과 평행한 가상의 직선과 통공(1147) 간의 제2 이격 거리보다 더 클 수 있다.
하우징(1140)은 상측 탄성 부재(1150)의 외측 프레임(1152)과 결합하는 적어도 하나의 상측 지지 돌기(1143)를 상단 또는 상부면에 구비할 수 있다.
하우징(1140)의 상측 지지 돌기(1143)는 하우징(1140)의 제1 측부들(1141) 또는 제2 측부들(1142) 중 적어도 하나의 상부면에 형성될 수 있다. 예컨대, 상측 지지 돌기(1143)는 제1 스토퍼들(1144a1 내지 1144a4)과 제2 스토퍼들(1144b1 내지 1144b4) 사이의 제1 측부들(1141)의 상단 또는 상면에 배치될 수 있다.
또한 하우징(1140)은 하측 탄성 부재(1160)의 외측 프레임(1162)에 결합 및 고정되는 하측 지지 돌기(1145)를 하부면에 구비할 수 있다.
지지 부재(1220)가 지나가는 경로를 형성하기 위해서일 뿐만 아니라, 댐핑 역할을 할 수 있는 젤 형태의 실리콘을 채우기 위한 공간을 확보하기 위하여 하우징(1140)은 제2 측부(1142)에 형성되는 요홈(1142a)를 구비할 수 있다. 즉, 하우징(1140)의 요홈(1142a)에는 댐핑 실리콘이 채워질 수 있다.
하우징(1140)은 제1 측부들(1141)의 외측면으로부터 돌출된 적어도 하나의 스토퍼(1149)를 구비할 수 있다. 스토퍼(1149)는 하우징(1140)이 제2 및/또는 제3 방향으로 움직일 때 커버 부재(1300)와 충돌하는 것을 방지하기 위하여 제1 측부들(1141)로부터 제2 또는 제3 방향으로 돌출될 수 있다.
하우징(1140)의 바닥면이 후술할 베이스(1210) 및/또는 회로 기판(1250)과 충돌하는 것을 방지하기 위하여 하우징(1140)은 하부면으로부터 돌출되는 스토퍼(미도시)를 더 구비할 수도 있으며, 하우징(1140)의 상부면 및 하부면에 형성되는 스토퍼에 의하여 하우징(1140)은 아래쪽으로는 베이스(1210)와 이격될 수 있고, 상측으로는 커버 부재(1300)와 이격되어 상하 간섭 없이 광축 방향 높이가 유지되도록 할 수 있다. 따라서 하우징(1140)은 광축에 수직한 평면에서 전후좌후 방향인 제2 및 제 3 방향으로 쉬프팅 동작을 수행할 수 있다.
다음으로 마그네트(1130; 1130-1 내지 1130-4)에 대하여 설명한다.
마그네트(1130)는 광축과 수직인 방향으로 제1 코일(1120)과 적어도 일부가 오버랩되도록 하우징(1140)에 배치될 수 있다. 예컨대, 마그네트(1130)는 하우징(1140)의 안착부(1141a) 내에 삽입 또는 배치될 수 있다.
마그네트(1130)는 하우징(1140)예 장착된 센싱 코일(1170)과 이격하여 배치되며, 센싱 코일(1170)과 마그네트(1130) 사이에는 하우징(1140)의 일부가 배치될 수 있다.
예컨대, 마그네트(1130)는 센싱 코일(1170) 아래에 배치될 수 있다. 마그네트(1130)와 센싱 코일(1170)의 상호 간의 간섭을 줄이기 위하여 초기 위치에서 마그네트(1130)와 센싱 코일(1170)은 광축 방향으로 서로 오버랩되지 않도록 배치될 수 있으나, 이에 한정되는 것은 아니다.
예컨대, 센싱 코일(1170)은 하우징(1140)의 제1 및 제2 측부들(1141,1142)의 외측면에 배치될 수 있고, 마그네트(1130)는 하우징(1140)의 제1 측부(1141)의 내측면에 배치될 수 있다.
다른 실시 예에서 마그네트(1130)는 하우징(1140)의 제1 측부(1141)의 외측면에 센싱 코일(1170)과 이격하여 배치될 수도 있다.
마그네트(1130)의 형상은 하우징(1140)의 제1 측부(1141)에 대응되는 형상, 예컨대, 직육면체 형상일 수 있으나, 이에 한정되는 것은 아니다.
마그네트(1130)는 한 몸으로 구성될 수 있으며, 제1 코일(1120)을 마주보는 면은 S극, 그 반대쪽 면은 N극이 되도록 배치할 수 있다. 그러나 이를 한정하는 것은 아니며, 반대로 구성하는 것도 가능하다.
마그네트(1130)는 적어도 2개 이상이 설치될 수 있으며, 서로 마주 보도록 배치될 수 있다. 예컨대, 교차하도록 서로 마주보는 2쌍의 마그네트(1130)가 하우징(1140)에 배치될 수 있다. 이때, 마그네트(1130)는 평면이 대략 사각형상일 수 있으며, 또는 이와 달리 삼각형상, 마름모 형상일 수도 있다.
예컨대, 하우징(1140)의 제1 측부들(1141) 중 서로 마주보는 2개의 제1 측부들에 마그네트(1130)가 배치될 수 있다.
다음으로 상측 탄성 부재(1150), 하측 탄성 부재(1160), 및 지지 부재(1220)에 대하여 설명한다.
상측 탄성 부재(1150) 및 하측 탄성 부재(1160)는 보빈(1110)을 탄성에 의하여 지지한다. 상측 탄성 부재(1150)는 보빈(1110)의 상부 및 하우징(1140)의 상부와 연결되어 보빈(1110)의 상부 및 하우징(1140)의 상부를 지지한다. 하측 탄성 부재(1160)는 보빈(1110)의 하부 및 하우징(1140)의 하부와 연결되어 보빈(110)의 하부 및 하우징(1140)의 하부를 지지한다.
지지 부재(1220)는 하우징(1140)을 베이스(1210)에 대하여 광축과 수직인 방향으로 이동 가능하게 지지할 수 있고, 상측 또는 하측 탄성 부재들(1150,1160) 중 적어도 하나와 회로 기판(2150)을 전기적으로 연결할 수 있다. 예컨대, 지지 부재(220)는 상측 탄성 부재(1150)와 회로 기판(1250)을 전기적으로 연결할 수 있다.
도 16은 도 11에 도시된 상측 탄성 부재(1150), 하측 탄성 부재(1160), 베이스(1210), 지지 부재(1220) 및 회로 기판(1250)의 결합 사시도를 나타낸다.
도 16을 참조하면, 상측 탄성 부재(1150)는 2개 이상으로 분할될 수 있다. 예컨대, 상측 탄성 부재(1150)는 서로 전기적으로 분리되고, 서로 이격된 제1 내지 제4 상측 탄성 부재들(1150-1 내지 1150-4)을 포함할 수 있다. 예컨대, 분리된 제1 내지 제4 상측 탄성 부재들(1150-1 내지 1150-4)은 보빈(1110) 또는 하우징(1140)의 중심을 기준으로 x-y평면상에서 점대칭을 이루도록 배치될 수 있다. 여기서 점대칭이란, 두 개의 형상이 하나의 회전 중심점을 기준으로 180°회전시키는 경우, 두 개의 형상이 서로 겹쳐지는 대칭을 의미한다
제1 내지 제4 상측 탄성 부재들(1150-1 내지 1150-4) 중 어느 하나는 지지 부재들(1220) 중 대응하는 어느 하나와 전기적으로 연결될 수 있다. 예컨대, 제1 내지 제4 상측 탄성 부재들(1150-1 내지 1150-4) 각각은 제1 내지 제4 지지 부재들(1220-1 내지 1220-4) 중 대응하는 어느 하나와 직접 연결될 수 있다.
제1 내지 제4 상측 탄성 부재들(1150-1 내지 1150-4) 각각은 보빈(1110)과 연결되는 내측 프레임(1151), 하우징(1140)과 연결되는 외측 프레임(1152) 및 내측 프레임(1151)과 외측 프레임(1152)을 연결하는 프레임 연결부(1153)를 포함할 수 있다.
예컨대, 내측 프레임(1151)에는 보빈(1110)의 상측 지지 돌기(1113)에 결합되는 통공(1151a)이 마련될 수 있고, 외측 프레임(1152)에는 하우징(1140)의 상측 지지 돌기(1143)에 결합되는 통공(1152a)이 마련될 수 있다.
제1 내지 제4 상측 탄성 부재들(1150-1 내지 1150-4) 중에서 선택된 2개의 상측 탄성 부재들의 내측 프레임들은 제1 코일(120)의 양단과 전기적으로 연결될 수 있다.
또한 제1 내지 제4 상측 탄성 부재들(1150-1 내지 1150-4) 중에서 선택된 다른 2개의 상측 탄성 부재들의 외측 프레임들은 센싱 코일(1170)의 양단과 전기적으로 연결될 수 있다.
예컨대, 납땜을 통하여 센싱 코일(1170)의 시선 부분은 제1 내지 제4 상측 탄성 부재들(1150-1 내지 1150-4) 중 어느 하나의 외측 프레임에 직접 본딩되고, 센싱 코일(1170)의 종선 부분은 제1 내지 제4 상측 탄성 부재들(1150-1 내지 1150-4) 중 다른 하나의 외측 프레임에 직접 본딩될 수 있다.
또한 제1 내지 제4 상측 탄성 부재들(1150-1 내지 1150-4) 각각의 외측 프레임(1152)은 지지 부재들(220-1 내지 220-4) 중 적어도 하나와 연결될 수 있다. 예컨대, 제1 내지 제4 상측 탄성 부재들(1150-1 내지 1510-4)의 외측 프레임들(152) 각각은 지지 부재들(1220-1 내지 1220-4) 중 대응하는 어느 하나의 일단과 연결될 수 있다.
프레임 연결부(1153)는 적어도 한 번 이상 절곡 형성되어 일정 형상의 패턴을 형성할 수 있다. 프레임 연결부(1153)의 위치 변화 및 미세 변형을 통해 보빈(1110)은 제1 방향으로의 상승 및/또는 하강 동작이 탄력 지지될 수 있다.
제1 및 제4 상측 탄성 부재들(1150-1 내지 1150-4) 각각의 외측 프레임(1152)은 하우징(1140)에 결합되는 제1 결합부(1510), 대응하는 지지 부재(1220)에 결합되는 제2 결합부(1520), 및 제1 결합부(1510)와 제2 결합부(1520)를 연결하는 연결부(1530)를 포함할 수 있다.
납땜 또는 전도성 접착 부재(예컨대, 전도성 에폭시) 등에 의하여 지지 부재들(1220-1 내지 1220-4)은 외측 프레임(1152)의 제2 결합부(1520)에 직접 본딩될 수 있다.
연결부(1530)는 직선 또는 적어도 한 번 절곡된 형태일 수 있으며, 연결부(1530)의 폭은 상측 탄성 부재(1150)의 프레임 연결부(1153)의 폭보다 좁을 수 있다. 연결부(1530)의 폭이 상측 탄성 부재(1150)의 프레임 연결부(1153)의 폭보다 좁기 때문에 연결부(1530)는 제1 방향으로 움직이기 용이할 수 있고, 이로 인하여 상측 탄성 부재(1150)에 인가되는 응력, 및 지지 부재(1220)에 인가되는 응력을 분산시킬 수 있다
하측 탄성 부재(1160)는 보빈(1110)의 하측 지지 돌기와 결합하는 내측 프레임(1161), 하우징(1140)의 하측 지지 돌기와 결합하는 외측 프레임(1162), 및 내측 프레임(1161)과 외측 프레임(1162)을 연결하는 연결부(1163)를 포함할 수 있다.
도 16에서 하측 탄성 부재(1160)는 분할되지 않지만, 다른 실시 예에서는 2개 이상으로 분할될 수 있다.
센싱 코일(1170)은 하우징(1140)의 측부, 예컨대, 하우징(1140)의 측부들(1141,1142)에 직접 권선된다. 예컨대, 센싱 코일(1170)은 광축을 기준으로 시계 방향 또는 시계 반대 방향으로 회전하도록 하우징(1140)의 제1 및 제2 측부들(1141, 1142)에 마련된 센싱 코일용 안착홈(1141b)에 직접 권선될 수 있다. 예컨대, 센싱 코일(1170)은 링 형상으로 하우징(1140)에 직접 권선될 수 있다.
센싱 코일을 코일 블록 형태로 구현하여, 하우징(1140)의 상단에 본딩시키는 경우에는 센싱 코일의 안착 및 본딩을 위한 수작업이 필요하다. 이 경우 센싱 코일을 하우징의 상면 형상에 맞추어 블록 형태로 구현하기가 쉽지 않고, 수작업을 통하여 센싱 코일을 하우징에 본딩하기 때문에 센싱 코일과 하우징의 접착의 신뢰성이 떨어질 수 있다. 또한 센싱 코일이 하우징의 상단에 상측 탄성 부재와 인접하여 배치되기 때문에 상측 탄성 부재의 설치에 제약을 받을 수 있고, 상측 탄성 부재와의 본딩, 솔더링(soldering) 작업이 용이하지 않다.
반면에 실시 예에서는 센싱 코일(1170)은 하우징(1140)의 제1 및 제2 측부들(1141,1142)에 마련된 센싱 코일용 안착홈(1141b)에 직접 권선되기 때문에, 센싱 코일(1170)을 하우징(1140)의 상단에 안착 또는 본딩하는 수작업이 필요하지 않아 센싱 코일(1170)과 하우징(1140) 사이 및 센싱 코일(1170)과 상측 탄성 부재(1150) 사이의 본딩 신뢰성 저하를 방지할 수 있다.
또한 센싱 코일(1170)은 상측 탄성 부재(1150)의 아래에 배치되기 때문에, 상측 탄성 부재(1150)를 하우징(1140) 상단에 설치하는데 공간적 제약을 받지 않는다.
또한 센싱 코일(1170)의 시선 부분 및 종선 부분 각각을 하우징(1140)의 제1 측벽(1141) 또는 제2 측벽(1142)의 일 영역에 접하도록 배치시키고, 솔더링(soldering)을 통하여 상측 탄성 부재(1150)의 외측 프레임(1152)의 일 영역과 본딩시키기 때문에, 실시 예는 솔더링 작업을 용이하게 수행할 수 있다.
제1 코일(1120)에 인가되는 구동 신호는 교류 신호, 예컨대, 정현파 신호 또는 펄스 신호(예컨대, PWM(Pulse Width Modulation) 신호)일 수 있다. 또는 다른 실시 예에서는 제1 코일(1120)에 인가되는 구동 신호는 교류 신호 및 직류 신호를 포함할 수 있다. 제1 코일(1120)에 교류 신호를 인가하는 것은 상호 유도 작용에 의하여 센싱 코일(1170)에 기전력 또는 유도 전압을 발생시키기 위함이다.
구동 신호에 의하여 제1 코일(1120)에 흐르는 전류와 마그네트(1130) 간의 전자기적 상호 작용에 의한 전자기력에 의하여 제1 코일(1120)은 보빈(1110)과 함께 제1 방향으로 이동할 수 있다.
제1 코일(1120)이 제1 방향으로 이동함에 따라 제1 코일(1120)과 센싱 코일(1170) 간의 이격 거리가 변화하며, 이격 거리가 변화함에 따라 센싱 코일(1170)에는 유도 전압이 발생할 수 있다. 예컨대, 이격 거리가 감소할수록 센싱 코일(1170)에 발생하는 유도 전압은 증가할 수 있고, 반대로 이격 거리가 증가할수록 센싱 코일(1170)에 발생하는 유도 전압은 감소될 수 있다.
센싱 코일(1170)에 유도되는 전압에 기초하여, 제1 코일(1120) 및 보빈(1110)의 변위가 감지될 수 있고, 감지된 변위에 기초하여 보빈(1110)의 변위 또는 구동 신호가 피드백 제어될 수 있다.
센싱 코일(1170)은 하우징(1410)의 상부면 상에 배치되는 상측 탄성 부재(1150)의 아래에 배치될 수 있고, 하우징(1140)에 배치되는 마그네트(1130) 상측에 배치될 수 있다.
지지 부재(1220)는 복수 개일 수 있으며, 복수의 지지 부재들(1220-1 내지 1220-4)은 하우징(1140)의 제2 측부들(142)에 대응되도록 배치될 수 있다. 예를 들어, 복수의 지지 부재들(1220-1 내지 1220-4) 각각은 4개의 제2 측부들(1142) 중 대응하는 어느 하나에 인접하여 배치될 수 있고, 지지 부재(1220)의 일단은 대응하는 제2 측부에 배치되는 상측 탄성 부재(1150)의 외측 프레임(1152)에 본딩될 수 있다. 또는 다른 실시 예에서 지지 부재(1220)는 하우징(1140)의 제1 측부(1141)에 판스프링 형태로 배치될 수도 있다.
복수의 지지 부재들(1220-1 내지 1220-4)은 회로 기판(1250)으로부터 제1 코일(1120)로 구동 신호를 전달하는 경로를 형성할 수 있고, 센싱 코일(1170)로부터 출력되는 유도 전압을 회로 기판(1250)으로 전달하는 경로를 형성할 수 있다.
복수의 지지 부재들(1220-1 내지 1220-4)은 탄성에 의하여 지지할 수 있는 부재, 예컨대, 판스프링(leaf spring), 코일스프링(coil spring), 서스펜션와이어 등으로 구현될 수 있다. 또한 다른 실시 예에 지지 부재(220)는 상측 탄성 부재와 일체로 형성될 수도 있다.
복수의 지지 부재들(1220-1 내지 1220-4)은 하우징(1140)과 이격될 수 있고, 하우징(1140)에 고정되는 것이 아니라, 상측 탄성 부재(1150)의 외측 프레임(1153)의 연결부(1530)에 직접 연결될 수 있다.
상측 탄성 부재(1150)의 외측 프레임(1153)의 연결부(1530)는 하우징(140)과 이격하기 때문에, 제1 방향으로 용이하게 움직일 수 있다.
실시 예에 따른 지지 부재들(1220-1 내지 1220-4)은 제1 방향으로 용이하게 움직일 수 있는 연결부(1530)와 직접 연결되기 때문에, 하우징(1140)에 고정되는 일반적인 지지 부재에 비하여 제1 방향으로 보다 용이하게 움직일 수 있으며, 이로 인하여 손떨림 보정의 정확도를 향상시킬 수 있다. 특히 낙하 및 충격에 대하여 응력이 분산될 수 있고, 이로 인하여 지지 부재들(220-1 내지 220-4)의 변형 및 단선을 억제할 수 있다.
제1 내지 제4 상측 탄성 부재들(1150-1 내지 1150-4)은 지지 부재들(1220-1 내지 1220-4)를 통해 회로 기판(1250)에 전기적으로 연결될 수 있다.
예컨대, 제1 코일(1120)의 양단은 제1 및 제2 상측 탄성 부재들(1150-1,1150-2)의 내측 프레임과 연결될 수 있고, 제1 및 제2 상측 탄성 부재들(1150-1 내지 1150-2) 및 지지 부재들(1220-1 내지 1220-2)에 의하여 회로 기판(1250)과 전기적으로 연결될 수 있다.
또한 예컨대, 센싱 코일(1170)의 양단은 제3 및 제4 상측 탄성 부재들(1150-3,1150-4)의 내측 프레임과 연결될 수 있고, 제3 및 제4 상측 탄성 부재들(1150-3 내지 1150-4) 및 지지 부재들(1220-3 내지 1220-4)에 의하여 회로 기판(1250)과 전기적으로 연결될 수 있다.
지지 부재들(1220-1 내지 1220-4)은 링 형상의 센싱 코일(1170)의 안쪽에 위치할 수 있다.
다음으로 베이스(1210), 회로 기판(1250), 및 제2 코일(1230)에 대하여 설명한다.
베이스(1210)는 보빈(1110)의 중공, 또는/및 하우징(1140)의 중공에 대응하는 중공을 구비할 수 있고, 커버 부재(1300)와 일치 또는 대응되는 형상, 예컨대, 사각형 형상일 수 있다.
도 17은 도 1에 도시된 베이스(1210), 제2 코일(1230) 및 회로 기판(1250)의 분해 사시도를 나타낸다.
도 17을 참조하면, 베이스(1210)는 커버 부재(1300)를 접착 고정할 때, 접착제가 도포될 수 있는 단턱(1211)을 구비할 수 있다. 이때, 단턱(1211)은 상측에 결합되는 커버 부재(1300)를 가이드할 수 있으며, 커버 부재(1300)의 단부가 면 접촉하도록 결합될 수 있다.
회로 기판(1250)의 단자(1251)가 형성된 부분과 마주하는 베이스(1210)의 면에는 대응되는 크기의 받침부(1255)가 형성될 수 있다. 베이스(1210)의 받침부(1255)는 베이스(1210)의 외측면으로부터 일정한 단면으로 단턱(1211) 없이 형성되어, 회로 기판(1250)의 단자면(1253)을 지지할 수 있다.
베이스(1210)의 모서리는 요홈(1212)을 가질 수 있다. 커버 부재(1300)의 모서리가 돌출된 형태를 가질 경우, 커버 부재(1300)의 돌출부는 요홈(1212)에서 베이스(1210)와 체결될 수 있다.
또한, 베이스(1210)의 상부면에는 OIS 위치 센서(1240)가 배치될 수 있는 안착홈(1215-1, 1215-2)이 마련될 수 있다. 실시 예에 따르면, 베이스(1210)에는 2개의 안착홈들(1215-1, 1215-2)이 마련될 수 있고, OIS 위치 센서(1240)가 베이스(1210)의 안착홈들(1215-1, 1215-2)에 배치됨으로써, 하우징(1140)이 제2 방향과 제3 방향으로 움직이는 정도를 감지할 수 있다. 이를 위해 베이스(1210)의 안착홈들(1215-1, 1215-2)의 중심들과 베이스(1210)의 중심을 연결하는 가상의 선들은 서로 교차할 수 있다, 예컨대, 베이스(1210)의 안착홈들(1215-1, 1215-2)의 중심들과 베이스(1210)의 중심을 연결하는 가상의 선들이 이루는 각도는 90°일 수 있으나, 이에 한정되는 것은 아니다.
회로 기판(1250)을 기준으로 상부에는 제2 코일(1230)이, 하부에는 OIS 위치 센서(1240)가 배치될 수 있다.
OIS 위치 센서(1240)는 광축(예컨대, Z축)과 수직인 방향(예컨대, X축 또는 Y축)으로 베이스(1210)에 대한 하우징(1140)의 변위를 감지할 수 있다. 예컨대, OIS 위치 센서(1240)는 하우징(1140)의 이동에 따른 마그네트(1130)의 자기력의 변화를 감지할 수 있고, 감지된 결과에 따른 신호를 출력할 수 있다.
OIS 위치 센서(1240)는 광축과 수직인 방향으로의 하우징(1140)의 변위를 감지하기 위하여 서로 직교하도록 배치되는 제1 OIS 위치 센서(1240a) 및 제2 OIS 위치 센서(1240b)를 포함할 수 있다.
회로 기판(1250)은 베이스(1210)의 상부면 상에 배치될 수 있고, 보빈(1110)의 중공, 하우징(1140)의 중공, 또는/및 베이스(1210)의 중공에 대응하는 중공을 구비할 수 있다. 회로 기판(1250)의 외주면의 형상은 베이스(1210)의 상부면과 일치 또는 대응되는 형상, 예컨대, 사각형 형상일 수 있다.
회로 기판(1250)은 상부면으로부터 절곡되고, 외부로부터 전기적 신호들을 공급받는 복수 개의 단자들(terminals, 251), 또는 핀들(pins)이 형성되는 적어도 하나의 단자면(1253)을 구비할 수 있다.
도 17에서는 제2 코일(1230)은 회로 기판(1250)과 별도의 회로 부재(1231)에 마련되는 형태로 구현되지만, 이에 한정되는 것은 아니며, 다른 실시 예에서는 제2 코일(1230)은 링 형상의 코일 블록 형태로 구현되거나, 또는 FP 코일 형태로 구현되거나, 또는 회로 기판(1250)에 형성되는 회로 패턴 형태로 구현될 수도 있다.
제2 코일(1130)은 회로 부재(231)를 관통하는 통공(1230a)을 포함할 수 있다. 지지 부재(1220)는 통공(1230a)을 관통하여 회로 기판(1250)에 전기적으로 연결될 수 있다.
제2 코일(1230)은 하우징(1140)에 배치되는 마그네트(1130)와 대향하도록 회로 기판(250)의 상부에 배치된다.
제2 코일(1230)은 회로 기판(1250)의 네 변에 총 4개 설치될 수 있으나, 이를 한정하는 것은 아니며, 제2 방향용 1개, 제3 방향용 1개 등 2개만이 설치되는 것도 가능하고, 4개 이상 설치될 수도 있다.
서로 대향하도록 배치된 마그네트(1130)와 제2 코일(1230)의 상호 작용에 의해 하우징(1140)이 제2 및/또는 제3 방향으로 움직여 손떨림 보정이 수행될 수 있다.
OIS 위치 센서(1240a, 1240b)는 홀 센서로 마련될 수 있으며, 자기장 세기를 감지할 수 있는 센서라면 어떠한 것이든 사용 가능하다. 예컨대, OIS 위치 센서(1240a, 1240b)는 홀 센서를 포함하는 드라이버 형태로 구현되거나 또는 홀 센서 등과 같은 위치 검출 센서 단독으로 구현될 수도 있다.
회로 기판(1250)의 단자면(1253)에는 복수 개의 단자(1251)가 설치될 수 있다.
예컨대, 회로 기판(1250)의 단자면(1253)에 설치된 복수 개의 단자(1251)를 통해 외부 전원을 인가받아 제1 및 제2 코일들(1120, 1230), OIS 위치 센서(1240)에 전원을 공급할 수도 있고, 센싱 코일(1170)로부터 출력되는 유도 전압을 제공받아 외부로 출력할 수도 있고, OIS 위치 센서(1240)로부터 출력되는 출력 신호를 제공받아 외부로 출력할 수도 있다.
실시 예에 따르면, 회로 기판(1250)은 FPCB로 마련될 수 있으나 이를 한정하는 것은 아니며, 회로 기판(1250)의 단자들을 베이스(1210)의 표면에 표면 전극 방식 등을 이용하여 직접 형성하는 것도 가능하다.
회로 기판(2150)은 지지 부재(1220)가 관통 가능한 통공 또는 홈(미도시)을 포함할 수 있다. 지지 부재(1220)는 회로 기판(1250)의 통공 또는 홈을 통하여 회로 기판(1250)의 저면에 배치될 수 있는 회로 패턴과 솔더링 등을 통해 전기적으로 연결될 수 있다.
또한 다른 실시 예에서 회로 기판(1250)은 통공을 구비하지 않을 수 있으며, 지지 부재(1220)는 회로 기판(1250)의 상면에 형성되는 회로 패턴 또는 패드에 솔더링 등을 통하여 전기적으로 연결될 수도 있다.
도 18은 도 12에 도시된 렌즈 구동 장치의 측면 사시도를 나타내고, 도 19a는 도 12에 도시된 렌즈 구동 장치의 Ⅰ-Ⅰ'의 절단 단면도를 나타내고, 도 19b는 도 12에 도시된 렌즈 구동 장치의 Ⅱ-Ⅱ'의 절단 단면도를 나타낸다.
도 18, 도 19a, 및 도 19b를 참조하면, 센싱 코일(1170)은 하우징(1140)의 제1 측면들(1141) 및 제2 측면들(1142)에 마련되는 센싱 코일용 안착홈(1141b) 내에 직접 권선된다.
초기 위치에서 센싱 코일(1170)은 제1 방향과 수직인 방향으로 마그네트(1130)와 오버랩되지 않을 수 있다. 이는 마그네트(1130)와 센싱 코일(1710)의 상호 간의 간섭을 줄이기 위함이다.
또한 초기 위치에서 센싱 코일(1170)은 제1 방향으로 제1 코일(1120)과 기설정된 간격만큼 이격하여 위치하며, 제1 방향과 수직인 방향으로 제1 코일(120)과 오버랩되지 않을 수 있다. 제1 방향으로 제1 코일과 센싱 코일(1170) 간에 기설정된 거리를 유지하는 것은 제1 코일(1120)의 전류에 의하여 센싱 코일(1170)에 유도되는 유도 전압의 선형성을 확보하기 위함이다.
초기 위치에서 센싱 코일(1170)은 마그네트(1130)와 제1 방향으로 오버랩될 수 있으나, 이에 한정되는 것은 아니며, 다른 실시 예에서 양자는 제1 방향으로 서로 오버랩되지 않을 수 있다.
센싱 코일(1170)은 적어도 일 부분이 지지 부재(1220)의 외측에 위치하도록 하우징(1140)의 측부에 직접 권선될 수 있다. 예컨대, 지지 부재(1220)의 외측은 지지 부재(1220)를 기준으로 하우징(1140)의 중공의 중앙의 반대편일 수 있다.
지지 부재(1220)는 광축과 수직인 방향으로 제1 코일(1120)과 센싱 코일(1170) 사이에 위치할 수 있다.
센싱 코일(1170)은 제1 측부들(1141)의 외측면에 배치되는 제1 부분들(1170-1, 도 18 참조), 및 제2 측부들(1142)의 외측면에 배치되는 제2 부분들(1170-2, 도 18 참조)을 포함할 수 있다.
예컨대, 센싱 코일(1170)의 제1 부분들(1170-1) 각각은 직선 형상일 수 있으며, 제2 부분들(1170-2) 각각은 곡선 형상일 수 있다.
센싱 코일(1170)의 제2 부분들(1170-2)은 지지 부재(1220)의 외측에 위치할 수 있다. 예컨대, 센싱 코일(1170)의 제2 부분들(1170-2) 각각은 지지 부재들(1220-1 내지 1220-4) 중 대응하는 어느 하나의 외측에 위치할 수 있다.
하우징(1140)의 중앙으로부터 지지 부재들(1220-1 내지 1220-4) 각각까지의 이격 거리는 하우징(1140)의 중앙으로부터 센싱 코일(1170)의 제2 부분들(1170-2) 각각까지의 이격 거리보다 작다. 예컨대, 하우징(1140)의 중앙을 기준으로 어느 하나의 지지 부재(예컨대, 1220-1)의 이격 거리는 어느 하나의 지지 부재(예컨대, 1220-1)와 대응하는 센싱 코일(1170)의 제2 부분(1170-2)의 이격 거리보다 작을 수 있다.
센싱 코일(1170)은 제1 방향으로 제1 내지 제4 상측 탄성 부재들(1150-1 내지 1150-4) 각각의 프레임 연결부(1153)와 오버랩되지 않는다.
도 20은 실시 예에 따른 센싱 코일(1170)과 지지 부재(1220) 사이의 상대적 위치를 설명하기 위한 Ⅱ-Ⅱ'의 절단 일부 단면도를 나타내고, 도 21은 실시 예에 따른 센싱 코일(1170)과 지지 부재(1220) 사이의 상대적 위치를 설명하기 위한 Ⅰ-Ⅰ'의 절단 일부 단면도를 나타낸다.
도 20 및 도 21의 (a)는 지지 부재(220-1)의 내측에 배치되는 센싱 코일(1170)을 구비하는 렌즈 구동 장치의 일부 단면도를 나타내고, 도 20 및 도 21의 (b)는 실시 예에 다른 렌즈 구동 장치의 일부 단면도를 나타낸다. 도 20 및 도 21의 (a)의 하우징(1140)의 상단과 도 20 및 도 21의 (b)의 하우징(1140)의 상단이 동일한 기준선(1101)에 정렬된다고 가정한다.
도 20 및 도 21을 참조하면, 센싱 코일(1170)의 제2 부분(1170-2)이 지지 부재들(1220-1 내지 1220-4)의 외측에 위치하도록 센싱 코일(1170)이 하우징(1140)의 측부에 직접 권선되기 때문에, 실시 예는 센싱 코일(1170)을 하우징(1140)의 제1 및 제2 측부들(1141,1142)의 외측면 상단에 권선할 수 있고, 하우징(1140)에 1회 권선된 센싱 코일(1170)의 길이를 증가시킬 수 있다. 1회 권선된 센싱 코일(1170)의 길이가 증가함에 따라 기설정된 저항 값을 갖는 센싱 코일(1170)을 구현하기 위한 하우징(1140)의 권선 수를 줄일 수 있다. 그리고 센싱 코일(1170)의 권선 수가 줄어듬에 따라 센싱 코일(1170)에 필요한 하우징(1140)의 영역이 감소시킬 수 있고 마그네트(1130)를 배치시키기 위한 영역은 증가시킬 수 있어 하우징(1140)에 장착할 수 있는 마그네트 사이즈를 증가시킬 수 있다.
예컨대, 온도 변화에 따라 센싱 코일의 저항 값이 영향을 받게 되고, 이러한 센싱 코일의 저항 값의 변화로 인하여 센싱 전류가 변화할 수 있다. 이러한 온도 변화에 기인한 센싱 전류의 영향은 AF 구동의 오동작을 유발할 수 있기 때문에, 온도 보상이 필요하다. 센싱 코일의 저항을 기설정된 저항 값(예컨대, 30Ω) 이상이 되도록 함으로써, 이러한 온도 보상을 용이하게 수행할 수 있다. 실시 예는 적은 턴 수로 온도 보상을 용이하게 하기 위한 기설정된 저항 값을 구현할 수 있다.
결국 더 큰 사이즈를 갖는 마그네트(1130)를 배치시킬 수 있는 하우징(1140)의 공간을 확보함으로서, 실시 예는 마그네트(1130)와의 상호 작용에 의한 전자기력을 증가시킬 수 있다.
도 21의 (a)에 도시된 센싱 코일(1170)이 배치된 하우징(1140)에는 제1 폭(L1)과 제1 높이(H1)를 갖는 마그네트(1130)를 배치시킬 수 있는 반면에, 도 21의 (b)에 도시된 센싱 코일(1170)이 배치된 하우징(1140)에는 제2 폭(L2>L1), 및 제2 높이(H2>H1)를 갖는 마그네트(1130)를 배치시킬 수 있다.
도 22는 도 20의 (a)에 도시된 센싱 코일(1170)의 배치를 나타내는 상면도이고, 도 23은 도 20의 (b)에 도시된 센싱 코일(1170)의 배치를 나타내는 상면도이다.
도 22 및 도 23을 참조하면, 실시 예에 따른 센싱 코일(1170)의 곡선 부분(1302)의 곡률(R2)이 센싱 코일(1170)의 곡선 부분(1301)의 곡률(R1)보다 작기 때문에, 센싱 코일(1170)의 1회 턴의 길이가 센싱 코일(1170)의 1회 턴의 길이보다 크다.
상술한 바와 같이, 실시 예는 센싱 코일(1170)이 하우징(1140)의 제1 및 제2 측부들(1141,1142)의 외측면에 직접 권선되기 때문에 센싱 코일(1170)과 하우징(1140) 또는 센싱 코일(1170)과 상측 탄성 부재(1150) 간의 본딩 신뢰성 저하를 방지할 수 있다.
또한 센싱 코일(1170)은 상측 탄성 부재(1150)의 아래에 상측 탄성 부재(1150)와 이격하여 배치되기 때문에, 실시 예는 상측 탄성 부재(1150)를 하우징(1140) 상단에 설치하는데 공간적 제약을 받지 않는다.
또한 센싱 코일(1170)이 지지 부재(1220)의 외측에 배치되기 때문에, 센싱 코일(1170)의 최외곽 둘레의 길이를 최대로 늘릴 수 있고, 적은 권선으로 기설정된 저항을 갖는 센싱 코일(1170)을 구현할 수 있으며, 하우징(1140)에 배치시킬 수 있는 마그네트(1130)의 사이즈를 증가시켜 AF 또는 OIS 구동을 위한 전자기력을 증가시킬 수 있다.
도 24a는 실시 예에 따른 카메라 모듈(200)의 분해 사시도를 나타낸다.
도 24a를 참조하면, 카메라 모듈은 렌즈 배럴(400), 렌즈 구동 장치(100), 접착 부재(612), 필터(610), 제1 홀더(600), 제2 홀더(800), 이미지 센서(810), 모션 센서(motion sensor, 820), 제어부(830), 및 커넥터(connector, 840)를 포함할 수 있다. 카메라 모듈은 렌즈 구동 장치(100) 대신에 도 11의 렌즈 구동 장치(1100)를 포함할 수도 있다.
렌즈 배럴(lens barrel, 400)은 렌즈 구동 장치(100)의 보빈(110)에 장착될 수 있다.
제1 홀더(600)는 렌즈 구동 장치(100)의 베이스(210) 아래에 배치될 수 있다. 필터(610)는 제1 홀더(600)에 장착되며, 제1 홀더(600)는 필터(610)가 안착되는 돌출부(500)를 구비할 수 있다.
접착 부재(612)는 렌즈 구동 장치(100,1100)의 베이스(210, 1210)를 제1 홀더(600)에 결합 또는 부착시킬 수 있다. 접착 부재(612)는 상술한 접착 역할 외에 렌즈 구동 장치(100) 내부로 이물질이 유입되지 않도록 하는 역할을 할 수도 있다.
예컨대, 접착 부재(612)는 에폭시, 열경화성 접착제, 자외선 경화성 접착제 등일 수 있다.
필터(610)는 렌즈 배럴(400)을 통과하는 광에서의 특정 주파수 대역의 광이 이미지 센서(810)로 입사하는 것을 차단하는 역할을 할 수 있다. 필터(610)는 적외선 차단 필터일 수 있으나, 이에 한정되는 것은 아니다. 이때, 필터(610)는 x-y평면과 평행하도록 배치될 수 있다.
필터(610)가 실장되는 제1 홀더(600)의 부위에는 필터(610)를 통과하는 광이 이미지 센서(810)에 입사할 수 있도록 중공이 형성될 수 있다.
제2 홀더(800)는 제1 홀더(600)의 하부에 배치되고, 제2 홀더(600)에는 이미지 센서(810)가 실장될 수 있다. 이미지 센서(810)는 필터(610)를 통과한 광이 입사하여 광이 포함하는 이미지가 결상되는 부위이다.
제2 홀더(800)는 이미지 센서(810)에 결상되는 이미지를 전기적 신호로 변환하여 외부장치로 전송하기 위해, 각종 회로, 소자, 제어부 등이 구비될 수도 있다.
제2 홀더(800)는 이미지 센서가 실장될 수 있고, 회로 패턴이 형성될 수 있고, 각종 소자가 결합하는 회로 기판으로 구현될 수 있다.
이미지 센서(810)는 렌즈 구동 장치(100)를 통하여 입사되는 광에 포함되는 이미지를 수신하고, 수신된 이미지를 전기적 신호로 변환할 수 있다.
필터(610)와 이미지 센서(810)는 제1 방향으로 서로 대향되도록 이격하여 배치될 수 있다.
모션 센서(820)는 제2 홀더(800)에 실장되며, 제2 홀더(800)에 마련되는 회로 패턴을 통하여 제어부(830)와 전기적으로 연결될 수 있다.
모션 센서(820)는 카메라 모듈(200)의 움직임에 의한 회전 각속도 정보를 출력한다. 모션 센서(820)는 2축 또는 3축 자이로 센서(Gyro Sensor), 또는 각속도 센서로 구현될 수 있다.
제어부(820)는 제2 홀더(800)에 실장되며, 렌즈 구동 장치(100)의 제2 위치 센서(240), 및 제2 코일(230)과 전기적으로 연결될 수 있다. 예컨대, 제2 홀더(800)는 렌즈 구동 장치(100)의 회로 기판(250)과 전기적으로 연결될 수 있고, 제2 홀더(800)에 실장된 제어부(820)는 회로 기판(250)을 통하여 제2 위치 센서(240), 및 제2 코일(230)과 전기적으로 연결될 수 있다.
제어부(830)는 렌즈 구동 장치(100)의 제2 위치 센서(240)로부터 제공되는 궤환 신호들에 기초하여, 렌즈 구동 장치(100)의 OIS 가동부에 대한 손떨림 보정을 수행할 수 있는 구동 신호를 출력할 수 있다.
커넥터(840)는 제2 홀더(800)와 전기적으로 연결되며, 외부 장치와 전기적으로 연결되기 위한 포트(port)를 구비할 수 있다.
또한 실시 예에 따른 렌즈 구동 장치(100)는 빛의 특성인 반사, 굴절, 흡수, 간섭, 회절 등을 이용하여 공간에 있는 물체의 상을 형성시키고, 눈의 시각력 증대를 목표로 하거나, 렌즈에 의한 상의 기록과 그 재현을 목적으로 하거나, 광학적인 측정, 상의 전파나 전송 등을 목적으로 하는 광학 기기(opticla instrument)에 적용될 수 있다. 예컨대, 실시 예에 따른 광학 기기는 스마트폰 및 카메라가 장착된 휴대용 단말기일 수 있다.
도 24b은 도 24a에 도시된 이미지 센서(810)의 일 실시 예에 따른 블록도를 나타낸다.
도 24b를 참조하면, 이미지 센서(810)는 센싱 제어부(905), 화소 어레이(pixel array, 910), 및 아날로그-디지털 변환 블록(Analog-Digital converting block, 920)을 포함한다.
센싱 제어부(905)는 화소 어레이(120)에 포함된 트랜지스터들을 제어하기 위한 제어 신호들(예컨대, 리셋신호(RX), 전송신호(TX), 선택신호(SX)), 및아날로그-디지털 변환 블록(130)을 제어하기 위한 제어 신호들(Sc)을 출력한다.
화소 어레이부(910)는 복수의 단위 화소들(unit pixels, P11 내지 Pnm, n, m>1인 자연수)을 포함하며, 복수의 단위 화소들(P11 내지 Pnm)은 행과 열로 이루어진 매트릭스(matrix) 형상을 갖도록 배열될 수 있다. 단위 화소들(P11 내지 Pnm) 각각은 빛을 감지하여 전기적 신호로 변환하는 광전 변환 소자일 수 있다.
화소 어레이(120)는 단위 화소들(P11 내지 Pnm)의 출력단들과 연결되는 센싱 라인들을 포함할 수 있다.
예컨대, 단위 화소들(P11 내지 Pnm) 각각은 포토다이오드, 트랜스퍼 트랜지스터(transfer transistor), 리셋 트랜지스터(reset transistor), 드라이브 트랜지스터(drive transistor), 및 샐렉트 트랜지스터(select transistor)를 포함할 수 있으나, 이에 한정되는 것은 아니다. 단위 화소가 포함하는 트랜지스터들의 개수는 4개에 한정되는 것이 아니라, 3개, 또는 5개일 수도 있다.
포토다이오드는 빛을 흡수하고, 흡수된 빛에 의하여 전하를 발생할 수 있다.
트랜스퍼 트랜지스터는 전송 신호(TX)에 응답하여 포토다이오드에 의하여 발생된 전하를 감지 노드(예컨대, 플로팅 디퓨젼 영역(floating diffusion region))으로 전송할 수 있다. 리셋 트랜지스터는 리셋 신호(RX)에 응답하여 단위 화소를 초기화(reset)할 수 있다. 드라이브 트랜지스터는 감지 노드의 전압에 응답하여 제어될 수 있고, 소스 팔로워(source follower)로 구현될 수 있고, 버퍼(buffer)의 역할을 할 수 있다. 셀렉트 트랜지스터는 선택 신호(SE)에 의하여 제어될 수 있고, 감지 신호(Va)를 단위 화소의 출력 단자(output terminal)로 출력할 수 있다.
아날로그-디지털 변환 블록(920)은 화소 어레이부(905)로부터 출력되는 아날로그 신호인 감지 신호(Va)를 샘플링하고, 샘플링된 감지 신호를 디지털 신호(Ds)로 변환한다. 아날로그 디지털 변환 블록(920)은 화소 고유의 고정 패턴 노이즈를 제거하기 위하여 상관 더블 샘플링(Correlated Double Sampling, CDS)을 수행할 수 있다.
상술한 센싱 제어부(905) 및 아날로그 디지털 변환 블록(920)은 제어부(830)와 별도로 구현될 수 있으나, 이에 한정되는 것은 아니며, 센싱 제어부(905), 아날로그 디지털 변환 블록(920), 및 제어부(830)가 하나의 제어부로 구현될 수도 있다.
도 25는 실시 예에 따른 휴대용 단말기(200A)의 사시도를 나타내고, 도 26은 도 25에 도시된 휴대용 단말기의 구성도를 나타낸다.
도 25 및 도 26을 참조하면, 휴대용 단말기(200A, 이하 "단말기"라 한다.)는 몸체(850), 무선 통신부(710), A/V 입력부(720), 센싱부(740), 입/출력부(750), 메모리부(760), 인터페이스부(770), 제어부(780), 및 전원 공급부(790)를 포함할 수 있다.
도 25에 도시된 몸체(850)는 바(bar) 형태이지만, 이에 한정되지 않고, 2개 이상의 서브 몸체(sub-body)들이 상대 이동 가능하게 결합하는 슬라이드 타입, 폴더 타입, 스윙(swing) 타입, 스위블(swirl) 타입 등 다양한 구조일 수 있다.
몸체(850)는 외관을 이루는 케이스(케이싱, 하우징, 커버 등)를 포함할 수 있다. 예컨대, 몸체(850)는 프론트(front) 케이스(851)와 리어(rear) 케이스(852)로 구분될 수 있다. 프론트 케이스(851)와 리어 케이스(852)의 사이에 형성된 공간에는 단말기의 각종 전자 부품들이 내장될 수 있다.
무선 통신부(710)는 단말기(200A)와 무선 통신시스템 사이 또는 단말기(200A)와 단말기(200A)가 위치한 네트워크 사이의 무선 통신을 가능하게 하는 하나 이상의 모듈을 포함하여 구성될 수 있다. 예를 들어, 무선 통신부(710)는 방송 수신 모듈(711), 이동통신 모듈(712), 무선 인터넷 모듈(713), 근거리 통신 모듈(714) 및 위치 정보 모듈(715)을 포함하여 구성될 수 있다.
A/V(Audio/Video) 입력부(720)는 오디오 신호 또는 비디오 신호 입력을 위한 것으로, 카메라(721) 및 마이크(722) 등을 포함할 수 있다.
카메라(721)는 도 24에 도시된 실시 예에 따른 카메라(200)일 수 있다.
센싱부(740)는 단말기(200A)의 개폐 상태, 단말기(200A)의 위치, 사용자 접촉 유무, 단말기(200A)의 방위, 단말기(200A)의 가속/감속 등과 같이 단말기(200A)의 현 상태를 감지하여 단말기(200A)의 동작을 제어하기 위한 센싱 신호를 발생시킬 수 있다. 예를 들어, 단말기(200A)가 슬라이드 폰 형태인 경우 슬라이드 폰의 개폐 여부를 센싱할 수 있다. 또한, 전원 공급부(790)의 전원 공급 여부, 인터페이스부(770)의 외부 기기 결합 여부 등과 관련된 센싱 기능을 담당한다.
입/출력부(750)는 시각, 청각 또는 촉각 등과 관련된 입력 또는 출력을 발생시키기 위한 것이다. 입/출력부(750)는 단말기(200A)의 동작 제어를 위한 입력 데이터를 발생시킬 수 있으며, 또한 단말기(200A)에서 처리되는 정보를 표시할 수 있다.
입/출력부(750)는 키 패드부(730), 디스플레이 모듈(751), 음향 출력 모듈(752), 및 터치 스크린 패널(753)을 포함할 수 있다. 키 패드부(730)는 키 패드 입력에 의하여 입력 데이터를 발생시킬 수 있다.
디스플레이 모듈(751)은 전기적 신호에 따라 색이 변화하는 복수 개의 픽셀들을 포함할 수 있다. 예컨대, 디스플레이 모듈(751)는 액정 디스플레이(liquid crystal display), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display), 유기 발광 다이오드(organic light-emitting diode), 플렉시블 디스플레이(flexible display), 3차원 디스플레이(3D display) 중에서 적어도 하나를 포함할 수 있다.
음향 출력 모듈(752)은 호(call) 신호 수신, 통화 모드, 녹음 모드, 음성 인식 모드, 또는 방송 수신 모드 등에서 무선 통신부(710)로부터 수신되는 오디오 데이터를 출력하거나, 메모리부(760)에 저장된 오디오 데이터를 출력할 수 있다.
터치 스크린 패널(753)은 터치 스크린의 특정 영역에 대한 사용자의 터치에 기인하여 발생하는 정전 용량의 변화를 전기적인 입력 신호로 변환할 수 있다.
메모리부(760)는 제어부(780)의 처리 및 제어를 위한 프로그램이 저장될 수도 있고, 입/출력되는 데이터들(예를 들어, 전화번호부, 메시지, 오디오, 정지영상, 사진, 동영상 등)을 임시 저장할 수 있다. 예컨대, 메모리부(760)는 카메라(721)에 의해 촬영된 이미지, 예컨대, 사진 또는 동영상을 저장할 수 있다.
인터페이스부(770)는 단말기(200A)에 연결되는 외부 기기와의 연결되는 통로 역할을 한다. 인터페이스부(770)는 외부 기기로부터 데이터를 전송받거나, 전원을 공급받아 단말기(200A) 내부의 각 구성 요소에 전달하거나, 단말기(200A) 내부의 데이터가 외부 기기로 전송되도록 한다. 예컨대, 인터페이스부(770)는 유/무선 헤드셋 포트, 외부 충전기 포트, 유/무선 데이터 포트, 메모리 카드(memory card) 포트, 식별 모듈이 구비된 장치를 연결하는 포트, 오디오 I/O(Input/Output) 포트, 비디오 I/O(Input/Output) 포트, 및 이어폰 포트 등을 포함할 수 있다.
제어부(controller, 780)는 단말기(200A)의 전반적인 동작을 제어할 수 있다. 예를 들어 제어부(780)는 음성 통화, 데이터 통신, 화상 통화 등을 위한 관련된 제어 및 처리를 수행할 수 있다.
제어부(780)는 멀티 미디어 재생을 위한 멀티미디어 모듈(781)을 구비할 수 있다. 멀티미디어 모듈(781)은 제어부(180) 내에 구현될 수도 있고, 제어부(780)와 별도로 구현될 수도 있다.
제어부(780)는 터치스크린 상에서 행해지는 필기 입력 또는 그림 그리기 입력을 각각 문자 및 이미지로 인식할 수 있는 패턴 인식 처리를 행할 수 있다.
전원 공급부(790)는 제어부(780)의 제어에 의해 외부의 전원, 또는 내부의 전원을 인가받아 각 구성 요소들의 동작에 필요한 전원을 공급할 수 있다.
이상에서 실시 예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시 예에 포함되며, 반드시 하나의 실시 예에만 한정되는 것은 아니다. 나아가, 각 실시 예에서 예시된 특징, 구조, 효과 등은 실시 예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시 예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
실시 예는 센싱 코일의 본딩 신뢰성 저하를 방지하고, 센싱 코일 본딩을 위한 솔더링 작업을 용이하게 수행할 수 있고, 적은 권선으로 기설정된 저항을 갖는 센싱 코일을 구현할 수 있고, 마그네트와의 상호 작용에 의한 전자기력을 향상시킬 수 있는 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기에 사용될 수 있다.

Claims (10)

  1. 하우징(Housing);
    상기 하우징 내측에 배치되고, 렌즈를 장착하기 위한 보빈;
    상기 보빈에 배치되는 제1 코일;
    상기 하우징에 배치되는 마그네트;
    상기 보빈과 상기 하우징에 결합되는 상측 탄성 부재 및 하측 탄성 부재; 및
    상기 마그네트와 이격하여 상기 하우징에 배치되며, 상기 제1 코일과 상호 작용에 의하여 유도 전압이 발생하는 센싱 코일을 포함하며,
    상기 센싱 코일은 광축을 기준으로 회전하도록 상기 하우징의 측부에 배치되는 렌즈 구동 장치.
  2. 제1항에 있어서,
    상기 하우징은 복수의 측부들을 포함하며,
    상기 센싱 코일은 상기 하우징의 측부들의 외측면에 배치되는 렌즈 구동 장치.
  3. 제2항에 있어서,
    상기 하우징의 측부들의 외측면에는 안착홈이 형성되며,
    상기 센싱 코일은 상기 안착홈에 권선되는 렌즈 구동 장치.
  4. 제3항에 있어서, 상기 하우징은,
    상기 센싱 코일의 시선을 가이드하기 위하여 상기 측부들 중 어느 하나의 외측면으로부터 돌출되는 제1 단차부; 및
    상기 센싱 코일의 종선을 가이드하기 위하여 상기 측부들 중 다른 어느 하나의 외측면으로부터 돌출되는 제2 단차부를 포함하는 렌즈 구동 장치.
  5. 제1항에 있어서,
    상기 센싱 코일은 상기 상측 탄성 부재 아래에 배치되고, 상기 마그네트 위에 배치되는 렌즈 구동 장치.
  6. 하우징;
    상기 하우징 내측에 배치되고, 렌즈를 장착하기 위한 보빈;
    상기 보빈에 배치되는 제1 코일;
    상기 보빈과 상기 하우징에 결합되는 상측 탄성 부재;
    일단이 상기 상측 탄성 부재와 연결되는 지지 부재; 및
    상기 제1 코일과 상호 작용에 의하여 유도 전압을 발생하는 센싱 코일을 포함하며,
    상기 센싱 코일은 상기 마그네트와 이격하고, 적어도 일 부분이 상기 지지 부재의 외측에 위치하도록 상기 하우징의 측부에 배치되고, 상기 지지 부재의 외측은 상기 지지 부재를 기준으로 상기 하우징의 중앙의 반대편인 렌즈 구동 장치.
  7. 제6항에 있어서, 상기 하우징은,
    상기 마그네트가 배치되는 제1 측부들; 및
    상기 지지 부재가 배치되고, 상기 제1 측부들 중 인접하는 2개의 제1 측부들을 서로 연결하는 제2 측부들을 포함하며,
    상기 센싱 코일은 상기 제1 및 제2 측부들의 외측면에 배치되는 렌즈 구동 장치.
  8. 제7항에 있어서, 상기 센싱 코일은,
    상기 제1 측부들의 외측면에 배치되는 제1 부분들; 및
    상기 제2 측부들의 외측면에 배치되는 제2 부분을 포함하며,
    상기 제2 부분들 각각은 곡선인 렌즈 구동 장치.
  9. 제8항에 있어서,
    상기 센싱 코일의 제2 부분들 각각은 상기 지지 부재의 외측에 위치하는 렌즈 구동 장치.
  10. 제8항에 있어서,
    상기 하우징의 중앙으로부터 상기 지지 부재까지의 이격 거리는 상기 하우징의 중앙으로부터 상기 센싱 코일의 제2 부분까지의 이격 거리보다 작은 렌즈 구동 장치.
PCT/KR2017/001014 2016-02-04 2017-01-31 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기 WO2017135649A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110187910.5A CN112994397B (zh) 2016-02-04 2017-01-31 透镜驱动装置、相机模块和包括该相机模块的光学装置
US16/072,783 US10928607B2 (en) 2016-02-04 2017-01-31 Lens driving device, and camera module and optical device including same
CN201780018014.8A CN108781033B (zh) 2016-02-04 2017-01-31 透镜驱动装置、相机模块和包括该相机模块的光学装置
US17/153,339 US11656427B2 (en) 2016-02-04 2021-01-20 Lens driving device, and camera module and optical device including same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0013946 2016-02-04
KR1020160013946A KR102634908B1 (ko) 2016-02-04 2016-02-04 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
KR10-2016-0013947 2016-02-04
KR1020160013947A KR102634909B1 (ko) 2016-02-04 2016-02-04 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/072,783 A-371-Of-International US10928607B2 (en) 2016-02-04 2017-01-31 Lens driving device, and camera module and optical device including same
US17/153,339 Continuation US11656427B2 (en) 2016-02-04 2021-01-20 Lens driving device, and camera module and optical device including same

Publications (1)

Publication Number Publication Date
WO2017135649A1 true WO2017135649A1 (ko) 2017-08-10

Family

ID=59499711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001014 WO2017135649A1 (ko) 2016-02-04 2017-01-31 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기

Country Status (3)

Country Link
US (2) US10928607B2 (ko)
CN (2) CN108781033B (ko)
WO (1) WO2017135649A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112602016A (zh) * 2018-08-31 2021-04-02 日本电产三协株式会社 光学单元
US20220206364A1 (en) * 2019-05-09 2022-06-30 Lg Innotek Co., Ltd. Lens driving apparatus, and camera module and optical device comprising same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109073851B (zh) * 2016-03-08 2023-04-04 Lg伊诺特有限公司 透镜驱动装置以及包括其的摄像机模块和光学装置
US20180224628A1 (en) * 2017-02-08 2018-08-09 Tdk Taiwan Corp. Optical system
KR102476403B1 (ko) * 2017-11-30 2022-12-12 엘지이노텍 주식회사 렌즈 구동 장치, 카메라 모듈 및 광학 기기
TWI673531B (zh) 2018-05-03 2019-10-01 大陽科技股份有限公司 鏡頭致動模組與電子裝置
US20220043235A1 (en) * 2019-03-26 2022-02-10 Lg Innotek Co., Ltd. Lens driving device, and camera module and optical device including same
CN213546096U (zh) * 2019-05-03 2021-06-25 台湾东电化股份有限公司 线圈模块
JP7326606B2 (ja) * 2019-10-31 2023-08-15 ホアウェイ・テクノロジーズ・カンパニー・リミテッド レンズアクチュエータを制御するためのドライバ回路および方法
CN212135047U (zh) * 2020-11-11 2020-12-11 常州市瑞泰光电有限公司 一种镜头驱动装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191608A (ja) * 2007-02-08 2008-08-21 Shicoh Eng Co Ltd レンズ駆動装置、カメラ及びカメラ付き携帯電話
JP2011112709A (ja) * 2009-11-24 2011-06-09 Shicoh Engineering Co Ltd レンズ駆動装置、オートフォーカスカメラ及びカメラ付き携帯電話
JP2012027433A (ja) * 2010-07-27 2012-02-09 Tdk Taiwan Corp 電磁式レンズ駆動装置
CN102565993A (zh) * 2010-12-07 2012-07-11 鸿富锦精密工业(深圳)有限公司 驱动器、相机模组及便携式电子装置
JP2015191213A (ja) * 2014-03-28 2015-11-02 日本電産コパル株式会社 レンズ駆動装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3424523A (en) * 1965-10-24 1969-01-28 Bell & Howell Co Motion picture camera having a rotating gyroscopically stabilized lens and a variable erection rate means
JPH04119306A (ja) * 1990-09-10 1992-04-20 Sony Corp カメラ用レンズ鏡筒
JPH06230263A (ja) * 1993-01-28 1994-08-19 Fuji Photo Optical Co Ltd レンズ移動装置
JPH06230363A (ja) 1993-02-02 1994-08-19 Sony Corp 貼り合わせ装置の傾き補正機構
KR100282055B1 (ko) * 1993-03-30 2001-02-15 이데이 노부유끼 전자구동장치 및 전자구동장치를 이용한 포커스 제어장치
US5682097A (en) 1996-01-31 1997-10-28 Eastman Kodak Company Electromagnetic actuator with movable coil and position sensor for drive coil
KR100953750B1 (ko) 2008-05-22 2010-04-19 (주)태극기전 리니어 모터를 이용한 광학장치용 렌즈 구조체와, 이를 탑재한 광학장치
KR101164755B1 (ko) 2010-11-02 2012-07-12 엘지이노텍 주식회사 보이스 코일 모터 및 이의 구동 방법
JP2012177754A (ja) 2011-02-25 2012-09-13 Shicoh Engineering Co Ltd レンズ駆動装置、オートフォーカスカメラ及びカメラ付きモバイル端末装置
US8817116B2 (en) * 2011-10-28 2014-08-26 Lg Innotek Co., Ltd. Camera module
KR101877898B1 (ko) 2011-11-18 2018-08-09 엘지이노텍 주식회사 보이스 코일 모터 및 이의 구동 방법
JP2014126668A (ja) 2012-12-26 2014-07-07 Mitsumi Electric Co Ltd レンズ駆動装置、カメラモジュール、及びカメラ付き携帯端末
JP6094423B2 (ja) * 2013-08-09 2017-03-15 ミツミ電機株式会社 レンズホルダ駆動装置、カメラモジュール、およびカメラ付き携帯端末
JP2015118115A (ja) * 2013-12-16 2015-06-25 江西磊源永磁材料有限公司Jiangxi Leiyuan Permanent Magnetic Materials Co.,Ltd 手振れ補正装置
KR102209033B1 (ko) 2014-07-15 2021-01-28 엘지이노텍 주식회사 렌즈 구동 장치 및 이를 포함하는 카메라 모듈
US9591221B2 (en) * 2014-01-08 2017-03-07 Apple Inc. Magnetic camera component mounting in cameras
WO2015111884A1 (en) * 2014-01-22 2015-07-30 Lg Electronics Inc. Camera module and method for auto focusing thereof
KR102159746B1 (ko) 2014-01-28 2020-09-24 엘지이노텍 주식회사 렌즈 구동장치 및 이를 구비한 카메라 모듈
EP3926379A1 (en) * 2014-01-28 2021-12-22 Lg Innotek Co. Ltd Lens moving unit and camera module having the same
EP2916153B1 (en) 2014-03-05 2021-04-07 LG Innotek Co., Ltd. Lens moving apparatus and camera module including the same
KR102232029B1 (ko) 2014-03-17 2021-03-26 엘지이노텍 주식회사 렌즈 구동장치 및 이를 구비한 카메라 모듈
JP2015197627A (ja) 2014-04-02 2015-11-09 厦▲門▼新▲鴻▼洲精密科技有限公司Xinhongzhou Precision Technology Co,.Ltd カメラモジュール
TWM490014U (en) 2014-07-30 2014-11-11 Largan Precision Co Ltd Lens driving apparatus
CN204945591U (zh) 2015-07-31 2016-01-06 瑞声精密制造科技(常州)有限公司 镜头驱动装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191608A (ja) * 2007-02-08 2008-08-21 Shicoh Eng Co Ltd レンズ駆動装置、カメラ及びカメラ付き携帯電話
JP2011112709A (ja) * 2009-11-24 2011-06-09 Shicoh Engineering Co Ltd レンズ駆動装置、オートフォーカスカメラ及びカメラ付き携帯電話
JP2012027433A (ja) * 2010-07-27 2012-02-09 Tdk Taiwan Corp 電磁式レンズ駆動装置
CN102565993A (zh) * 2010-12-07 2012-07-11 鸿富锦精密工业(深圳)有限公司 驱动器、相机模组及便携式电子装置
JP2015191213A (ja) * 2014-03-28 2015-11-02 日本電産コパル株式会社 レンズ駆動装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112602016A (zh) * 2018-08-31 2021-04-02 日本电产三协株式会社 光学单元
US11579464B2 (en) 2018-08-31 2023-02-14 Nidec Sankyo Corporation Optical unit
US20220206364A1 (en) * 2019-05-09 2022-06-30 Lg Innotek Co., Ltd. Lens driving apparatus, and camera module and optical device comprising same

Also Published As

Publication number Publication date
CN112994397A (zh) 2021-06-18
US20210141188A1 (en) 2021-05-13
US11656427B2 (en) 2023-05-23
US20190033554A1 (en) 2019-01-31
US10928607B2 (en) 2021-02-23
CN112994397B (zh) 2024-02-02
CN108781033A (zh) 2018-11-09
CN108781033B (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
WO2017135649A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2017078328A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2017043884A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2018016790A1 (ko) 렌즈 구동 장치, 이를 포함하는 카메라 모듈 및 광학 기기
WO2017160094A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2017196045A1 (ko) 렌즈 구동 장치, 카메라 모듈 및 휴대용 디바이스
WO2018186674A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2017196047A1 (ko) 렌즈 구동 장치, 카메라 모듈 및 광학기기
WO2017022995A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2018062809A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2017090940A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2017155296A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2018016789A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2020262876A1 (ko) 카메라 모듈 및 이를 포함하는 광학 기기
WO2021133078A1 (ko) 센서 구동 장치
WO2020213862A1 (ko) 카메라 모듈 및 광학 기기
WO2019045339A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2019231245A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2018062810A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2018186673A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2021225362A1 (ko) 카메라 장치
WO2019066400A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2019004765A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2021002654A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2019182308A1 (ko) 카메라 모듈 및 이를 포함하는 광학 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11/10/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 17747694

Country of ref document: EP

Kind code of ref document: A1