WO2017131489A1 - 다면체 올리고머 실세스퀴옥산의 제조 방법 - Google Patents

다면체 올리고머 실세스퀴옥산의 제조 방법 Download PDF

Info

Publication number
WO2017131489A1
WO2017131489A1 PCT/KR2017/000992 KR2017000992W WO2017131489A1 WO 2017131489 A1 WO2017131489 A1 WO 2017131489A1 KR 2017000992 W KR2017000992 W KR 2017000992W WO 2017131489 A1 WO2017131489 A1 WO 2017131489A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
trimethoxysilane
carbon atoms
polyhedral oligomeric
oligomeric silsesquioxane
Prior art date
Application number
PCT/KR2017/000992
Other languages
English (en)
French (fr)
Inventor
송영지
최지영
이민형
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2017565141A priority Critical patent/JP6648881B2/ja
Priority to CN201780002674.7A priority patent/CN107849068B/zh
Priority to US15/743,830 priority patent/US10501583B2/en
Publication of WO2017131489A1 publication Critical patent/WO2017131489A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • C07F7/0872Preparation and treatment thereof
    • C07F7/0874Reactions involving a bond of the Si-O-Si linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature

Definitions

  • the present invention relates to a process for producing polyhedral oligomeric silsesquioxanes.
  • the siloxane structure consisting of Si-0-Si bonds is generally defined by four distinct types (Q, T, D, M).
  • [polysiloxane represented by RSiC y has a T unit structure among four kinds, and its scientific name is polysilsesquioxane.
  • Polysilsesquioxane is synthesized using a hydrolysis-polymerization method, and a method using a trialkoxysilane and a hydrolysis-polymerization method using trichlorosilane are widely known to date.
  • the structure of the polysilsesquioxane thus synthesized is known to have a high regularity.
  • the present invention provides a production method capable of providing polyhedral oligomeric silsesquioxanes of cage structure with high purity and high yield.
  • the reaction mixture containing the first silane compound represented by the following formula (1), the second silane compound represented by the formula (2) and tetraalkylammonium hydroxide having 2 to 5 carbon atoms of 5 ° C or less Method for producing a polyhedral oligomeric silsesquioxane comprising the step of reacting at a temperature of Is provided.
  • A is a single bond, an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 30 carbon atoms, -0-Si (R 3 ) (R 4 )-or -0-Si (R 3 ) (R 4 ) -R 5 —
  • R 1 is a monovalent moiety derived from a hydrocarbon of 1 to 30 carbon atoms substituted with halogen
  • R 2 is a (meth) acryloyl group, a (meth) acryloyloxy group, a hydroxy group, a mercato group carboxyl group, an amino group, a cyano group, a glycidyl group, a glycidyloxy group, an epoxy alkyl group having 2 to 30 carbon atoms, and a carbon group having 2 to 30 carbon atoms Epoxyalkoxy group, alkenyl group having 2 to 30 carbon atoms and alkenyloxy group having 2 to 30 carbon atoms, or -OH, -N3 ⁇ 4, -NH-R 6 , -NH 3 X 3 , -C00H , -C0NH 2 , -CN, -SH, is a monovalent moiety derived from a hydrocarbon having 1 to 30 carbon atoms substituted with one or more substituents selected from the group consisting of glycidyl group, glycidyloxy group and maleimide,
  • X 1 and X 2 are each independently an alkoxy group having 1 to 5 carbon atoms, CI, Br or
  • R 3 and R 4 are each independently an alkyl group having 1 to 5 carbon atoms
  • R 5 is an alkylene group having 1 to 12 carbon atoms
  • R 6 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an alkyl group having 1 to 10 carbon atoms substituted with an amino group, and X 3 is halogen.
  • R 1 is trifluoromethyl, trifluoroethyl, trifluoropropyl, trifluorobutyl, pentafluorobutyl, trifluoropentyl, pentafluoropentyl, heptafluoro Lopentyl, trifluoronuclear chamber, pentafluoronuclear chamber, heptafluoronuclear chamber, nonafluoronuclear chamber, trifluoroheptyl, pentafluoroheptyl, heptafluoroheptyl, nonafluoroheptyl, dodecafluoroheptyl, chloro Compounds which are propyl, (chloromethyl) phenyl, (chloromethyl) phenylethyl or dibromoethyl can be used. More specifically, as the first silane compound
  • R 2 is a (meth) acryloyl group, a (meth) acryloyloxy group, a hydroxyl group, a mercapto group, a carboxyl group, an amino group, a cyano group, a glycidyl group, a glycidyloxy group, an epoxy cyclo It is a functional group selected from the group consisting of a heterosil group, an epoxycyclonucleotoxy group, a vinyl group, an allyl group, and a norbornene group, or a cyclonucleodiol diol, trimethylolpropane, glycerol, 3-hydroxy-3-methylbutane, aminopropyl, aniline, N-methylaminopropane, N-phenylaminopropane, N- (aminoethyl) aminopropane, propylammonium chloride, propylnitrile, propy
  • A is a single bond, methylene, ethylene, propylene, phenylene, -0-SKCH 3 ) (C3 ⁇ 4)-or -0-Si (CH 3 ) (CH 3 ) -CH 2 C3 ⁇ 4CH 2 -phosphorus compounds can be used.
  • One or more selected from the group consisting of (trimethicsilyl) propyl] maleamic acid and the like can be used.
  • Tetrabutylammonium hydroxide may be used as the tetraalkylammonium hydroxide having 2 to 5 carbon atoms.
  • the tetraalkylammonium hydroxide having 2 to 5 carbon atoms may be present in an amount of 0.001 to 100 moles based on 100 moles of the total silane compound.
  • the reaction mixture may be reacted under an organic solvent.
  • an ether solvent may be used as the organic solvent.
  • the reaction mixture may be reacted for 5 hours to 128 hours.
  • Polyhedral ligomeric silsesjuxane prepared according to the production method of the embodiment may be a compound represented by the following formula (3).
  • A is a single bond, an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 30 carbon atoms, -0-Si (R 3 ) (R 4 )-or -0-Si (R 3 ) (R 4 ) -R 5- , wherein R 1 is derived from a hydrocarbon of 1 to 30 carbon atoms substituted with halogen
  • R 2 is a (meth) acryloyl group, a (meth) acryloyloxy group, a hydroxy group, a mercap group, a carboxyl group, an amino group, a cyano group, a glycidyl group, a glycidyloxy group, an epoxy alkyl group having 2 to 30 carbon atoms, and a C 2 to 30 epoxyalkoxy group, alkenyl group having 2 to 30 carbon atoms and alkenyloxy group having 2 to 30 carbon atoms Or a group selected from the group or black is -OH, -NH 2) -NH-R 6 , —N3 ⁇ 4X 3 , -C00H, -C0NH 2 , -CN, -SH, glycidyl group, glycidyloxy group and maleimide
  • R 3 and R 4 are each independently an alkyl group having 1 to 5 carbon atoms
  • R 5 is an alkylene group having 1 to 12 carbon atoms
  • R 6 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an alkyl group having 1 to 10 carbon atoms substituted with an amino group, and X 3 is halogen.
  • n and n are each independently an integer of 1 to 13, the sum of m and n is an integer of 6 to 14.
  • the reaction mixture containing the first silane compound represented by the following formula (1), the second silane compound represented by the formula (2) and tetraalkylammonium hydroxide having 2 to 5 carbon atoms of 5 ° C or less A method for producing a polyhedral oligomeric silsesquioxane is provided, which comprises reacting at a temperature of.
  • A is a single bond, an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 30 carbon atoms, -0-Si (R 3 ) (R 4 )-or -0-Si (R 3 ) (R 4 ) -R 5- ,
  • R 1 is a monovalent moiety derived from a hydrocarbon of 1 to 30 carbon atoms substituted with halogen
  • R 2 is a (meth) acryloyl group, a (meth) acryloyloxy group, a hydroxy group, a mercapto group, a carboxyl group, an amino group, a cyano group, a glycidyl group, a glycidyloxy group, an epoxy alkyl group having 2 to 30 carbon atoms, and a C 2 to A functional group selected from the group consisting of an epoxyalkoxy group of 30, an alkenyl group of 2 to 30 carbon atoms and an alkenyloxy group of 2 to 30 carbon atoms, or -OH, -NH 2 l -NH-R 6 , -NH 3 X 3 , -C00H , -C0NH 2 l -CN, -SH, a monovalent moiety derived from a hydrocarbon having 1 to 30 carbon
  • X 1 and X 2 are each independently an alkoxy group having 1 to 5 carbon atoms, CI, Br or I,
  • R 3 and R 4 are each independently an alkyl group having 1 to 5 carbon atoms
  • R 5 is an alkylene group having 1 to 12 carbon atoms
  • R 6 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an alkyl group having 1 to 10 carbon atoms substituted with an amino group, and X 3 is halogen.
  • a hydrocarbon is a compound composed of carbon and hydrogen, and includes both unsaturated and saturated hydrocarbons including carbon-carbon double bonds and / or carbon-carbon triple bonds.
  • the hydrocarbon may be linear, branched or cyclic or include two or more of these structures. More specifically, the hydrocarbon may be alkanes, alkenes, alkynes, or arenes, including straight, branched, or cyclic structures, one or more of which is different. It may be substituted in the species.
  • a monovalent residue derived from a hydrocarbon or a monovalent residue derived from a substituted hydrocarbon means hydrocarbon or monovalent radical in which one hydrogen radical is removed from a substituted hydrocarbon.
  • Polysilsesquioxanes can have a variety of structures such as random, l adder, cage and partial cages, and polysilsesquioxanes having a double cage structure are polyhedral oligomeric silses. It is called polyhedral oligomeric Si l sesqui oxane. Since such polyhedral oligomeric silsesquioxane is easy to introduce a plurality of functional functional groups, and can effectively express the characteristics of the functional functional group with the silsesquioxane skeleton as a core. It is attracting attention in various fields.
  • the present inventors have studied a method for synthesizing polyhedral oligomeric silsesquioxane to minimize the generation of by-products of high molecular weight, finding a method for obtaining polyhedral oligomeric silsesquioxane in high purity and high yield and completing the present invention. It was. Specifically, according to the preparation method of the above embodiment, the reaction mixture comprising the first silane compound represented by the formula (1), the second silane compound and the C2-C5 tetraalkylammonium hydroxide is reacted at a low temperature of 5 ° C. or lower.
  • the reaction temperature is about -5 ° C to 5 ° C, about -3 ° C to 5 ° C, about 0 ° C to 5 ° C, about to provide a higher purity polyhedral oligomeric silsesquioxane efficiently -Can be adjusted to 3 ° C to 3 ° C, about 0 ° C to 3 ° C or about 0 ° C.
  • the first silane compound used in the preparation method of the above embodiment is a precursor for introducing a hydrocarbon group substituted by halogen into a polyhedral oligomeric silsesquioxane.
  • a compound in which R 1 is a monovalent residue derived from a hydrocarbon substituted with fluorine is used for polyhedral oligomeric silsesquioxane, such as low refractive index, water repellency, oil repellency, chemical resistance, slip resistance, and abrasion resistance. Can be imparted.
  • R 1 is trifluoromethyl, trifluoroethyl, trifluoropropyl, trifluorobutyl, pentafluorobutyl, trifluoropentyl, pentafluoropentyl, heptafluoro Lopentyl, trifluoronuclear chamber, pentafluorohexyl, heptafluoronuclear chamber, nonafluoronuclear chamber, trifluoroheptyl, pentafluoroheptyl, heptafluoroheptyl, nonafluoroheptyl, dodecapololoheptyl, Compounds that are chloropropyl, (chloromethyl) phenyl, (chloromethyl) phenylethyl or dibromoethyl can be used.
  • three X 1 in the first silane compound may be the same or different, and may be various leaving groups
  • One or more types selected from the group consisting of (dibromoethyl) trimethoxysilane and the like can be used.
  • the second silane compound used in the production method of the above embodiment is a precursor for introducing a semi-functional group into the polyhedral oligomeric silsesquioxane.
  • a semi-functional group can increase the hardness of the coating film including the polyhedral oligomeric silsesquioxane to impart scratch resistance and the like, as well as improve adhesion of the coating film to the substrate.
  • the reactive functional group R 2 of Formula 2 is a (meth) acryloyl group, (meth) acryloyloxy group, hydroxy group, mercapto group, carboxyl group, amino group, cyano group, glycidyl group, glycidyloxy group, carbon atoms of 2 to 30
  • the epoxy alkyl group having 2 to 30 carbon atoms includes an epoxy group It may be a straight chain, branched chain or cyclic alkyl group. Specifically, the epoxy alkyl group having 2 to 30 carbon atoms may be an epoxy cyclonuclear group or the like.
  • An epoxyalkoxy group having 2 to 30 carbon atoms means a functional group in which the epoxy alkyl group having 2 to 30 carbon atoms is connected to A or Si of Formula 2 through -0-.
  • An epoxy cyclonuclear methoxy group etc. are mentioned as such a C2-C30 epoxy alkoxy group.
  • Alkenyl group having 2 to 30 carbon atoms means a monovalent moiety derived from a straight, branched or cyclic alkene having 2 to 30 carbon atoms. Specifically, a C2-C30 alkenyl group is a vinyl group, an allyl group, norbornene group, etc. are mentioned.
  • An alkenyloxy group having 2 to 30 carbon atoms means a functional group in which the alkenyl group having 2 to 30 carbon atoms is connected to A or Si of Formula 2 through -0-.
  • Examples of the alkenyloxy group having 2 to 30 carbon atoms include vinyloxy and allyloxy.
  • At least one hydrogen of the hydrocarbon having 1 to 30 carbon atoms is -OH, -N3 ⁇ 4, -NH-R 6 , -NH 3 X 3 , -C00H, -C0NH 2 , -CN, -SH, glycidyl group, glycidyl jade
  • Specific examples of the hydrocarbon substituted with one or more substituents selected from the group consisting of period and maleimide may be as follows, but is not limited thereto.
  • the hydrocarbon having 1 to 30 carbon atoms substituted with a hydroxy group may be substituted with one or more hydrogens of a straight, branched or cyclic hydrocarbon having 1 to 30 carbon atoms.
  • Specific examples of the hydrocarbon having 1 to 30 carbon atoms substituted with such a hydroxy group (-0H) include cyclonuclear diol, trimethylolpropane, glycerol, and 3-hydroxy-3-methylbutane.
  • the hydrocarbon having 1 to 30 carbon atoms substituted with the amino group (-N3 ⁇ 4) may be one in which at least one hydrogen of a straight, branched or cyclic hydrocarbon having 1 to 30 carbon atoms is substituted with an amino group.
  • Specific examples of the hydrocarbon having 1 to 30 carbon atoms substituted with such an amino group (-N3 ⁇ 4) include amino propane and aniline (aminobenzene).
  • Hydrocarbons having 1 to 30 carbon atoms substituted with substituted amino groups may be selected from one or more hydrogens of straight, branched or cyclic hydrocarbons having 1 to 30 carbon atoms. It may be substituted with -NH-R 6 . Accordingly, the carbon number of the hydrocarbon substituted with NH-R 6 may exceed 30, and the upper limit of the total carbon number may be adjusted to 60 or less according to the upper limit of the carbon number of R 6 .
  • Specific examples of the hydrocarbon having 1 to 30 carbon atoms substituted with -NH-R 6 include N-methylaminopropane, N-phenylaminopropane, N- (aminoethyl) aminopropane, and the like.
  • the hydrocarbon having 1 to 30 carbon atoms substituted with an ammonium group may be one in which at least one hydrogen of a straight, branched or cyclic hydrocarbon having 1 to 30 carbon atoms is substituted with an ammonium group.
  • Specific examples of the hydrocarbon having 1 to 30 carbon atoms substituted with such an ammonium group include propyl ammonium chloride and the like.
  • the hydrocarbon having 1 to 30 carbon atoms substituted with a cyano group (-CN) may be substituted with one or more hydrogens of a straight, branched or cyclic hydrocarbon having 1 to 30 carbon atoms.
  • Specific examples of the hydrocarbon having 1 to 30 carbon atoms substituted with such a cyano group include propyl nitrile and the like.
  • the hydrocarbon having 1 to 30 carbon atoms substituted with mercapto group (-SH) may be substituted with at least one hydrogen of a straight, branched or cyclic hydrocarbon having 1 to 30 carbon atoms.
  • Specific examples of the hydrocarbon having 1 to 30 carbon atoms substituted with the mercury earth group include propyl thiol.
  • the hydrocarbon having 1 to 30 carbon atoms substituted with a glycidyloxy group may be one in which at least one hydrogen of a straight, branched or cyclic hydrocarbon having 1 to 30 carbon atoms is substituted with a glycidyloxy group.
  • Specific examples of the hydrocarbon having 1 to 30 carbon atoms substituted with such glycidyloxy group include glycidyloxypropane.
  • the hydrocarbon having 1 to 30 carbon atoms substituted with maleimide may be one in which at least one hydrogen of a straight, branched or cyclic hydrocarbon having 1 to 30 carbon atoms is substituted with maleimide.
  • Specific examples of the hydrocarbon having 1 to 30 carbon atoms substituted with such maleimide include N-propyl maleimide and the like.
  • hydrocarbon having 1 to 30 carbon atoms substituted with two or more substituents include two hydrogens of ethene substituted with -C00H and -C0N3 ⁇ 4 of the substituents.
  • R 2 of Formula 2 may be a monovalent radical in which one hydrogen radical is removed from the above-described substituted hydrocarbon.
  • R 2 in Formula 2 may be directly connected to Si or may be connected to Si via A.
  • A may be a single bond and in the latter case A may be a variety of divalent organic groups as defined above.
  • A is a single bond, methylene, ethylene, propylene, phenylene, -0-Si (C3 ⁇ 4) (CH 3 )-or -0- Si (CH 3 ) (CH 3 ) -CH 2 CH 2 CH 2 -And so on.
  • the three X 2 of the second silane compound may be the same or different, and may be various leaving groups as defined above.
  • One or more selected from the group consisting of (trimethicsilyl) propyl] maleamic acid and the like can be used.
  • Polyhedral oligomeric silsesquioxane prepared through the production method according to the embodiment may be represented by the following formula (3).
  • R 1 and R 2 are the same as defined in Formula 1 and 2 above.
  • M and n are each independently an integer of 1 to 13, and the sum of m and n is an integer of 6 to 14, respectively.
  • M and n in the general formula (3) can be adjusted according to the molar ratio of the first silane compound and the second silane compound. Therefore, the use amount of the first silane compound and the second silane compound can be adjusted according to the structure of the polyhedral oligomeric silsesquioxane to be prepared. For example, when preparing a polyhedral oligomeric silsesquioxane of ( ⁇ SiO L s ⁇ O ⁇ -A-SiO L s, a first silane compound and a second silane compound may be used in a molar ratio of about 4: 4. .
  • the first silane compound and the second silane compound are reacted in the presence of a base catalyst.
  • a base catalyst In particular, the use of tetraalkylammonium hydroxide having 2 to 5 carbon atoms as the base catalyst can further increase the yield of the product.
  • tetraalkylammonium hydroxides having 4 alkyl groups bonded to N may be independently alkyl groups having 2 to 5 carbon atoms.
  • tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide or a combination thereof may be used as the tetraalkylammonium hydroxide having 2 to 5 carbon atoms.
  • tetrabutylammonium hydroxide is used as the base catalyst, side reaction can be minimized and the synthesis yield of polyhedral oligomeric silsesjuxane can be further improved.
  • the tetraalkylammonium hydroxide having 2 to 5 carbon atoms may be used in an amount of 0.001 to 100 mol, 0.001 to 50 mol, 0.001 to 10 mol, 0.001 to 5 mol, or 1 to 5 mol based on 100 mol of the total silane compound. Within this range, it is possible to minimize side reactions and synthesize high purity polyhedral oligomeric silsesquioxanes in high yield.
  • the production method according to the embodiment can react the reaction mixture in an organic solvent.
  • production of the byproduct which has high molecular weight of a structure other than the polyhedral oligomer silsesquioxane which has a cage structure can be suppressed further.
  • the organic solvent affects the reaction of the first and second silane compounds.
  • Organic solvents capable of exhibiting adequate solubility for the first and second silane compounds without influencing can be used without limitation.
  • an ether solvent such as diethyl ether or tetrahydrofuran may be used as the organic solvent.
  • the reaction mixture including the first and second silane compounds may be reacted at a low temperature in the above-described range for an appropriate time.
  • the reaction time is not particularly limited, the reaction time may be increased for about 5 hours to 128 hours to increase the yield of the polyhedral oligomeric silsesquioxane.
  • Polyhedral oligomeric silsesquioxane prepared by the above-described method has high purity and may exhibit low refractive properties.
  • the polyhedral oligomeric silsesquioxane may have a refractive index of about 1.20 to 1.50 measured by an Abbe refractometer.
  • a polyhedral oligomeric silsesquioxane exhibiting a low refractive index may be used in a low refractive layer of an antireflection film of a display device to implement a very low reflectance.
  • reaction product was dried under reduced pressure, dissolved in 150 mL of ethyl acetate, and the by-products were extracted four times with an aqueous NaCl solution. Thereafter, the organic layer was dried over MgSO 4 , filtered, and the filtrate was dried under reduced pressure to obtain 22.9 g (yield: 97.9%) of a liquid polyhedral oligomeric silsesquioxane (TA62).
  • TA62 liquid polyhedral oligomeric silsesquioxane
  • DTM-l Abbe refractometer
  • ATAG0 Abbe refractometer
  • reaction product was dried under reduced pressure, dissolved in 200 mL of ethyl acetate, and the by-products were extracted four times with an aqueous NaCl solution. Thereafter, the organic layer was dried with 3 ⁇ 4SO 4 , filtered, and the filtrate was dried under reduced pressure to obtain 27.2 g (yield: 94.1%) of a liquid polyhedral oligomeric silsesquioxane (TA44).
  • the refractive index of TA44 measured with an Abbe refractometer (DTM-1, ATAG0) was 1.435.
  • reaction product was dried under reduced pressure, dissolved in 150 mL of ethyl acetate, and the by-products were extracted four times with an aqueous NaCl solution. Thereafter, the organic layer was dried over MgSO 4 , filtered, and the filtrate was dried under reduced pressure to obtain 21.4 g (yield: 93.0%) of a liquid polyhedral oligomeric silsesquioxane (TA26).
  • TA26 measured with an Abe refractometer (DTM-l, ATAG0) The refractive index was 1.453.
  • the reaction product was dried under reduced pressure, dissolved in 150 mL of ethyl acetate, and the by-products were extracted four times with an aqueous NaCl solution. Thereafter, the organic layer was dried over MgSO 4 , filtered, and the filtrate was dried under reduced pressure to obtain 23 g of a liquid polyhedral oligomeric silsesquioxane (NA62) (yield: 95.6%).
  • the refractive index of NA62 measured with an Abbe refractometer (DTM-1, ATAG0) was 1.373.
  • reaction product was dried under reduced pressure, dissolved in 150 mL of ethyl acetate, and the by-products were extracted four times with an aqueous NaCl solution. Thereafter, the organic layer was dried over MgSO 4 , filtered, and the filtrate was dried under reduced pressure to obtain 20.5 g (yield: 94.9%) of a liquid polyhedral oligomeric silsesquioxane (NA26).
  • the refraction of NA26 measured by an Abbe refractometer (DTM-1, ATAG0) was 1.433.
  • reaction product was dried under reduced pressure, dissolved in 150 mL of ethyl acetate, and the by-products were extracted four times with an aqueous NaCl solution. Thereafter, the organic layer was dried over MgSO 4 , filtered, and the filtrate was dried under reduced pressure to obtain 21 g of a liquid polyhedral oligomeric silsesquioxane (TA62) (yield: 89.7%).
  • the refractive index of TA62 measured with an Abbe refractometer (DTM-1, ATAG0) was 1.411.
  • reaction product was dried under reduced pressure, dissolved in 200 mL of ethyl acetate, and the by-products were extracted four times with an aqueous NaCl solution. Thereafter, the organic layer was dried over MgSO 4 , filtered, and the filtrate was dried under reduced pressure to obtain 23.5 g (yield: 81.3%) of a liquid polyhedral oligomeric silsesquioxane (TA44).
  • the refractive index of TA44 measured by an Abbe refractometer (DTM-1, ATAGO Co.) was 1.435.
  • reaction product was dried under reduced pressure, dissolved in 150 mL of ethyl acetate, and the by-products were extracted four times with an aqueous NaCl solution. Thereafter, the organic layer was dried over MgSO 4 , filtered, and the filtrate was dried under reduced pressure to obtain 19.5 g (yield: 84.7%) of a liquid polyhedral oligomeric silsesquioxane (TA26).
  • the refractive index of TA26 measured by an Abbe refractometer (DTM-1, ATAGO Co.) was 1.453.
  • the reaction product was dried under a reduced pressure, dissolved in 150 mL of ethyl acetate, and the by-products were extracted four times with an aqueous NaCl solution. Thereafter, the organic layer was dried over MgSO 4 , filtered, and the filtrate was dried under reduced pressure to obtain 20 g (yield: 85.5%) of a liquid polyhedral oligomeric silsesquioxane (TA62).
  • the refractive index of TA62 measured by the Abbe refractometer (DTM-1, ATAG0) was 1.411.
  • the reaction product was dried under a reduced pressure, dissolved in 200 mL of ethyl acetate, and the by-products were extracted four times with an aqueous NaCl solution. Thereafter, the organic layer was dried over MgSO 4 , filtered, and the filtrate was dried under reduced pressure to obtain 23 g of a liquid polyhedral oligomeric silsesquioxane (TA44) (yield: 79.6%).
  • the refractive index of TA44 measured by an Abbe refractometer (DTM-1, ATAG0) was 1.435.
  • reaction product was dried under reduced pressure, dissolved in 150 mL of ethyl acetate, and the by-products were extracted four times with an aqueous NaCl solution. Thereafter, the organic layer was dried over MgSO 4 , filtered, and the filtrate was dried under reduced pressure to obtain 19 g of a liquid polyhedral oligomeric silsesquioxane (TA26) (yield: 82.6%).
  • the refractive index of TA26 measured by an Abbe refractometer (DTM-1, ATAG0) was 1.453.
  • the purity of the polyhedral ligomeric silsesquioxanes prepared in Examples 1 to 6 and Comparative Examples 1 to 6 was calculated as area% using GPC (Gel Permeation Chromatograpy). In this case, polystyrene was used as the standard sample, THF was used as the solvent, and ELS (Evaporative Light) as the detector.
  • GPC Gel Permeation Chromatograpy
  • Table 1 shows the yield and purity of the polyhedral oligomeric silsesquioxane prepared in Examples and Comparative Examples.
  • Comparative Example 6 82.6 58 Referring to Table 1, according to one embodiment of the present invention, it is confirmed that a high-purity polyhedral oligomeric silsesquioxane can be provided in high yield.
  • Comparative Examples 1 to 6 employ a tetramethylammonium hydroxide as the base catalyst to provide a polyhedral oligomeric silsesquioxane in low yield, and Comparative Examples 4 to 6 in particular, low purity as the synthesis temperature is controlled to room temperature Polyhedral oligomeric silsesquioxane of was provided in low yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Silicon Polymers (AREA)

Abstract

본 발명은 다면체 올리고머 실세스퀴옥산의 제조 방법에 관한 것이다. 상기 제조 방법은 2 종 이상의 실란 화합물 및 탄소수 2 내지 5의 테트라알킬암모늄 수산화물을 포함하는 반웅 흔합물을 5°C 이하의 온도에서 반응시키는 단계를 포함한다.

Description

【명세서】
【발명의 명칭】
다면체 올리고머 실세스퀴옥산의 제조 방법
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2016년 1월 28일자 한국 특허 출원 제 10-2016-0010910 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 다면체 올리고머 실세스퀴옥산의 제조 방법에 관한 것이다. 【배경기술】
Si-0-Si 결합으로 이루어진 실록산 구조는 일반적으로 4가지 종류 (Q, T, D, M)로 구별하여 정의된다. 이중 [RSiC y로 표시되는 폴리실록산은 4가지 종류 중 T 단위 구조를 가지는 것으로 이것의 학명은 폴리실세스퀴옥산이다. 폴리실세스퀴옥산은 가수분해 -중합방법을 이용하여 합성되며 크게 트리알콕시실란을 이용하는 방법과 트리클로로실란을 이용하는 가수분해- 중합방법이 현재까지 널리 알려져 있다. 이렇게 합성된 폴리실세스퀴옥산의 구조는 통상적으로 높은 규칙성을 가지는 것으로 알려져 있었다. 하지만, 화학분야의 기기분석 기술이 크게 발전하면서 그 구조가 6 , 8, 10, 12량체와 같은 케이지 구조, 사다리형 구조 혹은 불규칙적 구조를 가지는 것으로 분석되고 있는 실정이다. 이러한 구조의 흔합으로 인해 고분자 구조 설계 시에 기대하였던 기계적 /물리적 특성이 기대에 미치지 못하는 것으로 생각되고 있다. 【발명의 내용】
[해결하려는 과제]
본 발명은 케이지 구조의 다면체 을리고머 실세스퀴옥산을 고순도 및 고수율로 제공할 수 있는 제조 방법을 제공한다.
【과제의 해결 수단】
발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 제 1 실란 화합물, 하기 화학식 2로 표시되는 제 2 실란 화합물 및 탄소수 2 내지 5의 테트라알킬암모늄 수산화물을 포함하는 반웅 흔합물을 5°C 이하의 온도에서 반웅시키는 단계를 포함하는 다면체 올리고머 실세스퀴옥산의 제조 방법이 제공된다.
[화학식 1]
R^SiX^
[화학식 2]
R2-A-SiX2 3
상기 화학식 1 및 2에서, A는 단일 결합, 탄소수 1 내지 10의 알킬렌기, 탄소수 6 내지 30의 아릴렌기, -0-Si (R3) (R4)- 또는 -0-Si (R3) (R4)-R5—이고,
R1은 할로겐으로 치환된 탄소수 1 내지 30의 탄화수소로부터 유래한 1가의 잔기이고,
R2는 (메트)아크릴로일기, (메트)아크릴로일옥시기, 히드록시기, 머갑토기 카르복실기, 아미노기, 시아노기, 글리시딜기, 글리시딜옥시기, 탄소수 2 내지 30의 에폭시알킬기, 탄소수 2 내지 30의 에폭시알콕시기, 탄소수 2 내지 30의 알케닐기 및 탄소수 2 내지 30의 알케닐옥시기로 이루어진 군에서 선택된 작용기이거나, 혹은 -OH , -N¾ , -NH-R6 , -NH3X3 , -C00H, -C0NH2 , -CN, -SH, 글리시딜기, 글리시딜옥시기 및 말레이미드로 이루어진 군에서 선택된 1 종 이상의 치환기로 치환된 탄소수 1 내지 30의 탄화수소로부터 유래한 1가의 잔기이고,
X1 및 X2는 각각 독립적으로 탄소수 1 내지 5의 알콕시기, CI , Br 또는
I이고'
R3 및 R4는 각각 독립적으로 탄소수 1 내지 5의 알킬기이고, R5는 탄소수 1 내지 12의 알킬렌기이고,
R6은 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 30의 아릴기 또는 아미노기로 치환된 탄소수 1 내지 10의 알킬기이고, X3는 할로겐이다.
구체적으로, 상기 제 1 실란 화합물로는 R1이 트리플루오로메틸, 트리플루오로에틸, 트리플루오로프로필, 트리플루오로부틸, 펜타플루오로부틸, 트리플루오로펜틸, 펜타플루오로펜틸, 헵타플루오로펜틸, 트리플루오로핵실, 펜타플루오로핵실, 헵타플루오로핵실, 노나플루오로핵실, 트리플루오로헵틸, 펜타플루오로헵틸, 헵타플루오로헵틸, 노나플루오로헵틸, 도데카플루오로헵틸, 클로로프로필, (클로로메틸)페닐, (클로로메틸)페닐에틸 또는 디브로모에틸인 화합물을 사용할 수 있다. 보다 구체적으로, 상기 제 1 실란 화합물로는
(트리플루오로프로필)트리메특시실란, (트리플루오로부틸)트리메특시실란, (펜타플루오로부틸)트리메특시실란, (트리플루오로펜틸)트리메록시실란, (펜타플루오로펜틸)트리메록시실란, (헵타플루오로펜틸)트리메톡시실란, (트리플루오로핵실)트리메특시실란, (펜타플루오로핵실)트리메록시실란, (헵타플루오로핵실)트리메특시실란, (노나플루오로핵실)트리메특시실란, (트리플루오로헵틸) 트리메록시실란, (펜타플루오로헵틸)트리메록시실란,
(헵타플루오로헵틸)트리메특시실란, (노나플루오로헵틸)트리메특시실란, (도데카플루오로헵틸)트리메톡시실란, (클로로프로필)트리메톡시실란, [ (클로로메틸)페닐]트리메록시실란, [ (클로로메틸)페닐에틸]트리메록시실란 및 (디브로모에틸)트리메록시실란 등으로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.
한편, 상기 제 2 실란 화합물로는 R2가 (메트)아크릴로일기, (메트)아크릴로일옥시기, 히드록시기, 머캅토기, 카르복실기, 아미노기, 시아노기, 글리시딜기, 글리시딜옥시기, 에폭시사이클로핵실기, 에폭시사이클로핵톡시기, 비닐기, 알릴기 및 노보넨기로 이루어진 군에서 선택된 작용기이거나 혹은 사이클로핵산디올, 트리메틸올프로판, 글리세를, 3- 히드록시 -3-메틸부탄, 아미노프로필, 아닐린, N-메틸아미노프로판, N- 페닐아미노프로판, N- (아미노에틸)아미노프로판, 프로필암모늄 클로라이드, 프로필나이트릴, 프로필싸이을, 글리시딜옥시프로판, N-프로필말레이미드 및 말레아믹산으로 이루어진 군에서 선택된 치환된 탄화수소로부터 유래한 1가의 잔기인 화합물을 사용할 수 있다.
또한, 상기 제 2 실란 화합물로는 A가 단일 결합, 메틸렌, 에틸렌, 프로필렌, 페닐렌, -0-SKCH3) (C¾)- 또는 -0-Si (CH3) (CH3)-CH2C¾CH2-인 화합물을 사용할 수 있다.
보다 구체적으로, 상기 제 2 실란 화합물로는。' (3-
(메트)아크릴옥시프로필)트리메록시실란, (2 , 3- 디하이드록시프로폭시프로필)트리메록시실란 (3 , 4- 디하이드록시핵실에틸)트리메록시실란, (3-하이드록시 -3- 메틸부틸디메틸실옥시)트리메록시실란, (3 , 4-에폭시핵실프로필)트리메특시실란, (3,4-에폭시핵실에틸디메틸실옥시)트리메록시실란, (3- 아미노프로필)트리메톡시실란, (N-아미노에틸아미노프로필)트리메록시실란, (아미노페닐)트리메록시실란, (N-페닐아미노프로필)트리메록시실란, (N- 메틸아미노프로필)트리메록시실란, (3-시아노프로필)트리메톡시실란, (3- 머캅토프로필)트리메록시실란, (3-글리시딜옥시프로필)트리메록시실란, 비닐트리메록시실란, 알릴트리메록시실란, (트리메특시실릴)노보넨, N- [3- (트리메록시실릴)프로필]말레이미드 및 N- [3-
(트리메특시실릴)프로필]말레아믹산 등으로 이루어진 군에서 선택된 1 종 이상을 사용할 수 있다.
상기 탄소수 2 내지 5의 테트라알킬암모늄 수산화물로는 테트라부틸암모늄 하이드록사이드를 사용할 수 있다. 상기 탄소수 2 내지 5의 테트라알킬암모늄 수산화물은 전체 실란 화합물 100 몰에 대하여 0.001 내지
100 몰로 사용될 수 있다.
한편, 상기 일 구현예의 제조 방법에서 상기 반웅 흔합물은 유기 용매 하에서 반웅시킬 수 있다. 이때, 상기 유기 용매로는 에테르 용매를 사용할 수 있다.
상기 일 구현예의 제조 방법에서 상기 반웅 흔합물은 5 시간 내지 128 시간 동안 반응시킬 수 있다.
상기 일 구현예의 제조 방법에 따라 제조된 다면체 을리고머 실세스쥐옥산은 하기 화학식 3으로 표시되는 화합물일 수 있다.
[화학식 3]
Figure imgf000005_0001
상기 화학식 3에서, A는 단일 결합, 탄소수 1 내지 10의 알킬렌기, 탄소수 6 내지 30의 아릴렌기 , -0-Si (R3) (R4)- 또는 -0-Si (R3) (R4)-R5-이고, R1은 할로겐으로 치환된 탄소수 1 내지 30의 탄화수소로부터 유래한
1가의 잔기이고,
R2는 (메트)아크릴로일기, (메트)아크릴로일옥시기, 히드록시기, 머캅 기, 카르복실기, 아미노기, 시아노기, 글리시딜기, 글리시딜옥시기, 탄소수 2 내지 30의 에폭시알킬기, 탄소수 2 내지 30의 에폭시알콕시기, 탄소수 2 내지 30의 알케닐기 및 탄소수 2 내지 30의 알케닐옥시기로 이루어진 군에서 선택된 작용기이거나, 흑은 -OH , -NH2 ) -NH-R6 , — N¾X3 , -C00H, -C0NH2 , -CN, -SH, 글리시딜기, 글리시딜옥시기 및 말레이미드로 이루어진 군에서 선택된 1 종 이상의 치환기로 치환된 탄소수 1 내지 30의 탄화수소로부터 유래한 1가의 잔기이고,
R3 및 R4는 각각 독립적으로 탄소수 1 내지 5의 알킬기이고, R5는 탄소수 1 내지 12의 알킬렌기이고,
R6은 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 30의 아릴기 또는 아미노기로 치환된 탄소수 1 내지 10의 알킬기이고, X3는 할로겐이다.
m과 n은 각각 독립적으로 1 내지 13의 정수이되, m과 n의 합은 6 내지 14의 정수이다.
【발명의 효과】
본 발명의 일 구현예에 따른 다면체 올리고머 실세스퀴옥산의 제조 방법을 통하면 다른 구조의 부산물 생성을 최소화하고 고순도의 다면체 올리고머 실세스퀴옥산을 고수율로 합성할 수 있다.
【발명을 실시하기 위한 구체적인 내용】
이하 발명의 구체적인 구현예에 따른 다면체 올리고머 실세스퀴옥산의 제조 방법 등에 대해 설명하기로 한다.
발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 제 1 실란 화합물, 하기 화학식 2로 표시되는 제 2 실란 화합물 및 탄소수 2 내지 5의 테트라알킬암모늄 수산화물을 포함하는 반웅 흔합물을 5°C 이하의 온도에서 반응시키는 단계를 포함하는 다면체 올리고머 실세스퀴옥산의 제조 방법이 제공된다.
[화학식 1]
R^SiX^
[화학식 2]
R2-A-SiX2 3
상기 화학식 1 및 2에서, A는 단일 결합, 탄소수 1 내지 10의 알킬렌기, 탄소수 6 내지 30의 아릴렌기, -0-Si (R3) (R4)- 또는 -0-Si (R3) (R4)-R5-이고,
R1은 할로겐으로 치환된 탄소수 1 내지 30의 탄화수소로부터 유래한 1가의 잔기이고, R2는 (메트)아크릴로일기, (메트)아크릴로일옥시기, 히드록시기, 머캅토기, 카르복실기, 아미노기, 시아노기, 글리시딜기, 글리시딜옥시기, 탄소수 2 내지 30의 에폭시알킬기, 탄소수 2 내지 30의 에폭시알콕시기, 탄소수 2 내지 30의 알케닐기 및 탄소수 2 내지 30의 알케닐옥시기로 이루어진 군에서 선택된 작용기이거나, 혹은 -OH , -NH2 l -NH-R6 , -NH3X3 , -C00H , -C0NH2 l -CN , -SH , 글리시딜기, 글리시딜옥시기 및 말레이미드로 이루어진 군에서 선택된 1 종 이상의 치환기로 치환된 탄소수 1 내지 30의 탄화수소로부터 유래한 1가의 잔기이고,
X1 및 X2는 각각 독립적으로 탄소수 1 내지 5의 알콕시기, CI , Br 또는 I이고,
R3 및 R4는 각각 독립적으로 탄소수 1 내지 5의 알킬기이고, R5는 탄소수 1 내지 12의 알킬렌기이고,
R6은 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 30의 아릴기 또는 아미노기로 치환된 탄소수 1 내지 10의 알킬기이고, X3는 할로겐이다.
본 명세서에서 탄화수소는 탄소와 수소로 이루어진 화합물로, 탄소- 탄소의 이중 결합 및 /또는 탄소-탄소의 삼중 결합을 포함하는 불포화 탄화수소와 포화 탄화수소를 모두 포함하는 의미이다. 상기 탄화수소는 직쇄, 분지쇄 또는 고리형이거나 혹은 이들 중 2 이상의 구조를 포함할 수 있다. 보다 구체적으로, 상기 탄화수소는 직쇄, 분지쇄 또는 고리형 구조를 포함하는 알칸 (alkane) , 알켄 (alkene) , 알킨 (alkyne)이거나 혹은 아렌 (arene)일 수 있고, 이들 중 1 종 이상이 다른 1 종에 치환된 것일 수 있다. 그리고, 본 명세서에서 탄화수소로부터 유래한 1가의 잔기 혹은 치환된 탄화수소로부터 유래한 1가의 잔기는 탄화수소 흑은 치환된 탄화수소로부터 하나의 수소 라디칼이 제거된 1가의 라디칼을 의미한다.
폴리실세스퀴옥산은 랜덤 (random) , 사다리형 ( l adder ), 케이지 (cage) 및 부분적인 케이지 등의 다양한 구조를 가질 수 있으며, 이중 케이지 구조를 갖는 폴리실세스퀴옥산을 다면체 올리고머 실세스퀴옥산 (Polyhedral Ol igomer i c Si l sesqui oxane)이라 한다. 이러한 다면체 올리고머 실세스퀴옥산은 복수의 기능성 관능기의 도입이 용이하여 실세스퀴옥산 골격을 코어로 하면서 기능성 관능기의 특성을 효과적으로 발현시킬 수 있기 때문에 다양한 분야에서 주목받고 있다.
그러나, 다면체 올리고머 실세스퀴옥산을 합성하기 위한 알려진 방법을 통해서는 다면체 올리고머 실세스퀴옥산 외에 랜덤 또는 사다리형의 폴리실세스퀴옥산이 생성되는 문제가 있었다.
이에, 본 발명자들은 다면체 을리고머 실세스퀴옥산의 합성 방법을 연구하여 고분자량의 부산물 생성을 최소화하고 다면체 을리고머 실세스퀴옥산을 고순도 및 고수율로 얻는 방법을 발견하고 본 발명을 완성하였다. 구체적으로 상기 일 구현예의 제조 방법에 따르면, 화학식 1로 표시되는 제 1 실란 화합물, 제 2 실란 화합물 및 탄소수 2 내지 5의 테트라알킬암모늄 수산화물을 포함하는 반응 흔합물을 5 °C 이하의 저온에서 반웅시킴으로써 고분자량의 부산물 생성을 최소화하고 고순도의 다면체 을리고머 실세스퀴옥산을 고수율로 합성할 수 있다. 만일 반웅 온도가 5°C를 초과하면 고분자량의 랜덤 또는 사다리형의 폴리실세스퀴옥산의 수율이 증가되어 다면체 올리고머 실세스퀴옥산의 순도가 저하되며, 염기 촉매로 탄소수 2 내지 5의 테트라알킬암모늄 수산화물 외의 다른 염기 촉매가 사용되면 다면체 을리고머 실세스퀴옥산의 수율이 저하될 수 있다. 상기 반웅 온도는 보다 높은 순도의 다면체 올리고머 실세스퀴옥산을 효율적으로 제공하기 위해 약 -5°C 내지 5°C , 약 -3 °C 내지 5°C , 약 0°C 내지 5°C , 약 - 3°C 내지 3°C , 약 0°C 내지 3°C 혹은 약 0°C로 조절될 수 있다.
상기 일 구현예의 제조 방법에서 사용되는 제 1 실란 화합물은 다면체 을리고머 실세스퀴옥산에 할로겐으로 치환된 탄화수소기를 도입하기 위한 전구체이다. 특히, 제 1 실란 화합물로는 R1이 불소로 치환된 탄화수소로부터 유래한 1가의 잔기인 화합물을 사용하여 다면체 올리고머 실세스퀴옥산에 저굴절, 발수, 발유, 내약품성, 미끄럼성, 내마모성 등의 특성을 부여시킬 수 있다.
구체적으로, 상기 제 1 실란 화합물로는 R1이 트리플루오로메틸, 트리플루오로에틸, 트리플루오로프로필, 트리플루오로부틸, 펜타플루오로부틸, 트리플루오로펜틸, 펜타플루오로펜틸, 헵타플루오로펜틸, 트리플루오로핵실, 펜타플루오로헥실, 헵타플루오로핵실, 노나플루오로핵실, 트리플루오로헵틸, 펜타플루오로헵틸, 헵타플루오로헵틸, 노나플루오로협틸, 도데카폴루오로헵틸, 클로로프로필, (클로로메틸)페닐, (클로로메틸)페닐에틸 또는 디브로모에틸인 화합물을 사용할 수 있다. 그리고, 상기 제 1 실란 화합물에서 세 개의 X1은 동일하거나 상이할 수 있으며, 상기 정의된 바와 같이 다양한 이탈기일 수 있다.
보다 구체적으로, 상기 제 1 실란 화합물로는
(트리플루오로프로필)트리메특시실란, (트리플루오로부틸)트리메록시실란, (펜타플루오로부틸)트리메록시실란, (트리플루오로펜틸)트리메록시실란, (펜타플루오로펜틸)트리메특시실란, (헵타플루오로펜틸)트리메록시실란, (트리플루오로핵실)트리메록시실란, (펜타플루오로핵실)트리메록시실란, (헵타플루오로핵실)트리메록시실란, (노나플루오로핵실)트리메록시실란, (트리플루오로헵틸) 트리메톡시실란, (펜타플루오로헵틸)트리메록시실란,
(헵타플루오로헵틸)트리메특시실란, (노나플루오로헵틸)트리메특시실란, (도데카플루오로헵틸)트리메록시실란, (클로로프로필)트리메록시실란,
[ (클로로메틸)페닐]트리메톡시실란, [ (클로로메틸)페닐에틸]트리메록시실란 및
(디브로모에틸)트리메톡시실란 등으로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.
상기 일 구현예의 제조 방법에서 사용되는 제 2 실란 화합물은 다면체 올리고머 실세스퀴옥산에 반웅성 작용기를 도입하기 위한 전구체이다. 이러한 반웅성 작용기는 다면체 올리고머 실세스퀴옥산을 포함하는 코팅막의 경도를 높여 내스크래치성 등을 부여할 뿐 아니라 상기 코팅막의 기재에 대한 접착성도 향상시킬 수 있다.
상기 화학식 2의 반응성 작용기 R2는 (메트)아크릴로일기, (메트)아크릴로일옥시기, 히드록시기, 머캅토기, 카르복실기, 아미노기, 시아노기, 글리시딜기, 글리시딜옥시기, 탄소수 2 내지 30의 에폭시알킬기, 탄소수 2 내지 30의 에폭시알콕시기, 탄소수 2 내지 30의 알케닐기 및 탄소수 2 내지 30의 알케닐옥시기로 이루어진 군에서 선택된 작용기이거나, 흑은 -0H, -NH2 , -NH-R6 , -NH3X3 , -COOH , -C0NH2 ( -CN, -SH , 글리시딜기, 글리시딜옥시기 및 말레이미드로 이루어진 군에서 선택된 1 종 이상의 치환기로 치환된 탄소수 1 내지 30의 탄화수소로부터 유래한 1가의 잔기이다.
상기에서 탄소수 2 내지 30의 에폭시알킬기는 에폭시기를 포함하는 직쇄, 분지쇄 또는 고리형 알킬기일 수 있다. 구체적으로, 탄소수 2 내지 30의 에폭시알킬기는 에폭시사이클로핵실기 등일 수 있다.
탄소수 2 내지 30의 에폭시알콕시기는 상기 탄소수 2 내지 30의 에폭시알킬기가 -0-를 매개로 상기 화학식 2의 A 혹은 Si에 연결되는 작용기를 의미한다. 이러한 탄소수 2 내지 30의 에폭시알콕시기로는 에폭시사이클로핵톡시기 등을 들 수 있다.
탄소수 2 내지 30의 알케닐기는 탄소수 2 내지 30의 직쇄, 분지쇄 또는 고리형 알켄으로부터 유래하는 1가의 잔기를 의미한다. 구체적으로, 탄소수 2 내지 30의 알케닐기는 비닐기, 알릴기, 노보넨기 등을 들 수 있다.
탄소수 2 내지 30의 알케닐옥시기는 상기 탄소수 2 내지 30의 알케닐기가 -0-를 매개로 상기 화학식 2의 A 혹은 Si에 연결되는 작용기를 의미한다. 이러한 탄소수 2 내지 30의 알케닐옥시기로는 비닐옥시, 알릴옥시 등을 들 수 있다.
상기 탄소수 1 내지 30의 탄화수소의 하나 이상의 수소가 -OH , -N¾ , - NH-R6 , -NH3X3 , -C00H , -C0NH2 , -CN, -SH , 글리시딜기, 글리시딜옥시기 및 말레이미드로 이루어진 군에서 선택된 1 종 이상의 치환기로 치환된 탄화수소의 구체적인 예는 예는 다음과 같을 수 있으나, 이에 한정되는 것은 아니다.
히드록시기 (ᅳ 0H)로 치환된 탄소수 1 내지 30의 탄화수소는 탄소수 1 내지 30의 직쇄, 분지쇄 혹은 고리형 탄화수소의 하나 이상의 수소가 히드록시기로 치환된 것일 수 있다. 이러한 히드록시기 (-0H)로 치환된 탄소수 1 내지 30의 탄화수소의 구체적인 예로는 사이클로핵산디올, 트리메틸올프로판, 글리세를, 3-히드록시 -3-메틸부탄 등을 들 수 있다.
아미노기 (-N¾)로 치환된 탄소수 1 내지 30의 탄화수소는 탄소수 1 내지 30의 직쇄, 분지쇄 혹은 고리형 탄화수소의 하나 이상의 수소가 아미노기로 치환된 것일 수 있다. 이러한 아미노기 (-N¾)로 치환된 탄소수 1 내지 30의 탄화수소의 구체적인 예로는 아미노프로판, 아닐린 (아미노벤젠) 등을 들 수 있다.
치환된 아미노기 (-NH-R6)로 치환된 탄소수 1 내지 30의 탄화수소는 탄소수 1 내지 30의 직쇄, 분지쇄 혹은 고리형 탄화수소의 하나 이상의 수소가 -NH-R6로 치환된 것일 수 있다. 이에 따라, NH-R6으로 치환된 탄화수소의 탄소수는 30을 초과할 수 있으며, R6의 탄소수 상한에 따라 전체 탄소수의 상한이 60 이하로 조절될 수 있다. 상기 -NH-R6으로 치환된 탄소수 1 내지 30의 탄화수소의 구체적인 예로는 N-메틸아미노프로판, N-페닐아미노프로판, N- (아미노에틸)아미노프로판 등을 들 수 있다.
암모늄기 (-N¾X3)로 치환된 탄소수 1 내지 30의 탄화수소는 탄소수 1 내지 30의 직쇄, 분지쇄 혹은 고리형 탄화수소의 하나 이상의 수소가 암모늄기로 치환된 것일 수 있다. 이러한 암모늄기로 치환된 탄소수 1 내지 30의 탄화수소의 구체적인 예로는 프로필암모늄 클로라이드 등을 들 수 있다. 시아노기 (-CN)로 치환된 탄소수 1 내지 30의 탄화수소는 탄소수 1 내지 30의 직쇄, 분지쇄 혹은 고리형 탄화수소의 하나 이상의 수소가 시아노기로 치환된 것일 수 있다. 이러한 시아노기로 치환된 탄소수 1 내지 30의 탄화수소의 구체적인 예로는 프로필나이트릴 등을 들 수 있다.
머캅토기 (-SH)로 치환된 탄소수 1 내지 30의 탄화수소는 탄소수 1 내지 30의 직쇄, 분지쇄 혹은 고리형 탄화수소의 하나 이상의 수소가 머캅토기로 치환된 것일 수 있다. 이러한 머갑토기로 치환된 탄소수 1 내지 30의 탄화수소의 구체적인 예로는 프로필싸이올 (propyl thiol ) 등을 들 수 있다. 글리시딜옥시기로 치환된 탄소수 1 내지 30의 탄화수소는 탄소수 1 내지 30의 직쇄, 분지쇄 혹은 고리형 탄화수소의 하나 이상의 수소가 글리시딜옥시기로 치환된 것일 수 있다. 이러한 글리시딜옥시기로 치환된 탄소수 1 내지 30의 탄화수소의 구체적인 예로는 글리시딜옥시프로판 등을 들 수 있다.
말레이미드로 치환된 탄소수 1 내지 30의 탄화수소는 탄소수 1 내지 30의 직쇄, 분지쇄 혹은 고리형 탄화수소의 하나 이상의 수소가 말레이미드로 치환된 것일 수 있다. 이러한 말레이미드로 치환된 탄소수 1 내지 30의 탄화수소의 구체적인 예로는 N-프로필말레이미드 등을 들 수 있다.
그리고, -OH, -N¾ , -NH-R6 , -NH3X3 , — C00H, -C0NH2 ) -CN , -SH , 글리시딜기, 글리.시딜옥시기 및 말레이미드로 이루어진 군에서 선택된 2 종 이상의 치환기로 치환된 탄소수 1 내지 30의 탄화수소의 구체적인 예로는, 에텐 (ethene)의 두 개의 수소가 상기 치환기 중 -C00H 및 -C0N¾로 치환된 말레아믹산 등을 들 수 있다.
상기 화학식 2의 R2는 상술한 치환된 탄화수소로부터 하나의 수소 라디칼이 제거된 1가의 라디칼일 수 있다.
상기 화학식 2에서 R2는 직접 Si에 연결되거나 혹은 A를 매개로 Si에 연결될 수 있다. 전자의 경우 A는 단일 결합일 수 있고, 후자의 경우 A는 상기 정의된 바와 같이 다양한 2가의 유기기일 수 있다. 구체적으로, 상기 A는 단일 결합, 메틸렌, 에틸렌, 프로필렌, 페닐렌, -0-Si (C¾) (CH3)- 또는 -0- Si (CH3) (CH3)-CH2CH2CH2- 등일 수 있다.
상기 제 1 실란 화합물에서와 마찬가지로 제 2 실란 화합물의 세 개의 X2도 동일하거나 상이할 수 있으며, 상기 정의된 바와 같이 다양한 이탈기일 수 있다.
보다 구체적으로, 상기 제 2 실란 화합물로는 (3-
(메트)아크릴옥시프로필)트리메톡시실란, (2 , 3- 디하이드록시프로폭시프로필)트리메톡시실란, (3 , 4- 디하이드록시핵실에틸)트리메록시실란, (3-하이드록시 -3- 메틸부틸디메틸실옥시)트리메톡시실란, (3,4-에폭시핵실프로필)트리메톡시실란, (3,4-에폭시핵실에틸디메틸실옥시)트리메록시실란, (3- 아미노프로필)트리메록시실란 , (N-아미노에틸아미노프로필)트리메록시실란, (아미노페닐)트리메록시실란, (N-페닐아미노프로필)트리메특시실란, (N- 메틸아미노프로필)트리메록시실란, (3-시아노프로필)트리메록시실란, (3- 머캅토프로필)트리메록시실란, (3-글리시딜옥시프로필)트리메록시실란, 비닐트리메록시실란, 알릴트리메특시실란, (트리메특시실릴)노보넨, N-[3- (트리메특시실릴)프로필]말레이미드 및 N-[3-
(트리메특시실릴)프로필]말레아믹산 등으로 이루어진 군에서 선택된 1 종 이상을 사용할 수 있다.
상기 일 구현예에 따른 제조 방법을 통해 제조되는 다면체 올리고머 실세스퀴옥산은 하기 화학식 3과 같이 표시될 수 있다.
[화학식 3]
(R1Si01.5)m(R2-A-Si0i.5)n
상기 화학식 3에서 A, R1 및 R2는 상기 화학식 1 및 2에서 정의한 바와 같고, m과 n은 각각 독립적으로 1 내지 13의 정수이되, m과 n의 합은 6 내지 14의 정수이다.
상기 화학식 3의 m과 n은 상기 제 1 실란 화합물과 제 2 실란 화합물의 사용 몰비에 따라 조절 가능하다. 따라서, 제조하고자 하는 다면체 올리고머 실세스퀴옥산의 구조에 따라 제 1 실란 화합물과 제 2 실란 화합물의 사용 함량을 조절할 수 있다. 일 예로, (^SiOLs^O^-A-SiOLs 인 다면체 올리고머 실세스퀴옥산을 제조하고자 하는 경우에는 제 1 실란 화합물과 제 2 실란 화합물을 약 4 :4의 몰비로 사용할 수 있다.
상기 일 구현예에 따른 제조 방법에서는 상기 제 1 실란 화합물과 제 2 실란 화합물을 염기 촉매 존재 하에서 반응시킨다. 특히 염기 촉매로 탄소수 2 내지 5의 테트라알킬암모늄 수산화물올 사용하여 생성물의 수율을 보다 증가시킬 수 있다.
상기 탄소수 2 내지 5의 테트라알킬암모늄 수산화물로는 N에 결합하는 4개의 알킬기가 각각 독립적으로 탄소수 2 내지 5의 알킬기인 테트라알킬암모늄 수산화물이 사용될 수 있다. 구체적으로, 상기 탄소수 2 내지 5의 테트라알킬암모늄 수산화물로는 테트라에틸암모늄 하이드록사이드, 테트라프로필암모늄 하이드록사이드, 테트라부틸암모늄 하이드록사이드, 테트라펜틸암모늄 하이드록사이드 또는 이들의 흔합물이 사용될 수 있다. 이 중에서도 염기 촉매로 테트라부틸암모늄 하이드록사이드를 사용하는 경우 부반웅을 최소화하고 다면체 올리고머 실세스쥐옥산의 합성 수율을 보다 향상시킬 수 있다.
상기 탄소수 2 내지 5의 테트라알킬암모늄 수산화물의 사용량은 전체 실란 화합물 100 몰에 대하여 0.001 내지 100 몰, 0.001 내지 50 몰, 0.001 내지 10 몰, 0.001 내지 5 몰 혹은 1 내지 5 몰로 사용될 수 있다. 이러한 범위 내에서 부반웅을 최소화하고 고수율로 고순도의 다면체 올리고머 실세스퀴옥산을 합성할 수 있다.
또한, 상기 일 구현예에 따른 제조 방법은 유기 용매 하에서 상기 반웅 흔합물을 반응시킬 수 있다. 이에 따라, 케이지 구조를 갖는 다면체 올리고머 실세스퀴옥산 외의 다른 구조의 고분자량을 갖는 부산물을 생성을 더욱 억제할 수 있다. 상기 유기 용매로는 제 1 및 제 2 실란 화합물의 반응에 영향을 미치지 않으면서도 제 1 및 제 2 실란 화합물에 대해 적절한 용해도를 나타낼 수 있는 유기 용매가 제한 없이 사용될 수 있다. 일 예로, 상기 유기 용매로는 디에틸에테르 또는 테트라하이드로퓨란 등의 에테르 용매가사용될 수 있다. 상기 제 1 및 제 2 실란 화합물을 포함하는 반웅 흔합물은 상술한 범위의 저온에서 적절한 시간 동안 반응시킬 수 있다. 상기 반웅 시간이 특별히 한정되는 것은 아니나, 약 5 시간 내지 128 시간 동안 반웅시켜 다면체 을리고머 실세스퀴옥산의 수율을 증가시킬 수 있다.
상술한 방법으로 제조된 다면체 올리고머 실세스퀴옥산은 높은 순도를 가지며, 또한 저굴절 특성을 나타낼 수 있다. 일 예로, 상기 다면체 을리고머 실세스퀴옥산은 아베굴절계로 측정한 굴절률이 약 1.20 내지 1.50일 수 있다. 이렇게 저굴절률을 나타내는 다면체 올리고머 실세스퀴옥산은 디스플레이 장치의 반사 방지 필름의 저굴절층에 사용되어 매우 낮은 반사율을 구현할 수 있다. 특히, 상기 다면체 올리고머 실세스퀴옥산을 이용하면 기존의 기포를 생성하여 저굴절률을 구현하는 고온 공정을 생략할 수 있어 경제적으로 고품질의 반사 방지 필름을 제공할 것으로 기대된다. 이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다. 실시예 1 : 다면체 올리고머 실세스퀴옥산의 합성
(3 ,3 ,3-트리플루오로프로필)트리메특시실란 25 g (114.55 mmol )과 (3- 아크릴옥시프로필)트리메톡시실란 8.9 g (37.98 mmol )을 THF (tetrahydrofuran) 150 mL에 녹이고 5 중량 )의 테트라부틸암모늄 하이드록사이드 수용액 26.2 g (N(Bu)40H 몰수: 5.05 mmol )을 첨가하였다. 이후, 반웅 흔합물을 0°C에서 72 시간 동안 교반하였다. 반웅 종료 후, 반웅 생성물을 감압 건조한 다음 에틸 아세테이트 150 mL에 녹여 NaCl 수용액으로 부산물을 4회 추출하였다. 이후, 유기층을 MgS04로 건조시키고 이를 여과한 다음 여액을 감압 건조하여 액상의 다면체 올리고머 실세스퀴옥산 (TA62) 22.9 g (수율: 97.9%)을 얻었다. 아베굴절계 (DTM-l , ATAG0사)로 측정한 TA62의 굴절률은 1.411이었다.
¾ 匿 (400 顧 z): 6.392 (2H, br), 6.122 (2H, br), 5.826 (2H, br), 4.129 (4H, br), 2.120 (12H, br), 1.735 (4H, br), 0.904 (12H, br), 0.724 (4H, br) 실시예 2: 다면체 올리고머 실세스퀴옥산의 합성
(3,3,3-트리플루오로프로필)트리메록시실란 20 g (91.64 mmol)과 (3- 아크릴옥시프로필)트리메특시실란 21.5 g (91.75 mmol)을 THF (tetrahydrofuran) 180 mL에 녹이고 5 증량 %의 테트라부틸암모늄 하이드록사이드 수용액 31.4 g (N(Bu)40H 몰수: 6.05 腿 ol)을 첨가하였다. 이후, 반웅 흔합물을 0°C에서 72 시간 동안 교반하였다. 반웅 종료 후, 반웅 생성물을 감압 건조한 다음 에틸 아세테이트 200 mL에 녹여 NaCl 수용액으로 부산물을 4회 추출하였다. 이후, 유기층을 ¾S04로 건조시키고 이를 여과한 다음 여액을 감압 건조하여 액상의 다면체 을리고머 실세스퀴옥산 (TA44) 27.2 g (수율: 94.1%)을 얻었다. 아베굴절계 (DTM-l, ATAG0사)로 측정한 TA44의 굴절률은 1.435이었다.
¾ NMR (400 MHz): 6.392 (4H, br), 6.122 (4H, br), 5.826 (4H, br), 4.129 (8H, br), 2.120 (8H, br), 1.735 (8H, br), 0.904 (8H, br), 0.724 (8H br) 실시예 3: 다면체 올리고머 실세스퀴옥산의 합성
(3,3,3-트리플루오로프로필)트리메록시실란 7.8 g (35.74 面 ol)과 (3- 아크릴옥시프로필)트리메록시실란 25.1 g (107.12 mmol)을 THF (tetrahydrofuran) 140 mL에 녹이고 5 중량 %의 테트라부틸암모늄 하이드록사이드 수용액 24.5 g (N(Bu)40H 몰수: 4.72 瞧 ol)을 첨가하였다. 이후, 반웅 흔합물을 0°C에서 72 시간 동안 교반하였다. 반웅 종료 후, 반응 생성물을 감압 건조한 다음 에틸 아세테이트 150 mL에 녹여 NaCl 수용액으로 부산물을 4회 추출하였다. 이후, 유기층을 MgS04로 건조시키고 이를 여과한 다음 여액을 감압 건조하여 액상의 다면체 을리고머 실세스퀴옥산 (TA26) 21.4 g (수율: 93.0%)을 얻었다. 아베굴절계 (DTM-l, ATAG0사)로 측정한 TA26의 굴절률은 1.453이었다.
JH NMR (400 MHz): 6.392 (6Η' br), 6.122 (6Η, br), 5.826 (6H, br), 4.129 (12H, br), 2.120 (4H, br), 1.735 (12H, br), 0.904 (4H, br), 0.724 (12H, br) 실시예 4: 다면체 올리고머 실세스퀴옥산의 합성
(노나플루오로핵실)트리메특시실란 25 g (67.88 mmol)과 (3- 아크릴옥시프로필)트리메특시실란 5.3 g (22.62 醒 ol)을 THF (tetrahydrofuran) 90 mL에 녹이고 5 중량 %의 테트라부틸암모늄 하이드록사이드 수용액 15.5 g (N(Bu)40H 몰수: 2.99 mmol)을 첨가하였다. 이후, 반웅 흔합물을 0°C에서 72 시간 동안 교반하였다. 반웅 종료 후, 반웅 생성물을 감압 건조한 다음 에틸 아세테이트 150 mL에 녹여 NaCl 수용액으로 부산물을 4회 추출하였다. 이후, 유기층을 MgS04로 건조시키고 이를 여과한 다음 여액을 감압 건조하여 액상의 다면체 을리고머 실세스퀴옥산 (NA62) 23 g (수율: 95.6%)을 얻었다. 아베굴절계 (DTM-l, ATAG0사)로 측정한 NA62의 굴절률은 1.373이었다.
¾ NMR (400 MHz): 6.379 (2H, br), 6.108 (2H, br), 5.805 (2H, br), 4.118 (4H, br), 2.118 (12H, br), 1.753 (4H, br), 0.918 (12H, br), 0.705 (4H, br) 실시예 5: 다면체 올리고머 실세스퀴옥산의 합성
(노나플루오로헥실)트리메톡시실란 20 g (54.31 圆 ol)과 (3- 아크릴옥시프로필)트리메록시실란 12.7 g (54.20 瞧 ol)을 THF (tetrahydrofuran) 110 mL에 녹이고 5 중량 %의 테트라부틸암모늄 하이드록사이드 수용액 18.6 g (N(Bu)40H 몰수: 3.58 mmol)을 첨가하였다. 이후, 반웅 흔합물을 0°C에서 72 시간 동안 교반하였다. 반웅 종료 후, 반웅 생성물을 감압 건조한 다음 에틸 아세테이트 150 mL에 녹여 NaCl 수용액으로 부산물을 4회 추출하였다. 이후, 유기층을 MgS04로 건조시키고 이를 여과한 다음 여액을 감압 건조하여 액상의 다면체 올리고머 실세스퀴옥산 (NA44) 24.2 g (수율: 96.0%)을 얻었다. 아베굴절계 (DTM-l, ATAG0사)로 측정한 NA44의 굴절를은 1.404이었다.
¾ NMR (400 MHz): 6.379 (4H, br), 6.108 (4H, br), 5.805 (4H, br), 4.118 (8H, br), 2.118 (8H, br), 1.753 (8H, br), 0.918 (8H, br), 0.705 (8H, br) 실시예 6: 다면체 올리고머 실세스퀴옥산의 합성
(노나플루오로핵실)트리메록시실란 10 g (27.15 mmol)과 (3- 아크릴옥시프로필)트리메록시실란 19.1 g (81.51 瞧 ol)을 THF (tetrahydrofuran) 110 mL에 녹이고 5 중량 %의 테트라부틸암모늄 하이드록사이드 수용액 18.6 g (N(Bu)40H 몰수: 3.58 誦 ol)을 첨가하였다. 이후, 반응 흔합물을 0°C에서 72 시간 동안 교반하였다. 반웅 종료 후, 반웅 생성물을 감압 건조한 다음 에틸 아세테이트 150 mL에 녹여 NaCl 수용액으로 부산물을 4회 추출하였다. 이후, 유기층을 MgS04로 건조시키고 이를 여과한 다음 여액을 감압 건조하여 액상의 다면체 올리고머 실세스퀴옥산 (NA26) 20.5 g (수율: 94.9%)을 얻었다. 아베굴절계 (DTM-l, ATAG0사)로 측정한 NA26의 굴절를은 1.433이었다.
¾ NMR (400 MHz): 6.379 (6H, br), 6.108 (6H, br), 5.805 (6H, br), 4.118 (12H, br), 2.118 (4H, br), 1.753 (12H, br), 0.918 (4H, br), 0.705 (12H, br) 비교예 1: 다면체 올리고머 실세스퀴옥산의 합성
(3,3,3-트리플루오로프로필)트리메톡시실란 25 g (114.55 mmol)과 (3- 아크릴옥시프로필)트리메특시실란 8.9 g (37.98 瞧 ol)을 THF (tetrahydrofuran) 150 mL에 녹이고 5 중량 %의 N(C¾)40H 수용액 9.2 g (N(CH3)40H 몰수: 5.05 mmol)을 첨가하였다. 이후, 반웅 흔합물을 0°C에서 72 시간 동안 교반하였다. 반웅 종료 후, 반웅 생성물을 감압 건조한 다음 에틸 아세테이트 150 mL에 녹여 NaCl 수용액으로 부산물을 4회 추출하였다. 이후, 유기층을 MgS04로 건조시키고 이를 여과한 다음 여액을 감압 건조하여 액상의 다면체 을리고머 실세스퀴옥산 (TA62) 21 g (수율: 89.7%)을 얻었다. 아베굴절계 (DTM-l, ATAG0사)로 측정한 TA62의 굴절률은 1.411이었다. ¾ NMR (400 MHz): 6.392 (2H, br), 6.122 (2H, br), 5.826 (2H, br), 4.129 (4H, br), 2.120 (12H, br), 1.735 (4H, br), 0.904 (12H, br), 0.724 (4H, br) 비교예 2: 다면체 을리고머 실세스퀴옥산의 합성
(3,3,3-트리플루오로프로필)트리메록시실란 20 g (91.64 mmol)과 (3- 아크릴옥시프로필)트리메록시실란 21.5 g (91.75 隱 ol)을 THF (tetrahydrofuran) 180 mL에 녹이고 5 중량 )의 N(CH3)40H 수용액 11 g (N(CH3)40H 몰수: 6.03 瞧 ol)을 첨가하였다. 이후, 반웅 흔합물을 0°C에서 72 시간 동안 교반하였다. 반웅 종료 후, 반웅 생성물을 감압 건조한 다음 에틸 아세테이트 200 mL에 녹여 NaCl 수용액으로 부산물을 4회 추출하였다. 이후, 유기층을 MgS04로 건조시키고 이를 여과한 다음 여액을 감압 건조하여 액상의 다면체 을리고머 실세스퀴옥산 (TA44) 23.5 g (수율: 81.3%)을 얻었다. 아베굴절계 (DTM-l, ATAGO사)로 측정한 TA44의 굴절률은 1.435이었다.
¾ NMR (400 丽 z): 6.392 (4H, br), 6.122 (4H, br), 5.826 (4H, br),
4.129 (8H, br), 2.120 (8H, br), 1.735 (8H, br), 0.904 (8H, br), 0.724 (8H, br) 비교예 3: 다면체 올리고머 실세스퀴옥산의 합성
(3,3,3-트리플루오로프로필)트리메록시실란 7.8 g (35.74 瞧 ol)과 (3ᅳ 아크릴옥시프로필)트리메특시실란 25.1 g (107.12 mmol)을 THF (tetrahydrofuran) 140 mL에 녹이고 5 중량 %의 N(CH3)40H 수용액 8.6 g (N(CH3)40H 몰수: 4.72 mmol)올 첨가하였다. 이후, 반웅 흔합물을 0°C에서 72 시간 동안 교반하였다. 반웅 종료 후, 반웅 생성물을 감압 건조한 다음 에틸 아세테이트 150 mL에 녹여 NaCl 수용액으로 부산물을 4회 추출하였다. 이후, 유기층을 MgS04로 건조시키고 이를 여과한 다음 여액을 감압 건조하여 액상의 다면체 올리고머 실세스퀴옥산 (TA26) 19.5 g (수율: 84.7%)을 얻었다. 아베굴절계 (DTM-l, ATAGO사)로 측정한 TA26의 굴절를은 1.453이었다.
¾ 匪 R (400 MHz): 6.392 (6H, br), 6.122 (6H, br), 5.826 (6H, br), 4.129 (12H, br), 2.120 (4H, br), 1.735 (12H, br), 0.904 (4H, br), 0.724 (12H, br) 비교예 4: 다면체 올리고머 실세스퀴옥산의 합성
(3,3,3-트리플루오로프로필)트리메특시실란 25 g (114.55 讓 ol)과 (3- 아크릴옥시프로필)트리메록시실란 8.9 g (37.98 腿 ol)을 THF (tetrahydrofuran) 150 mL에 녹이고 5 중량 %의 N(C¾)40H 수용액 9.2 g (N(CH3)40H 몰수: 5.05 扁 ol)을 첨가하였다. 이후, 반웅 흔합물을 상온 (약 25°C)에서 72 시간 동안 교반하였다. 반응 종료 후, 반응 생성물을 감압 건조한 다음 에틸 아세테이트 150 mL에 녹여 NaCl 수용액으로 부산물을 4회 추출하였다. 이후, 유기층을 MgS04로 건조시키고 이를 여과한 다음 여액을 감압 건조하여 액상의 다면체 올리고머 실세스퀴옥산 (TA62) 20 g (수율: 85.5%)을 얻었다. 아베굴절계 (DTM-1, ATAG0사)로 측정한 TA62의 굴절률은 1.411이었다.
¾ NMR (400 MHz): 6.392 (2H, br), 6.122 (2H, br), 5.826 (2H, br), 4.129 (4H, br), 2.120 (12H, br), 1.735 (4H, br), 0.904 (12H, br), 0.724 (4H, br) 비교예 5: 다면체 올리고머 실세스퀴옥산의 합성
(3,3,3-트리플루오로프로필)트리메특시실란 20 g (91.64 mmol)과 (3- 아크릴옥시프로필)트리메톡시실란 21.5 g (91.75 腿 ol)을 THF (tetrahydrofuran) 180 mL에 녹이고 5 중량 %의 N(C¾)40H 수용액 11 g (N(C¾)40H 몰수: 6.03 醒 ol)을 첨가하였다. 이후, 반웅 흔합물을 상온에서 72 시간 동안 교반하였다. 반응 종료 후, 반응 생성물을 감압 건조한 다음 에틸 아세테이트 200 mL에 녹여 NaCl 수용액으로 부산물을 4회 추출하였다. 이후, 유기층을 MgS04로 건조시키고 이를 여과한 다음 여액을 감압 건조하여 액상의 다면체 올리고머 실세스퀴옥산 (TA44) 23 g (수율: 79.6%)을 얻었다. 아베굴절계 (DTM-l, ATAG0사)로 측정한 TA44의 굴절를은 1.435이었다.
¾ 證 (400 MHz): 6.392 (4H, br), 6.122 (4H, br), 5.826 (4H, br), 4.129 (8H, br), 2.120 (8H, br), 1.735 (8H, br), 0.904 (8H, br), 0.724 (8H br) 비교예 6: 다면체 올리고머 실세스퀴옥산의 합성
(3,3,3-트리플루오로프로필)트리메록시실란 7.8 g (35.74 國 ol)과 (3- 아크릴옥시프로필)트리메특시실란 25.1 g (107.12 mmol)을 THF (tetrahydrofuran) 140 mL에 녹이고 5 중량 %의 N(CH3)40H 수용액 8.6 g (N(CH3)40H 몰수: 4.72 mmol)을 첨가하였다. 이후, 반웅 흔합물을 상온에서 72 시간 동안 교반하였다. 반웅 종료 후, 반웅 생성물을 감압 건조한 다음 에틸 아세테이트 150 mL에 녹여 NaCl 수용액으로 부산물을 4회 추출하였다. 이후, 유기층을 MgS04로 건조시키고 이를 여과한 다음 여액을 감압 건조하여 액상의 다면체 올리고머 실세스퀴옥산 (TA26) 19 g (수율: 82.6%)을 얻었다. 아베굴절계 (DTM-l, ATAG0사)로 측정한 TA26의 굴절률은 1.453이었다.
¾ NMR (400 MHz): 6.392 (6H, br), 6.122 (6H, br), 5.826 (6H, br), 4.129 (12H, br), 2.120 (4H, br), 1.735 (12H, br), 0.904 (4H, br), 0.724 (12H, br) 시험예: 다면체 올리고머 실세스퀴옥산의 순도 평가
실시예 1 내지 6 및 비교예 1 내지 6에서 제조한 다면체 을리고머 실세스퀴옥산의 순도는 GPC (Gel Permeation Chromatograpy)를 이용하여 면적 %로 구하였다. 이때, 표준 샘플로는 폴리스티렌 (polystyrene)을 이용하고 용매로는 THF를 사용하였으며 검출기 (detector)로는 ELS (Evaporative Light
Scattering) 검출기를 사용하였다.
하기 표 1에 실시예 및 비교예에서 제조한 다면체 올리고머 실세스퀴옥산의 수율 및 순도를 나타내었다.
【표 1】
수율 [%] 순도 [면적 9¾]
실시예 1 97.9 93
실시예 2 94.1 87
실시예 3 93.0 75
실시예 4 95.6 90
실시예 5 96.0 88
실시예 6 94.9 79
비교예 1 89.7 93
비교예 2 81.3 86
비교예 3 84.7 71 비교예 4 85.5 81
비교예 5 79.6 58
비교예 6 82.6 58 상기 표 1을 참고하면, 본 발명의 일 구현예에 따르면, 고순도의 다면체 올리고머 실세스퀴옥산을 고수율로 제공할 수 있음이 확인된다. 반면, 비교예 1 내지 6은 염기 촉매로 테트라메틸암모늄 하이드록사이드를 채용하여 낮은 수율로 다면체 올리고머 실세스퀴옥산을 제공하며, 특히 비교예 4 내지 6은 합성 온도가 상온으로 조절됨에 따라 낮은 순도의 다면체 올리고머 실세스퀴옥산을 낮은 수율로 제공하였다.

Claims

【특허청구범위】 【청구항 1】 하기 화학식 1로 표시되는 제 1 실란 화합물, 하기 화학식 2로ᅵ 표시되는 제 2 실란 화합물 및 탄소수 2 내지 5의 테트라알킬암모늄 수산화물을 포함하는 반응 흔합물을 5°C 이하의 온도에서 반응시키는 단계를 포함하는 다면체 올리고머 실세스퀴옥산의 제조 방법:
[화학식 1]
R^SiX^
[화학식 2]
2-A-SiX2 3
상기 화학식 1 및 2에서, A는 단일 결합, 탄소수 1 내지 10의 알킬렌기, 탄소수 6 내지 30의 아릴렌기, -0-Si (R3) (R4)- 또는 -0-Si (R3) (R4)-R5-이고,
R1은 할로겐으로 치환된 탄소수 1 내지 30의 탄화수소로부터 유래한 1가의 잔기이고,
R2는 (메트)아크릴로일기, (메트)아크릴로일옥시기, 히드록시기, 머갑토기, 카르복실기, 아미노기, 시아노기, 글리시딜기, 글리시딜옥시기, 탄소수 2 내지 30의 에폭시알킬기, 탄소수 2 내지 30의 에폭시알콕시기, 탄소수 2 내지 30의 알케닐기 및 탄소수 2 내지 30의 알케닐옥시기로 이루어진 군에서 선택된 작용기이거나, 흑은 -OH, -NH2 , -NH-R6 , -NH3X3 , -COOH , -C0 H2, -CN, -SH, 글리시딜기, 글리시딜옥시기 및 말레이미드로 이루어진 군에서 선택된 1 종 이상의 치환기로 치환된 탄소수 1 내지 30의 탄화수소로부터 유래한 1가의 잔기이고,
X1 및 X2는 각각 독립적으로 탄소수 1 내지 5의 알콕시기, CI , Br 또는
I이고,
R3 및 R4는 각각 독립적으로 탄소수 1 내지 5의 알킬기이고, R5는 탄소수 1 내지 12의 알킬렌기이고,
R6은 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 30의 아릴기 또는 아미노기로 치환된 탄소수 1 내지 10의 알킬기이고, X3는 할로겐이다. 【청구항 2】 제 1 항에 있어서, 상기 제 1 실란 화합물로 R1이 트리플루오로메틸, 트리플루오로에틸, 트리플루오로프로필, 트리플루오로부틸, 펜타플루오로부틸, 트리플루오로펜틸, 펜타플루오로펜틸, 헵타플루오로펜틸, 트리플루오로핵실, 펜타플루오로핵실, 헵타플루오로핵실, 노나플루오로핵실, 트리플루오로헵틸, 펜타플루오로헵틸, 헵타플루오로헵틸, 노나플루오로헵틸 도데카플루오로헵틸, 클로로프로필, (클로로메틸)페닐, (클로로메틸)페닐에틸 또는 디브로모에틸인 화합물을 사용하는 다면체 올리고머 실세스퀴옥산의 제조 방법 .
【청구항 3]
제 1 항에 있어서, 상기 제 2 실란 화합물로 R2가 (메트)아크릴로일기, (메트)아크릴로일옥시기, 히드록시기, 머캅토기, 카르복실기, 아미노기, 시아노기, 글리시딜기, 글리시딜옥시기, 에폭시사이클로핵실기, 에폭시사이클로핵특시기, 비닐기, 알릴기 및 노보넨기로 이루어진 군에서 선택된 작용기이거나 혹은 사이클로핵산디올, 트리메틸올프로판, 글리세를, 3- 히드록시 -3—메틸부탄, 아미노프로필, 아닐린, N-메틸아미노프로판, N- 페닐아미노프로판, N- (아미노에틸)아미노프로판, 프로필암모늄 클로라이드, 프로필나이트릴, 프로필싸이올, 글리시딜옥시프로판 N-프로필말레이미드 및 말레아믹산으로 이루어진 군에서 선택된 치환된 탄화수소로부터 유래한 1가의 잔기인 화합물을 사용하는 다면체 올리고머 실세스퀴옥산의 제조 방법.
【청구항 4]
제 1 항에 있어서, 상기 제 2 실란 화합물로 A가 단일 결합, 메틸렌, 에틸렌, 프로필렌, 페닐렌, -0-Si (CH3) (C¾)- 또는 — 0-Si (CH3) (CH3)-C¾C¾CH2- 인 화합물을 사용하는 다면체 올리고머 실세스퀴옥산의 제조 방법.
【청구항 5]
제 1 항에 있어서, 상기 제 1 실란 화합물로 (트리플루오로프로필)트리메록시실란, (트리플루오로부틸)트리메록시실란, (펜타플루오로부틸)트리메특시실란, (트리플루오로펜틸)트리메록시실란,
(펜타플루오로펜틸)트리메록시실란, (헵타플루오로펜틸)트리메특시실란, (트리플루오로핵실)트리메록시실란, (펜타플루오로핵실)트리메톡시실란, (헵타플루오로핵실)트리메록시실란, (노나플루오로핵실)트리메톡시실란,
(트리플루오로헵틸) 트리메특시실란, (펜타플루오로헵틸)트리메톡시실란,
(헵타플루오로헵틸)트리메특시실란, (노나플루오로헵틸)트리메톡시실란, (도데카플루오로헵틸)트리메록시실란, (클로로프로필)트리메톡시실란,
[ (클로로메틸)페닐]트리메록시실란, [ (클로로메틸)페닐에틸]트리메특시실란 및
(디브로모에틸)트리메록시실란 등으로 이루어진 군에서 선택되는 1 종 이상을 사용하는 다면체 올리고머 실세스퀴옥산의 제조 방법.
【청구항 6】
제 1 항에 있어서, 상기 제 2 실란 화합물로 (3-
(메트)아크릴옥시프로필)트리메록시실란, (2 , 3- 디하이드록시프로폭시프로필)트리메특시실란, (3 , 4- 디하이드록시헥실에틸)트리메록시실란, (3-하이드록시 -3- 메틸부틸디메틸실옥시)트리메특시실란, (3 , 4-에폭시핵실프로필)트리메톡시실란, (3,4-에폭시핵실에틸디메틸실옥시)트리메록시실란, (3- 아미노프로필)트리메특시실란, (N-아미노에틸아미노프로필)트리메특시실란, (아미노페닐)트리메특시실란, (N-페닐아미노프로필)트리메록시실란, (N- 메틸아미노프로필)트리메록시실란, (3-시아노프로필)트리메특시실란, (3- 머갑토프로필)트리메록시실란, (3-글리시딜옥시프로필)트리메톡시실란, 비닐트리메톡시실란, 알릴트리메록시실란, (트리메록시실릴)노보넨, N- [3- (트리메특시실릴)프로필]말레이미드 및 N-[3-
(트리메록시실릴)프로필]말레아믹산 등으로 이루어진 군에서 선택된 1 종 이상을 사용하는 다면체 을리고머 실세스퀴옥산의 제조 방법 .
【청구항 7】
제 1 항에 있어서, 상기 탄소수 2 내지 5의 테트라알킬암모늄 수산화물로 테트라부틸암모늄 하이드록사이드를 사용하는 다면체 올리고머 실세스퀴옥산의 제조 방법 .
【청구항 8]
제 1 항에 있어서, 상기 탄소수 2 내지 5의 테트라알킬암모늄 수산화물은 전체 실란 화합물 100 몰에 대하여 0.001 내지 100 몰로 사용되는 다면체 올리고머 실세스퀴옥산의 제조 방법 .
【청구항 9】
제 1 항에 있어서, 상기 반응 흔합물을 유기 용매 하에서 반웅시키는 다면체 올리고머 실세스퀴옥산의 제조 방법.
【청구항 10】
제 9 항에 있어서, 상기 유기 용매로 에테르 용매를 사용하는 다면체 올리고머 실세스퀴옥산의 제조 방법 .
【청구항 111
제 1 항에 있어서, 반웅 흔합물을 5 시간 내지 128 시간 동안 반웅시키는 다면체 올리고머 실세스퀴옥산의 제조 방법 .
【청구항 12】
제 1 항에 있어서, 하기 화학식 3으로 표시되는 다면체 올리고머 실세스퀴옥산의 제조 방법 :
[화학식 3]
(R1Si0i.5)m(R2-A-Si01.5)n
상기 화학식 3에서, A는 단일 결합, 탄소수 1 내지 10의 알킬렌기, 탄소수 6 내지 30의 아릴렌기, -0-Si (R3) (R4)- 또는 0— Si (R3) (R4)-R5-이고, R1은 할로겐으로 치환된 탄소수 1 내지 30의 탄화수소로부터 유래한
1가의 잔기이고,
R2는 (메트)아크릴로일기, (메트)아크릴로일옥시기, 히드록시기, 머캅토기, 카르복실기, 아미노기, 시아노기, 글리시딜기, 글리시딜옥시기, 탄소수 2 내지 30의 에폭시알킬기, 탄소수 2 내지 30의 에폭시알콕시기, 탄소수 2 내지 30의 알케닐기 및 탄소수 2 내지 30의 알케닐옥시기로 이루어진 군에서 선택된 작용기이거나, 혹은 -OH , -NH2 , -NH-R6 , -NH3X3 , -C00H , -C0NH2 , -CN, -SH, 글리시딜기, 글리시딜옥시기 및 말레이미드로 이루어진 군에서 선택된 1 종 이상의 치환기로 치환된 탄소수 1 내지 30의 탄화수소로부터 유래한 1가의 잔기이고,
R3 및 R4는 각각 독립적으로 탄소수 1 내지 5의 알킬기이고, R5는 탄소수 1 내지 12의 알킬렌기이고,
R6은 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 30의 아릴기 또는 아미노기로 치환된 탄소수 1 내지 10의 알킬기이고, X3는 할로겐이다.
m과 n은 각각 독립적으로 1 내지 13의 정수이되, m과 n의 합은 6 내지 14의 정수이다.
PCT/KR2017/000992 2016-01-28 2017-01-26 다면체 올리고머 실세스퀴옥산의 제조 방법 WO2017131489A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017565141A JP6648881B2 (ja) 2016-01-28 2017-01-26 多面体オリゴマーシルセスキオキサンの製造方法
CN201780002674.7A CN107849068B (zh) 2016-01-28 2017-01-26 用于制备多面体低聚倍半硅氧烷的方法
US15/743,830 US10501583B2 (en) 2016-01-28 2017-01-26 Method for preparing polyhedral oligomeric silsesquioxane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160010910 2016-01-28
KR10-2016-0010910 2016-01-28

Publications (1)

Publication Number Publication Date
WO2017131489A1 true WO2017131489A1 (ko) 2017-08-03

Family

ID=59398974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000992 WO2017131489A1 (ko) 2016-01-28 2017-01-26 다면체 올리고머 실세스퀴옥산의 제조 방법

Country Status (5)

Country Link
US (1) US10501583B2 (ko)
JP (1) JP6648881B2 (ko)
KR (1) KR102068219B1 (ko)
CN (1) CN107849068B (ko)
WO (1) WO2017131489A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108864937B (zh) * 2017-05-16 2020-09-22 韩国生产技术研究院 硬涂树脂组合物、硬涂片材及显示装置
WO2019215591A1 (en) 2018-05-07 2019-11-14 Oti Lumionics Inc. Method for providing an auxiliary electrode and device including an auxiliary electrode
EP4118135A4 (en) * 2020-03-10 2024-05-29 Hybrid Plastics, Incorporated HETEROLEPTIC POLYHEDRAL OLIGOMERS SILSESQUIOXANE COMPOSITIONS AND METHODS
WO2022123431A1 (en) 2020-12-07 2022-06-16 Oti Lumionics Inc. Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating
CN113321623B (zh) * 2021-06-03 2023-02-28 浙江乘鹰新材料股份有限公司 一种六官能度的含氟光固化抗污助剂及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5484867A (en) * 1993-08-12 1996-01-16 The University Of Dayton Process for preparation of polyhedral oligomeric silsesquioxanes and systhesis of polymers containing polyhedral oligomeric silsesqioxane group segments
US6329490B1 (en) * 1999-03-31 2001-12-11 Mitsubishi Materials Corporation Polyhedral organosilicon compound and method for producing the same
US20030055193A1 (en) * 2001-06-27 2003-03-20 Lichtenhan Joseph D. Process for the functionalization of polyhedral oligomeric silsesquioxanes
JP2004143449A (ja) * 2002-09-30 2004-05-20 Nippon Steel Chem Co Ltd 官能基を有するかご型シルセスキオキサン樹脂とその製造方法
JP2007015991A (ja) * 2005-07-08 2007-01-25 Tokyo Univ Of Science かご状シルセスキオキサンの製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512474A (ja) 1995-09-12 1999-10-26 ゲレスト インコーポレーテツド ベータ−置換オルガノシルセスキオキサンおよびその使用法
JP3603133B2 (ja) * 1999-03-31 2004-12-22 三菱マテリアル株式会社 有機フッ素基と反応性官能基を有する多面体有機ケイ素化合物とその製造方法、およびその成膜材料と形成された膜
US7485692B2 (en) 1999-08-04 2009-02-03 Hybrid Plastics, Inc. Process for assembly of POSS monomers
EP1208105B1 (en) * 1999-08-04 2006-10-04 Hybrid Plastics Process for the formation of polyhedral oligomeric silsesquioxanes
JP2002265607A (ja) 2001-03-08 2002-09-18 Chisso Corp 官能基含有ポリシルセスキオキサン及びその製造方法
DE10156619A1 (de) 2001-11-17 2003-05-28 Creavis Tech & Innovation Gmbh Verfahren zur Herstellung funktionalisierter oligomerer Silasesquioxane sowie deren Verwendung
JP4742212B2 (ja) 2002-08-06 2011-08-10 Jnc株式会社 シルセスキオキサン誘導体の製造方法およびシルセスキオキサン誘導体
JP2006096735A (ja) 2004-08-31 2006-04-13 Chisso Corp ケイ素化合物の製造方法
WO2008155374A1 (fr) 2007-06-21 2008-12-24 Bluestar Silicones France Procédé de lutte contre l'apparition de brouillard lors de l'enduction de supports flexibles avec une composition silicone liquide réticulable, dans un dispositif a cylindres
JP2009060007A (ja) 2007-09-03 2009-03-19 Sekisui Chem Co Ltd シルセスキオキサン系絶縁膜の製造方法
JP5344869B2 (ja) 2008-08-13 2013-11-20 AzエレクトロニックマテリアルズIp株式会社 アルカリ可溶性シルセスキオキサンの製造方法
CN102131819B (zh) * 2008-08-26 2014-04-16 关西涂料株式会社 具有可聚合官能团的倍半硅氧烷化合物
WO2010067685A1 (ja) * 2008-12-10 2010-06-17 関西ペイント株式会社 重合性官能基を有するシルセスキオキサン化合物
JP2011084672A (ja) 2009-10-16 2011-04-28 Fujifilm Corp 光学材料用組成物
JP2011098939A (ja) 2009-11-09 2011-05-19 Konishi Kagaku Ind Co Ltd 完全縮合オリゴシルセスキオキサン及びそれらの製造方法
KR101248530B1 (ko) 2010-09-17 2013-04-03 한국과학기술연구원 가지형 실세스퀴옥산 폴리머 중합용 모노머 조성물, 이로부터 합성된 가지형 실세스퀴옥산 폴리머 및 이의 합성방법
CN103459447B (zh) 2011-03-31 2015-03-25 新日铁住金化学株式会社 固化性硅树脂组合物及硅树脂固化物
JP2012251035A (ja) 2011-06-01 2012-12-20 Yokohama Rubber Co Ltd:The 硬化性樹脂組成物
CN103183702B (zh) * 2012-12-27 2016-04-20 河海大学 七聚十三氟辛基丙基笼型倍半硅氧烷及其官能化衍生物
KR102232349B1 (ko) 2013-05-31 2021-03-26 롬엔드하스전자재료코리아유한회사 고내열성 네거티브형 감광성 수지 조성물 및 이로부터 제조된 경화막

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5484867A (en) * 1993-08-12 1996-01-16 The University Of Dayton Process for preparation of polyhedral oligomeric silsesquioxanes and systhesis of polymers containing polyhedral oligomeric silsesqioxane group segments
US6329490B1 (en) * 1999-03-31 2001-12-11 Mitsubishi Materials Corporation Polyhedral organosilicon compound and method for producing the same
US20030055193A1 (en) * 2001-06-27 2003-03-20 Lichtenhan Joseph D. Process for the functionalization of polyhedral oligomeric silsesquioxanes
JP2004143449A (ja) * 2002-09-30 2004-05-20 Nippon Steel Chem Co Ltd 官能基を有するかご型シルセスキオキサン樹脂とその製造方法
JP2007015991A (ja) * 2005-07-08 2007-01-25 Tokyo Univ Of Science かご状シルセスキオキサンの製造方法

Also Published As

Publication number Publication date
US10501583B2 (en) 2019-12-10
KR102068219B1 (ko) 2020-01-20
US20180201734A1 (en) 2018-07-19
JP6648881B2 (ja) 2020-02-14
CN107849068B (zh) 2020-09-11
JP2018517737A (ja) 2018-07-05
CN107849068A (zh) 2018-03-27
KR20170090368A (ko) 2017-08-07

Similar Documents

Publication Publication Date Title
KR102068219B1 (ko) 다면체 올리고머 실세스퀴옥산의 제조 방법
US6534615B2 (en) Preparation of amino-functional siloxanes
JP4470738B2 (ja) シルセスキオキサン誘導体
JPS5931542B2 (ja) 耐溶剤性シリコ−ン
TW201602165A (zh) 含有氟聚醚基之聚合物變性矽烷、表面處理劑及物品
KR101141110B1 (ko) 실세스퀴옥산 유도체를 사용하여 제조된 중합체
JPWO2004081085A1 (ja) シルセスキオキサン誘導体を用いて得られる重合体
JPS62195389A (ja) ヒドロキシル基含有シロキサン化合物
US10711017B1 (en) Fluorinated cycloalkene functionalized silicas
JP2019131806A (ja) 赤外線透過性硬化型組成物、その硬化物および光半導体装置
JPH0662647B2 (ja) 含フッ素有機ケイ素化合物
JPH1017579A (ja) N,n−ビス(トリメチルシリル)アミノプロピルシラン化合物及びその製造方法
JP2005015738A (ja) 官能基を有するシルセスキオキサン誘導体の製造方法およびシルセスキオキサン誘導体
JP2005517749A (ja) アミノメチレン官能性シロキサン
JP5890288B2 (ja) 新規有機珪素化合物の製造方法
KR102035830B1 (ko) 다면체 올리고머 실세스퀴옥산의 제조 방법
JP6048380B2 (ja) オキセタン環を有する有機珪素化合物及びその製造方法
WO2012091586A1 (en) Fluorocarbofunctional silsesquioxanes containing other reactive functional groups and a method to obtain the same
JP6685386B2 (ja) (メタ)アクリレート基を有する有機ケイ素化合物およびその製造方法
JP2827858B2 (ja) 有機けい素化合物及びその製造方法
JP2806216B2 (ja) ケイ素化合物
KR101945712B1 (ko) 지문 방지용 플로오로실리콘 화합물 및 이의 제조 방법
JP2016204287A (ja) 加水分解性シリル基含有環状オルガノハイドロジェンシロキサン
KR20240070628A (ko) 알콕시실릴알킬아미노프로필 변성 폴리실록산 화합물의 제조 방법
CN117510532A (zh) 低聚氨丙基硅氧烷及其合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565141

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15743830

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744610

Country of ref document: EP

Kind code of ref document: A1