WO2012133080A1 - 硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物 - Google Patents

硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物 Download PDF

Info

Publication number
WO2012133080A1
WO2012133080A1 PCT/JP2012/057269 JP2012057269W WO2012133080A1 WO 2012133080 A1 WO2012133080 A1 WO 2012133080A1 JP 2012057269 W JP2012057269 W JP 2012057269W WO 2012133080 A1 WO2012133080 A1 WO 2012133080A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silicone resin
resin
resin composition
formula
Prior art date
Application number
PCT/JP2012/057269
Other languages
English (en)
French (fr)
Inventor
悠子 村上
齋藤 憲
正敏 湯浅
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to CN201280015013.5A priority Critical patent/CN103459447B/zh
Priority to JP2013507445A priority patent/JP5844796B2/ja
Priority to KR1020137028713A priority patent/KR101861774B1/ko
Publication of WO2012133080A1 publication Critical patent/WO2012133080A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F30/08Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L43/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
    • C08L43/04Homopolymers or copolymers of monomers containing silicon

Definitions

  • the present invention relates to a curable silicone resin composition and a cured silicone resin. More specifically, the present invention relates to a curable silicone resin composition containing a cage silsesquioxane resin and a cured silicone resin obtained by curing the same.
  • a glass plate is widely used as a transparent substrate such as a liquid crystal display device substrate, a color filter substrate, an organic EL display device substrate, an electronic paper substrate, a TFT substrate, or a solar cell substrate.
  • a transparent plastic plate as an alternative has been studied because glass plates are easily broken, cannot be bent, have a large specific gravity, and are not suitable for weight reduction.
  • silsesquioxane having a cage structure is attracting attention in various fields because it can exhibit a specific function by utilizing its characteristic structure.
  • a cured product of a cage-type silsesquioxane resin is expected as a material for a transparent plastic plate that can be used as a substitute for a glass plate because it has excellent heat resistance, weather resistance, optical properties, dimensional stability, and the like.
  • Patent Document 1 a cage silsesquioxane having a vinyl group as a curable functional group and a SiH group.
  • cured material obtained by hydrosilylating the compound which has this, and the compound which has a vinyl group is disclosed.
  • the cured product described in the same document although high heat resistance and transparency are achieved to some extent, when used as an alternative material for a glass plate, the linear expansion coefficient is large, and further in the hydrosilylation reaction. Commonly used platinum catalysts have the problem of being expensive and economically disadvantageous.
  • Patent Document 2 a cage silsesquioxane resin represented by [RSiO 3/2 ] n and having a (meth) acryloyl group as a functional group, an unsaturated compound, and the like
  • a silicone resin copolymer obtained by radical copolymerization of a silicone resin composition comprising:
  • Patent Document 3 a cage type represented by [RSiO 3/2 ] n and having any one of (meth) acryloyl group, glycidyl group and vinyl group. Silsesquioxane resins are disclosed.
  • Patent Document 4 International Publication No. 2008/099850 discloses a cage cleavage type silsesquioxane resin having a vinyl group or the like.
  • the silicone resin copolymer described in Patent Document 2 is highly transparent and has a linear expansion coefficient that is small to some extent.
  • the silicone resin copolymer described in Patent Document 2 has a cage like the silicone resin copolymer described in the same document.
  • the cured resin having a (meth) acryloyl group which is a hydrophilic group on all silicon atoms in the type silsesquioxane skeleton has a problem of high water absorption and a large linear expansion coefficient. The inventors have found.
  • This invention is made
  • An object is to provide a curable silicone resin composition and a cured silicone resin obtained by curing the composition.
  • the present inventors contain a cage silsesquioxane resin having a specific structure having a vinyl group and a (meth) acryloyl group in the silicone resin composition. It is found that by curing a curable silicone resin composition, a cured silicone resin having excellent transparency, moldability and low water absorption and a sufficiently small linear expansion coefficient can be obtained, and the present invention is completed. It came to.
  • R 2 represents any one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, and an allyl group
  • h represents any integer selected from the group consisting of 8, 10, 12, and 14.
  • R 1 and R 2 may be the same or different.
  • the ratio of the number of vinyl groups to the number of (meth) acryloyl groups is preferably 1: 4 to 13: 1.
  • the curable silicone resin composition of the present invention preferably further contains an unsaturated compound having a (meth) acryloyl group, and the content of the radical polymerization initiator is 0.01 to 10% by mass. It is preferable.
  • the cured silicone resin of the present invention is obtained by radical polymerization of the curable silicone resin composition.
  • the present inventors infer as follows. That is, in the curable silicone resin composition of the present invention, the combination of a vinyl group and a (meth) acryloyl group as a curable functional group surprisingly has excellent characteristics of both functional groups. The present inventors speculate that it is possible to obtain a cured silicone resin having a low water absorption and a sufficiently low linear expansion coefficient, as well as being exhibited without loss, excellent transparency and moldability. .
  • the (meth) acryloyl group means a methacryloyl group and an acryloyl group.
  • the curable silicone resin composition of the present invention since it contains two or more functional groups, it has excellent compatibility with other compounds, and even if other compounds are contained, it is a uniform resin. A composition can be obtained. Therefore, the present inventors speculate that the cured silicone resin obtained exhibits excellent transparency and moldability.
  • a curable silicone resin composition having excellent transparency, moldability and low water absorption, and capable of obtaining a cured silicone resin having a sufficiently small linear expansion coefficient, and obtained by curing the same. It is possible to provide a cured silicone resin.
  • 2 is a chromatogram showing the results of GPC of the resin mixture I obtained in Synthesis Example 1.
  • 2 is a graph showing a 1 H-NMR spectrum of a resin mixture I obtained in Synthesis Example I. It is an enlarged view of FIG. 2A.
  • 2 is a graph showing an ESI-MS spectrum of a resin mixture I obtained in Synthesis Example I. It is a chromatogram which shows the result of GPC of the resin mixture II obtained by the synthesis example II. It is a chromatogram which shows the result of GPC of the resin mixture III obtained by the synthesis example III. It is a chromatogram which shows the result of GPC of the resin mixture IV obtained by the synthesis example IV.
  • 6 is a chromatogram showing a GPC result of a resin mixture V obtained in Synthesis Example V. It is a chromatogram which shows the result of GPC of the resin mixture VI obtained by the synthesis example VI.
  • the curable silicone resin composition of the present invention contains a cage silsesquioxane resin and a radical polymerization initiator, and the content of the cage silsesquioxane resin is 10 to 80% by mass. .
  • R 3 represents a hydrogen atom or a methyl group.
  • R 3 is particularly preferably a methyl group from the viewpoint that water absorption can be further reduced due to the repulsive effect of the three-dimensional structure.
  • R 4 represents any one selected from the group consisting of an alkylene group, an alkylidene group, and a phenylene group, and the alkylene group may be linear or branched.
  • the number of carbon atoms is preferably 1 to 3, and the alkylidene group may be linear or branched, Examples include propane-2-ylidene, and the phenylene group includes, for example, 1,2-phenylene having a lower alkyl group in addition to the unsubstituted phenylene group.
  • an alkylene group having 1 to 3 carbon atoms is preferable.
  • R 4 a propylene group is more preferable from the viewpoint that the raw materials are easily available, the distance between crosslinks is not increased, and the linear expansion coefficient is decreased.
  • R 2 represents any one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, and an allyl group.
  • R 2 is more preferably a hydrogen atom, a methyl group, an ethyl group, a phenyl group, or an allyl group from the viewpoint that the linear expansion coefficient is sufficiently small.
  • the cage silsesquioxane resin according to the present invention has one or more (meth) acryloyl groups by satisfying the condition represented by the above formula (ii), the transparent curing by radical polymerization.
  • the compatibility is improved, so that a more transparent cured product can be obtained.
  • the cage silsesquioxane resin according to the present invention has a cage structure which is almost completely condensed. Thus, it is possible to obtain a cured silicone resin having excellent transparency, moldability and low water absorption, and having a sufficiently small linear expansion coefficient.
  • R 1 and R 2 may be the same or different.
  • the ratio of n to m (n: m) is more preferably 1: 4 to 13: 1, and 1: 3 to 13: 1 is particularly preferred.
  • the number of n is less than the lower limit, the crosslinking density of the resin tends to decrease and the linear expansion coefficient of the cured silicone resin tends to increase.
  • the number exceeds the upper limit vinyl having low radical polymerizability is low.
  • the curable silicone resin composition of the present invention by using such a cage-type silsesquioxane resin, a silicone having excellent transparency, moldability and low water absorption, and having a sufficiently small linear expansion coefficient. A cured resin can be obtained.
  • k represents an integer of 1 to 3.
  • n 6
  • m 2
  • j 0
  • R 4 is (CH 2 ) k
  • k represents an integer of 1 to 3.
  • n 8
  • m 2
  • j 0
  • R 4 is (CH 2 ) k
  • k represents an integer of 1 to 3.
  • n 6
  • m 6
  • j 2
  • R 4 is (CH 2 ) k
  • R 2 is CH 3 CH 2 —.
  • formula (7) the following formula (7):
  • n 6
  • m 4
  • j 4
  • R 4 is (CH 2 )
  • R 2 is CH 3 CH 2- Yes
  • a compound represented by the following formula (14) may be mentioned.
  • the cage silsesquioxane resin as the cage silsesquioxane resin, one kind may be used alone, or two or more kinds may be used in combination.
  • the content of the cage silsesquioxane resin the total mass of the cage silsesquioxane resin needs to be 10 to 80% by mass with respect to the curable silicone resin composition of the present invention. is there.
  • the content of the cage silsesquioxane resin is less than the lower limit, in the cured silicone resin, physical properties such as transparency, low thermal expansion, low water absorption, and compatibility are deteriorated.
  • the viscosity of the curable silicone resin composition increases, making it difficult to produce a molded product.
  • the content of the cage silsesquioxane resin is particularly preferably 15 to 80% by mass.
  • the ratio of the number of vinyl groups to the number of all (meth) acryloyl groups in the entire cage silsesquioxane resin (total number of vinyl groups: total number of (meth) acryloyl groups). ) Is preferably 1: 4 to 13: 1.
  • the vinyl group content is less than the lower limit, the crosslink density of the resin tends to decrease and the linear expansion coefficient of the cured silicone resin tends to increase. Since the ratio of low vinyl groups increases, many unreacted vinyl groups tend to remain in the cured silicone resin. Further, from the viewpoint of better low thermal expansion and low water absorption, the ratio (total number of vinyl groups: total number of (meth) acryloyl groups) is more preferably 1: 3 to 13: 1.
  • the ratio between the number of vinyl groups and the total number of (meth) acryloyl groups in the cage silsesquioxane resin is 1 H-NMR (device name: JNM-ECA400, manufacturer name: JEOL, (Solvent: deuterated chloroform, temperature: 23 ° C., 400 MHz), which can be determined from the integration ratio of peaks of vinyl group and (meth) acryloyl group.
  • R 2 has the same meaning as R 2 in formula (1), and Z is any one selected from the group consisting of an alkoxy group, an acetoxy group, a halogen atom and a hydroxy group.
  • a hydrolyzable group is shown.
  • a basic catalyst In the presence of a basic catalyst, and in the presence of a basic catalyst, it is hydrolyzed in a nonpolar solvent and / or polar solvent and partially condensed, and the resulting hydrolysis reaction product is Furthermore, a method of recondensing in the presence of a nonpolar solvent and a basic catalyst can be mentioned.
  • Examples of the silicon compound (A) include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, and the like. These may be used alone or in combination of two or more. Among these, vinyltrimethoxysilane is preferably used from the viewpoint of easy availability of raw materials.
  • Examples of the silicon compound (B) include methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, Examples thereof include 3-acryloxypropyltriethoxysilane, and these may be used alone or in combination of two or more. Of these, 3-methacryloxypropyltrimethoxysilane is preferably used from the viewpoint of easy availability of raw materials.
  • Examples of the silicon compound (C) include phenyltrimethoxysilane, phenyltriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, and n-propyltriethoxy.
  • a molar ratio of the silicon compound (A) and the silicon compound (B) (number of moles of A: B
  • the molar ratio of the silicon compound (C) to the total of the silicon compound (A) and the silicon compound (B) (the number of moles of A + B: the number of moles of C) Is preferably mixed so that the ratio is 1: 0 to 5: 2.
  • the basic catalyst used in the hydrolysis reaction includes alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, cesium hydroxide; tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyl Examples thereof include ammonium hydroxide salts such as trimethylammonium hydroxide and benzyltriethylammonium hydroxide. Among these, it is preferable to use tetramethylammonium hydroxide from the viewpoint of high catalytic activity.
  • the amount of such a basic catalyst is preferably 0.01 to 20% by mass with respect to the total mass of the silicon compounds (A) to (C).
  • the basic catalyst is usually used as an aqueous solution.
  • the presence of water is essential, but this can be supplied from an aqueous solution of the basic catalyst or added as water separately.
  • the amount of water should be more than the mass sufficient to hydrolyze the hydrolyzable group, and the theoretical amount (mass) of the hydrolyzable group calculated from the mass of the silicon compounds (A) to (C).
  • the amount is preferably 1.0 to 1.5 times.
  • a nonpolar solvent and / or a polar solvent As such a solvent, if only a nonpolar solvent is used, the reaction system will not be uniform, and the hydrolysis reaction will not proceed sufficiently, and unreacted hydrolyzable groups tend to remain. It is preferable to use both a polar solvent and a polar solvent, or use only a polar solvent.
  • polar solvent alcohols such as methanol, ethanol, 2-propanol, or other polar solvents can be used. Of these, lower alcohols having 1 to 6 carbon atoms that are soluble in water are preferred, and 2-propanol is more preferred.
  • the amount of the nonpolar solvent and / or the polar solvent used is preferably in the range where the total molar concentration (mol / liter: M) of the silicon compounds (A) to (C) is 0.01 to 10M. .
  • the reaction temperature is preferably 0 to 60 ° C., more preferably 20 to 40 ° C.
  • the reaction rate becomes slow, so that the hydrolyzable group remains in an unreacted state, and the reaction time tends to be long.
  • the reaction temperature exceeds the above upper limit, the reaction rate is too high, so that a complex condensation reaction proceeds, and as a result, high molecular weight of the hydrolysis reaction product tends to be promoted.
  • the reaction time is preferably 2 hours or more. When the reaction time is less than the lower limit, the hydrolysis reaction does not proceed sufficiently and the hydrolyzable group tends to remain in an unreacted state.
  • the reaction solution is made neutral or acidic using a weakly acidic solution, and then water or a water-containing reaction solvent is separated.
  • a weakly acidic solution include sulfuric acid diluted solution, hydrochloric acid diluted solution, citric acid solution, acetic acid, ammonium chloride aqueous solution, malic acid solution, phosphoric acid solution, oxalic acid solution and the like.
  • the reaction solution is washed with a saline solution or the like to sufficiently remove moisture and other impurities, and then dried with a drying agent such as anhydrous magnesium sulfate. Means can be employed.
  • the hydrolysis reaction product As a method for recovering the hydrolysis reaction product when a polar solvent is used as the solvent, first, the polar solvent is removed by evaporation under reduced pressure, and then a nonpolar solvent is added to the hydrolysis reaction product. A method of washing and drying in the same manner as described above can be employed after dissolving the above.
  • the hydrolysis reaction product when a nonpolar solvent is used as the solvent, the hydrolysis reaction product can be recovered by separating the nonpolar solvent by means such as evaporation. However, the nonpolar solvent is used in the next recondensation reaction. If it can be used as the nonpolar solvent to be used, it is not necessary to separate it.
  • the hydrolysis reaction product contains a polycondensate produced by the condensation.
  • a polycondensate varies depending on the reaction conditions, but has a number average molecular weight of 500 to 10,000 (or Oligomer) mixture, which is composed of siloxanes having a plurality of types of cage-type, incomplete cage-type, ladder-type, and random-type structures.
  • the hydrolysis reaction product is further heated in the presence of a nonpolar solvent and a basic catalyst to condense the siloxane bond (referred to as recondensation).
  • recondensation it is preferable to selectively produce a recondensate (a siloxane having a cage structure).
  • the nonpolar solvent may be any solvent that is not or hardly soluble in water, but is preferably a hydrocarbon solvent.
  • the hydrocarbon solvent include nonpolar solvents having a low boiling point such as toluene, benzene, xylene, etc. Among them, it is preferable to use toluene.
  • the amount of the nonpolar solvent used is preferably an amount sufficient to dissolve the hydrolysis reaction product, and is 0.1 to 20 times the mass of the total mass of the hydrolysis reaction product. preferable.
  • a basic catalyst used in the hydrolysis reaction can be used, and alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and cesium hydroxide; tetramerammonium hyhydroxide, tetraethylammonium Mention may be made of ammonium hydroxide salts such as hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide and benzyltriethylammonium hydroxide. Among these, a catalyst that is soluble in a nonpolar solvent such as tetraalkylammonium is preferable. The amount of such a basic catalyst is preferably 0.01 to 20% by mass of the hydrolysis reaction product.
  • the reaction temperature is preferably 90 to 200 ° C, more preferably 100 to 140 ° C.
  • the reaction temperature is lower than the lower limit, a sufficient driving force is not obtained to cause the recondensation reaction, and the reaction tends not to proceed.
  • the reaction temperature exceeds the above upper limit, a reactive organic functional group such as a vinyl group or a (meth) acryloyl group may cause a self-polymerization reaction. Etc. tend to arise.
  • the reaction conditions for the recondensation reaction are preferably 2 to 12 hours.
  • the hydrolysis reaction product used for the recondensation is preferably washed and dried as described above, and further concentrated, but can be used even if these treatments are not performed.
  • water may be present, but it is not necessary to add it positively, and it is preferable to keep the amount of water supplied from the basic catalyst solution.
  • the reaction solution is washed to remove the catalyst, and concentrated in a rotary evaporator or the like.
  • a mixture of a plurality of types of cage silsesquioxane resins according to the present invention represented by the above formulas (3) to (14) and the like can get.
  • the content of the cage silsesquioxane resin according to the present invention is preferably 40% by mass or more of the entire recondensation product (resin mixture).
  • the radical polymerization initiator according to the present invention includes a thermal polymerization initiator and a photopolymerization initiator.
  • radical polymerization of the cage silsesquioxane resin is promoted by the radical polymerization initiator, and a cured silicone resin having excellent strength and rigidity can be obtained.
  • the thermal polymerization initiator is used when the curable silicone resin composition of the present invention is thermally cured.
  • a thermal polymerization initiator is preferably an organic peroxide, and examples of the organic peroxide include ketone peroxides, diacylalkyl peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, Examples thereof include alkyl peresters and percarbonates.
  • dialkyl peroxide is preferable from the viewpoint of high catalytic activity.
  • dialkyl peroxide examples include cyclohexanone peroxide, 1,1-bis (t-hexaperoxy) cyclohexanone, cumene hydroperoxide, dicumyl peroxide, benzoyl peroxide, diisopropyl peroxide, di- Examples thereof include t-butyl peroxide, t-hexyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexanoate and the like.
  • the thermal polymerization initiator one of these may be used alone, or two or more may be used in combination.
  • the photopolymerization initiator is used when the curable silicone resin composition of the present invention is photocured.
  • a photopolymerization initiator it is preferable to use compounds such as acetophenones, benzoins, benzophenones, thioxanthones, and acylphosphine oxides.
  • the photopolymerization initiator one of these may be used alone, or two or more may be used in combination.
  • the thermal polymerization initiator or the photopolymerization initiator may be used alone, or both may be used in combination.
  • the content of such radical polymerization initiator is preferably 0.01 to 10% by mass and more preferably 0.05 to 5% by mass in the curable silicone resin composition of the present invention.
  • the content is less than the lower limit, the composition is insufficiently cured, and thus the strength and rigidity of the obtained molded product tend to be low.
  • the content exceeds the upper limit, the molded product is colored. Tend to cause problems.
  • the curable silicone resin composition of the present invention preferably further contains an unsaturated compound having a (meth) acryloyl group.
  • an unsaturated compound having a (meth) acryloyl group By containing such an unsaturated compound, it becomes possible to obtain a cured product having desired physical properties such as viscosity, resin rigidity, and strength of the silicone resin composition.
  • the unsaturated compound is not particularly limited as long as it has a (meth) acryloyl group capable of radical copolymerization with the cage silsesquioxane resin, and when the viscosity of the curable silicone resin composition is increased.
  • a reactive oligomer, a low-molecular-weight and / or low-viscosity reactive monomer, or the like which is a polymer having about 2 to 20 structural units is preferable.
  • Examples of the reactive oligomer include epoxy acrylate, epoxidized acrylate, urethane acrylate, unsaturated polyester, polyester acrylate, polyether acrylate, vinyl acrylate, polyene / thiol, silicone acrylate, and polystyrylethyl methacrylate.
  • Examples of the reactive monomer include butyl acrylate, 2-ethylhexyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, n-decyl acrylate, isobornyl acrylate, dicyclopentenyloxyethyl acrylate, phenoxyethyl acrylate, trifluoroethyl methacrylate.
  • Monofunctional monomers such as dicyclopentanyl diacrylate, tripropylene glycol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol acrylate, dimethylol tricyclodecane diacrylate, bisphenol A diglycidyl ether di Acrylate, tetraethylene glycol diacrylate, hydroxypivalate neopentyl glycol diacrylate, trimethylo Le propane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, include polyfunctional monomers such as dipentaerythritol hexaacrylate. As the unsaturated compound, one of these may be used alone, or two or more may be used in combination.
  • the content of the unsaturated compound is 10:90 to 80:20 in a mass ratio with respect to the cage silsesquioxane resin (cage silsesquioxane resin: unsaturated compound). Is preferable. If the content is less than the lower limit, the viscosity of the silicone resin composition tends to increase, making it difficult to produce a molded product. On the other hand, if the content exceeds the upper limit, the cured silicone resin is transparent. Properties, low thermal expansion, low water absorption, compatibility and the like tend to be reduced.
  • the curable silicone resin composition of the present invention can further contain other resins as long as the effects of the present invention are not impaired.
  • the other resins include ladder-type siloxanes and random-type siloxanes produced as by-products in the production of the cage silsesquioxane resin.
  • the content is a sum of the contents (mass) of the cage silsesquioxane resin according to the present invention
  • b is the content (mass) of the unsaturated compound
  • the following formula 10/90 ⁇ a / (b + c) ⁇ 80/20
  • the condition represented by When the content of the cage silsesquioxane resin is less than the lower limit, physical properties such as transparency, low thermal expansion, low water absorption, and compatibility of the cured silicone resin tend to be lowered.
  • the said upper limit physical properties such as transparency, low thermal expansion, low water absorption, and compatibility of the cured silicone resin tend to be lowered.
  • the curable silicone resin composition of the present invention in order to further improve the physical properties of the cured silicone resin and / or to promote radical polymerization, as long as the effects of the present invention are not impaired, A thermal polymerization accelerator, a photoinitiator aid, a sharpener, and the like can be contained.
  • the curable silicone resin composition of the present invention includes an organic / inorganic filler, an inorganic filler, a plasticizer, a flame retardant, a heat stabilizer, an antioxidant, a light stabilizer, an ultraviolet absorber, a lubricant, and an antistatic agent.
  • various additives such as a mold release agent, a foaming agent, a colorant, a crosslinking agent, a dispersion aid, and a resin component may be contained.
  • the cured silicone resin of the present invention is obtained by radical polymerization of the curable silicone resin composition.
  • the radical polymerization method include a method of thermosetting by heating and a method of photocuring by light irradiation.
  • any one of the thermosetting and photocuring methods may be used alone, or both methods may be used in combination.
  • the reaction temperature is room temperature (about 25 ° C.) to about 200 ° C.
  • the reaction time is 0.5 to 10 hours.
  • a wide range of degrees can be selected.
  • it can be set as the molded object of a desired shape by carrying out the polymerization hardening of the said curable silicone resin composition in a metal mold
  • all of general molding methods such as injection molding, extrusion molding, compression molding, transfer molding, calendar molding, and cast (casting) molding can be applied.
  • Examples of the photocuring method include a method of irradiating the curable silicone resin composition with ultraviolet rays having a wavelength of 10 to 400 nm or visible rays having a wavelength of 400 to 700 nm for about 1 to 1200 seconds.
  • the wavelength is not particularly limited, but near ultraviolet light having a wavelength of 200 to 400 nm is preferable.
  • Examples of the lamp used as the ultraviolet ray generation source include a low-pressure mercury lamp (output: 0.4 to 4 W / cm), a high-pressure mercury lamp (40 to 160 W / cm), and an ultrahigh-pressure mercury lamp (173 to 435 W / cm).
  • the curable silicone resin composition is poured into a mold made of a transparent material such as quartz glass, cured by radical polymerization, and then removed from the mold to obtain a desired shape.
  • a molded body having a desired shape can be obtained by a method of manufacturing a molded body, a method of curing on the steel belt, or the like.
  • Electrospray ionization mass spectrometry (ESI-MS) apparatus device name: LC apparatus; Separation module 2690 (manufactured by Waters), MS apparatus; ZMD4000 (manufactured by Micromass), measurement conditions: electrospray ionization method, capillary voltage: 3. 5 kV, cone voltage: +30 V).
  • reaction solution in the reaction vessel after stirring is adjusted to neutral (pH 7) with a citric acid aqueous solution, and then pure water is added to separate the organic phase and the aqueous phase, and anhydrous magnesium sulfate is added to the organic phase. 10 g was added and dehydrated. The anhydrous magnesium sulfate was filtered off and concentrated by a rotary evaporator to obtain 48.49 g of a hydrolysis reaction product (silsesquioxane). This hydrolysis reaction product was a colorless viscous liquid soluble in various organic solvents.
  • reaction solution in the reaction vessel after stirring is adjusted to neutral (pH 7) with a citric acid aqueous solution, and then pure water is added to separate the organic phase and the aqueous phase, and anhydrous magnesium sulfate is added to the organic phase. 10 g was added and dehydrated. The anhydrous magnesium sulfate was filtered off and concentrated by a rotary evaporator to obtain 39.15 g of a resin mixture I. The obtained resin mixture I was a colorless viscous liquid soluble in various organic solvents.
  • FIGS. 2A to 2B graphs showing 1 H-NMR spectra of the obtained resin mixture I are shown in FIGS. 2A to 2B. From these results, a vinyl group peak was detected at 6.1 to 5.7 ppm, and a methacryloyl group peak was detected at 5.5 ppm.
  • the peak integration ratio of the vinyl group was 2. It was confirmed that the ratio of the number of vinyl groups to the number of methacryloyl groups in the resulting cage-type silsesquioxane resin (total number of vinyl groups: total number of methacryloyl groups) was 2.96: 1. It was done. In addition, this ratio shows that the condensate which has a functional group of the same ratio as the molar ratio of the vinyl group at the time of preparation and a methacryloyl group is obtained.
  • FIG. 1 shows the detected main peaks (m / z) and the corresponding numerical values of n and m in the above formula (I).
  • the detected peak (m / z) has the above formula (I) (where n is 1 to 12, m is 6 to 14, and the sum of n and m is 8 to 14).
  • a resin mixture VI was obtained in the same manner as in Synthesis Example I except that 42.0 g of the hydrolysis reaction product obtained above was used and toluene was changed to 260 ml.
  • the obtained resin mixture VI was a colorless viscous liquid soluble in various organic solvents.
  • Example 1 First, with respect to 100 parts by mass of resin mixture I (cage-type silsesquioxane resin content: 45% by mass) containing a cage-type silsesquioxane resin having a vinyl group and a methacryloyl group obtained in Synthesis Example I , 1.0 part by mass of 1-hydroxycyclohexyl phenyl ketone (Irg184, manufactured by Ciba Japan Co., Ltd.) and 1.0 part by mass of dicumyl peroxide (Park Mill D, manufactured by NOF Corporation) as a polymerization initiator were mixed, A curable silicone resin composition was obtained.
  • resin mixture I carrier-type silsesquioxane resin content: 45% by mass
  • Example 2 70 parts by mass of a resin mixture I containing a cage silsesquioxane resin having a vinyl group and a methacryloyl group obtained in Synthesis Example I, and dicyclopentanyl diacrylate (DCP-A, manufactured by Kyoeisha Chemical Co., Ltd.)
  • DCP-A dicyclopentanyl diacrylate
  • 1.0 part by mass of 1-hydroxycyclohexyl phenyl ketone (Irg184, manufactured by Ciba Japan Co., Ltd.) and dicumyl peroxide (Park Mill D, Japan) 1.0 parts by mass of Ogyu Co., Ltd.
  • a cured silicone resin was obtained in the same manner as in Example 1 using the obtained curable silicone resin composition.
  • Example 3 A curable silicone resin composition as in Example 1 except that the resin mixture II obtained in Synthesis Example II (cage-type silsesquioxane resin content: 50% by mass) was used instead of the resin mixture I. And the cured silicone resin was obtained.
  • Example 4 A curable silicone resin composition and a cured silicone resin were obtained in the same manner as in Example 2 except that the resin mixture II obtained in Synthesis Example II was used in place of the resin mixture I.
  • Example 5 A curable silicone resin composition as in Example 1 except that the resin mixture III obtained in Synthesis Example III (cage-type silsesquioxane resin content: 75% by mass) was used instead of the resin mixture I. And the cured silicone resin was obtained.
  • Example 6 A curable silicone resin composition and a cured silicone resin were obtained in the same manner as in Example 2 except that the resin mixture III obtained in Synthesis Example III was used in place of the resin mixture I.
  • Example 7 A curable silicone resin composition as in Example 1 except that the resin mixture IV (cage-type silsesquioxane resin content: 45% by mass) obtained in Synthesis Example IV was used in place of the resin mixture I. And the cured silicone resin was obtained.
  • Example 8 A curable silicone resin composition and a cured silicone resin were obtained in the same manner as in Example 2 except that the resin mixture IV obtained in Synthesis Example IV was used in place of the resin mixture I.
  • the silicone resin cured products obtained in Examples 1 to 8 and Comparative Examples 1 to 4 were evaluated for film formability, water absorption, linear expansion coefficient, and total light transmittance by the following methods. It was.
  • Evaluation of film formability Visually check for cracks in the cured silicone resin: Evaluation A: No cracks or breaks are observed in the film. Evaluation B: Evaluation is made as a mesh-like crack or break is observed in the film. The obtained results are shown in Table 2.
  • thermomechanical analysis method was performed using a device name: TMA4000SA (manufactured by BRUKER). Measurement was performed based on the temperature rise rate (5 ° C./min, compression load: 0.1 N, temperature range: 50 to 150 ° C.).
  • the coefficient of linear expansion is: The coefficient of linear expansion (ppm / K) was calculated from the displacement per 1 m of the test piece / temperature displacement. The obtained results are shown in Table 2.
  • the cured silicone resins obtained in Examples 1 to 8 all have excellent transparency, moldability and low water absorption, and have a sufficient linear expansion coefficient. It was confirmed to be small.
  • the cured silicone resins obtained in Comparative Examples 1 and 2 were confirmed to have a high water absorption rate and a high linear expansion coefficient, and the cured silicone resins obtained in Comparative Examples 3 to 4 It was confirmed to be inferior.
  • a curable silicone resin composition capable of obtaining a cured silicone resin having excellent transparency, moldability and low water absorption, and having a sufficiently small linear expansion coefficient, and It becomes possible to provide a cured silicone resin obtained by curing this.
  • Such silicone resin cured products include liquid crystal display element substrates, color filter substrates, organic EL display element substrates, electronic paper substrates, TFT substrates, solar cell substrates, and other transparent substrates, touch panels, and transparent electrodes.
  • liquid crystal display element substrates color filter substrates, organic EL display element substrates, electronic paper substrates, TFT substrates, solar cell substrates, and other transparent substrates, touch panels, and transparent electrodes.
  • optical film application for films, light guide plates, protective films, polarizing films, retardation films, lens sheets, etc. as a glass substitute material for various transport machinery, housing window materials, etc., its range of use has become wide and its industrial utility value Is extremely high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Silicon Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

下記一般式(1):[CH=CHSiO[RSiO[RSiO ・・・(1){式(1)中、Rは、下記一般式(2): CH=CR-CO-O-R- ・・・(2)[式(2)中、Rは、水素原子又はメチル基を示し、Rは、アルキレン基、アルキリデン基及びフェニレン基からなる群より選択されるいずれか一種を示す。]で表わされる(メタ)アクリロイル基を有する基を示し、Rは、水素原子、炭素数1~6のアルキル基、フェニル基及びアリル基からなる群より選択されるいずれか一種を示し、n、m及びjは下記式(i)~(iv):n≧1 ・・・(i)、m≧1 ・・・(ii)、j≧0 ・・・(iii)、n+m+j=h ・・・(iv)[式(iv)中、hは8、10、12及び14からなる群より選択される整数を示す。]で表わされる条件を満たす整数を示し、m及びjがそれぞれ2以上の場合にはR及びRはそれぞれ同一でも異なっていてもよい。}で表わされるかご型シルセスキオキサン樹脂と、ラジカル重合開始剤とを含有しており、前記樹脂の含有量が10~80質量%である硬化性シリコーン樹脂組成物。

Description

硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物
 本発明は、硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物に関する。さらに詳しくは、かご型シルセスキオキサン樹脂を含有する硬化性シリコーン樹脂組成物及びこれを硬化させて得られるシリコーン樹脂硬化物に関する。
 一般に、液晶表示素子用基板、カラーフィルター用基板、有機EL表示素子用基板、電子ペーパー用基板、TFT用基板、太陽電池用基板等の透明基板としては、ガラス板が広く用いられている。しかしながら、ガラス板は、割れやすい、曲げられない、比重が大きく軽量化に不向きである等の理由から、近年その代替として透明プラスチック板を用いることが検討されている。
 一方、かご構造を有するシルセスキオキサンは、その特徴的な構造を利用することにより特異な機能を発現させることが可能であることから、様々な分野で注目されている。特に、かご型シルセスキオキサン樹脂の硬化物は、耐熱性、耐候性、光学特性、寸法安定性等に優れることから、ガラス板の代替となる透明プラスチック板の材料として期待されている。
 このようなかご型シルセスキオキサン樹脂の硬化物としては、例えば、特開2009-79163号公報(特許文献1)において、硬化性官能基としてビニル基を有するかご型シルセスキオキサンとSiH基を有する化合物とビニル基を有する化合物とをヒドロシリル化反応せしめて得られるシルセスキオキサン硬化物が開示されている。しかしながら、同文献に記載されている硬化物においては、ある程度高い耐熱性及び透明性が達成されているものの、ガラス板の代替材料として用いる場合には線膨張係数が大きく、さらに、ヒドロシリル化反応において一般的に用いられる白金触媒は高価であり経済的に不利であるという問題を有していた。
 また、特開2006-89685号公報(特許文献2)においては、[RSiO3/2]nで表され、(メタ)アクリロイル基を官能基として有するかご型シルセスキオキサン樹脂と不飽和化合物等とからなるシリコーン樹脂組成物をラジカル共重合させて得られたシリコーン樹脂共重合体が記載されている。
 さらに、特開2004-143449号公報(特許文献3)においては、[RSiO3/2]nで表され、(メタ)アクリロイル基、グリシジル基及びビニル基のうちのいずれか一つを有するかご型シルセスキオキサン樹脂が開示されている。また、国際公開第2008/099850号(特許文献4)においては、ビニル基等を有するかご開裂型のシルセスキオキサン樹脂が開示されている。
特開2009-79163号公報 特開2006-89685号公報 特開2004-143449号公報 国際公開第2008/099850号
 上記特許文献2に記載されているシリコーン樹脂共重合体においては、透明性が高く、ある程度小さい線膨張係数を有しているものの、同文献に記載されているシリコーン樹脂共重合体のようにかご型シルセスキオキサン骨格における全てのケイ素原子上に親水性基である(メタ)アクリロイル基を有する樹脂硬化物は、吸水性が高く、線膨張係数も大きくなるという問題を有していることを本発明者らは見出した。
 また、上記特許文献3に記載されているかご型シルセスキオキサン樹脂や上記特許文献4に記載されているかご開裂型のシルセスキオキサン樹脂のうち、例えば、ビニル基のみを有する樹脂を用いて硬化物を製造すると、得られる硬化物に割れが生じたり、硬化物が白濁してしまうといった問題が生じることを本発明者らは見出した。
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、優れた透明性、成形性及び低吸水性を有し、線膨張係数が十分に小さいシリコーン樹脂硬化物を得ることができる硬化性シリコーン樹脂組成物及びこれを硬化させて得られるシリコーン樹脂硬化物を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、シリコーン樹脂組成物において、ビニル基と(メタ)アクリロイル基とを有する特定の構造のかご型シルセスキオキサン樹脂を含有する硬化性シリコーン樹脂組成物を硬化させることにより、優れた透明性、成形性及び低吸水性を有し、線膨張係数が十分に小さいシリコーン樹脂硬化物を得られることを見出し、本発明を完成するに至った。
 すなわち、本発明の硬化性シリコーン樹脂組成物は、
 下記一般式(1):
  [CH=CHSiO3/2[RSiO3/2[RSiO3/2 ・・・(1)
{式(1)中、Rは、下記一般式(2):
  CH=CR-CO-O-R-   ・・・(2)
[式(2)中、Rは、水素原子又はメチル基を示し、Rは、アルキレン基、アルキリデン基及びフェニレン基からなる群より選択されるいずれか一種を示す。]
で表わされる(メタ)アクリロイル基を有する基を示し、Rは、水素原子、炭素数1~6のアルキル基、フェニル基及びアリル基からなる群より選択されるいずれか一種を示し、n、m及びjは下記式(i)~(iv):
  n≧1   ・・・(i)、
  m≧1   ・・・(ii)、
  j≧0   ・・・(iii)、
  n+m+j=h   ・・・(iv)
[式(iv)中、hは8、10、12及び14からなる群より選択されるいずれかの整数を示す。]
で表わされる条件を満たす整数を示し、m及びjがそれぞれ2以上の場合にはR及びRはそれぞれ同一でも異なっていてもよい。}
で表わされるかご型シルセスキオキサン樹脂と、ラジカル重合開始剤とを含有しており、
 前記かご型シルセスキオキサン樹脂の含有量が10~80質量%であるものである。
 前記かご型シルセスキオキサン樹脂において、ビニル基の数と(メタ)アクリロイル基の数との比(全ビニル基数:全(メタ)アクリロイル基数)が1:4~13:1であることが好ましい。また、本発明の硬化性シリコーン樹脂組成物としては、(メタ)アクリロイル基を有する不飽和化合物を更に含有することが好ましく、前記ラジカル重合開始剤の含有量が0.01~10質量%であることが好ましい。また、本発明のシリコーン樹脂硬化物は、前記硬化性シリコーン樹脂組成物をラジカル重合させて得られたものである。
 なお、本発明の構成によって前記目的が達成される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の硬化性シリコーン樹脂組成物においては、硬化性官能基としてビニル基と(メタ)アクリロイル基とを組み合わせて含有していることにより、驚くべきことに、両官能基の優れた特性のみが失われずに発揮され、優れた透明性及び成形性が発揮されると共に、吸水性が低く、線膨張係数が十分に小さいシリコーン樹脂硬化物を得ることができると本発明者らは推察する。なお、本発明において、(メタ)アクリロイル基とは、メタクリロイル基及びアクリロイル基を意味する。
 また、本発明の硬化性シリコーン樹脂組成物においては、官能基を2種以上含有しているために他の化合物との相溶性に優れており、更に他の化合物を含有せしめても均一な樹脂組成物を得ることができる。従って、得られるシリコーン樹脂硬化物において優れた透明性及び成形性が発揮されるものと本発明者らは推察する。
 さらに、例えば、上記特許文献3や上記特許文献4に記載されている樹脂のうち、ビニル基のみを有する樹脂を用いて硬化物を製造する場合に(メタ)アクリロイル基を有する不飽和化合物を更に含有せしめて硬化物を製造しようとしても、ビニル基と(メタ)アクリロイル基との重合反応性に差があるためにかご型シルセスキオキサン樹脂が遊離して白濁してしまうが、本発明においては、上記のように官能基を2種以上含有しているため、硬化後においてもかご型シルセスキオキサン樹脂が遊離することなく透明性に優れた樹脂硬化物を得ることができる。
 本発明によれば、優れた透明性、成形性及び低吸水性を有し、線膨張係数が十分に小さいシリコーン樹脂硬化物を得ることができる硬化性シリコーン樹脂組成物及びこれを硬化させて得られるシリコーン樹脂硬化物を提供することが可能となる。
合成例1で得られた樹脂混合物IのGPCの結果を示すクロマトグラムである。 合成例Iで得られた樹脂混合物IのH-NMRスペクトルを示すグラフである。 図2Aの拡大図である。 合成例Iで得られた樹脂混合物IのESI-MSスペクトルを示すグラフである。 合成例IIで得られた樹脂混合物IIのGPCの結果を示すクロマトグラムである。 合成例IIIで得られた樹脂混合物IIIのGPCの結果を示すクロマトグラムである。 合成例IVで得られた樹脂混合物IVのGPCの結果を示すクロマトグラムである。 合成例Vで得られた樹脂混合物VのGPCの結果を示すクロマトグラムである。 合成例VIで得られた樹脂混合物VIのGPCの結果を示すクロマトグラムである。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 先ず、本発明の硬化性シリコーン樹脂組成物について説明する。本発明の硬化性シリコーン樹脂組成物は、かご型シルセスキオキサン樹脂と、ラジカル重合開始剤とを含有しており、前記かご型シルセスキオキサン樹脂の含有量が10~80質量%である。
 本発明に係るかご型シルセスキオキサン樹脂は、下記一般式(1):
  [CH=CHSiO3/2[RSiO3/2[RSiO3/2 ・・・(1)
で表わされる。
 前記式(1)中、Rは、下記一般式(2):
  CH=CR-CO-O-R-   ・・・(2)
で表わされる(メタ)アクリロイル基を有する基を示す。前記式(2)中、Rは、水素原子又はメチル基を示す。Rとしては、立体構造の反発効果により、吸水性をより低減できるという観点から、メチル基が特に好ましい。また、前記式(2)中、Rは、アルキレン基、アルキリデン基及びフェニレン基からなる群より選択されるいずれか一種を示し、前記アルキレン基としては、直鎖状であっても分岐鎖状であってもよく、線膨張係数が小さくなるという観点から、炭素数が1~3であることが好ましく、前記アルキリデン基としては、直鎖状であっても分岐鎖状であってもよく、例えば、プロパン-2-イリデン等が挙げられ、前記フェニレン基としては、例えば、無置換フェニレン基に加えて、低級アルキル基を有する1,2-フェニレン等が挙げられ、中でも、原料の入手が容易であるという観点から、炭素数が1~3のアルキレン基が好ましい。これらの中でも、Rとしては、原料の入手が容易であり、架橋間距離が大きくならず、また、線膨張係数が小さくなるという観点から、プロピレン基がより好ましい。
 また、前記式(1)中、Rは、水素原子、炭素数1~6のアルキル基、フェニル基及びアリル基からなる群より選択されるいずれか一種を示す。前記アルキル基の炭素数が前記上限を超えると分子運動性が増加するため線膨張係数が増加する。これらの中でも、Rとしては、線膨張係数が十分に小さくなるという観点から、水素原子、メチル基、エチル基、フェニル基、アリル基がより好ましい。
 さらに、前記式(1)中、n、m及びjは下記式(i)~(iv):
  n≧1   ・・・(i)、
  m≧1   ・・・(ii)、
  j≧0   ・・・(iii)、
  n+m+j=h   ・・・(iv)
[式(iv)中、hは8、10、12及び14からなる群より選択されるいずれかの整数を示す。]
で表わされる条件を満たす整数を示す。前記nが前記式(i)で表わされる条件を満たすことにより、本発明に係るかご型シルセスキオキサン樹脂は1つ以上のビニル基を有するため、ラジカル重合による架橋間距離が短くなり線膨張係数が十分に小さい硬化物を得ることが可能となる。また、前記mが前記式(ii)で表わされる条件を満たすことにより、本発明に係るかご型シルセスキオキサン樹脂は1つ以上の(メタ)アクリロイル基を有するため、ラジカル重合により透明な硬化物を得ることが可能となり、特に(メタ)アクリロイル基を有する不飽和化合物と共重合せしめる場合には相溶性が向上するためより透明な硬化物を得ることが可能となる。さらに、前記n、m及びjが前記式(i)~(iv)で表わされる条件を満たすことにより、本発明に係るかご型シルセスキオキサン樹脂はほぼ完全に縮合したかご型構造となるため、優れた透明性、成形性及び低吸水性を有し、線膨張係数が十分に小さいシリコーン樹脂硬化物を得ることが可能となる。なお、m及びjがそれぞれ2以上の場合にはR及びRはそれぞれ同一でも異なっていてもよい。
 また、n、m及びjとしては、線膨張係数が十分に小さいシリコーン樹脂硬化物が得られるという観点から、下記式(v):
  (n+m)/j≧1   ・・・(v)
で表わされる条件を満たすことがより好ましい。
 さらに、本発明に係るかご型シルセスキオキサン樹脂においては、前記nと前記mとの比(n:m)が1:4~13:1であることがさらに好ましく、1:3~13:1であることが特に好ましい。前記nの数が前記下限未満の場合には樹脂の架橋密度が減少してシリコーン樹脂硬化物の線膨張係数が大きくなる傾向にあり、他方、前記上限を超える場合にはラジカル重合性が低いビニル基の含有量が多くなるために、シリコーン樹脂硬化物において未反応のビニル基が多く残存する傾向にあり、また、(メタ)アクリロイル基を有する不飽和化合物を更に含有せしめた場合に該不飽和化合物との相溶性が低下するため、かご型シルセスキオキサン樹脂が遊離してシリコーン樹脂硬化物が白濁する傾向にある。
 本発明の硬化性シリコーン樹脂組成物においては、このようなかご型シルセスキオキサン樹脂を用いることにより、優れた透明性、成形性及び低吸水性を有し、線膨張係数が十分に小さいシリコーン樹脂硬化物を得ることができる。
 本発明に用いられる好ましいかご型シルセスキオキサン樹脂としては、例えば、上記一般式(1)中、nが7であり、mが1であり、jが0であり、Rが(CHであり、下記式(3):
Figure JPOXMLDOC01-appb-C000001
[式(3)中、kは1~3の整数を示す。]
で表わされる化合物、上記一般式(1)中、nが6であり、mが2であり、jが0であり、Rが(CHであり、下記式(4):
Figure JPOXMLDOC01-appb-C000002
[式(4)中、kは1~3の整数を示す。]
で表わされる化合物、上記一般式(1)中、nが4であり、mが4であり、jが0であり、Rが(CHであり、下記式(5):
Figure JPOXMLDOC01-appb-C000003
[式(5)中、kは1~3の整数を示す。]
で表わされる化合物、上記一般式(1)中、nが8であり、mが2であり、jが0であり、Rが(CHであり、下記式(6):
Figure JPOXMLDOC01-appb-C000004
[式(6)中、kは1~3の整数を示す。]
で表わされる化合物、上記一般式(1)中、nが6であり、mが2であり、jが2であり、Rが(CHであり、RがCHCH-であり、下記式(7):
Figure JPOXMLDOC01-appb-C000005
[式(7)中、kは1~3の整数を示す。]
で表わされる化合物、上記一般式(1)中、nが7であり、mが3であり、jが0であり、Rが(CHであり、下記式(8):
Figure JPOXMLDOC01-appb-C000006
[式(8)中、kは1~3の整数を示す。]
で表わされる化合物、上記一般式(1)中、nが6であり、mが4であり、jが0であり、Rが(CHであり、下記式(9):
Figure JPOXMLDOC01-appb-C000007
[式(9)中、kは1~3の整数を示す。]
で表わされる化合物、上記一般式(1)中、nが11であり、mが1であり、jが0であり、Rが(CHであり、下記式(10):
Figure JPOXMLDOC01-appb-C000008
[式(10)中、kは1~3の整数を示す。]
で表わされる化合物、上記一般式(1)中、nが10であり、mが2であり、jが0であり、Rが(CHであり、下記式(11):
Figure JPOXMLDOC01-appb-C000009
[式(11)中、kは1~3の整数を示す。]
で表わされる化合物、上記一般式(1)中、nが8であり、mが4であり、jが0であり、Rが(CHであり、下記式(12):
Figure JPOXMLDOC01-appb-C000010
[式(12)中、kは1~3の整数を示す。]
で表わされる化合物、上記一般式(1)中、nが10であり、mが4であり、jが0であり、Rが(CH)であり、下記式(13):
Figure JPOXMLDOC01-appb-C000011
で表わされる化合物、上記一般式(1)中、nが6であり、mが4であり、jが4であり、Rが(CH)であり、RがCHCH-であり、下記式(14)で表わされる化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
本発明の硬化性シリコーン樹脂組成物において、前記かご型シルセスキオキサン樹脂としては、1種を単独で用いても2種以上を組み合わせて用いてもよい。前記かご型シルセスキオキサン樹脂の含有量としては、本発明の硬化性シリコーン樹脂組成物に対して、前記かご型シルセスキオキサン樹脂の合計質量が10~80質量%であることが必要である。前記かご型シルセスキオキサン樹脂の含有量が前記下限未満である場合にはシリコーン樹脂硬化物において、透明性、低熱膨張性、低吸水性、相溶性等の物性が低下する。他方、前記上限を超える場合には硬化性シリコーン樹脂組成物の粘度が増大して成形物の製造が困難となる。また、透明性、低熱膨張性、低吸水性がより良好となるという観点から、前記かご型シルセスキオキサン樹脂の含有量としては15~80質量%であることが特に好ましい。
 また、本発明の硬化性シリコーン樹脂組成物において、前記かご型シルセスキオキサン樹脂全体におけるビニル基の数と全(メタ)アクリロイル基の数との比(全ビニル基数:全(メタ)アクリロイル基数)が1:4~13:1であることが好ましい。前記ビニル基の含有量が前記下限未満である場合には樹脂の架橋密度が減少してシリコーン樹脂硬化物の線膨張係数が大きくなる傾向にあり、他方、前記上限を超える場合にはラジカル重合性が低いビニル基の割合が多くなるために、シリコーン樹脂硬化物において未反応のビニル基が多く残存する傾向にある。また、低熱膨張性、低吸水性がより良好になるという観点から、前記比(全ビニル基数:全(メタ)アクリロイル基数)としては1:3~13:1であることがより好ましい。
 なお、本発明において、前記かご型シルセスキオキサン樹脂におけるビニル基の数と全(メタ)アクリロイル基の数との比は、H-NMR(機器名:JNM-ECA400、製造社名:JEOL、溶媒:重クロロホルム、温度:23℃、400MHz)を用いて測定されたビニル基及び(メタ)アクリロイル基のピークの積分比から求めることができる。
 このようなかご型シルセスキオキサン樹脂の製造方法としては、例えば、下記一般式(15):
  CH=CHSiX  ・・・(15)
[式(15)中、Xはアルコキシ基、アセトキシ基、ハロゲン原子及びヒドロキシ基からなる群より選択されるいずれか一種の加水分解性基を示す。]
で表されるケイ素化合物(A)と、下記一般式(16):
  RSiY      ・・・(16)
[式(16)中、Rは、上記式(1)中のRと同義であり、Yはアルコキシ基、アセトキシ基、ハロゲン原子及びヒドロキシ基からなる群より選択されるいずれか一種の加水分解性基を示す。]
で表されるケイ素化合物(B)と、下記一般式(17):
  RSiZ      ・・・(17)
[式(17)中、Rは、上記式(1)中のRと同義であり、Zは、アルコキシ基、アセトキシ基、ハロゲン原子及びヒドロキシ基からなる群より選択されるいずれか一種の加水分解性基を示す。]
で表されるケイ素化合物(C)とを混合し、塩基性触媒存在下において、非極性溶媒及び/又は極性溶媒中で加水分解反応せしめると共に一部縮合させ、得られた加水分解反応生成物を更に非極性溶媒及び塩基性触媒の存在下で再縮合せしめる方法が挙げられる。
 前記ケイ素化合物(A)としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロロシラン等が挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。中でも、原料の入手が容易であるという観点から、ビニルトリメトキシシランを用いることが好ましい。
 前記ケイ素化合物(B)としては、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン等が挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。中でも、原料の入手が容易であるという観点から、3-メタクリロキシプロピルトリメトキシシランを用いることが好ましい。
 前記ケイ素化合物(C)としてはフェニルトリメトキシシラン、フェニルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ペンチルトリメトキシシラン、ペンチルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン等が挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
 前記ケイ素化合物(A)、前記ケイ素化合物(B)及び前記ケイ素化合物(C)の混合比としては、前記ケイ素化合物(A)及び前記ケイ素化合物(B)のモル比(Aのモル数:Bのモル数)が1:4~13:1であり、前記ケイ素化合物(A)及び前記ケイ素化合物(B)の合計に対する前記ケイ素化合物(C)のモル比(A+Bのモル数:Cのモル数)が1:0~5:2となるように混合することが好ましい。
 前記加水分解反応に用いられる塩基性触媒としては、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシド等の水酸化アンモニウム塩が挙げられる。これらの中でも、触媒活性が高いという観点からテトラメチルアンモニウムヒドロキシドを用いることが好ましい。このような塩基性触媒の量としては、前記ケイ素化合物(A)~(C)の全質量に対して0.01~20質量%であることが好ましい。なお、前記塩基性触媒は、通常水溶液として使用される。
 前記加水分解反応においては水の存在が必須であるが、これは前記塩基性触媒の水溶液から供給することもできるし、別途水として加えてもよい。水の量は加水分解性基を加水分解するのに十分な質量以上であればよく、前記ケイ素化合物(A)~(C)の質量から算出される加水分解性基の理論量(質量)の1.0~1.5倍量であることが好ましい。
 また、前記加水分解反応においては、非極性溶媒及び/又は極性溶媒を用いることが好ましい。このような溶媒としては、非極性溶媒のみを用いると反応系が均一にならず、加水分解反応が十分に進行せずに未反応の加水分解性基が残存する傾向にあるという観点から、非極性溶媒及び極性溶媒の両方を用いるか、極性溶媒のみを用いることが好ましい。前記極性溶媒としては、メタノール、エタノール、2-プロパノール等のアルコール類、或いは他の極性溶媒を用いることができる。中でも、水と溶解性のある炭素数1~6の低級アルコール類を用いることが好ましく、2-プロパノールを用いることがより好ましい。前記非極性溶媒及び/又は前記極性溶媒の使用量は、前記ケイ素化合物(A)~(C)の合計モル濃度(モル/リットル:M)が0.01~10Mとなる範囲であることが好ましい。
 前記加水分解の反応条件としては、反応温度が0~60℃であることが好ましく、20~40℃であることがより好ましい。反応温度が前記下限未満の場合には、反応速度が遅くなるため加水分解性基が未反応の状態で残存してしまい、反応時間が長くなる傾向にある。他方、反応温度が前記上限を超える場合には、反応速度が速すぎるために複雑な縮合反応が進行し、結果として加水分解反応生成物の高分子量化が促進される傾向にある。また、前記加水分解の反応条件としては、反応時間が2時間以上であることが好ましい。反応時間が前記下限未満の場合には、加水分解反応が十分に進行せず加水分解性基が未反応の状態で残存してしまう傾向にある。
 前記加水分解反応終了後に加水分解反応生成物を回収する方法としては、先ず、弱酸性溶液を用いて反応溶液を中性若しくは酸性よりにせしめ、次いで、水又は水含有反応溶媒を分離する方法が挙げられる。前記弱酸性溶液としては、硫酸希釈溶液、塩酸希釈溶液、クエン酸溶液、酢酸、塩化アンモニウム水溶液、リンゴ酸溶液、リン酸溶液、シュウ酸溶液等が挙げられる。また、前記水又は水含有反応溶媒を分離する方法としては、反応溶液を食塩水等で洗浄して水分やその他の不純物を十分に除去した後、無水硫酸マグネシウム等の乾燥剤で乾燥させる等の手段が採用できる。
 また、前記溶媒として極性溶媒を用いた場合に加水分解反応生成物を回収する方法としては、先ず、極性溶媒を減圧蒸発等により除去し、次いで、非極性溶媒を添加して加水分解反応生成物を溶解せしめた後、上記と同様に洗浄及び乾燥を行う方法が採用できる。また、前記溶媒として非極性溶媒を用いた場合には、非極性溶媒を蒸発等の手段で分離すれば加水分解反応生成物を回収することができるが、該非極性溶媒が次の再縮合反応で使用する非極性溶媒として使用可能であれば、これを分離する必要はない。
 前記加水分解反応においては、加水分解と共に加水分解物の縮合反応が生じるため、前記加水分解反応において前記ケイ素化合物(A)~(C)における加水分解性基の大部分、好ましくはほぼ全部がOH基に置換され、更に、前記縮合反応によりそのOH基の大部分、好ましくは80%以上が縮合されている。従って、前記加水分解反応生成物には、前記縮合により生成する重縮合物が含有されており、このような重縮合物は、反応条件により異なるが、数平均分子量が500~10000の樹脂(又はオリゴマー)混合物であり、複数種のかご型、不完全なかご型、はしご型、ランダム型の構造を有するシロキサンからなる。
 本発明に係るかご型シルセスキオキサン樹脂の製造方法においては、前記加水分解反応生成物を更に、非極性溶媒及び塩基性触媒の存在下で加熱し、シロキサン結合を縮合(再縮合という)させることにより再縮合物(かご型構造のシロキサン)を選択的に製造することが好ましい。
 前記非極性溶媒としては、水と溶解性が無いか、又はほとんど無いものであればよいが、炭化水素系溶媒であることが好ましい。前記炭化水素系溶媒としては、トルエン、ベンゼン、キシレン等の沸点の低い非極性溶媒を挙げることができ、中でもトルエンを用いることが好ましい。非極性溶媒の使用量としては、前記加水分解反応生成物を溶解するに足る量であること好ましく、前記加水分解反応生成物の合計質量に対して0.1~20倍の質量であることが好ましい。
 前記塩基性触媒としては、前記加水分解反応に使用される塩基性触媒が使用でき、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物;テトラメルアンモニウムヒヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシド等の水酸化アンモニウム塩を挙げることができる。中でも、テトラアルキルアンモニウム等の非極性溶媒に可溶性の触媒が好ましい。このような塩基性触媒の量としては、前記加水分解反応生成物の0.01~20質量%であることが好ましい。
 前記再縮合反応の反応条件としては、反応温度が90~200℃であることが好ましく、100~140℃であることがより好ましい。反応温度が前記下限未満の場合には、再縮合反応をさせるために十分なドライビングフォースが得られず反応が進行しない傾向にある。他方、反応温度が前記上限を超える場合には、ビニル基や(メタ)アクリロイル基等の反応性有機官能基が自己重合反応を起こす可能性があるので、反応温度を抑制するか、重合禁止剤等を添加する必要が生じる傾向にある。また、前記再縮合反応の反応条件としては、反応時間が2~12時間であることが好ましい。
 また、再縮合に使用する加水分解反応生成物は前述のように洗浄及び乾燥せしめ、更に濃縮したものを用いることが好ましいが、これらの処理が施されていなくとも用いることができる。また、前記再縮合反応において、水は存在してもよいが積極的に加える必要はなく、塩基性触媒溶液から供給される水分程度に留めることが好ましい。但し、前記加水分解が十分に行われていない場合は、残存する加水分解性基を加水分解するに必要な量以上の水を添加することが好ましい。
 本発明に係るかご型シルセスキオキサン樹脂の製造方法においては、前記再縮合反応後に、反応溶液を洗浄して触媒を除去し、ロータリーエバポレーター等により濃縮せしめることにより得られる再縮合生成物中に、官能基の種類や反応条件や加水分解反応生成物の状態によって異なるが、上記式(3)~(14)等で表わされる複数種の本発明に係るかご型シルセスキオキサン樹脂の混合物が得られる。このような本発明に係るかご型シルセスキオキサン樹脂の含有量は、前記再縮合生成物全体(樹脂混合物)の40質量%以上であることが好ましい。
 本発明に係るラジカル重合開始剤としては、熱重合開始剤及び光重合開始剤が挙げられる。本発明の硬化性シリコーン樹脂組成物においては、前記ラジカル重合開始剤により前記かご型シルセスキオキサン樹脂のラジカル重合が促進され、優れた強度及び剛性を有するシリコーン樹脂硬化物を得ることができる。
 前記熱重合開始剤は、本発明の硬化性シリコーン樹脂組成物を熱硬化せしめる場合に用いる。このような熱重合開始剤としては有機過酸化物が好ましく、前記有機過酸化物としては、ケトンパーオキサイド類、ジアシルキルパーオキサイド類、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシケタール類、アルキルパーエステル類、パーカーボネート類等が挙げられる。これらの中でも、触媒活性が高いという観点から、ジアルキルパーオキサイドが好ましい。前記ジアルキルパーオキサイドとしては、具体的には、シクロヘキサノンパーオキサイド、1,1-ビス(t-ヘキサパーオキシ)シクロヘキサノン、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、ジイソプロピルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート等が挙げられる。前記熱重合開始剤としては、これらのうちの1種を単独で使用してもよく、2種類以上を組み合わせて用いてもよい。
 前記光重合開始剤は、本発明の硬化性シリコーン樹脂組成物を光硬化せしめる場合に用いる。このような光重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、チオキサンソン類、アシルホスフィンオキサイド類等の化合物を用いることが好ましい。具体的には、トリクロロアセトフェノン、ジエトキシアセトフェノン、1-フェニル-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、ベンゾインメチルエーテル、ベンジルジメチルケタール、ベンゾフェノン、チオキサンソン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、メチルフェニルグリオキシレート、カンファーキノン、ベンジル、アンスラキノン、ミヒラーケトン等が挙げられる。前記光重合開始剤としては、これらのうちの1種を単独で使用してもよく、2種類以上を組み合わせて用いてもよい。
 本発明に係るラジカル重合開始剤としては、前記熱重合開始剤又は前記光重合開始剤をそれぞれ単独で使用してもよく、両方を組み合わせて用いてもよい。このようなラジカル重合開始剤の含有量としては、本発明の硬化性シリコーン樹脂組成物において0.01~10質量%であることが好ましく、0.05~5質量%であることがより好ましい。含有量が前記下限未満の場合には、組成物の硬化が不十分となるため得られる成形体の強度及び剛性が低くなる傾向にあり、他方、前記上限を超える場合には、成形体が着色するといった問題が生じる傾向がある。
 本発明の硬化性シリコーン樹脂組成物としては、(メタ)アクリロイル基を有する不飽和化合物を更に含有することが好ましい。このような不飽和化合物を含有することにより、シリコーン樹脂組成物の粘度や樹脂剛性、強度等の所望の物性を有する硬化物を得ることが可能となる。
 前記不飽和化合物としては、前記かご型シルセスキオキサン樹脂とラジカル共重合可能な(メタ)アクリロイル基を有していればよく、特に限定されないが、硬化性シリコーン樹脂組成物の粘度が高くなると硬化物の製造が困難となるという観点から、構造単位の繰り返し数が2~20程度の重合体である反応性のオリゴマー、低分子量及び/又は低粘度の反応性モノマー等が好ましい。
 前記反応性のオリゴマーとしては、エポキシアクリレート、エポキシ化アクリレート、ウレタンアクリレート、不飽和ポリエステル、ポリエステルアクリレート、ポリエーテルアクリレート、ビニルアクリレート、ポリエン/チオール、シリコーンアクリレート、ポリスチリルエチルメタクリレート等が挙げられる。また、前記反応性モノマーとしては、ブチルアクリレート、2-エチルヘキシルアクリレート、n-ヘキシルアクリレート、シクロヘキシルアクリレート、n-デシルアクリレート、イソボニルアクリレート、ジシクロペンテニロキシエチルアクリレート、フェノキシエチルアクリレート、トリフルオロエチルメタクリレート等の単官能モノマー;ジシクロペンタニルジアクリレート、トリプロピレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールアクリレート、ジメチロールトリシクロデカンジアクリレート、ビスフェノールAジグリシジルエーテルジアクリレート、テトラエチレングリコールジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート等の多官能モノマーが挙げられる。前記不飽和化合物としては、これらのうちの1種を単独で使用しても2種以上を組み合わせて用いてもよい。
 このような不飽和化合物を含有する場合、その含有量としては、前記かご型シルセスキオキサン樹脂に対する質量比(かご型シルセスキオキサン樹脂:不飽和化合物)が10:90~80:20となる質量であることが好ましい。含有量が前記下限未満の場合には、シリコーン樹脂組成物の粘度が増大して成形物の製造が困難となる傾向にあり、他方、前記上限を超える場合には、シリコーン樹脂硬化物において、透明性、低熱膨張性、低吸水性、相溶性等の物性が低下する傾向にある。
 本発明の硬化性シリコーン樹脂組成物としては、更に、本発明の効果を阻害しない範囲において、他の樹脂を含有することができる。
 前記他の樹脂としては、例えば、前記かご型シルセスキオキサン樹脂の製造において副反応物として生成したラダー型シロキサン及びンダム型シロキサン等が挙げられる。このような樹脂を含有する場合、その含有量は、前記本発明に係るかご型シルセスキオキサン樹脂の含有量(質量)の合計をa、前記不飽和化合物の含有量(質量)をb、前記ラダー型シロキサン及びランダム型シロキサン等の含有量(質量)をcとすると、下記式:
  10/90 ≦ a/(b+c) ≦ 80/20
で表わされる条件を満たすことが好ましく、下記式:
  20/80 ≦ a/(b+c) ≦ 75/25
で表わされる条件を満たすことがより好ましい。前記かご型シルセスキオキサン樹脂の含有量が前記下限未満である場合にはシリコーン樹脂硬化物の透明性、低熱膨張性、低吸水性、相溶性等の物性が低下する傾向にある。他方、前記上限を超える場合には、シリコーン樹脂組成物の粘度が増大して成形物の製造が困難となる傾向にある。
 また、本発明の硬化性シリコーン樹脂組成物としては、更に、本発明の効果を阻害しない範囲において、シリコーン樹脂硬化物の物性を改良するため及び/又はラジカル重合を促進するため等の目的で、熱重合促進剤、光開始助剤、鋭感剤等を含有することができる。さらに、本発明の硬化性シリコーン樹脂組成物としては、有機/無機フィラー、無機質充填剤、可塑剤、難燃剤、熱安定剤、酸化防止剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤、離型剤、発泡剤、着色剤、架橋剤、分散助剤、樹脂成分等の各種添加剤を含有していてもよい。
 次いで、本発明のシリコーン樹脂硬化物について説明する。本発明のシリコーン樹脂硬化物は、前記硬化性シリコーン樹脂組成物をラジカル重合させて得られたものであることを特徴とするものである。前記ラジカル重合させる方法としては、加熱によって熱硬化せしめる方法及び光照射によって光硬化せしめる方法が挙げられる。本発明においては、前記熱硬化及び前記光硬化のいずれか1種の方法を単独で用いてもよく、両方の方法を組み合わせて用いてもよい。
 前記熱硬化の条件としては、前記熱重合開始剤や熱重合促進剤等を適宜選択することにより、その反応温度は室温(25℃程度)~200℃程度、反応時間は0.5~10時間程度の広い範囲から選択することができる。また、本発明においては、前記硬化性シリコーン樹脂組成物を金型内やスチールベルト上で重合硬化させることで所望の形状の成形体とすることができる。このような成形体を得る方法としては、射出成形、押出成形、圧縮成形、トランスファー成形、カレンダー成形、キャスト(注型)成形といった一般的な成形加工方法の全てを適用することができる。
 前記光硬化の方法としては、例えば、波長10~400nmの紫外線や波長400~700nmの可視光線を1~1200秒間程度前記硬化性シリコーン樹脂組成物に照射する方法が挙げられる。前記波長は特に制限されないが、波長200~400nmの近紫外線であることが好ましい。前記紫外線の発生源として用いられるランプとしては、例えば、低圧水銀ランプ(出力:0.4~4W/cm)、高圧水銀ランプ(40~160W/cm)、超高圧水銀ランプ(173~435W/cm)、メタルハライドランプ(80~160W/cm)等が挙げられ、用いる前記光重合開始剤、前記光開始助剤及び前記鋭感剤の種類に応じて適宜選択することができる。本発明においては、例えば、前記硬化性シリコーン樹脂組成物を石英ガラス等の透明素材で構成された型内に注入し、ラジカル重合により硬化せしめた後、型から脱型させることで所望の形状の成形体を製造する方法や、前記スチールベルト上で硬化せしめる方法等により所望の形状の成形体を得ることができる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、各合成例において、GPC、H-NMRの測定、質量分析はそれぞれ以下に示す方法により行った。
 (GPC(ゲルパーミエーションクロマトグラフィ))
 ゲルパーミエーションクロマトグラフィ(GPC)(装置名:HLC-8320GPC(東ソー社製)、溶媒:THF、カラム:超高速セミミクロSECカラム SuperH
シリーズ、温度:40℃、速度:0.6ml/min)を用いて行った。数平均分子量及び分子量分布(重量平均分子量/数平均分子量(Mw/Mn))は標準ポリスチレン(商品名:TSK-GEL、東ソー社製)による換算値として求めた。
 (H-NMRの測定)
 H-NMR測定器(装置名:JNM-ECA400(JEOL社製)、溶媒:重クロロホルム、温度:23℃、400MHz)を用いて測定した。得られた各構成単位のピークの積分値を求め、これらの比からビニル基の数と(メタ)アクリロイル基の数とのモル比を決定した。
 (質量分析)
 エレクトロスプレーイオン化質量分析(ESI-MS)装置(装置名:LC装置;Separation module 2690(Waters社製)、MS装置;ZMD4000(Micromass社製)、測定条件:エレクトロスプレーイオン化法、キャピラリ電圧:3.5kV、コーン電圧:+30V)を用いて測定した。
 (合成例I)
 先ず、撹拌機、滴下漏斗、温度計を備えた反応容器に、溶媒として2-プロパノール(IPA)120ml、トルエン150ml、塩基性触媒として5%テトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)30.0mlを入れた。次いで、ビニルトリメトキシシラン(KBM-1003、信越化学工業株式会社製)53.36g(0.36mol)及び3-メタクリロキシプロピルトリメトキシシラン(SZ-6300、東レ・ダウコーニング・シリコーン株式会社製)29.80g(0.12mol)を混合して滴下漏斗に入れ、前記反応容器内に、撹拌しながら室温(約25℃)で30分かけて滴下した。滴下終了後、加熱することなく2時間撹拌した。攪拌後の反応容器内の溶液(反応溶液)をクエン酸水溶液で中性(pH7)に調整した後、純水を添加して有機相と水相とに分液し、有機相に無水硫酸マグネシウム10gを添加して脱水した。前記無水硫酸マグネシウムを濾別し、ロータリーエバポレーターにより濃縮することで加水分解反応生成物(シルセスキオキサン)を48.49g得た。この加水分解反応生成物は種々の有機溶剤に可溶な無色の粘性液体であった。
 次いで、撹拌機、ディーンスターク、冷却管を備えた反応容器に、上記で得られた加水分解反応生成物45.0g、トルエン270ml、10%TMAH水溶液6.5mlを入れ、これを徐々に加熱して水を留去した。更に130℃まで加熱してトルエンの還流温度で再縮合反応を行った。なお、このときの温度は106℃であった。トルエンの還流後、2時間撹拌した後、反応を終了とした。攪拌後の反応容器内の溶液(反応溶液)をクエン酸水溶液で中性(pH7)に調整した後、純水を添加して有機相と水相とに分液し、有機相に無水硫酸マグネシウム10gを添加して脱水した。前記無水硫酸マグネシウムを濾別し、ロータリーエバポレーターにより濃縮することで樹脂混合物Iを39.15g得た。得られた樹脂混合物Iは種々の有機溶剤に可溶な無色の粘性液体であった。
 得られた樹脂混合物IのGPCの結果を示すクロマトグラムを図1に示す。この結果から、一般式(1)における(n+m)が14より大きいかご型シルセスキオキサン樹脂、ラダー型シロキサン、及びランダム型シロキサンを含むピーク1(Mw=4,959、Mw/Mn=1.23)と、前記(n+m)が14以下であるかご型シルセスキオキサン樹脂を含むピーク2(Mw=1,322、Mw/Mn=1.11)とが検出され、得られた樹脂混合物Iは次式(I):
  [CH=CHSiO3/2[CH=C(CH)COOCSiO3/2・・・(I)
で表わされるかご型シルセスキオキサン樹脂を含む樹脂混合物であることが確認された。
 また、得られた樹脂混合物IのH-NMRスペクトルを示すグラフを図2A~図2Bに示す。この結果から、6.1~5.7ppmにビニル基のピークが、並びに、5.5ppmにメタアクリロイル基のピークが検出され、これらのピーク積分比はメタアクリロイル基1に対してビニル基2.96であり、得られたかご型シルセスキオキサン樹脂中のビニル基の数とメタアクリロイル基の数との比(全ビニル基数:全メタアクリロイル基数)は2.96:1であることが確認された。なお、この比は仕込み時のビニル基とメタアクリロイル基とのモル比と同比率の官能基を有する縮合物が得られていることを示す。
 さらに、得られた樹脂混合物IのESI-MSスペクトルを示すグラフを図3に示す。また、表1には、検出された主なピーク(m/z)と、それに相当する上記式(I)におけるn及びmの数値をまとめて示す。なお、検出されたピーク(m/z)は、上記式(I)(但し、nが1~12であり、mが6~14であり、nとmとの和が8~14である。)で表されるかご型シルセスキオキサン樹脂の分子量に、アンモニウムイオンが付加した値である。この質量分析結果からも、ビニル基とメタアクリロイル基とを有するかご型シルセスキオキサン樹脂が得られたことが確認された。
Figure JPOXMLDOC01-appb-T000013
 (合成例II)
 2-プロパノール(IPA)を110ml、トルエンを230mlとし、ビニルトリメトキシシランを70.76g(0.48mol)、3-メタクリロキシプロピルトリメトキシシランを16.94g(0.07mol)としたこと以外は合成例Iと同様にして加水分解反応生成物(シルセスキオキサン)を47.60g得た。この加水分解反応生成物は種々の有機溶剤に可溶な無色の粘性液体であった。
 次いで、上記で得られた加水分解反応生成物を43.0g用い、トルエンを260mlとしたこと以外は合成例Iと同様にして樹脂混合物IIを36.55g得た。得られた樹脂混合物IIは種々の有機溶剤に可溶な無色の粘性液体であった。
 得られた樹脂混合物IIのGPCの結果を示すクロマトグラムを図4に示す。この結果から、一般式(1)における(n+m)が14より大きいかご型シルセスキオキサン樹脂、ラダー型シロキサン、及びランダム型シロキサンを含むピーク1(Mw=5,581、Mw/Mn=1.39)と、前記(n+m)が14以下であるかご型シルセスキオキサン樹脂を含むピーク2(Mw=1,171、Mw/Mn=1.11)とが検出され、得られた樹脂混合物IIは上記式(I)で表わされるかご型シルセスキオキサン樹脂を含む樹脂混合物であることが確認された。また、得られた樹脂混合物IIのH-NMRスペクトルから求めたかご型シルセスキオキサン樹脂中の全ビニル基数:全メタアクリロイル基数は6.89:1であった。
 (合成例III)
 2-プロパノール(IPA)を80ml、トルエンを160mlとし、ビニルトリメトキシシランを28.68g(0.19mol)、3-メタクリロキシプロピルトリメトキシシランを48.06g(0.19mol)としたこと以外は合成例Iと同様にして加水分解反応生成物(シルセスキオキサン)を48.68g得た。この加水分解反応生成物は種々の有機溶剤に可溶な無色の粘性液体であった。次いで、上記で得られた加水分解反応生成物を45.0g用いたこと以外は合成例Iと同様にして樹脂混合物IIIを38.33g得た。得られた樹脂混合物IIIは種々の有機溶剤に可溶な無色の粘性液体であった。
 得られた樹脂混合物IIIのGPCの結果を示すクロマトグラムを図5に示す。この結果から、一般式(1)における(n+m)が14より大きいかご型シルセスキオキサン樹脂、ラダー型シロキサン、及びランダム型シロキサンを含むピーク1(Mw=6,047、Mw/Mn=1.05)と前記(n+m)が14以下であるかご型シルセスキオキサン樹脂を含むピーク2(Mw=1,891、Mw/Mn=1.41)が得られ、得られた樹脂混合物IIIは上記式(I)で表わされるかご型シルセスキオキサン樹脂を含む樹脂混合物であることが確認された。また、得られた樹脂混合物IIIのH-NMRスペクトルから求めたかご型シルセスキオキサン樹脂中の全ビニル基数:全メタアクリロイル基数は0.98:1であった。
 (合成例IV)
 2-プロパノール(IPA)を100ml、トルエンを200mlとし、ビニルトリメトキシシランを44.36g(0.30mol)、3-メタクリロキシプロピルトリメトキシシランを29.73g(0.12mol)とし、更にエチルトリメトキシシラン(LS-890、信越化学工業株式会社製)8.99g(0.06mol)を混合して滴下漏斗に入れたこと以外は合成例Iと同様にして加水分解反応生成物(シルセスキオキサン)を47.09g得た。この加水分解反応生成物は種々の有機溶剤に可溶な無色の粘性液体であった。
 次いで、上記で得られた加水分解反応生成物を45.0g用い、トルエンの還流温度が105℃であったこと以外は合成例Iと同様にして樹脂混合物IVを38.20g得た。得られた樹脂混合物IVは種々の有機溶剤に可溶な無色の粘性液体であった。
 得られた樹脂混合物IVのGPCの結果を示すクロマトグラムを図6に示す。この結果から、一般式(1)における(n+m+j)が14より大きいかご型シルセスキオキサン樹脂、ラダー型シロキサン、及びランダム型シロキサンを含むピーク1(Mw=5,593、Mw/Mn=1.28)と、前記(n+m+j)が14以下であるかご型シルセスキオキサン樹脂を含むピーク2(Mw=1,344、Mw/Mn=1.11)とが検出され、得られた樹脂混合物IVは次式(IV):
  [CH=CHSiO3/2[CH=C(CH)COOCSiO3/2[CHCHSiO3/2・・・(IV)
で表わされるかご型シルセスキオキサン樹脂を含む樹脂混合物であることが確認された。また、得られた樹脂混合物IVのH-NMRスペクトルから求めたかご型シルセスキオキサン樹脂中の全ビニル基数:全メタアクリロイル基数は4.96:2であった。
 (合成例V)
 2-プロパノール(IPA)を60ml、トルエンを120mlとし、3-メタクリロキシプロピルトリメトキシシランを69.27g(0.28mol)とし、ビニルトリメトキシシランを用いなかったこと以外は合成例Iと同様にして加水分解反応生成物(シルセスキオキサン)を48.36g得た。この加水分解反応生成物は種々の有機溶剤に可溶な無色の粘性液体であった。
 次いで、上記で得られた加水分解反応生成物を45.0g用い、トルエンを260mlとしたこと以外は合成例Iと同様にして樹脂混合物Vを41.4g得た。得られた樹脂混合物Vは種々の有機溶剤に可溶な無色の粘性液体であった。
 得られた樹脂混合物Vについて、GPCの結果を示すクロマトグラムを図7に示す。この結果から、全メタクリロキシプロピルかご型シルセスキオキサン樹脂を含むピーク1(Mw=1,769、Mw/Mn=1.08)が検出され、得られた樹脂混合物Vは次式(V):
  [CH=C(CH)COOCSiO3/2・・・(V)
で表わされるかご型シルセスキオキサン樹脂を含む樹脂混合物であることが確認された。
 (合成例VI)
 2-プロパノール(IPA)を130ml、トルエンを260mlとし、ビニルトリメトキシシランを93.65g(0.632mol)とし、3-メタクリロキシプロピルトリメトキシシランを用いなかったこと以外は合成例Iと同様にして加水分解反応生成物(シルセスキオキサン)を44.03g得た。この加水分解反応生成物は種々の有機溶剤に可溶な無色の粘性液体であった。
 次いで、上記で得られた加水分解反応生成物を42.0g用い、トルエンを260mlとしたこと以外は合成例Iと同様にして樹脂混合物VIを38.24g得た。得られた樹脂混合物VIは種々の有機溶剤に可溶な無色の粘性液体であった。
 得られた樹脂混合物Vについて、GPCの結果を示すクロマトグラムを図8に示す。この結果から、一般式(1)におけるjが14より大きい全ビニルかご型シルセスキオキサン樹脂、ラダー型シロキサン、及びランダム型シロキサンを含むピーク1(Mw=3,229、Mw/Mn=1.40)と、前記jが14以下である全ビニルかご型シルセスキオキサン樹脂を含むピーク2(Mw=797、Mw/Mn=1.41)とが検出され、得られた樹脂混合物VIは次式(VI):
  [CH=CHSiO3/2・・・(VI)
で表わされるかご型シルセスキオキサン樹脂を含む樹脂混合物であることが確認された。
 (実施例1)
 先ず、合成例Iで得られたビニル基とメタアクリロイル基とを有するかご型シルセスキオキサン樹脂を含む樹脂混合物I(かご型シルセスキオキサン樹脂含有量:45質量%)100質量部に対し、重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(Irg184、チバ・ジャパン株式会社製)1.0質量部及びジクミルパーオキサイド(パークミルD、日本油脂株式会社製)1.0質量部を混合し、硬化性シリコーン樹脂組成物を得た。
 次いで、得られた硬化性シリコーン樹脂組成物をガラス板上に2g塗布し、高さ0.2mmの金属スペーサーを配置した後、さらに上からガラス板を被せ、ガラス板の自重で樹脂組成物を流延させて厚さを0.2mmとした後、30W/cmの高圧水銀ランプを用い、2000mJ/cmの積算露光量で硬化させた。さらに、窒素雰囲気下、200℃で1時間加熱し、ガラス板から剥離して約100mm×100mm×厚さ0.2mmのフィルム状のシリコーン樹脂硬化物を得た。
 (実施例2)
 合成例Iで得られたビニル基とメタアクリロイル基とを有するかご型シルセスキオキサン樹脂を含む樹脂混合物I 70質量部、及びジシクロペンタニルジアクリレート(DCP-A、共栄社化学株式会社製) 30質量部を混合した合計100質量部の混合物に対し、重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(Irg184、チバ・ジャパン株式会社製)1.0質量部及びジクミルパーオキサイド(パークミルD、日本油脂株式会社製)1.0質量部を混合し、硬化性シリコーン樹脂組成物を得た。また、得られた硬化性シリコーン樹脂組成物を用い、実施例1と同様にしてシリコーン樹脂硬化物を得た。
 (実施例3)
 樹脂混合物Iに代えて合成例IIで得られた樹脂混合物II(かご型シルセスキオキサン樹脂含有量:50質量%)を用いたこと以外は実施例1と同様にして硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物を得た。
 (実施例4)
 樹脂混合物Iに代えて合成例IIで得られた樹脂混合物IIを用いたこと以外は実施例2と同様にして硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物を得た。
 (実施例5)
 樹脂混合物Iに代えて合成例IIIで得られた樹脂混合物III(かご型シルセスキオキサン樹脂含有量:75質量%)を用いたこと以外は実施例1と同様にして硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物を得た。
 (実施例6)
 樹脂混合物Iに代えて合成例IIIで得られた樹脂混合物IIIを用いたこと以外は実施例2と同様にして硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物を得た。
 (実施例7)
 樹脂混合物Iに代えて合成例IVで得られた樹脂混合物IV(かご型シルセスキオキサン樹脂含有量:45質量%)を用いたこと以外は実施例1と同様にして硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物を得た。
 (実施例8)
 樹脂混合物Iに代えて合成例IVで得られた樹脂混合物IVを用いたこと以外は実施例2と同様にして硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物を得た。
 (比較例1)
 樹脂混合物Iに代えて合成例Vで得られた樹脂混合物Vを用いたこと以外は実施例1と同様にして硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物を得た。
 (比較例2)
 樹脂混合物Iに代えて合成例Vで得られた樹脂混合物Vを用いたこと以外は実施例2と同様にして硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物を得た。
 (比較例3)
 樹脂混合物Iに代えて合成例VIで得られた樹脂混合物VIを用いたこと以外は実施例1と同様にして硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物を得た。
 (比較例4)
 樹脂混合物Iに代えて合成例VIで得られた樹脂混合物VIを用いたこと以外は実施例2と同様にして硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物を得た。
 実施例1~8及び比較例1~4において得られたシリコーン樹脂硬化物について、以下の方法によりフィルム成形性の評価、吸水率の測定、線膨張係数の測定、全光線透過率の測定を行った。
 (フィルム成形性の評価)
 シリコーン樹脂硬化物の割れを目視により以下の基準:
  評価A:フィルムに割れ、破断は観察されない
  評価B:フィルムに網目状の割れまたは、破断が観察される
に従って評価した。得られた結果を表2に示す。
 (吸水率の測定)
 先ず、得られたシリコーン樹脂硬化物を24時間、50℃において保持し、予備乾燥を行った。次いで、プラスチック―吸水率の求め方(JISK7209)に基づいて吸水率の測定を行った。得られた結果を表2に示す。
 (線膨張係数の測定)
 得られたシリコーン樹脂硬化物(5mm×5mm×厚さ1mm(厚さ0.2mmの試験片を5枚重ねたもの)について、機器名:TMA4000SA(BRUKER社製)を用いて熱機械分析法に基づき測定を行った(昇温速度:5℃/min、圧縮荷重:0.1N、温度範囲:50~150℃)。
線膨張係数は、次式:
  線膨張係数(ppm/K)=試験片1m当たりの変位量/温度変位量
により算出した。得られた結果を表2に示す。
 (全光線透過率の測定)
 得られたシリコーン樹脂硬化物(厚さ0.2mm)について、NDH2000(日本電色社製)を用いて全光の透過率を測定した。
透過率は、次式:
  全光透過率(%)=透過光強度/入射光強度
により算出した。得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000014
 表2に示した結果から明らかなように、実施例1~8で得られたシリコーン樹脂硬化物は、いずれも優れた透明性、成形性及び低吸水性を有し、線膨張係数が十分に小さいことが確認された。他方、比較例1~2で得られたシリコーン樹脂硬化物は、吸水率が高く、線膨張係数が高いことが確認され、比較例3~4で得られたシリコーン樹脂硬化物は、フィルム成形性に劣ることが確認された。
 また、不飽和化合物であるジシクロペンタニルジアクリレートを更に含有せしめた実施例2、4、6、8においても、透明性に優れたシリコーン樹脂硬化物が得られることが確認された。他方、比較例4においては、白濁したシリコーン樹脂硬化物が得られた。これは、ビニル基とメタアクリロイル基との重合反応性の違いにより、かご型シルセスキオキサン樹脂が遊離して相分離(白濁)したためと推察される。
 以上説明したように、本発明によれば、優れた透明性、成形性及び低吸水性を有し、線膨張係数が十分に小さいシリコーン樹脂硬化物を得ることができる硬化性シリコーン樹脂組成物及びこれを硬化させて得られるシリコーン樹脂硬化物を提供することが可能となる。
 このようなシリコーン樹脂硬化物は、液晶表示素子用基板、カラーフィルター用基板、有機EL表示素子用基板、電子ペーパー用基板、TFT用基板、太陽電池基板等の透明基板や、タッチパネル、透明電極付フィルム、導光板、保護フィルム、偏光フィルム、位相差フィルム、レンズシート等の光学フィルム用途や各種輸送機械、住宅の窓材等のガラス代替材料として、その利用範囲は広範となりその産業上の利用価値が極めて高いものである。

Claims (5)

  1.  下記一般式(1):
      [CH=CHSiO3/2[RSiO3/2[RSiO3/2 ・・・(1)
    {式(1)中、Rは、下記一般式(2):
      CH=CR-CO-O-R-   ・・・(2)
    [式(2)中、Rは、水素原子又はメチル基を示し、Rは、アルキレン基、アルキリデン基及びフェニレン基からなる群より選択されるいずれか一種を示す。]
    で表わされる(メタ)アクリロイル基を有する基を示し、Rは、水素原子、炭素数1~6のアルキル基、フェニル基及びアリル基からなる群より選択されるいずれか一種を示し、n、m及びjは下記式(i)~(iv):
      n≧1   ・・・(i)、
      m≧1   ・・・(ii)、
      j≧0   ・・・(iii)、
      n+m+j=h   ・・・(iv)
    [式(iv)中、hは8、10、12及び14からなる群より選択されるいずれかの整数を示す。]
    で表わされる条件を満たす整数を示し、前記m及び前記jがそれぞれ2以上の場合にはR及びRはそれぞれ同一でも異なっていてもよい。}
    で表わされるかご型シルセスキオキサン樹脂と、ラジカル重合開始剤とを含有しており、
     前記かご型シルセスキオキサン樹脂の含有量が10~80質量%である硬化性シリコーン樹脂組成物。
  2.  前記かご型シルセスキオキサン樹脂において、ビニル基の数と(メタ)アクリロイル基の数との比(全ビニル基数:全(メタ)アクリロイル基数)が1:4~13:1である請求項1に記載の硬化性シリコーン樹脂組成物。
  3.  (メタ)アクリロイル基を有する不飽和化合物を更に含有する請求項1又は2に記載の硬化性シリコーン樹脂組成物。
  4.  前記ラジカル重合開始剤の含有量が0.01~10質量%である請求項1~3のうちのいずれか一項に記載の硬化性シリコーン樹脂組成物。
  5.  請求項1~4のうちのいずれか一項に記載の硬化性シリコーン樹脂組成物をラジカル重合させて得られたものであるシリコーン樹脂硬化物。
PCT/JP2012/057269 2011-03-31 2012-03-22 硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物 WO2012133080A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280015013.5A CN103459447B (zh) 2011-03-31 2012-03-22 固化性硅树脂组合物及硅树脂固化物
JP2013507445A JP5844796B2 (ja) 2011-03-31 2012-03-22 硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物
KR1020137028713A KR101861774B1 (ko) 2011-03-31 2012-03-22 경화성 실리콘 수지 조성물 및 실리콘 수지 경화물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011079496 2011-03-31
JP2011-079496 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133080A1 true WO2012133080A1 (ja) 2012-10-04

Family

ID=46930808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057269 WO2012133080A1 (ja) 2011-03-31 2012-03-22 硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物

Country Status (5)

Country Link
JP (1) JP5844796B2 (ja)
KR (1) KR101861774B1 (ja)
CN (1) CN103459447B (ja)
TW (1) TWI529202B (ja)
WO (1) WO2012133080A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140064658A (ko) * 2012-11-19 2014-05-28 신닛테츠 수미킨 가가쿠 가부시키가이샤 케이지형 실세스퀴옥산 화합물, 그것을 사용한 경화성 수지 조성물 및 수지 경화물
JP2015052695A (ja) * 2013-09-06 2015-03-19 富士フイルム株式会社 位相差板、液晶表示装置および位相差板の製造方法
EP3511304A1 (de) * 2018-01-11 2019-07-17 Evonik Degussa GmbH Spezielle zusammensetzung organofunktioneller alkoxysilane und deren verwendung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107849068B (zh) 2016-01-28 2020-09-11 株式会社Lg化学 用于制备多面体低聚倍半硅氧烷的方法
KR102035831B1 (ko) 2016-03-17 2019-11-18 주식회사 엘지화학 다면체 올리고머 실세스퀴옥산 및 그 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363414A (ja) * 2001-06-12 2002-12-18 Asahi Kasei Corp 籠状シルセスキオキサン含有組成物
JP2003510337A (ja) * 1999-08-04 2003-03-18 ハイブリッド・プラスチックス 多面体オリゴマーシルセスキオキサンの形成方法
JP2004143449A (ja) * 2002-09-30 2004-05-20 Nippon Steel Chem Co Ltd 官能基を有するかご型シルセスキオキサン樹脂とその製造方法
WO2006035646A1 (ja) * 2004-09-27 2006-04-06 Nippon Steel Chemical Co., Ltd. シリカ含有シリコーン樹脂組成物及びその成形体
WO2008099850A1 (ja) * 2007-02-16 2008-08-21 Nippon Steel Chemical Co., Ltd. 官能基を有するかご開裂型シロキサン樹脂とその製造方法
JP2009167325A (ja) * 2008-01-17 2009-07-30 Nippon Steel Chem Co Ltd シラノール基含有硬化性籠型シルセスキオキサン化合物およびこれを用いた共重合体並びにそれらの製造方法
WO2009119253A1 (ja) * 2008-03-28 2009-10-01 新日鐵化学株式会社 シラノール基含有硬化性籠型シルセスキオキサン化合物、籠型構造含有硬化性シリコーン共重合体、及びこれらの製造方法、並びに硬化性樹脂組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101345170B1 (ko) * 2006-07-13 2013-12-26 신닛테츠 수미킨 가가쿠 가부시키가이샤 필름 적층체 및 그 제조 방법
JP5328263B2 (ja) 2008-03-18 2013-10-30 昭和電工株式会社 磁気記録媒体の製造方法、磁気記録媒体、及び磁気記録再生装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510337A (ja) * 1999-08-04 2003-03-18 ハイブリッド・プラスチックス 多面体オリゴマーシルセスキオキサンの形成方法
JP2002363414A (ja) * 2001-06-12 2002-12-18 Asahi Kasei Corp 籠状シルセスキオキサン含有組成物
JP2004143449A (ja) * 2002-09-30 2004-05-20 Nippon Steel Chem Co Ltd 官能基を有するかご型シルセスキオキサン樹脂とその製造方法
WO2006035646A1 (ja) * 2004-09-27 2006-04-06 Nippon Steel Chemical Co., Ltd. シリカ含有シリコーン樹脂組成物及びその成形体
WO2008099850A1 (ja) * 2007-02-16 2008-08-21 Nippon Steel Chemical Co., Ltd. 官能基を有するかご開裂型シロキサン樹脂とその製造方法
JP2009167325A (ja) * 2008-01-17 2009-07-30 Nippon Steel Chem Co Ltd シラノール基含有硬化性籠型シルセスキオキサン化合物およびこれを用いた共重合体並びにそれらの製造方法
WO2009119253A1 (ja) * 2008-03-28 2009-10-01 新日鐵化学株式会社 シラノール基含有硬化性籠型シルセスキオキサン化合物、籠型構造含有硬化性シリコーン共重合体、及びこれらの製造方法、並びに硬化性樹脂組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140064658A (ko) * 2012-11-19 2014-05-28 신닛테츠 수미킨 가가쿠 가부시키가이샤 케이지형 실세스퀴옥산 화합물, 그것을 사용한 경화성 수지 조성물 및 수지 경화물
CN103819677A (zh) * 2012-11-19 2014-05-28 新日铁住金化学株式会社 笼型倍半硅氧烷化合物、使用它的固化性树脂组合物和树脂固化物
JP2014101435A (ja) * 2012-11-19 2014-06-05 Nippon Steel & Sumikin Chemical Co Ltd かご型シルセスキオキサン化合物、それを用いた硬化性樹脂組成物及び樹脂硬化物
KR102095315B1 (ko) 2012-11-19 2020-03-31 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 케이지형 실세스퀴옥산 화합물, 그것을 사용한 경화성 수지 조성물 및 수지 경화물
JP2015052695A (ja) * 2013-09-06 2015-03-19 富士フイルム株式会社 位相差板、液晶表示装置および位相差板の製造方法
EP3511304A1 (de) * 2018-01-11 2019-07-17 Evonik Degussa GmbH Spezielle zusammensetzung organofunktioneller alkoxysilane und deren verwendung

Also Published As

Publication number Publication date
TW201302864A (zh) 2013-01-16
CN103459447B (zh) 2015-03-25
CN103459447A (zh) 2013-12-18
KR20140021634A (ko) 2014-02-20
JP5844796B2 (ja) 2016-01-20
JPWO2012133080A1 (ja) 2014-07-28
KR101861774B1 (ko) 2018-05-28
TWI529202B (zh) 2016-04-11

Similar Documents

Publication Publication Date Title
JP6021605B2 (ja) かご型シルセスキオキサン化合物、それを用いた硬化性樹脂組成物及び樹脂硬化物
JP5000303B2 (ja) シリカ含有シリコーン樹脂組成物及びその成形体
KR101067011B1 (ko) 실리콘 수지 조성물 및 그 성형체
JP4409397B2 (ja) シリコーン樹脂組成物及び成形体
TWI476232B (zh) The silicone resin and the production method thereof are the same as those of the hardened resin composition containing the silicone resin
US20070260008A1 (en) Silica-Containing Silicone Resin Composition and Its Molded Product
JP2003137944A (ja) シリコーン樹脂組成物及びシリコーン樹脂成形体
JP5844796B2 (ja) 硬化性シリコーン樹脂組成物及びシリコーン樹脂硬化物
WO2009119253A1 (ja) シラノール基含有硬化性籠型シルセスキオキサン化合物、籠型構造含有硬化性シリコーン共重合体、及びこれらの製造方法、並びに硬化性樹脂組成物
WO2013094585A1 (ja) ガラス繊維複合化樹脂基板
JP5730009B2 (ja) 積層体
JP5698566B2 (ja) シリコーン樹脂組成物及びその成形体
TWI470004B (zh) 硬化性樹脂組成物及硬化物
CN113396169A (zh) 光硬化性硅酮树脂组合物及由其硬化成的硅酮树脂成形体以及所述成形体的制造方法
WO2018110613A1 (ja) ポリオルガノシロキサン、ポリオルガノシロキサン組成物、及びその硬化物、並びにポリオルガノシロキサンを含む電解コンデンサ用電解液及びそれを用いた電解コンデンサ
JP2020019870A (ja) 光硬化性シリコーン樹脂組成物及びその成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763005

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507445

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137028713

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12763005

Country of ref document: EP

Kind code of ref document: A1