WO2010067685A1 - 重合性官能基を有するシルセスキオキサン化合物 - Google Patents
重合性官能基を有するシルセスキオキサン化合物 Download PDFInfo
- Publication number
- WO2010067685A1 WO2010067685A1 PCT/JP2009/069140 JP2009069140W WO2010067685A1 WO 2010067685 A1 WO2010067685 A1 WO 2010067685A1 JP 2009069140 W JP2009069140 W JP 2009069140W WO 2010067685 A1 WO2010067685 A1 WO 2010067685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- meth
- silsesquioxane compound
- compound
- general formula
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/38—Polysiloxanes modified by chemical after-treatment
- C08G77/382—Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
- C08G77/388—Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/22—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
- C08G77/26—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2438/00—Living radical polymerisation
- C08F2438/03—Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
Definitions
- the present invention relates to a silsesquioxane compound having a polymerizable functional group.
- Silsesquioxane is a generic name for a series of network-like polysiloxanes having a ladder-type, cage-type, and three-dimensional network-type (random type) structure. Since this silsesquioxane is soluble in a general organic solvent unlike silica, which is a complete inorganic substance represented by the general formula SiO 2 , it is easy to handle, processability such as film formation, It is characterized by excellent moldability and the like.
- Patent Documents 1 to 5 disclose inventions relating to silsesquioxane having a radical polymerizable functional group such as acryloyloxy group or methacryloyloxy group and an ultraviolet curable composition containing the silsesquioxane. .
- the composition using these silsesquioxanes has a problem in that the compatibility with other polymerizable unsaturated compounds, particularly the compatibility with a highly polar polymerizable unsaturated compound is not sufficient.
- JP-A-3-281616 Japanese Patent Laid-Open No. 4-28722 JP 2002-167552 A JP 2002-363414 A International Publication WO04 / 85501
- the present invention has been made in view of the above circumstances, and the object of the present invention is excellent in the heat resistance, scratch resistance and weather resistance of the resulting coating film, and is compatible with general polymerizable unsaturated compounds. It is an object to provide a silsesquioxane compound that is excellent in compatibility with a highly polar polymerizable unsaturated compound.
- an organic group having a urea bond and one (meth) acryloyloxy group as an organic group directly bonded to a silicon atom is silsesquioxane. It has been found that the above problems can be solved by introducing the compound into the compound, and the present invention has been completed.
- silsesquioxane compound according to 1, wherein the organic group having the urea bond and one (meth) acryloyloxy group is an organic group represented by the following general formula (I):
- R 1 represents a hydrogen atom or a methyl group
- Y represents a divalent organic group having a urea bond.
- R 2 represents a hydrogen atom or a methyl group
- R 3 represents a divalent hydrocarbon group having 1 to 10 carbon atoms, or the following general formula (III)
- R 5 represents a divalent hydrocarbon group having 2 to 4 carbon atoms
- R 6 represents a diisocyanate residue.
- R 4 represents a divalent hydrocarbon group having 1 to 10 carbon atoms. ⁇ .
- silsesquioxane compound according to any one of items 1 to 3, having a weight average molecular weight of 1,000 to 100,000.
- An active energy ray-curable composition containing the silsesquioxane compound according to any one of items 5.1 to 4 and a photopolymerization initiator.
- the silsesquioxane compound of the present invention by introducing an organic group having a urea bond and one (meth) acryloyloxy group as an organic group directly bonded to a silicon atom into the silsesquioxane compound, It is possible to obtain a silsesquioxane compound that is not only excellent in compatibility with a typical polymerizable unsaturated compound but also excellent in compatibility with a highly polar polymerizable unsaturated compound. Moreover, since it is excellent in compatibility with various polymerizable unsaturated compounds, the silsesquioxane compound of the present invention can be used in various active energy ray-curable compositions, and the active energy ray-curable composition. The heat resistance, scratch resistance and weather resistance of the coating film obtained from the product can be improved.
- the silsesquioxane compound of the present invention is a silsesquioxane compound having an organic group directly bonded to a silicon atom, wherein at least one of the organic groups directly bonded to the silicon atom is a urea bond and one ( It is a silsesquioxane compound which is an organic group having a (meth) acryloyloxy group (hereinafter sometimes simply referred to as “silsesquioxane compound of the present invention”).
- silsesquioxane compound of the present invention at least one of the organic groups directly bonded to the silicon atom is an organic group having a urea bond and one (meth) acryloyloxy group.
- the bond is excellent in compatibility with various polymerizable unsaturated compounds and can be cured by irradiation with active energy rays in the presence of a photopolymerization initiator by the (meth) acryloyloxy group of the organic group. Therefore, the silsesquioxane compound of the present invention can be used for various active energy ray-curable compositions.
- silsesquioxane Compound of the Present Invention is a silsesquioxane compound having an organic group directly bonded to a silicon atom, and at least of the organic groups directly bonded to the silicon atom.
- One is a silsesquioxane compound which is an organic group having a urea bond and one (meth) acryloyloxy group.
- the “silsesquioxane compound” does not mean only a silsesquioxane compound having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed, but Si—OH A ladder structure in which groups remain, an incomplete cage structure, and a silsesquioxane compound of a random condensate can also be included.
- the ratio of the organic group having a urea bond and one (meth) acryloyloxy group among the organic groups directly bonded to the silicon atom is not particularly limited, and preferably at least 15 mol% or more. More preferably, it may be 50 mol% or more.
- the ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed is preferably 80% by mass or more, more preferably 90% by mass or more. Is preferable from the viewpoint of liquid stability.
- silsesquioxane compound of the present invention for example, a silsesquioxane compound in which the organic group having the urea bond and one (meth) acryloyloxy group is an organic group represented by the following general formula (I) Can be mentioned.
- R 1 represents a hydrogen atom or a methyl group
- Y represents a divalent organic group having a urea bond.
- organic group represented by the general formula (I) include organic groups represented by the following general formula (II).
- R 2 represents a hydrogen atom or a methyl group
- R 3 represents a divalent hydrocarbon group having 1 to 10 carbon atoms, or the following general formula (III)
- R 5 represents a divalent hydrocarbon group having 2 to 4 carbon atoms
- R 6 represents a diisocyanate residue.
- R 4 represents a divalent hydrocarbon group having 1 to 10 carbon atoms. ⁇ .
- divalent hydrocarbon group having 1 to 10 carbon atoms include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1, Examples thereof include alkylene groups such as 4-butylene group, hexylene group and decanylene group; cycloalkylene groups such as cyclohexylene group; arylene groups such as phenylene group and xylylene group.
- a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group has excellent heat resistance, scratch resistance and polarity. It is preferable from the viewpoint of more excellent compatibility with a highly polymerizable unsaturated compound.
- R 4 in the general formula (II) is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms.
- alkylene groups such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group, decanylene group;
- examples thereof include cycloalkylene groups such as cyclohexylene group; arylene groups such as phenylene group and xylylene group.
- a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has excellent heat resistance, scratch resistance and polarity. It is preferable from the viewpoint of more excellent compatibility with a highly polymerizable unsaturated compound.
- R 5 in the general formula (III) is not particularly limited as long as it is a divalent hydrocarbon group having 2 to 4 carbon atoms. Specific examples include ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group and the like.
- R 6 in the general formula (III) represents a diisocyanate residue.
- the diisocyanate residue is a remaining portion obtained by removing two isocyanate groups (NCO) from a diisocyanate compound.
- the diisocyanate compound include m-phenylene diisocyanate, p-phenylene diisocyanate, 1-chloro-2,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1, Aromatic diisocyanate compounds such as 5-naphthalene diisocyanate, diphenylmethane-4,4′-diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate; ethane diisocyanate, propane diisocyanate, butane diisocyanate, pentane diisocyanate , Hexane diisocyanate, heptane diisocyanate
- aliphatic diisocyanate compounds particularly isophorone diisocyanate, are preferred from the viewpoint of excellent weather resistance.
- the diisocyanate compound of molecular weight 300 or less is preferable from the point which is more excellent in abrasion resistance and active energy ray curability.
- R 2 is hydrogen from the viewpoint that heat resistance, scratch resistance, compatibility with a highly polar polymerizable unsaturated compound and active energy ray curability are more excellent.
- An organic group which is an atom, R 3 is an ethylene group, and R 4 is an ethylene group or a 1,3-propylene group is preferable.
- R 4 is an ethylene group or a 1,3-propylene group is preferable.
- the silsesquioxane compound of the present invention may be a compound having a single composition or a mixture of compounds having different compositions.
- the weight average molecular weight of the silsesquioxane compound of the present invention is not particularly limited.
- the weight average molecular weight is preferably 1,000 to 100,000, more preferably the weight average molecular weight is 1,000 to 10,000. These ranges are significant in terms of the heat resistance of the coating film obtained from the silsesquioxane compound of the present invention, or the viscosity and paintability of the active energy ray-curable composition containing the silsesquioxane compound of the present invention. is there.
- the weight average molecular weight is a weight average molecular weight measured by a light scattering method.
- Zetasizer Nano Nano-ZS (Malvern Instruments Ltd.) was used for the measurement of the weight average molecular weight by the light scattering method.
- the samples used for the measurement were 10 samples having different concentrations in which the silsesquioxane compound of the present invention was dissolved in propylene glycol monomethyl ether and the concentration was adjusted to 0.5 to 5.0% by mass.
- the weight average molecular weight was determined by measuring the light scattering intensity of these 10 samples.
- Production method of silsesquioxane compound of the present invention can use a production method conventionally used for production of general silsesquioxane, and is particularly limited. Is not to be done. In addition, for example, it can also be produced using the following production method A, production method B or the like.
- Manufacturing method A is a production method using a starting material containing a hydrolyzable silane which is an organic group directly bonded to a silicon atom and has a urea bond and an organic group having one (meth) acryloyloxy group Is mentioned.
- a hydrolyzable silane represented by the following general formula (IV) and, if necessary, a hydrolyzable silane other than the hydrolyzable silane represented by the following general formula (IV) are used as a starting material.
- a method for producing the silsesquioxane compound of the present invention by hydrolytic condensation in the presence of a catalyst are used as a starting material.
- R 7 SiX 3 (IV) R 7 in the general formula (IV) is an organic group having a urea bond and one (meth) acryloyloxy group.
- X is chlorine or an alkoxy group having 1 to 6 carbon atoms, and X may be the same or different.
- alkoxy group having 1 to 6 carbon atoms examples include linear or branched alkoxy groups having 1 to 6 carbon atoms (preferably 1 to 4 carbon atoms). More specifically, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, 1-ethylpropoxy, isopentyloxy, neopentyloxy, n -Hexyloxy, 1,2,2-trimethylpropoxy, 3,3-dimethylbutoxy, 2-ethylbutoxy, isohexyloxy, 3-methylpentyloxy group and the like are included.
- X examples include chlorine, methoxy group, ethoxy group, propoxy group, butoxy group and the like.
- hydrolyzable silane other than the hydrolyzable silane represented by the general formula (IV) a silsesquioxane compound is obtained by hydrolytic condensation together with the hydrolyzable silane represented by the general formula (IV). If it can manufacture, it will not specifically limit. Specific examples include alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane.
- hydrolyzable silane represented by the general formula (IV) examples include hydrolyzable silanes represented by the following general formula (V).
- R 1 , Y and X are the same as above. X may be the same or different. ].
- hydrolyzable silane represented by the general formula (V) examples include hydrolyzable silanes represented by the following general formula (VI).
- R 2 , R 3 , R 4 and X are the same as above. X may be the same or different. ].
- the hydrolyzable silane represented by the general formula (VI) includes, for example, a hydrolyzable silane represented by the following general formula (VII) and a compound represented by the following general formula (VIII). It can be obtained by reacting.
- hydrolyzable silane represented by the general formula (VII) include aminomethyltrimethoxysilane, aminomethyltriethoxysilane, 2-aminoethyltrimethoxysilane, and 2-aminoethyltriethoxysilane. , 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane and the like.
- the compound represented by the general formula (VIII) include isocyanate methyl (meth) acrylate, 2-isocyanatoethyl (meth) acrylate, 3-isocyanatepropyl (meth) acrylate, and isocyanate octyl (meth).
- An acrylate etc. are mentioned.
- the adduct of a hydroxyl group containing (meth) acrylate and a diisocyanate compound is mentioned.
- the hydroxyl group-containing (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth).
- diisocyanate compound examples include m-phenylene diisocyanate, p-phenylene diisocyanate, 1-chloro-2,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1, Aromatic diisocyanate compounds such as 5-naphthalene diisocyanate, diphenylmethane-4,4′-diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate; ethane diisocyanate, propane diisocyanate, butane diisocyanate, pentane diisocyanate, hexane diisocyanate, Heptane diisocyanate, octane diisocyanate, nonane diisocyanate, decane diisocyanate, dicyclohexylmethane diisocyanate, Alipha
- the reaction between the hydrolyzable silane represented by the general formula (VII) and the compound represented by the general formula (VIII) is usually performed in 1 mol of the hydrolyzable silane represented by the general formula (VII). On the other hand, it is carried out using 1 mol or more of the compound represented by the general formula (VIII).
- the reaction between the hydrolyzable silane represented by the general formula (VII) and the compound represented by the general formula (VIII) can be performed according to a conventional method in which an amino group and an isocyanate group are reacted.
- the reaction temperature is, for example, ⁇ 78 ° C. to 200 ° C., preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 10 ° C. to 40 ° C.
- This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred. Since the reaction is very fast, the reaction usually ends as soon as the dropping is completed.
- a solvent may be appropriately used.
- the solvent include esters such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate; ethers such as tetrahydrofuran, dioxane and dimethoxyethane; propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Examples include glycol ethers such as 3-methoxybutyl acetate; alcohols such as methanol, ethanol and propanol; aromatic hydrocarbons such as toluene and xylene; and aliphatic hydrocarbons.
- a basic catalyst is preferably used as the catalyst.
- the basic catalyst include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and cesium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethyl
- ammonium hydroxide salts such as ammonium hydroxide and ammonium fluoride salts such as tetrabutylammonium fluoride.
- the amount of the catalyst used is not particularly limited. However, if the amount is too large, there are problems such as high cost and difficulty in removal. On the other hand, if the amount is too small, the reaction becomes slow. Therefore, the amount of the catalyst used is preferably in the range of 0.0001 to 1.0 mol, more preferably 0.0005 to 0.1 mol, relative to 1 mol of hydrolyzable silane.
- Water is used for hydrolysis condensation.
- the quantity ratio of hydrolyzable silane and water is not particularly limited.
- the amount of water used is preferably a ratio of 0.1 to 100 mol, more preferably 0.5 to 3 mol, of water relative to 1 mol of hydrolyzable silane. If the amount of water is too small, the reaction slows down, and the yield of the desired silsesquioxane compound of the present invention may be lowered. If the amount of water is too large, the molecular weight increases and the desired structure is obtained. Product may be reduced.
- the water to be used may be substituted with the water, and water may be added separately.
- an organic solvent may or may not be used. It is preferable to use an organic solvent from the viewpoint of preventing gelation and adjusting the viscosity during production.
- organic solvent polar organic solvents and nonpolar organic solvents can be used alone or as a mixture.
- polar organic solvent lower alcohols such as methanol, ethanol and 2-propanol, ketones such as acetone and methyl isobutyl ketone, and ethers such as tetrahydrofuran are used. Particularly, acetone and tetrahydrofuran have a low boiling point and the system is uniform. It is preferable because the reactivity is improved.
- nonpolar organic solvent a hydrocarbon solvent is preferable, and an organic solvent having a boiling point higher than that of water such as toluene and xylene is preferable. In particular, an organic solvent azeotropic with water such as toluene efficiently removes water from the system. This is preferable because it is possible.
- mixing a polar organic solvent and a nonpolar organic solvent provides the above-described advantages, so that it is preferably used as a mixed solvent.
- the reaction temperature during the hydrolysis condensation is 0 to 200 ° C., preferably 10 to 200 ° C., more preferably 10 to 120 ° C. This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred.
- the condensation reaction proceeds with hydrolysis, and most of the hydrolyzable group of the hydrolyzable silane [specifically, for example, X in the general formula (IV), preferably 100%, It is preferable from the viewpoint of liquid stability that it is hydrolyzed to a hydroxyl group (OH group), and further, most of the OH group, preferably 80% or more, more preferably 90% or more, particularly preferably 100%, is condensed.
- X hydrolyzable group of the hydrolyzable silane
- the alcohol, solvent, and catalyst generated by the reaction may be removed from the mixed solution after hydrolysis condensation by a known method.
- the obtained product may be further purified by removing the catalyst by various purification methods such as washing, column separation, and solid adsorbent according to the purpose.
- the catalyst is removed by washing with water from the viewpoint of efficiency.
- the silsesquioxane compound of the present invention is produced by the above production method.
- the product obtained by this production method includes a silsesquioxane compound having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed.
- a silsesquioxane compound of the present invention obtained by the present production method may include a ladder structure, an incomplete cage structure and / or a random condensate silsesquioxane compound in which a Si—OH group remains.
- the sun compound may contain a ladder structure, an incomplete cage structure and / or a random condensate.
- the ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed is preferably 80% by mass or more, more preferably. It is preferably 90% by mass or more from the viewpoint of liquid stability.
- Manufacturing method B As the production method B, using a hydrolyzable silane having an amino group, a step B1 for producing a silsesquioxane compound having an amino group, the amino group of the silsesquioxane compound obtained by the step B1
- a production method including the step B2 in which the isocyanate group of the compound having a (meth) acryloyloxy group and an isocyanate group is reacted is mentioned.
- Step B1 Specific examples of the hydrolyzable silane having an amino group used in Step B1 include hydrolyzable silanes represented by the following general formula (IX).
- R 4 and X are the same as defined above. X may be the same or different. ].
- a silsesquioxane compound having an amino group in the step B1 specifically, Hydrolyzable condensation in the presence of a catalyst using the hydrolyzable silane represented by the general formula (IX) as a starting material, or Hydrolysis-condensation in the presence of a catalyst using a hydrolyzable silane represented by the general formula (IX) and a hydrolyzable silane other than a hydrolyzable silane having an amino group as a starting material; Can be mentioned.
- the hydrolyzable silane other than the hydrolyzable silane having an amino group is particularly limited as long as it can produce a silsesquioxane compound by hydrolytic condensation together with the hydrolyzable silane having the amino group. It is not a thing. Specific examples include alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane.
- a basic catalyst is preferably used as the catalyst.
- the basic catalyst include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and cesium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethyl
- ammonium hydroxide salts such as ammonium hydroxide and ammonium fluoride salts such as tetrabutylammonium fluoride.
- the amount of the catalyst used is not particularly limited. However, if the amount is too large, there are problems such as high cost and difficulty in removal. On the other hand, if the amount is too small, the reaction becomes slow. Therefore, the amount of the catalyst used is preferably in the range of 0.0001 to 1.0 mol, more preferably 0.0005 to 0.1 mol, relative to 1 mol of hydrolyzable silane.
- Water is used for hydrolysis condensation.
- the quantity ratio of hydrolyzable silane and water is not particularly limited.
- the amount of water used is preferably 0.1 to 100 mol, more preferably 1.5 to 3 mol, of water per mol of hydrolyzable silane. If the amount of water is too small, the reaction may be slowed and the yield of the desired silsesquioxane may be reduced. If the amount of water is too large, the molecular weight will increase and the product of the desired structure will decrease. There is a risk.
- the water to be used may be substituted with the water, and water may be added separately.
- an organic solvent may or may not be used. It is preferable to use an organic solvent from the viewpoint of preventing gelation and adjusting the viscosity during production.
- organic solvent polar organic solvents and nonpolar organic solvents can be used alone or as a mixture.
- polar organic solvent lower alcohols such as methanol, ethanol and 2-propanol, ketones such as acetone and methyl isobutyl ketone, and ethers such as tetrahydrofuran are used. Particularly, acetone and tetrahydrofuran have a low boiling point and the system is uniform. It is preferable because the reactivity is improved.
- nonpolar organic solvent a hydrocarbon solvent is preferable, and an organic solvent having a boiling point higher than that of water such as toluene and xylene is preferable. In particular, an organic solvent azeotropic with water such as toluene efficiently removes water from the system. This is preferable because it is possible.
- mixing a polar organic solvent and a nonpolar organic solvent provides the above-described advantages, so that it is preferably used as a mixed solvent.
- the reaction temperature during the hydrolysis condensation is 0 to 200 ° C., preferably 10 to 200 ° C., more preferably 10 to 120 ° C.
- the condensation reaction proceeds together with the hydrolysis, and a hydrolyzable group of the hydrolyzable silane [specifically, for example, most of X in the general formula (IX)], preferably 100 % Is hydrolyzed into hydroxyl groups (OH groups), and most of the OH groups, preferably 80% or more, more preferably 90% or more, particularly preferably 100%, are condensed from the viewpoint of liquid stability. preferable.
- Step B2 In the step B2, specifically, for example, a silsesquioxane having an organic group represented by the following general formula (X) as an organic group directly bonded to the silicon atom obtained in the step B1 The amino group of the compound is reacted with the isocyanate group of the compound represented by the following general formula (XI).
- X organic group represented by the following general formula (X)
- R 4 is the same as defined above.
- R 2 and R 3 are the same as described above. ].
- the reaction is usually performed using 2 mol or more of the compound represented by the general formula (XI) with respect to 1 mol of the organic group represented by the general formula (X).
- the reaction can be performed according to a conventional method in which an amino group and an isocyanate group are reacted.
- the reaction temperature is, for example, ⁇ 78 ° C. to 200 ° C., preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 10 ° C. to 40 ° C.
- This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred. Since the reaction is very fast, the reaction usually ends as soon as the dropping is completed.
- a solvent may be appropriately used.
- the solvent include esters such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate; ethers such as tetrahydrofuran, dioxane and dimethoxyethane; propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Examples include glycol ethers such as 3-methoxybutyl acetate; alcohols such as methanol, ethanol and propanol; aromatic hydrocarbons such as toluene and xylene; and aliphatic hydrocarbons.
- the silsesquioxane compound of the present invention is produced by the above production method.
- the product obtained by the production method B includes a silyl having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed.
- a ladder structure in which Si—OH groups remain, an incomplete cage structure, and / or a random condensate silsesquioxane compound may be included. These silsesquioxane compounds may contain these ladder structures, incomplete cage structures and / or random condensates.
- the ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed is preferably 80% by mass or more, more preferably. It is preferably 90% by mass or more from the viewpoint of liquid stability.
- the target compound obtained by the above reactions can be separated from the reaction system by ordinary separation means and further purified.
- this separation and purification means for example, distillation method, solvent extraction method, dilution method, recrystallization method, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography and the like can be used.
- Active energy ray-curable composition contains the silsesquioxane compound of the present invention and a photopolymerization initiator.
- the use ratio of the silsesquioxane compound (nonvolatile content) of the present invention in 100 parts by weight of the nonvolatile content of the active energy ray-curable composition of the present invention is not particularly limited, but is preferably 5 to 99 parts by mass, more preferably 10 to 80 parts by mass.
- the photopolymerization initiator is not particularly limited as long as it is an initiator that absorbs active energy rays and generates radicals.
- photopolymerization initiator examples include ⁇ -diketones such as benzyl and diacetyl; acyloins such as benzoin; acyloin ethers such as benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether; thioxanthone, 2,4-diethyl Thioxanthones such as thioxanthone, 2-isopropylthioxanthone, thioxanthone-4-sulfonic acid; benzophenones such as benzophenone, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone; Michler's ketones; Acetophenone, 2- (4-toluenesulfonyloxy) -2-phenylacetophenone, p-dimethylaminoacetophenone, ⁇ , ⁇ '-dimethoxy
- Examples of commercially available photopolymerization initiators include IRGACURE-184, 261, 500, 651, 907, CGI-1700 (trade name, manufactured by Ciba Specialty Chemicals), Darocur (Darocur). -1173, 1116, 2959, 1664, 4043 (trade name, manufactured by Merck Japan), KAYACURE-MBP, DETX-S, DMBI, EPA, OA (Nippon Kayaku ( Co., Ltd., trade name), VICURE-10, 55 [made by STAUFFER Co., Ltd., trade name], Trigonal P1 [AKZO Co., Ltd.] Product name, product name], SANDORAY 1000 (product name, SANDOZ Co., Ltd., product name), Deep (DEAP) (product name, APJOHN Co., Ltd., product name), Kang QUANTACURE-PDO, ITX, EPD (trade name, manufactured by WARD BLEKINSOP Co., Ltd.).
- the photopolymerization initiator is preferably one or a mixture of two or more of thioxanthones, acetophenones and acylphosphine oxides from the viewpoint of photocurability, and among them, acetophenones and acylphosphine oxides. It is particularly preferred to be a mixture with.
- the amount of the photopolymerization initiator used is not particularly limited, but is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the silsesquioxane compound and polymerizable unsaturated compound of the present invention. More preferably, it is in the range of 1 to 5 parts by mass. The lower limit of this range is significant in terms of improving active energy ray curability, and the upper limit is significant in terms of cost and deep curability.
- the polymerizable unsaturated compound or the active energy ray-curable composition of the present invention may contain a polymerizable unsaturated compound other than the silsesquioxane compound of the present invention.
- the polymerizable unsaturated compound is not particularly limited as long as it is a compound other than the silsesquioxane compound of the present invention and has at least one polymerizable unsaturated double bond in its chemical structure.
- Examples of the polymerizable unsaturated compound include monofunctional polymerizable unsaturated compounds and polyfunctional polymerizable unsaturated compounds.
- Examples of the monofunctional polymerizable unsaturated compound include esterified products of monohydric alcohol and (meth) acrylic acid. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (Meth) acrylate, neopentyl (meth) acrylate, cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, N-acryloyloxyethylhexahydro Examples include phthalimide.
- hydroxyl-containing (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate; acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid
- Carboxyl group-containing (meth) acrylates such as 2-carboxyethyl (meth) acrylate, 2-carboxypropyl (meth) acrylate and 5-carboxypentyl (meth) acrylate; glycidyl groups such as glycidyl (meth) acrylate and allyl glycidyl ether Containing polymerizable unsaturated compounds; vinyl aromatic compounds such as styrene, ⁇ -methylstyrene, vinyltoluene, ⁇ -chlorostyrene; N, N-dimethylaminoethyl (meth)
- polyfunctional polymerizable unsaturated compound examples include esterified products of polyhydric alcohol and (meth) acrylic acid.
- esterified products of polyhydric alcohol and (meth) acrylic acid Specifically, for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) Acrylate, 1,4-butanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, glycerin di (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol di (meth) acrylate, Dipentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, pentaeryth
- Meth) acrylate compounds glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane propylene oxide modified tri (meth) acrylate, trimethylolpropane ethylene oxide modified tri (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, ⁇ -caprolactone modified tris (acryloxyethyl) isocyanurate, etc. tri (meth) acrylate compound; pentaerythritol tetra (meth) acrylate etc.
- urethane (meth) acrylate resin epoxy (meth) acrylate resin, polyester (meth) acrylate resin and the like can be mentioned.
- the urethane (meth) acrylate resin is prepared by, for example, using a polyisocyanate compound, a hydroxylalkyl (meth) acrylate, and a polyol compound as raw materials, and reacting them in an amount such that the hydroxyl group is equimolar or excessive with respect to the isocyanate group. Obtainable.
- These polymerizable unsaturated compounds can be used alone or in combination of two or more.
- the amount used in the case of containing the polymerizable unsaturated compound is not particularly limited, but from the viewpoint of the physical properties of the obtained coating film, the non-volatile content of the silsesquioxane compound of the present invention is 100 parts by mass.
- the content is preferably 0.1 to 1000 parts by mass, and more preferably 20 to 200 parts by mass.
- the active energy ray-curable composition of the present invention may contain various additives as necessary, and may be diluted with a solvent if desired.
- the additive include a sensitizer, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, an antioxidant, an antifoaming agent, a surface conditioner, a plasticizer, and a colorant.
- Examples of the solvent used for dilution include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; esters such as ethyl acetate, butyl acetate, methyl benzoate, and methyl propionate; ethers such as tetrahydrofuran, dioxane, and dimethoxyethane; Examples include glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and 3-methoxybutyl acetate; aromatic hydrocarbons and aliphatic hydrocarbons. These can be used in appropriate combination for the purpose of adjusting the viscosity, adjusting the coating property, and the like.
- the nonvolatile content of the active energy ray-curable composition of the present invention is not particularly limited.
- the content is preferably 20 to 100% by mass, and more preferably 25 to 70% by mass. These ranges are significant in terms of smoothness of the coating film and shortening of the drying time.
- the method for applying the active energy ray-curable composition of the present invention to the surface of an object to be coated is not particularly limited.
- roller coating, roll coater coating, spin coater coating, curtain roll coater coating, slit coater coating, Examples include spray coating, electrostatic coating, dip coating, silk printing, and spin coating.
- drying can be performed as necessary.
- the drying is not particularly limited as long as the solvent that is added can be removed.
- the drying can be performed at a drying temperature of 20 to 100 ° C. for a drying time of 3 to 20 minutes.
- the film thickness of the coating is appropriately set according to the purpose.
- the film thickness is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m.
- the film thickness is at least the lower limit of these ranges, the coating film is excellent in smoothness and appearance.
- the curability and crack resistance of the coating film are excellent.
- an active energy ray-curable composition is applied to the surface of an object to be coated and dried as necessary, and then irradiated with active energy rays to form a cured coating film.
- the irradiation source and irradiation amount of active energy ray irradiation are not particularly limited.
- the active energy ray irradiation source includes ultra-high pressure, high pressure, medium pressure, low pressure mercury lamp, chemical lamp, carbon arc lamp, xenon lamp, metal halide lamp, fluorescent lamp, tungsten lamp, sunlight and the like.
- the irradiation dose is, for example, preferably in the range of 5 to 20,000 J / m 2 , more preferably 100 to 10,000 J / m 2 .
- the active energy ray irradiation may be performed in an air atmosphere or an inert gas atmosphere.
- the inert gas include nitrogen and carbon dioxide. Active energy ray irradiation in an inert gas atmosphere is preferable from the viewpoint of curability.
- the coating film may be heated as necessary.
- the heating may improve the hardness or adhesion of the coating film.
- the heating can usually be performed at an atmospheric temperature of 150 to 250 ° C. for 1 to 30 minutes.
- SP value measurement method The SP value in this example is a solubility parameter, which can be measured by cloud point titration, which is a simple measurement method.
- Formula SP ( ⁇ Vml ⁇ ⁇ H + ⁇ Vmh ⁇ ⁇ D) / ( ⁇ Vml + ⁇ Vmh)
- cloud point titration when 0.5 g of sample was dissolved in 10 ml of acetone, n-hexane was added and the titration amount H (ml) at the cloud point was read.
- deionized water was added to the acetone solution.
- the titration amount D (ml) at the cloud point is read and applied to the following formula to calculate Vml, Vmh, ⁇ H, and ⁇ D.
- the molecular volume (mol / ml) of each solvent is acetone: 74.4, n-hexane: 130.3, deionized water: 18, and the SP of each solvent is acetone: 9.75, n- Hexane: 7.24, deionized water: 23.43.
- Vml 74.4 ⁇ 130.3 / ((1 ⁇ VH) ⁇ 130.3 + VH ⁇ 74.4)
- Vmh 74.4 ⁇ 18 / ((1 ⁇ VD) ⁇ 18 + VD ⁇ 74.4)
- VH H / (10 + H)
- Example 1 In a separable flask equipped with a reflux condenser, thermometer, air inlet tube and stirrer, 400 parts of 3-aminopropyltrimethoxysilane, 1,600 parts of 2-propyl alcohol, 2 parts of tetrabutylammonium fluoride, and deionized 60 parts of water was charged and reacted at 60 ° C. for 8 hours. After concentration to 60% non-volatile content by vacuum distillation, 160 parts of butyl acetate was added and vacuum distillation was continued to obtain a 60% non-volatile solution of the product (P1).
- the weight average molecular weight of the product (P1) was 1,500.
- the weight average molecular weight of the product (P2) was 3,000.
- silsesquioxane compound having a weight average molecular weight of 3,000.
- the resulting silsesquioxane compound had an SP value of 13.8.
- Example 2 A separable flask equipped with a reflux condenser, a thermometer, an air introduction tube and a stirrer was charged with 455 parts of 2-hydroxyethyl acrylate, 870 parts of isophorone diisocyanate, 1 part of methoquinone, and 883 parts of butyl acetate while blowing dry air. The mixture was reacted at 60 ° C. for 24 hours to obtain a 60% non-volatile solution of the product (P3). The NCO value of the product (P3) was 144 mg NCO / g.
- the weight average molecular weight of the product (P4) was 5,000.
- R 8 represents an isophorophone diisocyanate residue.
- the weight average molecular weight of the product (P5) was 1,500.
- silsesquioxane compound having a weight average molecular weight of 1,500.
- the SP value of the obtained silsesquioxane compound was 9.5.
- Example 3 A 50% nonvolatile content solution of the product (P2) obtained in Example 1 and the following polymerizable unsaturated compound (A1) were mixed at a mass ratio of 1 to the product (P2) and the polymerizable unsaturated compound (A1). 1 and mixed at 40 ° C. for 24 hours to obtain a mixed solution.
- the compatibility of the mixed solution the compatibility of the product (P2) obtained in Example 1 and the polymerizable unsaturated compound in a solution state was evaluated. The evaluation was carried out according to the following criteria by visually observing the compatible state. The evaluation results are shown in Table 1.
- A1 HDDA (trade name, manufactured by Daicel Cytec, 1,6-hexanediol diacrylate)
- A2 Aronix M-140 (trade name, manufactured by Toa Gosei Co., Ltd., N-acryloyloxyethyl hexahydrophthalimide)
- A3 Aronix M-325 [trade name, manufactured by Toagosei Co., Ltd., ⁇ -caprolactone-modified tris (acryloxyethyl) isocyanurate]
- A4 Trimethylolpropane diacrylate
- A5 Pentaerythritol diacrylate
- A6 Pentaerythritol triacrylate
- A7 Aronix M-403 (trade name, manufactured by Toa Gosei Co., Ltd., dipentaerythritol pentaacrylate and hexaacrylate)
- A8 Aronix M-1200 (trade name, manufactured by Toagooxaned
- Example 4 Comparative Example 2
- Example 3 Comparative Example 3
- Example 4 Comparative Example 2
- Example 5 About the active energy ray curable composition containing the silsesquioxane compound of this invention, the compatibility at the time of mixing a polymerizable unsaturated compound was evaluated. The test method is shown below.
- the active energy ray-curable composition was applied to an intermediate coating plate (Note 1) with an applicator under a condition that the dry film thickness was 10 ⁇ m, dried at 80 ° C. for 10 minutes to remove the solvent, and then the high-pressure mercury lamp ( 80 W / cm), ultraviolet rays (peak top wavelength 365 nm) were irradiated at an irradiation amount of 20,000 J / m 2 to cure the coating film.
- the appearance of the cured coating film was visually observed, and the compatibility state was evaluated according to the following criteria. The evaluation results are shown in Table 2.
- each polymerizable unsaturated compound (A2) to (A8) was prepared in the same manner as above except that the polymerizable unsaturated compound (A1) was changed to each of the polymerizable unsaturated compound (A2) to (A8).
- Each active energy ray-curable composition containing each of the above was prepared. Subsequently, the coating film hardened
- Example 6 Comparative Example 3
- Example 6 Comparative Example 3
- An energy ray curable composition was prepared.
- the coating film which hardened this active energy ray curable composition on the conditions similar to Example 5 was created, and the compatibility at the time of mixing a polymerizable unsaturated compound was evaluated.
- the evaluation results are shown in Table 2.
- Example 7 In the same manner as in the method for producing the active energy ray curable composition and the method for producing the cured coating film in Example 5, an active energy ray curable composition having the composition shown in Table 3 was prepared, and the intermediate coating plate (Note 1) ) A cured coating film having a dry film thickness of 10 ⁇ m was formed thereon to obtain a test plate. Each test plate obtained was evaluated for scratch resistance and weather resistance. The evaluation results are shown in Table 3.
- ⁇ Abrasion resistance> Commercially available steel wool (# 0000) was rubbed on each coating film, and the coating film was visually observed and evaluated according to the following criteria. ⁇ : no scratches, cracks, peeling, or slight scratches, but no problem in practical use ⁇ : scratches are observed ⁇ : cracks, peeling, significant scratches, etc. are observed
- ⁇ Weather resistance> Each test plate obtained was tested for 1000 hours using a sunshine weatherometer, and then the coating film was visually observed and evaluated according to the following criteria. ⁇ : No abnormality, or slight swelling, discoloration, gloss change, peeling, etc. are observed, but there is no problem in practical use. ⁇ : Blurring, discoloration, gloss change, peeling, etc. are recognized. ⁇ : Blurring, discoloration, gloss change, peeling Etc. are remarkably recognized
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Silicon Polymers (AREA)
- Paints Or Removers (AREA)
Abstract
本発明は、得られる塗膜の耐熱性、耐擦傷性及び耐候性に優れ、さらに一般的な重合性不飽和化合物との相溶性に優れるのみならず、極性の高い重合性不飽和化合物との相溶性にも優れるシルセスキオキサン化合物を提供することを課題とする。 本発明は、ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物を含有する組成物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つがウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基であることを特徴とするシルセスキオキサン化合物を含有する組成物を提供する。
Description
本発明は、重合性官能基を有するシルセスキオキサン化合物に関する。
シルセスキオキサンは、梯子型、籠型及び三次元網目型(ランダム型)の構造をとる一連のネットワーク状ポリシロキサンの総称である。このシルセスキオキサンは、一般式SiO2で示される完全な無機物質であるシリカとは異なり一般的な有機溶媒に可溶であることから、取り扱いが容易であり、成膜等の加工性、成形性等に優れるという特徴を有する。
一方、ラジカル重合性を有する不飽和化合物として、多官能アクリレート及び不飽和ポリエステル等が広く検討され、また工業的に利用されている。これらラジカル重合性の不飽和化合物は、その硬化物に耐擦傷性、耐汚染性等の特性を付与する目的で、種々の検討が加えられている。しかし、従来多用されているラジカル重合性の不飽和化合物にシルセスキオキサン等のオルガノポリシロキサン化合物を混合した組成物は、相溶性が悪いために均一な組成物になりにくいこと、得られた硬化物からオルガノポリシロキサン化合物が遊離すること等の問題点を有している。
特許文献1~5には、アクリロイルオキシ基又はメタクリロイルオキシ基等のラジカル重合性の官能基を有するシルセスキオキサン及び該シルセスキオキサンを含有する紫外線硬化性組成物に関する発明が開示されている。しかし、これらのシルセスキオキサンを用いた組成物は、他の重合性不飽和化合物との相溶性、特に極性の高い重合性不飽和化合物との相溶性が十分ではない点で課題がある。
本発明は上記事情に鑑みてなされたものであり、本発明の目的は、得られる塗膜の耐熱性、耐擦傷性及び耐候性に優れ、さらに一般的な重合性不飽和化合物との相溶性に優れるのみならず、極性の高い重合性不飽和化合物との相溶性にも優れるシルセスキオキサン化合物を提供することにある。
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、ケイ素原子に直接に結合した有機基としてウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基をシルセスキオキサン化合物に導入することにより、上記課題を解決することができることを見出し、本発明を完成するに至った。
すなわち本発明は、
1.ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つがウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基であることを特徴とするシルセスキオキサン化合物。
1.ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つがウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基であることを特徴とするシルセスキオキサン化合物。
2.前記ウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基が、下記一般式(I)で表される有機基である1項記載のシルセスキオキサン化合物、
[式(I)中、R1は水素原子又はメチル基を示し、Yはウレア結合を有する2価の有機基を示す。]。
3.前記一般式(I)で表される有機基が、下記一般式(II)で表される有機基である2項記載のシルセスキオキサン化合物、
{式(II)中、R2は水素原子又はメチル基を示し、R3は炭素数1~10の2価の炭化水素基又は下記一般式(III)
[式(III)中、R5は炭素数2~4の2価の炭化水素基を示し、R6はジイソシアネート残基を示す。]
で表される2価の基を示し、R4は炭素数1~10の2価の炭化水素基を示す。}。
で表される2価の基を示し、R4は炭素数1~10の2価の炭化水素基を示す。}。
4.重量平均分子量が1,000~100,000である1~3項のいずれか1項に記載のシルセスキオキサン化合物。
5.1~4項のいずれか1項に記載のシルセスキオキサン化合物、及び光重合開始剤を含有する活性エネルギー線硬化性組成物。
6.前記シルセスキオキサン化合物以外の重合性不飽和化合物をさらに含有する5項記載の活性エネルギー線硬化性組成物。
に関する。
に関する。
本発明のシルセスキオキサン化合物によれば、ケイ素原子に直接に結合した有機基としてウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基をシルセスキオキサン化合物に導入することにより、一般的な重合性不飽和化合物との相溶性に優れるのみならず、極性の高い重合性不飽和化合物との相溶性にも優れるシルセスキオキサン化合物を得ることができる。また、さまざまな重合性不飽和化合物との相溶性に優れることから、本発明のシルセスキオキサン化合物は、種々の活性エネルギー線硬化性組成物に用いることができ、該活性エネルギー線硬化性組成物から得られる塗膜の耐熱性、耐擦傷性及び耐候性を向上させることができる。
本発明のシルセスキオキサン化合物は、ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つがウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基であるシルセスキオキサン化合物(以下、単に「本発明のシルセスキオキサン化合物」と略すことがある。)である。前記本発明のシルセスキオキサン化合物の前記ケイ素原子に直接に結合した有機基の少なくとも1つがウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基であることにより、該有機基の有するウレア結合によって、さまざまな重合性不飽和化合物との相溶性に優れ、かつ、該有機基の有する(メタ)アクリロイルオキシ基によって光重合開始剤存在下での活性エネルギー線照射により硬化することができる。そのことから、前記本発明のシルセスキオキサン化合物は、種々の活性エネルギー線硬化性組成物に用いることができる。
本発明のシルセスキオキサン化合物
本発明のシルセスキオキサン化合物は、ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つがウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基であるシルセスキオキサン化合物である。
本発明のシルセスキオキサン化合物は、ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つがウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基であるシルセスキオキサン化合物である。
ここで、本明細書において「シルセスキオキサン化合物」は、Si-OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物のみを意味するのではなく、Si-OH基が残存したラダー構造、不完全籠型構造、ランダム縮合体のシルセスキオキサン化合物をも含むことができる。
本発明において、ケイ素原子に直接に結合した有機基のうちウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基の割合は特に限定されず、好ましくは、少なくとも15モル%以上であればよく、より好ましくは、50モル%以上であればよい。
前記本発明のシルセスキオキサン化合物は、Si-OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が、好ましくは80質量%以上、より好ましくは90質量%以上であることが液安定性の点から好ましい。
前記本発明のシルセスキオキサン化合物として、例えば、前記ウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基が、下記一般式(I)で表される有機基であるシルセスキオキサン化合物を挙げることができる。
[式(I)中、R1は水素原子又はメチル基を示し、Yはウレア結合を有する2価の有機基を示す。]。
前記一般式(I)で表される有機基としては、具体的には例えば、下記一般式(II)で表される有機基を挙げることができる。
{式(II)中、R2は水素原子又はメチル基を示し、R3は炭素数1~10の2価の炭化水素基又は下記一般式(III)
[式(III)中、R5は炭素数2~4の2価の炭化水素基を示し、R6はジイソシアネート残基を示す。]
で表される2価の基を示し、R4は炭素数1~10の2価の炭化水素基を示す。}。
で表される2価の基を示し、R4は炭素数1~10の2価の炭化水素基を示す。}。
前記一般式(II)中のR3としては、炭素数1~10の2価の炭化水素基又は前記一般式(III)で表される2価の基であれば特に限定されるものではない。
炭素数1~10の2価の炭化水素基としては、具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、ヘキシレン基、デカニレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基等のアリーレン基等が挙げられる。なかでも、炭素数1~6(より好ましくは炭素数1~3)の2価の炭化水素基、特にエチレン基、1,3-プロピレン基であることが、耐熱性、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。
前記一般式(II)中のR4としては、炭素数1~10の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、ヘキシレン基、デカニレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基等のアリーレン基等が挙げられる。なかでも、炭素数1~6(より好ましくは炭素数1~3)の2価の炭化水素基、特にエチレン基、1,3-プロピレン基であることが、耐熱性、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。
前記一般式(III)中のR5としては、炭素数2~4の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基等が挙げられる。
前記一般式(III)中のR6は、ジイソシアネート残基を示す。ジイソシアネ-ト残基とは、ジイソシアネ-ト化合物から2つのイソシアネ-ト基(NCO)を除いた残りの部分である。ジイソシアネート化合物としては、具体的には例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、1-クロロ-2,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,5-ナフタレンジイソシアンート、ジフェニルメタン-4,4’-ジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート等の芳香族ジイソシアネート化合物;エタンジイソシアンート、プロパンジイソシアネート、ブタンジイソシアネート、ペンタンジイソシアネート、ヘキサンジイソシアネート、ヘプタンジイソアネート、オクタンジイソアネート、ノナンジイソシアネート、デカンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂肪族ジイソシアネート化合物等が挙げられる。なかでも、脂肪族ジイソシアネート化合物、特にイソホロンジイソシアネートが耐候性に優れる点から好ましい。また、ジイソシアネート化合物としては、耐擦傷性及び活性エネルギー線硬化性がより優れる点から分子量300以下のジイソシアネート化合物が好ましい。
前記一般式(II)で表される有機基としては、耐熱性、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び活性エネルギー線硬化性がより優れる点から、R2が水素原子であり、R3がエチレン基であり、R4がエチレン基若しくは1,3-プロピレン基である有機基が好ましい。また、R2が水素原子であり、R3が一般式(III)で表される2価の基であってかつR5がエチレン基でありR6がイソホロンジイソシアネート残基である2価の基であり、R4がエチレン基若しくは1,3-プロピレン基である有機基が好ましい。
前記本発明のシルセスキオキサン化合物は、単一の組成の化合物であってもよく、又は組成の異なる化合物の混合物であってもよい。
前記本発明のシルセスキオキサン化合物の重量平均分子量は、特に限定されるものではない。好ましくは重量平均分子量が1,000~100,000、より好ましくは重量平均分子量が1,000~10,000である。これら範囲は、本発明のシルセスキオキサン化合物から得られた塗膜の耐熱性、又は本発明のシルセスキオキサン化合物を含む活性エネルギー線硬化性組成物の粘度及び塗装性の点で意義がある。
本明細書において、重量平均分子量は、光散乱法により測定した重量平均分子量である。光散乱法による重量平均分子量の測定には、Zetasizer Nano Nano-ZS(Malvern Instruments Ltd社製)を用いた。測定に用いた試料は、プロピレングリコールモノメチルエーテルに本発明のシルセスキオキサン化合物を溶解させ、濃度を0.5~5.0質量%に調整した濃度の異なる10種の試料である。この10種の試料の光散乱強度を測定することにより、重量平均分子量を求めた。
本発明のシルセスキオキサン化合物の製造方法
前記本発明のシルセスキオキサン化合物の製造方法は、一般的なシルセスキオキサンの製造に従来用いられている製造方法を用いることができ、特に限定されるものではない。加えて、例えば、以下の製造方法A、又は製造方法B等を用いて製造することもできる。
前記本発明のシルセスキオキサン化合物の製造方法は、一般的なシルセスキオキサンの製造に従来用いられている製造方法を用いることができ、特に限定されるものではない。加えて、例えば、以下の製造方法A、又は製造方法B等を用いて製造することもできる。
製造方法A
製造方法Aとしては、ケイ素原子に直接に結合した有機基であり、かつウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基を有する加水分解性シランを含有する出発物質を用いた製造方法が挙げられる。
製造方法Aとしては、ケイ素原子に直接に結合した有機基であり、かつウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基を有する加水分解性シランを含有する出発物質を用いた製造方法が挙げられる。
具体的には例えば、出発物質に下記一般式(IV)で表される加水分解性シラン及び必要に応じて下記一般式(IV)で表される加水分解性シラン以外の加水分解性シランを用いて、触媒の存在下で加水分解縮合を行って本発明のシルセスキオキサン化合物を製造する方法が挙げられる。
R7SiX3 (IV)
前記一般式(IV)中のR7は、ウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基である。Xは塩素又は炭素数1~6のアルコキシ基であり、Xは同一でも又は異なっていてもよい。
前記一般式(IV)中のR7は、ウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基である。Xは塩素又は炭素数1~6のアルコキシ基であり、Xは同一でも又は異なっていてもよい。
炭素数1~6のアルコキシ基としては、炭素数1~6(好ましくは炭素数1~4)の直鎖状又は分岐鎖状のアルコキシ基を挙げることができる。より具体的には、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、tert-ブトキシ、sec-ブトキシ、n-ペンチルオキシ、1-エチルプロポキシ、イソペンチルオキシ、ネオペンチルオキシ、n-ヘキシルオキシ、1,2,2-トリメチルプロポキシ、3,3-ジメチルブトキシ、2-エチルブトキシ、イソヘキシルオキシ、3-メチ
ルペンチルオキシ基等が含まれる。
ルペンチルオキシ基等が含まれる。
従って、Xの具体例としては、具体的には、塩素、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。
前記一般式(IV)で表される加水分解性シラン以外の加水分解性シランとしては、前記一般式(IV)で表される加水分解性シランとともに加水分解縮合することによりシルセスキオキサン化合物を製造できるものであれば特に限定されるものではない。具体的には例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等のアルキルトリアルコキシシラン等が挙げられる。
また、前記一般式(IV)で表される加水分解性シランとしては、具体的には例えば、下記一般式(V)で表される加水分解性シランが挙げられる。
[一般式(V)中、R1、Y及びXは、前記に同じ。
Xは同一でも又は異なっていてもよい。]。
Xは同一でも又は異なっていてもよい。]。
前記一般式(V)で表される加水分解性シランとしては、具体的には例えば、下記一般式(VI)で表される加水分解性シランが挙げられる。
[一般式(VI)中、R2、R3、R4及びXは、前記に同じ。
Xは同一でも又は異なっていてもよい。]。
Xは同一でも又は異なっていてもよい。]。
前記一般式(VI)で表される加水分解性シランは、具体的には例えば、下記一般式(VII)で表される加水分解性シランと、下記一般式(VIII)で表される化合物を反応させることにより得ることができる。
[一般式(VII)中、R4及びXは、前記に同じ。
一般式(VIII)中、R2及びR3は、前記に同じ。]。
一般式(VIII)中、R2及びR3は、前記に同じ。]。
前記一般式(VII)で表される加水分解性シランとしては、具体的には例えば、アミノメチルトリメトキシシラン、アミノメチルトリエトキシシラン、2-アミノエチルトリメトキシシラン、2-アミノエチルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等が挙げられる。
前記一般式(VIII)で表される化合物としては、具体的には例えば、イソシアネートメチル(メタ)アクリレート、2-イソシアネートエチル(メタ)アクリレート、3-イソシアネートプロピル(メタ)アクリレート、イソシアネートオクチル(メタ)アクリレート等が挙げられる。また、ヒドロキシル基含有(メタ)アクリレートとジイソシアネート化合物との付加物が挙げられる。ヒドロキシル基含有(メタ)アクリレートとしては、具体的には例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。ジイソシアネート化合物としては、具体的には例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、1-クロロ-2,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,5-ナフタレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート等の芳香族ジイソシアネート化合物;エタンジイソシアネート、プロパンジイソシアネート、ブタンジイソシアネート、ペンタンジイソシアネート、ヘキサンジイソシアネート、ヘプタンジイソアネート、オクタンジイソアネート、ノナンジイソシアネート、デカンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂肪族ジイソシアネート化合物等が挙げられる。
前記一般式(VII)で表される加水分解性シランと前記一般式(VIII)で表される化合物との反応は、通常、前記一般式(VII)で表される加水分解性シラン1モルに対して、前記一般式(VIII)で表される化合物を1モル以上用いて行われる。
前記一般式(VII)で表される加水分解性シランと前記一般式(VIII)で表される化合物との反応は、アミノ基とイソシアネート基とを反応させる常法に従って行うことができる。反応温度は、例えば、-78℃~200℃、好ましくは-78℃~100℃、更に好ましくは、-10℃~40℃である。また、この反応は圧力によらず実施できるが、0.02~0.2MPa、特に0.08~0.15MPaの圧力範囲が好ましい。当該反応は非常に速いため、通常、滴下が終了するとすぐに反応は終了する。
前記反応では適宜溶媒を使用しても良い。溶媒としては、具体的には例えば、酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル類;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル類;メタノール、エタノール、プロパノール等のアルコール類、トルエン、キシレン等の芳香族炭化水素類、脂肪族炭化水素類等が挙げられる。
本製造方法において前記本発明のシルセスキオキサン化合物を得るためには、具体的には、
前記一般式(IV)で表される加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、又は、
前記一般式(IV)で表される加水分解性シラン、及び前記一般式(IV)で表される加水分解性シラン以外の加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、
ことが挙げられる。
前記一般式(IV)で表される加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、又は、
前記一般式(IV)で表される加水分解性シラン、及び前記一般式(IV)で表される加水分解性シラン以外の加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、
ことが挙げられる。
前記触媒としては、塩基性触媒が好適に用いられる。塩基性触媒としては、具体的には例えば、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等の水酸化アンモニウム塩、テトラブチルアンモニウムフルオリド等のフッ化アンモニウム塩などが挙げられる。
前記触媒の使用量は特に限定されるものではないが、多すぎるとコスト高、除去が困難等の問題があり、一方、少なすぎると反応が遅くなってしまう。そのため、触媒の使用量は、好ましくは加水分解性シラン1モルに対して0.0001~1.0モル、より好ましくは0.0005~0.1モルの範囲である。
加水分解縮合する場合は水を使用する。加水分解性シランと水との量比は、特に限定されるものでない。水の使用量は、加水分解性シラン1モルに対し、好ましくは水0.1~100モル、さらに好ましくは0.5~3モルの割合である。水の量が少なすぎると、反応が遅くなり、目的とする本発明のシルセスキオキサン化合物の収率が低くなるおそれがあり、水の量が多すぎると高分子量化し、所望とする構造の生成物が減少するおそれがある。また、使用する水は塩基性触媒を水溶液として用いる場合はその水で代用してもよいし、別途水を加えてもよい。
前記加水分解縮合において、有機溶媒は使用してもよく、又は使用しなくてもよい。有機溶媒を用いることは、ゲル化を防止する点及び製造時の粘度を調節できる点から好ましい。有機溶媒としては、極性有機溶媒、非極性有機溶媒を単独又は混合物として用いることができる。
極性有機溶媒としてはメタノール、エタノール、2-プロパノール等の低級アルコール類、アセトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン等のエーテル類が用いられるが、特にアセトン及びテトラヒドロフランは沸点が低く系が均一になり反応性が向上することから好ましい。非極性有機溶媒としては、炭化水素系溶媒が好ましく、トルエン、キシレン等の水よりも沸点が高い有機溶媒が好ましく、特にトルエン等の水と共沸する有機溶媒は系内から水を効率よく除去できるため好ましい。特に、極性有機溶媒と非極性有機溶媒とを混合することで、前述したそれぞれの利点が得られるため混合溶媒として用いることが好ましい。
加水分解縮合時の反応温度としては0~200℃、好ましくは10~200℃、更に好ましくは、10~120℃である。また、この反応は圧力によらず実施できるが、0.02~0.2MPa、特に0.08~0.15MPaの圧力範囲が好ましい。
加水分解縮合反応では、加水分解と共に縮合反応が進行し、加水分解性シランの加水分解性基[具体的には例えば、前記一般式(IV)中のX]の大部分、好ましくは100%がヒドロキシル基(OH基)に加水分解され、更にそのOH基の大部分、好ましくは80%以上、より好ましくは90%以上、特に好ましくは100%を縮合させることが液安定性の点から好ましい。
加水分解縮合後の混合液からは、反応で生成したアルコール、溶媒、及び触媒を公知の手法で除去してもよい。なお、得られた生成物は、その目的に応じて、触媒を洗浄、カラム分離、固体吸着剤等の各種の精製法によって除去し、更に精製してもよい。好ましくは、効率の点から水洗により触媒を除去することである。
以上の製造方法により本発明のシルセスキオキサン化合物が製造される。
ここで、前記加水分解縮合において100%縮合しない場合には、本製造方法により得られる生成物には、Si-OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物以外に、Si-OH基が残存したラダー構造、不完全籠型構造及び/又はランダム縮合体のシルセスキオキサン化合物が含まれる場合があるが、本製造方法により得られる本発明のシルセスキオキサン化合物は、それらラダー構造、不完全籠型構造及び/又はランダム縮合体を含んでいてもよい。なお、本製造方法により得られる本発明のシルセスキオキサン化合物は、Si-OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が、好ましくは80質量%以上、より好ましくは90質量%以上であることが液安定性の点から好ましい。
製造方法B
製造方法Bとしては、アミノ基を有する加水分解性シランを用いて、アミノ基を有するシルセスキオキサン化合物を製造する第B1工程、該第B1工程により得られたシルセスキオキサン化合物のアミノ基に、(メタ)アクリロイルオキシ基及びイソシアネート基を有する化合物の該イソシアネート基を反応させる第B2工程を含む製造方法が挙げられる。
製造方法Bとしては、アミノ基を有する加水分解性シランを用いて、アミノ基を有するシルセスキオキサン化合物を製造する第B1工程、該第B1工程により得られたシルセスキオキサン化合物のアミノ基に、(メタ)アクリロイルオキシ基及びイソシアネート基を有する化合物の該イソシアネート基を反応させる第B2工程を含む製造方法が挙げられる。
第B1工程
前記第B1工程に用いるアミノ基を有する加水分解性シランとしては、具体的には例えば、下記一般式(IX)で表される加水分解性シランが挙げられる。
前記第B1工程に用いるアミノ基を有する加水分解性シランとしては、具体的には例えば、下記一般式(IX)で表される加水分解性シランが挙げられる。
[一般式(IX)中、R4及びXは、前記に同じ。
Xは同一でも又は異なっていてもよい。]。
Xは同一でも又は異なっていてもよい。]。
前記第B1工程においてアミノ基を有するシルセスキオキサン化合物を得るためには、具体的には、
前記一般式(IX)で表される加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、又は、
前記一般式(IX)で表される加水分解性シラン、及びアミノ基を有する加水分解性シラン以外の加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、
ことが挙げられる。
前記一般式(IX)で表される加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、又は、
前記一般式(IX)で表される加水分解性シラン、及びアミノ基を有する加水分解性シラン以外の加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、
ことが挙げられる。
前記アミノ基を有する加水分解性シラン以外の加水分解性シランとしては、前記アミノ基を有する加水分解性シランとともに加水分解縮合することによりシルセスキオキサン化合物を製造できるものであれば特に限定されるものではない。具体的には例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等のアルキルトリアルコキシシラン等が挙げられる。
前記触媒としては、塩基性触媒が好適に用いられる。塩基性触媒としては、具体的には例えば、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等の水酸化アンモニウム塩、テトラブチルアンモニウムフルオリド等のフッ化アンモニウム塩などが挙げられる。
前記触媒の使用量は特に限定されるものではないが、多すぎるとコスト高、除去が困難等の問題があり、一方、少なすぎると反応が遅くなってしまう。そのため、触媒の使用量は、好ましくは加水分解性シラン1モルに対して0.0001~1.0モル、より好ましくは0.0005~0.1モルの範囲である。
加水分解縮合する場合は水を使用する。加水分解性シランと水との量比は、特に限定されるものでない。水の使用量は、加水分解性シラン1モルに対し、好ましくは水0.1~100モル、さらに好ましくは1.5~3モルの割合である。水の量が少なすぎると、反応が遅くなり、目的とするシルセスキオキサンの収率が低くなるおそれがあり、水の量が多すぎると高分子量化し、所望とする構造の生成物が減少するおそれがある。また、使用する水は塩基性触媒を水溶液として用いる場合はその水で代用してもよいし、別途水を加えてもよい。
前記加水分解縮合において、有機溶媒は使用してもよく、又は使用しなくてもよい。有機溶媒を用いることは、ゲル化を防止する点及び製造時の粘度を調節できる点から好ましい。有機溶媒としては、極性有機溶媒、非極性有機溶媒を単独又は混合物として用いることができる。
極性有機溶媒としてはメタノール、エタノール、2-プロパノール等の低級アルコール類、アセトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン等のエーテル類が用いられるが、特にアセトン及びテトラヒドロフランは沸点が低く系が均一になり反応性が向上することから好ましい。非極性有機溶媒としては、炭化水素系溶媒が好ましく、トルエン、キシレン等の水よりも沸点が高い有機溶媒が好ましく、特にトルエン等の水と共沸する有機溶媒は系内から水を効率よく除去できるため好ましい。特に、極性有機溶媒と非極性有機溶媒とを混合することで、前述したそれぞれの利点が得られるため混合溶媒として用いることが好ましい。
加水分解縮合時の反応温度としては0~200℃、好ましくは10~200℃、更に好ましくは、10~120℃である。
加水分解縮合反応では、加水分解と共に縮合反応が進行し、加水分解性シランの加水分解性基[具体的には例えば、前記一般式(IX)中のX]のXの大部分、好ましくは100%がヒドロキシル基(OH基)に加水分解され、更にそのOH基の大部分、好ましくは80%以上、より好ましくは90%以上、特に好ましくは100%を縮合させることが液安定性の点から好ましい。
第B2工程
前記第B2工程では、具体的には例えば、前記第B1工程により得られるケイ素原子に直接に結合した有機基として下記一般式(X)で表される有機基を有するシルセスキオキサン化合物のアミノ基に、下記一般式(XI)で表される化合物のイソシアネート基を反応させる。
前記第B2工程では、具体的には例えば、前記第B1工程により得られるケイ素原子に直接に結合した有機基として下記一般式(X)で表される有機基を有するシルセスキオキサン化合物のアミノ基に、下記一般式(XI)で表される化合物のイソシアネート基を反応させる。
[一般式(X)中、R4は、前記に同じ。
一般式(XI)中、R2及びR3は、前記に同じ。]。
一般式(XI)中、R2及びR3は、前記に同じ。]。
この反応を行うことにより、ケイ素原子に直接に結合した有機基として前記一般式(II)で表される有機基を有するシルセスキオキサン化合物を得ることができる。
前記反応は、通常、前記一般式(X)で表される有機基1モルに対して、前記一般式(XI)で表される化合物を2モル以上用いて行われる。
前記反応は、アミノ基とイソシアネート基を反応させる常法に従って行うことができる。反応温度は、例えば、-78℃~200℃、好ましくは-78℃~100℃、更に好ましくは、-10℃~40℃である。また、この反応は圧力によらず実施できるが、0.02~0.2MPa、特に0.08~0.15MPaの圧力範囲が好ましい。当該反応は非常に速いため、通常、滴下が終了するとすぐに反応は終了する。
前記反応では適宜溶媒を使用しても良い。溶媒としては、具体的には例えば、酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル類;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル類;メタノール、エタノール、プロパノール等のアルコール類、トルエン、キシレン等の芳香族炭化水素類、脂肪族炭化水素類等が挙げられる。
以上の製造方法により本発明のシルセスキオキサン化合物が製造される。
ここで、前記第B1工程の加水分解縮合において100%縮合しない場合には、製造方法Bにより得られる生成物には、Si-OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物以外に、Si-OH基が残存したラダー構造、不完全籠型構造及び/又はランダム縮合体のシルセスキオキサン化合物が含まれる場合があるが、製造方法Bにより得られる本発明のシルセスキオキサン化合物は、それらラダー構造、不完全籠型構造及び/又はランダム縮合体を含んでいてもよい。なお、本製造方法により得られる本発明のシルセスキオキサン化合物は、Si-OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が、好ましくは80質量%以上、より好ましくは90質量%以上であることが液安定性の点から好ましい。
上記各反応により得られる目的とする化合物は、通常の分離手段により反応系内より分離され、さらに精製することができる。この分離及び精製手段としては、例えば、蒸留法、溶媒抽出法、希釈法、再結晶法、カラムクロマトグラフィー、イオン交換クロマトグラフィー、ゲルクロマトグラフィー、アフィニティークロマトグラフィー等を用いることができる。
活性エネルギー線硬化性組成物
本発明の活性エネルギー線硬化性組成物は、本発明のシルセスキオキサン化合物、及び光重合開始剤を含有する。
本発明の活性エネルギー線硬化性組成物は、本発明のシルセスキオキサン化合物、及び光重合開始剤を含有する。
本発明の活性エネルギー線硬化性組成物の不揮発分100重量部における本発明のシルセスキオキサン化合物(不揮発分)の使用割合は、特に限定されないが、好ましくは5~99質量部、より好ましくは10~80質量部である。
光重合開始剤
光重合開始剤としては、活性エネルギー線を吸収してラジカルを発生する開始剤であれば特に限定されることなく使用できる。
光重合開始剤としては、活性エネルギー線を吸収してラジカルを発生する開始剤であれば特に限定されることなく使用できる。
前記光重合開始剤としては、例えばベンジル、ジアセチル等のα-ジケトン類;ベンゾイン等のアシロイン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のアシロインエーテル類;チオキサントン、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、チオキサントン-4-スルホン酸等のチオキサントン類;ベンゾフェノン、4,4′-ビス(ジメチルアミノ)ベンゾフェノン、4,4′-ビス(ジエチルアミノ)ベンゾフェノン等のベンゾフェノン類;ミヒラーケトン類;アセトフェノン、2-(4-トルエンスルホニルオキシ)-2-フェニルアセトフェノン、p-ジメチルアミノアセトフェノン、α,α′-ジメトキシアセトキシベンゾフェノン、2,2′-ジメトキシ-2-フェニルアセトフェノン、p-メトキシアセトフェノン、2-メチル〔4-(メチルチオ)フェニル〕-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、α-イソヒドロキシイソブチルフェノン、α,α′-ジクロル-4-フェノキシアセトフェノン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン等のアセトフェノン類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(アシル)フォスフィンオキサイド等のアシルフォスフィンオキサイド類;アントラキノン、1,4-ナフトキノン等のキノン類;フェナシルクロライド、トリハロメチルフェニルスルホン、トリス(トリハロメチル)-s-トリアジン等のハロゲン化合物;ジ-t-ブチルパーオキサイド等の過酸化物等が挙げられる。これらは1種又は2種以上の混合物として使用できる。
前記光重合開始剤の市販品としては、例えば、イルガキュア(IRGACURE)-184、同261、同500、同651、同907、同CGI-1700(チバ スペシャルティ ケミカルズ社製、商品名)、ダロキュア(Darocur)-1173、同1116、同2959、同1664、同4043(メルクジャパン社製、商品名)、カヤキュア(KAYACURE)-MBP、同DETX-S、同DMBI、同EPA、同OA(日本化薬(株)製、商品名)、ビキュア(VICURE)-10、同55〔ストウファー社(STAUFFER Co., LTD.)製、商品名〕、トリゴナル(TRIGONAL)P1〔アクゾ社(AKZO Co., LTD.)製、商品名〕、サンドレイ(SANDORAY)1000〔サンドズ社(SANDOZ Co., LTD.)製、商品名〕、ディープ(DEAP)〔アプジョン社(APJOHN Co., LTD.)製、商品名〕、カンタキュア(QUANTACURE)-PDO、同ITX、同EPD〔ウォードブレキンソプ社(WARD BLEKINSOP Co., LTD.)製、商品名〕等を挙げることができる。
前記光重合開始剤としては、光硬化性の点からチオキサントン類、アセトフェノン類及びアシルフォスフィンオキシド類の1種又は2種以上の混合物であることが好ましく、なかでもアセトフェノン類とアシルフォスフィンオキシド類との混合物であることが特に好適である。
光重合開始剤の使用量は、特に限定されるものではないが、本発明のシルセスキオキサン化合物及び重合性不飽和化合物の総量100質量部に対して、0.5~10質量部が好ましく、さらに好ましくは1~5質量部の範囲である。この範囲の下限値は、活性エネルギー線硬化性向上の点で意義があり、上限値はコスト及び深部硬化性の点で意義がある。
重合性不飽和化合物
また本発明の活性エネルギー線硬化性組成物は、本発明のシルセスキオキサン化合物以外の重合性不飽和化合物を含有していてもよい。該重合性不飽和化合物としては、本発明のシルセスキオキサン化合物以外の化合物であって、その化学構造中に重合性不飽和二重結合を少なくとも1つ有する化合物であれば特に限定されない。
また本発明の活性エネルギー線硬化性組成物は、本発明のシルセスキオキサン化合物以外の重合性不飽和化合物を含有していてもよい。該重合性不飽和化合物としては、本発明のシルセスキオキサン化合物以外の化合物であって、その化学構造中に重合性不飽和二重結合を少なくとも1つ有する化合物であれば特に限定されない。
前記重合性不飽和化合物としては、単官能重合性不飽和化合物、多官能重合性不飽和化合物が挙げられる。
単官能重合性不飽和化合物としては、例えば、一価アルコールと(メタ)アクリル酸とのエステル化物等が挙げられる。具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、N-アクリロイルオキシエチルヘキサヒドロフタルイミド等が挙げられる。また、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等の水酸基含有(メタ)アクリレート;アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、2-カルボキシエチル(メタ)アクリレート、2-カルボキシプロピル(メタ)アクリレート、5-カルボキシペンチル(メタ)アクリレート等のカルボキシル基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有重合性不飽和化合物;スチレン、α-メチルスチレン、ビニルトルエン、α-クロルスチレン等のビニル芳香族化合物;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N-t-ブチルアミノエチル(メタ)アクリレート等の含窒素アルキル(メタ)アクリレート;アクリルアミド、メタクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリルアミド等の重合性アミド類等が挙げられる。
多官能重合性不飽和化合物としては、例えば、多価アルコールと(メタ)アクリル酸とのエステル化物等が挙げられる。具体的には、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド変性ジ(メタ)アクリレート等のジ(メタ)アクリレート化合物;グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ε-カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート等のトリ(メタ)アクリレート化合物;ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;その他、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。さらに、ウレタン(メタ)アクリレート樹脂、エポキシ(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂等が挙げられる。ウレタン(メタ)アクリレート樹脂は、例えばポリイソシアネート化合物、ヒドロキシルアルキル(メタ)アクリレート及びポリオール化合物を原料として用い、イソシアネート基に対してヒドロキシル基が等モル量もしくは過剰になるような量で反応させることで得ることができる。これら重合性不飽和化合物は単独で又は2種以上組合せて使用することができる。
前記重合性不飽和化合物を含有する場合の使用量は特に限定されるものではないが、得られる塗膜の物性の点から、前記本発明のシルセスキオキサン化合物の不揮発分100質量部に対して、0.1~1000質量部が好ましく、20~200質量部がさらに好ましい。
本発明の活性エネルギー線硬化性組成物は、必要に応じて各種添加剤を配合してもよく、所望により溶剤で希釈しても良い。添加剤としては、例えば、増感剤、紫外線吸収剤、光安定剤、重合禁止剤、酸化防止剤、消泡剤、表面調整剤、可塑剤、着色剤等が挙げられる。
希釈に用いる溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル類;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル類;芳香族炭化水素類、脂肪族炭化水素類等が挙げられる。これらは、粘度の調整、塗布性の調整等を目的に適宜組み合わせて使用することができる。
本発明の活性エネルギー線硬化性組成物の不揮発分は特に限定されるものではない。例えば、好ましくは20~100質量%であり、さらに好ましくは25~70質量%である。これら範囲は、塗膜の平滑性及び乾燥時間の短縮化の点で意義がある。
本発明の活性エネルギー線硬化性組成物を被塗物表面へ塗布する方法は特に限定されるものではなく、例えば、ローラー塗装、ロールコーター塗装、スピンコーター塗装、カーテンロールコーター塗装、スリットコーター塗装、スプレー塗装、静電塗装、浸漬塗装、シルク印刷、スピン塗装等が挙げられる。
被塗物としては、特に限定されるものではない。具体的には例えば、金属、セラミックス、ガラス、プラスチック、木材等が挙げられる。
前記活性エネルギー線硬化性組成物から塗膜を形成する際、必要に応じて乾燥を行うことができる。乾燥は、添加している溶剤を除去できる条件であれば特に限定されるものではない。例えば、20~100℃の乾燥温度において3~20分の乾燥時間で行うことができる。
塗膜の膜厚は目的に応じて適宜設定される。例えば膜厚は1~100μmが好ましく、1~20μmがさらに好ましい。膜厚がこれら範囲の下限値以上の場合には、塗膜の平滑性及び外観に優れる。またこれら範囲の上限値以下の場合には塗膜の硬化性、耐割れ性に優れる。
活性エネルギー線硬化性組成物を被塗物表面に塗布し、必要に応じて乾燥させた後に、活性エネルギー線照射を行い硬化塗膜を形成する。活性エネルギー線照射の照射源及び照射量は特に限定されるものではない。例えば活性エネルギー線の照射源としては、超高圧、高圧、中圧、低圧の水銀灯、ケミカルランプ、カーボンアーク灯、キセノン灯、メタルハライド灯、蛍光灯、タングステン灯、太陽光等が挙げられる。照射量は、例えば好ましくは5~20,000J/m2、さらに好ましくは100~10,000J/m2の範囲が挙げられる。
活性エネルギー線照射は、大気雰囲気下で行なってもよく、また不活性ガス雰囲気下で行なっても良い。不活性ガスとしては、窒素、二酸化炭素等が挙げられる。不活性ガス雰囲気下での活性エネルギー線照射が、硬化性の点から好ましい。
また、活性エネルギー線照射後、必要に応じて塗膜を加熱してもよい。加熱をすることによって、活性エネルギー線照射による塗膜の硬化により発生した塗膜の歪みを緩和することができる。さらにこの加熱によって塗膜の硬度、又は密着性の向上を行なうことができる場合がある。加熱は、通常、150~250℃の雰囲気温度で1~30分間の条件で行なうことができる。
以下、実施例を挙げて本発明をさらに詳細に説明する。尚、「部」及び「%」は、別記しない限り「質量部」及び「質量%」を示す。なお、本実施例における構造解析及び測定は、本明細書に記載の前記分析装置に加え、以下の分析装置及び測定方法により行った。
(29Si-NMR、1H-NMR分析)
装置:JEOL社製 FT-NMR EX-400
溶媒:CDCl3
内部標準物質:テトラメチルシラン
(FT-IR分析)
装置:日本分光社製 FT/IR-610
装置:JEOL社製 FT-NMR EX-400
溶媒:CDCl3
内部標準物質:テトラメチルシラン
(FT-IR分析)
装置:日本分光社製 FT/IR-610
(SP値の測定方法)
本実施例におけるSP値とは溶解性パラメーターのことであり、簡便な実測法である濁点滴定により測定することができ、下記のK.W.SUH、J.M.CORBETTの式(Journalof Applied Polymer Science,12,2359,1968の記載参照)に従い算出される値である。式 SP=(√Vml・δH+√Vmh・δD)/(√Vml+√Vmh)
濁点滴定では、試料0.5gをアセトン10mlに溶解した中に、n-ヘキサンを加えていき、濁点での滴定量H(ml)を読み、同様にアセトン溶液中に脱イオン水を加えたときの濁点における滴定量D(ml)を読み、これらを下記式に適用し、Vml、Vmh、δH、δDを算出する。なお、各溶剤の分子容(mol/ml)は、アセトン:74.4、n-ヘキサン:130.3、脱イオン水:18であり、各溶剤のSPは、アセトン:9.75、n-ヘキサン:7.24、脱イオン水:23.43である。Vml=74.4×130.3/((1-VH)×130.3+VH×74.4)
Vmh=74.4×18/((1-VD)×18+VD×74.4)
VH=H/(10+H)
VD=D/(10+D)
δH=9.75×10/(10+H)+7.24×H/(10+H)
δD=9.75×10/(10+D)+23.43×D/(10+D)
本実施例におけるSP値とは溶解性パラメーターのことであり、簡便な実測法である濁点滴定により測定することができ、下記のK.W.SUH、J.M.CORBETTの式(Journalof Applied Polymer Science,12,2359,1968の記載参照)に従い算出される値である。式 SP=(√Vml・δH+√Vmh・δD)/(√Vml+√Vmh)
濁点滴定では、試料0.5gをアセトン10mlに溶解した中に、n-ヘキサンを加えていき、濁点での滴定量H(ml)を読み、同様にアセトン溶液中に脱イオン水を加えたときの濁点における滴定量D(ml)を読み、これらを下記式に適用し、Vml、Vmh、δH、δDを算出する。なお、各溶剤の分子容(mol/ml)は、アセトン:74.4、n-ヘキサン:130.3、脱イオン水:18であり、各溶剤のSPは、アセトン:9.75、n-ヘキサン:7.24、脱イオン水:23.43である。Vml=74.4×130.3/((1-VH)×130.3+VH×74.4)
Vmh=74.4×18/((1-VD)×18+VD×74.4)
VH=H/(10+H)
VD=D/(10+D)
δH=9.75×10/(10+H)+7.24×H/(10+H)
δD=9.75×10/(10+D)+23.43×D/(10+D)
(実施例1)
還流冷却器、温度計、空気導入管及び攪拌機を取り付けたセパラブルフラスコに、3-アミノプロピルトリメトキシシラン400部、2-プロピルアルコール1,600部、テトラブチルアンモニウムフルオリド2部、及び脱イオン水60部を仕込み、60℃で8時間反応させた。減圧蒸留にて不揮発分60%となるまで濃縮した後、酢酸ブチル160部を配合し、減圧蒸留を継続し、生成物(P1)の不揮発分60%溶液を得た。
還流冷却器、温度計、空気導入管及び攪拌機を取り付けたセパラブルフラスコに、3-アミノプロピルトリメトキシシラン400部、2-プロピルアルコール1,600部、テトラブチルアンモニウムフルオリド2部、及び脱イオン水60部を仕込み、60℃で8時間反応させた。減圧蒸留にて不揮発分60%となるまで濃縮した後、酢酸ブチル160部を配合し、減圧蒸留を継続し、生成物(P1)の不揮発分60%溶液を得た。
還流冷却器、温度計、空気導入管及び攪拌機を取り付けたセパラブルフラスコに、酢酸ブチル400部、及び2-イソシアネートエチルアクリレート310部を配合し、氷浴で攪拌しながら10℃まで冷却した。ここに生成物(P1)の不揮発分60%溶液400部を、反応温度を20℃以下に維持しながら滴下した。60℃で1時間攪拌した後、300メッシュのフィルターにてろ過し、生成物(P2)の不揮発分50%溶液を得た。
生成物(P1)について29Si-NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する-70ppm付近のピークと、一つのヒドロキシシリル基を有するT2構造に由来する-59ppmのピークが確認された。これらのピークの積分強度比は、T3構造に由来するピーク/T2構造に由来するピーク=90/10であった。また、全アミン価は508mgKOH/gであった。
生成物(P1)の重量平均分子量は1,500であった。
生成物(P2)について29Si-NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する-70ppm付近のピークと、一つのヒドロキシシリル基を有するT2構造に由来する-59ppmのピークが確認された。これらのピークの積分強度比は、T3構造に由来するピーク/T2構造に由来するピーク=90/10であった。全アミン価は0mgKOH/g、NCO価は0mgNCO/gであった。
生成物(P2)について1H-NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素-炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するアクリロイルオキシ基の炭素-炭素不飽和結合のモル比率は1.01であった。
生成物(P2)の重量平均分子量は3,000であった。
生成物(P2)についての前記29Si-NMR、1H-NMR、重量平均分子量等の結果から、生成物(P2)が、ケイ素原子に直接に結合した有機基のほとんど全てが下記式(XII)で表される有機基
を有する重量平均分子量3,000のシルセスキオキサン化合物であることが確認された。得られたシルセスキオキサン化合物のSP値は13.8であった。
(実施例2)
還流冷却器、温度計、空気導入管及び攪拌機を取り付けたセパラブルフラスコに、2-ヒドロキシエチルアクリレート455部、イソホロンジイソシアネート870部、メトキノン1部、及び酢酸ブチル883部を仕込み、乾燥空気を吹き込みながら60℃で24時間反応させ、生成物(P3)の不揮発分60%溶液を得た。生成物(P3)のNCO価は144mgNCO/gであった。
還流冷却器、温度計、空気導入管及び攪拌機を取り付けたセパラブルフラスコに、2-ヒドロキシエチルアクリレート455部、イソホロンジイソシアネート870部、メトキノン1部、及び酢酸ブチル883部を仕込み、乾燥空気を吹き込みながら60℃で24時間反応させ、生成物(P3)の不揮発分60%溶液を得た。生成物(P3)のNCO価は144mgNCO/gであった。
還流冷却器、温度計、空気導入管及び攪拌機を取り付けたセパラブルフラスコに、酢酸ブチル326部、及び生成物(P3)の不揮発分60%溶液1,230部を配合し、氷浴で攪拌しながら10℃まで冷却した。ここに生成物(P1)の不揮発分60%溶液400部を、反応温度を20℃以下に維持しながら滴下した。60℃で1時間攪拌した後、300メッシュのフィルターにてろ過し、生成物(P4)の不揮分50%溶液を得た。
生成物(P4)について29Si-NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する-70ppm付近のピークと、一つのヒドロキシシリル基を有するT2構造に由来する-59ppmのピークが確認された。これらのピークの積分強度比は、T3構造に由来するピーク/T2構造に由来するピーク=90/10であった。全アミン価は0mgKOH/g、NCO価は0mgNCO/gであった。
生成物(P4)について1H-NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素-炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するアクリロイルオキシ基の炭素-炭素不飽和結合のモル比率は1.02であった。
生成物(P4)の重量平均分子量は5,000であった。
生成物(P4)についての前記29Si-NMR、1H-NMR、重量平均分子量等の結果から、生成物(P4)が、ケイ素原子に直接に結合した有機基のほとんど全てが下記式(XIII)で表される有機基
[式(XIII)中、R8はイソロホロンジイソシアネート残基を示す。]
を有する重量平均分子量5,000のシルセスキオキサン化合物であることが確認された。得られたシルセスキオキサン化合物のSP値は12.9であった。
を有する重量平均分子量5,000のシルセスキオキサン化合物であることが確認された。得られたシルセスキオキサン化合物のSP値は12.9であった。
(比較例1)
還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、トルエン300部、テトラブチルアンモニウムヒドロキシド40%メタノール溶液30部、及び脱イオン水12部を入れ、氷浴で2℃まで冷却した。ここにテトラヒドロフラン300部を加えて希釈した3-アクリロイルオキシプロピルトリメトキシシラン110部を投入し、20℃にて24時間反応させた。減圧蒸留にて揮発分を除去した後、プロピレングリコールモノメチルエーテルアセテート100部に溶解し、生成物(P5)の不揮発分50%溶液を得た。
還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、トルエン300部、テトラブチルアンモニウムヒドロキシド40%メタノール溶液30部、及び脱イオン水12部を入れ、氷浴で2℃まで冷却した。ここにテトラヒドロフラン300部を加えて希釈した3-アクリロイルオキシプロピルトリメトキシシラン110部を投入し、20℃にて24時間反応させた。減圧蒸留にて揮発分を除去した後、プロピレングリコールモノメチルエーテルアセテート100部に溶解し、生成物(P5)の不揮発分50%溶液を得た。
生成物(P5)について29Si-NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する-70ppm付近のピークと、一つのヒドロキシシリル基を有するT2構造に由来する-59ppmのピークが確認された。これらのピークの積分強度比は、T3構造に由来するピーク/T2構造に由来するピーク=90/10であった。
また、生成物(P5)について1H-NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素-炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するアクリロイルオキシ基の炭素-炭素不飽和結合のモル比率は、1.00であった。
また、生成物(P5)の重量平均分子量は1,500であった。
生成物(P5)についての前記29Si-NMR、1H-NMR、FT-IR、重量平均分子量等の結果から、生成物(P5)が、ケイ素原子に直接に結合した有機基の全てが下記式(XIV)で表される有機基
を有する重量平均分子量1,500のシルセスキオキサン化合物であることが確認された。得られたシルセスキオキサン化合物のSP値は9.5であった。
(実施例3)
実施例1で得られた生成物(P2)の不揮発分50%溶液と下記の重合性不飽和化合物(A1)を、生成物(P2)と重合性不飽和化合物(A1)の質量比が1:1になるように混合し、40℃で24時間攪拌して、混合溶液を得た。該混合溶液の相溶性を評価することにより、実施例1で得られた生成物(P2)と重合性不飽和化合物との溶液状態における相溶性を評価した。評価は、目視にて相溶状態を観察し、下記の基準に従って行った。評価結果を表1に示した。
実施例1で得られた生成物(P2)の不揮発分50%溶液と下記の重合性不飽和化合物(A1)を、生成物(P2)と重合性不飽和化合物(A1)の質量比が1:1になるように混合し、40℃で24時間攪拌して、混合溶液を得た。該混合溶液の相溶性を評価することにより、実施例1で得られた生成物(P2)と重合性不飽和化合物との溶液状態における相溶性を評価した。評価は、目視にて相溶状態を観察し、下記の基準に従って行った。評価結果を表1に示した。
また、前記と同様にして、生成物(P2)と下記の重合性不飽和化合物(A2)から(A8)の各々を混合し、各混合溶液を得た。そして、該混合溶液の相溶性を前記と同様の基準にて評価した。評価結果を表1に示した。
<相溶性の判定>
○:均一、透明であり、相溶性は良好
△:わずかに濁りがある、又は振った時に揺らぎが見え、相溶性は良好ではない
×:かなり濁っている、又は分離、凝集、沈降物、ゲル化のいずれか1つ以上が見られ、相溶性は悪い
○:均一、透明であり、相溶性は良好
△:わずかに濁りがある、又は振った時に揺らぎが見え、相溶性は良好ではない
×:かなり濁っている、又は分離、凝集、沈降物、ゲル化のいずれか1つ以上が見られ、相溶性は悪い
<重合性不飽和化合物>
A1:HDDA(商品名、ダイセルサイテック社製、1,6-ヘキサンジオールジアクリレート)
A2:アロニックスM-140(商品名、東亜合成社製、N-アクリロイルオキシエチルヘキサヒドロフタルイミド)
A3:アロニックスM-325[商品名、東亜合成社製、ε-カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート]
A4:トリメチロールプロパンジアクリレート
A5:ペンタエリスリトールジアクリレート
A6:ペンタエリスリトールトリアクリレート
A7:アロニックスM-403(商品名、東亜合成社製、ジペンタエリスリトールペンタ及びヘキサアクリレート)
A8:アロニックスM-1200(商品名、東亞合成社製、ニ官能ウレタンアクリレートオリゴマー)
A1:HDDA(商品名、ダイセルサイテック社製、1,6-ヘキサンジオールジアクリレート)
A2:アロニックスM-140(商品名、東亜合成社製、N-アクリロイルオキシエチルヘキサヒドロフタルイミド)
A3:アロニックスM-325[商品名、東亜合成社製、ε-カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート]
A4:トリメチロールプロパンジアクリレート
A5:ペンタエリスリトールジアクリレート
A6:ペンタエリスリトールトリアクリレート
A7:アロニックスM-403(商品名、東亜合成社製、ジペンタエリスリトールペンタ及びヘキサアクリレート)
A8:アロニックスM-1200(商品名、東亞合成社製、ニ官能ウレタンアクリレートオリゴマー)
(実施例4、比較例2)
実施例3と同様にして、実施例2、比較例1で得られた各生成物(P4、P5)について、重合性不飽和化合物との溶液状態における相溶性を評価した。評価結果を表1に示した。
実施例3と同様にして、実施例2、比較例1で得られた各生成物(P4、P5)について、重合性不飽和化合物との溶液状態における相溶性を評価した。評価結果を表1に示した。
(実施例5)
本発明のシルセスキオキサン化合物を含む活性エネルギー線硬化性組成物について、重合性不飽和化合物を混合した場合の相溶性を評価した。試験方法を以下に示す。
本発明のシルセスキオキサン化合物を含む活性エネルギー線硬化性組成物について、重合性不飽和化合物を混合した場合の相溶性を評価した。試験方法を以下に示す。
実施例1で得られた生成物(P2)の不揮発分50%溶液 100部、重合性不飽和化合物(A1)50部、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(光重合開始剤)3.0部、及び2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(光重合開始剤)0.5部を配合し、酢酸エチルで不揮発分30%に希釈した後に攪拌し、活性エネルギー線硬化性組成物を作成した。
次いで中塗り板(注1)に、前記活性エネルギー線硬化性組成物をアプリケーターで乾燥膜厚が10μmとなる条件で塗装し、80℃で10分間乾燥して溶剤を除去した後、高圧水銀灯(80W/cm)で、紫外線(ピークトップ波長365nm)を照射量20,000J/m2で照射して、塗膜を硬化させた。硬化させた塗膜の外観を目視で観察し、相溶状態を下記の基準に従って評価した。評価結果を表2に示す。
また、重合性不飽和化合物(A1)を重合性不飽和化合物(A2)から(A8)の各々に替えた以外は、前記と同様の配合で、各重合性不飽和化合物(A2)から(A8)の各々を含む各活性エネルギー線硬化性組成物を作成した。次いで、前記と同様の条件で硬化させた塗膜を作成し、該塗膜を目視で観察し、相溶状態を下記の基準に従って評価した。評価結果を表2に示す。
(注1)中塗り板:パルボンド#3020(商品名、日本パーカライジング社製、りん酸亜鉛処理剤)で化成処理した0.8×150×70mmの冷延鋼板に、エレクロンGT-10(商品名、関西ペイント社製、カチオン電着塗料)を膜厚2μmとなるように電着塗装し、170℃で30分焼付け乾燥を行なって電着塗膜を形成させた。該電着塗膜上にWP-300(商品名、関西ペイント社製、水性中塗り塗料)を、硬化膜厚が25μmとなるようにスプレー塗装した後、電気熱風乾燥器で140℃×30分焼付け乾燥を行ない中塗り板を作成した。
<相溶性の判定>
○:均一、透明であり、相溶性は良好
△:わずかに濁りがあり、相溶性は良好ではない
×:かなりに濁っている、又は凝集物、ブツ、はじきのいずれか1つ以上が見られ、相溶性は悪い
○:均一、透明であり、相溶性は良好
△:わずかに濁りがあり、相溶性は良好ではない
×:かなりに濁っている、又は凝集物、ブツ、はじきのいずれか1つ以上が見られ、相溶性は悪い
(実施例6、比較例3)
生成物(P2)の不揮発分50%溶液を、実施例2、比較例1で得られた生成物(P4、P5)の溶液の各々に替えた以外は、実施例5と同様にして、活性エネルギー線硬化性組成物を作成した。次いで、実施例5と同様の条件で該活性エネルギー線硬化性組成物を硬化させた塗膜を作成し、重合性不飽和化合物を混合した場合の相溶性を評価した。評価結果を表2に示す。
生成物(P2)の不揮発分50%溶液を、実施例2、比較例1で得られた生成物(P4、P5)の溶液の各々に替えた以外は、実施例5と同様にして、活性エネルギー線硬化性組成物を作成した。次いで、実施例5と同様の条件で該活性エネルギー線硬化性組成物を硬化させた塗膜を作成し、重合性不飽和化合物を混合した場合の相溶性を評価した。評価結果を表2に示す。
(実施例7~10)
実施例5における活性エネルギー線硬化性組成物の作成方法、硬化塗膜の作成方法と同様にして、表3に示す配合の活性エネルギー線硬化性組成物を作成して、中塗り板(注1)上に乾燥膜厚10μmの硬化塗膜を形成し、試験板を得た。得られた各試験板について、耐擦傷性及び耐候性を評価した。評価結果を表3に示す。
実施例5における活性エネルギー線硬化性組成物の作成方法、硬化塗膜の作成方法と同様にして、表3に示す配合の活性エネルギー線硬化性組成物を作成して、中塗り板(注1)上に乾燥膜厚10μmの硬化塗膜を形成し、試験板を得た。得られた各試験板について、耐擦傷性及び耐候性を評価した。評価結果を表3に示す。
<耐擦傷性>
各塗膜に市販のスチールウール(#0000)をこすりつけ、塗膜を目視で観察し下記の基準に従って評価した。
○:傷、ワレ、剥がれがない、若しくは傷が僅かにあるが実用上問題が無い
△:傷が認められる
×:ワレ、剥がれ、著しい傷等が認められる
各塗膜に市販のスチールウール(#0000)をこすりつけ、塗膜を目視で観察し下記の基準に従って評価した。
○:傷、ワレ、剥がれがない、若しくは傷が僅かにあるが実用上問題が無い
△:傷が認められる
×:ワレ、剥がれ、著しい傷等が認められる
<耐候性>
得られた各試験板ついてサンシャインウェザーオメーターを用いて、1000時間試験を行った後に、塗膜を目視で観察し下記の基準に従って評価した。
○:異常無し、若しくはフクレ、変色、ツヤ変化、剥がれ等が僅かに認められるが実用上問題が無い
△:フクレ、変色、ツヤ変化、剥がれ等が認められる
×:フクレ、変色、ツヤ変化、剥がれ等が著しく認められる
得られた各試験板ついてサンシャインウェザーオメーターを用いて、1000時間試験を行った後に、塗膜を目視で観察し下記の基準に従って評価した。
○:異常無し、若しくはフクレ、変色、ツヤ変化、剥がれ等が僅かに認められるが実用上問題が無い
△:フクレ、変色、ツヤ変化、剥がれ等が認められる
×:フクレ、変色、ツヤ変化、剥がれ等が著しく認められる
Claims (6)
- ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つがウレア結合及び1つの(メタ)アクリロイルオキシ基を有する有機基であることを特徴とするシルセスキオキサン化合物。
- 重量平均分子量が1,000~100,000である請求項1のいずれか1項に記載のシルセスキオキサン化合物。
- 請求項1のいずれか1項に記載のシルセスキオキサン化合物、及び光重合開始剤を含有する活性エネルギー線硬化性組成物。
- 前記シルセスキオキサン化合物以外の重合性不飽和化合物をさらに含有する請求項5記載の活性エネルギー線硬化性組成物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010542064A JP5484355B2 (ja) | 2008-12-10 | 2009-11-10 | 重合性官能基を有するシルセスキオキサン化合物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008314303 | 2008-12-10 | ||
JP2008-314303 | 2008-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010067685A1 true WO2010067685A1 (ja) | 2010-06-17 |
Family
ID=42242677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/069140 WO2010067685A1 (ja) | 2008-12-10 | 2009-11-10 | 重合性官能基を有するシルセスキオキサン化合物 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5484355B2 (ja) |
TW (1) | TW201026712A (ja) |
WO (1) | WO2010067685A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016047415A1 (ja) * | 2014-09-26 | 2016-03-31 | Dic株式会社 | 水性ウレタン樹脂組成物、コーティング剤及び物品 |
WO2017170249A1 (ja) * | 2016-03-28 | 2017-10-05 | 東レ株式会社 | 感光性樹脂組成物 |
JP2018517737A (ja) * | 2016-01-28 | 2018-07-05 | エルジー・ケム・リミテッド | 多面体オリゴマーシルセスキオキサンの製造方法 |
JP2019038867A (ja) * | 2017-08-22 | 2019-03-14 | 信越化学工業株式会社 | オルガノポリシロキサン化合物およびそれを含む活性エネルギー線硬化性組成物 |
JP2020079209A (ja) * | 2018-11-12 | 2020-05-28 | 信越化学工業株式会社 | 重合性官能基を有する有機ケイ素化合物およびそれを含む活性エネルギー線硬化性組成物 |
KR20210144791A (ko) | 2019-05-17 | 2021-11-30 | 후지필름 가부시키가이샤 | 수지 조성물, 하드 코트 필름, 및 폴리오가노실세스퀴옥세인 |
WO2024009810A1 (ja) * | 2022-07-06 | 2024-01-11 | 信越化学工業株式会社 | 二官能性オルガノポリシロキサン、二重硬化性オルガノポリシロキサン組成物及び硬化物並びに電子機器 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62249992A (ja) * | 1986-04-24 | 1987-10-30 | Nippon Kayaku Co Ltd | 新規なシリコンウレタン(メタ)アクリレ−ト,これを用いた樹脂組成物およびコ−テイング剤 |
JPH04202585A (ja) * | 1990-11-30 | 1992-07-23 | Sekisui Chem Co Ltd | 湿気硬化型接着剤組成物 |
JPH04244089A (ja) * | 1991-01-30 | 1992-09-01 | Shin Etsu Chem Co Ltd | スチレン骨格含有アルコキシシラン化合物およびその製造方法 |
JPH08507563A (ja) * | 1993-03-11 | 1996-08-13 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | 放射線硬化性アクリレート/シリコーンの恒久的再▲剥▼離性感圧接着剤 |
JPH11171937A (ja) * | 1997-12-12 | 1999-06-29 | Jsr Corp | 液状硬化性樹脂組成物 |
JPH11335381A (ja) * | 1998-05-22 | 1999-12-07 | Nitto Boseki Co Ltd | 耐熱耐水性向上シランカップリング剤 |
JP2002003816A (ja) * | 2000-05-18 | 2002-01-09 | Natl Starch & Chem Investment Holding Corp | シラン、カルバメートまたは尿素および供与体または受容体官能基を含有する接着促進剤 |
WO2002102812A1 (en) * | 2001-06-13 | 2002-12-27 | Konishi Co., Ltd. | Unsaturated organic compounds having hydrolyzable silicon-containing groups, process for producing the same, silicon-containing polymers and emulsions thereof |
JP2004091644A (ja) * | 2002-08-30 | 2004-03-25 | Natoko Kk | 活性エネルギー線硬化性組成物及びそれに含有されるポリジメチルシロキサン並びに該活性エネルギー線硬化性組成物を用いて形成される硬化塗膜及び塗装物品 |
JP2008031307A (ja) * | 2006-07-28 | 2008-02-14 | Three Bond Co Ltd | 光硬化性オルガノポリシロキサン組成物 |
JP2009288703A (ja) * | 2008-05-30 | 2009-12-10 | Fujifilm Corp | 着色硬化性組成物、カラーフィルタ、及び、固体撮像素子 |
-
2009
- 2009-11-10 JP JP2010542064A patent/JP5484355B2/ja not_active Expired - Fee Related
- 2009-11-10 WO PCT/JP2009/069140 patent/WO2010067685A1/ja active Application Filing
- 2009-11-19 TW TW98139301A patent/TW201026712A/zh unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62249992A (ja) * | 1986-04-24 | 1987-10-30 | Nippon Kayaku Co Ltd | 新規なシリコンウレタン(メタ)アクリレ−ト,これを用いた樹脂組成物およびコ−テイング剤 |
JPH04202585A (ja) * | 1990-11-30 | 1992-07-23 | Sekisui Chem Co Ltd | 湿気硬化型接着剤組成物 |
JPH04244089A (ja) * | 1991-01-30 | 1992-09-01 | Shin Etsu Chem Co Ltd | スチレン骨格含有アルコキシシラン化合物およびその製造方法 |
JPH08507563A (ja) * | 1993-03-11 | 1996-08-13 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | 放射線硬化性アクリレート/シリコーンの恒久的再▲剥▼離性感圧接着剤 |
JPH11171937A (ja) * | 1997-12-12 | 1999-06-29 | Jsr Corp | 液状硬化性樹脂組成物 |
JPH11335381A (ja) * | 1998-05-22 | 1999-12-07 | Nitto Boseki Co Ltd | 耐熱耐水性向上シランカップリング剤 |
JP2002003816A (ja) * | 2000-05-18 | 2002-01-09 | Natl Starch & Chem Investment Holding Corp | シラン、カルバメートまたは尿素および供与体または受容体官能基を含有する接着促進剤 |
WO2002102812A1 (en) * | 2001-06-13 | 2002-12-27 | Konishi Co., Ltd. | Unsaturated organic compounds having hydrolyzable silicon-containing groups, process for producing the same, silicon-containing polymers and emulsions thereof |
JP2004091644A (ja) * | 2002-08-30 | 2004-03-25 | Natoko Kk | 活性エネルギー線硬化性組成物及びそれに含有されるポリジメチルシロキサン並びに該活性エネルギー線硬化性組成物を用いて形成される硬化塗膜及び塗装物品 |
JP2008031307A (ja) * | 2006-07-28 | 2008-02-14 | Three Bond Co Ltd | 光硬化性オルガノポリシロキサン組成物 |
JP2009288703A (ja) * | 2008-05-30 | 2009-12-10 | Fujifilm Corp | 着色硬化性組成物、カラーフィルタ、及び、固体撮像素子 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016047415A1 (ja) * | 2014-09-26 | 2016-03-31 | Dic株式会社 | 水性ウレタン樹脂組成物、コーティング剤及び物品 |
JPWO2016047415A1 (ja) * | 2014-09-26 | 2017-04-27 | Dic株式会社 | 水性ウレタン樹脂組成物、コーティング剤及び物品 |
US10501583B2 (en) | 2016-01-28 | 2019-12-10 | Lg Chem, Ltd. | Method for preparing polyhedral oligomeric silsesquioxane |
JP2018517737A (ja) * | 2016-01-28 | 2018-07-05 | エルジー・ケム・リミテッド | 多面体オリゴマーシルセスキオキサンの製造方法 |
JPWO2017170249A1 (ja) * | 2016-03-28 | 2019-03-22 | 東レ株式会社 | 感光性樹脂成物 |
KR20180128006A (ko) * | 2016-03-28 | 2018-11-30 | 도레이 카부시키가이샤 | 감광성 수지 조성물 |
WO2017170249A1 (ja) * | 2016-03-28 | 2017-10-05 | 東レ株式会社 | 感光性樹脂組成物 |
US10948821B2 (en) | 2016-03-28 | 2021-03-16 | Toray Industries, Inc. | Photosensitive resin composition |
KR102373030B1 (ko) | 2016-03-28 | 2022-03-11 | 도레이 카부시키가이샤 | 감광성 수지 조성물 |
JP2019038867A (ja) * | 2017-08-22 | 2019-03-14 | 信越化学工業株式会社 | オルガノポリシロキサン化合物およびそれを含む活性エネルギー線硬化性組成物 |
JP2020079209A (ja) * | 2018-11-12 | 2020-05-28 | 信越化学工業株式会社 | 重合性官能基を有する有機ケイ素化合物およびそれを含む活性エネルギー線硬化性組成物 |
JP7021628B2 (ja) | 2018-11-12 | 2022-02-17 | 信越化学工業株式会社 | 重合性官能基を有する有機ケイ素化合物およびそれを含む活性エネルギー線硬化性組成物 |
KR20210144791A (ko) | 2019-05-17 | 2021-11-30 | 후지필름 가부시키가이샤 | 수지 조성물, 하드 코트 필름, 및 폴리오가노실세스퀴옥세인 |
WO2024009810A1 (ja) * | 2022-07-06 | 2024-01-11 | 信越化学工業株式会社 | 二官能性オルガノポリシロキサン、二重硬化性オルガノポリシロキサン組成物及び硬化物並びに電子機器 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010067685A1 (ja) | 2012-05-17 |
TW201026712A (en) | 2010-07-16 |
JP5484355B2 (ja) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5579072B2 (ja) | 重合性官能基を有するシルセスキオキサン化合物 | |
JP5688973B2 (ja) | 重合性官能基を有するシルセスキオキサン化合物 | |
JP5484355B2 (ja) | 重合性官能基を有するシルセスキオキサン化合物 | |
WO2010067684A1 (ja) | 重合性官能基を有するシルセスキオキサン化合物 | |
JP5625182B2 (ja) | 硬化性組成物及び有機ケイ素化合物の製造方法 | |
JP5656878B2 (ja) | 活性エネルギー線硬化性組成物、及び塗装物品 | |
JP5393493B2 (ja) | 活性エネルギー線硬化性組成物、及び塗装物品 | |
JP5907588B2 (ja) | シルセスキオキサン化合物及びこれを含むコーティング組成物 | |
WO2011105401A1 (ja) | コーティング剤組成物 | |
JP2013018848A (ja) | 活性エネルギー線硬化性組成物、及び塗装物品 | |
JP2011144307A (ja) | 活性エネルギー線硬化性組成物、及び塗装物品 | |
Karataş et al. | Preparation and characterization of phosphine oxide containing organosilica hybrid coatings by photopolymerization and sol–gel process | |
JP7390682B2 (ja) | コーティング剤、樹脂部材及びその製造方法 | |
JP5284869B2 (ja) | 重合性官能基及び紫外線吸収性基を有するシルセスキオキサン化合物 | |
JP5270435B2 (ja) | 重合性官能基を有するシルセスキオキサン化合物 | |
WO2011086957A1 (ja) | 活性エネルギー線硬化性組成物、及び塗装物品 | |
JP5643534B2 (ja) | 複層塗膜形成方法及び塗装物品 | |
JP2003327626A (ja) | 光硬化性シルフェニレン組成物およびその硬化物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09831791 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010542064 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09831791 Country of ref document: EP Kind code of ref document: A1 |