WO2017130370A1 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- WO2017130370A1 WO2017130370A1 PCT/JP2016/052595 JP2016052595W WO2017130370A1 WO 2017130370 A1 WO2017130370 A1 WO 2017130370A1 JP 2016052595 W JP2016052595 W JP 2016052595W WO 2017130370 A1 WO2017130370 A1 WO 2017130370A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lead electrode
- heat dissipation
- semiconductor device
- insulating layer
- heat
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/50—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L2224/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49541—Geometry of the lead-frame
- H01L23/49562—Geometry of the lead-frame for devices being provided for in H01L29/00
Definitions
- the technology disclosed in this specification relates to, for example, a hybrid vehicle equipped with an engine and a motor as power sources, or an inverter system (power semiconductor device) used in industrial equipment.
- the lead electrode which is an external terminal
- this configuration leads to an increase in the size of the entire product package.
- Power modules are increasingly required to have high performance, high durability, and downsizing.
- the increase in overall package size due to the increase in current capacity conflicts with the need for downsizing of product size. To do.
- the lead electrode which is an external terminal connected above the semiconductor element with the solder interposed therebetween is not provided with a heat dissipation mechanism. For this reason, the lead electrode becomes high temperature due to heat generation of the semiconductor element or heat generation of the lead electrode itself. As the current capacity increases, the lead electrode is expected to reach a higher temperature. Therefore, in order to prevent heat generation of the lead electrode, for example, it is necessary to increase the width of the electrode or the thickness of the electrode.
- One aspect of the technology disclosed in this specification is a semiconductor element, a lead electrode that is an external terminal connected to the upper surface of the semiconductor element, and a cooling element disposed on the lower surface side of the semiconductor element. And a heat dissipating mechanism that is thermally coupled between the lower surface of the lead electrode on the other end side than the one end and the cooling mechanism and includes at least one insulating layer. .
- One aspect of the technology disclosed in this specification is a semiconductor element, a lead electrode that is an external terminal connected to the upper surface of the semiconductor element, and a cooling element disposed on the lower surface side of the semiconductor element. And a heat dissipating mechanism that is thermally coupled between the lower surface of the lead electrode on the other end side than the one end and the cooling mechanism and includes at least one insulating layer. . According to such a configuration, it is possible to improve the heat dissipation of the semiconductor element and the heat dissipation of the lead electrode which is an external terminal without increasing the product size.
- FIG. 1 is a cross-sectional view schematically illustrating a structure for realizing a semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor element 100, a lead electrode 102 that is an external terminal connected to the upper surface of the semiconductor element 100 and the solder 101, a lower surface of the semiconductor element 100, and a solder 107.
- a heat spreader 105 that is sandwiched and connected, a lead electrode 106 that is connected to the upper surface of the heat spreader 105, an insulating layer 104H that is connected to the lower surface of the heat spreader 105, a heat dissipation material 108F that is connected to the lower surface of the insulating layer 104H, and heat dissipation And a cooling mechanism 109 connected to the lower surface of the material 108F.
- heat generated in the semiconductor element 100 is radiated through the solder 107, the heat spreader 105, the insulating layer 104H, and the heat dissipation material 108F below the semiconductor element 100.
- the lead electrode 102 connected via the solder 101 above the semiconductor element 100 is not provided with a heat dissipation mechanism. Therefore, the lead electrode 102 becomes high temperature due to heat generated by the semiconductor element 100 or heat generated by the lead electrode 102 itself. As the current capacity increases, the lead electrode 102 is expected to reach a higher temperature. Therefore, in order to prevent the lead electrode 102 from generating heat, for example, it is necessary to increase the width of the electrode or the thickness of the electrode.
- FIG. 2 is a cross-sectional view schematically illustrating a structure for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor element 100, a lead electrode 102 to which the upper surface of the semiconductor element 100 and the lower surface of one end are connected with the solder 101 interposed therebetween, and the other end than one end of the lead electrode 102.
- the heat dissipation block 103 connected to the lower surface of the side, the insulating layer 104 at least partially connected to the lower surface of the heat dissipation block 103, and the heat dissipation material 108 connected to the lower surface of the insulating layer 104 are provided.
- the semiconductor device further includes a heat spreader 105 connected to the lower surface of the semiconductor element 100 with the solder 107 interposed therebetween, and a lead electrode 106 connected to the upper surface of the heat spreader 105.
- An insulating layer 104 is connected to the lower surface of the heat spreader 105.
- the insulating layer 104 is continuously formed from the lower surface of the heat spreader 105 to the lower surface of the heat dissipation block 103. That is, in the insulating layer 104, a portion on the lower surface of the heat spreader 105 and a portion on the lower surface of the heat dissipation block 103 are continuously formed.
- the semiconductor device further includes a cooling mechanism 109 connected to the lower surface of the heat dissipation material 108 on the lower surface side of the semiconductor element 100.
- the heat dissipation block 103, the insulating layer 104, and the heat dissipation material 108 are thermally coupled to each other and are disposed between the lower surface of the lead electrode 102 and the other end side of the lead electrode 102 and the cooling mechanism 109. It can be considered as a heat dissipation mechanism.
- the semiconductor element 100 is, for example, a semiconductor such as a metal-oxide-semiconductor field-effect transistor (ie, MOSFET) or an insulated gate bipolar transistor (ie, IGBT). Chip.
- the heat dissipation material 108, the heat dissipation block 103, and the heat spreader 105 are, for example, a metal such as Cu, Ni, Al, or Mo, an alloy thereof, or a stacked structure thereof.
- the cooling mechanism 109 is a structure having, for example, a fin structure inside.
- the heat generated in the semiconductor element 100 is radiated from the lower surface of the semiconductor element 100 to the cooling mechanism 109 via the solder 107, the heat spreader 105, the insulating layer 104, and the heat dissipation material 108. Further, the heat generated by the semiconductor element 100 is radiated from the upper surface of the semiconductor element 100 to the cooling mechanism 109 via the solder 101, the lead electrode 102, the heat dissipation block 103, and the heat dissipation material 108.
- the heat radiation to the cooling mechanism 109 from both the upper surface and the lower surface of the semiconductor element 100 can be realized by radiating heat through such a path.
- heat generated from the lead electrode 102 itself during current application is also radiated to the cooling mechanism 109 via the heat dissipation block 103, the insulating layer 104, and the heat dissipation material 108. Therefore, the temperature rise of the lead electrode 102 can be suppressed.
- the cooling mechanism 109 is connected to the heat radiating material 108 with the heat radiating grease and the air cooling plate interposed therebetween, and the cooling mechanism 109 is connected to the heat radiating material 108 with the heat radiating grease and the water cooling plate interposed therebetween. It can be assumed that the mechanism 109 is connected or that the cooling mechanism 109 is directly connected to the heat dissipation material 108.
- FIG. 3 is a cross-sectional view schematically illustrating a structure for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor element 100, a lead electrode 102A connected to the upper surface of the semiconductor element 100 with the solder 101 interposed therebetween, and a heat dissipation block 103A connected to the lower surface of the lead electrode 102A.
- the insulating layer 104 connected to the lower surface of the heat dissipation block 103A and the heat dissipation material 108 are provided.
- the semiconductor device further includes a heat spreader 105 and a lead electrode 106.
- An insulating layer 104 is connected to the lower surface of the heat spreader 105.
- the semiconductor device further includes a cooling mechanism 109 connected to the lower surface of the heat dissipation material 108.
- a screw receiving shape for fastening an external bus bar (not shown here) is formed in the lead electrode 102A and the heat dissipation block 103A.
- the lead electrode 102A is formed with a hole 200 penetrating from the upper surface to the lower surface of the lead electrode 102A, and the screw hole 201 whose side surface is threaded is formed on the upper surface of the heat dissipation block 103A. It is formed so as to be connected to the through hole 200 of the electrode 102A.
- the heat dissipation block 103A, the insulating layer 104, and the heat dissipation material 108 are also used. Heat is radiated to the cooling mechanism 109. Therefore, the temperature rise of the lead electrode 102A can be suppressed.
- FIG. 4 is a cross-sectional view schematically illustrating a structure for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor element 100, a lead electrode 102B connected to the upper surface of the semiconductor element 100 and the solder 101, and a heat dissipation block 103B connected to the lower surface of the lead electrode 102B.
- the insulating layer 104 connected to the lower surface of the heat dissipation block 103B and the heat dissipation material 108 are provided.
- the semiconductor device further includes a heat spreader 105 and a lead electrode 106.
- An insulating layer 104 is connected to the lower surface of the heat spreader 105.
- the semiconductor device further includes a cooling mechanism 109 connected to the lower surface of the heat dissipation material 108.
- a screw shape for fastening an external bus bar (not shown here) is formed on the lead electrode 102B and the heat dissipation block 103B.
- the lead electrode 102B is formed with a hole 202 penetrating from the upper surface to the lower surface of the lead electrode 102B, and a protrusion 203 whose side surface is threaded is formed on the upper surface of the heat dissipation block 103B. It is formed so as to penetrate through the hole 202 penetrated by 102B.
- the heat dissipation block 103B, the insulating layer 104, and the heat dissipation material 108 are also used. Heat is radiated to the cooling mechanism 109. Therefore, the temperature rise of the lead electrode 102B can be suppressed.
- FIG. 5 is a cross-sectional view schematically illustrating a structure for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor element 100, a lead electrode 102A connected to the upper surface of the semiconductor element 100 with the solder 101 interposed therebetween, and a heat dissipation block 103A connected to the lower surface of the lead electrode 102A.
- an insulating layer 104B connected to the lower surface of the heat dissipating block 103A, and a heat dissipating material 108B connected to the lower surface of the insulating layer 104B.
- the semiconductor device further includes a heat spreader 105 connected to the lower surface of the semiconductor element 100 with the solder 107 interposed therebetween, a lead electrode 106 connected to the upper surface of the heat spreader 105, and an insulating layer 104A connected to the lower surface of the heat spreader 105. And a heat dissipation material 108A connected to the lower surface of the insulating layer 104A.
- the semiconductor device further includes a cooling mechanism 109 connected to the lower surface of the heat dissipation material 108A and the lower surface of the heat dissipation material 108B.
- a screw receiving shape for fastening an external bus bar (not shown here) is formed in the lead electrode 102A and the heat dissipation block 103A.
- a through hole 200 is formed in the lead electrode 102A, and a screw hole 201 having a threaded side surface is connected to the through hole 200 of the lead electrode 102A in the heat dissipation block 103A.
- an insulating layer 104A which is a portion connected to the lower surface of the heat spreader 105
- an insulating layer 104B which is a portion connected to the lower surface of the heat dissipation block 103A, are arranged apart from each other, and are disposed on the lower surface of the insulating layer 104A.
- the heat dissipating material 108A, which is a connected portion, and the heat dissipating material 108B, which is a portion connected to the lower surface of the insulating layer 104B, are arranged apart from each other.
- the heat dissipation block 103A, the insulating layer 104B, and the heat dissipation material 108B are also used. Heat is radiated to the cooling mechanism 109. Therefore, the temperature rise of the lead electrode 102A can be suppressed.
- the insulating layer 104A and the insulating layer 104B are arranged apart from each other, and the heat dissipating material 108A and the heat dissipating material 108B are arranged apart from each other, so that the insulating layer 104A on which the semiconductor element 100 is arranged and Regardless of the structure on the heat radiating material 108A side, the shape for fastening the external bus bar can be changed only by changing the structure on the insulating layer 104B and the heat radiating material 108B side.
- the insulating layer on the semiconductor element 100 side and the insulating layer on the heat dissipation block 103B side may be separated.
- the heat dissipation material on the semiconductor element 100 side and the heat dissipation material on the heat dissipation block 103B side may be separated.
- FIG. 6 is a cross-sectional view schematically illustrating a structure for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor element 100, a lead electrode 102 ⁇ / b> A to which the upper surface of the semiconductor element 100 and the lower surface of one end are connected with the solder 101 interposed therebetween, and the other end than one end of the lead electrode 102 ⁇ / b> A.
- the heat dissipating block 103A connected to the lower surface of the side
- the insulating layer 104C connected to the lower surface of the heat dissipating block 103A
- the heat dissipating material 108C connected to the lower surface of the insulating layer 104C.
- the semiconductor device further includes a heat spreader 105 connected to the lower surface of the semiconductor element 100 with the solder 107 interposed therebetween, a lead electrode 106 connected to the upper surface of the heat spreader 105, and an insulating layer 104A connected to the lower surface of the heat spreader 105. And a heat dissipation material 108A connected to the lower surface of the insulating layer 104A.
- the semiconductor device further includes a cooling mechanism 109 connected to the lower surface of the heat radiating material 108A and the lower surface of the heat radiating material 108C.
- the semiconductor device further includes an external bus bar 111 having one end connected to the upper surface on the other end side of the lead electrode 102A, and a heat radiation block 110 connected to the lower surface on the other end side than the one end of the bus bar 111.
- the heat dissipation block 110 is also connected to the upper surface of the insulating layer 104C, which is a portion connected to the lower surface of the heat dissipation block 103A.
- the screw electrode shape for fastening the external bus bar 111 is formed in the lead electrode 102A and the heat dissipation block 103A. Specifically, a through hole 200 is formed in the lead electrode 102A, and a screw hole 201 having a threaded side surface is connected to the through hole 200 of the lead electrode 102A in the heat dissipation block 103A. Formed. Further, a through hole 204 is formed in the external bus bar 111. The through hole 204 in the external bus bar 111 is formed so as to overlap the through hole 200 in the lead electrode 102A.
- the insulating layer 104A and the insulating layer 104C are arranged apart from each other, and the heat dissipating material 108A and the heat dissipating material 108C are arranged apart from each other. Note that the insulating layer 104A and the insulating layer 104C may be formed continuously. Further, the heat dissipation material 108A and the heat dissipation material 108C may be formed continuously.
- the insulating layer 104A and the insulating layer 104C are arranged apart from each other, and the heat dissipating material 108A and the heat dissipating material 108C are arranged apart from each other, so that the insulating layer 104A on which the semiconductor element 100 is arranged and Regardless of the structure on the heat radiating material 108A side, the shape for fastening the external bus bar 111 can be changed only by changing the structure on the insulating layer 104C and the heat radiating material 108C side. Further, since the insulating layer 104C and the heat radiating material 108C are formed extending to the lower surfaces of the external bus bar 111 and the heat radiating block 110, heat can be efficiently radiated.
- FIG. 7 is a cross-sectional view schematically illustrating a structure for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor element 100, a lead electrode 102A, a heat dissipation block 103A, an insulating layer 104B, and a heat dissipation material 108B.
- the semiconductor device further includes a heat spreader 105, a lead electrode 106, an insulating layer 104A, and a heat dissipation material 108A.
- the semiconductor device further includes a cooling mechanism 109 connected to the lower surface of the heat dissipation material 108A and the lower surface of the heat dissipation material 108B.
- a screw receiving shape for fastening an external bus bar (not shown here) is formed in the lead electrode 102A and the heat dissipation block 103A.
- a through hole 200 is formed in the lead electrode 102A, and a screw hole 201 having a threaded side surface is connected to the through hole 200 of the lead electrode 102A in the heat dissipation block 103A.
- the insulating layer 104A and the insulating layer 104B are arranged apart from each other, and the heat dissipating material 108A and the heat dissipating material 108B are arranged apart from each other.
- the semiconductor device is further formed by exposing a screw receiving shape for fastening an external bus bar and covering the entire semiconductor device, specifically, at least a part of the heat dissipation block 103A, and A resin portion 112 is provided to cover one end of the lead electrode 102A.
- a resin part 112 for example, an epoxy resin is assumed.
- the heat dissipation block 103A, the insulating layer 104B, and the heat dissipation material 108B are also used. Heat is radiated to the cooling mechanism 109. Therefore, the temperature rise of the lead electrode 102A can be suppressed. In addition, the reliability of the semiconductor device is increased by covering the semiconductor device with the resin portion 112.
- FIG. 8 is a cross-sectional view schematically illustrating a structure for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor element 100, a lead electrode 102A, a heat dissipation block 103A, an insulating layer 104B, and a heat dissipation material 108B.
- the semiconductor device further includes a heat spreader 105, a lead electrode 106, an insulating layer 104A, and a heat dissipation material 108A.
- the semiconductor device further includes a cooling mechanism 109 connected to the lower surface of the heat dissipation material 108A and the lower surface of the heat dissipation material 108B.
- a screw receiving shape for fastening an external bus bar (not shown here) is formed in the lead electrode 102A and the heat dissipation block 103A.
- a through hole 200 is formed in the lead electrode 102A, and a screw hole 201 having a threaded side surface is connected to the through hole 200 of the lead electrode 102A in the heat dissipation block 103A.
- the insulating layer 104A and the insulating layer 104B are arranged apart from each other, and the heat dissipating material 108A and the heat dissipating material 108B are arranged apart from each other.
- the semiconductor device further includes a heat dissipation material 108A, an insulating layer 104A, a heat spreader 105, some lead electrodes 106, solder 107, a semiconductor element 100, solder 101, and some lead electrodes 102A.
- 112A is formed to cover the surface.
- the semiconductor device also includes a resin portion 112B formed to cover the heat dissipation material 108B, the insulating layer 104B, the heat dissipation block 103A, and a part of the lead electrodes 102A.
- the resin part 112B covering at least a part of the heat dissipation block 103A and the resin part 112A covering one end of the lead electrode 102A are formed apart from each other.
- an epoxy resin is assumed.
- the heat dissipation block 103A, the insulating layer 104B, and the heat dissipation material 108B are also used. Heat is radiated to the cooling mechanism 109. Therefore, the temperature rise of the lead electrode 102A can be suppressed. Further, the reliability of the semiconductor device is increased by covering the semiconductor device with the resin portion 112A and the resin portion 112B.
- the resin portion 112A and the resin portion 112B are formed apart from each other, the insulating layer 104B and the heat dissipation material 108B are independent of the structure on the insulating layer 104A and heat dissipation material 108A side where the semiconductor element 100 is disposed.
- Resin portion 112 ⁇ / b> B can be formed in a flexible manner corresponding to the change in the structure on the side. Therefore, the shape for fastening the external bus bar can be flexibly changed.
- FIG. 9 is a cross-sectional view schematically illustrating a structure for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor element 100, a lead electrode 102A, a nut 205 connected to the lower surface of the lead electrode 102A, a heat dissipation block 103C connected to the lower surface of the nut 205, and a heat dissipation.
- An insulating layer 104B connected to the lower surface of the block 103C and a heat dissipation material 108B are provided.
- the semiconductor device further includes a heat spreader 105, a lead electrode 106, an insulating layer 104A, and a heat dissipation material 108A.
- the semiconductor device further includes a cooling mechanism 109 connected to the lower surface of the heat dissipation material 108A and the lower surface of the heat dissipation material 108B.
- the lead electrode 102A and the nut 205 are formed with a screw receiving shape for fastening an external bus bar (not shown here).
- the lead electrode 102A is formed with a hole 200 penetrating from the upper surface to the lower surface of the lead electrode 102A, and the nut 205 has a screw hole 206 having a screw threaded on its side surface. It is formed so as to connect with the penetrated hole 200.
- the insulating layer 104A and the insulating layer 104B are arranged apart from each other, and the heat dissipating material 108A and the heat dissipating material 108B are arranged apart from each other.
- the semiconductor device is further formed to expose a screw receiving shape for fastening an external bus bar and to cover the entire semiconductor device, specifically, at least a part of the nut 205 and the lead A resin portion 112 is provided to cover one end of the electrode 102A.
- the resin part on the semiconductor element 100 side and the resin part on the heat dissipation block 103C side may be separated.
- the nut 205 the heat dissipation block 103C, the insulating layer 104B, and the heat dissipation material 108B are also provided.
- the heat is radiated to the cooling mechanism 109 via Therefore, the temperature rise of the lead electrode 102A can be suppressed.
- the reliability of the semiconductor device is increased by covering the semiconductor device with the resin portion 112.
- the structure can withstand even when high torque is applied when fastened to the external bus bar.
- FIG. 10 is a cross-sectional view schematically illustrating a structure for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor element 100, a lead electrode 102A, a nut 205A connected to the lower surface of the lead electrode 102A, and a heat dissipation block 103D connected to the lower surface and side surfaces of the nut 205A.
- the insulating layer 104B connected to the lower surface of the heat dissipation block 103D and the heat dissipation material 108B are provided.
- the semiconductor device further includes a heat spreader 105, a lead electrode 106, an insulating layer 104A, and a heat dissipation material 108A.
- the semiconductor device further includes a cooling mechanism 109 connected to the lower surface of the heat dissipation material 108A and the lower surface of the heat dissipation material 108B.
- a screw receiving shape for fastening an external bus bar (not shown here) is formed on the lead electrode 102A and the nut 205A.
- the lead electrode 102A is formed with a through-hole 200
- the nut 205A has a screw hole 206A with a screw threaded on the side surface connected to the through-hole 200 of the lead electrode 102A. It is formed.
- the insulating layer 104A and the insulating layer 104B are arranged apart from each other, and the heat dissipating material 108A and the heat dissipating material 108B are arranged apart from each other.
- the cooling mechanism 109 it is possible to realize heat dissipation from both the upper surface and the lower surface of the semiconductor element 100 to the cooling mechanism 109.
- the nut 205A, the heat dissipation block 103D, the insulating layer 104B, and the heat dissipation material 108B are also provided. The heat is radiated to the cooling mechanism 109 via Therefore, the temperature rise of the lead electrode 102A can be suppressed.
- the structure can withstand even when high torque is applied when fastened to the external bus bar. Further, since the heat dissipation block 103D is formed in contact with the side surface of the nut 205A in addition to the lower surface of the nut 205A, the heat dissipation performance is improved.
- FIG. 11 is a cross-sectional view schematically illustrating a structure for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor element 100, a lead electrode 102B connected to the upper surface of the semiconductor element 100 with the solder 101 interposed therebetween, and an insulating layer 104D connected to the lower surface of the lead electrode 102B. Is provided.
- the semiconductor device further includes a heat spreader 105A connected to the lower surface of the semiconductor element 100 with the solder 107 interposed therebetween, a lead electrode 106 connected to the upper surface of the heat spreader 105A, and an insulating layer 104E connected to the lower surface of the heat spreader 105A.
- a heat dissipation material 108D connected to the lower surface of the insulating layer 104E, and a cooling mechanism 109 connected to the lower surface of the heat dissipation material 108D.
- the insulating layer 104D is connected to the upper surface of the heat spreader 105A. Further, a part of the lead electrode 102B is bent downward, and the bent portion is connected to the insulating layer 104D.
- the insulating layer 104D, the insulating layer 104E, the heat spreader 105A, and the heat dissipation material 108D are thermally coupled to each other, and the lower surface on the other end side of the lead electrode 102B and the cooling mechanism 109 It can be considered as a heat dissipation mechanism disposed between them.
- FIG. 12 is a cross-sectional view schematically illustrating a structure for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor element 100, a lead electrode 102C connected to the upper surface of the semiconductor element 100 with the solder 101 interposed therebetween, and a heat dissipation block 103 connected to the lower surface of the lead electrode 102C.
- the insulating layer 104 and the heat dissipation material 108 are provided.
- the semiconductor device further includes a heat spreader 105 and a lead electrode 106.
- An insulating layer 104 is connected to the lower surface of the heat spreader 105.
- the semiconductor device further includes a cooling mechanism 109 connected to the lower surface of the heat dissipation material 108.
- the semiconductor device further includes an external bus bar 111A that is welded to the lead electrode 102C and connected to the upper surface of the heat dissipation block 103.
- the lead electrode 102 ⁇ / b> C is formed with a protrusion 207 that rises from the heat dissipation block 103 at a location welded to the external bus bar 111 ⁇ / b> A.
- FIG. 13 is a cross-sectional view schematically illustrating a structure for realizing the semiconductor device according to the present embodiment.
- the semiconductor device includes a semiconductor element 100, a lead electrode 102, a heat dissipation block 103 ⁇ / b> E that is directly connected to the lower surface of the other end side of the lead electrode 102, and a lower surface of the heat dissipation block 103 ⁇ / b> E. And an insulating layer 104F connected to the substrate.
- the semiconductor device further includes a heat spreader 105B connected to the lower surface of the semiconductor element 100 with the solder 107 interposed therebetween, a lead electrode 106 connected to the upper surface of the heat spreader 105B, and an insulating layer 104G connected to the lower surface of the heat spreader 105B. And a heat dissipation material 108E connected to the lower surface of the insulating layer 104G, and a cooling mechanism 109 connected to the lower surface of the heat dissipation material 108E.
- the insulating layer 104F is connected to the upper surface of the heat spreader 105B. Note that, for example, as illustrated in FIG. 11, it may be bent toward the heat dissipation block 103 ⁇ / b> E.
- the semiconductor device includes the semiconductor element 100, the lead electrode 102 that is an external terminal whose lower surface at one end is connected to the upper surface of the semiconductor element 100, and the lower surface side of the semiconductor element 100.
- a cooling mechanism 109 disposed; and a heat dissipation mechanism that is disposed in thermal coupling between the lower surface of the other end side of the lead electrode 102 and the cooling mechanism 109 and includes at least one insulating layer 104. Is provided.
- the semiconductor device includes a semiconductor element 100, a lead electrode 102 ⁇ / b> B that is an external terminal connected to the upper surface of the semiconductor element 100, a cooling mechanism 109 disposed on the lower surface side of the semiconductor element 100, and a lead electrode 102B is provided in a thermally coupled manner between the lower surface on the other end side than the one end of 102B and the cooling mechanism 109, and includes a heat dissipation mechanism including at least one insulating layer 104D and insulating layer 104E.
- the heat dissipation mechanism includes the first heat dissipation block, the insulating layer 104, and the heat dissipation material 108.
- the heat dissipation block 103 corresponds to the first heat dissipation block.
- the heat dissipation block 103 is connected to the lower surface on the other end side of the lead electrode 102.
- At least a part of the insulating layer 104 is connected to the lower surface of the heat dissipation block 103.
- the heat dissipation material 108 is connected to the lower surface of the insulating layer 104.
- heat generated in the lead electrode 102 which is an external terminal is transmitted to the cooling mechanism 109 via the heat dissipation block 103, the insulating layer 104 and the heat dissipation material 108, so that the heat dissipation performance of the lead electrode 102 is improved. be able to.
- the insulating layer 104 includes the first portion disposed between the semiconductor element 100 and the cooling mechanism 109 and the second portion connected to the lower surface of the heat dissipation block 103. And having a portion. The first portion and the second portion are formed continuously. According to such a configuration, the heat generated in the semiconductor element 100 and the heat generated in the lead electrode 102 are transmitted to the cooling mechanism 109 via the common insulating layer 104. The heat dissipation of the electrode 102 can be improved.
- the insulating layer is connected to the first portion disposed between the semiconductor element 100 and the cooling mechanism 109 and the lower surface of the first heat dissipation block. 2 parts.
- the insulating layer 104A corresponds to the first portion.
- the heat dissipation block 103A corresponds to the first heat dissipation block.
- the insulating layer 104B corresponds to the second portion.
- the insulating layer 104A and the insulating layer 104B are formed to be separated from each other.
- the heat dissipation material has a third portion connected to the lower surface of the insulating layer 104A and a fourth portion connected to the lower surface of the insulating layer 104B.
- the heat dissipating material 108A corresponds to the third portion.
- the heat dissipation material 108B corresponds to the fourth portion.
- the insulating layer 104A and the insulating layer 104B are disposed apart from each other, and the heat dissipating material 108A and the heat dissipating material 108B are disposed apart from each other, whereby the semiconductor element 100 is disposed.
- the shape for fastening the external bus bar can be changed only by changing the structure on the insulating layer 104B and the heat dissipation material 108B side, regardless of the structure on the insulating layer 104A and heat dissipation material 108A side. Therefore, the freedom of structure selection is improved.
- the lead electrode 102A is formed with the hole 200 penetrating from the upper surface to the lower surface of the lead electrode 102A.
- a screw hole 201 is formed on the upper surface of the heat dissipation block 103A at a position overlapping the hole 200 in the lead electrode 102A in plan view.
- the heat radiation block 103A, the insulating layer 104, and the heat radiation are related to the heat generated from the lead electrode 102A itself during current application and the heat generated at the contact portion between the lead electrode 102A and the external bus bar. Heat is radiated to the cooling mechanism 109 via the material 108. Therefore, the temperature rise of the lead electrode 102A can be suppressed.
- the lead electrode 102B is formed with the hole 202 penetrating from the upper surface to the lower surface of the lead electrode 102B.
- a protrusion 203 is formed on the upper surface of the heat dissipation block 103B at a position overlapping the hole 202 in the lead electrode 102B in plan view.
- the heat radiation block 103B, the insulating layer 104, and the heat radiation are related to the heat generated from the lead electrode 102B itself during current application and the heat generated at the contact portion between the lead electrode 102B and the external bus bar. Heat is radiated to the cooling mechanism 109 via the material 108. Therefore, the temperature rise of the lead electrode 102B can be suppressed.
- the lead electrode 102A is formed with the hole 200 penetrating from the upper surface to the lower surface of the lead electrode 102A.
- the semiconductor device also includes a nut 205 in which a screw hole 206 is formed at a position overlapping the hole 200 in the lead electrode 102A in plan view.
- the first heat dissipation block is connected to at least the lower surface of the nut 205.
- the heat dissipation block 103C corresponds to the first heat dissipation block.
- the nut 205 is disposed at a location where the external bus bar is fastened, the structure can withstand even when high torque is applied when fastened to the external bus bar.
- the first heat dissipating block is connected to the lower surface and the side surface of the nut 205A.
- the heat dissipation block 103D corresponds to the first heat dissipation block.
- the nut 205A, the heat dissipation block 103D, and the insulating layer 104B are also related to the heat generated from the lead electrode 102A itself during current application and the heat generated at the contact portion between the lead electrode 102A and the external bus bar. Then, heat is radiated to the cooling mechanism 109 via the heat radiating material 108B. Therefore, the temperature rise of the lead electrode 102A can be suppressed.
- the structure can withstand even when high torque is applied when fastened to the external bus bar. Further, since the heat dissipation block 103D is formed in contact with the side surface of the nut 205A in addition to the lower surface of the nut 205A, the heat dissipation performance is improved.
- the semiconductor device includes the resin portion 112 formed to cover at least a part of the nut 205 and one end of the lead electrode 102A. According to such a configuration, the reliability of the semiconductor device is increased by covering the semiconductor device with the resin portion 112.
- the semiconductor device is connected to the bus bar 111 whose one end is connected to the other end side of the lead electrode 102 ⁇ / b> A and the lower surface on the other end side of the bus bar 111.
- a second heat dissipation block corresponds to the second heat dissipation block.
- the second part of the insulating layer is also connected to the lower surface of the heat dissipation block 110.
- the insulating layer 104C corresponds to the second portion. According to such a configuration, the insulating layer 104C and the heat dissipation material 108C are formed to extend to the lower surfaces of the external bus bar 111 and the heat dissipation block 110, so that heat can be efficiently radiated.
- the protrusion 207 is formed on the other end side of the lead electrode 102C.
- the bus bar 111A is welded to the protrusion 207 of the lead electrode 102C.
- heat radiation from both the upper surface and the lower surface of the semiconductor element 100 to the cooling mechanism 109 can be realized.
- heat generated from the lead electrode 102 ⁇ / b> C itself during current application is also radiated to the cooling mechanism 109 via the heat dissipation block 103, the insulating layer 104, and the heat dissipation material 108. Therefore, the temperature rise of the lead electrode 102C can be suppressed.
- the semiconductor device includes the resin portion 112 formed to cover at least a part of the first heat dissipation block and one end of the lead electrode 102A.
- the heat dissipation block 103A corresponds to the first heat dissipation block. According to such a configuration, according to such a configuration, the reliability of the semiconductor device is enhanced by covering the semiconductor device with the resin portion 112.
- the resin portion has the fifth portion that covers at least a part of the first heat dissipation block and the sixth portion that covers one end of the lead electrode 102A.
- the heat dissipation block 103A corresponds to the first heat dissipation block.
- the resin portion 112B corresponds to the fifth portion.
- the resin portion 112A corresponds to the sixth portion.
- the resin portion 112B and the resin portion 112A are formed to be separated from each other. According to such a configuration, the reliability of the semiconductor device is enhanced by covering the semiconductor device with the resin portion 112A and the resin portion 112B.
- the resin portion 112A and the resin portion 112B are formed apart from each other, the insulating layer 104B and the heat dissipation material 108B are independent of the structure on the insulating layer 104A and heat dissipation material 108A side where the semiconductor element 100 is disposed.
- Resin portion 112 ⁇ / b> B can be formed in a flexible manner in response to a change in the structure on the side. Therefore, the shape for fastening the external bus bar can be flexibly changed.
- the heat dissipation mechanism includes the heat spreader 105A, the second insulating layer, and the heat dissipation material 108D.
- the insulating layer 104E corresponds to the second insulating layer.
- the heat spreader 105A is connected to the lower surface of the semiconductor element 100, and is connected to the lower surface of the lead electrode 102B with the first insulating layer among the insulating layers interposed therebetween.
- the insulating layer 104D corresponds to the first insulating layer.
- the insulating layer 104E is connected to the lower surface of the heat spreader 105A.
- the heat dissipation material 108D is connected to the lower surface of the insulating layer 104E.
- heat radiation from both the upper surface and the lower surface of the semiconductor element 100 to the cooling mechanism 109 can be realized.
- heat generated from the lead electrode 102B itself during current application is also radiated to the cooling mechanism 109 via the insulating layer 104D, the heat spreader 105A, the insulating layer 104E, and the heat dissipation material 108D. Therefore, the temperature rise of the lead electrode 102B can be suppressed.
- the lead electrode 102B is formed such that the lower surface connected to the heat spreader 105A is bent toward the heat spreader 105A. According to such a configuration, even when the height of the lead electrode 102B connected to the semiconductor element 100 is different from the height of the lead electrode 102B connected to the heat spreader 105A, the lead electrode 102B moves toward the heat spreader 105A. By appropriately adjusting the bent shape, it is possible to appropriately connect the semiconductor element 100 and the heat spreader 105A.
- the semiconductor device includes the heat dissipation block 103E that is directly connected to the lower surface of the other end side of the lead electrode 102.
- the heat spreader 105B is connected to the lower surface of the lead electrode 102 with the heat dissipation block 103E and the first insulating layer interposed therebetween.
- the insulating layer 104F corresponds to the first insulating layer.
- each component is a conceptual unit, and one component consists of a plurality of structures, one component corresponds to a part of the structure, and a plurality of components. And the case where the components are provided in one structure.
- each component includes a structure having another structure or shape as long as the same function is exhibited.
- the material when a material name or the like is described without being particularly specified, the material contains other additives, for example, an alloy or the like unless a contradiction arises. Shall be included.
- 100 semiconductor element 101, 107 solder, 102, 102A, 102B, 102C, 106 lead electrode, 103, 103A, 103B, 103C, 103D, 103E, 110 heat dissipation block, 104, 104A, 104B, 104C, 104D, 104E, 104F , 104G, 104H insulating layer, 105, 105A, 105B heat spreader, 108, 108A, 108B, 108C, 108D, 108E, 108F heat dissipation material, 109 cooling mechanism, 111, 111A bus bar, 112, 112A, 112B resin part, 200, 202 , 204 holes, 201, 206, 206A screw holes, 203, 207 protrusions, 205, 205A nuts.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
以下、本実施の形態に関する半導体装置について説明する。
図1は、本実施の形態に関する半導体装置を実現するための構造を概略的に例示する断面図である。図1に例示されるように、半導体装置は、半導体素子100と、半導体素子100の上面とはんだ101を挟んで接続される外部端子であるリード電極102と、半導体素子100の下面とはんだ107を挟んで接続されるヒートスプレッダ105と、ヒートスプレッダ105の上面に接続されるリード電極106と、ヒートスプレッダ105の下面に接続される絶縁層104Hと、絶縁層104Hの下面に接続される放熱材108Fと、放熱材108Fの下面に接続される冷却機構109とを備える。
本実施の形態に関する半導体装置について説明する。以下では、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
図3は、本実施の形態に関する半導体装置を実現するための構造を概略的に例示する断面図である。図3に例示されるように、半導体装置は、半導体素子100と、半導体素子100の上面とはんだ101を挟んで接続されるリード電極102Aと、リード電極102Aの下面に接続される放熱ブロック103Aと、放熱ブロック103Aの下面に接続される絶縁層104と、放熱材108とを備える。また、半導体装置は、さらに、ヒートスプレッダ105と、リード電極106とを備える。ヒートスプレッダ105の下面には、絶縁層104が接続される。また、半導体装置は、さらに、放熱材108の下面に接続される冷却機構109を備える。
本実施の形態に関する半導体装置について説明する。以下では、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
図4は、本実施の形態に関する半導体装置を実現するための構造を概略的に例示する断面図である。図4に例示されるように、半導体装置は、半導体素子100と、半導体素子100の上面とはんだ101を挟んで接続されるリード電極102Bと、リード電極102Bの下面に接続される放熱ブロック103Bと、放熱ブロック103Bの下面に接続される絶縁層104と、放熱材108とを備える。また、半導体装置は、さらに、ヒートスプレッダ105と、リード電極106とを備える。ヒートスプレッダ105の下面には、絶縁層104が接続される。また、半導体装置は、さらに、放熱材108の下面に接続される冷却機構109を備える。
本実施の形態に関する半導体装置について説明する。以下では、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
図5は、本実施の形態に関する半導体装置を実現するための構造を概略的に例示する断面図である。図5に例示されるように、半導体装置は、半導体素子100と、半導体素子100の上面とはんだ101を挟んで接続されるリード電極102Aと、リード電極102Aの下面に接続される放熱ブロック103Aと、放熱ブロック103Aの下面に接続される絶縁層104Bと、絶縁層104Bの下面に接続される放熱材108Bとを備える。また、半導体装置は、さらに、半導体素子100の下面とはんだ107を挟んで接続されるヒートスプレッダ105と、ヒートスプレッダ105の上面に接続されるリード電極106と、ヒートスプレッダ105の下面に接続される絶縁層104Aと、絶縁層104Aの下面に接続される放熱材108Aとを備える。また、半導体装置は、さらに、放熱材108Aの下面、および、放熱材108Bの下面に接続される冷却機構109を備える。
本実施の形態に関する半導体装置について説明する。以下では、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
図6は、本実施の形態に関する半導体装置を実現するための構造を概略的に例示する断面図である。図6に例示されるように、半導体装置は、半導体素子100と、半導体素子100の上面とはんだ101を挟んで一端の下面が接続されるリード電極102Aと、リード電極102Aの一端よりも他端側の下面に接続される放熱ブロック103Aと、放熱ブロック103Aの下面に接続される絶縁層104Cと、絶縁層104Cの下面に接続される放熱材108Cとを備える。また、半導体装置は、さらに、半導体素子100の下面とはんだ107を挟んで接続されるヒートスプレッダ105と、ヒートスプレッダ105の上面に接続されるリード電極106と、ヒートスプレッダ105の下面に接続される絶縁層104Aと、絶縁層104Aの下面に接続される放熱材108Aとを備える。また、半導体装置は、さらに、放熱材108Aの下面、および、放熱材108Cの下面に接続される冷却機構109を備える。
本実施の形態に関する半導体装置について説明する。以下では、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
図7は、本実施の形態に関する半導体装置を実現するための構造を概略的に例示する断面図である。図7に例示されるように、半導体装置は、半導体素子100と、リード電極102Aと、放熱ブロック103Aと、絶縁層104Bと、放熱材108Bとを備える。また、半導体装置は、さらに、ヒートスプレッダ105と、リード電極106と、絶縁層104Aと、放熱材108Aとを備える。また、半導体装置は、さらに、放熱材108Aの下面、および、放熱材108Bの下面に接続される冷却機構109を備える。
本実施の形態に関する半導体装置について説明する。以下では、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
図8は、本実施の形態に関する半導体装置を実現するための構造を概略的に例示する断面図である。図8に例示されるように、半導体装置は、半導体素子100と、リード電極102Aと、放熱ブロック103Aと、絶縁層104Bと、放熱材108Bとを備える。また、半導体装置は、さらに、ヒートスプレッダ105と、リード電極106と、絶縁層104Aと、放熱材108Aとを備える。また、半導体装置は、さらに、放熱材108Aの下面、および、放熱材108Bの下面に接続される冷却機構109を備える。
本実施の形態に関する半導体装置について説明する。以下では、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
図9は、本実施の形態に関する半導体装置を実現するための構造を概略的に例示する断面図である。図9に例示されるように、半導体装置は、半導体素子100と、リード電極102Aと、リード電極102Aの下面に接続されるナット205と、ナット205の下面に接続される放熱ブロック103Cと、放熱ブロック103Cの下面に接続される絶縁層104Bと、放熱材108Bとを備える。また、半導体装置は、さらに、ヒートスプレッダ105と、リード電極106と、絶縁層104Aと、放熱材108Aとを備える。また、半導体装置は、さらに、放熱材108Aの下面、および、放熱材108Bの下面に接続される冷却機構109を備える。
本実施の形態に関する半導体装置について説明する。以下では、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
図10は、本実施の形態に関する半導体装置を実現するための構造を概略的に例示する断面図である。図10に例示されるように、半導体装置は、半導体素子100と、リード電極102Aと、リード電極102Aの下面に接続されるナット205Aと、ナット205Aの下面および側面に接続される放熱ブロック103Dと、放熱ブロック103Dの下面に接続される絶縁層104Bと、放熱材108Bとを備える。また、半導体装置は、さらに、ヒートスプレッダ105と、リード電極106と、絶縁層104Aと、放熱材108Aとを備える。また、半導体装置は、さらに、放熱材108Aの下面、および、放熱材108Bの下面に接続される冷却機構109を備える。
本実施の形態に関する半導体装置について説明する。以下では、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
図11は、本実施の形態に関する半導体装置を実現するための構造を概略的に例示する断面図である。図11に例示されるように、半導体装置は、半導体素子100と、半導体素子100の上面とはんだ101を挟んで接続されるリード電極102Bと、リード電極102Bの下面に接続される絶縁層104Dとを備える。また、半導体装置は、さらに、半導体素子100の下面とはんだ107を挟んで接続されるヒートスプレッダ105Aと、ヒートスプレッダ105Aの上面に接続されるリード電極106と、ヒートスプレッダ105Aの下面に接続される絶縁層104Eと、絶縁層104Eの下面に接続される放熱材108Dと、放熱材108Dの下面に接続される冷却機構109とを備える。ここで、絶縁層104Dは、ヒートスプレッダ105Aの上面に接続される。また、リード電極102Bは、一部が下方に曲がって形成され、当該曲がった箇所が、絶縁層104Dと接続される。ここで、絶縁層104Dと、絶縁層104Eと、ヒートスプレッダ105Aと、放熱材108Dとは、互いに熱的に結合され、かつ、リード電極102Bの一端よりも他端側の下面と冷却機構109との間に配置される放熱機構と考えることができる。
本実施の形態に関する半導体装置について説明する。以下では、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
図12は、本実施の形態に関する半導体装置を実現するための構造を概略的に例示する断面図である。図12に例示されるように、半導体装置は、半導体素子100と、半導体素子100の上面とはんだ101を挟んで接続されるリード電極102Cと、リード電極102Cの下面に接続される放熱ブロック103と、絶縁層104と、放熱材108とを備える。また、半導体装置は、さらに、ヒートスプレッダ105と、リード電極106とを備える。ヒートスプレッダ105の下面には、絶縁層104が接続される。また、半導体装置は、さらに、放熱材108の下面に接続される冷却機構109を備える。
本実施の形態に関する半導体装置について説明する。以下では、以上に記載された実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
図13は、本実施の形態に関する半導体装置を実現するための構造を概略的に例示する断面図である。図13に例示されるように、半導体装置は、半導体素子100と、リード電極102と、リード電極102の一端よりも他端側の下面に直接接続される放熱ブロック103Eと、放熱ブロック103Eの下面に接続される絶縁層104Fとを備える。また、半導体装置は、さらに、半導体素子100の下面とはんだ107を挟んで接続されるヒートスプレッダ105Bと、ヒートスプレッダ105Bの上面に接続されるリード電極106と、ヒートスプレッダ105Bの下面に接続される絶縁層104Gと、絶縁層104Gの下面に接続される放熱材108Eと、放熱材108Eの下面に接続される冷却機構109とを備える。ここで、絶縁層104Fは、ヒートスプレッダ105Bの上面に接続される。なお、たとえば、図11に例示されるように、放熱ブロック103E側へ曲がって形成されていてもよい。
以下に、以上に記載された実施の形態によって生じる効果を例示する。なお、以下では、以上に記載された実施の形態に例示された具体的な構成に基づいて当該効果が記載されるが、同様の効果が生じる範囲で、本願明細書に例示される他の具体的な構成と置き換えられてもよい。また、当該置き換えは、複数の実施の形態に跨ってなされてもよい。すなわち、異なる実施の形態において例示されたそれぞれの構成が組み合わされて、同様の効果が生じる場合であってもよい。
以上に記載された実施の形態では、それぞれの構成要素の材質、材料、寸法、形状、相対的配置関係または実施の条件などについても記載する場合があるが、これらはすべての局面において例示であって、本願明細書に記載されたものに限られることはないものとする。したがって、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。たとえば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの実施の形態における少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Claims (16)
- 半導体素子(100)と、
前記半導体素子(100)の上面に一端の下面が接続される外部端子であるリード電極(102、102A、102B、102C)と、
前記半導体素子(100)の下面側に配置される冷却機構(109)と、
前記リード電極(102、102A、102B、102C)の前記一端よりも他端側の下面と前記冷却機構(109)との間に熱的に結合して配置され、かつ、少なくとも1つの絶縁層(104、104A、104B、104C、104D、104E、104F、104G)を含む放熱機構とを備える、
半導体装置。 - 前記放熱機構は、
前記リード電極(102、102A、102B、102C)の前記一端よりも他端側の下面に接続される第1の放熱ブロック(103、103A、103B、103C、103D)と、
少なくとも一部が前記第1の放熱ブロック(103、103A、103B、103C、103D)の下面に接続される前記絶縁層(104、104A、104B、104C)と、
前記絶縁層(104、104A、104B、104C)の下面に接続される放熱材(108、108A、108B、108C)とを有する、
請求項1に記載の半導体装置。 - 前記絶縁層(104)は、前記半導体素子(100)と前記冷却機構(109)との間に配置される第1の部分と、前記第1の放熱ブロック(103、103A、103B、103C、103D)の下面に接続される第2の部分とを有し、
前記第1の部分と前記第2の部分とが連続して形成される、
請求項2に記載の半導体装置。 - 前記絶縁層は、前記半導体素子(100)と前記冷却機構(109)との間に配置される第1の部分(104A)と、前記第1の放熱ブロック(103、103A、103B、103C、103D)の下面に接続される第2の部分(104B、104C)とを有し、
前記第1の部分(104A)と前記第2の部分(104B、104C)とは互いに離間して形成され、
前記放熱材は、前記第1の部分(104A)の下面に接続される第3の部分(108A)と、前記第2の部分(104B、104C)の下面に接続される第4の部分(108B、108C)とを有する、
請求項2に記載の半導体装置。 - 前記リード電極(102A)には、前記リード電極(102A)の上面から下面に向かって貫通する穴(200)が形成され、
前記第1の放熱ブロック(103A)の上面には、前記リード電極(102A)における前記穴(200)と平面視において重なる位置においてネジ穴(201)が形成される、
請求項2から請求項4のうちのいずれか1項に記載の半導体装置。 - 前記リード電極(102B)には、前記リード電極(102B)の上面から下面に向かって貫通する穴(202)が形成され、
前記第1の放熱ブロック(103A)の上面には、前記リード電極(102B)における前記穴(202)と平面視において重なる位置において突起(203)が形成される、
請求項2から請求項4のうちのいずれか1項に記載の半導体装置。 - 前記リード電極(102A)には、前記リード電極(102A)の上面から下面に向かって貫通する穴(200)が形成され、
前記リード電極(102A)における前記穴(200)と平面視において重なる位置においてネジ穴(206)が形成されるナット(205)をさらに備え、
前記第1の放熱ブロック(103C)は、前記ナット(205)の少なくとも下面に接続される、
請求項2から請求項4のうちのいずれか1項に記載の半導体装置。 - 前記第1の放熱ブロック(103D)は、前記ナット(205A)の下面および側面に接続される、
請求項7に記載の半導体装置。 - 前記ナット(205)の少なくとも一部、および、前記リード電極(102A)の前記一端を覆って形成される樹脂部(112)をさらに備える、
請求項7に記載の半導体装置。 - 前記リード電極(102A)の前記他端側に一端が接続されるバスバー(111、111A)と、
前記バスバー(111、111A)の前記一端よりも他端側の下面に接続される第2の放熱ブロック(110)とをさらに備え、
前記絶縁層の前記第2の部分(104C)は、前記第2の放熱ブロック(110)の下面にも接続される、
請求項3または請求項4に記載の半導体装置。 - 前記リード電極(102C)の前記他端側には、突起(207)が形成され、
前記バスバー(111A)は、前記リード電極(102C)の前記突起(207)に溶接される、
請求項10に記載の半導体装置。 - 前記第1の放熱ブロック(103A、103C)の少なくとも一部、および、前記リード電極(102A)の前記一端を覆って形成される樹脂部(112、112A、112B)をさらに備える、
請求項2から請求項4のうちのいずれか1項に記載の半導体装置。 - 前記樹脂部は、前記第1の放熱ブロック(103A、103C)の少なくとも一部を覆う第5の部分(112B)と、前記リード電極(102A)の前記一端を覆う第6の部分(112A)とを有し、
前記第5の部分(112B)と前記第6の部分(112A)とは、互いに離間して形成される、
請求項12に記載の半導体装置。 - 前記放熱機構は、
前記半導体素子(100)の下面に接続され、かつ、前記絶縁層のうちの第1の絶縁層(104D、104F)を挟んで前記リード電極(102、102B)の下面に接続されるヒートスプレッダ(105A、105B)と、
前記ヒートスプレッダ(105A、105B)の下面に接続される第2の絶縁層(104E、104G)と、
前記第2の絶縁層(104E、104G)の下面に接続される放熱材(108D、108E)とを有する、
請求項1に記載の半導体装置。 - 前記リード電極(102B)は、前記ヒートスプレッダ(105A)に接続される前記下面が前記ヒートスプレッダ(105A)側に曲がって形成される、
請求項14に記載の半導体装置。 - 前記リード電極(102)の前記一端よりも他端側の下面に直接接続される放熱ブロック(103E)をさらに備え、
前記ヒートスプレッダ(105B)は、前記放熱ブロック(103E)、および、前記第1の絶縁層(104F)を挟んで前記リード電極(102)の下面に接続される、
請求項14または請求項15に記載の半導体装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017563488A JP6590952B2 (ja) | 2016-01-29 | 2016-01-29 | 半導体装置 |
PCT/JP2016/052595 WO2017130370A1 (ja) | 2016-01-29 | 2016-01-29 | 半導体装置 |
CN201680079943.5A CN108496247B (zh) | 2016-01-29 | 2016-01-29 | 半导体装置 |
US15/779,617 US10714404B2 (en) | 2016-01-29 | 2016-01-29 | Semiconductor device |
DE112016006331.8T DE112016006331B4 (de) | 2016-01-29 | 2016-01-29 | Halbleitervorrichtung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/052595 WO2017130370A1 (ja) | 2016-01-29 | 2016-01-29 | 半導体装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017130370A1 true WO2017130370A1 (ja) | 2017-08-03 |
Family
ID=59397894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/052595 WO2017130370A1 (ja) | 2016-01-29 | 2016-01-29 | 半導体装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10714404B2 (ja) |
JP (1) | JP6590952B2 (ja) |
CN (1) | CN108496247B (ja) |
DE (1) | DE112016006331B4 (ja) |
WO (1) | WO2017130370A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019146402A1 (ja) * | 2018-01-25 | 2019-08-01 | 三菱電機株式会社 | 電力変換装置及び電力変換装置の製造方法 |
WO2020071185A1 (ja) * | 2018-10-02 | 2020-04-09 | ローム株式会社 | 半導体装置および半導体装置の製造方法 |
WO2022201426A1 (ja) * | 2021-03-25 | 2022-09-29 | 三菱電機株式会社 | 半導体装置および半導体装置の製造方法 |
DE102022126046A1 (de) | 2021-10-26 | 2023-04-27 | Mitsubishi Electric Corporation | Halbleitervorrichtung und Leistungsumwandlungsvorrichtung |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000058746A (ja) * | 1998-08-10 | 2000-02-25 | Toyota Motor Corp | モジュール内冷却装置 |
JP2006237429A (ja) * | 2005-02-28 | 2006-09-07 | Okutekku:Kk | 半導体装置、電極用部材および電極用部材の製造方法 |
JP2010114116A (ja) * | 2008-11-04 | 2010-05-20 | Mitsubishi Electric Corp | 電力用半導体装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58746A (ja) | 1982-02-24 | 1983-01-05 | Nippon Soken Inc | ガス成分検出器 |
JP3780230B2 (ja) | 2002-07-03 | 2006-05-31 | 株式会社日立製作所 | 半導体モジュール及び電力変換装置 |
JP4244760B2 (ja) | 2003-07-29 | 2009-03-25 | 富士電機デバイステクノロジー株式会社 | 半導体装置 |
JP4858238B2 (ja) | 2007-03-05 | 2012-01-18 | 富士電機株式会社 | レーザ溶接部材およびそれを用いた半導体装置 |
JP4531087B2 (ja) * | 2007-11-19 | 2010-08-25 | 三菱電機株式会社 | 電力用半導体装置 |
JP5067267B2 (ja) * | 2008-06-05 | 2012-11-07 | 三菱電機株式会社 | 樹脂封止型半導体装置とその製造方法 |
JPWO2011064841A1 (ja) | 2009-11-25 | 2013-04-11 | トヨタ自動車株式会社 | 半導体装置の冷却構造 |
JP5863602B2 (ja) | 2011-08-31 | 2016-02-16 | 三菱電機株式会社 | 電力用半導体装置 |
JP5661052B2 (ja) | 2012-01-18 | 2015-01-28 | 三菱電機株式会社 | パワー半導体モジュールおよびその製造方法 |
WO2013140503A1 (ja) * | 2012-03-19 | 2013-09-26 | 三菱電機株式会社 | 半導体装置、半導体システム |
DE112012007270B4 (de) * | 2012-12-28 | 2019-12-05 | Mitsubishi Electric Corporation | Halbleitervorrichtung und Kraftfahrzeug |
JP6186142B2 (ja) * | 2013-03-12 | 2017-08-23 | 新電元工業株式会社 | 端子の放熱構造及び半導体装置 |
US10411609B2 (en) * | 2017-12-22 | 2019-09-10 | Panasonic Intellectual Property Management Co., Ltd. | Substrate mounted inverter device |
-
2016
- 2016-01-29 US US15/779,617 patent/US10714404B2/en active Active
- 2016-01-29 JP JP2017563488A patent/JP6590952B2/ja active Active
- 2016-01-29 CN CN201680079943.5A patent/CN108496247B/zh active Active
- 2016-01-29 WO PCT/JP2016/052595 patent/WO2017130370A1/ja active Application Filing
- 2016-01-29 DE DE112016006331.8T patent/DE112016006331B4/de active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000058746A (ja) * | 1998-08-10 | 2000-02-25 | Toyota Motor Corp | モジュール内冷却装置 |
JP2006237429A (ja) * | 2005-02-28 | 2006-09-07 | Okutekku:Kk | 半導体装置、電極用部材および電極用部材の製造方法 |
JP2010114116A (ja) * | 2008-11-04 | 2010-05-20 | Mitsubishi Electric Corp | 電力用半導体装置 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019146402A1 (ja) * | 2018-01-25 | 2019-08-01 | 三菱電機株式会社 | 電力変換装置及び電力変換装置の製造方法 |
JPWO2019146402A1 (ja) * | 2018-01-25 | 2021-01-14 | 三菱電機株式会社 | 電力変換装置及び電力変換装置の製造方法 |
JP7023298B2 (ja) | 2018-01-25 | 2022-02-21 | 三菱電機株式会社 | 電力変換装置及び電力変換装置の製造方法 |
WO2020071185A1 (ja) * | 2018-10-02 | 2020-04-09 | ローム株式会社 | 半導体装置および半導体装置の製造方法 |
JPWO2020071185A1 (ja) * | 2018-10-02 | 2021-09-02 | ローム株式会社 | 半導体装置および半導体装置の製造方法 |
US11721612B2 (en) | 2018-10-02 | 2023-08-08 | Rohm Co., Ltd. | Semiconductor device with connecting member for electrode and method of manufacturing |
JP7326314B2 (ja) | 2018-10-02 | 2023-08-15 | ローム株式会社 | 半導体装置および半導体装置の製造方法 |
US12057375B2 (en) | 2018-10-02 | 2024-08-06 | Rohm Co., Ltd. | Semiconductor device and method for manufacturing semiconductor device |
WO2022201426A1 (ja) * | 2021-03-25 | 2022-09-29 | 三菱電機株式会社 | 半導体装置および半導体装置の製造方法 |
JPWO2022201426A1 (ja) * | 2021-03-25 | 2022-09-29 | ||
JP7387059B2 (ja) | 2021-03-25 | 2023-11-27 | 三菱電機株式会社 | 半導体装置および半導体装置の製造方法 |
DE102022126046A1 (de) | 2021-10-26 | 2023-04-27 | Mitsubishi Electric Corporation | Halbleitervorrichtung und Leistungsumwandlungsvorrichtung |
Also Published As
Publication number | Publication date |
---|---|
JP6590952B2 (ja) | 2019-10-16 |
CN108496247A (zh) | 2018-09-04 |
US10714404B2 (en) | 2020-07-14 |
US20180350713A1 (en) | 2018-12-06 |
CN108496247B (zh) | 2022-05-17 |
DE112016006331B4 (de) | 2021-07-22 |
DE112016006331T5 (de) | 2018-10-18 |
JPWO2017130370A1 (ja) | 2018-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5257817B2 (ja) | 半導体装置 | |
JP4581885B2 (ja) | 半導体装置 | |
JP5206822B2 (ja) | 半導体装置 | |
JP6263311B2 (ja) | 電力変換装置 | |
JP4803241B2 (ja) | 半導体モジュール | |
US8610263B2 (en) | Semiconductor device module | |
CN104838493A (zh) | 功率模块 | |
WO2010090326A1 (ja) | 半導体装置の冷却構造及びその冷却構造を備えた電力変換装置 | |
JP6590952B2 (ja) | 半導体装置 | |
JP2014183078A (ja) | 半導体装置 | |
JP2014056982A (ja) | パワー半導体装置およびその製造方法 | |
JP5217015B2 (ja) | 電力変換装置及びその製造方法 | |
JP5070877B2 (ja) | 半導体電力変換装置 | |
JP2019134018A (ja) | 半導体装置 | |
JP7176397B2 (ja) | 半導体装置とその製造方法 | |
JP4935783B2 (ja) | 半導体装置および複合半導体装置 | |
JP6763246B2 (ja) | 半導体装置 | |
JP2009117701A (ja) | パワーモジュール | |
JP7196761B2 (ja) | 半導体装置 | |
JP2006294729A (ja) | 半導体装置 | |
JP5277806B2 (ja) | 半導体装置 | |
JP2009206347A (ja) | パワーモジュール | |
JP6321883B2 (ja) | 電子部品ユニット及び熱伝導載置部材 | |
JP7183373B1 (ja) | 電力変換装置 | |
JP2018163932A (ja) | パワーモジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16887957 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017563488 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016006331 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16887957 Country of ref document: EP Kind code of ref document: A1 |