WO2017128928A1 - 移动靶镀膜装置及镀膜方法 - Google Patents

移动靶镀膜装置及镀膜方法 Download PDF

Info

Publication number
WO2017128928A1
WO2017128928A1 PCT/CN2017/000038 CN2017000038W WO2017128928A1 WO 2017128928 A1 WO2017128928 A1 WO 2017128928A1 CN 2017000038 W CN2017000038 W CN 2017000038W WO 2017128928 A1 WO2017128928 A1 WO 2017128928A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
target source
temperature
infrared heating
infrared
Prior art date
Application number
PCT/CN2017/000038
Other languages
English (en)
French (fr)
Inventor
钱国平
井杨坤
吴成业
王备
季雨
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/552,184 priority Critical patent/US20180044785A1/en
Priority to KR1020177025829A priority patent/KR20170117184A/ko
Priority to JP2017544609A priority patent/JP2019502813A/ja
Priority to BR112017020578-5A priority patent/BR112017020578A2/zh
Priority to EP17743543.5A priority patent/EP3412794B1/en
Priority to RU2017133532A priority patent/RU2727235C2/ru
Publication of WO2017128928A1 publication Critical patent/WO2017128928A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3421Cathode assembly for sputtering apparatus, e.g. Target using heated targets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors

Definitions

  • the present disclosure relates to a moving target coating apparatus and a coating method, and more particularly to a moving target coating apparatus and a coating method including an infrared temperature detecting unit and an infrared heating unit.
  • the OLED (Organic Light-Emitting Diode) display device has the advantages of self-luminous, high contrast, thin thickness, wide viewing angle, fast response, flexible panel, wide temperature range, simple structure and simple process. At present, one of the mainstream development directions of flat panel display technology. In the preparation of an organic light-emitting device, coating with a moving target is a method for increasing the target utilization rate.
  • Embodiments of the present invention provide a mobile target coating apparatus, including: a target source; a target source carrying portion; configured to carry and drive the target source motion; and an infrared temperature detecting portion configured to detect the target surface temperature An infrared heating portion configured to heat the target source; a control portion configured to receive a detection signal of the infrared temperature detecting portion and determine whether a temperature of the surface of the target source is uniform; wherein the control portion is further And configured to control the infrared heating portion to heat a portion of the surface of the target source with a lower temperature, and stop heating when the surface temperature of the target source is uniform.
  • the infrared temperature detecting portion and the infrared heating portion are connected to the target carrying portion, and the infrared temperature detecting portion and the infrared heating portion are The target carrier is moved synchronously.
  • the surface of the target source is substantially parallel to the surface of the infrared heating portion; the orthographic projection of the target source and the infrared heating portion on the same plane has at least Partial overlap.
  • the target source area is less than or equal to the infrared heating portion area.
  • the infrared temperature detection portion is located between the surface of the target source and the surface of the infrared heating portion.
  • the surface of the target source is a whole.
  • the target surface is composed of a plurality of discrete sub-target sources.
  • the plurality of discrete sub-target sources are arranged in a ring shape.
  • the infrared heating portion includes a plurality of infrared heating radiation sheets
  • the control portion is further configured to: when the control portion determines the surface of the target source When a part of the temperature is lower than the temperature of the other part and the temperature difference exceeds the set value, the infrared heating radiation sheet opposite to the part of the lower temperature target surface is activated, and the part of the target surface having a lower temperature is heated. When the surface temperature of the target source is uniform, the heating is stopped.
  • each of the infrared heating radiation sheets includes a radiation concentrating structure.
  • the infrared heating portion includes an infrared heating radiation sheet, and when the control portion determines that a certain portion of the surface of the target source has a lower temperature than other portions, and When the temperature difference exceeds the set value, the control unit controls the infrared heating radiation sheet to turn and heat the portion of the target surface having a lower temperature, and stops heating when the surface temperature of the target source is uniform.
  • the target bearing portion includes a guide rail and a target source support, and the target source support is configured to be configured when the target source needs to be moved, Moving on the rail.
  • the guide rail is a magnetic levitation track
  • the magnetic levitation track and the target source support are configured to generate an electromagnetic repulsive force
  • the target source is The support member is in a suspended state.
  • the guide rail is an air cushion rail
  • the air cushion rail is provided with a plurality of air holes toward the target source support, and the plurality of air holes on the air cushion rail
  • the vent is configured to eject a high velocity gas, and the target support is held in a suspended state.
  • the target source is disposed substantially parallel to the ground.
  • the infrared heating portion is disposed above the target source.
  • the infrared heating portion is disposed substantially parallel to the ground.
  • the target source is disposed above the infrared heating portion.
  • the target source and the infrared heating portion are both disposed substantially perpendicular to the ground.
  • the infrared temperature detecting portion includes an infrared camera tube.
  • Embodiments of the present invention also provide a method for coating a film using a moving target coating device, the moving target coating device comprising: a target source, a target bearing portion, an infrared temperature detecting portion for detecting a surface temperature of the target source, and heating An infrared heating portion of the target source, the control portion, wherein the target bearing portion carries the target source and can drive the target source to move freely in a three-dimensional direction, and the infrared temperature detecting portion and the infrared heating portion
  • the control unit is connected to the signal, the method includes: the control unit receives the detection signal of the infrared temperature detecting unit, and determines whether the surface temperature of the target source is uniform; and when the control unit determines a temperature of a part of the surface of the target source When the temperature of the other portion is lower than the temperature of the other portion and the temperature difference exceeds the set value, the infrared heating portion is controlled to heat the surface of the target source having a lower temperature, and the heating is stopped when
  • FIG. 1 is a schematic structural view of a moving target coating device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a moving target coating device according to still another embodiment of the present invention.
  • FIG. 3 is a top plan view of a target source and an infrared heating portion in a moving target coating device according to an embodiment of the present invention
  • FIG. 4 is a top plan view of a target source and an infrared heating portion in a moving target coating device according to still another embodiment of the present invention.
  • FIG. 5 is a schematic structural view of an infrared heating radiation sheet and a rotating electrical machine in a moving target coating device according to an embodiment of the present invention.
  • Organic optoelectronic devices such as thin film transistors (TFTs), light emitting diodes (LEDs), and photovoltaic (PV) cells
  • TFTs thin film transistors
  • LEDs light emitting diodes
  • PV photovoltaic
  • Organic semiconductors can be deposited on a variety of substrates, which can potentially simplify and reduce manufacturing costs when compared to inorganic semiconductors.
  • the unique processing requirements of organic semiconductors may limit their application.
  • light emitting devices and photovoltaic (PV) cells typically consist of a film of a conjugated polymer or monomer sandwiched between conductive electrodes.
  • the active organic layer itself must also be laterally patterned.
  • coating with a moving target is a method for increasing the target utilization rate.
  • the change in the crystallization temperature of the film causes the uniformity of film formation to deteriorate.
  • the embodiment of the present invention combines the use of the infrared heating portion and the infrared temperature detecting portion to ensure that the surface temperature of the moving target source is stable, and there is no temperature abnormality in the entire coating process, thereby ensuring the uniformity of the coating film.
  • Embodiments of the present disclosure provide a moving target coating apparatus including a target source, a target source carrying portion, an infrared temperature detecting portion for detecting a surface temperature of the target source, an infrared heating portion for heating the target source, and a control portion.
  • the target carrying portion carries the target source and can drive the target source to move.
  • the driving target source moves, for example, the target carrying portion carries the target source and the two move synchronously; the infrared temperature detecting portion and the infrared heating portion and
  • the control unit is connected to the signal, and the control unit receives the detection signal of the infrared temperature detecting unit to determine whether the surface temperature of the target source is uniform.
  • the control unit determines that the temperature of a part of the surface of the target source is lower than the temperature of the other part and the temperature difference exceeds the set value. Then, the infrared heating unit is controlled to heat the surface of a part of the target source with a lower temperature, and the heating is stopped when the surface temperature of the target source is uniform.
  • FIG. 1 is a schematic diagram of a mobile target coating device according to an embodiment of the invention.
  • the moving target coating device includes a target source 1, a target bearing portion 2, an infrared temperature detecting portion 3 for detecting a surface temperature of the target source, an infrared heating portion 4 for heating the target source, and a control portion 10,
  • the control unit 10 may include a signal connection unit 5 and a signal processing unit 6; in one example, the control unit 10 may further include an execution unit 7.
  • the target carrying portion 2 carries the target source 1 on its bearing surface, and can drive the target source 1 to move freely, for example, in a three-dimensional direction within the internal space of the moving target coating device.
  • the substrate 8 to be coated is disposed between the target source 1 and the infrared heating portion 4, and is disposed in parallel with the target source 1.
  • the area of the substrate 8 is generally greater than or equal to the area of the target source 1.
  • the infrared heating portion 4 is disposed between the substrate 8 to be coated and the target source 1 as long as the material sputtered from the target source 1 is not blocked from being deposited on the substrate 8 to be coated. Just fine.
  • the moving target coating device can be used in two ways when coating.
  • the target source 1 In the first mode, the target source 1 is fixed at a certain place to coat the substrate 8 at the corresponding position, and when the film thickness of the substrate 8 at the corresponding position reaches a set thickness, the target source carrying portion 2 drives the target source. 1 Move to another location to continue the above process.
  • the target carrying portion 2 drives the target source 1 to continuously move, and performs scanning coating on different positions of the substrate 8.
  • the power that drives the target carrier 2 can be, for example, from a stepper motor, and the drive mechanism can also include components such as rails, screws, gears, and the like.
  • the target bearing portion 2 can employ a low resistance track.
  • the target bearing portion 2 includes a magnetic levitation track 22 and a target source support 21.
  • an electromagnetic repulsive force will be generated between the magnetic levitation track 22 and the target source support 21, and the target source support 21 can be suspended.
  • the target source support 21 can be driven to move in the X-axis and/or Y-axis directions.
  • the target source support 21 is provided to be movable up and down, for example, by a screw method, or by a rack and pinion or the like.
  • FIG. 2 is a schematic diagram of a moving target coating device according to another embodiment of the present invention.
  • the target carrier portion 2 includes an air bearing track 24 and a target source support 23 on which the air bearing track 24 is disposed toward the target source support member 23.
  • the target source support 23 can be driven to move in the X-axis and/or Y-axis directions.
  • the target source support member 23 is provided to be movable up and down, for example, by a screw method, or by a rack and pinion.
  • the running speed and acceleration of the target bearing portion 2 are parameters that affect the operating efficiency of the target bearing portion 2; faster running speeds and greater accelerations can effectively reduce the time of a single movement. Since the target source support member 21/23 is separated from the above-described magnetic levitation track or air cushion track 22/24, the running speed is effectively improved. At the same time, since the frictional force when the target bearing portion 2 is moved is small in the embodiment of FIGS. 1 and 2, the speed of the target bearing portion 2 is more easily and rapidly increased. In contrast, the existing common target bearing system has large track resistance. When the task of moving the target source is heavy, the target carrying system itself will encounter frequent parking, which is too fast and too large. Acceleration accelerates component wear.
  • the magnetic levitation orbit system or the air-cushion rail system employed in the embodiment of the present invention overcomes this problem.
  • the magnetic levitation orbit system or the air-cushion rail system eliminates mechanical friction, reduces noise, and reduces mechanical wear of the equipment due to the separation of the track from the target support.
  • the infrared temperature detecting portion 3 and the infrared heating portion 4 may be connected to the target source carrying portion 2, in which case, when the target source carrying portion 2 moves, the infrared temperature detecting portion 3 and the infrared heating portion 4 follow the target carrying portion 2 synchronous movement.
  • This arrangement ensures that the infrared temperature detecting portion 3 can accurately detect the temperature of the surface of the target source 1, and that the infrared heating portion 4 accurately heats a specific position of the surface of the target source 1.
  • the infrared temperature detecting portion 3 and the infrared heating portion 4 may be provided separately from the target carrying portion 2, in which case, when the target carrying portion 2 moves, the infrared temperature detecting portion 3 and the infrared heating portion 4 move synchronously therewith. , or adjust the corresponding detection angle and heating angle.
  • the signal connection unit 5 is connected (coupled) to the infrared temperature detecting unit 3 and the signal processing unit 6.
  • the signal connection unit 5 is also connected (coupled) to the signal processing unit 6 and the execution unit 7.
  • the signal connection unit 5 can, for example, transmit an electrical signal or an optical signal, such as a wire or an optical fiber.
  • the signal connection unit 5 transmits the temperature information of the surface of the target 1 detected by the infrared temperature detecting unit 3 to the signal processing unit 6, and after the signal processing unit 6 has processed the temperature information, the signal connecting unit 5 instructs the signal processing unit 6 again.
  • the information is transmitted to the execution unit 7, and the execution unit 7 can control/drive the infrared heating unit 4.
  • the signal processing unit 6 determines whether or not the surface temperature of the target 1 is uniform based on the received detection result from the infrared temperature detecting unit 3. When the signal processing unit 6 determines that the temperature of a portion of the surface of the target source 1 is lower than the temperature of the other portion and the temperature difference exceeds the set value, the signal processing unit 6 issues an instruction to the execution unit 7, and the execution unit 7 controls the heating temperature of the infrared heating unit 4. The lower part of the target surface stops heating until the surface temperature of the target 1 is uniform.
  • the set value of the above temperature difference can be set according to the actual required accuracy, and is set to, for example, 5 ° C, 1 ° C, 0.5 ° C, 0.1 ° C, and the like.
  • the criterion for determining the uniform surface temperature of the target source can also be set according to actual needs. For example, when the temperature difference between the respective portions of the surface of the target source is set to be less than 5 ° C, 1 ° C, 0.5 ° C or 0.1 ° C, the surface temperature of the target source is considered to be uniform.
  • the target source 1 has a substantially flat target source surface
  • the infrared heating portion 4 may also have a substantially flat infrared heating portion surface, in which case the target source surface may be parallel to the infrared heating portion surface; the target source and the infrared heating portion
  • the orthographic projections on the same plane (such as the plane where the target source is located, or the plane where the infrared heating portion is located, or the plane on which the substrate is located, etc.) at least partially overlap, or the orthographic projection of the infrared heating portion on the same plane as the target source is at least partially
  • the infrared temperature detecting portion 3 is disposed between the surface of the target source 1 and the surface of the infrared heating portion 4.
  • the target source 1 area is less than or equal to the infrared heating portion 4 area.
  • 3 and 4 are plan views of the target source 1 and the infrared heating portion 4. As shown in Fig. 3, the target source 1 and the infrared heating portion 4 are of equal area and are disposed opposite each other. Therefore, the target source 1 and the infrared heating portion 4 overlap in plan view. As shown in FIG. 4, the area of the target source 1 is smaller than the area of the infrared heating portion 4, and is disposed oppositely. Therefore, the target source 1 is in the range of the infrared heating portion 4 in plan view.
  • the infrared heating section 4 includes a plurality of infrared heating radiation sheets. As shown in Figures 3 and 4, the infrared heating section 4 includes a total of 25 infrared heating radiation sheets of A1-E5, and the present invention is not limited to the shape and arrangement of the infrared heating radiation sheets as shown.
  • the signal processing unit 6 determines that the temperature of a portion of the surface of the target source 1 is lower than the temperature of the other portion and the temperature difference exceeds the set value, the signal processing unit 6 issues an instruction to the execution unit 7, and the execution unit 7 activates the portion with a lower temperature.
  • the infrared heating radiation sheet opposite to the surface of the target source heats the surface of a part of the target source 1 having a lower temperature, and stops heating when the surface temperature of the target source 1 is uniform.
  • the signal processing unit 6 detects that the temperature in the upper left corner of the target source 1 is lower than the temperature of the other portion and the temperature difference exceeds the set value.
  • an instruction is issued to the execution unit 7, and the execution unit 7 starts up and The infrared heating radiation sheet opposite to the upper left corner of the target source 1, that is, the infrared heating radiation sheet A1, heats the upper left corner of the target source with a lower temperature, and stops heating until the surface temperature of the target source is uniform.
  • each of the infrared heating radiation sheets of the infrared heating portion 4 may also be provided with a radiation collecting structure (for example, a lens or a reflection) Therefore, it is possible to better heat the local portion of the target source 1.
  • a radiation collecting structure for example, a lens or a reflection
  • the infrared heating portion 4 may also include an infrared heating radiation sheet 41.
  • the actuator portion 7 includes a rotating electrical motor 71.
  • the infrared heating radiation sheet 41 is connected to the rotating electrical motor 71, and the signal processing portion 6 is configured to determine the target.
  • the signal processing unit 6 determines that the temperature of a portion P of the target source surface is lower than the temperature of the other portion and the temperature difference exceeds the set value, the signal processing unit 6 issues an instruction to the execution unit 7, and the rotary motor 71 controls The infrared heating radiation sheet 41 connected thereto is turned and heated to a portion of the target surface P having a lower temperature, and the heating is stopped when the surface temperature of the target source is uniform.
  • the surface of the target 1 may be a unitary body.
  • the surface of the target source 1 may also be composed of a plurality of discrete sub-target sources; for example, these sub-target sources are arranged on the endless drive belt so that the sub-target sources can be used in turn, further ensuring uniformity of deposition.
  • the target source 1 may be disposed parallel to the ground, and the infrared heating portion 4 may be disposed above the target source 1.
  • the infrared heating portion 4 may be disposed parallel to the ground, and the target source 1 may be disposed above the infrared heating portion 4.
  • both the target source 1 and the infrared heating portion 4 are disposed perpendicular to the ground.
  • the infrared temperature detecting section 3 includes an infrared camera tube or the like.
  • the signal processing section 6 includes a central processing unit (CPU), an image processing unit (GPU), a digital signal processor (DSP), a programmable logic controller, etc., and may also include a memory, an input/output device (such as a display if necessary). , touch screen, touch pad, keyboard, mouse, etc.).
  • the execution unit 7 includes a relay, a drive electrode, and the like.
  • the moving target coating device of the above embodiment of the present invention can be applied to various coating methods including, but not limited to, magnetron sputtering, vacuum evaporation, and the like.
  • the moving target coating device is also suitable for the preparation of various material films, such as anodic films including, but not limited to, indium tin oxide film (ITO), zinc tin oxide film (IZO), and the like.
  • ITO indium tin oxide film
  • IZO zinc tin oxide film
  • the infrared temperature detecting portion 3 detects the temperature of the surface of the target source 1 in real time
  • the infrared heating portion 4 heats the surface temperature of the target source 1 in time according to the detected temperature distribution information.
  • the surface temperature of the target 1 is uniform during the coating process, and an anode film having a uniform distribution of uniform resistance can be obtained.
  • the resistivity of the anodic film reaches 2 ⁇ 10 -4 ⁇ /cm, and the transmittance reaches 90% or more; the working efficiency and the product quality of the anodic film are greatly improved; the production cost is saved, and the service life is saved. It is more than 2 times longer and energy saving and environmental protection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Coating Apparatus (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种移动靶镀膜装置,包括:靶源(1);靶源承载部(2),被配置为承载和驱动靶源(1)运动;红外温度探测部(3),被配置为检测靶源(1)表面温度;红外加热部(4),被配置为加热靶源(1);控制部(10),被配置为接收红外温度探测部(3)的探测信号和判断靶源(1)表面的温度是否均匀;其中,控制部(10)还被配置为控制红外加热部(4)加热靶源(1)表面温度较低的部分,至靶源(1)表面温度均匀时停止加热。以及一种采用移动靶镀膜装置镀膜的方法。

Description

移动靶镀膜装置及镀膜方法 技术领域
本公开涉及移动靶镀膜装置及镀膜方法,尤其涉及具备红外温度探测部、红外加热部的移动靶镀膜装置及镀膜方法。
背景技术
OLED(Organic Light-Emitting Diode,有机发光二极管)显示器件具备自发光、对比度高、厚度薄、视角广、反应速度快、可用于柔性面板、使用温度范围广、构造及制程较简单等优点,是目前平面显示器技术的主流发展方向之一。在有机发光器件的制备中,利用移动靶进行镀膜是一种可以提高靶材使用率的方法。
发明内容
本发明的实施例提供一种移动靶镀膜装置,包括:靶源;靶源承载部;被配置为承载和驱动所述靶源运动;红外温度探测部,被配置为检测所述靶源表面温度;红外加热部,被配置为加热所述靶源;控制部,被配置为接收所述红外温度探测部的探测信号和判断所述靶源表面的温度是否均匀;其中,所述控制部还被配置为控制所述红外加热部加热靶源表面温度较低的部分,至所述靶源表面温度均匀时停止加热。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述红外温度探测部和所述红外加热部与所述靶源承载部连接,所述红外温度探测部、所述红外加热部与所述靶源承载部同步移动。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述靶源表面与所述红外加热部表面基本平行;所述靶源与所述红外加热部在同一平面上的正投影至少有部分重叠。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述靶源面积小于或等于所述红外加热部面积。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述红外温度探测 部位于所述靶源表面与所述红外加热部表面之间。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述靶源表面为一整体。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述靶源表面由多个分立的子靶源组成。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述多个分立的子靶源排布为环形。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述红外加热部包括复数个红外加热辐射片,所述控制部还被配置为,当所述控制部判断所述靶源表面某部分温度低于其他部分的温度且温度差值超过设定值时,启动与所述温度较低的部分靶源表面相对的红外加热辐射片,以及,加热所述温度较低的部分靶源表面,至所述靶源表面温度均匀时停止加热。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述每个红外加热辐射片包括辐射汇聚结构。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述红外加热部包括一个红外加热辐射片,当所述控制部判断所述靶源表面某部分温度低于其他部分的温度、且温度差值超过设定值时,所述控制部控制所述红外加热辐射片转向并加热所述温度较低的部分靶源表面,至所述靶源表面温度均匀时停止加热。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述靶源承载部包括导轨和靶源支撑件,所述靶源支撑件被配置为,当所述靶源需要移动时,在所述导轨上移动。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述导轨为磁悬浮轨道,且所述磁悬浮轨道和所述靶源支撑件之间被配置为产生电磁排斥力,将所述靶源支撑件托起到悬浮状态。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述导轨为气垫轨道,所述气垫轨道上设置有朝向所述靶源支撑件的多个气孔,所述气垫轨道上的多个气孔被配置为喷出高速气体,将所述靶源支撑件托起到悬浮状态。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述靶源基本平行于地面设置。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述红外加热部设置在所述靶源上方。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述红外加热部基本平行于地面设置。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述靶源设置在所述红外加热部上方。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述靶源和所述红外加热部均基本垂直于地面设置。
在本发明的实施例提供的移动靶镀膜装置中,例如,所述红外温度探测部包括红外摄像管。
本发明的实施例还提供一种采用移动靶镀膜装置镀膜的方法,所述移动靶镀膜装置包括:靶源、靶源承载部、用于检测靶源表面温度的红外温度探测部、用于加热靶源的红外加热部、控制部,其中,所述靶源承载部承载所述靶源并可驱动所述靶源在三维方向自由移动,所述红外温度探测部和所述红外加热部与所述控制部信号连接,所述方法包括:所述控制部接收所述红外温度探测部的探测信号,判断所述靶源表面温度是否均匀;当所述控制部判断所述靶源表面某部分温度低于其他部分的温度且温度差值超过设定值时,则控制所述红外加热部加热所述温度较低的部分靶源表面,至所述靶源表面温度均匀时停止加热。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明一实施例提供的移动靶镀膜装置结构示意图;
图2为本发明又一实施例提供的移动靶镀膜装置结构示意图;
图3为本发明一实施例提供的移动靶镀膜装置中靶源和红外加热部的俯视图;
图4为本发明又一实施例提供的移动靶镀膜装置中靶源和红外加热部的俯视图;
图5为本发明一实施例提供的移动靶镀膜装置中的红外加热辐射片、旋转电机结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,本公开所使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
有机光电器件,例如薄膜晶体管(TFT)、发光二极管(LED)和光生伏打(PV)电池在过去十年来赢得了研究者相当大的关注。有机半导体可沉积在各种基底上,当与无机半导体相比时,这将潜在地简化并降低制造成本。虽然具备上述优势,但有机半导体独特的加工要求也可能会限制其应用。例如,发光器件和光生伏打(PV)电池典型地由夹在导电电极之间的共轭聚合物或单体的薄膜组成。对于全色显示器和多晶体管电路来说,活性有机层本身还必须被横向构图。然而,典型的有机层太脆,以致于无法耐受常规的半导体加工方法,例如光刻法、等离子体加工或反应性离子蚀刻等。因此研究人员开发了许多制造和构图技术来适应有机材料这些独特的性质,这些技术主要强调加工的容易程度和低成本。
在有机发光器件的制备中,利用移动靶进行镀膜是一种可以提高靶材使用率的方法。但已有的方法中,膜结晶温度的变化导致成膜的均一性变差。本发明的实施例结合使用红外加热部和红外温度探测部,可确保移动靶源表面温度稳定,整个镀膜过程中没有温度异常,保证了镀膜的均一性。
本公开的实施例提供了一种移动靶镀膜装置,其包括靶源、靶源承载部、用于检测靶源表面温度的红外温度探测部、用于加热靶源的红外加热部、控制部。靶源承载部承载靶源并可驱动靶源运动,所述驱动靶源运动,例如可以是所述靶源承载部承载所述靶源并且两者同步运动;红外温度探测部和红外加热部与控制部信号连接,控制部接收红外温度探测部的探测信号,判断靶源表面温度是否均匀,当控制部判断靶源表面某部分温度低于其他部分的温度且温度差值超过设定值时,则控制红外加热部加热温度较低的部分靶源表面,至靶源表面温度均匀时停止加热。
图1为本发明一实施例提供的移动靶镀膜装置示意图。如图所示,该移动靶镀膜装置包括靶源1、靶源承载部2、用于检测靶源表面温度的红外温度探测部3、用于加热靶源的红外加热部4和控制部10,其中控制部10可以包括信号连接部5、信号处理部6;在一个示例中,该控制部10还可以包括执行部7。
靶源承载部2在其承载面上承载靶源1,并可驱动靶源1例如在移动靶镀膜装置内部空间内的三维方向上自由移动。在图中所示的实施例中,待镀膜的基板8设置在靶源1与红外加热部4之间,且与靶源1平行设置。基板8的面积一般大于等于靶源1的面积。在其他示例中,例如图2所示,红外加热部4设置在待镀膜的基板8与靶源1之间,只要不遮挡从靶源1溅射出来的物质沉积到待镀膜的基板8之上即可。
该移动靶镀膜装置在镀膜时,可以采用两种方式。在第一种方式中,靶源1固定于某一处对对应位置处的基板8进行镀膜,当该对应位置处的基板8的膜厚达到设定厚度时,靶源承载部2驱动靶源1移动至另一处继续重复上述过程。在第二种方式中,靶源承载部2驱动靶源1不断移动,对基板8不同位置进行扫描式的镀膜。驱动靶源承载部2的动力例如可来自步进电机,并且驱动机构还可以包括导轨、螺杆、齿轮等部件。
靶源承载部2可以采用低阻轨道。例如,如图1所示,靶源承载部2包括磁悬浮轨道22和靶源支撑件21。当靶源1需要移动时,磁悬浮轨道22和靶源支撑件21之间将产生电磁排斥力,将靶源支撑件21托起到悬浮状态。在此状态下,可以驱动靶源支撑件21在X轴和/或Y轴方向运动。靶源支撑件21设置为可升降,例如通过螺杆方式,或者通过齿轮齿条的方式等。
图2为本发明另一实施例提供的移动靶镀膜装置示意图。与图1所示的实施例相比,在图2所示的实施例中,靶源承载部2包括气垫轨道24和靶源支撑件23,气垫轨道24上设置有朝向靶源支撑件23的多个气孔25,当靶源1需要移动时,气垫轨道24上的多个气孔25将喷出高速气体,将靶源支撑件23托起到悬浮状态。在此状态下,可以驱动靶源支撑件23在X轴和/或Y轴方向运动。靶源支撑件23设置为可升降,例如通过螺杆方式,或者通过齿轮齿条的方式等。
靶源承载部2的运行速度和加速度是影响靶源承载部2运行效率的参数;更快的运行速度和更大的加速度可以有效地降低单次移动的时间。由于靶源支撑件21/23和上述磁悬浮轨道或者气垫轨道22/24分离,有效提高了运行速度。同时由于在图1和图2的实施例中,对靶源承载部2运动时的摩擦力较小,靶源承载部2的速度更加容易快速提升。与此相对,已有的普通靶源承载系统轨道阻力大,当搬运靶源的任务较繁重的时候,靶源承载系统本身会遇到经常性的停车,这时过快的速度和过大的加速度会加快部件的磨损。但本发明实施例采用的磁悬浮轨道系统或气垫轨道系统克服了这种问题。磁悬浮轨道系统或气垫轨道系统,由于轨道与靶源支撑件分离,消除了机械摩擦、降低了噪音、减少了设备的机械磨损。
例如,红外温度探测部3和红外加热部4可以与靶源承载部2连接,此种情况下,当靶源承载部2移动时,红外温度探测部3和红外加热部4随靶源承载部2同步移动。这样设置可以保证红外温度探测部3能够准确探测靶源1表面的温度,以及保证红外加热部4准确地对靶源1表面特定位置加热。当然,红外温度探测部3和红外加热部4也可以与靶源承载部2分离设置,此种情况下,当靶源承载部2移动时,红外温度探测部3和红外加热部4与其同步移动,或者调整相应的检测角度以及加热角度等。
信号连接部5连接(耦接)红外温度探测部3和信号处理部6。信号连接部5还连接(耦接)信号处理部6和执行部7。信号连接部5例如可以传递电信号或者光信号,例如为导线或光纤等。信号连接部5将红外温度探测部3探测到的靶源1表面的温度信息传送给信号处理部6,信号处理部6处理完该温度信息后,信号连接部5再将信号处理部6的指令信息发送给执行部7,执行部7可以控制/驱动红外加热部4。
信号处理部6根据接收的来自于红外温度探测部3的检测结果,判断靶源1表面温度是否均匀。当信号处理部6判断靶源1表面某部分温度低于其他部分的温度且温度差值超过设定值时,信号处理部6向执行部7发出指令,执行部7控制红外加热部4加热温度较低的部分靶源表面,直至靶源1表面温度均匀时停止加热。上述温度差的设定值可根据实际需要的精度来设置,例如设定为5℃、1℃、0.5℃、0.1℃等。靶源表面温度均匀的判断标准也可根据实际需要来设定。例如可以设定靶源表面各部分之间的温度差小于5℃、1℃、0.5℃或0.1℃时,认为靶源表面温度均匀。
例如,靶源1具有一基本平坦的靶源表面,红外加热部4也可具有一基本平坦的红外加热部表面,此时可使得靶源表面与红外加热部表面平行;靶源与红外加热部在同一平面(如靶源所在的平面,或者红外加热部所在的平面,或者基板所在的平面等)上的正投影至少部分重叠,或者红外加热部与靶源在同一平面上的正投影至少部分重叠;红外温度探测部3设置在靶源1表面与红外加热部4表面之间。
例如,靶源1面积小于或等于红外加热部4面积。如图3、4所示是靶源1和红外加热部4的俯视图。如图3所示,靶源1和红外加热部4面积相等,并且正对着设置。因此,俯视图中靶源1和红外加热部4重合。如图4所示,靶源1面积小于红外加热部4面积,并且正对着设置。因此,俯视图中靶源1在红外加热部4的范围内。
例如,红外加热部4包括复数个红外加热辐射片。如图3、4所示,红外加热部4包括A1-E5共25个红外加热辐射片,本发明不限于如图所示的红外加热辐射片的形状和排布。当信号处理部6判断靶源1表面某部分温度低于其他部分的温度且温度差值超过设定值时,信号处理部6向执行部7发出指令,执行部7启动与温度较低的部分靶源表面相对的红外加热辐射片,加热温度较低的部分靶源1表面,至靶源1表面温度均匀时停止加热。例如,信号处理部6探测到靶源1左上角的温度低于其他部分的温度且温度差值超过了设定值,如图3所示,则向执行部7发出指令,执行部7启动与靶源1左上角相对的红外加热辐射片,也即红外加热辐射片A1,加热温度较低的靶源左上角,直至靶源表面温度均匀时停止加热。在一个示例中,红外加热部4的各个红外加热辐射片的表面还可以设置辐射汇聚结构(例如透镜或反射 部),从而可以更好地针对靶源1的局部进行加热。
例如,如图5所示,红外加热部4也可以包括一个红外加热辐射片41,执行部7包括一个旋转电机71,红外加热辐射片41与旋转电机71相连,信号处理部6构造为判断靶源表面温度是否均匀,当信号处理部6判断靶源表面某部分P温度低于其他部分的温度且温度差值超过设定值时,信号处理部6向执行部7发出指令,旋转电机71控制与其相连的红外加热辐射片41转向并加热温度较低的部分靶源表面P,至靶源表面温度均匀时停止加热。
在上述实施例中,还可以设置一个例如风扇等以配合红外加热部4工作,以促进温度的均一性。
例如,靶源1表面可以为一整体。或者,靶源1表面也可以由多个分立的子靶源组成;又例如,这些子靶源排布在环形驱动带上,从而可以轮流使用这些子靶源,更进一步保证沉积的均匀性。
例如,如图1、2所示,靶源1可以平行于地面设置,红外加热部4可以设置在靶源1上方。或者,红外加热部4可以平行于地面设置,靶源1可以设置在红外加热部4上方。又或者,靶源1和红外加热部4均垂直于地面设置。
例如,红外温度探测部3包括红外摄像管等。
例如,信号处理部6包括中央处理单元(CPU)、图像处理单元(GPU)、数字信号处理器(DSP)、可编程逻辑控制器等,如果需要还可以包括存储器、输入/输出设备(例如显示器、触摸屏、触摸板、键盘、鼠标等)等。
例如,执行部7包括继电器、驱动电极等。
本发明上述实施例的移动靶镀膜装置可以适用于各种镀膜方式,包括但不限于磁控溅射法、真空蒸镀法等。该移动靶镀膜装置也适用于各种材料薄膜的制备,例如阳极膜包括但不限于氧化铟锡膜(ITO)、氧化锌锡膜(IZO)等。在本发明上述实施例提供的移动靶镀膜装置中,红外温度探测部3实时检测靶源1表面的温度,红外加热部4根据探测到的温度分布信息,及时加热靶源1表面温度较低的部分,保证了镀膜过程中靶源1表面温度均一,能够得到整版电阻分布均匀的阳极膜。在本发明的一个实施例中,阳极膜的电阻率达到2×10-4Ω/cm、透过率达到90%以上;工作效率、阳极膜的产品质量都大大提高;节约生产成本,使用寿命延长2倍以上,并且节能环保。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2016年1月26日递交的中国专利申请第201610053369.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (21)

  1. 一种移动靶镀膜装置,包括:
    靶源;
    靶源承载部,被配置为承载和驱动所述靶源运动;
    红外温度探测部,被配置为检测所述靶源表面温度;
    红外加热部,被配置为加热所述靶源;
    控制部,被配置为接收所述红外温度探测部的探测信号和判断所述靶源表面的温度是否均匀;
    其中,
    所述控制部还被配置为控制所述红外加热部加热靶源表面温度较低的部分,至所述靶源表面温度均匀时停止加热。
  2. 根据权利要求1所述的移动靶镀膜装置,其中,所述红外温度探测部和所述红外加热部与所述靶源承载部连接,所述红外温度探测部、所述红外加热部与所述靶源承载部同步移动。
  3. 根据权利要求1所述的移动靶镀膜装置,其中,所述靶源表面与所述红外加热部表面基本平行;
    所述靶源与所述红外加热部在同一平面上的正投影至少有部分重叠。
  4. 根据权利要求3所述的移动靶镀膜装置,其中,所述靶源面积小于或等于所述红外加热部面积。
  5. 根据权利要求1所述的移动靶镀膜装置,其中,所述红外温度探测部位于所述靶源表面与所述红外加热部表面之间。
  6. 根据权利要求1-5的任一项所述的移动靶镀膜装置,其中所述靶源表面为一整体。
  7. 根据权利要求1-5的任一项所述的移动靶镀膜装置,其中所述靶源表面由多个分立的子靶源组成。
  8. 根据权利要求7所述的移动靶镀膜装置,其中所述多个分立的子靶源排布为环形。
  9. 根据权利要求1-5任一项所述的移动靶镀膜装置,其中,所述红外加热部包括复数个红外加热辐射片,
    所述控制部还被配置为,当所述控制部判断所述靶源表面某部分温度低于其他部分的温度且温度差值超过设定值时,启动与所述温度较低的部分靶源表面相对的红外加热辐射片,以及,加热所述温度较低的部分靶源表面,至所述靶源表面温度均匀时停止加热。
  10. 根据权利要求9所述的移动靶镀膜装置,其中,所述每个红外加热辐射片包括辐射汇聚结构。
  11. 根据权利要求1-5的任一项所述的移动靶镀膜装置,其中,所述红外加热部包括一个红外加热辐射片,当所述控制部判断所述靶源表面某部分温度低于其他部分的温度、且温度差值超过设定值时,所述控制部控制所述红外加热辐射片转向并加热所述温度较低的部分靶源表面,至所述靶源表面温度均匀时停止加热。
  12. 根据权利要求1-5的任一项所述的移动靶镀膜装置,其中,所述靶源承载部包括导轨和靶源支撑件,所述靶源支撑件被配置为,当所述靶源需要移动时,在所述导轨上移动。
  13. 根据权利要求12所述的移动靶镀膜装置,其中,所述导轨为磁悬浮轨道,且所述磁悬浮轨道和所述靶源支撑件之间被配置为产生电磁排斥力,将所述靶源支撑件托起到悬浮状态。
  14. 根据权利要求12所述的移动靶镀膜装置,其中,所述导轨为气垫轨道,所述气垫轨道上设置有朝向所述靶源支撑件的多个气孔,所述气垫轨道上的多个气孔被配置为喷出高速气体,将所述靶源支撑件托起到悬浮状态。
  15. 根据权利要求1-5的任一项所述的移动靶镀膜装置,其中,所述靶源基本平行于地面设置。
  16. 根据权利要求1-5的任一项所述的移动靶镀膜装置,其中,所述红外加热部设置在所述靶源上方。
  17. 根据权利要求1-5的任一项所述的移动靶镀膜装置,其中,所述红外加热部基本平行于地面设置。
  18. 根据权利要求1-5的任一项所述的移动靶镀膜装置,其中,所述靶源设置在所述红外加热部上方。
  19. 根据权利要求1-5的任一项所述的移动靶镀膜装置,其中,所述靶源和所述红外加热部均基本垂直于地面设置。
  20. 根据权利要求1-5的任一项所述的移动靶镀膜装置,其中,所述红外温度探测部包括红外摄像管。
  21. 一种采用移动靶镀膜装置镀膜的方法,所述移动靶镀膜装置包括:靶源、靶源承载部、用于检测靶源表面温度的红外温度探测部、用于加热靶源的红外加热部、控制部,其中,所述靶源承载部承载所述靶源并可驱动所述靶源在三维方向自由移动,所述红外温度探测部和所述红外加热部与所述控制部信号连接,
    所述方法包括:
    所述控制部接收所述红外温度探测部的探测信号,判断所述靶源表面温度是否均匀;
    当所述控制部判断所述靶源表面某部分温度低于其他部分的温度且温度差值超过设定值时,则控制所述红外加热部加热所述温度较低的部分靶源表面,至所述靶源表面温度均匀时停止加热。
PCT/CN2017/000038 2016-01-26 2017-01-03 移动靶镀膜装置及镀膜方法 WO2017128928A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/552,184 US20180044785A1 (en) 2016-01-26 2017-01-03 Coating device with moving target and coating method
KR1020177025829A KR20170117184A (ko) 2016-01-26 2017-01-03 이동 타겟을 갖는 코팅 디바이스 및 코팅 방법
JP2017544609A JP2019502813A (ja) 2016-01-26 2017-01-03 移動ターゲットの成膜装置及び成膜方法
BR112017020578-5A BR112017020578A2 (zh) 2016-01-26 2017-01-03 Moving target coating device and coating method
EP17743543.5A EP3412794B1 (en) 2016-01-26 2017-01-03 Coating device with moving target and coating method
RU2017133532A RU2727235C2 (ru) 2016-01-26 2017-01-03 Устройство нанесения покрытия с движущейся мишенью и способ нанесения покрытия

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610053369.8 2016-01-26
CN201610053369.8A CN105483619B (zh) 2016-01-26 2016-01-26 移动靶镀膜装置及镀膜方法

Publications (1)

Publication Number Publication Date
WO2017128928A1 true WO2017128928A1 (zh) 2017-08-03

Family

ID=55670882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000038 WO2017128928A1 (zh) 2016-01-26 2017-01-03 移动靶镀膜装置及镀膜方法

Country Status (8)

Country Link
US (1) US20180044785A1 (zh)
EP (1) EP3412794B1 (zh)
JP (1) JP2019502813A (zh)
KR (1) KR20170117184A (zh)
CN (1) CN105483619B (zh)
BR (1) BR112017020578A2 (zh)
RU (1) RU2727235C2 (zh)
WO (1) WO2017128928A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111719122A (zh) * 2019-03-21 2020-09-29 广东太微加速器有限公司

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015112540A1 (de) * 2015-07-30 2017-02-16 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Beschichten einer Oberfläche
CN105483619B (zh) * 2016-01-26 2018-01-02 京东方科技集团股份有限公司 移动靶镀膜装置及镀膜方法
US20190033138A1 (en) * 2017-07-28 2019-01-31 United Technologies Corporation Processes and tooling for temperature controlled plasma spray coating
CN109913832A (zh) * 2017-12-12 2019-06-21 湘潭宏大真空技术股份有限公司 用于大面积玻璃磁控溅射镀膜生产线的溅镀装置
CN109957762B (zh) 2017-12-14 2020-11-27 京东方科技集团股份有限公司 蒸镀方法以及蒸镀装置
CN112015307B (zh) * 2020-09-16 2023-04-14 付小丰 一种多阶红外触摸屏边框
CN113526877B (zh) * 2021-07-27 2023-04-14 中国航发北京航空材料研究院 一种镀膜玻璃的制备方法及装置
WO2023122900A1 (zh) * 2021-12-27 2023-07-06 华为技术有限公司 一种磁控溅射设备及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263939A (ja) * 1996-03-26 1997-10-07 Sharp Corp 加熱装置
US20020100680A1 (en) * 2001-01-29 2002-08-01 Tatsushi Yamamoto Backing plate used for sputtering apparatus and sputtering method
JP2005327846A (ja) * 2004-05-13 2005-11-24 Nippon Telegr & Teleph Corp <Ntt> 基板加熱装置
CN202643828U (zh) * 2012-06-14 2013-01-02 沈阳新瑞真空设备有限公司 一种磁控溅射阴极移动靶
CN103484826A (zh) * 2012-06-14 2014-01-01 沈阳新瑞真空设备有限公司 一种磁控溅射阴极移动靶
CN105483619A (zh) * 2016-01-26 2016-04-13 京东方科技集团股份有限公司 移动靶镀膜装置及镀膜方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4324631A (en) * 1979-07-23 1982-04-13 Spin Physics, Inc. Magnetron sputtering of magnetic materials
SU1567271A1 (ru) * 1988-06-07 1990-05-30 Ворошиловградский машиностроительный институт Устройство дл извлечени и крутонаклонного транспортировани ферромагнитных предметов
RU2063859C1 (ru) * 1990-10-02 1996-07-20 Иркутское авиационное производственное объединение Транспортирующий спутник
RU2049152C1 (ru) * 1992-03-26 1995-11-27 Научно-производственное объединение "Оптика" Устройство для распыления материалов в вакууме
JP3430277B2 (ja) * 1995-08-04 2003-07-28 東京エレクトロン株式会社 枚葉式の熱処理装置
AU2514900A (en) * 1999-01-27 2000-08-18 United States Of America As Represented By The Secretary Of The Navy, The Fabrication of conductive/non-conductive nanocomposites by laser evaporation
US6333493B1 (en) * 1999-09-21 2001-12-25 Kabushiki Kaisha Toshiba Heat treating method and heat treating apparatus
US20020011205A1 (en) * 2000-05-02 2002-01-31 Shunpei Yamazaki Film-forming apparatus, method of cleaning the same, and method of manufacturing a light-emitting device
JP2002289601A (ja) * 2001-03-28 2002-10-04 Hitachi Kokusai Electric Inc 基板処理装置及び方法
CN1996553A (zh) * 2001-08-31 2007-07-11 阿赛斯特技术公司 用于半导体材料处理系统的一体化机架
US7431807B2 (en) * 2005-01-07 2008-10-07 Universal Display Corporation Evaporation method using infrared guiding heater
JP2006225757A (ja) * 2005-01-21 2006-08-31 Mitsubishi Heavy Ind Ltd 真空蒸着装置
US7608308B2 (en) * 2006-04-17 2009-10-27 Imra America, Inc. P-type semiconductor zinc oxide films process for preparation thereof, and pulsed laser deposition method using transparent substrates
RU2350686C2 (ru) * 2007-04-06 2009-03-27 Общество с ограниченной ответственностью "УФ-техника" Способ получения тонких пленок карбида кремния методом вакуумной лазерной абляции
KR20090041316A (ko) * 2007-10-23 2009-04-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 성막 방법 및 발광 장치의 제작 방법
US8150242B2 (en) * 2008-10-31 2012-04-03 Applied Materials, Inc. Use of infrared camera for real-time temperature monitoring and control
JP2010168649A (ja) * 2008-12-26 2010-08-05 Canon Anelva Corp 基板処理装置、成膜方法、電子デバイスの生産方法
US8432603B2 (en) * 2009-03-31 2013-04-30 View, Inc. Electrochromic devices
KR101073557B1 (ko) * 2009-11-24 2011-10-14 삼성모바일디스플레이주식회사 스퍼터링 장치
CN102409301A (zh) * 2010-09-21 2012-04-11 鸿富锦精密工业(深圳)有限公司 磁控溅射靶结构
CN102560441B (zh) * 2010-12-23 2015-01-14 北京北方微电子基地设备工艺研究中心有限责任公司 加热控制方法、装置和系统,加热腔及等离子体设备
CN104617008A (zh) * 2013-11-01 2015-05-13 沈阳芯源微电子设备有限公司 晶圆加热装置
CN203826348U (zh) * 2014-05-09 2014-09-10 中芯国际集成电路制造(北京)有限公司 一种晶圆温度监控装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263939A (ja) * 1996-03-26 1997-10-07 Sharp Corp 加熱装置
US20020100680A1 (en) * 2001-01-29 2002-08-01 Tatsushi Yamamoto Backing plate used for sputtering apparatus and sputtering method
JP2005327846A (ja) * 2004-05-13 2005-11-24 Nippon Telegr & Teleph Corp <Ntt> 基板加熱装置
CN202643828U (zh) * 2012-06-14 2013-01-02 沈阳新瑞真空设备有限公司 一种磁控溅射阴极移动靶
CN103484826A (zh) * 2012-06-14 2014-01-01 沈阳新瑞真空设备有限公司 一种磁控溅射阴极移动靶
CN105483619A (zh) * 2016-01-26 2016-04-13 京东方科技集团股份有限公司 移动靶镀膜装置及镀膜方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111719122A (zh) * 2019-03-21 2020-09-29 广东太微加速器有限公司

Also Published As

Publication number Publication date
EP3412794A4 (en) 2019-11-06
KR20170117184A (ko) 2017-10-20
CN105483619B (zh) 2018-01-02
RU2727235C2 (ru) 2020-07-21
RU2017133532A (ru) 2020-02-27
CN105483619A (zh) 2016-04-13
EP3412794B1 (en) 2023-04-05
RU2017133532A3 (zh) 2020-02-27
BR112017020578A2 (zh) 2018-07-03
EP3412794A1 (en) 2018-12-12
US20180044785A1 (en) 2018-02-15
JP2019502813A (ja) 2019-01-31

Similar Documents

Publication Publication Date Title
WO2017128928A1 (zh) 移动靶镀膜装置及镀膜方法
US20180212150A1 (en) Aligner structure and alignment method
WO2017063428A1 (zh) 一种溅镀设备的靶材更换装置及溅镀设备
CN106611729B (zh) 一种用于片材的自动翻片装置、方法及太阳能电池生产线
TW201539524A (zh) 用來塗布基板之方法及塗布機
TW201923943A (zh) 用以決定一載體懸浮系統之對準的方法及設備
US10081860B2 (en) Vacuum deposition apparatus and vapor deposition method
KR101391510B1 (ko) 금속 나노와이어를 구비한 다층 투명 전극 소자
KR20130125900A (ko) 롤투롤 스퍼터링 장치
CN102184934B (zh) 掩膜板真空对位装置
JP2014162996A (ja) 蒸着源を検出する装置およびその検出方法
KR101462159B1 (ko) 기판 얼라이너 구조
KR20160045518A (ko) 마스크 척킹 구조
WO2020093479A1 (zh) 蒸镀挡板机构及蒸镀装置
WO2018214483A1 (zh) 蒸镀装置
WO2011116563A1 (zh) 真空蒸镀装置
CN105600446B (zh) 基板缓存装置
TW201932393A (zh) 用於在一沈積系統中非接觸傳送之載體、用於一載體之非接觸傳送之設備、及用於在一沈積系統中之一載體的非接觸傳送之方法
KR101628864B1 (ko) 기판 이송 장치
KR101530036B1 (ko) 캐리어글라스 박리장치
JP2008019478A (ja) 透明導電膜形成方法及び透明導電膜付フィルム
CN110211914A (zh) 一种半导体制品的承载方法、传输方法、制造方法及其用途
WO2015100780A1 (zh) 真空蒸镀装置及蒸镀方法
KR20150047686A (ko) 양면 스퍼터링 진공 증착 장치 및 방법
TWI701206B (zh) 電子元件之製造系統

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15552184

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017544609

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177025829

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743543

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017020578

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017020578

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170926

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017743543

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017743543

Country of ref document: EP

Effective date: 20180827