WO2023122900A1 - 一种磁控溅射设备及其控制方法 - Google Patents

一种磁控溅射设备及其控制方法 Download PDF

Info

Publication number
WO2023122900A1
WO2023122900A1 PCT/CN2021/141750 CN2021141750W WO2023122900A1 WO 2023122900 A1 WO2023122900 A1 WO 2023122900A1 CN 2021141750 W CN2021141750 W CN 2021141750W WO 2023122900 A1 WO2023122900 A1 WO 2023122900A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
target
cooling
devices
zone
Prior art date
Application number
PCT/CN2021/141750
Other languages
English (en)
French (fr)
Inventor
王晓
朱靖华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/141750 priority Critical patent/WO2023122900A1/zh
Priority to CN202180032752.4A priority patent/CN116685708A/zh
Publication of WO2023122900A1 publication Critical patent/WO2023122900A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders

Definitions

  • the present application relates to the technical field of magnetron sputtering, in particular to a magnetron sputtering device and a control method thereof.
  • Magnetron sputtering equipment is a key equipment that needs to be used in the semiconductor process, and can be applied to multiple processes such as copper interconnection, contact hole (contact), and metal gate (metal gate).
  • copper interconnection contact hole
  • metal gate metal gate
  • the substrate and the target will generate a thermal field, and there is a certain gap between the temperature of different positions on the substrate and the target and the ideal process temperature. Therefore, existing magnetron sputtering equipment encounters more and more difficulties in meeting the above-mentioned multiple parameter performances required by advanced processes.
  • the embodiment of the present application provides a magnetron sputtering device and its control method, which is used to narrow the gap between the temperature of different positions of the substrate and the target and the ideal process temperature, so as to meet the critical size and aspect ratio required by advanced processes to fill holes Performance parameter requirements in terms of capacity and step coverage.
  • an embodiment of the present application provides a magnetron sputtering device including a casing, a substrate carrying device, a target carrying device, a cold energy supply device, and a target cooling device.
  • a sputtering chamber is arranged in the casing.
  • the above-mentioned substrate carrying device can be installed in the sputtering chamber and used to fix the substrate.
  • the target carrying device is arranged on the casing and is used for fixing the target.
  • a target on the target carrier may be opposed to a substrate on the substrate carrier.
  • There are two or more target partition cooling devices, and all target partition cooling devices can be installed on the side of the target on the target carrying device away from the substrate carrying device, and are respectively connected to the target on the target carrying device.
  • two or more target partition cooling devices can respectively correspond to multiple different regions on the cooling target, and the temperature of multiple regions on the target can be controlled separately to meet the actual target regions. process temperature requirements.
  • the thickness of the film layer formed by sputtering and the uniformity of film resistance are improved, and it can match the requirements of advanced process development for performance parameters such as key dimensions, aspect ratio, hole filling ability and step coverage.
  • the service life of the target can be better improved, and the problem of asymmetry existing in the magnetron sputtering process can be improved.
  • the at least two target zone cooling devices include a circular target cooling device and at least one annular target cooling device.
  • the circular target cooling device corresponds to the central area of the target on the target carrying device.
  • the ring-shaped target cooling device is sleeved on the outside of the circular target cooling device, and corresponds to the middle area or edge area of the target on the target carrying device.
  • the circular target cooling device can be used in the central area of the target, and the annular target cooling device can be used to cool the middle area or edge area of the target, which is suitable for the scheme where the target is circular.
  • the above-mentioned magnetron sputtering equipment further includes an auxiliary cooling device, and the auxiliary cooling device is arranged in the casing. Moreover, the auxiliary cooling device is located on the side away from the target of at least two target sub-area cooling devices. The auxiliary cooling device can further cool the entire target material, so that the cooling speed of the entire target material is accelerated.
  • the above-mentioned magnetron sputtering equipment further includes a cold supply device, a plurality of first flow control devices, a plurality of target temperature detection devices and a target temperature control device.
  • the cold supply device communicates with at least two target partition cooling devices.
  • the cold supply device can provide cooling medium for two or more target partition cooling devices, such as cooling water, a mixture of water and water (for example, a mixture of water and propylene glycol), ethylene glycol, propylene glycol, silicone oil any of the.
  • a plurality of first flow control devices are respectively installed on the connecting pipes between the cooling supply device and the inlets of at least two target partition cooling devices.
  • the first flow control device may be a liquid flow controller.
  • Multiple target temperature detection devices are respectively installed on at least two target partition cooling devices. Multiple target temperature detection devices can be used to detect two or more target partition cooling devices respectively.
  • the target temperature detection device may be a thermocouple, an optically coupled pyrometer or a thermal probe.
  • the target temperature control device is connected with the first flow control device and the target temperature detection device. The target temperature control device can be used to control the multiple first flow control devices to adjust the flow of the cooling medium entering the corresponding target zone cooling device according to the temperature values detected by the multiple target temperature detection devices.
  • the magnetron sputtering equipment can automatically adjust the flow rate of the cooling medium entering the multiple target zone cooling devices through multiple first flow control devices, thereby realizing the zoned thermal field adjustment of the target material, so that during the sputtering process The temperature adjustment of each area of the target is more accurate.
  • the above-mentioned magnetron sputtering equipment further includes a plurality of zone heating devices, a plurality of substrate temperature detection devices and a substrate temperature control device.
  • multiple zone heating devices are respectively installed on the side of the substrate carrying device close to the target carrying device, and can be used to heat multiple positions of the substrate respectively.
  • the district heating device can be any one of radiation heater, conduction heat source, resistance heater, induction heater or microwave heater.
  • a plurality of substrate temperature detection devices are respectively installed on the substrate carrying device, and are arranged correspondingly to the plurality of zone heating devices. Multiple substrate temperature detection devices can be used to detect the temperature of multiple zone heating devices respectively, so as to indirectly obtain the temperature of each region on the substrate.
  • the substrate temperature detection device may be a thermocouple, an optically coupled pyrometer or a thermal probe.
  • the substrate temperature control device is connected with multiple zone heating devices and multiple substrate temperature detection devices.
  • the substrate temperature control device may be a controller.
  • the substrate temperature control device can be used to separately adjust the heating power of multiple zone heating devices according to the detection values of multiple substrate temperature detection devices.
  • the magnetron sputtering equipment can adjust the power of multiple zone heating devices respectively according to the real-time temperature of each zone on the substrate. Thus, the automatic adjustment of the thermal field of each region on the substrate is realized.
  • the above-mentioned magnetron sputtering equipment further includes at least two subregional substrate cooling devices, and the at least two subregional substrate cooling devices are installed below the plurality of subregional heating devices.
  • at least two subregional substrate cooling devices are respectively provided corresponding to the plurality of subregional heating devices.
  • two or more substrate cooling devices can be used to automatically adjust the thermal field of each area on the substrate, so that the temperature control of the substrate during the sputtering process is more precise.
  • the at least two subregional substrate cooling devices include a circular substrate cooling device and at least one annular substrate cooling device.
  • the circular substrate cooling device corresponds to the central area of the plurality of zoned heating devices.
  • the annular substrate cooling device is sleeved on the outer side of the circular substrate cooling device and corresponds to the middle area or the edge area of the plurality of zone heating devices.
  • the circular substrate cooling device can be used for the central area of the substrate, and the annular substrate cooling device can be used for cooling the middle area or the edge area of the substrate, which is suitable for the solution where the substrate is circular.
  • the above-mentioned magnetron sputtering equipment further includes a cooling supply device and a plurality of second flow control devices.
  • the cold energy supply device communicates with at least two substrate partition cooling devices.
  • a plurality of second flow control devices are installed on connecting pipes between the cooling supply device and the inlets of at least two substrate partition cooling devices.
  • the above-mentioned substrate temperature control device is connected with a plurality of second flow control devices and a substrate temperature detection device.
  • the substrate temperature control device can be used to control the second flow control device to adjust the flow of the cooling medium entering the corresponding substrate zone cooling device according to the temperatures detected by the multiple substrate temperature detection devices. Therefore, the magnetron sputtering equipment can adjust the flow rate entering multiple substrate partition cooling devices according to the real-time temperature of each area on the substrate, and further adjust the thermal field of each area on the substrate, so that the heat of the substrate Field regulation is more accurate.
  • the embodiment of the present application further includes a control method for the above-mentioned magnetron sputtering equipment.
  • the control method includes the following steps:
  • the flow rate of the cooling medium entering the corresponding target partition cooling device is adjusted.
  • control method of the embodiment of the present application can also achieve the technical effect of the magnetron sputtering equipment automatically adjusting the thermal field of each region on the target in the above embodiment, both of which can solve the same technical problem, and will not be repeated here.
  • adjusting the flow rate of the cooling medium entering the corresponding target zone cooling device specifically includes:
  • the flow rate of the cooling medium entering the corresponding target zone cooling device is reduced.
  • the above-mentioned magnetron sputtering equipment further includes at least two subregional substrate cooling devices, at least two subregional substrate cooling devices are installed under multiple subregional heating devices, Zone heating is set accordingly. At least two substrate zone cooling devices are respectively communicated with the cooling supply device.
  • the control method of the magnetron sputtering equipment also includes:
  • the heating power of the corresponding zone heating device and the flow rate of the cooling medium entering the substrate zone cooling device are adjusted.
  • the thermal field of the substrate can be automatically adjusted to meet the requirements of the sputtering process.
  • adjusting the heating power entering the corresponding zone heating device and the flow rate of the cooling medium in the substrate zone cooling device specifically includes:
  • i satisfies: P ⁇ i ⁇ 1, and P is the total number of substrate temperature detection devices in the magnetron sputtering equipment.
  • the heating power of the multiple zone heating devices is reduced, and the flow rate of the cooling medium entering the multiple substrate zone cooling devices is increased.
  • Fig. 1 is the structural representation of the magnetron sputtering equipment of the embodiment of the present application
  • Fig. 2 is the structural representation of substrate and film layer
  • Fig. 3 is a schematic structural diagram of a magnetron sputtering device with a target partition cooling device according to an embodiment of the present application
  • Fig. 4 is a schematic structural diagram of the communication between the target partition cooling device and the cooling supply device in the magnetron sputtering equipment of the embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of a magnetron sputtering device according to an embodiment of the present application including a circular target cooling device and a circular target cooling device;
  • FIG. 6 is a schematic structural diagram of a magnetron sputtering device according to an embodiment of the present application including a rectangular target cooling device and a rectangular ring target cooling device;
  • FIG. 7 is a schematic structural diagram of a magnetron sputtering device according to an embodiment of the present application including a circular target cooling device and three annular target cooling devices;
  • Fig. 8 is a schematic structural diagram of four rectangular target partition cooling devices arranged in an array of the magnetron sputtering equipment of the embodiment of the present application;
  • Fig. 9 is a schematic structural diagram of a magnetron sputtering device with an auxiliary cooling device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a magnetron sputtering device with a target temperature detection device and a first flow control device according to an embodiment of the present application;
  • FIG. 11 is a schematic diagram of the distribution of multiple target temperature detection devices on the target partition cooling device in the magnetron sputtering equipment of the embodiment of the present application;
  • Fig. 12 is a schematic structural diagram of a magnetron sputtering device with multiple partitioned heating devices according to an embodiment of the present application
  • Fig. 13 is a schematic structural diagram of a magnetron sputtering device according to an embodiment of the present application with a plurality of subregional cooling devices for substrates;
  • Fig. 14 is a schematic structural diagram of the communication between the target partition cooling device, the substrate partition cooling device and the cooling supply device in the magnetron sputtering equipment of the embodiment of the present application;
  • Fig. 15 is a schematic structural diagram of a magnetron sputtering device according to an embodiment of the present application including a circular substrate cooling device and an annular substrate cooling device;
  • 16 is a schematic structural diagram of a magnetron sputtering device according to an embodiment of the present application including a rectangular substrate cooling device and a rectangular ring substrate cooling device;
  • FIG. 17 is a schematic structural diagram of a magnetron sputtering device according to an embodiment of the present application including a circular substrate partition cooling device and three annular substrate cooling devices;
  • Fig. 18 is a schematic structural diagram of four rectangular substrate partition cooling devices arranged in an array of the magnetron sputtering equipment of the embodiment of the present application;
  • FIG. 19 is a schematic structural diagram of a magnetron sputtering device according to an embodiment of the present application having a substrate temperature detection device, a second flow control device, and a substrate temperature control device;
  • FIG. 20 is a schematic diagram of the distribution of multiple substrate temperature detection devices on the substrate partition cooling device in the magnetron sputtering equipment of the embodiment of the present application;
  • Fig. 21 is a schematic flow diagram of controlling the temperature of the target by the control method of the magnetron sputtering equipment according to the embodiment of the present application;
  • Fig. 22 is a schematic flow diagram of the control method of the magnetron sputtering equipment in the embodiment of the present application to specifically control the temperature of the target;
  • Fig. 23 is a schematic flow chart of controlling the temperature of the substrate by the control method of the magnetron sputtering equipment according to the embodiment of the present application;
  • Fig. 24 is a schematic flow chart of the specific control of the substrate temperature by the control method of the magnetron sputtering equipment in the embodiment of the present application;
  • FIG. 25 is a schematic diagram of the correspondence between the substrate topography parameters and temperature compensation realized by the control method of the magnetron sputtering device according to the embodiment of the present application.
  • 100-Magnetron sputtering equipment 1-casing, 101-sputtering chamber, 2-substrate carrier, 21-substrate base, 22-electrostatic chuck, 3-target carrier, 4-zone heating Device, 5-magnet moving device, 60-target cooling device, 6-target partition cooling device, 61-first cooling medium accommodation chamber, 62-first inlet, 62-first outlet, 601a-circular target Material cooling device, 602a-annular target cooling device, 601b-rectangular target cooling device, 602b-rectangular ring target cooling device, 601c-rectangular target cooling device, 7-cooling supply device, 8-auxiliary cooling Device, 9-target temperature detection device, 10-first flow control device, 11-substrate partition cooling device, 111-second cooling medium accommodation chamber, 112-second inlet, 113-second outlet, 1101a- Circular substrate cooling device, 1102a-annular substrate cooling device, 1101b-rectangular substrate cooling device, 1102b-rectangular ring substrate cooling
  • first”, second, etc. are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • a feature defined as “first”, “second”, etc. may expressly or implicitly include one or more of that feature.
  • orientation terms such as “upper”, “lower”, “left”, “right”, “horizontal” and “vertical” are defined relative to the schematic placement orientations of components in the drawings, It should be understood that these directional terms are relative concepts, which are used for description and clarification relative to each other, and which may change accordingly according to changes in the orientation in which components are placed in the drawings.
  • connection should be understood in a broad sense, for example, “connection” can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection, or It can be connected indirectly through an intermediary.
  • a magnetron sputtering device 100 includes a housing 1 , a substrate carrying device 2 , a target carrying device 3 and a zone heating device 4 .
  • a sputtering chamber 101 is provided in the housing 1 .
  • the substrate carrier 2 can be installed in the sputtering chamber 101, and is used to fix the substrate 200 (wafer).
  • the substrate carrying device 2 may include a substrate base 21 and an electrostatic chuck 22 , the electrostatic chuck 22 is located above the substrate base 21 , and the substrate 200 may be adsorbed on the electrostatic chuck 5 .
  • the zone heating device 4 is located between the substrate base 21 and the electrostatic chuck 22 .
  • the above-mentioned target carrying device 3 is arranged on the casing 1 and is used for installing the target 300 .
  • the target 300 on the target carrier 3 may be arranged opposite to the substrate 200 on the substrate carrier 2 .
  • the zone heating device 4 can be installed on the side of the substrate carrying device 2 close to the target carrying device 3 and used for heating the substrate 200 .
  • the zone heating device 4 in FIG. 1 is located between the substrate susceptor 21 and the electrostatic chuck 22 .
  • the zone heating device 4 can be an ultraviolet lamp, a halogen lamp, a laser diode, a resistance heater, a microwave-activated heater, a light emitting diode, or any other suitable single or combined heating elements.
  • the magnetron sputtering device 100 further includes a magnet rotating device 5 as shown in FIG. 1 , and the magnet in the magnet rotating device 5 can rotate. Therefore, the sputtering of each region on the target 300 can be controlled to be relatively uniform.
  • the sputtering chamber 101 of the magnetron sputtering device 100 is filled with an inert gas (such as argon) required for the reaction.
  • the target 300 is connected to the negative pole of the power supply, and the substrate 200 is respectively connected to the positive pole of the power supply.
  • the inert gas molecules in the sputtering chamber 101 are ionized to generate charged charges. Since a certain negative high voltage is applied to the target 300, the electrons emitted from the cathode are subjected to the action of the magnetic field and the probability of ionization of the inert gas increases, forming a high-density plasma near the cathode.
  • the gas positive ions accelerate to bombard the surface of the cathode target 300, and sputter the molecules, atoms, ions and electrons on the surface of the target 300.
  • the sputtered particles have a certain kinetic energy, along the A certain direction is irradiated to the surface of the substrate 200 with a higher temperature, and a thin film layer is accumulated on the surface of the substrate 200 .
  • step coverage B/A or C/A
  • A is the film layer 1000 of different regions on the film layer formed by sputtering Top thickness
  • B is the sidewall thickness of the film layer 1000
  • C is the bottom thickness of the film layer 1000
  • a target cooling device 60 capable of covering the entire back of the target 300 is directly installed in the magnetron sputtering equipment 100, and a single cooling device dissipates heat to all positions of the target 300, then the target cannot be cooled.
  • the sputtering speed in different regions of the target 300 is precisely controlled, so that the temperature at multiple positions on the target 300 cannot meet the thermal field distribution requirement for sputtering. Therefore, it is impossible to sputter to form a thin film layer whose key dimensions, aspect ratio, hole filling ability and step coverage all meet the requirements of advanced technology.
  • the magnetron sputtering equipment 100 of the embodiment of the present application further includes N target partition cooling devices 6 as shown in FIG. 3 , where N ⁇ 2.
  • the target partition cooling device 6 may be a water cooler.
  • the N target partition cooling devices 6 may all be installed on the side of the target 300 on the target carrying device 3 away from the substrate carrying device 2 .
  • the N target cooling devices 6 respectively correspond to the positions of multiple regions of the target 300 on the target carrier device 3 . Therefore, in the embodiment of the present application, the N target partition cooling devices 6 can respectively correspond to multiple different regions on the cooling target 300, and the temperatures of multiple positions on the target 300 can be controlled separately to meet the requirements of the actual targets 300. Process temperature requirements for the area.
  • the thickness of the film layer formed by sputtering and the uniformity of film resistance are improved, and it can match the requirements of advanced process development for performance parameters such as key dimensions, aspect ratio, hole filling ability and step coverage.
  • the service life of the target 300 can be better improved, and the problem of asymmetry in the magnetron sputtering process can be improved.
  • the above-mentioned magnetron sputtering equipment 100 further includes a cooling supply device 7 as shown in FIG. 4 , and the cooling supply device 7 communicates with the N target cooling devices 6 .
  • the cold supply device 7 is a cold water storage tank, and the cold supply device 7 can provide cooling water to the N target partition cooling devices 6 .
  • the cooling medium stored in the cooling supply device 7 may be water and water mixture (for example, water and propylene glycol mixture), ethylene glycol, propylene glycol, silicone oil, etc., in addition to the above-mentioned cooling water.
  • a first inlet 62 and a first outlet 63 may be opened on each target zone cooling device 6 .
  • a first cooling medium accommodating cavity 61 is provided in the target partition cooling device 6 , and the first cooling medium accommodating cavity 61 communicates with both the first inlet 62 and the first outlet 63 .
  • the first inlets 62 of the N target partition cooling devices 6 can communicate with the cold supply device 7 respectively. Therefore, the cold supply device 7 can simultaneously provide cooling medium to the N target cooling devices 6 to cool the target 300 .
  • the magnetron sputtering equipment 100 may further include a cooling medium recovery device 16 as shown in FIG. 4 , and the cooling medium recovery device 16 communicates with the first outlets 63 of the N target partition cooling devices 6 . Therefore, the cooling medium recovery device 16 can recover the cooling medium flowing out of the N target partition cooling devices 6, which saves more energy.
  • the magnetron sputtering equipment 100 shown in FIG. 5 including two target partition cooling devices 6 will be described as an example.
  • the two target zone cooling devices 6 are respectively a circular target cooling device 601 a and an annular target cooling device 602 a.
  • the circular target cooling device 601 a corresponds to the central area of the target 300 on the target carrying device 3 .
  • the annular target cooling device 602a is sleeved on the outside of the circular target cooling device 601a, and corresponds to the middle area and the edge area of the target 300 on the target carrier device 3 .
  • the circular target cooling device 601 a and the annular target cooling device 602 a can cover the entire circular target 300 , and the heat dissipation of the circular target 300 is relatively uniform.
  • the two target material partition cooling devices 6 can be rectangular target material cooling devices 601b, 601b, and And a rectangular annular target cooling device 602b.
  • the rectangular annular target cooling device 602b is sleeved outside the rectangular target cooling device 601b.
  • the magnetron sputtering equipment 100 includes more than two target partition cooling devices 6, taking four target partition cooling devices 6 as an example, the above four target partition cooling devices 6 include One circular target cooling device 601a and three annular target cooling devices 602a are shown, and the three annular target cooling devices 602a can be sleeved outside the circular target cooling device 601a from inside to outside in sequence.
  • the four target partition cooling devices 6 can all be rectangular target partition cooling devices 601c as shown in FIG. 8 , and the four rectangular target partition cooling devices 601c are arranged in a rectangular array to cover the entire target 300 .
  • the above embodiment is illustrated by the fact that the magnetron sputtering equipment 100 only includes N target partition cooling devices 6 .
  • the temperature of the target 300 may be too high instantaneously. Therefore, in some embodiments of the present application, the above-mentioned magnetron sputtering device 100 further includes an auxiliary cooling device 8 as shown in FIG. 9 , and the auxiliary cooling device 8 is installed in the casing 1 .
  • the auxiliary cooling device 8 may also be a water cooler.
  • the auxiliary cooling device 8 is located on the side of the N target partition cooling devices 6 away from the target 300 .
  • the auxiliary cooling device 8 can cover N target partition cooling devices 6 .
  • the auxiliary cooling device 8 can transfer cold energy to the entire target 300 through the N target partition cooling devices 6 .
  • the entire target 300 can be cooled by simultaneously turning on N target cooling devices 6 and auxiliary cooling devices 8 to speed up the cooling speed of the target 300 .
  • the thermal field distribution of the target 300 will be more complicated during the sputtering process. 8 to control the temperature distribution of the target 300, the local area of the target 300 has too much instantaneous temperature change, which will seriously affect the sputtering speed of the target 300 and affect the sputtering quality of the thin film layer.
  • the magnetron sputtering equipment 100 of the embodiment of the present application further includes M target temperature detection devices 9 , a first flow control device 10 and a target temperature control device 15 , M ⁇ 2.
  • the M target temperature detection devices 9 can be respectively installed on the N target partition cooling devices 6 .
  • the target temperature detection device 9 can be a thermocouple, an optically coupled pyrometer or a thermal probe, etc.
  • the total number M of target temperature detection devices 9 may satisfy: M ⁇ N. That is, one or more target temperature detection devices 9 are correspondingly installed in each target partition cooling device 6 .
  • one target temperature detection device 9 is installed on the circular target cooling device 601a, and four target temperature detection devices 9 are installed on the annular target cooling device 602a.
  • the detection devices 9 are evenly distributed along the circumference of the annular target cooling device 602a.
  • the above-mentioned first flow control device 10 may be a liquid flow controller (liquid flow controller, LFC).
  • a plurality of first flow control devices 10 may be respectively installed on the connecting pipes between the cooling supply device 7 and the inlets of the N target partition cooling devices 6 .
  • the total number S of the first flow control devices 10 satisfies: S ⁇ N.
  • One or more liquid flow controllers are installed between each target partition cooling device 6 and the cold supply device. In order to save costs, it is sufficient to install a liquid flow controller between each target partition cooling device 6 and the cold supply device 7 .
  • the above-mentioned target temperature control device 15 can be connected to both the S first flow control devices 10 and the M target temperature detection devices 9 . According to the temperature values detected by the M target temperature detection devices 9 , the target temperature control device 15 can control the S first flow control devices 10 to adjust the flow rate of the cooling medium of the corresponding target partition cooling device 6 .
  • the above corresponding target zone cooling device 6 refers to the target zone cooling device 6 communicating with the first flow control device 10 . Therefore, the magnetron sputtering equipment 100 can control the cooling rate of the target 300 by multiple target zone cooling devices 6, and can finely adjust the temperature of multiple regions on the target 300, avoiding repeated opening and closing of multiple targets.
  • the partitioned cooling device 6 leads to a sudden temperature change in a local area on the target 300, which affects the sputtering speed of the target 300 and the sputtering quality of the film layer.
  • the above-mentioned first flow control device 10 may also be a flow control valve.
  • the above embodiments realize the adjustment of the thermal field distribution of the target 300 , in order to further ensure that the thin film layer on the substrate 200 can meet the requirements of advanced technology, the thermal field of the substrate 200 can also be adjusted.
  • zone heating devices 4 there are multiple zone heating devices 4 in the magnetron sputtering equipment 100 .
  • a plurality of zone heating devices 4 are respectively installed on the side of the substrate carrying device 2 away from the target carrying device 3 , and are respectively used to heat multiple positions of the substrate 200 .
  • the zone heating device 4 is any one of a radiation heater, a conduction heat source, a resistance heater, an induction heater or a microwave heater.
  • Multiple zone heating devices 4 can control the temperature rise of multiple locations on the substrate 200 to adjust the thermal field distribution of the substrate 200 .
  • the magnetron sputtering equipment 100 is also provided with a substrate cooling device, through which the temperature of the substrate 200 can be cooled to an appropriate temperature in time and rapidly, and further The thermal field distribution of the substrate 200 is adjusted.
  • the magnetron sputtering device 100 includes P subregional substrate cooling devices 11 , where P ⁇ 2.
  • the substrate cooling zone device 11 may be a water cooler.
  • the P subregional substrate cooling devices 11 can be respectively installed under the plurality of subregional heating devices 4, and are arranged correspondingly to the plurality of subregional heating devices 4, respectively.
  • the substrate 200 can be indirectly cooled by directly cooling the plurality of zone heating devices 4 through the P substrate zone cooling devices 11, so that the temperature of multiple positions on the substrate 200 can be more in line with the film formation.
  • the required process temperature requirements thereby improving the thickness of the film formed by sputtering and the uniformity of film resistance, as well as being able to match the requirements of advanced process development for performance parameters such as key dimensions, aspect ratios, hole filling capabilities, and step coverage , and improving the problem of asymmetry (asymmetric) existing in the magnetron sputtering process.
  • the magnetron sputtering equipment 100 of the embodiment of the present application can adjust the temperature of the entire substrate 200 in real time through multiple zone heating devices 4 and P substrate zone cooling devices 11 during the sputtering process, and the temperature of the substrate 200 can be adjusted More precise and more responsive temperature adjustments.
  • the cold supply device 7 for the above-mentioned P subregional substrate cooling devices 11 can be used, that is, the inlets of the P subregional substrate cooling devices 11 communicate with the above-mentioned cold supply device 7, as shown in FIG. 14 .
  • the above P subregional substrate cooling devices 11 may also use a dedicated substrate cooling supply device to supply cooling. That is, the P subregional substrate cooling devices 11 communicate with the substrate cold supply device.
  • the cooling medium recovery of the above-mentioned P subregional substrate cooling devices 11 can use the above-mentioned cooling medium recovery device 16, that is, the outlets of the P subregional substrate cooling devices 11 communicate with the above-mentioned cooling medium recovery device 16, as shown in FIG. 14 .
  • the above-mentioned P subregional substrate cooling devices 11 may also use a dedicated substrate cooling medium recovery device to recover the cooling medium. That is, the P subregional substrate cooling devices 11 communicate with the substrate cooling medium recovery device.
  • the cooling device 11 is provided with a second inlet 112 and a second outlet 113 communicating with the second cooling medium accommodating cavity 111 .
  • the second inlets 112 of the P subregional substrate cooling devices 11 may communicate with the cold supply device 7 .
  • the second outlets 113 of the P subregional substrate cooling devices 11 may communicate with the cooling medium recovery device 16 .
  • the magnetron sputtering equipment 100 shown in FIG. 15 includes only two substrate partition cooling devices 11 as an example for illustration.
  • the two subregional substrate cooling devices 11 are respectively a circular substrate cooling device 1101 a and an annular substrate cooling device 1102 a.
  • the circular substrate cooling device 1101a corresponds to the central area of the plurality of zoned heating devices 4, and the annular substrate cooling device 1102a is sleeved on the outside of the circular substrate cooling device 1101a.
  • the circular substrate cooling device 1101 a and the annular substrate cooling device 1102 a can cover the entire circular substrate 200 and dissipate heat on the circular substrate 200 more uniformly.
  • the two substrate partition cooling devices 11 can be respectively a rectangular substrate cooling device 1101b as shown in FIG. Rectangular annular substrate cooling device 1102b.
  • the rectangular annular substrate cooling device 1102b can be sleeved outside the rectangular substrate cooling device 1101b.
  • the magnetron sputtering equipment 100 includes more than two substrate partition cooling devices 11, taking four substrate partition cooling devices 11 as an example, then for the scheme in which the substrate 200 is circular, the above four A substrate partition cooling device 11 includes a circular substrate cooling device 1101a as shown in Figure 17, and more than three annular substrate cooling devices 1102a, and the three annular substrate cooling devices 1102a can be nested sequentially from inside to outside Outside the circular substrate cooling device 1101a.
  • the four subregional substrate cooling devices 6 may also be four subregional substrate cooling devices 1101c as shown in FIG. 18 .
  • Four rectangular substrate partition cooling devices 1101c are arranged in a rectangular array to cover the entire substrate 200 .
  • the magnetron sputtering device 100 further includes a plurality of substrate temperature detection devices 12 and a substrate temperature control device 13 .
  • a plurality of substrate temperature detection devices 12 are installed on the substrate carrying device 2 respectively, and are arranged correspondingly to the plurality of zone heating devices 4 .
  • a plurality of substrate temperature detection devices 12 are respectively used to detect the temperature of a plurality of zone heating devices 4 .
  • one substrate temperature detection device 12 is installed on the circular substrate cooling device 1101a, and four substrate temperature detection devices 12 are installed on the ring substrate cooling device 1102a.
  • the substrate temperature detection device 12 may be a thermocouple, an optically coupled pyrometer or a thermal probe, and the like.
  • the substrate temperature detecting device 12 can also be a resistance measuring device (such as a high-frequency Hall effect current sensor), through the correspondence between the resistance value of the zone heating device 4 and the temperature, the temperature of the region where the zone heater 4 is located can be obtained indirectly.
  • the device may be suitable for being installed in a position with a large thermal displacement, such as a region on the substrate 200 corresponding to the zoned heating device 4 located at the edge.
  • the above-mentioned substrate temperature control device 13 may be a separate controller, or may be a control module with the main controller in the above-mentioned magnetron sputtering equipment 100 .
  • the above-mentioned substrate temperature control device 13 may be connected to multiple zone heating devices 4 and multiple substrate temperature detection devices 12 . According to the detected values of the plurality of substrate temperature detection devices 12, the substrate temperature control device 13 can adjust the heating power of the plurality of zone heating devices 4 respectively. Therefore, the temperature control of the substrate 200 is precise, the crystal phase structure of the film layer is stable, and the uniformity of the film resistance is good.
  • the substrate partition cooling device 6 can be a liquid flow controller (liquid flow controller, LFC), or a flow control valve.
  • a plurality of second flow control devices 14 are installed on the connecting pipes between the cold supply device and the inlets of the P subregional substrate cooling devices 11 .
  • the total number R of the second flow control devices 14 satisfies: R ⁇ P.
  • One or more liquid flow controllers are installed between each substrate partition cooling device 6 and the cold supply device.
  • the substrate temperature control device 13 is connected to a plurality of second flow control devices 14 .
  • the substrate temperature control device 13 can control the plurality of second flow control devices 14 to adjust the flow of cooling medium entering the corresponding substrate zone cooling device 11 according to the temperature value detected by each substrate temperature detection device 12 . Therefore, the magnetron sputtering equipment 100 can control the cooling rate of the multiple substrate cooling devices 11 on the partition heating device 4 and the substrate 200, and can finely adjust the temperature of multiple regions on the substrate 200, avoiding repeated opening and closing Multiple substrate cooling devices 11 in different regions lead to sudden temperature changes in local regions on the substrate 200, thereby affecting the crystal phase structure and thickness distribution of the thin film layer.
  • the magnetron sputtering equipment 100 in the embodiment of the present application will also have components such as a vacuum device and a process kit shield. Since the embodiments of the present application do not involve improvements to these structures, details are not described here.
  • the embodiment of the present application also includes a control method for the above magnetron sputtering device 100, as shown in Figure 21, the control method includes the following steps:
  • the above-mentioned first flow control device 10 detects the current temperature values T t of multiple regions on the target 300 from multiple target temperature detection devices 9 .
  • the above-mentioned target temperature control device 15 can control the multiple first flow control devices 10 to adjust to the corresponding The flow rate of the cooling medium of the target partition cooling device 6.
  • the temperature adjustment effect of the control method on the target material 300 can be the same as that of the magnetron sputtering device in the above embodiment on the temperature adjustment effect of the target material 300 , which will not be repeated here.
  • the current temperature value T t (j) of any region of the target 300 is greater than the corresponding first preset partition target temperature threshold T t1 (j), it indicates that the number of thermal electrons excited on the target 300 is too large, If the sputtering speed is too fast, the corresponding thickness of the film formed on the substrate 200 will easily exceed a preset value, and the resistance of the film will be greater or smaller than the preset resistance. Therefore, it is necessary to increase the flow rate of the cooling medium entering the corresponding target zone cooling device 6 to reduce the temperature of this zone on the target 300 .
  • the temperature value T t (j) detected by the current temperature value of any region of the target 300 is less than the corresponding second preset partition target temperature threshold T t2 (j)
  • T t2 (j) the corresponding second preset partition target temperature threshold
  • the thickness of the film formed on the corresponding substrate 200 is likely to be lower than the preset thickness, and the film resistance is less than or greater than the preset resistance. Therefore, it is necessary to reduce the flow rate of the cooling medium entering the cooling device corresponding to the target 300 zone, so as to increase the temperature of this zone on the target 300 .
  • the target temperature control device 15 When the temperature value T t (j) detected by the current temperature value of any region of the target 300 is within the corresponding first preset partition target temperature threshold T t1 (j) and the second preset partition target temperature threshold T t2 When between (j), it indicates that the number of thermal electrons excited on the target 300 is moderate, the sputtering speed is ideal, the thickness of the film formed on the corresponding substrate 200 can reach the preset value, and the difference between the sheet resistance and the preset sheet resistance is The value is small or zero. Therefore, it is only necessary for the target temperature control device 15 to control the corresponding first flow control device 10 to keep the flow rate of the cooling medium entering the corresponding target zone cooling device 9 unchanged.
  • the preset target temperature thresholds for different regions on the target 300 are different, which can be set according to actual circuit design requirements on the substrate 200 .
  • the aforementioned preset target temperature threshold may be obtained based on experience or experimental values.
  • the above-mentioned control method of the magnetron sputtering device 100 further includes the following steps:
  • the above-mentioned substrate temperature control device 13 may acquire current temperature values T w of multiple regions of the substrate 200 from multiple substrate temperature detection devices 12 .
  • the above-mentioned substrate temperature control device 13 can adjust the heating power of the corresponding zone heating device 4 and control the corresponding second flow rate according to the current temperature values of multiple regions of the substrate 200 obtained from multiple substrate temperature detection devices 12
  • the control device 14 is used to adjust the flow rate of the cooling medium entering the substrate partition cooling device 11 .
  • the temperature adjustment effect of the control method on the substrate 200 can be the same as that of the magnetron sputtering device 100 in the above-mentioned embodiment on the temperature adjustment effect of the substrate 200 , which will not be repeated here.
  • S202 specifically includes:
  • the substrate temperature control device 13 when the current temperature value T w of the i region on the substrate 200 is greater than the corresponding third preset partition target temperature threshold T w3 (i), it indicates that the local area on the substrate 200 is formed by sputtering thin film grains If it is too small, the step coverage exceeds the set step coverage, and the sheet resistance is large or small. Therefore, it is necessary for the substrate temperature control device 13 to control and keep the heating power of the corresponding zone heating device 4 constant, and to control the second flow control device 14 to increase the flow rate of the cooling medium entering the corresponding substrate zone cooling device 11, so that the substrate 200 Local area temperature drops.
  • the substrate temperature control device 13 is required to reduce the heating power of the plurality of zone heating devices 4 , and simultaneously control the multiple second flow control devices 14 to increase the flow rate of the cooling medium entering the multiple substrate zone cooling devices 11 . Therefore, the temperature of the entire substrate 200 is rapidly increased to ensure the sputtering effect of the thin film layer.
  • the substrate temperature control device 13 when the current temperature value T w of the i region on the substrate 200 is less than the corresponding fourth preset partition target temperature threshold T w4 (i), it indicates that the local area on the substrate 200 is formed by sputtering The film grain is too large, the step coverage is lower than the set step coverage, and the film resistance is relatively large. Therefore, it is necessary for the substrate temperature control device 13 to increase the heating power of the corresponding zone heating device 4 to remain unchanged, and to control the second flow control device 14 to maintain the flow rate of the cooling medium entering the corresponding substrate zone cooling device 11, so that the substrate 200 temperature rise in the local area.
  • the substrate temperature control device 13 when the current temperature value of the P substrates 200 is less than the corresponding fourth preset partition target temperature threshold Tw4 (i), it indicates that the film grains formed by sputtering on the entire substrate 200 are large, and the step coverage The ratio is lower than the set step coverage ratio, and the sheet resistance is larger. Therefore, it is necessary for the substrate temperature control device 13 to increase the heating power of the multiple zone heating devices 4 , and simultaneously control the multiple second flow control devices 14 to reduce the flow rate of the cooling medium entering the multiple substrate zone cooling devices 11 . Therefore, the temperature of the entire substrate 200 is rapidly lowered to ensure the sputtering effect of the thin film layer.
  • the above-mentioned substrate temperature control device 13 keeps the heating power of the corresponding zone heating device 4 constant, and controls the corresponding second flow control device 14 to keep the flow rate of the cooling medium entering the corresponding substrate zone cooling device 11 constant. That's it.
  • Line 1 in FIG. 25 represents changes in topographic parameters of the substrate 200, such as film grains, step coverage, film thickness, or film resistance.
  • Line 2 in FIG. 25 represents the temperature change of the substrate 200 .
  • the abscissa X in FIG. 27 may indicate the position of each region on the substrate 200, and the ordinate Y indicates the parameter value and temperature value.
  • curve 1 represents the sheet resistance, and when the ordinate value of a certain point on the curve 1 is higher than the preset resistance value, it indicates that the sheet resistance in this area is relatively high. The temperature value corresponding to this point on the curve 2 is higher, so as to form compensation for the thin film layer on the substrate 200 .
  • the curve 1 represents the film thickness, and when the ordinate value of a certain point on the curve 1 is higher than the preset film layer thickness, it indicates that the film layer thickness in this area is relatively large. The temperature value corresponding to this point on the curve 2 is relatively low, so that the thin film layer on the substrate 200 can be compensated.
  • curve 1 represents the step coverage of the film, and the ordinate value of a certain point on curve 1 is lower than the preset step coverage of the film, indicating that the step coverage of the film in this area is relatively small. The temperature value corresponding to this point on the curve 2 is higher, so that the thin film layer on the substrate 200 can be compensated.
  • the control method of the magnetron sputtering device 100 in the embodiment of the present application can realize the corresponding compensation of the morphology parameters of the substrate 200 through temperature adjustment as shown in FIG. 25 by performing the above control steps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本申请实施例提供一种磁控溅射设备及其控制方法,涉及磁控溅射技术领域。本申请实施例的磁控溅射设备包括机壳、衬底承载装置、靶材承载装置、冷量供给装置、至少两个靶材分区冷却装置以及至少两个衬底多分区冷却装置。至少两个靶材分区冷却装置安装在靶材承载装置上的靶材远离衬底承载装置的一侧,且与靶材的多个位置对应。至少两个靶材分区冷却装置可以分别对应冷却靶材上的多个不同区域,靶材上多个区域的温度能够分别进行精确和快速控制。衬底分区冷却装置可以分别对应衬底上的多个不同区域,对衬底上多个区域温度进行精确和快速调节。从而提高了薄膜层的厚度和薄膜电阻的均匀性,且能够匹配先进工艺发展对各种性能参数的要求。

Description

一种磁控溅射设备及其控制方法 技术领域
本申请涉及磁控溅射技术领域,尤其涉及一种磁控溅射设备及其控制方法。
背景技术
磁控溅射设备是半导体工艺中需要使用到的一种关键设备,可以应用于铜互连、接触孔(contact)、金属栅极(metal gate)等多个制程。随着半导体制程工艺的发展,对关键尺寸(critical dimension,CD)、宽深比、填洞能力和台阶覆盖率(step coverage)等要求越来越严格。
现有磁控溅射设备在运行过程中,衬底和靶材会产生热场,衬底和靶材上不同位置的温度与理想的工艺温度存在一定差距。因此,在满足先进工艺要求的上述多个参数性能方面,现有磁控溅射设备遇到的困难越来越多。
发明内容
本申请实施例提供一种磁控溅射设备及其控制方法,用于缩小衬底和靶材不同位置的温度与理想工艺温度的差距,以满足先进工艺要求的关键尺寸、宽深比填洞能力和台阶覆盖率等方面的性能参数要求。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请实施例提供一种磁控溅射设备包括机壳、衬底承载装置、靶材承载装置、冷量供给装置以及靶材分区冷却装置。其中,机壳内设有溅射腔。上述衬底承载装置可以安装在溅射腔内,且用于固定衬底。靶材承载装置设置在机壳上,且用于固定靶材。该靶材承载装置上的靶材可以与衬底承载装置上的衬底相对。靶材分区冷却装置为两个或两个以上,所有靶材分区冷却装置可以均安装在靶材承载装置上的靶材远离衬底承载装置的一侧,且分别与靶材承载装置上靶材的多个位置对应。本申请实施例中两个或两个以上的靶材分区冷却装置可以分别对应冷却靶材上的多个不同区域,靶材上多个区域的温度能够分别进行控制,以符合实际靶材各区域的工艺温度要求。从而,提高了溅射形成的薄膜层的厚度和薄膜电阻的均匀性,并且能够匹配先进工艺发展对关键尺寸、宽深比、填洞能力和台阶覆盖率等性能参数的要求。同时,还能够更好的提升靶材的使用寿命、以及改善磁控溅射工艺中存在的不对称性的问题。
在本申请一些可能的实施例中,至少两个靶材分区冷却装置包括圆形靶材冷却装置和至少一个环形靶材冷却装置。其中,圆形靶材冷却装置与靶材承载装置上靶材的中心区域对应。环形靶材冷却装置套设在圆形靶材冷却装置的外侧,且与靶材承载装置上靶材的中部区域或边沿区域对应。圆形靶材冷却装置可以用于靶材的中心区域,环形靶材冷却装置可以用于冷却靶材的中间区域或边沿区域,适用于靶材为圆形的方案。
在本申请一些可能的实施例中,上述磁控溅射设备还包括辅助冷却装置,辅助冷却装置设置在机壳内。并且,辅助冷却装置位于至少两个靶材分区冷却装置远离靶材的一侧。辅助冷却装置可以进一步来冷却整个靶材,使得整个靶材的冷却速度加快。
在本申请一些可能的实施例中,上述磁控溅射设备还包括冷量供给装置、多个第一流 量控制装置、多个靶材温度检测装置及靶材温度控制装置。其中,冷量供给装置与至少两个靶材分区冷却装置连通。冷量供给装置可以给两个或两个以上的靶材分区冷却装置提供冷却介质,如冷却水、水和水的混合液(例如,水和丙二醇的混合液)、乙二醇、丙二醇、硅油中的任一种。多个第一流量控制装置分别安装在冷量供给装置与至少两个靶材分区冷却装置的进口之间的连接管道上。例如,第一流量控制装置可以为液体流量控制器。多个靶材温度检测装置分别安装在至少两个靶材分区冷却装置上。多个靶材温度检测装置可以分别用于检测两个或两个以上的靶材分区冷却装置。该靶材温度检测装置可以为热电偶、光学耦合高温计或热探针等。靶材温度控制装置与第一流量控制装置、靶材温度检测装置连接。靶材温度控制装置可以用于根据多个靶材温度检测装置检测的温度值,控制多个第一流量控制装置调节进入对应的靶材分区冷却装置的冷却介质的流量。从而,磁控溅射设备可以通过多个第一流量控制装置对进入多个靶材分区冷却装置内冷却介质的流量进行自动调节,从而实现了靶材的分区热场调节,使得在溅射过程中靶材各区域的温度调节更准确。
在本申请一些可能的实施例中,上述磁控溅射设备还包括多个分区加热装置、多个衬底温度检测装置及衬底温度控制装置。其中,多个分区加热装置分别安装在衬底承载装置上靠近靶材承载装置的一侧,且分别可以用于给衬底的多个位置加热。该分区加热装置可以为辐射加热器、传导热源、电阻加热器、电感加热器或微波加热器中的任一种。多个衬底温度检测装置分别安装在衬底承载装置上,且与多个分区加热装置分别对应设置。多个衬底温度检测装置可以分别用于检测多个分区加热装置的温度,从而间接得到衬底上各区域的温度。该衬底温度检测装置可以为热电偶、光学耦合高温计或热探针等。衬底温度控制装置与多个分区加热装置、多个衬底温度检测装置连接。衬底温度控制装置可以为控制器。该衬底温度控制装置可以用于根据多个衬底温度检测装置的检测值,分别调节多个分区加热装置的加热功率。该磁控溅射设备可以根据衬底上各区域的实时温度,对多个分区加热装置分别进行功率调节。从而,实现了对衬底上各个区域的热场的自动调节。
在本申请一些可能的实施例中,上述磁控溅射设备还包括至少两个衬底分区冷却装置,至少两个衬底分区冷却装置安装在多个分区加热装置的下方。并且,至少两个衬底分区冷却装置分别与多个分区加热装置对应设置。同理,进一步可以通过两个或两个以上的衬底分区冷却装置分别对衬底上各个区域的热场进行自动调节,使得在溅射过程汇总衬底的温度控制更精准。
在本申请一些可能的实施例中,至少两个衬底分区冷却装置包括圆形衬底冷却装置和至少一个环形衬底冷却装置。该圆形衬底冷却装置与多个分区加热装置的中心区域对应。环形衬底冷却装置套设在圆形衬底冷却装置的外侧,且与多个分区加热装置的中间区域或边沿区域对应。圆形衬底冷却装置可以用于衬底的中心区域,环形衬底冷却装置可以用于冷却衬底的中间区域或边沿区域,适用于衬底为圆形的方案。
在本申请一些可能的实施例中,上述磁控溅射设备还包括冷量供给装置和多个第二流量控制装置。其中,冷量供给装置与至少两个衬底分区冷却装置连通。多个第二流量控制装置安装在冷量供给装置与至少两个衬底分区冷却装置的进口之间的连接管道上。上述衬底温度控制装置与多个第二流量控制装置、衬底温度检测装置连接。衬底温度控制装置可以用于根据多个衬底温度检测装置检测的温度,控制第二流量控制装置调节进入对应的衬 底分区冷却装置的冷却介质的流量。从而,磁控溅射设备可以根据衬底上各区域的实时温度,对进入多个衬底分区冷却装置的流量进行调节,进一步对衬底上各个区域的热场进行调节,使得衬底的热场调节更准确。
第二方面,本申请实施例还包括一种用于上述磁控溅射设备的控制方法。该控制方法包括以下步骤:
获取靶材多个区域的当前温度值。
根据靶材多个区域的当前温度值,调节进入对应的靶材分区冷却装置的冷却介质的流量。
本申请实施例的控制方法同样可以实现上述实施例中磁控溅射设备自动调节靶材上各个区域热场的技术效果,两者能够解决相同的技术问题,此处不再赘述。
在本申请一些可能的实施例中,上述根据靶材多个区域的当前温度值,调节进入对应的靶材分区冷却装置的冷却介质的流量具体包括:
当靶材任一区域的当前温度值大于对应的第一预设分区目标温度阈值时,增大进入对应的靶材分区冷却装置内冷却介质的流量。
当靶材任一区域的当前温度值检测的温度值小于对应的第二预设分区目标温度阈值时,减小进入对应的靶材分区冷却装置内冷却介质的流量。
当靶材任一区域的当前温度值检测的温度值处于对应的第一预设分区目标温度阈值与第二预设分区目标温度阈值之间时,保持进入对应的靶材分区冷却装置内冷却介质的流量不变。
从而,在溅射过程中,能够对靶材上各区域进行合理的温度调节,以满足先进工艺的各种参数要求。
在本申请一些可能的实施例中,上述磁控溅射设备还包括至少两个衬底分区冷却装置,至少两个衬底分区冷却装置安装在多个分区加热装置的下方,且分别与多个分区加热装置对应设置。至少两个衬底分区冷却装置分别与冷量供给装置连通。该磁控溅射设备的控制方法还包括:
获取衬底多个区域的当前温度值。
根据衬底多个区域的当前温度值,调节对应的分区加热装置的加热功率和进入衬底分区冷却装置内冷却介质的流量。
从而,能够对衬底的热场进行自动调节,以适应溅射工艺的要求。
在本申请一些可能的实施例中,上述根据衬底多个区域的当前温度值,调节进入对应的分区加热装置的加热功率和衬底分区冷却装置内冷却介质的流量具体包括:
当衬底i个区域的当前温度值大于对应的第三预设分区目标温度阈值时,保持对应的分区加热装置的加热功率不变,增大进入对应的衬底分区冷却装置内冷却介质的流量。其中,i满足:P≥i≥1,P为磁控溅射设备中衬底温度检测装置的总数。
当衬底P个区域的当前温度值大于对应的第三预设分区目标温度阈值时,降低多个分区加热装置的加热功率,增大进入多个衬底分区冷却装置内冷却介质的流量。
当衬底i个区域的当前温度值小于对应的第四预设分区目标温度阈值时,增大对应的分区加热装置的加热功率,保持进入对应的衬底分区冷却装置内冷却介质的流量不变。
当衬底P个区域的当前温度值小于对应的第四预设分区目标温度阈值时,增大多个分 区加热装置的加热功率,减小进入对应的衬底分区冷却装置内冷却介质的流量。
当衬底任一区域的当前温度值处于对应的第三预设分区目标温度阈值与第四预设分区目标温度阈值之间时,保持对应的分区加热装置的加热功率保持不变,以及保持进入对应的衬底分区冷却装置内冷却介质的流量不变。
从而,在溅射过程中,能够对衬底上各区域进行合理的温度调节,以满足先进工艺的要求。
附图说明
图1为本申请实施例磁控溅射设备的结构示意图;
图2为衬底和薄膜层的结构示意图;
图3为本申请实施例磁控溅射设备具有靶材分区冷却装置的结构示意图;
图4为本申请实施例磁控溅射设备中靶材分区冷却装置与冷量供给装置连通的结构示意图;
图5为本申请实施例磁控溅射设备包括一个圆形靶材分区冷却装置和一个环形靶材冷却装置的结构示意图;
图6为本申请实施例磁控溅射设备包括一个矩形靶材分区冷却装置和一个矩形环状靶材冷却装置的结构示意图;
图7为本申请实施例磁控溅射设备包括一个圆形靶材分区冷却装置和三个环形靶材冷却装置的结构示意图;
图8为本申请实施例磁控溅射设备的4个矩形靶材分区冷却装置呈阵列排布的结构示意图;
图9为本申请实施例磁控溅射设备具有辅助冷却装置的结构示意图;
图10为本申请实施例磁控溅射设备具有靶材温度检测装置和第一流量控制装置的结构示意图;
图11为本申请实施例磁控溅射设备中多个靶材温度检测装置在靶材分区冷却装置上的分布示意图;
图12为本申请实施例磁控溅射设备具有多个分区加热装置的结构示意图;
图13为本申请实施例磁控溅射设备具有多个衬底分区冷却装置的结构示意图;
图14为本申请实施例磁控溅射设备中靶材分区冷却装置、衬底分区冷却装置与冷量供给装置连通的结构示意图;
图15为本申请实施例磁控溅射设备包括一个圆形衬底分区冷却装置和一个环形衬底冷却装置的结构示意图;
图16为本申请实施例磁控溅射设备包括一个矩形衬底分区冷却装置和一个矩形环状衬底冷却装置的结构示意图;
图17为本申请实施例磁控溅射设备包括一个圆形衬底分区冷却装置和三个环形衬底冷却装置的结构示意图;
图18为本申请实施例磁控溅射设备的4个矩形衬底分区冷却装置呈阵列排布的结构示意图;
图19为本申请实施例磁控溅射设备具有衬底温度检测装置、第二流量控制装置及衬底温度控制装置的结构示意图;
图20为本申请实施例磁控溅射设备中多个衬底温度检测装置在衬底分区冷却装置上的分布示意图;
图21为本申请实施例磁控溅射设备的控制方法对靶材温度进行控制的流程示意图;
图22为本申请实施例磁控溅射设备的控制方法对靶材温度进行具体控制的流程示意图;
图23为本申请实施例磁控溅射设备的控制方法对衬底温度进行控制的流程示意图;
图24为本申请实施例磁控溅射设备的控制方法对衬底温度进行具体控制的流程示意图;
图25为本申请实施例磁控溅射设备的控制方法实现衬底形貌参数与温度补偿之间的对应示意图。
附图标记:
100-磁控溅射设备,1-机壳,101-溅射腔,2-衬底承载装置,21-衬底基座,22-静电卡盘,3-靶材承载装置,4-分区加热装置,5-磁铁移动装置,60-靶材冷却装置,6-靶材分区冷却装置,61-第一冷却介质容置腔,62-第一进口,62-第一出口,601a-圆形靶材冷却装置,602a-环形靶材冷却装置,601b-矩形靶材冷却装置,602b-矩形环状靶材冷却装置,601c-矩形靶材分区冷却装置,7-冷量供给装置,8-辅助冷却装置,9-靶材温度检测装置,10-第一流量控制装置,11-衬底分区冷却装置,111-第二冷却介质容置腔,112-第二进口,113-第二出口,1101a-圆形衬底冷却装置,1102a-环形衬底冷却装置,1101b-矩形衬底冷却装置,1102b-矩形环状衬底冷却装置,1101c-矩形衬底分区冷却装置,12-衬底温度检测装置,13-衬底温度控制装置,14-第二流量控制装置,15-靶材温度控制装置,16-冷却介质回收装置,200-衬底,300-靶材。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。
此外,本申请中,“上”、“下”、“左”、“右”、“水平”以及“竖直”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。
参照图1,本申请实施例的磁控溅射设备100包括机壳1、衬底承载装置2、靶材承载装置3以及分区加热装置4。
其中,机壳1内设有溅射腔101。衬底承载装置2可以安装在溅射腔101内,且用于 固定衬底200(wafer)。如图1所示,衬底承载装置2可以包括衬底基座21和静电卡盘22,静电卡盘22位于衬底基座21的上方,衬底200可以被吸附在静电卡盘5上。分区加热装置4位于衬底基座21与静电卡盘22之间。
上述靶材承载装置3设置在机壳1上,且用于安装靶材300。靶材承载装置3上的靶材300可以与衬底承载装置2上衬底200相对设置。
分区加热装置4可以安装在衬底承载装置2靠近靶材承载装置3的一侧,且用于给衬底200加热。例如,图1中的分区加热装置4位于衬底基座21和静电卡盘22之间。该分区加热装置4可以为紫外灯、卤素灯、激光二极管、电阻加热器、微波激励的加热器、发光二极管、或任何其他合适的单个或组合的加热元件。
需要说明的是,为了实现磁控溅射设备100溅射功能,上述磁控溅射设备100还包括如图1所示的磁铁旋转装置5,该磁铁旋转装置5中的磁铁可以旋转。从而,可以控制靶材300上的各区域的溅射较均匀。
当磁控溅射设备100工作时,上述磁控溅射设备100的溅射腔101内充入有反应所需的惰性气体(如氩气)。靶材300与电源负极连接,衬底200分别与电源正极连接。在电场的作用下,溅射腔101内的惰性气体分子被离子化而产生带电电荷。由于靶材300上加有一定的负高压,从阴极发出的电子受磁场的作用与惰性气体的电离几率增大,在阴极附近形成高密度的等离子体。气体正离子在电场的作用下,加速对阴极靶材300表面进行轰击,把靶材300表面的分子、原子、离子及电子等溅射出来,被溅射出来的粒子带有一定的动能,沿一定的方向射向具有较高温度的衬底200表面,在衬底200表面积聚成薄膜层。
在上述溅射过程中,靶材300和衬底200上均会产生热场。由于靶材300的温度分布不同,靶材300上各个区域的溅射速度不同。所以,靶材300上温度分布会影响薄膜的晶相结构、厚度及薄膜电阻均匀性。进而,影响溅射形成的薄膜层上不同区域的关键尺寸、宽深比、填洞能力和台阶覆盖率(参照图2,台阶覆盖率=B/A或C/A,A为薄膜层1000的顶部厚度,B为薄膜层1000的侧壁厚度,C为薄膜层1000的底部厚度)等参数。
如图1所示,若在磁控溅射设备100中直接设置一个能够覆盖整个靶材300背面的靶材冷却装置60,单一的冷却装置给靶材300的所有位置进行散热,则不能对靶材300不同区域的溅射速度进行精确控制,使得靶材300上多个位置的温度不能达到溅射所需的热场分布要求。从而,不能溅射形成关键尺寸、宽深比、填洞能力和台阶覆盖率等参数均符合先进工艺所要求的薄膜层。
基于此,本申请实施例的磁控溅射设备100还包括N个如图3所示的靶材分区冷却装置6,N≥2。该靶材分区冷却装置6可以为水冷器。该N个靶材分区冷却装置6可以均安装在靶材承载装置3上的靶材300远离衬底承载装置2的一侧。并且,N个靶材分区冷却装置6分别与靶材承载装置3上的靶材300的多个区域位置对应。所以,本申请实施例中N个靶材分区冷却装置6可以分别对应冷却靶材300上的多个不同区域,靶材300上多个位置的温度能够分别进行控制,以符合实际靶材300各区域的工艺温度要求。从而,提高了溅射形成的薄膜层的厚度和薄膜电阻的均匀性,并且能够匹配先进工艺发展对关键尺寸、宽深比、填洞能力和台阶覆盖率等性能参数的要求。同时,还能够更好的提升靶材300的使用寿命、以及改善磁控溅射工艺中存在的不对称性(asymmetric)的问题。
并且,上述磁控溅射设备100还包括如图4所示的冷量供给装置7,冷量供给装置7 与N个靶材分区冷却装置6连通。例如,该冷量供给装置7为冷水存储罐,冷量供给装置7可以给N个靶材分区冷却装置6提供冷却水。冷量供给装置7存储的冷却介质除了上述的冷却水,还可为水和水的混合液(例如,水和丙二醇的混合液)、乙二醇、丙二醇、硅油等。
继续参照图4,每个靶材分区冷却装置6上可以开设有第一进口62和第一出口63。靶材分区冷却装置6内设有第一冷却介质容置腔61,第一冷却介质容置腔61与第一进口62、第一出口63均连通。N个靶材分区冷却装置6的第一进口62可以与冷量供给装置7分别连通。从而,冷量供给装置7可以给N个靶材分区冷却装置6同时提供冷却介质来冷却靶材300。
并且,磁控溅射设备100还可以包括如图4所示的冷却介质回收装置16,冷却介质回收装置16与N个靶材分区冷却装置6的第一出口63均连通。从而,冷却介质回收装置16可以回收N个靶材分区冷却装置6流出的冷却介质,更节能。
可以理解的是,上述磁控溅射设备100中靶材分区冷却装置6的数量越多,能够对靶材300进行更精细的冷却区域划分,并实现对靶材300更精准的温度分布调节,但是成本也越高。所以,具体可以根据实际的设计需要,选择合适的靶材分区冷却装置6数量。
以下以图5示出的磁控溅射设备100包括两个靶材分区冷却装置6为例进行说明。参照图5,两个靶材分区冷却装置6分别为圆形靶材冷却装置601a、环形靶材冷却装置602a。其中,圆形靶材冷却装置601a与靶材承载装置3上靶材300的中心区域对应。环形靶材冷却装置602a套设在圆形靶材冷却装置601a的外侧,且与靶材承载装置3上靶材300的中部区域及边沿区域对应。对于靶材300为圆形的方案,圆形靶材冷却装置601a和环形靶材冷却装置602a可以将整个圆形的靶材300覆盖,对圆形的靶材300的散热较均匀。
当然,若靶材300为长方形薄板结构,继续以具有两个靶材分区冷却装置6为例,则两个靶材分区冷却装置6可以分别为如图6所示的矩形靶材冷却装置601b、以及矩形环状靶材冷却装置602b。矩形环状靶材冷却装置602b套设在矩形靶材冷却装置601b外。
需要说明的是,若磁控溅射设备100包括两个以上的靶材分区冷却装置6,以四个靶材分区冷却装置6为例,则上述四个靶材分区冷却装置6包括如图7所示的一个圆形靶材冷却装置601a、以及三个环形靶材冷却装置602a,三个环形靶材冷却装置602a可以由内至外依次套设在圆形靶材冷却装置601a外。或者,四个靶材分区冷却装置6还可以均为如图8所示的矩形靶材分区冷却装置601c,四个矩形靶材分区冷却装置601c呈矩形阵列排布,从而覆盖整个靶材300。
上述实施例是以磁控溅射设备100仅包括N个靶材分区冷却装置6进行说明的。但是,在溅射过程中,靶材300的温度可能会存在瞬时温度过高的情况。所以,在本申请的一些实施例中,上述磁控溅射设备100还包括如图9所示的辅助冷却装置8,辅助冷却装置8安装在机壳1内。该辅助冷却装置8也可以为水冷器。并且,辅助冷却装置8位于N个靶材分区冷却装置6远离靶材300的一侧。辅助冷却装置8可以覆盖N个靶材分区冷却装置6。辅助冷却装置8可以通过N个靶材分区冷却装置6将冷量传递给整个靶材300。在整个靶材300的温度均瞬时偏高时,可通过同时开启N个靶材分区冷却装置6和辅助冷却装置8对整个靶材300进行冷却,加快靶材300的冷却速度。
对于上述磁控溅射设备100中靶材300的冷却结构设计,在溅射过程中,靶材300的 热场分布情况会较复杂,若仅通过开启或关闭靶材分区冷却装置6和辅助冷却装置8来控制靶材300的温度分布,靶材300的局部区域瞬时温度变化过大,会严重影响靶材300的溅射速度,并影响薄膜层的溅射质量。
因此,参照图10,本申请实施例的磁控溅射设备100还包括M个靶材温度检测装置9、第一流量控制装置10及靶材温度控制装置15,M≥2。M个靶材温度检测装置9可以分别安装在N个靶材分区冷却装置6上。该靶材温度检测装置9可以为热电偶、光学耦合高温计或热探针等。为了检测N个靶材分区冷却装置6的温度,靶材温度检测装置9的总数M可以满足:M≥N。即每个靶材分区冷却装置6均对应安装有一个或多个靶材温度检测装置9。例如,如图11所示,圆形靶材冷却装置601a上安装有1个靶材温度检测装置9,环形靶材冷却装置602a上安装有4个靶材温度检测装置9,4个靶材温度检测装置9沿环形靶材冷却装置602a的周向均匀分布。
上述第一流量控制装置10可以为液体流量控制器(liquid flow controller,LFC)。多个第一流量控制装置10可以分别安装在冷量供给装置7与N个靶材分区冷却装置6的进口之间的连接管道上。为保证每一个靶材分区冷却装置6的冷量均可以调节,第一流量控制装置10的总数S满足:S≥N。每个靶材分区冷却装置6与冷量供给装置之间均安装有一个或多个液体流量控制器。为了节省成本,每个靶材分区冷却装置6与冷量供给装置7之间均安装有一个液体流量控制器即可。
上述靶材温度控制装置15可以与S个第一流量控制装置10、M个靶材温度检测装置9均连接。根据M个靶材温度检测装置9检测的温度值,靶材温度控制装置15可以控制S个第一流量控制装置10调节对应的靶材分区冷却装置6的冷却介质的流量。其中,上述对应的靶材分区冷却装置6是指与第一流量控制装置10连通的靶材分区冷却装置6。从而,磁控溅射设备100可以控制多个靶材分区冷却装置6对靶材300的冷却速度,能够更精细化调节靶材300上多个区域的温度,避免了反复开闭多个靶材分区冷却装置6,导致靶材300上局部区域的温度突变,而影响的靶材300的溅射速度以及薄膜层的溅射质量问题。当然,上述第一流量控制装置10也可以为流量控制阀。
以上实施例实现了对靶材300的热场分布调节,为了保证进一步保证衬底200上的薄膜层能够满足先进工艺的要求,还可以对衬底200的热场进行调节。
基于此,在本申请的一些实施例中,如图12所示,磁控溅射设备100中的分区加热装置4为多个。多个分区加热装置4分别安装在衬底承载装置2上远离靶材承载装置3的一侧,且分别用于给衬底200的多个位置加热。例如,该分区加热装置4为辐射加热器、传导热源、电阻加热器、电感加热器或微波加热器中的任一种。多个分区加热装置4可以对衬底200上多个位置进行升温控制,以调整衬底200的热场分布。
此外,为了控制衬底200的温度不会过高,磁控溅射设备100上还设有衬底冷却装置,通过衬底冷却装置可以及时迅速将衬底200温度冷却至合适的温度,进一步来调整衬底200的热场分布。
同理,与上述靶材300上的多个区域通过N个靶材分区冷却装置6进行冷却类似,衬底200上的多个区域也可分别通过多个衬底分区冷却装置11进行冷却。因此,在本申请的一些实施例中,如图13所示,磁控溅射设备100包括P个衬底分区冷却装置11,P≥2。衬底冷却分区装置11可以为水冷器。该P个衬底分区冷却装置11可以分别安装在多个分 区加热装置4的下方,且分别与多个分区加热装置4对应设置。
所以,本申请实施例可以直接通过P个衬底分区冷却装置11分别对应冷却多个分区加热装置4,从而间接冷却衬底200,使得衬底200上的多个位置的温度能够更符合薄膜形成所需的工艺温度要求,从而提高了溅射形成的薄膜的厚度和薄膜电阻的均匀性,以及能够匹配先进工艺发展对关键尺寸、宽深比、填洞能力和台阶覆盖率等性能参数的要求、以及改善磁控溅射工艺中存在的不对称性(asymmetric)的问题。并且,本申请实施例的磁控溅射设备100在溅射过程中能够通过多个分区加热装置4和P个衬底分区冷却装置11对整个衬底200进行实时温度调节,衬底200温度调整更精确,且温度调整的响应速度也更快。
上述P个衬底分区冷却装置11的冷量供给可以采用上述冷量供给装置7,即P个衬底分区冷却装置11的进口与上述冷量供给装置7连通,如图14所示。当然,上述P个衬底分区冷却装置11也可以采用一个专门的衬底冷量供给装置来供给冷量。即P个衬底分区冷却装置11与衬底冷量供给装置连通。
同理,上述P个衬底分区冷却装置11的冷却介质回收可以采用上述冷却介质回收装置16,即P个衬底分区冷却装置11的出口与上述冷却介质回收装置16连通,如图14所示。当然,上述P个衬底分区冷却装置11也可以采用一个专门的衬底冷却介质回收装置来回收冷却介质。即P个衬底分区冷却装置11与衬底冷却介质回收装置连通。
以P个衬底分区冷却装置11均与上述冷量供给装置7连通为例,继续参照图14,每个衬底分区冷却装置11内可以设置第二冷却介质容置腔111,且衬底分区冷却装置11上开设有与第二冷却介质容置腔111均连通的第二进口112和第二出口113。P个衬底分区冷却装置11的第二进口112可以与冷量供给装置7连通。P个衬底分区冷却装置11的第二出口113可以与冷却介质回收装置16连通。
同理,磁控溅射设备100中的衬底分区冷却装置11数量越多,能够对衬底200的温度分区控制更精细,但是成本也越高。所以,具体可以根据实际的设计需要,选择合适的衬底分区冷却装置11的数量。
类似的,以下以图15示出的磁控溅射设备100中仅包括两个衬底分区冷却装置11为例进行说明。参照图15,两个衬底分区冷却装置11分别为圆形衬底冷却装置1101a、环形衬底冷却装置1102a。其中,圆形衬底冷却装置1101a与多个分区加热装置4的中心区域对应,环形衬底冷却装置1102a套设在圆形衬底冷却装置1101a的外侧。对于衬底200为圆形的方案,圆形衬底冷却装置1101a和环形衬底冷却装置1102a可以将整个圆形的衬底200覆盖,对圆形的衬底200的散热较均匀。
当然,若衬底200为长方形薄板结构,继续以两个衬底分区冷却装置11为例,则两个衬底分区冷却装置11可以分别为如图16所示的矩形衬底冷却装置1101b、以及矩形环状衬底冷却装置1102b。矩形环状衬底冷却装置1102b可以套设在矩形衬底冷却装置1101b外。
需要说明的是,若磁控溅射设备100中包括两个以上的衬底分区冷却装置11,以四个衬底分区冷却装置11为例,则对于衬底200为圆形的方案,上述四个衬底分区冷却装置11包括如图17所示的一个圆形衬底冷却装置1101a、以及三个以上环形衬底冷却装置1102a,三个环形衬底冷却装置1102a可以由内至外依次套设在圆形衬底冷却装置1101a 外。对于衬底200为矩形的方案,四个衬底分区冷却装置6还可以为如图18所示的四个矩形衬底分区冷却装置1101c。四个矩形衬底分区冷却装置1101c呈矩形阵列排布,从而覆盖整个衬底200。
以上是对衬底200直接进行升温和降温控制的执行结构说明,下面对衬底200的温度控制结构进行说明。
在本申请的一些实施例中,参照图19,磁控溅射设备100还包括多个衬底温度检测装置12和衬底温度控制装置13。
其中,多个衬底温度检测装置12分别安装在衬底承载装置2上,且与多个分区加热装置4分别对应设置。多个衬底温度检测装置12分别用于检测多个分区加热装置4的温度。例如,如图20所示,圆形衬底冷却装置1101a上安装有1个衬底温度检测装置12,环形衬底冷却装置1102a上安装有4个衬底温度检测装置12。该衬底温度检测装置12可以为热电偶、光学耦合高温计或热探针等。这些装置均可以直接测量分区加热装置4所在区域的温度,适用于安装在热位移较小的位置,如衬底200上与位于中心位置的分区加热装置4对应的区域。该衬底温度检测装置12还可以为电阻测量器件(如高频霍尔效应电流传感器),通过分区加热装置4的电阻值与温度的对应关系,间接得到分区加热装置4所在区域的温度。该装置可以适用于安装在热位移较大的位置,如衬底200上与位于边缘位置的分区加热装置4对应的区域。
上述衬底温度控制装置13可以为一个单独的控制器,也可以为与上述磁控溅射设备100中主控器中的一个控制模块。上述衬底温度控制装置13可以与多个分区加热装置4、多个衬底温度检测装置12连接。根据多个衬底温度检测装置12的检测值,该衬底温度控制装置13可以分别调节多个分区加热装置4的加热功率。从而,对衬底200的温度控制精确,薄膜层的晶相结构稳定,薄膜电阻的均匀性较好。
对于衬底分区冷却装置6的冷量调节,在本申请的一些实施例中,返回参照图19,上述磁控溅射设备100还包括多个第二流量控制装置14,第二流量控制装置14可以为液体流量控制器(liquid flow controller,LFC),也可以为流量控制阀。多个第二流量控制装置14安装在冷量供给装置与P个衬底分区冷却装置11的进口之间的连接管道上。为保证每一个衬底分区冷却装置11的冷量均可以调节,第二流量控制装置14的总数R满足:R≥P。每个衬底分区冷却装置6与冷量供给装置之间均安装有一个或多个液体流量控制器。
上述衬底温度控制装置13与多个第二流量控制装置14连接。衬底温度控制装置13可以根据每个衬底温度检测装置12检测的温度值,控制多个第二流量控制装置14调节进入对应的衬底分区冷却装置11的冷却介质的流量。从而,磁控溅射设备100可以控制多个衬底分区冷却装置11对分区加热装置4和衬底200的冷却速度,能够更精细化调节衬底200上多个区域的温度,避免反复开闭多个衬底分区冷却装置11,导致衬底200上局部区域的温度突变,而影响薄膜层的晶相结构和厚度分布。
可以理解的是,本申请实施例的磁控溅射设备100除了包括上述结构部件,还会具有如抽真空装置、工艺屏蔽套件(process kit shield)等部件。由于本申请实施例不涉及对这些结构的改进,此处不再赘述。
基于以上磁控溅射设备100的结构,本申请实施例还包括一种用于上述磁控溅射设备 100的控制方法,如图21所示,该控制方法包括以下步骤:
S101:获取靶材多个区域的当前温度值T t
示例性的,上述第一流量控制装置10从多个靶材温度检测装置9检测可以获取靶材300上多个区域的当前温度值T t
S102:根据靶材多个区域的当前温度值T t,调控进入对应的靶材分区冷却装置的冷却介质的流量。
示例性的,上述靶材温度控制装置15可以根据从多个靶材温度检测装置12获取的靶材300多个区域的当前温度值T t,控制多个第一流量控制装置10调节进入对应的靶材分区冷却装置6的冷却介质的流量。该控制方法对靶材300的温度调节效果能够与上述实施例的磁控溅射设备对靶材300温度的调节效果相同,此处不再赘述。
参照图22,上述S102具体包括:
当靶材任一区域的当前温度值T t(j)大于对应的第一预设分区目标温度阈值T t1(j)时,增大进入对应的靶材分区冷却装置内冷却介质的流量。
示例的,在靶材300任一区域的当前温度值T t(j)大于对应的第一预设分区目标温度阈值T t1(j)时,表明靶材300上激发的热电子数量过多,溅射速度过快,对应衬底200上形成的薄膜厚度容易超过预设值,以及薄膜电阻大于或小于预设电阻。因此,需要增大进入对应的靶材分区冷却装置6内冷却介质的流量,将靶材300上该区域的温度降低。
当靶材任一区域的当前温度值检测的温度值T t(j)小于对应的第二预设分区目标温度阈值T t2(j)时,减小进入对应的靶材分区冷却装置内冷却介质的流量。
示例的,在靶材300任一区域的当前温度值检测的温度值T t(j)小于对应的第二预设分区目标温度阈值T t2(j)时,表明靶材300上激发的热电子数量过小,溅射速度过慢,对应衬底200上形成的薄膜厚度容易低于预设厚度,且薄膜电阻小于或大于预设电阻。因此,需要降低进入对应的靶材300分区冷却装置内冷却介质的流量,将靶材300上该区域的温度增大。
当靶材任一区域的当前温度值检测的温度值T t(j)处于对应的第一预设分区目标温度阈值T t1(j)与第二预设分区目标温度阈值T t2(j)之间时,保持进入对应的靶材分区冷却装置内冷却介质的流量不变。
示例的,当靶材300任一区域的当前温度值检测的温度值T t(j)处于对应的第一预设分区目标温度阈值T t1(j)与第二预设分区目标温度阈值T t2(j)之间时,表明靶材300上激发的热电子数量适中,溅射速度较理想,对应衬底200上形成的薄膜厚度可以达到预设值,且薄膜电阻与预设薄膜电阻的差值较小或为零。因此,上述靶材温度控制装置15控制对应的第一流量控制装置10保持进入对应的靶材分区冷却装置9内冷却介质的流量不变即可。
需要说明的是,上述靶材300上不同区域的预设目标温度阈值不同,具体可以根据实际衬底200上的电路设计需要进行设定。并且,上述预设目标温度阈值可以根据经验或实验值得到。
以上说明了对靶材300温度分布进行控制的具体方法,而对衬底200的温度分布可以采用如下控制方法进行。在本申请的一些实施例中,如图23所示,上述磁控溅射设备100的控制方法还包括以下步骤:
S201:获取衬底多个区域的当前温度值T w
示例的,上述衬底温度控制装置13可以从多个衬底温度检测装置12获取衬底200多个区域的当前温度值T w
S202:根据衬底多个区域的当前温度值T w,调节对应的分区加热装置的加热功率和进入衬底分区冷却装置内冷却介质的流量。
示例的,上述衬底温度控制装置13可以根据从多个衬底温度检测装置12获取衬底200多个区域的当前温度值,调节对应的分区加热装置4的加热功率和控制对应的第二流量控制装置14来调节进入衬底分区冷却装置11内冷却介质的流量。该控制方法对衬底200的温度调节效果能够与上述实施例的磁控溅射设备100对衬底200的温度调节效果相同,此处不再赘述。
参照图24,上述S202具体包括:
当衬底i个区域的当前温度值T w大于对应的第三预设分区目标温度阈值T w3(i)时,保持对应的分区加热装置的加热功率不变,增大进入对应的衬底分区冷却装置内冷却介质的流量。其中,i满足:P≥i≥1,P为磁控溅射设备中衬底温度检测装置的总数。
示例的,在衬底200上i个区域的当前温度值T w大于对应的第三预设分区目标温度阈值T w3(i)时,表明衬底200上的局部区域溅射形成的薄膜晶粒过小,台阶覆盖率超过设定台阶覆盖率,薄膜电阻较大或较小。所以,需要衬底温度控制装置13控制保持对应的分区加热装置4的加热功率不变,控制第二流量控制装置14增大进入对应的衬底分区冷却装置11内冷却介质的流量,将衬底200局部区域温度降低。
当衬底P个区域的当前温度值T w大于对应的第三预设分区目标温度阈值T w3(i)时,降低多个分区加热装置的加热功率,增大进入对应的衬底分区冷却装置内冷却介质的流量。
示例的,在衬底200上P个区域的当前温度值T w大于对应的第三预设分区目标温度阈值T w3(i)时,表明整个衬底200上溅射形成的薄膜晶粒均过小,台阶覆盖率超过设定台阶覆盖率,薄膜电阻较大或较小。所以,需要衬底温度控制装置13降低多个分区加热装置4的加热功率,同时控制多个第二流量控制装置14增大进入多个衬底分区冷却装置11内冷却介质的流量。从而,快速提高整个衬底200的温度,以保证薄膜层的溅射效果。
当衬底i个区域的当前温度值T w小于对应的第四预设分区目标温度阈值T w4(i)时,增大对应的分区加热装置的加热功率,保持进入对应的衬底分区冷却装置内冷却介质的流量不变。
示例的,同理,在衬底200上i个区域的当前温度值T w小于对应的第四预设分区目标温度阈值T w4(i)时,表明衬底200上的局部区域溅射形成的薄膜晶粒过大,台阶覆盖率低于设定台阶覆盖率,薄膜电阻较大。所以,需要衬底温度控制装置13增大对应的分区加热装置4的加热功率不变,控制第二流量控制装置14保持进入对应的衬底分区冷却装置11内冷却介质的流量,将衬底200的局部区域温度升高。
当衬底P个区域的当前温度值T w小于对应的第四预设分区目标温度阈值T w4(i)时,增大多个分区加热装置的加热功率,减小进入对应的衬底分区冷却装置内冷却介质的流量。
示例的,在P个衬底200的当前温度值小于对应的第四预设分区目标温度阈值T w4(i)时,表明整个衬底200上溅射形成的薄膜晶粒均较大,台阶覆盖率低于设定台阶覆盖率,薄膜电阻较大。所以,需要衬底温度控制装置13增大多个分区加热装置4的加热功率,同时控制多个第二流量控制装置14减少进入多个衬底分区冷却装置11内冷却介质的流 量。从而,快速降低整个衬底200的温度,以保证薄膜层的溅射效果。
当衬底任一区域的当前温度值T w处于对应的第三预设分区目标温度阈值T w3(i)与第四预设分区目标温度阈值T w4(i)之间时,保持对应的分区加热装置的加热功率保持不变,以及进入对应的衬底分区冷却装置内冷却介质的流量不变。
示例的,在衬底200任一区域的当前温度值T w处于对应的第三预设分区目标温度阈值T w3(i)与第四预设分区目标温度阈值T w4(i)之间时,表明衬底200上溅射形成的薄膜晶粒大小适中,台阶覆盖率与设定台阶覆盖率差值较小或为零,薄膜电阻与预设薄膜电阻的差值较小或为零。因此,上述衬底温度控制装置13保持对应的分区加热装置4的加热功率保持不变,以及控制对应的第二流量控制装置14保持进入对应的衬底分区冷却装置11内冷却介质的流量不变即可。
图25中线条1表示衬底200的形貌参数变化,如薄膜晶粒、台阶覆盖率、薄膜厚度或薄膜电阻等。图25中的线条2表示衬底200的温度变化。图27中横坐标X可以表示衬底200上的各个区域位置,纵坐标Y表示参数值和温度值。例如,参照图25,曲线1表示薄膜电阻,在曲线1上的某一点的纵坐标值高于预设电阻值时,表明该区域薄膜电阻偏大。曲线2上对应该点的温度值较高,从而对衬底200上的薄膜层形成补偿。或者,曲线1表示薄膜厚度,曲线1上的某一点的纵坐标值高于预设薄膜层厚度时,表明该区域的薄膜层厚度偏大。曲线2上与该点对应的温度值较低,从而能够对衬底200上的薄膜层形成补偿。或者,曲线1表示薄膜台阶覆盖率,曲线1上的某一点的纵坐标值低于预设薄膜台阶覆盖率,表明该区域的薄膜台阶覆盖率偏小。曲线2上对应该点的温度值较高,从而能够对衬底200上的薄膜层形成补偿。
本申请实施例磁控溅射设备100的控制方法通过执行上述控制步骤,可以实现如图25所示的通过温度调节对衬底200的形貌参数的对应补偿。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种磁控溅射设备,其特征在于,包括:
    机壳,所述机壳内设有溅射腔;
    衬底承载装置,所述衬底承载装置安装在所述溅射腔内,且用于固定衬底;
    靶材承载装置,所述靶材承载装置设置在所述机壳上,且用于固定靶材;所述靶材承载装置上的靶材与所述衬底承载装置上的衬底相对;
    至少两个靶材分区冷却装置,所述至少两个靶材分区冷却装置安装在所述靶材承载装置上的靶材远离所述衬底承载装置的一侧,且分别与所述靶材承载装置上靶材的多个位置对应。
  2. 根据权利要求1所述的磁控溅射设备,其特征在于,所述至少两个靶材分区冷却装置包括:
    圆形靶材冷却装置,所述圆形靶材冷却装置与所述靶材承载装置上靶材的中心区域对应;
    至少一个环形靶材冷却装置,所述环形靶材冷却装置套设在所述圆形靶材冷却装置的外侧,且与所述靶材承载装置上靶材的中部区域或边沿区域对应。
  3. 根据权利要求1或2所述的磁控溅射设备,其特征在于,所述磁控溅射设备还包括:
    辅助冷却装置,所述辅助冷却装置设置在所述机壳内,且位于所述至少两个靶材分区冷却装置远离所述靶材的一侧。
  4. 根据权利要求1-3中任一项所述的磁控溅射设备,其特征在于,所述磁控溅射设备还包括:
    冷量供给装置,所述冷量供给装置与所述至少两个靶材分区冷却装置连通;
    多个第一流量控制装置,多个所述第一流量控制装置分别安装在所述冷量供给装置与所述至少两个靶材分区冷却装置的进口之间的连接管道上;
    多个靶材温度检测装置,多个所述靶材温度检测装置分别安装在至少两个所述靶材分区冷却装置上;
    靶材温度控制装置,所述靶材温度控制装置与所述第一流量控制装置、所述靶材温度检测装置连接,所述靶材温度控制装置用于根据多个所述靶材温度检测装置检测的温度值,控制多个所述第一流量控制装置调节进入对应的靶材分区冷却装置的冷却介质的流量。
  5. 根据权利要求1-4中任一项所述的磁控溅射设备,其特征在于,所述磁控溅射设备还包括:
    多个分区加热装置,多个所述分区加热装置分别安装在所述衬底承载装置上靠近所述靶材承载装置的一侧,且分别用于给衬底的多个位置加热;
    多个衬底温度检测装置,多个所述衬底温度检测装置分别安装在所述衬底承载装置上,且与多个所述分区加热装置分别对应设置;
    衬底温度控制装置,所述衬底温度控制装置与所述多个分区加热装置、所述多个衬底温度检测装置连接,所述衬底温度控制装置用于根据所述多个衬底温度检测装置的检测值,分别调节多个所述分区加热装置的加热功率。
  6. 根据权利要求5所述的磁控溅射设备,其特征在于,所述磁控溅射设备还包括:
    至少两个衬底分区冷却装置,所述至少两个衬底分区冷却装置安装在所述多个分区加热装置的下方,且分别与所述多个分区加热装置对应设置。
  7. 根据权利要求6所述的磁控溅射设备,其特征在于,所述至少两个衬底分区冷却装置包括:
    圆形衬底冷却装置,所述圆形衬底冷却装置与所述多个分区加热装置的中心区域对应;
    至少一个环形衬底冷却装置,所述环形衬底冷却装置套设在所述圆形衬底冷却装置的外侧,且与所述多个分区加热装置的中间区域或边沿区域对应。
  8. 根据权利要求6或7所述的磁控溅射设备,其特征在于,所述磁控溅射设备还包括:
    冷量供给装置,所述冷量供给装置与所述至少两个衬底分区冷却装置连通;
    多个第二流量控制装置,多个所述第二流量控制装置安装在所述冷量供给装置与所述至少两个衬底分区冷却装置的进口之间的连接管道上;
    所述衬底温度控制装置与多个所述第二流量控制装置、所述衬底温度检测装置连接,所述衬底温度控制装置用于根据多个衬底温度检测装置检测的温度,控制所述第二流量控制装置调节进入对应的衬底分区冷却装置的冷却介质的流量。
  9. 一种用于上述权利要求1-8中任一项所述的磁控溅射设备的控制方法,其特征在于,包括以下步骤:
    获取靶材多个区域的当前温度值;
    根据所述靶材多个区域的当前温度值,调控进入对应的所述靶材分区冷却装置的冷却介质的流量。
  10. 根据权利要求9所述的磁控溅射设备的控制方法,其特征在于,所述根据所述靶材多个区域的当前温度值,调节进入对应的所述靶材分区冷却装置的冷却介质的流量具体包括:
    当靶材任一区域的当前温度值大于对应的第一预设分区目标温度阈值时,增大进入对应的所述靶材分区冷却装置内冷却介质的流量;
    当靶材任一区域的当前温度值检测的温度值小于对应的第二预设分区目标温度阈值时,减小进入对应的所述靶材分区冷却装置内冷却介质的流量;
    当靶材任一区域的当前温度值检测的温度值处于对应的第一预设分区目标温度阈值与第二预设分区目标温度阈值之间时,保持进入对应的所述靶材分区冷却装置内冷却介质的流量不变。
  11. 根据权利要求9所述的磁控溅射设备的控制方法,其特征在于,所述磁控溅射设备还包括至少两个衬底分区冷却装置,所述至少两个衬底分区冷却装置安装在所述多个分区加热装置的下方,且分别与所述多个分区加热装置对应设置;至少两个所述衬底分区冷却装置分别与所述冷量供给装置连通;所述磁控溅射设备的控制方法还包括:
    获取衬底多个区域的当前温度值;
    根据所述衬底多个区域的当前温度值,调节对应的所述分区加热装置的加热功率和进入所述衬底分区冷却装置内冷却介质的流量。
  12. 根据权利要求11所述的磁控溅射设备的控制方法,其特征在于,所述根据所述衬 底多个区域的当前温度值,调节进入对应的所述分区加热装置的加热功率和所述衬底分区冷却装置内冷却介质的流量具体包括:
    当衬底i个区域的当前温度值大于对应的第三预设分区目标温度阈值时,保持对应的所述分区加热装置的加热功率不变,增大进入对应的所述衬底分区冷却装置内冷却介质的流量;其中,i满足:P≥i≥1,P为磁控溅射设备中衬底温度检测装置的总数;
    当衬底P个区域的当前温度值大于对应的第三预设分区目标温度阈值时,降低所述多个分区加热装置的加热功率,增大进入多个所述衬底分区冷却装置内冷却介质的流量;
    当衬底i个区域的当前温度值小于对应的第四预设分区目标温度阈值时,增大对应的所述分区加热装置的加热功率,保持进入对应的所述衬底分区冷却装置内冷却介质的流量不变;
    当衬底P个区域的当前温度值小于对应的第四预设分区目标温度阈值时,增大所述多个分区加热装置的加热功率,减小进入对应的所述衬底分区冷却装置内冷却介质的流量;
    当衬底任一区域的当前温度值处于对应的第三预设分区目标温度阈值与第四预设分区目标温度阈值之间时,保持对应的所述分区加热装置的加热功率保持不变,以及保持进入对应的所述衬底分区冷却装置内冷却介质的流量不变。
PCT/CN2021/141750 2021-12-27 2021-12-27 一种磁控溅射设备及其控制方法 WO2023122900A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/141750 WO2023122900A1 (zh) 2021-12-27 2021-12-27 一种磁控溅射设备及其控制方法
CN202180032752.4A CN116685708A (zh) 2021-12-27 2021-12-27 一种磁控溅射设备及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141750 WO2023122900A1 (zh) 2021-12-27 2021-12-27 一种磁控溅射设备及其控制方法

Publications (1)

Publication Number Publication Date
WO2023122900A1 true WO2023122900A1 (zh) 2023-07-06

Family

ID=86996798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141750 WO2023122900A1 (zh) 2021-12-27 2021-12-27 一种磁控溅射设备及其控制方法

Country Status (2)

Country Link
CN (1) CN116685708A (zh)
WO (1) WO2023122900A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117568773B (zh) * 2023-12-26 2024-06-18 东莞市湃泊科技有限公司 一种覆铜陶瓷基板的制备系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020100680A1 (en) * 2001-01-29 2002-08-01 Tatsushi Yamamoto Backing plate used for sputtering apparatus and sputtering method
JP2007254827A (ja) * 2006-03-23 2007-10-04 Fujitsu Ltd スパッタリング装置及びスパッタリング方法
CN105483619A (zh) * 2016-01-26 2016-04-13 京东方科技集团股份有限公司 移动靶镀膜装置及镀膜方法
CN105575871A (zh) * 2014-10-27 2016-05-11 北京北方微电子基地设备工艺研究中心有限责任公司 承载装置和反应腔室
CN110819961A (zh) * 2020-01-09 2020-02-21 上海陛通半导体能源科技股份有限公司 改善薄膜均匀性的物理气相沉积设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020100680A1 (en) * 2001-01-29 2002-08-01 Tatsushi Yamamoto Backing plate used for sputtering apparatus and sputtering method
JP2007254827A (ja) * 2006-03-23 2007-10-04 Fujitsu Ltd スパッタリング装置及びスパッタリング方法
CN105575871A (zh) * 2014-10-27 2016-05-11 北京北方微电子基地设备工艺研究中心有限责任公司 承载装置和反应腔室
CN105483619A (zh) * 2016-01-26 2016-04-13 京东方科技集团股份有限公司 移动靶镀膜装置及镀膜方法
CN110819961A (zh) * 2020-01-09 2020-02-21 上海陛通半导体能源科技股份有限公司 改善薄膜均匀性的物理气相沉积设备

Also Published As

Publication number Publication date
CN116685708A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
US20240103482A1 (en) Temperature control method
US10199246B2 (en) Temperature control mechanism, temperature control method and substrate processing apparatus
US10113233B2 (en) Multi-zone temperature control for semiconductor wafer
US5950723A (en) Method of regulating substrate temperature in a low pressure environment
TWI815810B (zh) 噴頭組件、處理腔室及控制溫度之方法
US9023664B2 (en) Multi-zone temperature control for semiconductor wafer
US10147618B2 (en) Methods for controlling plasma constituent flux and deposition during semiconductor fabrication and apparatus for implementing the same
US20080236748A1 (en) Plasma processing apparatus
WO2023122900A1 (zh) 一种磁控溅射设备及其控制方法
EP3104393B1 (en) Temperature control method and plasma processing apparatus
JP2017519373A (ja) ペデスタルの流体による熱制御
WO2006068805A1 (en) Method and apparatus for controlling spatial temperature distribution
JP2006522452A (ja) 温度制御された基板支持体表面を有する基板支持体
KR20210006534A (ko) 후면측 냉각 그루브들을 갖는 스퍼터링 타겟
JP2020009795A (ja) 基板処理システムおよび基板処理方法
US11715654B2 (en) Temperature adjusting device
US20240087855A1 (en) Plasma processing apparatus, calculation method, and calculation program
CN109735814B (zh) 磁控溅射反应腔室的冷却组件及其磁控溅射设备
US20090321017A1 (en) Plasma Processing Apparatus and Plasma Processing Method
US20070256638A1 (en) Electrode plate for use in plasma processing and plasma processing system
KR20190088078A (ko) 후면 가스 공급부를 갖는 회전가능 정전 척
US11978614B2 (en) Substrate processing apparatus
KR100920399B1 (ko) 냉각블럭 및 이를 포함하는 기판처리장치
TW202029258A (zh) 電漿處理裝置、計算方法及計算程式
EP1154466A1 (en) Method and apparatus for plasma processing

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180032752.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE