CN109957762B - 蒸镀方法以及蒸镀装置 - Google Patents

蒸镀方法以及蒸镀装置 Download PDF

Info

Publication number
CN109957762B
CN109957762B CN201711338456.9A CN201711338456A CN109957762B CN 109957762 B CN109957762 B CN 109957762B CN 201711338456 A CN201711338456 A CN 201711338456A CN 109957762 B CN109957762 B CN 109957762B
Authority
CN
China
Prior art keywords
wave
target
particles
energy
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711338456.9A
Other languages
English (en)
Other versions
CN109957762A (zh
Inventor
万冀豫
汪栋
宋勇志
姜晶晶
齐鹏煜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Beijing BOE Display Technology Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Beijing BOE Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, Beijing BOE Display Technology Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN201711338456.9A priority Critical patent/CN109957762B/zh
Priority to PCT/CN2018/104292 priority patent/WO2019114335A1/zh
Priority to US16/338,133 priority patent/US11293090B2/en
Publication of CN109957762A publication Critical patent/CN109957762A/zh
Application granted granted Critical
Publication of CN109957762B publication Critical patent/CN109957762B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/048Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/22Deposition from the vapour phase
    • C03C25/226Deposition from the vapour phase by sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3421Cathode assembly for sputtering apparatus, e.g. Target using heated targets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/357Microwaves, e.g. electron cyclotron resonance enhanced sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本公开涉及蒸镀技术领域,公开了一种蒸镀方法,该蒸镀方法包括:给靶材施加激励声波,使靶材的设定部位的粒子的能量高于所述粒子脱离所述靶材需要的能量而脱离所述靶材附着于基板的设定区域。使用该蒸镀方法避免蒸镀材料的损失,提高蒸镀材料的利用率,从而降低成本。

Description

蒸镀方法以及蒸镀装置
技术领域
本公开涉及蒸镀技术领域,具体而言,涉及一种蒸镀方法以及蒸镀装置。
背景技术
随着显示技术的飞速发展,OLED已经成为现代显示技术的新宠。在制造OLED(Organic Light Emitting Diode,有机发光二极管)时,使用坩埚将用于制作OLED的有机材料蒸镀到OLED基板上。其中,在OLED基板上还覆盖有掩模板,使有机材料蒸镀到OLED基板上形成设定的图案;坩埚和OLED基板均置于真空的蒸镀腔室内,且OLED基板通过蒸镀载板固定于坩埚的上方。
目前,蒸镀工艺采用直接加热的方式进行。加热使有机材料粒子脱离靶材,有机材料粒子在靶材表面随机出射,有机材料粒子会附着在温度较低的坩埚内侧壁和掩模板上。据统计仅有大约10%的有机材料粒子能够到达基板的要求蒸镀的位置,那么就有大约90%的有机材料损失,使得有机材料的利用率较低,造成有机材料的成本较高;而且坩埚内侧壁和掩模板还需要定期清理,在清理时坩埚和掩模板均无法使用,不仅影响生产效率,而且浪费人力物力,还会造成环境污染。再者,每一种产品均需要设置并生产与其相对应的掩模板。
因此,有必要研究一种新的蒸镀方法以及蒸镀装置。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种蒸镀方法以及蒸镀装置,进而至少在一定程度上克服由于相关技术的限制和缺陷而导致的一个或者多个问题。
根据本公开的一个方面,提供一种蒸镀方法,包括:
给靶材施加激励声波,使靶材的设定部位的粒子的能量高于所述粒子脱离所述靶材需要的能量而脱离所述靶材附着于基板的设定区域。
在本公开的一种示例性实施例中,所述激励声波为矩形驻波。
在本公开的一种示例性实施例中,所述矩形驻波由多列正弦波或多列余弦波合成。
在本公开的一种示例性实施例中,所述矩形驻波的合成包括:
将所述靶材按照所述基板的蒸镀要求划分为多个周期单元,所述矩形驻波的函数表示为:
Figure BDA0001507832480000021
式中,a0为所述矩形驻波的振幅,an为所述正弦波或余弦波的振幅,n为所述正弦波或余弦波的列数,L为所述周期单元的宽度。
在本公开的一种示例性实施例中,所述正弦波以及所述余弦波的波长值在超声波的波长值范围内。
在本公开的一种示例性实施例中,在给所述靶材施加激励声波之前,所述蒸镀方法还包括:
给所述靶材加热,使所述靶材的能量低于所述粒子脱离所述靶材需要的能量。
根据本公开的一个方面,提供一种蒸镀装置,包括:
激励声波发生器,用于给靶材施加激励声波以使靶材的设定部位的粒子的能量高于所述粒子脱离所述靶材需要的能量而脱离所述靶材附着于基板的设定区域。
在本公开的一种示例性实施例中,所述激励声波为矩形驻波。
在本公开的一种示例性实施例中,所述矩形驻波由多列正弦波或多列余弦波合成。
在本公开的一种示例性实施例中,所述矩形驻波的合成包括:
将所述靶材按照所述基板的蒸镀要求划分为多个周期单元,所述矩形驻波的函数表示为:
Figure BDA0001507832480000031
式中,a0为所述矩形驻波的振幅,an为所述正弦波或余弦波的振幅,n为所述正弦波或余弦波的列数,L为所述周期单元的宽度。
在本公开的一种示例性实施例中,所述正弦波以及所述余弦波的波长值在超声波的波长值范围内。
在本公开的一种示例性实施例中,所述蒸镀装置还包括:
加热器,用于在给所述靶材施加激励声波之前给所述靶材加热,使所述靶材的能量低于所述粒子脱离所述靶材需要的能量。
本公开的蒸镀方法,该方法通过给靶材施加激励声波,使靶材的设定部位的粒子的能量高于粒子脱离靶材需要的能量而脱离靶材,并附着于基板的设定区域。一方面,通过激励声波给靶材施加能量,使靶材上设定部位的粒子脱离靶材附着于基板的设定区域,避免使用坩埚和掩模板,靶材上的粒子不会附着于坩埚内侧壁和掩模板,避免蒸镀材料的损失,提高材料的利用率,从而降低成本。另一方面,采用该蒸镀方法避免使用掩模板,不需要针对每一种产品加工和设置与其相对应的掩模板,节约掩模板的设置和生产费用。再一方面,不用定期清理坩埚和掩模板,提高生产效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性示出现有技术的蒸镀原理图。
图2示意性示出现有技术的蒸镀装置的结构以及能量分布图。
图3示意性示出本公开的蒸镀原理图。
图4示意性示出本公开的蒸镀装置的结构图以及能量分布图。
图5示意性示出本公开的蒸镀方法的一示例实施方式的流程图。
图中:
1、坩埚;
2、掩模板;
3、基板;
4、靶材;41、粒子;
5、超声波换能器;
6、反射板。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知技术方案以避免喧宾夺主而使得本公开的各方面变得模糊。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
参照图1所示的现有技术的蒸镀原理图,以及图2所示的现有技术的蒸镀装置的结构以及能量分布图。图中虚线表示为粒子41脱离靶材4需要的能量值,黑色粗线表示为需要给靶材4加热到的能量值。为确保蒸镀的均匀性,会将有机材料靶材4整体长期加热,加热使有机材料粒子41脱离靶材,有机材料粒子41在靶材表面随机出射,有机材料粒子41会附着在温度较低的坩埚1内侧壁和掩模板2上,这些有机材料粒子41在温度较低的坩埚1内侧壁和掩模板2上进行能量交换,失去再次变成自由离子的能量,因此不会出现散射;据统计仅有大约10%的有机材料粒子能够到达基板3的要求蒸镀的位置,那么就有大约90%的有机材料损失,使得有机材料的利用率较低,造成有机材料的成本较高;而且坩埚内侧壁和掩模板还需要定期清理,在清理时坩埚和掩模板均无法使用,不仅影响生产效率,而且浪费人力物力,还会造成环境污染。再者,每一种产品均需要设置并生产与其相对应的掩模板。
本示例实施方式中首先提供了一种蒸镀方法,该蒸镀方法可以包括以下步骤:
步骤S20,给靶材4施加激励声波,使靶材4的设定部位的粒子41的能量高于所述粒子41脱离所述靶材4需要的能量而脱离所述靶材4附着于基板3的设定区域。
根据本示例实施方式中的蒸镀方法,一方面,通过激励声波给靶材4施加能量,使靶材4上设定部位的粒子41脱离靶材4附着于基板3的设定区域,避免使用坩埚1和掩模板2,靶材4上的粒子41不会附着于坩埚1内侧壁和掩模板2,避免蒸镀材料的损失,提高材料的利用率,从而降低成本。另一方面,采用该蒸镀方法避免使用掩模板2,不需要针对每一种产品加工和设置与其相对应的掩模板2,节约掩模板2的设置和生产费用。再一方面,不用定期清理坩埚1和掩模板2,提高生产效率。
下面,将对本示例实施方式中的蒸镀方法进行进一步的说明。
参照图3所示的本公开的蒸镀原理图。
在本示例实施方式中,在对基板3进行蒸镀时,可以将靶材4放置在基板3的下方,靶材4与基板3之间的距离较近,为微米量级,因此粒子41微观热运动产生的散射现象可以忽略不计。再通过超声波换能器5将电能转换成超声波,超声波被反射板6反射形成反射超声波,超声波与反射超声波形成激励声波施加给靶材4,粒子41接受能量脱离靶材4表面与基板3接触后,由于基板3表面温度低于粒子41脱离基板3表面的能量值,粒子41附着于基板3表面。由于激励声波给粒子41提供的能量是有方向性的,因此粒子41接受能量后的移动方向也是有方向性的,粒子41的移动方向与能量的方向一致。基板3的设定区域为基板3上需要蒸镀有机材料的区域。靶材4的设定部位为需要将该部位的粒子41蒸镀到基板3上的设定区域的部位,因此,靶材4的设定部位可以是与基板3的设定区域上下相对的区域,即靶材4的设定部位在基板3上的投影与基板3的设定区域是重合的。另外,粒子41也可以依靠重力、磁场等外力移动至基板。
参照图4所示的蒸镀装置的结构图以及能量分布图。图中虚线表示为粒子41脱离靶材4需要的能量值,黑色粗线表示为需要给靶材4加热到的能量值。
所述激励声波可以为矩形驻波。在本示例实施方式中,矩形驻波并不是严格的矩形。如果为该矩形驻波建立一直角坐标系,坐标系的横轴为距离,纵轴为振幅,该矩形驻波的上升沿以及下降沿可以为基本垂直于横坐标的状态,而该矩形驻波的波峰可以是直线状态,也可以是具有起伏波形的状态。该矩形驻波的上升沿以及下降沿与横坐标的垂直度越高,蒸镀形成的图案的边沿精度越高。
驻波为两个振幅、波长、周期皆相同的正弦波相向行进干涉而成的合成波。驻波的波形无法前进,因此无法传播能量。驻波通过时,每一个质点皆作简谐运动。各质点振荡的幅度不相等,振幅为零的点称为节点或波节(Node),振幅最大的点位于两节点之间,称为腹点或波腹(Antinode)。由于节点静止不动,所以波形没有传播。能量以动能和势能的形式交换储存,亦传播不出去。通过矩形驻波给粒子41施加能量,能量是具有很强的方向性的,因此,只有在矩形驻波的波峰位置有粒子41射出表面,且粒子41接受该能量后的运动方向也是具有很强的方向性的,从图3中可以看出,粒子41的运动方向是垂直于上述横坐标的;相对于现有技术中粒子41运动方向的不确定性,本发明中粒子41的运动方向为可以控制的。当然,在本发明的其他示例实施方式中,激励声波也可以为矩形波,而不必是驻波,该矩形波可以为矩形超声波。
在本示例实施方式中,通过矩形驻波给靶材4施加能量,使靶材4的设定部位的粒子41的能量高于粒子41脱离靶材4需要的能量,粒子41得到能量后脱离靶材4然后附着于基板3的设定区域。因此,矩形驻波的波峰区域需要与靶材4的设定部以及基板3的设定区域相对应,即从基板3的上方或下方来看,矩形驻波的波峰区域与靶材4的设定部以及基板3的设定区域为重合的,更进一步来讲,矩形驻波的波峰区域在基板3上的投影与靶材4的设定部以及基板3的设定区域是重合的。
在本示例实施方式中,矩形驻波可以由多列正弦波或多列余弦波合成。具体而言,矩形驻波的合成可以包括:将所述靶材4按照所述基板3的蒸镀要求划分为多个周期单元,即f(x)函数可以表示基板3的蒸镀图案,所述矩形驻波的函数可以表示为:
Figure BDA0001507832480000071
式中,m为周期数,a0为所述矩形驻波的振幅,L为所述周期单元的宽度,L1为所述周期单元一侧需要蒸镀的宽度,L2为所述周期单元中一侧需要蒸镀的宽度与中部不需要蒸镀的宽度之和,根据傅里叶变换所述函数表示为:
Figure BDA0001507832480000072
其中,
Figure BDA0001507832480000073
上述经过傅里叶变换后的函数可以分解为多列超声波换能器5可以产生的余玄波信号,第n列余弦波的信号为:
Figure BDA0001507832480000074
式中,n为余弦波的列数,an为第n列余弦波的振幅。
举例而言,以陶氏化学的RA-005EA材料为例热蒸镀的温度为450℃,玻璃基板3温度为23℃。在本示例实施方式中,首先把靶材4加热到400℃,通过矩形驻波提供剩余能量强度。OLED的周期单元的宽度L=270μm,周期单元的宽度可以为OLED的像素间距,周期单元一侧需要蒸镀的宽度L1=45,周期单元中一侧需要蒸镀的宽度与中部不需要蒸镀的宽度之和L2=225,矩形驻波的振幅a0=1,周期数m=1,可以得到:
Figure BDA0001507832480000081
根据傅里叶变换所述函数表示为:
Figure BDA0001507832480000082
其中,
Figure BDA0001507832480000083
第n列余弦波的信号为:
Figure BDA0001507832480000084
超声波的列数越多,形成的驻波与矩形驻波越近似,即n越大越好;但是,考虑实际的生产精度需要,通过计算,可以得到当n=19时,矩形驻波边缘半波宽度约10μm,已经优于现有掩膜板30μm的精度要求,当n进一步增大时,可以使半波宽度趋近于0。
在本示例实施方式中,正弦波以及所述余弦波的波长值可以在超声波的波长值范围内。超声波是一种频率高于20000赫兹的声波,它的方向性好,穿透能力强,易于获得较集中的声能。理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,介质质点振动的频率很高,因而能量很大。超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。
参照图5所示的蒸镀方法的一示例实施方式的流程图,在给所述靶材4施加激励声波之前,所述蒸镀方法还可以包括:
步骤S10,给所述靶材4加热,使所述靶材4的能量低于所述粒子41脱离所述靶材4需要的能量。
给所述靶材4加热,即在给所述靶材4施加激励声波之前,可以给靶材4加热使靶材4的能量低于所述粒子41脱离所述靶材4需要的能量。加热工艺相对于施加激励声波的工艺是比较容易实现的,而且加热较快实现靶材4能量的提高,通过先加热后施加激励声波的工艺可以降低施加激励声波的能量的强度,使激励声波形成较为容易,而且可以大幅度提升蒸镀效率。当然,本领域技术人员可以理解的是,可以直接给靶材4施加激励声波,而无需加热。
在本示例实施方式中,给靶材4加热使靶材4的能量值大约达到蒸发能量的2/3(蒸发能量为靶材单独加热至蒸镀所需的能量,根据蒸镀材料的不同有所差异,温度大约为400-500℃)。当然,也可以加热至蒸发能量的0.7、0.8等等,只要低于蒸发能量即可,此处不做特殊限定。
进一步的,本示例实施方式还提供了对应于上述蒸镀方法的蒸镀装置。该蒸镀装置可以包括激励声波发生器以及加热器等等。
激励声波发生器可以用于给靶材4施加激励声波以使靶材4的设定部位的粒子41的能量高于所述粒子41脱离所述靶材4需要的能量而脱离所述靶材4附着于基板3的设定区域。
在本示例实施方式中,所述激励声波发生器包括超声波换能器5以及反射板6,超声波换能器5以及反射板6可以相对设置在溅射室的两端。超声波换能器5将电能转换成超声波,超声波被反射板6反射形成反射超声波,超声波与反射超声波形成激励声波。该超声波换能器5可以设置输出多个模式的超声波,通过反射板6反射最终形成固定位置为波峰的矩形驻波。
超声波换能器5为柱型超声波换能器,反射板6的材质为不锈钢。当然,也可以采用喇叭形超声波换能器、夹铝板形超声波换能器等等。反射板6也可以采用其他金属或非金属材质。
在本示例实施方式中,所述激励声波为矩形驻波。
在本示例实施方式中,所述矩形驻波由多列正弦波或多列余弦波合成。
在本示例实施方式中,所述矩形驻波的合成可以包括:
将所述靶材4按照所述基板3的蒸镀要求划分为多个周期单元,所述矩形驻波的函数表示为:
Figure BDA0001507832480000091
式中,a0为所述矩形驻波的振幅,an为所述正弦波或余弦波的振幅,n为所述正弦波或余弦波的列数,L为所述周期单元的宽度。
在本示例实施方式中,所述正弦波以及所述余弦波的波长值在超声波的波长值范围内,即激励声波发生器可以为超声波发生器。
更进一步的,在本示例实施方式中,激励声波发生器可以为超声驻波发生器。
在本示例实施方式中,所述蒸镀装置还包括可以加热器,加热器可以用于在给所述靶材4施加激励声波之前给所述靶材4加热,使所述靶材4的能量低于所述粒子41脱离所述靶材4需要的能量。加热器可以为目前蒸镀工序中采用的加热器,这样可以采用现有的设备,不必制造新设备,对现有资源的最大化的利用。
上述蒸镀装置中各模块的具体细节已经在对应的蒸镀方法中进行了详细想描述,因此此处不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (12)

1.一种蒸镀方法,其特征在于,包括:
给靶材施加激励声波,使靶材的设定部位的粒子的能量高于所述粒子脱离所述靶材需要的能量而脱离所述靶材附着于基板的设定区域,所述激励声波为矩形波。
2.根据权利要求1所述的蒸镀方法,其特征在于,所述激励声波为矩形驻波。
3.根据权利要求2所述的蒸镀方法,其特征在于,所述矩形驻波由多列正弦波或多列余弦波合成。
4.根据权利要求3所述的蒸镀方法,其特征在于,所述矩形驻波的合成包括:
将所述靶材按照所述基板的蒸镀要求划分为多个周期单元,所述矩形驻波的函数表示为:
Figure FDA0002598391590000011
式中,a0为所述矩形驻波的振幅,an为所述正弦波或余弦波的振幅,n为所述正弦波或余弦波的列数,L为所述周期单元的宽度。
5.根据权利要求3所述的蒸镀方法,其特征在于,所述正弦波以及所述余弦波的波长值在超声波的波长值范围内。
6.根据权利要求1~5任意一项所述的蒸镀方法,其特征在于,在给所述靶材施加激励声波之前,所述蒸镀方法还包括:
给所述靶材加热,使所述靶材的能量低于所述粒子脱离所述靶材需要的能量。
7.一种蒸镀装置,其特征在于,包括:
激励声波发生器,用于给靶材施加激励声波以使靶材的设定部位的粒子的能量高于所述粒子脱离所述靶材需要的能量而脱离所述靶材附着于基板的设定区域,所述激励声波为矩形波。
8.根据权利要求7所述的蒸镀装置,其特征在于,所述激励声波为矩形驻波。
9.根据权利要求8所述的蒸镀装置,其特征在于,所述矩形驻波由多列正弦波或多列余弦波合成。
10.根据权利要求9所述的蒸镀装置,其特征在于,所述矩形驻波的合成包括:
将所述靶材按照所述基板的蒸镀要求划分为多个周期单元,所述矩形驻波的函数表示为:
Figure FDA0002598391590000021
式中,a0为所述矩形驻波的振幅,an为所述正弦波或余弦波的振幅,n为所述正弦波或余弦波的列数,L为所述周期单元的宽度。
11.根据权利要求9所述的蒸镀装置,其特征在于,所述正弦波以及所述余弦波的波长值在超声波的波长值范围内。
12.根据权利要求7~11任意一项所述的蒸镀装置,其特征在于,所述蒸镀装置还包括:
加热器,用于在给所述靶材施加激励声波之前给所述靶材加热,使所述靶材的能量低于所述粒子脱离所述靶材需要的能量。
CN201711338456.9A 2017-12-14 2017-12-14 蒸镀方法以及蒸镀装置 Active CN109957762B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201711338456.9A CN109957762B (zh) 2017-12-14 2017-12-14 蒸镀方法以及蒸镀装置
PCT/CN2018/104292 WO2019114335A1 (zh) 2017-12-14 2018-09-06 蒸镀方法以及蒸镀装置
US16/338,133 US11293090B2 (en) 2017-12-14 2018-09-06 Method for vapor depositing a substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711338456.9A CN109957762B (zh) 2017-12-14 2017-12-14 蒸镀方法以及蒸镀装置

Publications (2)

Publication Number Publication Date
CN109957762A CN109957762A (zh) 2019-07-02
CN109957762B true CN109957762B (zh) 2020-11-27

Family

ID=66818898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711338456.9A Active CN109957762B (zh) 2017-12-14 2017-12-14 蒸镀方法以及蒸镀装置

Country Status (3)

Country Link
US (1) US11293090B2 (zh)
CN (1) CN109957762B (zh)
WO (1) WO2019114335A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575654B (zh) * 2020-05-21 2021-04-20 南京航空航天大学 一种超声振动辅助真空微蒸发镀设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429732A (en) * 1994-02-14 1995-07-04 Hughes Aircraft Company High rate ion beam sputtering process
CN100540727C (zh) 2005-10-26 2009-09-16 中国砂轮企业股份有限公司 钻石薄膜制造方法
JP5458300B2 (ja) * 2009-02-09 2014-04-02 公立大学法人横浜市立大学 微細構造物の蒸着装置及び方法
SG10201505733SA (en) * 2010-07-30 2015-09-29 Jx Nippon Mining & Metals Corp Sputtering target and/or coil, and process for producing same
KR101204855B1 (ko) 2011-03-16 2012-11-26 엘아이지에이디피 주식회사 유기발광소자 양산용 증착장비
US9034674B2 (en) * 2011-08-08 2015-05-19 Quarkstar Llc Method and apparatus for coupling light-emitting elements with light-converting material
CN104178721B (zh) 2013-05-22 2016-08-10 中国科学院理化技术研究所 室温下直接制作导电薄膜的装置及方法
CN105483619B (zh) 2016-01-26 2018-01-02 京东方科技集团股份有限公司 移动靶镀膜装置及镀膜方法
CN107012433B (zh) 2017-05-11 2019-02-22 京东方科技集团股份有限公司 蒸镀装置及其蒸镀方法、显示器件制造设备

Also Published As

Publication number Publication date
US11293090B2 (en) 2022-04-05
WO2019114335A1 (zh) 2019-06-20
US20210156022A1 (en) 2021-05-27
CN109957762A (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
CN113820711B (zh) 阵列快速成像方法及其应用
Tanaka et al. Mathematically trivial control of sound using a parametric beam focusing source
CN109957762B (zh) 蒸镀方法以及蒸镀装置
Nivas et al. Generation of supra-wavelength grooves in femtosecond laser surface structuring of silicon
Fabiha et al. Spin Wave Electromagnetic Nano‐Antenna Enabled by Tripartite Phonon‐Magnon‐Photon Coupling
Taillan et al. Nanoscale self-organization using standing surface acoustic waves
Kumar et al. Nonlinear interaction of amplitude-modulated gaussian laser beam with anharmonic magnetized and rippled CNTs: THz generation
Li et al. Coding piezoelectric metasurfaces
US9809893B2 (en) Surface mechanical attrition treatment (SMAT) methods and systems for modifying nanostructures
Park et al. Dynamic response of an array of flexural plates in acoustic medium
Paul et al. Exploring diffuse radio emission in galaxy clusters and groups with uGMRT and SKA
CN109119311B (zh) 一种相干电磁辐射产生系统及方法
CN110011063B (zh) 基于时间反演产生任意方向贝塞尔波束的方法
Monzen et al. High-intensity aerial ultrasonic source with sharp directivity containing a compact circular vibrating plate
CN111090102B (zh) 一种超分辨反射式太赫兹三维目标重建成像方法
CN114355297B (zh) 一种基于多窗混合加权型频偏的频控阵设计方法
Tsuchiya et al. Three-dimensional finite-difference time-domain simulation of moving sound source and receiver with directivity
Shi On time-invariant FDA beam-pattern design based on time-dependent frequency offsets
Liu et al. Beamforming of Joint Polarization‐Space Matched Filtering for Conformal Array
Ding et al. Edge diffraction phenomena in high-resolution acoustical imaging
Ponomarenko et al. Interaction between artificial ionospheric irregularities and natural MHD waves
Singh et al. Electrostatic wave generation and transverse ion acceleration by Alfvénic wave components of broadband extremely low frequency turbulence
Mao et al. Stochastic radiation radar imaging based on the 2-D amplitude-phase orthogonal distribution array
US5442594A (en) Rib stiffened sound wave projector plate
Li et al. Low-sidelobe pattern synthesis in range and angle domains for frequency diverse arrays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant