WO2017128873A1 - 一种基于石墨烯的功能纳米二氧化硅的制备方法 - Google Patents

一种基于石墨烯的功能纳米二氧化硅的制备方法 Download PDF

Info

Publication number
WO2017128873A1
WO2017128873A1 PCT/CN2016/109339 CN2016109339W WO2017128873A1 WO 2017128873 A1 WO2017128873 A1 WO 2017128873A1 CN 2016109339 W CN2016109339 W CN 2016109339W WO 2017128873 A1 WO2017128873 A1 WO 2017128873A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
graphene
nano
suspension
preparing
Prior art date
Application number
PCT/CN2016/109339
Other languages
English (en)
French (fr)
Inventor
刘岚
林勇
陈松
袁雪
罗远芳
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2017128873A1 publication Critical patent/WO2017128873A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the invention relates to the technical field of preparation of advanced functional materials, in particular to a preparation method of graphene-based functional nano silica.
  • Graphene has ultra-high mechanical properties (modulus of about 1100 GPa, breaking strength of about 130 GPa), high thermal conductivity (about 5000 W/(m ⁇ K)), and high electron mobility (up to 2 ⁇ 10 6 cm 2 ⁇ V -1 ⁇ s -1 ), high specific surface area (up to 2630 m 2 /g) and high barrier properties.
  • the unique physical and electronic properties exhibited by graphene make it widely used in nanodevices, composites, sensors, energy storage materials and other fields.
  • the preparation method of graphene mainly includes a mechanical stripping method, a solution liquid phase stripping method, an epitaxial growth method, a chemical vapor deposition method, and a reduced graphene oxide method.
  • the reduced graphene oxide method has the advantages of macro quantity and low cost, which provides an opportunity for macroscopic application research such as polymer composite materials.
  • due to the high surface energy and strong ⁇ - ⁇ interaction of graphene during the reduction process irreversible agglomeration tends to occur in the solid phase or common solvent. Therefore, graphene-based functional nano-hybrid materials have led to extensive research.
  • This composite material which is hybridized with graphene and other nanoparticles, has good dispersibility and interfacial properties in the polymer.
  • the hybrid structure can significantly improve the overall performance of the composite.
  • the nano-silica has a primary particle size of generally 10-40 nm and has excellent properties such as high dispersibility, good chemical stability, high temperature resistance, and good electrical insulation.
  • nano-silica is an excellent rubber reinforcing filler, which can significantly improve the dynamic and static mechanical properties of the composite.
  • the graphene-nano-silica hybrid material can not only improve the dispersibility of graphene and nano-silica, but also further expand the potential application range of graphene.
  • the present invention first prepares a high degree of oxidation of graphite oxide by a modified Hummer method. Surface oxide graft modification in an organic solvent to prepare a graphene oxide and a nano silica suspension. Then, a graphene-nanosilica hybrid material was prepared by electrostatic assembly.
  • the invention firstly obtains graphite oxide by a modified Hummer method. Secondly, a uniformly dispersed graphene oxide and nanosilica suspension was prepared by shaking and assisted ultrasonication. The silane-grafted graphene oxide and nano-silica are then prepared by surface modification. Finally, the graphene-nano-silica hybrid material was prepared by electrostatic assembly and chemical reduction: the graphene oxide suspension and the nano-silica suspension were mixed at a high speed, and the negatively charged graphene oxide sheets were laminated.
  • the positively charged silica is adsorbed to each other under static electricity, and the nano silica particles are supported on the surface of the graphene oxide sheet; the reducing agent is added to effectively reduce the graphene oxide to obtain graphene-nanosilica
  • the material is materialized to hinder the stacking of graphene sheets and the severe agglomeration of nano-silica.
  • the object of the present invention is achieved by the following scheme.
  • a method for preparing functional nano silica based on graphene comprising the following specific steps:
  • the organic solvent is any one of the following: methanol, ethanol, acetone, toluene, tetrahydrofuran, N-methylformamide, dimethyl sulfoxide, and water.
  • the initial concentration of the graphene oxide suspension is 0.1 to 2 mg/mL; and the initial concentration of the nano silica suspension is 3 to 50. Mg/mL; the solvent of each step may be the same or different.
  • the active modifier is any one of the following: ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane , ⁇ -mercaptopropyltrimethoxysilane and ⁇ -mercaptopropyltriethoxysilane.
  • the mass ratio of the graphene oxide to the active modifier is 1:0.5 to 1:10; the reaction temperature is 50 to 90 ° C; and the reaction time is 10 to 24 h.
  • aminosilane modifier is any one of the following: ⁇ -aminopropyltriethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropylmethyldimethoxy Silane, N- ⁇ -(aminoethyl)- ⁇ -aminopropyltrimethoxysilane and g-aminopropyltrimethoxysilane.
  • the mass ratio of the nano silica to the aminosilane modifier is 1:0.5 to 1:20.
  • the amino group modification reaction temperature is 60 to 100 ° C, and the reaction time is 2 to 24 hours.
  • the mass ratio of the functionalized graphene oxide to the aminated silica is 1:5 to 1:50.
  • the mass ratio of the hydrazine hydrate to the graphene oxide-silica hybrid material is 1:150 to 1:300.
  • the present invention has the following advantages and technical effects:
  • the method can mutually inhibit the agglomeration of graphene and nano silica, and at the same time, significantly enhance the interfacial bonding between the hybrid material and the rubber matrix, and is beneficial to improving the overall performance of the rubber composite material.
  • Figure 1 is an X-ray crystal diffraction pattern of an iron metal organic skeleton.
  • Figure 3 is an X-ray crystal diffraction pattern of an 8% copper doped iron metal organic framework material.
  • Figure 1 is an XRD pattern of a graphene-nano-silica hybrid material prepared in various examples.
  • Figure 2 is a TEM image of a graphene-nano-silica hybrid material prepared in various examples.
  • the graphite oxide powder obtained in the step (1) is simply shaken and assisted ultrasonically dispersed in ethanol to obtain an initial concentration of 0.5 mg/mL. Yellow-brown graphene oxide suspension.
  • the nano silica powder was ultrasonically dispersed in ethanol to obtain a silica suspension having an initial concentration of 5 mg/ml.
  • step (3) modified graphene oxide suspension and modified nano-silica suspension 500r/min are mixed at high speed, and naturally settle, using ethanol and Wash the water several times.
  • a graphene oxide-nanosilica hybrid material is obtained.
  • the above hybrid material was redispersed in water, added with 4 mg of hydrazine hydrate for 10 h, washed repeatedly with water several times, and then dried at 90 ° C for 24 h to obtain a gray graphene-based functional nano-silica.
  • the grafting ratio of ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane was calculated by thermogravimetric analysis in (3) by functionalized graphene obtained by extraction.
  • the grafted ratio of ⁇ -aminopropyltriethoxysilane was calculated by thermogravimetric analysis in (4) by amination of the obtained aminated nano silica.
  • the mass percentage of graphene to graphene-nanosilica hybrid material is 7.81%.
  • the graphite oxide powder obtained in the step (1) is simply shaken and assisted by ultrasonic dispersion in ethanol to obtain an initial concentration of 0.5 mg/ml. Yellow-brown graphene oxide suspension.
  • the nano silica powder was ultrasonically dispersed in ethanol to obtain a silica suspension having an initial concentration of 10 mg/ml.
  • step (3) modified graphene oxide suspension and modified nano-silica suspension 500r/min are mixed at high speed, and naturally settle, using ethanol and Wash the water several times.
  • a graphene oxide-nanosilica hybrid material is obtained.
  • the above hybrid material was redispersed in water, added with 8 mg of hydrazine hydrate for 10 h, washed repeatedly with water several times, and then dried at 90 ° C for 24 h to obtain a gray graphene-based functional nano-silica.
  • the grafting ratio of ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane was calculated by thermogravimetric analysis in the functionalized graphene obtained by extraction in (3) to be 19.4%.
  • the grafted ratio of ⁇ -aminopropyltriethoxysilane was calculated to be 9.6% by the thermogravimetric analysis by the aminated nano silica obtained by extraction in (4).
  • the mass percentage of graphene to graphene-nanosilica hybrid material is 3.46%.
  • the graphite oxide powder obtained in the step (1) is simply shaken and assisted by ultrasonic dispersion in ethanol to obtain an initial concentration of 0.5 mg/ml. Yellow-brown graphene oxide suspension.
  • the nano silica powder was ultrasonically dispersed in ethanol to obtain a silica suspension having an initial concentration of 50 mg/ml.
  • step (3) modified graphene oxide suspension and modified nano-silica suspension 500r/min are mixed at high speed, and naturally settle, using ethanol and Wash the water several times.
  • a graphene oxide-nanosilica hybrid material is obtained.
  • the above hybrid material was redispersed in water, added with 34 mg of hydrazine hydrate for 10 h, washed repeatedly with water several times, and then dried at 90 ° C for 24 h to obtain a gray graphene-based functional nano-silica.
  • the grafting ratio of ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane was calculated by thermogravimetric analysis in (3) by functionalized graphene obtained by extraction.
  • the grafted ratio of ⁇ -aminopropyltriethoxysilane was calculated by thermogravimetric analysis to be 16.4% by the amination of the obtained nanosilica in (4).
  • the mass percentage of graphene to graphene-nanosilica hybrid material is 0.85%.
  • the graphite oxide powder obtained in the step (1) is simply shaken and assisted ultrasonically dispersed in ethanol to obtain an initial concentration of 0.1 mg/ml. Yellow-brown graphene oxide suspension.
  • the nano silica powder was ultrasonically dispersed in ethanol to obtain a silica suspension having an initial concentration of 5 mg/ml.
  • step (3) modified graphene oxide suspension and modified nano-silica suspension 500r/min are mixed at high speed, and naturally settle, using ethanol and Wash the water several times.
  • a graphene oxide-nanosilica hybrid material is obtained.
  • the above hybrid material was redispersed in water, added with 3.5 mg of hydrazine hydrate for 10 h, and washed repeatedly with water several times, followed by drying at 90 ° C for 24 h to obtain a gray graphene-based functional nano-silica.
  • the grafting ratio of ⁇ -methacryloxypropyltrimethoxysilane was calculated by thermogravimetric analysis in the functionalized graphene obtained by extraction in (3) to be 22.6%.
  • the grafting ratio of N- ⁇ -(aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane was calculated by thermogravimetric analysis by extracting the aminated nano silica in (4). 14.8%.
  • the mass percentage of graphene to graphene-nanosilica hybrid material is 1.59%.
  • the graphite oxide powder obtained in the step (1) is simply shaken and assisted by ultrasonic dispersion in ethanol to obtain an initial concentration of 2 mg/ml. Yellow-brown graphene oxide suspension.
  • the nano silica powder was ultrasonically dispersed in ethanol to obtain a silica suspension having an initial concentration of 50 mg/ml.
  • step (3) modified graphene oxide suspension and modified nano-silica suspension 500r/min are mixed at high speed, and naturally settle, using ethanol and Wash the water several times.
  • a graphene oxide-nanosilica hybrid material is obtained.
  • the above hybrid material was redispersed in water, added with 36 mg of hydrazine hydrate for 10 h, washed repeatedly with water several times, and then dried at 90 ° C for 24 h to obtain a gray graphene-based functional nano-silica.
  • the grafting ratio of ⁇ -methacryloxypropyltrimethoxysilane was calculated by thermogravimetric analysis in the functionalized graphene obtained by extraction in (3) to be 26.1%.
  • the grafting ratio of N- ⁇ -(aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane was calculated by thermogravimetric analysis by extracting the aminated nano silica in (4). 17.2%.
  • the mass percentage of graphene to graphene-nanosilica hybrid material is 3.24%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于石墨烯的功能纳米二氧化硅的制备方法。本发明首先通过改性 Hummer 法,初步制备得到氧化石墨。其次,采用振荡和辅助超声制备得到均匀分散的氧化石墨烯和纳米二氧化硅悬浮液。然后采用表面改性法制备硅烷接枝氧化石墨烯和纳米二氧化硅。最后,采用静电组装和化学还原制备得到石墨烯-纳米二氧化硅杂化材料。该方法简单、有效,解决了石墨烯片层的堆叠和纳米二氧化硅的严重团聚问题,具有潜在的应用价值。

Description

一种基于石墨烯的功能纳米二氧化硅的制备方法
技术领域
本发明涉及先进功能材料的制备技术领域,具体涉及一种基于石墨烯的功能纳米二氧化硅的制备方法。
背景技术
2004 年英国科学家 Andrew Geim 等利用胶带微机械剥离高定向热解石墨,发现并制备出石墨烯。石墨烯具有超高的力学性能 ( 模量约 1100 GPa ,断裂强度约 130 GPa) 、高导热性能 ( 约 5000 W/(m·K)) 、高电子迁移率 ( 高达 2 ×106 cm 2 ·V-1·s-1) 、高比表面积 ( 可达 2630 m2 /g) 和高阻隔性能等。石墨烯表现出来的独特物理和 电 子特性,使其在纳米器件、复合材料、传感器、储能材料等领域具有广泛的应用潜力。同时,石墨烯的制备方法主要包括机械剥离法、溶液液相剥离法、外延生长法、化学气相沉积法和还原氧化石墨烯法等。相比其他方法,还原氧化石墨烯法具有宏量和廉价的优势,使其在聚合物复合材料等宏量应用研究中提供了机会。但是,由于在还原过程中,由于石墨烯具有很高的表面能和强π-π相互作用,容易在固相或普通溶剂中均出现不可逆转的团聚现象。因此,基于石墨烯的功能纳米杂化材料引起了广泛的研究。这种由石墨烯与其他纳米粒子杂化而成的复合材料在聚合物中具有很好的分散性和界面性能。同时,杂化结构能够显著地提高复合材料的综合性能。此外,纳米二氧化硅,原始粒径一般为10-40nm,具有高分散性、化学稳定性好、耐高温、电绝缘性好等优异性能。同时,纳米二氧化硅是一种优良的橡胶补强填料,能够显著改善复合材料的动静态力学性能。石墨烯-纳米二氧化硅杂化材料不仅可以分别改善石墨烯、纳米二氧化硅的分散性,同时有利于进一步扩大石墨烯的潜在应用范围。
发明内容
本发明首先通过改性Hummer法制备氧化程度高的氧化石墨。在有机溶剂中表面接枝改性制备氧化石墨烯和纳米二氧化硅悬浮液。然后,通过静电组装制备得到石墨烯-纳米二氧化硅杂化材料。
本发明首先通过改性Hummer法,初步制备得到氧化石墨。其次,采用振荡和辅助超声制备得到均匀分散的氧化石墨烯和纳米二氧化硅悬浮液。然后采用表面改性法制备硅烷接枝氧化石墨烯和纳米二氧化硅。最后,采用静电组装和化学还原制备得到石墨烯-纳米二氧化硅杂化材料:即先将氧化石墨烯悬浮液和纳米二氧化硅悬浮液在高速搅拌混合均匀,带负电的氧化石墨烯片层与带正电的二氧化硅在静电相互下相互吸附,纳米二氧化硅颗粒负载于氧化石墨烯片层表面;加入还原剂,使氧化石墨烯进行有效还原,得到石墨烯-纳米二氧化硅杂化材料,实现了阻碍石墨烯片层的堆叠和纳米二氧化硅的严重团聚。
本发明的目的通过以下方案来实现。
一种基于石墨烯的功能纳米二氧化硅的制备方法,包括以下具体步骤:
(1)制备氧化石墨粉体:采用改性Hummers法制备得到亮黄色的氧化石墨粉体。
(2)制备氧化石墨烯悬浮液和纳米二氧化硅悬浮液:将步骤(1)中得到的氧化石墨粉体简单振荡和辅助超声分散在有机溶剂中,得到黄棕色的氧化石墨烯悬浮液。同时,将纳米二氧化硅粉体超声分散于有机溶剂中,得到氨基化纳米二氧化硅悬浮液。
(3)制备功能化氧化石墨烯悬浮液:将步骤(2)中得到的氧化石墨烯悬浮液,加入活性改性剂,于氮气环境下反应,得到功能化氧化石墨烯悬浮液。
(4)制备氨基化纳米二氧化硅悬浮液:将步骤(2)中得到的纳米二氧化硅悬浮液,加入氨基硅烷改性剂反应,得到氨基化纳米二氧化硅悬浮液。
(5)制备石墨烯-纳米二氧化硅杂化材料:首先将步骤(3)改性氧化石墨烯悬浮液与改性纳米二氧化硅悬浮液均匀混合,自然沉降,洗涤;得到土黄色氧化石墨烯-纳米二氧化硅杂化材料。将上述杂化材料重新分散于有机溶液中,加入一定量的水合肼还原,采用乙醇和水洗涤数次、干燥,得到灰色的基于石墨烯的功能纳米二氧化硅。
进一步地,所述有机溶剂为以下的任意一种:甲醇、乙醇、丙酮、甲苯、四氢呋喃、N-甲基甲酰胺、二甲基亚砜和水。
进一步地,所述氧化石墨烯悬浮液的初始浓度为0.1~2 mg/mL;纳米二氧化硅悬浮液的初始浓度为3~50 mg/mL;所述每个步骤的溶剂可相同或不同。
进一步地,所述的活性改性剂为以下的任意一种:γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、γ-巯丙基三甲氧基硅烷和γ-巯丙基三乙氧基硅烷。
进一步地,所述氧化石墨烯与活性改性剂的质量比为1:0.5~1:10;反应温度为50~90℃;反应时间为10~24h。
进一步地,所述的氨基硅烷改性剂为以下的任意一种:γ-氨丙基三乙氧基硅烷、N-β-(氨乙基)-γ-氨丙基甲基二甲氧基硅烷、N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷和g-氨丙基三甲氧基硅烷。
进一步地,所述纳米二氧化硅与氨基硅烷改性剂的质量比为1:0.5~1:20。
进一步地,所述的氨基改性反应温度为60~100℃,反应时间为2~24h。
进一步地,所述的功能化氧化石墨烯与氨基化二氧化硅的质量比为1:5~1:50。
进一步地,所述的水合肼与氧化石墨烯-二氧化硅杂化材料的质量比为1:150~1:300。
与现有技术相比,本发明具有如下的优点与技术效果:
(1)制备石墨烯-纳米二氧化硅杂化材料的工艺简单可行,反应条件温和,便于进行大规模生产;
(2)该方法能够相互抑制石墨烯和纳米二氧化硅的团聚,同时,显著增强了杂化材料与橡胶基体的界面结合,有利于改善橡胶复合材料的综合性能。
附图说明
图1为铁金属有机骨架的X射线晶体衍射图。
图2为6%铜掺杂铁金属有机骨架材料的X射线晶体衍射图。
图3为8%铜掺杂铁金属有机骨架材料的X射线晶体衍射图。
图 1 为各个实施例制备的石墨烯-纳米二氧化硅杂化材料的 XRD 图谱。
图2为各个实施例制备的石墨烯-纳米二氧化硅杂化材料的 TEM 图。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1:
(1)制备氧化石墨:采用改性Hummers法制备得到亮黄色的氧化石墨粉体。
(2)制备氧化石墨烯和纳米二氧化硅悬浮液:将步骤(1)中得到的氧化石墨粉体简单振荡和辅助超声分散在乙醇中,得到初始浓度为0.5mg/mL 黄棕色的氧化石墨烯悬浮液。同时,将纳米二氧化硅粉体超声分散于乙醇中,得到初始浓度为5mg/ml的二氧化硅悬浮液。
(3)制备功能化氧化石墨烯:将步骤(2)中得到的200mL氧化石墨烯悬浮液,加入0.1g γ-(2,3-环氧丙氧)丙基三甲氧基硅烷,于氮气环境下,60℃反应10h,得到功能化氧化石墨烯。
(4)制备氨基化纳米二氧化硅:将步骤(2)中得到的100mL纳米二氧化硅悬浮液,加入0.5g γ-氨丙基三乙氧基硅烷,于70℃下反应10h,得到氨基化纳米二氧化硅。
(5)制备石墨烯-纳米二氧化硅杂化材料:首先将步骤(3)改性氧化石墨烯悬浮液与改性纳米二氧化硅悬浮液500r/min高速搅拌混合,自然沉降,采用乙醇和水洗涤数次。得到氧化石墨烯-纳米二氧化硅杂化材料。将上述杂化材料重新分散于水中,加入4mg水合肼还原10h,用水重复洗涤数次,随后90℃干燥24h,得到灰色的基于石墨烯的功能纳米二氧化硅。
在(3)中通过抽提得到的功能化石墨烯,结合热重分析计算出γ-(2,3-环氧丙氧)丙基三甲氧基硅烷的接枝率为12.6%。在(4)中通过抽提得到的氨基化纳米二氧化硅,结合热重分析计算出γ-氨丙基三乙氧基硅烷的接枝率为5.1%。(5)中石墨烯占石墨烯-纳米二氧化硅杂化材料的质量百分比为7.81%。
实施例2:
(1)制备氧化石墨:采用改性Hummers法制备得到亮黄色的氧化石墨粉体。
(2)制备氧化石墨烯和纳米二氧化硅悬浮液:将步骤(1)中得到的氧化石墨粉体简单振荡和辅助超声分散在乙醇中,得到初始浓度为0.5mg/ml 黄棕色的氧化石墨烯悬浮液。同时,将纳米二氧化硅粉体超声分散于乙醇中,得到初始浓度为10mg/ml的二氧化硅悬浮液。
(3)制备功能化氧化石墨烯:将步骤(2)中得到的200mL氧化石墨烯悬浮液,加入0.1g γ-(2,3-环氧丙氧)丙基三甲氧基硅烷,于氮气环境下,60℃反应16h,得到功能化氧化石墨烯。
(4)制备氨基化纳米二氧化硅:将步骤(2)中得到的100mL纳米二氧化硅悬浮液,加入1g γ-氨丙基三乙氧基硅烷,于70℃下反应16h,得到氨基化纳米二氧化硅。
(5)制备石墨烯-纳米二氧化硅杂化材料:首先将步骤(3)改性氧化石墨烯悬浮液与改性纳米二氧化硅悬浮液500r/min高速搅拌混合,自然沉降,采用乙醇和水洗涤数次。得到氧化石墨烯-纳米二氧化硅杂化材料。将上述杂化材料重新分散于水中,加入8mg水合肼还原10h,用水重复洗涤数次,随后90℃下干燥24h,得到灰色的基于石墨烯的功能纳米二氧化硅。
在(3)中通过抽提得到的功能化石墨烯,结合热重分析计算出γ-(2,3-环氧丙氧)丙基三甲氧基硅烷的接枝率为19.4%。在(4)中通过抽提得到的氨基化纳米二氧化硅,结合热重分析计算出γ-氨丙基三乙氧基硅烷的接枝率为9.6%。(5)中石墨烯占石墨烯-纳米二氧化硅杂化材料的质量百分比为3.46%。
实施例3:
(1)制备氧化石墨:采用改性Hummers法制备得到亮黄色的氧化石墨粉体。
(2)制备氧化石墨烯和纳米二氧化硅悬浮液:将步骤(1)中得到的氧化石墨粉体简单振荡和辅助超声分散在乙醇中,得到初始浓度为0.5mg/ml 黄棕色的氧化石墨烯悬浮液。同时,将纳米二氧化硅粉体超声分散于乙醇中,得到初始浓度为50mg/ml的二氧化硅悬浮液。
(3)制备功能化氧化石墨烯:将步骤(2)中得到的200mL氧化石墨烯悬浮液,加入0.1g γ-(2,3-环氧丙氧)丙基三甲氧基硅烷,于氮气环境下,60℃反应24h,得到功能化氧化石墨烯。
(4)制备氨基化纳米二氧化硅:将步骤(2)中得到的100mL纳米二氧化硅悬浮液,加入5g γ-氨丙基三乙氧基硅烷,于70℃下反应24h,得到氨基化纳米二氧化硅。
(5)制备石墨烯-纳米二氧化硅杂化材料:首先将步骤(3)改性氧化石墨烯悬浮液与改性纳米二氧化硅悬浮液500r/min高速搅拌混合,自然沉降,采用乙醇和水洗涤数次。得到氧化石墨烯-纳米二氧化硅杂化材料。将上述杂化材料重新分散于水中,加入34mg水合肼还原10h,用水重复洗涤数次,随后90℃干燥24h,得到灰色的基于石墨烯的功能纳米二氧化硅。
在(3)中通过抽提得到的功能化石墨烯,结合热重分析计算出γ-(2,3-环氧丙氧)丙基三甲氧基硅烷的接枝率为28.9%。在(4)中通过抽提得到的氨基化纳米二氧化硅,结合热重分析计算出γ-氨丙基三乙氧基硅烷的接枝率为16.4%。(5)中石墨烯占石墨烯-纳米二氧化硅杂化材料的质量百分比为0.85%。
实施例4:
(1)制备氧化石墨:采用改性Hummers法制备得到亮黄色的氧化石墨粉体。
(2)制备氧化石墨烯和纳米二氧化硅悬浮液:将步骤(1)中得到的氧化石墨粉体简单振荡和辅助超声分散在乙醇中,得到初始浓度为0.1mg/ml 黄棕色的氧化石墨烯悬浮液。同时,将纳米二氧化硅粉体超声分散于乙醇中,得到初始浓度为5mg/ml的二氧化硅悬浮液。
(3)制备功能化氧化石墨烯:将步骤(2)中得到的200mL氧化石墨烯悬浮液,加入0.02g γ-甲基丙烯酰氧基丙基三甲氧基硅烷,于氮气环境下,60℃反应24h,得到功能化氧化石墨烯。
(4)制备氨基化纳米二氧化硅:将步骤(2)中得到的100mL纳米二氧化硅悬浮液,加入1g N-β-(氨乙基)-γ-氨丙基甲基二甲氧基硅烷,于70℃下反应24h,得到氨基化纳米二氧化硅。
(5)制备石墨烯-纳米二氧化硅杂化材料:首先将步骤(3)改性氧化石墨烯悬浮液与改性纳米二氧化硅悬浮液500r/min高速搅拌混合,自然沉降,采用乙醇和水洗涤数次。得到氧化石墨烯-纳米二氧化硅杂化材料。将上述杂化材料重新分散于水中,加入3.5mg水合肼还原10h,用水重复洗涤数次,随后90℃干燥24h,得到灰色的基于石墨烯的功能纳米二氧化硅。
在(3)中通过抽提得到的功能化石墨烯,结合热重分析计算出γ-甲基丙烯酰氧基丙基三甲氧基硅烷的接枝率为22.6%。在(4)中通过抽提得到的氨基化纳米二氧化硅,结合热重分析计算出N-β-(氨乙基)-γ-氨丙基甲基二甲氧基硅烷的接枝率为14.8%。(5)中石墨烯占石墨烯-纳米二氧化硅杂化材料的质量百分比为1.59%。
实施例5:
(1)制备氧化石墨:采用改性Hummers法制备得到亮黄色的氧化石墨粉体。
(2)制备氧化石墨烯和纳米二氧化硅悬浮液:将步骤(1)中得到的氧化石墨粉体简单振荡和辅助超声分散在乙醇中,得到初始浓度为2mg/ml 黄棕色的氧化石墨烯悬浮液。同时,将纳米二氧化硅粉体超声分散于乙醇中,得到初始浓度为50mg/ml的二氧化硅悬浮液。
(3)制备功能化氧化石墨烯:将步骤(2)中得到的200mL氧化石墨烯悬浮液,加入0.4g γ-甲基丙烯酰氧基丙基三甲氧基硅烷,于氮气环境下,60℃反应24h,得到功能化氧化石墨烯。
(4)制备氨基化纳米二氧化硅:将步骤(2)中得到的100mL纳米二氧化硅悬浮液,加入5g N-β-(氨乙基)-γ-氨丙基甲基二甲氧基硅烷,于70℃下反应24h,得到氨基化纳米二氧化硅。
(5)制备石墨烯-纳米二氧化硅杂化材料:首先将步骤(3)改性氧化石墨烯悬浮液与改性纳米二氧化硅悬浮液500r/min高速搅拌混合,自然沉降,采用乙醇和水洗涤数次。得到氧化石墨烯-纳米二氧化硅杂化材料。将上述杂化材料重新分散于水中,加入36mg水合肼还原10h,用水重复洗涤数次,随后90℃干燥24h,得到灰色的基于石墨烯的功能纳米二氧化硅。
在(3)中通过抽提得到的功能化石墨烯,结合热重分析计算出γ-甲基丙烯酰氧基丙基三甲氧基硅烷的接枝率为26.1%。在(4)中通过抽提得到的氨基化纳米二氧化硅,结合热重分析计算出N-β-(氨乙基)-γ-氨丙基甲基二甲氧基硅烷的接枝率为17.2%。(5)中石墨烯占石墨烯-纳米二氧化硅杂化材料的质量百分比为3.24%。
从图1可以看出,经过化学还原之后,石墨烯-纳米二氧化硅杂化材料的XRD图谱中没有出现氧化石墨[001]面的特征衍射峰,说明氧化石墨烯被成功还原了。同时,各个实施例所制备的杂化材料的XRD图谱与纯纳米二氧化硅的图谱十分吻合,并且没有出现石墨烯堆叠团聚而形成的石墨峰。因此,通过杂化改性后,纳米二氧化硅能够有效地抑制石墨烯片层间的团聚。同时,也正如透射电镜(TEM)观察所示(图2),纳米二氧化硅负载与石墨烯表面和层间,形成自组装的杂化物,由于改性氧化石墨烯与改性二氧化硅的配比不同,各个实施例所制备的石墨烯-二氧化硅杂化物的TEM照片有所区别,当改性二氧化硅的比例较小时,可以看出,二氧化硅颗粒均匀分散于石墨烯片层层间和表面(如实施例1~3),当改性二氧化硅的比例增加时,大量团聚的颗粒负载于石墨烯片层表面(如实施例4和实施例5),因此,通过调控改性氧化石墨烯与改性二氧化硅的配比即可得到理想结构的杂化材料,即既能够阻碍石墨烯的堆叠,也能够抑制纳米二氧化硅的团聚。

Claims (10)

  1. 一种基于石墨烯的功能纳米二氧化硅的制备方法,其特征在于,包括以下具体步骤:
    (1)制备氧化石墨粉体:采用改性Hummers法制备得到亮黄色的氧化石墨粉体;
    (2)制备氧化石墨烯悬浮液和纳米二氧化硅悬浮液:将步骤(1)得到的氧化石墨粉体经过振荡和超声分散在溶剂中,得到黄棕色的氧化石墨烯悬浮液;同时,将纳米二氧化硅粉体超声分散于溶剂中,得到纳米二氧化硅悬浮液;
    (3)制备功能化氧化石墨烯悬浮液:将步骤(2)得到的氧化石墨烯悬浮液加入活性改性剂中,于氮气环境下反应,得到功能化氧化石墨烯悬浮液;
    (4)制备氨基化纳米二氧化硅悬浮液:将步骤(2)得到的纳米二氧化硅悬浮液中加入氨基硅烷改性剂中反应,得到氨基化纳米二氧化硅悬浮液;
    (5)制备石墨烯-纳米二氧化硅杂化材料:首先将步骤(3) 得到的功能化氧化石墨烯悬浮液与步骤(4) 得到的氨基化纳米二氧化硅悬浮液均匀混合,自然沉降,洗涤;得到土黄色氧化石墨烯-纳米二氧化硅杂化材料;将上述杂化材料分散于溶剂中,加入水合肼还原,洗涤干燥,得到灰色的基于石墨烯的功能纳米二氧化硅。
  2. 根据权利要求1所述的一种基于石墨烯的功能纳米二氧化硅的制备方法,其特征在于,以上所述溶剂为以下的任意一种:甲醇、乙醇、丙酮、甲苯、四氢呋喃、N-甲基甲酰胺、二甲基亚砜和水;所述每个步骤的溶剂可相同或不同。
  3. 根据权利要求1所述的一种基于石墨烯的功能纳米二氧化硅的制备方法,其特征在于,步骤(2)所述氧化石墨烯悬浮液的初始浓度为0.1~2 mg/ ml;纳米二氧化硅悬浮液的初始浓度为3~50 mg/ ml。
  4. 根据权利要求1所述的一种基于石墨烯的功能纳米二氧化硅的制备方法,其特征在于,步骤(3)所述的活性改性剂为以下的任意一种:γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、γ-巯丙基三甲氧基硅烷和γ-巯丙基三乙氧基硅烷。
  5. 根据权利要求1所述的一种基于石墨烯的功能纳米二氧化硅的制备方法,其特征在于,步骤(3)所述氧化石墨烯与活性改性剂的质量比为1:0.5~1:10;反应温度为50~90℃;反应时间为10~24h。
  6. 根据权利要求1所述的一种基于石墨烯的功能纳米二氧化硅的制备方法,其特征在于,步骤(4)所述的氨基硅烷改性剂为以下的任意一种:γ-氨丙基三乙氧基硅烷、N-β-(氨乙基)-γ-氨丙基甲基二甲氧基硅烷、N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷和g-氨丙基三甲氧基硅烷。
  7. 根据权利要求1所述的一种基于石墨烯的功能纳米二氧化硅的制备方法,其特征在于,步骤(4)所述纳米二氧化硅与氨基硅烷改性剂的质量比为1:0.5~1:20。
  8. 根据权利要求1所述的一种基于石墨烯的功能纳米二氧化硅的制备方法,其特征在于,步骤(4)所述的氨基改性反应温度为60~100℃,反应时间为2~24h。
  9. 根据权利要求1所述的一种基于石墨烯的功能纳米二氧化硅的制备方法,其特征在于,步骤(5)所述的功能化氧化石墨烯与氨基化纳米二氧化硅的质量比为1:5~1:50。
  10. 根据权利要求1所述的一种基于石墨烯的功能纳米二氧化硅的制备方法,其特征在于,步骤(5)所述的水合肼与氧化石墨烯-纳米二氧化硅杂化材料的质量比为1:150~1:300。
PCT/CN2016/109339 2016-01-31 2016-12-10 一种基于石墨烯的功能纳米二氧化硅的制备方法 WO2017128873A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610071005.2A CN105542228A (zh) 2016-01-31 2016-01-31 一种基于石墨烯的功能纳米二氧化硅的制备方法
CN201610071005.2 2016-01-31

Publications (1)

Publication Number Publication Date
WO2017128873A1 true WO2017128873A1 (zh) 2017-08-03

Family

ID=55821811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109339 WO2017128873A1 (zh) 2016-01-31 2016-12-10 一种基于石墨烯的功能纳米二氧化硅的制备方法

Country Status (2)

Country Link
CN (1) CN105542228A (zh)
WO (1) WO2017128873A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146436A (zh) * 2020-03-04 2020-05-12 广东博龙能源科技有限公司 一种油性负极材料及其制备工艺
CN111763406A (zh) * 2020-08-05 2020-10-13 兰州交通大学 一种石墨烯纳米复合材料制备工艺
CN111793208A (zh) * 2020-07-17 2020-10-20 重庆云天化瀚恩新材料开发有限公司 一种三维石墨烯空心球改性的聚酰亚胺材料、其制备方法及改性聚酰亚胺胶黏剂
CN112920352A (zh) * 2020-12-31 2021-06-08 广东电网有限责任公司电力科学研究院 一种具有阻隔性能的复合绝缘子界面粘接剂及其制备方法
CN113120912A (zh) * 2021-04-22 2021-07-16 福建师范大学泉港石化研究院 一种利用氧化石墨烯废液制备负载石墨烯的二氧化硅的方法
CN113929947A (zh) * 2021-11-01 2022-01-14 湖北省疾病预防控制中心(湖北省预防医学科学院) 一种用于眼部按摩器的石墨烯热敷材料及其制备方法
CN114479816A (zh) * 2022-04-02 2022-05-13 四川锦盛油田技术服务有限公司 一种泡沫排水剂及其制备方法
CN114853451A (zh) * 2022-05-25 2022-08-05 潍坊职业学院 一种基于石墨烯包覆的核壳型纳米陶瓷粉体及其制备方法
CN114956100A (zh) * 2022-04-25 2022-08-30 齐鲁工业大学 一种片状二氧化硅及其制备方法
CN114957800A (zh) * 2022-06-15 2022-08-30 青岛科技大学 一种石墨烯纳米二氧化硅复合材料及其原位法制备方法
CN116769344A (zh) * 2023-05-10 2023-09-19 广州特种承压设备检测研究院 氟化石墨烯/SiO2/氟硅烷复合材料及其制备方法、超疏水涂层

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105542228A (zh) * 2016-01-31 2016-05-04 华南理工大学 一种基于石墨烯的功能纳米二氧化硅的制备方法
CN106221179A (zh) * 2016-07-25 2016-12-14 西华大学 石墨烯‑二氧化硅杂化材料及制备聚氨酯基纳米复合材料的方法
CN106587691A (zh) * 2016-10-28 2017-04-26 同济大学 一种氧化石墨烯包覆改性微粒的制备方法
CN107104006A (zh) * 2017-04-28 2017-08-29 浙江工业大学 一种石墨烯@硅酸铜分级异质纳米复合材料及其制备方法和用途
CN107022119B (zh) * 2017-05-15 2019-01-29 北京化工大学 一种石墨烯/二氧化硅/橡胶复合材料的制备方法
CN107057112A (zh) * 2017-05-31 2017-08-18 唐山建华科技发展有限责任公司 石墨烯/白炭黑复合材料的制备方法
CN107325328B (zh) * 2017-06-15 2019-06-07 北京化工大学 一种石墨烯/二氧化硅复合粒子的制备方法
CN107501853B (zh) * 2017-08-02 2019-07-09 济南大学 一种功能化还原氧化石墨烯改性酚醛树脂及其制备方法
CN107699205A (zh) * 2017-11-10 2018-02-16 中国科学院山西煤炭化学研究所 改性氧化石墨烯包覆的复合相变材料的制备方法
CN108148354A (zh) * 2018-01-19 2018-06-12 重庆光亚新材料研究院有限公司 一种自组装杂化粒子改性聚合物复合材料及其制备方法
CN110577675B (zh) * 2018-06-07 2022-03-01 山东欧铂新材料有限公司 一种石墨烯/二氧化硅/天然橡胶复合材料及其制备方法、应用
CN109650845B (zh) * 2019-02-28 2021-03-12 常州工学院 一种制备二氧化硅纳米粒子-氧化石墨烯-植物纤维复合物的方法
CN110181633A (zh) * 2019-05-05 2019-08-30 阜南县金源柳木工艺品有限公司 一种增强木质编织材料染色能力的处理方法
CN110605767A (zh) * 2019-10-25 2019-12-24 毛克升 一种杉木的耐磨处理方法
CN111215103A (zh) * 2019-11-27 2020-06-02 西安交通大学 石墨烯改性介孔二氧化硅负载杂多酸催化剂的制备方法
CN110982233B (zh) * 2019-12-27 2021-11-26 福州大学 一种高阻隔性RGO-SiO2/PET保护膜及其制备方法
CN113801476B (zh) * 2020-06-11 2023-04-25 山东海科创新研究院有限公司 一种gpu用纳米二氧化硅复合石墨烯导热硅脂及其制备方法
CN113387352B (zh) * 2021-07-02 2022-07-12 西安交通大学 一种易分散的改性氧化石墨烯及其制备方法
CN113861645B (zh) * 2021-10-25 2023-03-21 杭州神彩包装印业有限公司 一种可快速降解的抗菌塑料薄膜及其制备方法
CN115612337B (zh) * 2022-11-21 2023-10-20 上海巨峰化工有限公司 一种氟改性有机硅消泡剂及其制备工艺
CN115975424B (zh) * 2022-12-13 2024-01-19 广东电网有限责任公司 一种导电填料及其制备方法和应用
CN115926381A (zh) * 2023-02-01 2023-04-07 江苏耀鸿电子有限公司 一种二氧化硅填充型环氧树脂覆铜板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343239A (zh) * 2011-05-20 2012-02-08 四川大学 氧化石墨烯或石墨烯/无机粒子核/壳材料及其制备方法
CN102604332A (zh) * 2012-03-16 2012-07-25 桂林理工大学 一种SiO2纳米粒子接枝氧化石墨烯改性环氧树脂的方法
CN104490609A (zh) * 2014-12-18 2015-04-08 上海纳米技术及应用国家工程研究中心有限公司 氧化石墨烯及纳米氧化硅复合填料增强齿科粘结剂的制备
CN105542228A (zh) * 2016-01-31 2016-05-04 华南理工大学 一种基于石墨烯的功能纳米二氧化硅的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103275368B (zh) * 2012-02-23 2014-11-05 北京化工大学 机械共混制备氧化石墨烯/白炭黑/橡胶纳米复合材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343239A (zh) * 2011-05-20 2012-02-08 四川大学 氧化石墨烯或石墨烯/无机粒子核/壳材料及其制备方法
CN102604332A (zh) * 2012-03-16 2012-07-25 桂林理工大学 一种SiO2纳米粒子接枝氧化石墨烯改性环氧树脂的方法
CN104490609A (zh) * 2014-12-18 2015-04-08 上海纳米技术及应用国家工程研究中心有限公司 氧化石墨烯及纳米氧化硅复合填料增强齿科粘结剂的制备
CN105542228A (zh) * 2016-01-31 2016-05-04 华南理工大学 一种基于石墨烯的功能纳米二氧化硅的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, XIAOQIONG ET AL.: "shi2mo4 ji2 yang3hua4shi2mo4xilbaolfu4er4yang3hua4guil gaolxiao4ye4xiang4se4pu3gu4ding4xiang4 de zhi4bei4 ji2qilbao31iu2ji1li3yan2jiu1", DI2QI1JIE4 QUAN2GUO2YI2QI4FEN1XI1 JI2YANG4PIN3YU4CHU4LI3 XUE2SHU4YAN2TAO3HUI4 LUN4WEN2JI2, 31 December 2013 (2013-12-31), pages 154 - 163 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146436A (zh) * 2020-03-04 2020-05-12 广东博龙能源科技有限公司 一种油性负极材料及其制备工艺
CN111793208B (zh) * 2020-07-17 2023-06-16 重庆云天化瀚恩新材料开发有限公司 一种三维石墨烯空心球改性的聚酰亚胺材料、其制备方法及改性聚酰亚胺胶黏剂
CN111793208A (zh) * 2020-07-17 2020-10-20 重庆云天化瀚恩新材料开发有限公司 一种三维石墨烯空心球改性的聚酰亚胺材料、其制备方法及改性聚酰亚胺胶黏剂
CN111763406A (zh) * 2020-08-05 2020-10-13 兰州交通大学 一种石墨烯纳米复合材料制备工艺
CN112920352A (zh) * 2020-12-31 2021-06-08 广东电网有限责任公司电力科学研究院 一种具有阻隔性能的复合绝缘子界面粘接剂及其制备方法
CN113120912A (zh) * 2021-04-22 2021-07-16 福建师范大学泉港石化研究院 一种利用氧化石墨烯废液制备负载石墨烯的二氧化硅的方法
CN113120912B (zh) * 2021-04-22 2022-05-27 福建师范大学泉港石化研究院 一种利用氧化石墨烯废液制备负载石墨烯的二氧化硅的方法
CN113929947A (zh) * 2021-11-01 2022-01-14 湖北省疾病预防控制中心(湖北省预防医学科学院) 一种用于眼部按摩器的石墨烯热敷材料及其制备方法
CN114479816A (zh) * 2022-04-02 2022-05-13 四川锦盛油田技术服务有限公司 一种泡沫排水剂及其制备方法
CN114479816B (zh) * 2022-04-02 2023-05-05 四川锦盛油田技术服务有限公司 一种泡沫排水剂及其制备方法
CN114956100A (zh) * 2022-04-25 2022-08-30 齐鲁工业大学 一种片状二氧化硅及其制备方法
CN114853451A (zh) * 2022-05-25 2022-08-05 潍坊职业学院 一种基于石墨烯包覆的核壳型纳米陶瓷粉体及其制备方法
CN114853451B (zh) * 2022-05-25 2023-07-25 潍坊职业学院 一种基于石墨烯包覆的核壳型纳米陶瓷粉体及其制备方法
CN114957800A (zh) * 2022-06-15 2022-08-30 青岛科技大学 一种石墨烯纳米二氧化硅复合材料及其原位法制备方法
CN114957800B (zh) * 2022-06-15 2023-08-08 青岛科技大学 一种石墨烯纳米二氧化硅复合材料及其原位法制备方法
CN116769344A (zh) * 2023-05-10 2023-09-19 广州特种承压设备检测研究院 氟化石墨烯/SiO2/氟硅烷复合材料及其制备方法、超疏水涂层

Also Published As

Publication number Publication date
CN105542228A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2017128873A1 (zh) 一种基于石墨烯的功能纳米二氧化硅的制备方法
Wu et al. Scalable fabrication of thermally conductive elastomer/boron nitride nanosheets composites by slurry compounding
Premaratne et al. Synthesis of nanosilica from paddy husk ash and their surface functionalization
Yano et al. Synthesis and properties of polyimide–clay hybrid
EP2067741B1 (en) Polymer composites comprising silane-functionalized carbon nanotubes.
Ferreira et al. Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents
Chen et al. High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified Hummers method
Liu et al. Enhanced mechanical and thermal properties of SBR composites by introducing graphene oxide nanosheets decorated with silica particles
Meschi Amoli et al. Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: The effect of NPs sintering on the electrical conductivity improvement
US8308994B1 (en) Nano-carbon hybrid structures
CN111483988B (zh) 一种抗氧化黑磷纳米片的制备方法
CN102351174A (zh) 一种可分散性硅烷功能化石墨烯的制备方法
Sadhu et al. Morphology study of rubber based nanocomposites by transmission electron microscopy and atomic force microscopy
Yuen et al. Morphology and properties of aminosilane grafted MWCNT/polyimide nanocomposites
Li et al. The situ preparation of silica nanoparticles on the surface of functionalized graphene nanoplatelets
An et al. A new route to synthesis of surface hydrophobic silica with long-chain alcohols in water phase
Li et al. Surface modification-based three-phase nanocomposites with low percolation threshold for optimized dielectric constant and loss
WO2016107532A1 (zh) 单氨烷基封端聚硅氧烷改性的碳纳米管及其制备方法
CN111732743A (zh) 一种碳纳米管/石墨烯柔性薄膜的制备方法
Qiu et al. Effects of amino groups on dispersibility of silicon nitride powder in aqueous media
Pradhan et al. Oxygen barrier of multiwalled carbon nanotube/polymethyl methacrylate nanocomposites prepared by in situ method
US11186521B2 (en) Conductive ceramic composition having excellent electrical conductivity
Antoniou et al. Carbon nanostructures containing polyhedral oligomeric silsesquioxanes (POSS)
CN114716737A (zh) 一种二氧化硅/石墨烯改性的橡胶复合材料的制备方法
Song et al. Fabrication and corrosion resistance of SiC-coated multi-walled carbon nanotubes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.02.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16887744

Country of ref document: EP

Kind code of ref document: A1