WO2016107532A1 - 单氨烷基封端聚硅氧烷改性的碳纳米管及其制备方法 - Google Patents

单氨烷基封端聚硅氧烷改性的碳纳米管及其制备方法 Download PDF

Info

Publication number
WO2016107532A1
WO2016107532A1 PCT/CN2015/099349 CN2015099349W WO2016107532A1 WO 2016107532 A1 WO2016107532 A1 WO 2016107532A1 CN 2015099349 W CN2015099349 W CN 2015099349W WO 2016107532 A1 WO2016107532 A1 WO 2016107532A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
monoaminoalkyl
carboxylated
carbon nanotube
group
Prior art date
Application number
PCT/CN2015/099349
Other languages
English (en)
French (fr)
Inventor
陈�峰
Original Assignee
蓝星有机硅(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蓝星有机硅(上海)有限公司 filed Critical 蓝星有机硅(上海)有限公司
Publication of WO2016107532A1 publication Critical patent/WO2016107532A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • the present invention relates to a nanomaterial, and more particularly to a monoaminoalkyl terminated polysiloxane modified carbon nanotube, and to a process for the preparation thereof.
  • Carbon nanotubes are a new type of nanomaterial with excellent mechanical properties, electrical properties and unique microstructure. It has an extremely large aspect ratio and specific surface area, as well as excellent electrical, mechanical and thermal stability. Due to these properties and the nano-effects exhibited by their unique one-dimensional nanostructures, carbon nanotubes are an ideal reinforcement for polymer materials such as polypropylene and silicone to form carbon nanotube/polymer composites. material.
  • a surface modified carbon nanotube and a preparation method thereof are proposed in CN102585291A.
  • the hyperbranched polysiloxane containing the phosphorus phenanthrene structure and the amino group is mixed with the epoxy functionalized carbon nanotubes and the catalyst triphenylphosphine, and the obtained mixture is added to the solvent to obtain a chemical bond.
  • Surface-modified carbon nanotubes of a hyperbranched polysiloxane having a phosphophenanthrene structure and an amino group are proposed in CN102585291A.
  • CN103059343A discloses a modified carbon nanotube and a preparation method thereof, in which a hyperbranched polyaniline is first prepared, and then it is added to dimethyl sulfoxide and precipitated in methanol, and then precipitated in methanol. After filtration and washing, a modified carbon nanotube is obtained, and the surface thereof is coated with a conductive layer of a multi-branched polyaniline.
  • the surface modification of the carbon nanotubes allows the modified carbon nanotubes to be better dispersed in the polymer matrix, particularly the polysiloxane.
  • a first aspect of the invention relates to a method of modifying carbon nanotubes comprising the step of reacting a carboxylated carbon nanotube with a monoaminoalkyl terminated polysiloxane in the presence of a condensing agent.
  • a second aspect of the invention relates to a modified carbon nanotube having the following formula (I)
  • CNT represents a carbon nanotube
  • R represents a C 1 -C 8 alkylene group
  • P represents a residue of the monoaminoalkyl-terminated polysiloxane after removal of the monoaminoalkyl group.
  • the inventors of the present application found that the carboxylated carbon nanotubes can be reacted with the monoaminoalkyl terminated polysiloxane in the presence of a condensing agent to obtain a modified carbon nanotube grafted with a polysiloxane chain. .
  • the modification method of grafting carbon nanotubes with monoaminoalkyl terminated polysiloxane according to the present invention is simple and suitable for large-scale applications.
  • Selecting a monoaminoalkyl terminated polysiloxane to modify the carbon nanotubes can improve the compatibility of the prepared modified carbon nanotubes with a silicone matrix having the same siloxane backbone.
  • Polysiloxane grafted on the surface of nanomaterials can improve carbon nanotubes and silicones The interfacial bonding ability allows it to be better dispersed in the polymer matrix.
  • the monoaminoalkyl terminated polysiloxane-modified carbon nanotubes do not destroy the internal structure and performance advantages of the carbon nanotubes, and the prepared carbon nanotubes have stable chemical and physical properties and are not easily agglomerated.
  • a first aspect of the invention relates to a method of modifying carbon nanotubes comprising the step of reacting a carboxylated carbon nanotube with a monoaminoalkyl terminated polysiloxane in the presence of a condensing agent.
  • Carbon nanotubes (CNTs) suitable for use in the present invention are known to those skilled in the art. The definitions and descriptions of the following carbon nanotubes apply in the context of the present invention.
  • the carbon nanotube is structurally a hollow tube composed of carbon atoms and having a diameter of several nanometers and a length of several micrometers or even longer.
  • Each carbon nanotube is a carbon atom which is bonded to three carbon atoms by sp2 hybridization.
  • the basic structure is mainly composed of hexagonal carbon rings, in addition to some pentagonal carbon rings and heptagonal carbon rings.
  • the CNTs with curved tubes have more pentagonal carbon rings or heptagonal carbon rings concentrated on the curved portion to close the CNT tips.
  • Carbon nanotubes can be classified into single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes depending on the number of layers of graphite sheets.
  • the carboxylated carbon nanotubes can be conventionally prepared by those skilled in the art according to the prior art. For example, reference can be made to "the relationship between the oxidation treatment method and the carboxyl content of the surface of the multi-walled carbon nanotubes", a novel carbon material, pp. 269-272. Volume 21, Issue 3, September 2006
  • Chengdu Organic Chemical Co., Ltd. is a single-walled carbon nanotube such as TNST, TNS, TND double-walled carbon nanotubes, multi-walled carbon nanotubes such as TNM1 and TNM2, and carboxyl multi-walled carbon nanotubes such as TNMC1 and TNMC2.
  • Monoaminoalkyl terminated polysiloxanes are also known to those skilled in the art.
  • Polysiloxanes are generally a class of polymers containing repeating Si-O bonds as the main chain and comprising units of the formula [R' n SiO (4-n)/2 ] m ,
  • R' represents an organic group such as a substituted or unsubstituted aliphatic hydrocarbon group or an aromatic hydrocarbon group, for example, a C 1 -C 12 alkyl group, a C 1 -C 12 fluoroalkyl group, a phenyl group, a xylyl group And tolyl group; n is the number of organic groups attached to the silicon atom, between 1-3; and m is the degree of polymerization (m is not less than 2).
  • the monoaminoalkyl terminated polysiloxanes according to the present application may be linear, branched or have a certain amount of network structure.
  • the main chain structure of the monoaminoalkyl-terminated polysiloxane is not particularly limited. For the purposes of the present invention is important that, at one end terminated with NH 2 -R- wherein R is a C 1 -C 8 alkylene group, and the other terminated polysiloxane groups and side chain group It is not reactive, and in particular does not participate in the reaction with carbon nanotubes.
  • the monoaminoalkyl terminated polysiloxane can have the general formula:
  • R represents a C 1 -C 8 alkylene group, preferably a C 1 -C 4 alkylene group such as a propylene group;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are a linear or branched alkyl or aryl group of 1 to 20 carbon atoms, such as a methyl group, a phenyl group, preferably a methyl group. .
  • R 7 represents a linear or branched alkyl group of 1 to 20 carbon atoms, preferably a methyl group and a butyl group.
  • the monoaminoalkyl terminated polysiloxane may have a molecular weight of from 500 to 10,000, preferably from 800 to 4,000.
  • monoalkylalkyl-terminated polysiloxanes one or more of the following may be cited, wherein a, b and c are as defined above:
  • the carboxylated carbon nanotubes may first be mixed with a suitable solvent and then added with a condensing agent; or the carboxylated carbon nanotubes may be fed and mixed together with a solvent and a condensing agent. . Subsequently, a monoaminoalkyl-terminated polysiloxane is added to the mixture under stirring at an elevated temperature to carry out a reaction, and finally a monoaminoalkyl-terminated polysiloxane-modified carbon nanotube is obtained.
  • the carboxyl group content of the carboxylated carbon nanotubes used is not particularly limited, in a preferred embodiment, the carboxyl group content of the carboxylated carbon nanotubes used may be based on the weight of the carbon nanotubes. 0.01 wt% to 50 wt%, more preferably 0.1 wt% to 25 wt%, and most preferably 0.5 wt% to 10 wt%.
  • the reaction solvent may be used in an amount of from 5 to 1000 times, more preferably from 20 to 100 times, and most preferably from 30 to 60 times the weight of the carboxylated carbon nanotubes.
  • a suitable reaction solvent for example, a halogenated or unhalogenated aliphatic hydrocarbon or an aromatic compound such as chloroform, benzene, toluene, xylene or tetrahydrofuran can be mentioned. Among them, tetrahydrofuran is preferred.
  • the mechanical stirring time of the suspension can be advantageously set to 1 min to 5 h, more preferably 5 min to 2 h and most preferably 10 min. Within 30min.
  • the suspension of the carboxylated carbon nanotubes and the reaction solvent such as tetrahydrofuran may be subjected to ultrasonic vibration treatment after mechanical stirring.
  • the time of the ultrasonic oscillation may be from 5 min to 10 h, preferably from 30 min to 5 h and most preferably from 1 h to 3 h.
  • the use of the condensing agent is not particularly limited.
  • the condensing agent is used in an amount of from 0.1% by weight to 50% by weight, preferably from 1% by weight to 10% by weight, and more preferably from 2% by weight to 5% by weight, based on the weight of the carboxylated carbon nanotube.
  • suitable condensing agents for example, the following may be selected: carbodiimide condensing agents such as dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), 1-(3-dimethylamine) Propyl sulphate condensate such as 2-(7-azobenzotriazole)-N,N,N',N'-tetra Urea urea hexafluorophosphate (HATU), O-benzotriazole-tetramethylurea hexafluorophosphate (HBTU), benzotriazol-1-yl-oxytripyrrolidinyl hexafluorophosphate (PyBOP )Wait.
  • a carbodiimide type condensing agent such as dicyclohexylcarbodiimide (DCC) is preferred.
  • the reaction temperature of the carboxylated carbon nanotubes with the monoaminoalkyl-terminated polysiloxane may be, for example, 40 to 90 ° C, advantageously 50 to 85 ° C, most preferably 65-80 ° C.
  • the effect of amidation modification or the degree of amidation can be determined according to the desired product properties and cost efficiency, thereby adjusting the two reactant monoamines.
  • the two reactants may be used in an amount of from 0.2 to 3:1, preferably from 0.8 to 2:1 and more preferably from 1 to 1.5:1, in terms of a molar ratio of NH 2 /COOH. .
  • the monoaminoalkyl terminated polysiloxane-modified carbon nanotubes can be controlled to have 10-100%, such as 30-100%, based on the carboxyl groups on the carboxylated carbon nanotubes, Amidation degree of 45% to 95% and, for example, 60 to 90%.
  • the reaction time of the two reactants may range from 15 min to 48 h, preferably from 6 h to 36 h and most preferably from 12 h to 30 h.
  • modified carbon nanotubes can be produced as described above Thereafter, a filtration step and optionally a solvent washing treatment step, and an optional drying step are further included. Thereby, the dried modified carbon nanotubes can be finally obtained.
  • a second aspect of the invention relates to a modified carbon nanotube having the following formula (I).
  • the carbon nanotubes can be easily produced by the modification method as described above.
  • CNT represents carbon nanotubes, including single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes;
  • R represents a C 1 -C 8 alkylene group, preferably a C 1 -C 4 alkylene group such as a propylene group, and
  • P represents the residue of the monoaminoalkyl-terminated polysiloxane after removal of the aminoalkyl group.
  • one or more -C(O)-NH-RP chains may be present per unit length of the carbon nanotubes, the number of which depends on the carboxyl group content of the carboxylated carbon nanotubes and the desired Amidation degree.
  • the carboxyl group content of the carboxylated carbon nanotubes used may be 0.01 wt% to 50 wt%, more preferably 0.1 wt% to 25 wt%, and most preferably 0.5 based on the weight of the carbon nanotubes. Wt%-10wt%.
  • the monoaminoalkyl terminated polysiloxane-modified carbon nanotubes can be controlled to have 10-100%, such as 30-100%, 45%-95 based on the carboxyl groups on the carboxylated carbon nanotubes. % and, for example, a degree of amidation of 60-90%.
  • 1 is an infrared spectrum of a monoaminopolysiloxane and carbon nanotubes before and after modification according to Examples 1 to 3.
  • thermogravimetric graph of carbon nanotubes pre-modified COOH MWNT, modified f-MWNT before and after modification according to Example 2.
  • Example 3 is a transmission electron micrograph of carbon nanotubes (pre-modified COOH MWNT, modified f-MWNT) before and after modification according to Example 2.
  • Example 4 is a Raman spectrum of carbon nanotubes (pre-modified COOH MWNT, modified f-MWNT) before and after modification according to Example 2.
  • Figure 5 is the D4 suspension at the end of ultrasound
  • Figure 6 is the D4 suspension after 24 hours of ultrasound end
  • Carboxylated carbon nanotubes from Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, grade TNMC1, carboxyl ratio of about 3.86wt%, multi-walled carbon nanotubes
  • Monoaminopropyl terminated polydimethylsiloxane from Gelest, USA, grade MCR-A11, aminopropyl ratio of about 5.8 wt%
  • the obtained product was suction-filtered with a filter paper having a pore size of 1 ⁇ m, and washed three times with tetrahydrofuran and three times with ethanol.
  • the filtered product was placed in a vacuum oven and dried at 60 ° C for 24 hours to finally obtain a polysiloxane-grafted carbon nanotube.
  • vibrational peaks of Si-O-Si appeared at 1072 cm -1 and 1021 cm -1 , and Si-(CH 3 ) 2 appeared at 1253 and 791 cm -1
  • the vibration peak which is due to the condensation of the carboxyl group on the surface of the carbon nanotube with the amino group in the monoaminopropyl-terminated polydimethylsiloxane, and the surface of the carbon nanotube is partially grafted with polydimethylsiloxane. molecular chain.
  • the absorption peak at 3425 cm -1 is the stretching vibration peak of OH, which indicates that the carboxyl groups on the surface of the carbon nanotube are not all involved in the reaction.
  • the obtained product was suction-filtered with a filter paper having a pore size of 1 ⁇ m, and washed three times with tetrahydrofuran and three times with ethanol.
  • the filtered product was placed in a vacuum oven and dried at 60 ° C for 24 hours to finally obtain a polysiloxane-grafted carbon nanotube.
  • Example 2 For the carbon nanotube modified according to Example 2 (Experiment 2), a vibration peak of Si-O-Si appeared at 1072 cm -1 and 1015 cm -1 , and Si-(CH appeared at 1251 and 794 cm -1 3 )
  • the vibration peak of 2 which is because the carboxyl group on the surface of the carbon nanotube is condensed with the amino group in the monoaminopropyl-terminated polydimethylsiloxane, and the surface of the carbon nanotube is grafted with polydimethyl A siloxane molecular chain.
  • thermogravimetric analysis test was carried out in a nitrogen atmosphere at a heating rate of 10 ° C/min.
  • the thermogravimetric test results are shown in Figure 2. It can be seen from the figure that unmodified carboxylated carbon nanotubes (MWNT-COOH) have about 11% mass loss at 800 ° C. These mass loss are surface-COOH groups and other oxygen-containing groups burning and carbon. Some amorphous carbon in the nanotubes and residual catalyst.
  • the modified carbon nanotubes have a mass loss of about 27% at 800 ° C. These mass loss are caused by surface grafted polysiloxane combustion and some amorphous carbon in the carbon nanotubes and residual catalyst. The result of this thermograviation can indicate that modification has occurred.
  • the outer diameter of the multi-walled carbon nanotubes is about 6 nm ⁇ 2 nm, and the multi-wall structure around the multi-walled carbon nanotubes is well preserved, and there are no obvious defects on the surface.
  • Chemical modification with monoaminopropyl terminated polysiloxanes does not destroy or affect the multiwall structure of the carbon nanotubes.
  • the obtained product was suction-filtered with a filter paper having a pore size of 1 ⁇ m, and washed three times with tetrahydrofuran and three times with ethanol.
  • the filtered product was placed in a vacuum oven and dried at 60 ° C for 24 hours to finally obtain a polysiloxane-grafted carbon nanotube.
  • the vibration peak of Si-O-Si appeared at 1070 cm -1 and 1012 cm -1 , and Si-( at the 1254 and 796 cm -1 appeared.
  • the vibrational peak of CH 3 ) 2 which is because the carboxyl group on the surface of the carbon nanotube is condensed with the amino group in the monoaminopropyl-terminated dimethylpolysiloxane, and the surface of the carbon nanotube is grafted with polydimethylene.
  • a siloxane molecular chain is because the carboxyl group on the surface of the carbon nanotube is condensed with the amino group in the monoaminopropyl-terminated dimethylpolysiloxane, and the surface of the carbon nanotube is grafted with polydimethylene.
  • Example 2 (wherein NH 2 /COOH is 1.2), and there is no stretching vibration absorption peak of OH or NH in the range of 3000-3500 cm -1 , indicating that the carbon nanotubes are on the carbon nanotubes. Since the carboxyl group is all reacted and there is no residual monoaminopolysiloxane remaining on the surface of the modified carbon nanotube, the reaction effect is optimal.
  • the pure carbon nanotubes, the carboxylated carbon nanotubes, and the polysiloxane-grafted carbon nanotubes prepared in Examples 1, 2 and 3 were respectively prepared to be mixed with the silicone solvent D4 at a concentration of 1 mg/g.
  • the suspension in octamethylcyclotetrasiloxane) was shaken with ultrasound for 60 minutes. As shown in Figure 5.
  • the modified carbon nanotubes have less precipitation and the suspension has a darker color, so it has better dispersibility in silicone and higher organic The bonding force of silicon.
  • the suspension of modified carbon nanotubes of Example 2 (NH 2 /COOH is 1.2) is darker in color, so Example 2 has the best dispersibility in silicone and the highest organic The bonding force of silicon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种纳米材料,更具体地涉及一种单氨烷基封端的聚硅氧烷改性的碳纳米管,以及涉及其制备方法。所述方法包括使羧基化碳纳米管与单氨烷基封端的聚硅氧烷在缩合剂存在下反应的步骤。

Description

单氨烷基封端聚硅氧烷改性的碳纳米管及其制备方法 技术领域
本发明涉及一种纳米材料,更具体地涉及一种单氨烷基封端的聚硅氧烷改性的碳纳米管,以及涉及其制备方法。
现有技术
碳纳米管是一种具有优异的力学、电学性能和独特微观结构的新型纳米材料。它具有极大的长径比和比表面积,以及优良的电学、力学性能和热稳定性。由于这些性能以及还有其独特的一维纳米结构所表现出来的纳米效应,使得碳纳米管成为聚合物材料如聚丙烯和有机硅等的理想的增强体,从而形成碳纳米管/聚合物复合材料。
大量研究表明,碳纳米管/聚合物复合材料的性能不仅取决于碳纳米管,还很大程度上受到碳纳米管在聚合物中的良好分散性和与聚合物之间的界面结合作用力的影响。由于碳纳米管的表面缺乏活性基团,在溶剂中的分散性很差,以及由于其巨大的纵横比和比表面积使其极易团聚和缠绕,所以碳纳米管难以在聚合物中很好地分散。因此,碳纳米管的改性和表面修饰对于改善碳纳米管在聚合物介质中的分散性非常重要。
在CN102585291A中提出了一种表面改性碳纳米管及其制备方法。其中,将含磷杂菲结构与氨基的超支化聚硅氧烷与环氧功能化碳纳米管及催化剂三苯基磷混合,再将得到的混合物加入到溶剂中,得到以化学键形式接有含磷杂菲结构与氨基的超支化聚硅氧烷的表面改性碳纳米管。
例如,CN103059343A中公开了一种改性碳纳米管及其制备方法,其中首先制得超支化聚苯胺,然后将其与碳纳米管加入到二甲基亚砜中,再在甲醇中沉淀,经抽滤、洗涤,得到改性碳纳米管,其表面包覆有多支链聚苯胺的导电层。
发明概述
本发明的目的在于提供一种采用聚硅氧烷改性碳纳米管的方法,该方法能够在保持碳纳米管结构和性能优势不被破坏的同时,采用一步化学反应容易地采用聚硅氧烷对碳纳米管进行表面改性,使改性碳纳米管可以更好地分散在聚合物基体、特别是聚硅氧烷中。
因此,本发明的第一个方面涉及一种改性碳纳米管的方法,该方法包括使羧基化碳纳米管与单氨烷基封端的聚硅氧烷在缩合剂存在下反应的步骤。
本发明的第二个方面涉及一种改性的碳纳米管,其具有下式(I)
CNT-C(O)-NH-R-P  (I)
其中,CNT表示碳纳米管,R表示C1-C8的亚烷基和P表示单氨烷基封端的聚硅氧烷在去除单氨烷基之后的残基。
本申请的发明人发现,羧基化的碳纳米管可以与单氨烷基封端的聚硅氧烷在缩合剂的存在下一步反应而得到接枝有聚硅氧烷链的改性的碳纳米管。根据本发明的用单氨烷基封端聚硅氧烷接枝碳纳米管的改性方法简单易行,适于大规模应用。
选取单氨烷基封端聚硅氧烷来改性碳纳米管,可以提高所制得的改性碳纳米管与具有同样硅氧烷主链的有机硅基体的兼容性。接枝在纳米材料表面的聚硅氧烷可以提高碳纳米管与有机硅 的界面结合能力,从而使其更好地分散在聚合物基体中。
此外,单氨烷基封端的聚硅氧烷改性碳纳米管未破坏碳纳米管的内部结构和性能优势,制备的碳纳米管化学物理性能稳定,不易团聚。
发明详述
本发明的第一个方面涉及一种改性碳纳米管的方法,该方法包括使羧基化碳纳米管与单氨烷基封端的聚硅氧烷在缩合剂存在下反应的步骤。
适用于本发明的碳纳米管(CNT)是本领域技术人员已知的。在本发明的上下文中适用以下碳纳米管的定义和描述。
碳纳米管从结构上看是一种由碳原子构成的直径几纳米和长几微米甚至更长的中空管,每个碳纳米管是一个碳原子通过sp2杂化与周围三个碳原子键合而成的,基本结构主要由六边形碳环组成,此外还有一些五边形碳环与七边形碳环。特别是管身弯曲的CNT,有更多的五边形碳环或七边形碳环集中在弯曲部位使得CNT顶端封闭。根据组成的石墨片层数的不同,碳纳米管可以分为单壁碳纳米管、双壁碳纳米管和多壁碳纳米管。碳纳米管的制备方法很多,目前主要的制备方法有三种:电弧放电法、激光蒸发法、化学气相沉积法(催化分解法)。此外还有低温固态热解法、聚合物制备法、太阳能法、水热合成法、电解法等。
羧基化的碳纳米管可以由本领域技术人员根据现有技术常规制得,例如可参考《“氧化处理方法与多壁碳纳米管表面羧基含量的关系”,新型炭材料,第269-272页,第21卷第3期,2006年9月》
本申请中可以使用市售可得的那些碳纳米管产品,如中科院 成都有机化学有限公司的牌号为TNST、TNS等的单壁碳纳米管,TND双壁碳纳米管,TNM1、TNM2等多壁碳纳米管,TNMC1、TNMC2等羧基多壁碳纳米管。
根据本申请的单氨烷基封端的聚硅氧烷同样是本领域技术人员已知的。聚硅氧烷通常是一类以重复的Si-O键为主链并且包含式[R’nSiO(4-n)/2]m的单元的聚合物,
其中,R’代表有机基团,如取代或未取代的脂族烃基或芳族烃基,例如C1-C12的烷基、C1-C12的氟代烷基、苯基、二甲苯基和甲苯基等;n为硅原子上连接的有机基团数目,在1-3之间;和m为聚合度(m不小于2)。
根据本申请的单氨烷基封端的聚硅氧烷可以是线性、支化的或具有一定量的网络结构。所述单氨烷基封端的聚硅氧烷的主链结构不是特别限定的。对于本发明而言重要的是,其一端用NH2-R-封端,其中R为C1-C8的亚烷基,而聚硅氧烷的另一封端基团以及侧链基团不具有反应性,特别是不会参与与碳纳米管的反应。
在一个具体的实施方式中,所述单氨烷基封端的聚硅氧烷可以具有如下通式:
Figure PCTCN2015099349-appb-000001
式中,
R表示C1-C8的亚烷基,优选C1-C4的亚烷基,如亚丙基;
a的范围为0~100;b的范围为0~100;c的范围为0~100;
R1、R2、R3、R4、R5、R6和R7是1~20个碳原子的直链或支链的烷基或芳基,例如甲基,苯基,优选甲基。
优选地,R7表示1~20个碳原子的直链或支链的烷基,优选甲基和丁基。
该单氨烷基封端的聚硅氧烷的分子量可以为500-10000,优选在800-4000的范围内。
作为合适的单氨烷基封端的聚硅氧烷可以列举如下所列的一种或多种,其中a、b和c如上定义:
Figure PCTCN2015099349-appb-000002
Figure PCTCN2015099349-appb-000003
根据本发明方法的一个具体的实施方式,可以首先将羧基化的碳纳米管与合适的溶剂混合,然后加入缩合剂;或者也可以将羧基化的碳纳米管与溶剂和缩合剂一起加料并混合。随后,在搅拌以及升高的温度下向混合物中加入单氨烷基封端的聚硅氧烷进行反应,最后得到单氨烷基封端的聚硅氧烷改性的碳纳米管。
在本发明中,尽管对于所用的羧基化碳纳米管的羧基含量没有特别的限定,但是在一个优选的实施方式中,所用的羧基化碳纳米管的羧基含量可以为基于碳纳米管重量计的0.01wt%-50wt%、更优选0.1wt%-25wt%以及最优选0.5wt%-10wt%。
在本发明的一个优选的实施方式中,反应溶剂的用量可以为羧基化碳纳米管重量的5-1000倍、更优选20-100倍以及最优选30-60倍。作为合适的反应溶剂可以列举例如卤代或未卤代的脂肪烃或芳香族化合物如氯仿、苯、甲苯、二甲苯、四氢呋喃。其中优选四氢呋喃。
为了保证羧基化的碳纳米管与反应溶剂和/或缩合剂的混合物充分混合,可以将悬浮液的机械搅拌时间有利地设定在1min-5h、更优选为5min-2h和最优为10min-30min的范围内。
在一个优选的实施方式中,可以在将羧基化的碳纳米管和反应溶剂如四氢呋喃经过机械搅拌之后,再将它们的悬浮液进行超声振荡处理。在此,超声振荡的时间可以是5min-10h、优选30min-5h和最优选1h-3h。
在根据本发明的方法中,缩合剂的使用并没有特别的限制。在一个有利的实施方式中,缩合剂的用量为羧基化的碳纳米管重量的0.1wt%-50wt%、优选1wt%-10wt%以及更优选2wt%-5wt%。
作为合适的缩合剂可以例如选用以下这些:碳二亚胺类缩合剂如二环己基碳二亚胺(DCC)、二异丙基碳二亚胺(DIC)、1-(3-二甲胺基丙基)-3-乙基碳二亚胺(EDCI)等,鎓盐类缩合剂如2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(HATU)、O-苯并三氮唑-四甲基脲六氟磷酸酯(HBTU)、六氟磷酸苯并三唑-1-基-氧基三吡咯烷基(PyBOP)等。其中优选碳二亚胺类缩合剂如二环己基碳二亚胺(DCC)。
在本发明的改性碳纳米管的方法中,羧基化碳纳米管与单氨烷基封端的聚硅氧烷的反应温度可以在例如40-90℃、有利地50-85℃、最优选为65-80℃。
此外,在根据本发明的改性碳纳米管的方法中,可以根据所期望获得的产品性能、成本效率而确定合适的酰胺化改性的效果或者酰胺化度,从而调节两种反应物单氨烷基聚硅氧烷和羧基化碳纳米管用量比。在一个示例性的有利的实施方式中,两种反应物的用量按照NH2/COOH的摩尔比可以在0.2-3:1、优选0.8-2:1以及更优选1-1.5:1的范围内。在另一个示例性的实施方式中,可以控制单氨烷基封端的聚硅氧烷改性的碳纳米管具有基于羧基化碳纳米管上的羧基计10-100%、例如30-100%、45%-95%以及例如60-90%的酰胺化度。
在本发明的一个优选的实施方式中,两种反应物的反应时间可以在15min-48h、优选6h-36h以及最优选12h-30h的范围内。
根据本发明的方法,可以在如上所述制得改性的碳纳米管之 后,进一步包括抽滤以及任选的用溶剂洗涤的处理步骤,以及任选的干燥步骤。由此,可以最终得到经干燥的改性碳纳米管。
本发明的第二个方面涉及一种具有下式(I)的改性的碳纳米管。该碳纳米管可以通过如上所述的改性方法而容易地制得。
CNT-C(O)-NH-R-P  (I)
其中,
CNT表示碳纳米管,包括单壁碳纳米管、双壁碳纳米管和多壁碳纳米管;
R表示C1-C8的亚烷基,优选C1-C4的亚烷基,如亚丙基,和
P表示单氨烷基封端的聚硅氧烷在去除氨烷基之后的残基。
本领域技术人员能够明了,在碳纳米管的单位长度上,可以具有一个或多个-C(O)-NH-R-P链,其数量取决于羧基化碳纳米管上的羧基含量以及所期望的酰胺化度。
如上所述,在一个优选的实施方式中,所用的羧基化碳纳米管的羧基含量可以为基于碳纳米管重量计的0.01wt%-50wt%、更优选0.1wt%-25wt%以及最优选0.5wt%-10wt%。另外也如上所述,可以控制单氨烷基封端的聚硅氧烷改性的碳纳米管具有基于羧基化碳纳米管上的羧基计10-100%、例如30-100%、45%-95%以及例如60-90%的酰胺化度。
附图说明
图1是单氨基聚硅氧烷与根据实施例1至3改性前后的碳纳米管的红外光谱图
图2是根据实施例2改性前后的碳纳米管(改性前COOH MWNT,改性后f-MWNT)的热重曲线图
图3是根据实施例2改性前后的碳纳米管(改性前COOH MWNT,改性后f-MWNT)的透射电镜图
图4是根据实施例2改性前后的碳纳米管(改性前COOH MWNT,改性后f-MWNT)的拉曼光谱图
图5是超声结束时D4悬浮液
图6是超声结束24小时后D4悬浮液
实施例
所有实施例中采用如下原料:
羧基化碳纳米管:来自中科院成都有机化学有限公司,牌号TNMC1,羧基比例约3.86wt%,多壁碳纳米管
单氨丙基封端的聚二甲基硅氧烷:来自美国Gelest,牌号MCR-A11,氨丙基比例约5.8wt%
实施例1:
将500mg羧基化碳纳米管和50mL精制四氢呋喃置于三口烧瓶中,先机械搅拌15分钟,再超声振荡90分钟。加入50mg二环己基碳二亚胺(DCC)。搅拌下升温至反应温度75℃并且冷凝回流,然后缓慢滴加430mg单氨丙基封端的聚二甲基硅氧烷。该反应中,NH2/COOH的比例为1:1,反应温度75℃左右并且保持反应24小时。
将所得产物用孔径为1μm滤纸抽滤,抽滤过程中先用四氢呋喃洗涤三次,再用乙醇洗涤三次。将抽滤后的产物置于真空烘箱中,在60℃下干燥24小时,最终得到聚硅氧烷接枝的碳纳米管。
红外光谱图如图1所示。
在羧基化碳纳米管的红外谱图中,在3425cm-1附近出现了 O-H的伸缩振动峰,以及1574cm-1处出现了O=C-O伸缩振动峰,这说明改性前碳纳米管中存在-COOH。
在根据实施例1改性后(实验1),在1072cm-1和1021cm-1处出现了Si-O-Si的振动峰,在1253和791cm-1处出现了Si-(CH3)2的振动峰,这是由于碳纳米管表面的羧基与单氨丙基封端的聚二甲基硅氧烷中的氨基发生了缩合反应后,碳纳米管表面接枝了部分聚二甲基硅氧烷分子链。3425cm-1处的吸收峰是O-H的伸缩振动峰,这表明碳纳米管表面的羧基并没有全部参与反应。
综合分析,可以认为通过实施例1的方法,在碳纳米管表面通过酰胺基部分引入了单氨丙基聚硅氧烷。
实施例2:
将2.98g羧基化的碳纳米管和120mL精制四氢呋喃置于三口烧瓶中,先机械搅拌15分钟,再超声振荡90分钟。随后加入160mg二环己基碳二亚胺(DCC)。搅拌下升温至反应温度75℃并且冷凝回流,然后缓慢滴加3.06g单氨丙基封端的聚二甲基硅氧烷。该反应中,NH2/COOH的比例为1.2:1,反应温度75℃左右并且保持反应24小时。
将所得产物用孔径为1μm滤纸抽滤,抽滤过程中先用四氢呋喃洗涤三次,再用乙醇洗涤三次。将抽滤后的产物置于真空烘箱中,在60℃下干燥24小时,最终得到聚硅氧烷接枝的碳纳米管。
红外光谱图如图1所示。
对于根据实施例2改性后的碳纳米管(实验2),在1072cm-1和1015cm-1处出现了Si-O-Si的振动峰,在1251和794cm-1处出现了Si-(CH3)2的振动峰,这是由于碳纳米管表面的羧基与单氨丙基封端的聚二甲基硅氧烷中的氨基发生了缩合反应后,碳纳米管 表面接枝了聚二甲基硅氧烷分子链。在3425cm-1处没有出现O-H的伸缩振动吸收峰,这是因为在NH2/COOH为1.2这个比例下,反应比较完全,没有剩余的O-H留在改性后的碳纳米管上,所以碳纳米管表面的羧基全部参与反应。
综合分析,可以认为通过实施例2的方法,在碳纳米管表面通过酰胺基引入了单氨丙基封端的聚硅氧烷。相对于碳纳米管上的羧基,其酰胺化程度为100%。
热重分析测试在氮气环境中进行,升温速率为10℃/min。热重测试结果如图2所示。从图中可以看到,未改性的羧基化碳纳米管(MWNT-COOH)在800℃时约有11%的质量损失,这些质量损失为表面-COOH基团等含氧基团燃烧和碳纳米管中的一些无定形碳及残留的催化剂所致。改性后的碳纳米管在800℃时约有27%左右的质量损失,这些质量损失为表面接枝的聚硅氧烷燃烧和碳纳米管中的一些无定形碳及残留的催化剂所致。此热重的结果可以说明改性已经发生。
另外,通过透射电镜的图3可以看到,多壁碳纳米管的外径约在6nm±2nm左右,而且多壁碳纳米管周围的多壁结构保存良好,表面不存在明显的缺陷,这说明用单氨丙基封端的聚硅氧烷来进行化学改性并没有破坏或者影响碳纳米管的多壁结构。
另外,对比改性前后的多壁碳纳米管,可以看到改性后的碳纳米管的管壁外围出现了一些很细的线状物,可以判断这应该为接枝上去的聚硅氧烷大分子。
透射电镜的结果表明,改性反应已经发生且未对碳纳米管的多壁结构造成影响。
图4是根据实施例2改性前后的碳纳米管的拉曼光谱图。在两条曲线中,在1345cm-1和1575cm-1附近都存在很明显的峰, 这两个峰分别是D峰和G峰。其中D峰是由于碳纳米管中的结构缺陷或者杂质而引起的无序杂化峰,G峰是由于碳纳米管中的碳原子以sp2杂化构成的完整的六边形结构峰。G峰强度与D峰强度的比值(IG/ID)可以用来衡量碳纳米管结构的石墨化程度。IG/ID的比值越大则说明碳纳米管的石墨化程度越好。改性前后碳纳米管的IG/ID的比值如下表所示:
表1改性前后碳纳米管的拉曼谱图中的IG/ID
Figure PCTCN2015099349-appb-000004
通过对比D峰和G峰出现的位置可以看出,通过单氨丙基封端的聚硅氧烷改性,拉曼谱图中两组峰出现的位置出现了细微的差别,但仍然呈现相同的振动方式,这说明化学改性使得聚硅氧烷接枝在碳纳米管表面影响了原有的π电子体系,但并未对碳纳米管的结构造成破坏。
另一方面,经过改性后,D峰和G峰的强度都有所减弱,且IG/ID的比值下降了,这说明改性降低了碳纳米管的石墨化程度。这是由于单氨丙基封端的聚硅氧烷接枝在碳纳米管表面,从而使得更多的碳原子从sp2杂化转变成了sp3杂化所致。
实施例3:
将2.97g羧基化碳纳米管和120mL精制四氢呋喃置于三口烧瓶中,先机械搅拌15分钟,再超声振荡90分钟。随后加入160mg二环己基碳二亚胺(DCC)。搅拌下升温至反应温度75℃并且冷凝 回流,然后缓慢滴加3.83g单氨丙基封端的聚二甲基硅氧烷。该反应中,NH2/COOH的比例为1.5:1,反应温度75℃左右并且保持反应24小时。
将所得产物用孔径为1μm滤纸抽滤,抽滤过程中先用四氢呋喃洗涤三次,再用乙醇洗涤三次。将抽滤后的产物置于真空烘箱中,在60℃下干燥24小时,最终得到聚硅氧烷接枝的碳纳米管。
红外光谱图如图1所示。
对于根据实施例3改性后的碳纳米管(实验3),在1070cm-1和1012cm-1处出现了Si-O-Si的振动峰,而在1254和796cm-1处出现了Si-(CH3)2的振动峰,这是由于碳纳米管表面的羧基与单氨丙基封端的二甲基聚硅氧烷中的氨基发生了缩合反应后,碳纳米管表面接枝了聚二甲基硅氧烷分子链。3425cm-1处没有出现O-H的伸缩振动吸收峰,这是因为在NH2/COOH为1.5这个比例下,反应比较完全,没有剩余的O-H留在改性后的碳纳米管上,所以碳纳米管表面的羧基全部参与反应。3133cm-1处出现了N-H的伸缩振动峰,这是因为实施例3中的NH2/COOH为1.5,没有参与反应的单氨丙基封端的聚硅氧烷较多,因而有部分残留在改性后的碳纳米管表面。
综合分析,可以认为通过实施例3的方法,在碳纳米管表面引入了单氨丙基封端的聚硅氧烷。相对于碳纳米管上的羧基而言,其酰胺化反应程度达到了100%。
通过对比上述3个实例的红外谱图,可以认为实施例2(其中NH2/COOH为1.2),3000-3500cm-1范围内没有出现O-H或者N-H的伸缩振动吸收峰,说明碳纳米管上的羧基全部反应且在改性后的碳纳米管表面也没有残留的未参与反应的单氨基聚硅氧烷,所以反应效果最佳。
悬浮液稳定性比较
将纯碳纳米管,羧基化的碳纳米管,实施例1、2和3所制得的聚硅氧烷接枝的碳纳米管分别制备成浓度为1mg/g的混合于有机硅溶剂D4(八甲基环四硅氧烷)中的悬浮液,并用超声震荡60分钟。如图5所示。
超声结束后24小时后观察这些悬浮液的沉淀情况,如图6所示。相对于纯碳纳米管和羧基化的碳纳米管,改性后的碳纳米管的沉淀较少,悬浮液颜色较深,故具有更好的在有机硅中的分散性和较高的与有机硅的结合力。在三个实例中,实施例2(NH2/COOH为1.2)的改性碳纳米管的悬浮液颜色较深,故实施例2具有最好的在有机硅中的分散性和最高的与有机硅的结合力。
以上内容是对本发明做的示例性的描述,不能认定本发明的具体实施方式仅限于此。应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

  1. 一种改性碳纳米管的方法,该方法包括使羧基化碳纳米管与单氨烷基封端的聚硅氧烷在缩合剂存在下反应的步骤。
  2. 根据权利要求1的方法,其特征在于,所述缩合剂选自碳二亚胺类缩合剂和鎓盐类缩合剂。
  3. 根据权利要求1至2任一项的方法,其特征在于,所述羧基化的碳纳米管是单壁碳纳米管,双壁碳纳米管或者多壁碳纳米管。
  4. 根据权利要求1至3任一项的方法,其特征在于,所述的羧基化碳纳米管的羧基含量可以为基于碳纳米管重量计的0.01wt%-50wt%、更优选0.1wt%-25wt%以及最优选0.5wt%-10wt%。
  5. 根据权利要求1至4任一项的方法,其特征在于,所述羧基化碳纳米管与单氨烷基封端的聚硅氧烷的反应在反应溶剂的存在下进行。
  6. 根据权利要求1至5任一项的方法,其特征在于,所述反应溶剂选自四氢呋喃。
  7. 根据权利要求1至6任一项的方法,其特征在于,所述两种反应物单氨烷基封端的聚硅氧烷和羧基化碳纳米管的用量按照NH2/COOH的摩尔比在0.2-3:1、优选0.8-2:1以及更优选1-1.5:1的范围内。
  8. 根据权利要求1至7任一项的方法,其特征在于,改性后的碳纳米管具有基于羧基化碳纳米管上的羧基计10-100%、例如30-100%、45%-95%以及例如60-90%的酰胺化度。
  9. 一种具有下式(I)的改性的碳纳米管,
    CNT-C(O)-NH-R-P   (I)
    其中
    CNT表示碳纳米管,包括单壁碳纳米管、双壁碳纳米管和多壁碳纳米管;
    R表示C1-C8的亚烷基,优选C1-C4的亚烷基,如亚丙基,和
    P表示单氨烷基封端的聚硅氧烷在去除单氨烷基之后的残基。
  10. 根据权利要求1至9任一项所制得的改性的碳纳米管。
PCT/CN2015/099349 2014-12-31 2015-12-29 单氨烷基封端聚硅氧烷改性的碳纳米管及其制备方法 WO2016107532A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410851930.8 2014-12-31
CN201410851930.8A CN105801915B (zh) 2014-12-31 2014-12-31 单氨烷基封端聚硅氧烷改性的碳纳米管及其制备方法

Publications (1)

Publication Number Publication Date
WO2016107532A1 true WO2016107532A1 (zh) 2016-07-07

Family

ID=56284274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099349 WO2016107532A1 (zh) 2014-12-31 2015-12-29 单氨烷基封端聚硅氧烷改性的碳纳米管及其制备方法

Country Status (2)

Country Link
CN (1) CN105801915B (zh)
WO (1) WO2016107532A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107894640A (zh) * 2017-12-28 2018-04-10 江苏亨通光电股份有限公司 一种限定破断力架空引入光缆
CN108623845A (zh) * 2017-03-24 2018-10-09 天津大学 聚硅氧烷改性碳纳米管的方法及其应用
CN110897685A (zh) * 2019-12-30 2020-03-24 北京美医医学技术研究院有限公司 一种超声波去角质美容仪
CN114045184A (zh) * 2021-11-05 2022-02-15 中国科学院兰州化学物理研究所 一种碳-硅复合纳米流体减摩抗磨添加剂及其应用
CN115368728A (zh) * 2022-09-26 2022-11-22 宁国市锦鼎橡塑制品有限公司 一种聚合物复合填充块及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114683583A (zh) * 2022-03-21 2022-07-01 中山市卡邦碳纤维材料制品有限公司 一种缠绕型碳纤维管及其加工工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1266412A1 (en) * 2000-03-22 2002-12-18 Consiglio Nazionale Delle Ricerche Method and device for transferring spin-polarized charge carriers
US20110031443A1 (en) * 2006-10-13 2011-02-10 Jong Jin Park Multicomponent carbon nanotube-polymer complex, composition for forming the same, and preparation method thereof
CN102112575A (zh) * 2008-11-12 2011-06-29 日东电工株式会社 热传导性组合物及其制造方法
CN102746473A (zh) * 2012-07-10 2012-10-24 西北工业大学 含活性双键超支化聚硅氧烷接枝碳纳米管制备方法
CN103045156A (zh) * 2011-10-17 2013-04-17 杭州中富彩新材料科技有限公司 一种碳纳米管原位补强的led封装硅胶及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947702B1 (ko) * 2003-02-26 2010-03-16 삼성전자주식회사 경화성 작용기로 표면수식된 탄소나노튜브를 이용한패턴박막 형성방법 및 고분자 복합체의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1266412A1 (en) * 2000-03-22 2002-12-18 Consiglio Nazionale Delle Ricerche Method and device for transferring spin-polarized charge carriers
US20110031443A1 (en) * 2006-10-13 2011-02-10 Jong Jin Park Multicomponent carbon nanotube-polymer complex, composition for forming the same, and preparation method thereof
CN102112575A (zh) * 2008-11-12 2011-06-29 日东电工株式会社 热传导性组合物及其制造方法
CN103045156A (zh) * 2011-10-17 2013-04-17 杭州中富彩新材料科技有限公司 一种碳纳米管原位补强的led封装硅胶及其制备方法
CN102746473A (zh) * 2012-07-10 2012-10-24 西北工业大学 含活性双键超支化聚硅氧烷接枝碳纳米管制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108623845A (zh) * 2017-03-24 2018-10-09 天津大学 聚硅氧烷改性碳纳米管的方法及其应用
CN107894640A (zh) * 2017-12-28 2018-04-10 江苏亨通光电股份有限公司 一种限定破断力架空引入光缆
CN107894640B (zh) * 2017-12-28 2024-06-14 江苏亨通光电股份有限公司 一种限定破断力架空引入光缆
CN110897685A (zh) * 2019-12-30 2020-03-24 北京美医医学技术研究院有限公司 一种超声波去角质美容仪
CN110897685B (zh) * 2019-12-30 2021-01-08 北京美医医学技术研究院有限公司 一种超声波去角质美容仪
CN114045184A (zh) * 2021-11-05 2022-02-15 中国科学院兰州化学物理研究所 一种碳-硅复合纳米流体减摩抗磨添加剂及其应用
CN114045184B (zh) * 2021-11-05 2022-12-06 中国科学院兰州化学物理研究所 一种碳-硅复合纳米流体减摩抗磨添加剂及其应用
CN115368728A (zh) * 2022-09-26 2022-11-22 宁国市锦鼎橡塑制品有限公司 一种聚合物复合填充块及其制备方法

Also Published As

Publication number Publication date
CN105801915A (zh) 2016-07-27
CN105801915B (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
WO2016107532A1 (zh) 单氨烷基封端聚硅氧烷改性的碳纳米管及其制备方法
JP5409999B2 (ja) ポリマー複合物を得るための、有機シランによるカーボンナノチューブのサイドウォール官能化
Han et al. Graphene oxide grafted carbon fiber reinforced siliconborocarbonitride ceramics with enhanced thermal stability
JP5871395B2 (ja) 除去可能添加物を含む、溶剤性カーボンナノチューブインクおよび水性カーボンナノチューブインク
Mittal Polymer nanotubes nanocomposites: synthesis, properties and applications
Xie et al. Dispersion and alignment of carbon nanotubes in polymer matrix: a review
Roy et al. Modifications of carbon for polymer composites and nanocomposites
JP4308527B2 (ja) ジアゾニウム種を用いてカーボンナノチューブを誘導体化する方法及びその組成物
US8398950B2 (en) Condensation polymers having covalently bound carbon nanotubes
JP5152716B2 (ja) 化学的に修飾されたカーボンナノチューブ及びその製造方法
US8354490B2 (en) Method for functionalization of nanoscale fibers and nanoscale fiber films
Mittal Carbon nanotubes surface modifications: an overview
Jin et al. Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization
EP2261281A1 (en) Carbon nanotube bulk material and method of fabricating the same
Mozaffarinasab et al. Surface modification of carbon nanotubes by a bifunctional amine silane; effects on physical/mechanical/thermal properties of epoxy nanocomposite
Dintcheva et al. Multi-functional polyhedral oligomeric silsesquioxane-functionalized carbon nanotubes for photo-oxidative stable Ultra-High Molecular Weight Polyethylene-based nanocomposites
Nayak et al. Synthesis and characterization of styrene grafted carbon nanotube and its polystyrene nanocomposite
JP4670100B2 (ja) 窒化ホウ素ナノチューブの精製方法
WO2010123600A2 (en) Functionalized carbon nanostructures and compositions and materials formed therefrom
Zhang Carbon nanotubes/polyacrylic acid coating materials prepared by in situ polymerization technique
KR101198743B1 (ko) 폴리프로필렌/탄소나노튜브 복합체, 폴리프로필렌 매트릭스 내에 상기 폴리프로필렌/탄소나노튜브 복합체가 균일하게 분산된 나노복합체 및 이들의 제조방법
Ghislandi et al. Functionalization of carbon nanofibers (CNFs) through atom transfer radical polymerization for the preparation of poly (tert‐butyl acrylate)/CNF materials: Spectroscopic, thermal, morphological, and physical characterizations
KR101054254B1 (ko) 폴리스티렌/탄소나노튜브 복합체의 제조방법 및 폴리스티렌매트릭스 내에 상기 폴리스티렌/탄소나노튜브 복합체가 균일하게 분산된 나노복합체의 제조방법
Wood et al. Polymerized organosiloxanes decorated onto carbon nanofibers forming shish-kebab architectures under highly alkaline conditions
González-Domínguez et al. Functionalization Strategies for Single-Walled Carbon Nanotubes Integration into Epoxy Matrices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875208

Country of ref document: EP

Kind code of ref document: A1