WO2017128492A1 - 一种氮氧化物荧光粉及其制备方法、氮氧化物发光体和发光器件 - Google Patents

一种氮氧化物荧光粉及其制备方法、氮氧化物发光体和发光器件 Download PDF

Info

Publication number
WO2017128492A1
WO2017128492A1 PCT/CN2016/075580 CN2016075580W WO2017128492A1 WO 2017128492 A1 WO2017128492 A1 WO 2017128492A1 CN 2016075580 W CN2016075580 W CN 2016075580W WO 2017128492 A1 WO2017128492 A1 WO 2017128492A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
oxygen atom
atom content
phosphor
core
Prior art date
Application number
PCT/CN2016/075580
Other languages
English (en)
French (fr)
Inventor
何锦华
符义兵
梁超
滕晓明
Original Assignee
江苏博睿光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏博睿光电有限公司 filed Critical 江苏博睿光电有限公司
Priority to JP2016555555A priority Critical patent/JP6793549B2/ja
Priority to PL16754386T priority patent/PL3225677T3/pl
Priority to KR1020167024181A priority patent/KR101861035B1/ko
Priority to EP16754386.7A priority patent/EP3225677B1/en
Priority to US15/124,921 priority patent/US9909061B1/en
Publication of WO2017128492A1 publication Critical patent/WO2017128492A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77928Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/661Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7735Germanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7797Borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • the invention belongs to the technical field of LED phosphors and light-emitting devices, in particular to a nitrogen oxide phosphor which can be effectively excited by ultraviolet, violet or blue light, a preparation method thereof, an oxynitride illuminant and a light-emitting device.
  • LEDs Light-emitting diodes
  • LEDs Today's semiconductor lighting electric light source represented by light-emitting diodes (LEDs) is known as the fourth-generation lighting electric light source after incandescent lamps, fluorescent lamps and energy-saving lamps, and is called “21st Century Green Light Source”.
  • the existing methods for manufacturing white LEDs mainly include: first, applying yellow phosphor (YAG) on a blue LED chip to realize white light emission, but the YAG phosphor has a low coloring temperature and a low color rendering index, which cannot be satisfied.
  • YAG yellow phosphor
  • the second is to apply green and red phosphors on the blue LED chip to solve the above problems.
  • red phosphors also have many problems, such as CaS:Eu 2+ light decay, poor chemical stability, CaMoO 4 :Eu 2 +The excitation range is narrow, Y 2 O 3 :Eu 3+ and Y 2 O 2 S:Eu 3+ has low conversion efficiency in the blue region, and the M 2 Si 5 N 8 :Eu 2+ has poor resistance to light decay. Can not achieve perfect cooperation with LED chips, these are the bottleneck restricting the development of white LED technology.
  • the nitride phosphors with reference to CaAlSiN 3 crystal structure have better comprehensive performance than the above-mentioned YAG phosphors and ordinary red phosphors, but they also have the following obvious disadvantages: 1 due to diffusion and nucleation of components during phosphor synthesis And the optimal growth orientation and the intrinsic regularity of the primary grain size have not been fully studied, resulting in low luminous efficiency of the phosphor, so the luminous efficiency needs to be further improved; 2 the combination of high optical density, high temperature and high humidity Deterioration will occur, which will directly lead to a decrease in the overall lighting efficiency, especially the color coordinates will drift greatly, so the durability of the phosphor can not fully meet the requirements of general lighting.
  • Citride No. 200480040967.7 discloses a phosphor comprising an inorganic compound having the same crystal structure as CaAlSiN 3 .
  • This scheme uses a phosphor based on an inorganic compound containing nitrogen and oxygen, and particularly emphasizes that since the luminance of the light decreases with an increase in the amount of oxygen added, it is preferable that the composition is in a range in which the amount of oxygen added is small, and A good high-temperature durability is obtained, so that the number of atoms of O and N contained in the inorganic compound satisfies 0.5 ⁇ N / (N + O) ⁇ 1 (see paragraphs 161 and 271 of the specification).
  • the obvious disadvantage of this scheme is that the durability of the phosphor can be reduced in order to maintain the luminance of the phosphor and limit the range of the oxygen content.
  • the prior art has contradiction in solving the problem that the anti-aging light decay of the nitride red phosphor and the luminous efficiency of the phosphor are improved.
  • the basic rule is to improve the anti-aging light of the phosphor at the cost of reducing the luminous efficiency of the phosphor.
  • the fading performance, or the improvement of the luminous efficiency of the phosphor at the expense of reducing the anti-aging light decay performance of the phosphor has not yet achieved a comprehensive solution that neither reduces the luminous efficiency of the phosphor and improves the anti-aging light decay performance of the phosphor. Therefore, how to overcome the shortcomings of the prior art has become a major problem to be solved in the technical field of LED phosphors and light-emitting devices.
  • the object of the present invention is to provide a nitrogen oxide phosphor and a preparation method thereof, an oxynitride illuminant and a light-emitting device, the oxynitride phosphor of the present invention, and oxynitride in order to overcome the deficiencies of the prior art.
  • the illuminant has good chemical stability, has the advantages of anti-aging light decay and high luminous efficiency, and is suitable for various light-emitting devices.
  • the preparation method of the invention is simple and reliable, and is suitable for industrial mass production.
  • a nitrogen oxide phosphor according to the present invention comprises an inorganic compound comprising M, A, B, O, N, R elements, wherein: M elements are Ca, Sr, Ba, Mg, Li, At least one of Na and K, the A element is at least one of B, Al, Ga, and In, the B element is at least one of C, Si, Ge, and Sn, and the R element is Ce, Eu, and Lu.
  • M elements are Ca, Sr, Ba, Mg, Li, At least one of Na and K
  • the A element is at least one of B, Al, Ga, and In
  • the B element is at least one of C, Si, Ge, and Sn
  • the R element is Ce, Eu, and Lu.
  • At least one of Dy, Gd, and Ho wherein the inorganic compound forms a crystal of a crystal phase, and an oxygen atom content in the crystal of the crystal phase is gradually increased in structure from a crystal core to a crystal surface;
  • the gradually increasing structural distribution refers to a core region, a transition region, and a crystal surface layer region respectively forming crystal phase crystals according to a distribution of oxygen atom content in a crystal of a crystal phase; the oxygen atom content of the core region is from the inside to the outside.
  • the oxygen atom content on the outer surface of the core region / the oxygen atom content at the core point of the core region is ⁇ 1.5;
  • the oxygen atom content in the transition region increases sharply from the inside to the outside, that is, transition Oxygen atom content / transition zone on the outer surface of the zone
  • oxygen atom content of the surface region is from inside to outside a gentle increase in the distribution structure, namely: an oxygen atom content Oxygen atom content ⁇ 1.5 outer surface region of the surface / skin surface area.
  • the oxynitride illuminator of the present invention is characterized in that it comprises a mixture of the above oxynitride phosphor and other crystal grains or amorphous particles, wherein the proportion of the oxynitride phosphor in the mixture is not less than 50 wt. %.
  • a method 1 for preparing a nitrogen oxide phosphor according to the present invention is characterized in that it comprises the following basic steps:
  • Step 1 using a nitride of M, a nitride of A, a nitride of B, a nitride of R or an oxide, in the chemical composition of the chemical formula M mr A a B b O c N n : R r
  • the stoichiometric ratio of the cation is weighed to the desired raw materials, and uniformly mixed to form a mixture;
  • Step 2 The mixture obtained in the step 1 is calcined at a high temperature in a roasting atmosphere, and then cooled to a predetermined temperature, and then subjected to low-temperature calcination by introducing a nitrogen-oxygen mixed gas or air to obtain a semi-finished product of the nitrogen oxide phosphor;
  • Step 3 The oxynitride phosphor semi-finished product obtained in the step 2 is subjected to post-treatment to obtain a finished oxynitride phosphor.
  • the method 2 for preparing a nitrogen oxide phosphor according to the present invention is characterized in that it comprises the following basic steps:
  • Step 1 using a nitride of M, a nitride of A, a nitride of B, a nitride of R or an oxide, in the chemical composition of the chemical formula M mr A a B b O c N n : R r
  • the stoichiometric ratio of the cation is weighed to the desired raw materials, and uniformly mixed to form a mixture;
  • Step 2 The mixture obtained in the step 1 is calcined at a high temperature in a roasting atmosphere to obtain a semi-finished product of the NOx phosphor;
  • Step 3 post-treating the oxynitride phosphor semi-finished product obtained in step 2;
  • Step 4 The oxynitride phosphor semi-finished product obtained after the post-treatment of step 3 is subjected to low-temperature baking to obtain a finished NOx phosphor powder.
  • a light-emitting device is characterized in that it comprises at least an LED chip emitting ultraviolet light, violet light or blue light and a phosphor, wherein the phosphor uses at least the above-mentioned nitrogen oxide phosphor.
  • the realization principle of the present invention is: the invention emphasizes the structural design of the nitride phosphor, and the structure of the NOx phosphor is divided into a surface layer region, a transition region and a core region, and the surface layer region, the transition region and the core region are synergistically The whole is connected by chemical bonds; the nitride crystal or solid solution is formed in the inner core region to maintain the original atomic composition of the mixture, thereby ensuring efficient luminescence; since the nitride crystal is synthesized, more defects are easily formed in the crystal surface layer. Especially in a section close to the surface of the crystal, the number of defects increases sharply with the decrease of the distance from the surface.
  • the outer surface of the core region forms a transition zone and a surface layer at a lower temperature by a chemical reaction of introducing oxygen.
  • the region allows the oxygen atom content in the crystalline phase crystal to gradually increase from the crystal core to the crystal surface, especially in the transition region, the oxygen atom content increases sharply from the inside to the outside, and the surface region Under the condition that the oxygen atom content is gradually increased from the inside to the outside, the nuclear outer layer can be effectively reduced.
  • the defects that are not conducive to high-efficiency luminescence ensure that the luminous efficiency of the whole particle is significantly improved.
  • the outer surface of the inner core region introduces oxygen at a lower temperature, thereby avoiding oxidation of the crystal surface activator ions, thereby ensuring the overall particle.
  • the oxygen ion Compared with nitrogen ions, the oxygen ion has a small electronegativity and a strong electron-negative bond, and the oxygen atom content in the crystal phase of the formed nitrogen oxide phosphor is from the crystal core to the crystal surface.
  • the interval is gradually increasing, and the chemical and thermal stability of the transition zone and the surface zone in the whole particle can be gradually improved, so that the core region of the particle can be effectively protected and shielded, thereby effectively improving the phosphor in the LED application environment. Thermal stability and durability.
  • the invention introduces an appropriate amount of oxygen into the particles of the oxynitride phosphor to form a more stable transition zone and surface zone, so that the crystallization core zone is more firm and stable.
  • the anti-aging light decay performance is good.
  • the invention sets the structure of the oxynitride particles as the core region, the transition region and the surface layer region, and the oxygen atom content in the crystal of the oxynitride phosphor crystal phase gradually increases from the crystal core to the crystal surface, so that the radius ratio Oxygen ions with small nitrogen ions can replace nitrogen ions more to enhance the bonding force between ions in the crystal phase of the phosphor, so that the phosphor has extremely excellent high temperature durability against aging light decay.
  • the core region of the NOx fluorescent particles is protected by the barrier of the transition zone and the surface zone, the core zone is not easily affected by the external adverse environment, so that the stability of the luminescent center of the NOx phosphor is significantly improved.
  • the luminous efficiency is high.
  • the invention forms a nitrogen oxide crystal phase crystal or a solid solution thereof in the inner core region by maintaining the original composition of the mixture, thereby ensuring high-efficiency luminescence; the outer surface of the inner core region is sequentially formed by introducing a chemical reaction of oxygen at a lower temperature.
  • the transition zone and the surface zone allow the oxygen atom content in the crystalline phase crystal to gradually increase from the crystal core to the crystal surface, especially in the transition zone where the oxygen atom content increases sharply from the inside to the outside.
  • the defects formed by the outer layer of the core which are not conducive to high-efficiency luminescence can be effectively reduced, thereby ensuring the luminous efficiency of the whole particle is obviously improved, and at the same time
  • the outer surface of the core region introduces oxygen at a lower temperature, thereby avoiding oxidation of the crystal surface activator ions, thereby ensuring the luminous efficiency of the overall particles.
  • the oxynitride phosphor of the present invention is suitable for use in the manufacture of various light emitting devices.
  • the manufacturing method is simple and reliable.
  • the manufacturing method of the invention is simple and easy to implement, and is suitable for industrial mass production.
  • FIG. 1 is a schematic cross-sectional view showing a single crystal of a nitrogen oxide phosphor proposed by the present invention.
  • Figure 2 is an X-ray diffraction diagram of a finished oxynitride phosphor of Examples 1-4 of the present invention.
  • Figure 3 is a graph showing the emission spectra of the oxynitride phosphors of Examples 5-8 and Comparative Example 2 of the present invention.
  • Figure 5 is a scanning electron micrograph of a finished oxynitride phosphor of Example 5 of the present invention.
  • Fig. 6 is a scanning electron micrograph of a finished oxynitride phosphor of Example 6 of the present invention.
  • Figure 7 is a scanning electron micrograph of a finished oxynitride phosphor of Example 7 of the present invention.
  • Figure 8 is a scanning electron micrograph of a finished oxynitride phosphor of Example 8 of the present invention.
  • Figure 9 is a graph showing the emission spectra of the oxynitride phosphors of Examples 9-12 and Comparative Example 2 of the present invention.
  • Figure 10 is a graph showing the emission spectrum of the finished oxynitride phosphor of Examples 13-15 of the present invention.
  • a nitrogen oxide phosphor proposed by the present invention comprises an inorganic compound comprising M, A, B, O, N, and R elements, wherein: M element is Ca, Sr, Ba, Mg. At least one of Li, Na, and K, the A element is at least one of B, Al, Ga, and In, the B element is at least one of C, Si, Ge, and Sn, and the R element is Ce, Eu. At least one of Lu, Dy, Gd, and Ho, the inorganic compound forms a crystal of a crystal phase in which an oxygen atom content gradually increases in structure from a crystal core to a crystal surface.
  • M element is Ca, Sr, Ba, Mg. At least one of Li, Na, and K, the A element is at least one of B, Al, Ga, and In, the B element is at least one of C, Si, Ge, and Sn, and the R element is Ce, Eu. At least one of Lu, Dy, Gd, and Ho, the inorganic compound forms a crystal of a crystal phase in
  • the gradually increasing structural distribution refers to a core region, a transition region, and a crystal surface layer region respectively forming crystal phase crystals according to a distribution of oxygen atom content in a crystal of a crystal phase; the oxygen atom content of the core region is from the inside to the outside.
  • the oxygen atom content on the outer surface of the core region / the oxygen atom content at the core point of the core region is ⁇ 1.5; the oxygen atom content in the transition region increases sharply from the inside to the outside, that is, transition The oxygen atom content on the outer surface of the zone/the oxygen atom content on the surface of the transition zone is >1.5; the oxygen atom content in the surface zone is gradually increased from the inside to the outside, that is, the oxygen atom content on the outer surface of the surface layer/surface layer The oxygen atom content of the surface of the zone is ⁇ 1.5.
  • the oxygen atom content on the outer surface of the transition zone / the surface oxygen atom content in the transition zone is >5.
  • the thickness of the surface layer of the crystal phase crystal is within 100 nm; the thickness of the transition region of the crystal phase crystal is within 200 nm; the thickness of the core region of the crystal phase crystal ranges from the surface of the transition region to the core point of the core region .
  • the core region has a core atomic oxygen atom content of ⁇ 10%; and the outer surface of the surface layer region has an oxygen atom content of 30%-50%.
  • M is one or a combination of two of Sr and Ca, A is Al, and B is Si, R. For Eu.
  • the inorganic compound has the same crystal structure as the CaAlSiN 3 crystal phase.
  • any of the oxynitride phosphors proposed by the present invention emits red light having a peak wavelength of from 600 nm to 670 nm when excited by a wavelength of from 300 to 500 nm.
  • Step 1 Using a nitride of M, a nitride of A, a nitride of B, a nitride of R or an oxide, a cation in the chemical composition M mr A a B b O c N n :R r Stoichiometric ratio of the desired raw materials, mixing to form a mixture;
  • Step 2 The mixture obtained in the step 1 is subjected to high-temperature calcination in a roasting atmosphere, and then cooled to a predetermined temperature, and then subjected to low-temperature calcination by introducing a nitrogen-oxygen mixed gas or air to obtain a nitrogen oxide phosphor semi-finished product; wherein: the high-temperature baking is performed.
  • the temperature is 1600-2000 ° C
  • the calcination time is 2-20 h
  • the calcination atmosphere is a pure nitrogen atmosphere or a reducing atmosphere
  • the low-temperature calcination temperature is 200-450 ° C
  • the calcination time is 0.5-24 h
  • the oxygen in the nitrogen-oxygen mixed atmosphere The volume percentage is not more than 20%;
  • Step 3 post-treating the oxynitride phosphor semi-finished product obtained in step 2 to obtain a finished oxynitride phosphor; wherein: the post-treatment comprises one-time grinding, sieving, water washing, drying, secondary grinding and Screening, wherein the water-washed to the oxynitride phosphor finished product has a conductivity of less than 10 ⁇ s/cm.
  • Step 1 Using a nitride of M, a nitride of A, a nitride of B, a nitride of R or an oxide, a cation in the chemical composition M mr A a B b O c N n :R r Stoichiometric ratio of the desired raw materials, mixing to form a mixture;
  • Step 2 The mixture obtained in the step 1 is calcined at a high temperature in a roasting atmosphere to obtain a NOx phosphor semi-finished product; wherein: the high-temperature calcination temperature is 1600-2000 ° C, the calcination time is 2-20 h, and the calcination atmosphere is pure nitrogen. Atmosphere or reducing atmosphere;
  • Step 3 The oxynitride phosphor semi-finished product obtained in the step 2 is subjected to post-treatment; wherein: the post-treatment comprises one-time grinding, sieving, water washing, drying, secondary grinding and sieving, wherein the water is washed to nitrogen oxide fluorescence
  • the conductivity of the powder is less than 10 ⁇ s/cm;
  • Step 4 preparing the oxynitride phosphor semi-finished product obtained after the post-treatment of step 3 by low-temperature roasting The finished oxynitride phosphor; wherein: the low temperature baking temperature is 200-450 ° C, the baking time is 0.5-24 h, and the baking atmosphere is air.
  • a light-emitting device comprises at least an LED chip emitting ultraviolet light, violet light or blue light and a phosphor, wherein the phosphor uses at least the oxynitride phosphor described in any one of the above inventions.
  • a further preferred embodiment of the light-emitting device proposed by the present invention is to further include mixing other types of phosphors to meet illumination requirements or to apply to high-color rendering backlight white LEDs by complementing the luminescent colors.
  • the embodiment refers to the structure and preparation method of the nitrogen oxide phosphor according to the present invention.
  • the obtained oxynitride phosphor is a finished product;
  • the comparative example refers to a phosphor powder obtained by the oxynitride phosphor disclosed in the prior art and a preparation method.
  • the average oxygen atom content and nitrogen atom content in the phosphor were measured by a nitrogen oxide analyzer.
  • the mixed gas was calcined, the calcination time was 0.5 h, the luminescent particles were pulverized and sieved, the sieved granules were placed in deionized water, stirred, stirred for 30 min, then suction filtered, and finally washed until the conductivity was 8.56 ⁇ s/cm.
  • the finished NOx phosphor particles can be obtained.
  • the X-ray diffraction pattern is shown in Fig. 2.
  • the crystal composition of the phosphor is Sr 0.9 Ca 0.08 AlSiN 2.84 O 0.22 :Eu 0.02 .
  • the thickness of the crystal surface layer is 30 nm after Auger electron spectroscopy combined with ion etching.
  • the thickness is 50 nm
  • the core oxygen content in the core region of the crystal is 3.3%
  • the surface oxygen atom content in the crystal transition region is 4.2%
  • the oxygen atom content on the outer surface of the crystal transition region is 22%
  • the oxygen atom content on the outer surface of the crystal surface layer is 31%.
  • the sieved phosphor particles were placed in deionized water, stirred, stirred for 30 min, then filtered, and finally washed until the conductivity was 8.89. ⁇ s/cm, the finished NOx phosphor particles can be obtained.
  • the X-ray diffraction pattern is shown in Fig. 2.
  • the phosphor composition is Sr 0.08 Ca 0.89 AlSiN 2.92 O 0.12 :Eu 0.03 .
  • the thickness of the crystal surface region is 99 nm after Auger electron spectroscopy and ion etching.
  • the thickness of the crystal transition region is At 198 nm, the core oxygen content in the core region of the crystal is 1.6%, the surface oxygen atom content in the crystal transition region is 2%, the oxygen atom content on the outer surface of the crystal transition region is 30%, and the oxygen atom content on the outer surface of the crystal surface region is 49%.
  • the thickness of the crystal surface layer is 9 nm and the thickness of the crystal transition region is 30 nm after Auger electron spectroscopy and ion etching.
  • the core oxygen content in the core region of the crystal is 2.8%
  • the surface oxygen atom content in the crystal transition region is 3.6%
  • the oxygen atom content on the outer surface of the crystal transition region is 22%
  • the oxygen atom content on the outer surface of the crystal surface layer is 30%.
  • the sieved phosphor particles are placed in deionized water and stirred, stirred for 30 minutes, then filtered, and finally washed until the conductivity is 9.45. ⁇ s/cm, the finished NOx phosphor particles can be obtained.
  • the X-ray diffraction pattern is shown in Fig. 2.
  • the crystal composition of the phosphor is Sr 0.8 Ca 0.19 AlSiN 2.86 O 0.21 :Eu 0.01 .
  • the thickness of the crystal surface region is 35 nm and the thickness of the crystal transition region is determined by Auger electron spectroscopy combined with ion etching.
  • the core oxygen content in the core region of the crystal is 2.5%
  • the surface oxygen atom content in the crystal transition region is 3.5%
  • the oxygen atom content on the outer surface of the crystal transition region is 30%
  • the oxygen atom content on the outer surface of the crystal surface region is 35%.
  • the phosphors described in the above examples and comparative examples were respectively made into light-emitting devices, and the test results showed that the luminous intensity and aging performance of Comparative Example 1 were lower than those of Examples 1-4, see Table 1.
  • the aging conditions are: SMD-2835 LED lamp bead, chip size 10 ⁇ 30mil, chip band 452.5-455nm, current 150mA, power 0.5W, environmental conditions: normal temperature and humidity.
  • the obtained phosphor particles are pulverized, sieved, and the sieved phosphor particles are placed.
  • the nitrous oxide phosphor particles were prepared by stirring in ionic water, stirring for 30 min, then suction filtration, and finally washing to a conductivity of 9.5 ⁇ s/cm.
  • the emission spectrum is shown in Fig. 3.
  • the excitation spectrum is shown in Fig. 4.
  • the scanning electron microscope is shown in Fig. 5.
  • the phosphor crystal composition is Li 0.06 Sr 0.08 Ca 0.89 Al 0.9 Ga 0.1 Si 0.9 Ge 0.1 N 2.88 O 0.15 : Eu 0.01 , after Russia
  • the thickness of the surface layer of the crystal is 15 nm
  • the thickness of the crystal transition zone is 42 nm
  • the core oxygen atom content of the core region is 1.8%
  • the surface oxygen atom content is 2%.
  • Crystal transition The oxygen atom content on the outer surface of the zone is 37%
  • the oxygen atom content on the outer surface of the crystal surface zone is 42%.
  • molybdenum crucible In molybdenum crucible, it is quickly transferred into a carbon tube furnace, and then gradually heated to 1790 ° C under nitrogen atmosphere for 18 h; then 7 ° C / min down to 300 ° C, air is introduced for roasting, roasting time is 6 h, The obtained phosphor particles are pulverized and sieved, and the sieved phosphor particles are placed in deionized water, stirred, stirred for 30 minutes, then filtered, and finally washed to a conductivity of 7.5 ⁇ s/cm to obtain nitrogen oxides. Finished phosphor particles.
  • the emission spectrum is shown in Fig. 3.
  • the excitation spectrum is shown in Fig. 4.
  • the scanning electron microscope is shown in Fig. 6.
  • the crystal composition of the phosphor is Ba 0.05 Sr 0.4 Ca 0.5 AlSiN 2.76 O 0.24 : Eu 0.05 .
  • the thickness of the surface layer of the crystal was measured to be 25 nm, the thickness of the crystal transition zone was 45 nm, the core oxygen atom content in the crystal core region was 3.2%, the surface oxygen atom content in the crystal transition region was 3.9%, and the oxygen atom content on the outer surface of the crystal transition region was 29%.
  • the outer surface of the crystal surface layer has an oxygen atom content of 33%.
  • the emission spectrum is shown in Fig. 3.
  • the excitation spectrum is shown in Fig. 4.
  • the scanning electron microscope is shown in Fig. 7.
  • the phosphor composition is Mg 0.2 Sr 0.6 Ca 0.18. Al 0.8 In 0.2 Si 0.8 Sn 0.2 N 2.76 O 0.18 :Eu 0.02 , the thickness of the surface layer of the crystal is 23 nm, the thickness of the crystal transition zone is 72 nm, and the core oxygen atom of the crystal core region is measured by Auger electron spectroscopy combined with ion etching.
  • the content is 2.6%, the surface oxygen atom content in the crystal transition zone is 3.5%, and the crystal transition zone Atomic surface oxygen content of 38%, the outer surface of the crystal surface region an oxygen atom content of 41%.
  • the scanning electron microscope is shown in Fig. 8.
  • the crystal structure of the phosphor is Dy 0.01 Sr 0.92 Ca 0.45 AlSiN 2.85 O 0.21 : Eu 0.02 .
  • the thickness of the surface layer of the crystal was measured to be 87 nm, the thickness of the crystal transition region was 14 nm, the core oxygen atom content in the crystal core region was 2.5%, the surface oxygen atom content in the crystal transition region was 3.6%, and the oxygen atom content on the outer surface of the crystal transition region was 36%.
  • the outer surface of the crystal surface layer has an oxygen atom content of 45%.
  • the phosphors described in the above examples and comparative examples were respectively made into light-emitting devices, and the test results showed that the luminous intensity and aging performance of Comparative Example 2 were lower than those of Examples 5-8, see Table 2.
  • the aging conditions are: SMD-2835 LED lamp bead, chip size 10 ⁇ 30mil, chip band 452.5-455nm, current 150mA, power 0.5W, environmental conditions: normal temperature and humidity.
  • the above raw materials are thoroughly mixed in a nitrogen atmosphere for 3h, charged into molybdenum crucible, and then quickly transferred into a carbon tube furnace, and then gradually heated to 1870 ° C under the protection of pure nitrogen atmosphere, heat preservation 10h, the obtained phosphor particles were pulverized and sieved, and the sieved phosphor particles were placed in deionized water, stirred, stirred for 30 min, then suction filtered, and finally washed to a conductivity of 9.8 ⁇ s/cm, and then placed.
  • the calcination was carried out in an oven at 300 ° C for 12 h, and after sieving, the finished oxynitride phosphor particles were obtained.
  • the emission spectrum is shown in Fig. 9.
  • the crystal composition of the phosphor is Sr 0.8 Ca 0.0.05 Ba 0.05 Mg 0.05 Al 1.2 Si 0.8 N 2.71 O 0.33 :Eu 0.02 Lu 0.01 Ho 0.01 , measured by Auger electron spectroscopy combined with ion etching
  • the thickness of the surface layer of the crystal is 56 nm, the thickness of the crystal transition zone is 24 nm, the core oxygen atom content in the crystal core region is 4%, the surface oxygen atom content in the crystal transition region is 5.6%, and the oxygen atom content on the outer surface of the crystal transition region is 33%.
  • the outer surface of the surface layer has an oxygen atom content of 39%.
  • the sieved phosphor particles were placed in deionized water, stirred, stirred for 30 min, then filtered, and finally washed to a conductivity of 5.7 ⁇ s/cm, and then placed in an oven at 350 ° C for calcination for 2 h. After sieving, the finished NOx phosphor particles can be obtained.
  • the emission spectrum is shown in Fig. 9.
  • the composition of the phosphor is Li 0.01 Ca 0.09 Sr 0.7 Al 0.8 Si 1.2 N 2.68 O 0.48 :Eu 0.09 Gd 0.01 , and the thickness of the surface layer of the crystal is 34 nm after Auger electron spectroscopy combined with ion etching.
  • the thickness of the crystal transition zone is 14 nm
  • the core oxygen atom content in the crystal core region is 6.5%
  • the surface oxygen atom content in the crystal transition region is 8.2%
  • the oxygen atom content on the outer surface of the crystal transition region is 25%
  • the oxygen atom content on the outer surface of the crystal surface region is 35%.
  • the finished NOx phosphor particles can be obtained.
  • the emission spectrum is shown in Fig. 9.
  • the composition of the phosphor is K 0.01 Ca 0.65 Sr 0.4 Al 0.9 Si 1.1 N 2.85 O 0.27 :Eu 0.03 Ce 0.01 .
  • the thickness of the surface layer of the crystal is 102 nm after Auger electron spectroscopy and ion etching.
  • the thickness of the crystal transition zone is 56 nm, the core oxygen atom content in the crystal core region is 3.7%, the surface oxygen atom content in the crystal transition region is 4.8%, the oxygen atom content on the outer surface of the crystal transition region is 37%, and the oxygen atom content on the outer surface of the crystal surface region. 42%.
  • the sieved phosphor particles were placed in deionized water, stirred, stirred for 30 min, then filtered, finally washed to a conductivity of 6.9 ⁇ s/cm, and then placed in an oven at 200 ° C for roasting.
  • the calcination time is 24h, and the finished oxynitride phosphor particles can be obtained after sieving.
  • the emission spectrum is shown in Fig. 9.
  • the composition of the phosphor is K 0.01 Ca 0.65 Sr 0.4 Al 0.9 B 0.1 Ga 0.1 Si 0.9 N 2.85 O 0.27 :Eu 0.03 Ce 0.01 , and the surface layer of the crystal is measured by Auger electron spectroscopy combined with ion etching.
  • the thickness is 67 nm
  • the thickness of the crystal transition region is 56 nm
  • the core oxygen content in the core region is 3.6%
  • the surface oxygen atom content in the crystal transition region is 4.2%
  • the oxygen atom content on the outer surface of the crystal transition region is 37%.
  • the surface oxygen atom content is 42%.
  • the sieved phosphor particles were placed in deionized water, stirred, stirred for 30 min, then suction filtered, and finally washed to a conductivity of 6.9 ⁇ s/cm, and then placed in an oven at 380 ° C for calcination for 10 h. After sieving, the finished NOx phosphor particles can be obtained.
  • the emission spectrum is shown in Fig. 10.
  • the composition of the phosphor is Ca 0.11 Sr 0.85 Al 0.9 Ge 0.1 Sn 0.1 Si 0.9 N 2.57 O 0.3 :Eu 0.04 .
  • the thickness of the surface layer of the crystal is 87 nm after Auger electron spectroscopy and ion etching.
  • the thickness of the crystal transition zone is 102 nm
  • the core oxygen atom content in the crystal core region is 4.2%
  • the surface oxygen atom content in the crystal transition region is 5.2%
  • the oxygen atom content on the outer surface of the crystal transition region is 35%
  • the oxygen atom content on the outer surface of the crystal surface region is 44%.
  • the emission spectrum is shown in Fig. 10.
  • the composition of the phosphor is Ca 0..099 Sr 0.99 Al 1.16 Si 1.2 N 3.47 O 0.03 :Eu 0.001 .
  • the thickness of the surface layer of the crystal is 25 nm after Auger electron spectroscopy combined with ion etching.
  • the thickness of the crystal transition zone is 9 nm, the core oxygen atom content in the crystal core region is 0.4%, the surface oxygen atom content in the crystal transition region is 0.6%, the oxygen atom content on the outer surface of the crystal transition region is 10%, and the oxygen atom content on the outer surface of the crystal surface region is 14 %.
  • the thickness of the transition zone is 125 nm
  • the core oxygen atom content in the crystal core region is 9%
  • the surface oxygen atom content in the crystal transition region is 12.5%
  • the oxygen atom content on the outer surface of the crystal transition region is 40%
  • the oxygen atom content on the outer surface of the crystal surface region is 48%.
  • the phosphors described in the above Examples and Comparative Example 2 were respectively made into light-emitting devices, and the test results showed that the luminous intensity and aging performance of Comparative Example 2 were lower than those of Examples 9-15, see Table 3.
  • the aging conditions are: SMD-2835 LED lamp bead, chip size 10 ⁇ 30mil, chip band 452.5-455nm, current 150mA, power 0.5W, environmental conditions: normal temperature and humidity.
  • the invention has been verified by trial and error and has achieved satisfactory trial results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本发明涉及一种氮氧化物荧光粉,包括无机化合物,所述无机化合物包含M、A、B、O、N、R元素,其中:M元素是Ca、Sr、Ba、Mg、Li、Na、K中的至少一种,A元素是B、Al、Ga、In中的至少一种,B元素是C、Si、Ge、Sn中的至少一种,R元素是Ce、Eu、Lu、Dy、Gd、Ho中的至少一种,其特征在于,所述无机化合物形成结晶相晶体,所述结晶相晶体中的氧原子含量自晶体内核至晶体表面的区间内呈逐渐增加的结构分布。本发明的氮氧化物荧光粉、氮氧化物发光体的化学稳定性好,具有抗老化光衰和发光效率高的优点,适用于各种发光器件。本发明的制备方法简便可靠,适用于工业化批量生产制造。

Description

一种氮氧化物荧光粉及其制备方法、氮氧化物发光体和发光器件 技术领域
本发明属于LED荧光体及发光器件技术领域,特别是涉及一种可被紫外、紫光或蓝光有效激发的一种氮氧化物荧光粉及其制备方法、氮氧化物发光体和发光器件。
背景技术
当今以发光二极管(LED)为代表的半导体照明电光源被誉为继白炽灯、日光灯和节能灯之后的第四代照明电光源,被称为“21世纪绿色光源”。
随着半导体照明进入普通照明领域,加快开发高显色、抗老化和低光衰的白光LED迫在眉睫。现有制造白光LED的方法主要有:一是在蓝光LED芯片上涂敷黄色荧光粉(YAG)而实现白光发射,但YAG荧光粉存在着色温偏高、显色指数偏低的不足,不能满足半导体照明的要求;虽然YAG荧光粉的发射光谱非常宽,但位于红光区域的发射强度非常弱,导致同蓝光LED芯片混合后存在红光缺乏的现象,从而影响白光LED的相关色温及显色指数。二是在蓝光LED芯片上涂敷绿色和红色荧光粉来解决上述问题,然而红色荧光粉也同样存在着不少问题,如CaS:Eu2+光衰大、化学稳定性差,CaMoO4:Eu2+激发范围窄,Y2O3:Eu3+和Y2O2S:Eu3+在蓝光区吸收弱能量转化效率低,M2Si5N8:Eu2+抗光衰性能差,均无法与LED芯片达到完美的配合,这些都是制约白光LED技术发展的瓶颈。三是引用CaAlSiN3晶体结构的氮化物荧光粉虽然其综合性能优于前述YAG荧光粉和普通红色荧光粉,但还存在以下明显的不足:①由于对荧光粉合成过程中组分扩散、成核和择优生长取向与一次晶粒尺寸内在规律的还没有完全研究透彻,导致荧光粉的发光效率偏低,所以发光效率还需进一步提高;②荧光粉在高光密度、高温和高湿三因素联合作用下会发生劣化,直接导致整灯光效下降,特别是色坐标出现大幅度漂移,所以荧光粉的耐久性能还不能完全满足普通照明的要求。
中国专利200480040967.7公开了一种荧光体,其包含无机化合物,所述无机化合物具有与CaAlSiN3相同的晶体结构。该方案以使用包含氮和氧的无机化合物为基质的荧光体,并特别强调了由于发光亮度随氧的添加量增加而降低,因 此优选方案是在氧的添加量小的范围内组成,并为获得较好的高温耐久性,而使得无机化合物中包含的O和N的原子数满足0.5≤N/(N+O)≤1(参见说明书第161段、271段)。该方案存在的明显不足在于为保持荧光粉发光亮度,而限制了氧含量的范围,所以荧光体的耐久性能反而降低。
2008年电化学杂志公开发表的“Synthetic method and luminescence properties of SrxCa1-xAlSiN3:Eu2+ mixed nitride phosphors”一文中提出采用合金法制备(Sr,Ca)AlSiN3红色荧光粉,该方法与采用氮化物原料合成的荧光粉相比,氧含量更低,使得合金法制备(Sr,Ca)AlSiN3红色荧光粉具有更好的一致性和相纯度,同时具有较好的稳定性。但该方法还存在明显不足,因采用合金法制备得(Sr,Ca)AlSiN3红色荧光粉,强调以控制较低的氧含量来达到较高的一致性和相纯度,而使得荧光粉的耐久性明显降低,实用性差,限制了它的应用。
2015年Journal of Materials Chemistry C公开发表的“Reduced thermal degradation of the red-emitting Sr2Si5N8:Eu2+ phosphor via thermal treatment in nitrogen”一文中,针对Sr2Si5N8:Eu2+的热劣化机理进行了研究,认为通过焙烧在荧光粉表面形成一层氧化物保护膜,阻止了Eu2+的氧化,提高了热劣化性能,并由此推测可以改进Sr2Si5N8:Eu2+在LED中的应用性能,但并没有实验数据的支持,也没有从根本上解决Sr2Si5N8:Eu2+长期老化问题。实际上,在该体系中,由于Sr2Si5N8:Eu2+本身稳定性较差,焙烧过程中表面晶体结构受到破坏,导致荧光粉发光强度明显下降,因此不具有实际应用价值。
综上所述,现有技术在解决氮化物红色荧光粉抗老化光衰与提高荧光粉发光效率的问题中存在着矛盾,基本规律是以降低荧光粉发光效率为代价来提高荧光粉抗老化光衰性能,或者以降低荧光粉抗老化光衰性能为代价来提高荧光粉发光效率,目前还未有既不降低荧光粉发光效率又能提高荧光粉抗老化光衰性能的综合性解决方案。因此,如何克服现有技术的不足已成为当今LED荧光体及发光器件技术领域中亟待解决的重大难题。
发明内容
本发明的目的是为克服现有技术所存在的不足而提供一种氮氧化物荧光粉及其制备方法、氮氧化物发光体和发光器件,本发明的氮氧化物荧光粉、氮氧化 物发光体的化学稳定性好,具有抗老化光衰和发光效率高的优点,适用于各种发光器件。本发明的制备方法简便可靠,适用于工业化批量生产制造。
根据本发明提出的一种氮氧化物荧光粉,包括无机化合物,所述无机化合物包含M、A、B、O、N、R元素,其中:M元素是Ca、Sr、Ba、Mg、Li、Na、K中的至少一种,A元素是B、Al、Ga、In中的至少一种,B元素是C、Si、Ge、Sn中的至少一种,R元素是Ce、Eu、Lu、Dy、Gd、Ho中的至少一种,其特征在于,所述无机化合物形成结晶相晶体,所述结晶相晶体中的氧原子含量自晶体内核至晶体表面的区间内呈逐渐增加的结构分布;所述逐渐增加的结构分布是指按照氧原子含量在结晶相晶体中的分布而分别形成结晶相晶体的内核区、过渡区、晶体表层区;所述内核区的氧原子含量由内至外呈平缓增加的结构分布,即:内核区外表面的氧原子含量/内核区核心点的氧原子含量≤1.5;所述过渡区的氧原子含量由内至外呈急剧增加的结构分布,即:过渡区外表面的氧原子含量/过渡区内表面的氧原子含量>1.5;所述表层区的氧原子含量由内至外呈平缓增加的结构分布,即:表层区外表面的氧原子含量/表层区内表面的氧原子含量≤1.5。
本发明提出的一种氮氧化物发光体,其特征在于,包括上述的氮氧化物荧光粉与其它晶体晶粒或非晶颗粒的混合物,所述混合物中氮氧化物荧光粉的比例不小于50wt%。
本发明提出的一种氮氧化物荧光粉的制备方法1,其特征在于,包括如下基本步骤:
步骤1:以M的氮化物、A的氮化物、B的氮化物、R的氮化物或氧化物为原料,按化学通式Mm-rAaBbOcNn:Rr中化学组成中阳离子的化学计量比称取所需原料,混合均匀形成混合料;
步骤2:将步骤1得到的混合料在焙烧气氛中进行高温焙烧,然后降温至预定温度后通入氮氧混合气或空气进行低温焙烧,得到氮氧化物荧光粉半成品;
步骤3:将步骤2得到的氮氧化物荧光粉半成品进行后处理,即制得氮氧化物荧光粉成品。
本发明提出的一种氮氧化物荧光粉的制备方法2,其特征在于,包括如下基本步骤:
步骤1:以M的氮化物、A的氮化物、B的氮化物、R的氮化物或氧化 物为原料,按化学通式Mm-rAaBbOcNn:Rr中化学组成中阳离子的化学计量比称取所需原料,混合均匀形成混合料;
步骤2:将步骤1得到的混合料在焙烧气氛中进行高温焙烧,得到氮氧化物荧光粉半成品;
步骤3:将步骤2得到的氮氧化物荧光粉半成品进行后处理;
步骤4:将步骤3后处理后得到的氮氧化物荧光粉半成品进行低温焙烧制得氮氧化物荧光粉成品。
本发明提出的一种发光器件,其特征在于,至少含有发紫外光、紫光或蓝光的LED芯片和荧光粉,其中荧光粉至少使用上述的氮氧化物荧光粉。
本发明的实现原理是:本发明强调对所述氮化物荧光粉的结构设计,将氮氧化物荧光粉的结构分设为表层区、过渡区和内核区,表层区、过渡区和内核区协同成为以化学键连接的整体;在内核区内以保持混合料的原始原子组成来形成氮化物晶体或固溶体,从而可保障高效发光;由于氮化物晶体的合成过程中,在晶体表层容易形成较多的缺陷,特别在靠近晶体表面的一段区间内,缺陷数量随靠近表面的距离的减少呈激增趋势,本发明中内核区的外表面在较低温度下以引入氧的化学反应来依次形成过渡区和表层区,使得结晶相晶体中的氧原子含量可自晶体内核至晶体表面的区间内呈逐渐增加的结构分布,特别是在过渡区的氧原子含量由内至外呈急剧增加的结构分布、表层区的氧原子含量由内至外呈平缓增加的结构分布的条件下,能够有效降低核外层所形成的不利于高效发光的缺陷,从而保证整体颗粒的发光效率有明显提高,同时,内核区的外表面在较低温度下引入氧,避免了晶体表层激活剂离子被氧化,进而保证了整体颗粒的发光效率;与氮离子相比,氧离子的半径小电负性高,离子间的结合力更强,形成的氮氧化物荧光粉的结晶相晶体中的氧原子含量自晶体内核至晶体表面的区间内呈逐渐递增,整体颗粒中的过渡区和表层区的化学及热稳定性能逐渐提升,以致对颗粒的内核区起到有效的保护和屏蔽作用,进而可有效提高荧光粉在LED应用环境中的热稳定性与耐久性。
本发明与现有技术相比其显著优点在于:
第一,化学稳定性好。本发明在氮氧化物荧光粉的颗粒中引入适量的氧,形成更加稳定的过渡区与表层区,使得结晶内核区更加坚实和稳定。
第二,抗老化光衰性能好。本发明将氮氧化物颗粒的结构设为内核区、过渡区和表层区,在氮氧化物荧光粉结晶相晶体中的氧原子含量自晶体内核至晶体表面的区间内呈逐渐递增,使得半径比氮离子小的氧离子能够更多的取代氮离子,以增强荧光粉结晶相晶体中的离子间的结合力,从而使得荧光粉具有极其优异的抗老化光衰的高温耐久性。同时,由于氮氧化物荧光颗粒的内核区因受到过渡区和表层区的屏障保护作用,内核区不易受到外部不利环境的影响,使得氮氧化物荧光粉的发光中心的稳定性显著提高。
第三,发光效率高。本发明在内核区内以保持混合料的原始组成来形成氮氧化物结晶相晶体或其固溶体,从而可保障高效发光;内核区的外表面在较低温度下以引入氧的化学反应来依次形成过渡区和表层区,使得结晶相晶体中的氧原子含量可自晶体内核至晶体表面的区间内呈逐渐增加的结构分布,特别是在过渡区的氧原子含量由内至外呈急剧增加的结构分布、表层区的氧原子含量由内至外呈平缓增加的结构分布的条件下,能够有效降低核外层所形成的不利于高效发光的缺陷,从而保证整体颗粒的发光效率有明显提高,同时,内核区的外表面在较低温度下引入氧,避免了晶体表层激活剂离子被氧化,进而保证了整体颗粒的发光效率。
第四,适用范围广泛。本发明的氮氧化物荧光粉适用于制造各种发光器件。
第五,制造方法简便可靠。本发明的制造方法简单易行,适用于工业化批量生产制造。
附图说明
图1为本发明提出的氮氧化物荧光粉的单颗晶体的剖视示意图。
图2为本发明实施例1-4的氮氧化物荧光粉成品的X射线衍射图。
图3为本发明实施例5-8和比较例2的氮氧化物荧光粉成品的发射光谱图。
图4为本发明实施例5-8和比较例2的氮氧化物荧光粉成品的激发光谱图。
图5为本发明实施例5的氮氧化物荧光粉成品的扫描电镜图。
图6为本发明实施例6的氮氧化物荧光粉成品的扫描电镜图。
图7为本发明实施例7的氮氧化物荧光粉成品的扫描电镜图。
图8为本发明实施例8的氮氧化物荧光粉成品的扫描电镜图。
图9为本发明实施例9-12和比较例2的氮氧化物荧光粉成品的发射光谱图。
图10为本发明实施例13-15的氮氧化物荧光粉成品的发射光谱图。
具体实施方式
下面结合附图和实施例对本发明的具体实施方式作进一步的详细描述。
结合图1,本发明提出的一种氮氧化物荧光粉,包括无机化合物,所述无机化合物包含M、A、B、O、N、R元素,其中:M元素是Ca、Sr、Ba、Mg、Li、Na、K中的至少一种,A元素是B、Al、Ga、In中的至少一种,B元素是C、Si、Ge、Sn中的至少一种,R元素是Ce、Eu、Lu、Dy、Gd、Ho中的至少一种,所述无机化合物形成结晶相晶体,所述结晶相晶体中的氧原子含量自晶体内核至晶体表面的区间内呈逐渐增加的结构分布。
本发明提出的一种氮氧化物荧光粉的进一步优选方案是:
所述逐渐增加的结构分布是指按照氧原子含量在结晶相晶体中的分布而分别形成结晶相晶体的内核区、过渡区、晶体表层区;所述内核区的氧原子含量由内至外呈平缓增加的结构分布,即:内核区外表面的氧原子含量/内核区核心点的氧原子含量≤1.5;所述过渡区的氧原子含量由内至外呈急剧增加的结构分布,即:过渡区外表面的氧原子含量/过渡区内表面的氧原子含量>1.5;所述表层区的氧原子含量由内至外呈平缓增加的结构分布,即:表层区外表面的氧原子含量/表层区内表面的氧原子含量≤1.5。
所述过渡区外表面氧原子含量/过渡区内表面氧原子含量>5。
所述结晶相晶体的表层区的厚度为100nm以内;所述结晶相晶体的过渡区的厚度为200nm以内;所述结晶相晶体的内核区的厚度范围为从过渡区内表面至内核区核心点。
所述内核区核心点氧原子含量为≤10%;所述表层区外表面氧原子含量为30%-50%。
所述无机化合物形成结晶相晶体的化学通式为Mm-rAaBbNnOc:Rr,其中0.9≤m≤1.1,0.8≤a≤1.2,0.8≤b≤1.2,2.5<n≤3.5,0.001≤c≤1,0.001≤r≤0.1,且满足2m+3a+4b-3n-2c=0。
所述无机化合物中M为Sr、Ca中的一种或两种组合,A为Al,B为Si,R 为Eu。
所述无机化合物具有与CaAlSiN3结晶相相同的晶体结构。
上述本发明提出的任一项氮氧化物荧光粉,在激发光波长300-500nm范围内激发下,发出峰波长位于600nm-670nm的红光。
本发明提出的一种氮氧化物荧光粉及其优选方案的制备方法1,包括如下具体步骤:
步骤1:以M的氮化物、A的氮化物、B的氮化物、R的氮化物或氧化物为原料,按化学通式Mm-rAaBbOcNn:Rr化学组成中阳离子的化学计量比称取所需原料,混合均匀形成混合料;
步骤2:将步骤1得到的混合料在焙烧气氛中进行高温焙烧,然后降温至预定温度后通入氮氧混合气或空气进行低温焙烧,得到氮氧化物荧光粉半成品;其中:所述高温焙烧温度为1600-2000℃,焙烧时间2-20h,焙烧气氛是纯氮气气氛或还原气氛;所述低温焙烧温度为200-450℃,焙烧时间为0.5-24h;所述氮氧混合气气氛中氧气体积百分含量不大于20%;
步骤3:将步骤2得到的氮氧化物荧光粉半成品进行后处理,即制得氮氧化物荧光粉成品;其中:所述后处理包括一次研磨、过筛、水洗、烘干、二次研磨及过筛,其中水洗至氮氧化物荧光粉成品电导率小于10μs/cm。
本发明提出的一种氮氧化物荧光粉及其优选方案的制备方法2,包括如下具体步骤:
步骤1:以M的氮化物、A的氮化物、B的氮化物、R的氮化物或氧化物为原料,按化学通式Mm-rAaBbOcNn:Rr化学组成中阳离子的化学计量比称取所需原料,混合均匀形成混合料;
步骤2:将步骤1得到的混合料在焙烧气氛中进行高温焙烧,得到氮氧化物荧光粉半成品;其中:所述高温焙烧温度为1600-2000℃,焙烧时间2-20h,焙烧气氛是纯氮气气氛或还原气氛;
步骤3:将步骤2得到的氮氧化物荧光粉半成品进行后处理;其中:所述后处理包括一次研磨、过筛、水洗、烘干、二次研磨及过筛,其中水洗至氮氧化物荧光粉的电导率小于10μs/cm;
步骤4:将步骤3后处理后得到的氮氧化物荧光粉半成品进行低温焙烧制得 氮氧化物荧光粉成品;其中:所述低温焙烧温度为200-450℃,焙烧时间为0.5-24h,焙烧气氛为空气。
本发明提出的一种发光器件,至少含有发紫外光、紫光或蓝光的LED芯片和荧光粉,其中荧光粉至少使用上述本发明任一项中所述的氮氧化物荧光粉。
本发明提出的一种发光器件的进一步优选方案是:还包括混合其它类型的荧光粉,以通过发光颜色的互补,满足照明需要或应用于高显色的背光源白光LED中。
下面将本发明提出的一种氮氧化物荧光粉及其制备方法的具体实施例及比较例进一步公开如下,其中:实施例是指按照本发明提出的氮氧化物荧光粉的结构及制备方法而得到的氮氧化物荧光粉成品;比较例是指按照现有技术公开的氮氧化物荧光粉及制备方法而得到的荧光粉成品。荧光粉中的平均氧原子含量和氮原子含量通过氮氧分析仪测试得到。
实施例1:
称取Ca3N23.95g,Sr3N278.53g,AlN40.99g,Si3N446.76g,Eu2O33.52g,将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入管式炉中,然后在氢气气氛保护下逐渐升温至1780℃,保温12h;然后10℃/min降至450℃,通入氮气与氧气体积比为90%:10%的混合气体进行焙烧,焙烧时间为0.5h,将所发光颗粒粉碎后过筛,将过筛后的颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为8.56μs/cm,即可制得氮氧化物荧光粉颗粒成品。X射线衍射图见图2,荧光粉晶体组成式为Sr0.9Ca0.08AlSiN2.84O0.22:Eu0.02,经过俄歇电子能谱配合离子刻蚀测得晶体表层区的厚度为30nm,晶体过渡区的厚度为50nm,晶体内核区核心氧原子含量为3.3%,晶体过渡区内表面氧原子含量4.2%,晶体过渡区外表面氧原子含量22%,晶体表层区外表面氧原子含量31%。
实施例2:
称取Ca3N243.98g,Sr3N27.76g,AlN40.99g,Si3N446.76g,Eu2O35.28g,将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入碳管炉中,然后在纯氮气气氛保护下逐渐升温至2000℃,保温2h;然后以8℃/min降至300℃,通入氮气与氧气体积比为80%:20%的混合气体进行焙烧,焙烧时间为24h,将所得荧光粉颗粒粉碎后过筛,将过筛后荧光粉颗粒放入去离子水中 搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为8.89μs/cm,即可制得氮氧化物荧光粉颗粒成品。X射线衍射图见图2,荧光粉组成为Sr0.08Ca0.89AlSiN2.92O0.12:Eu0.03,经过俄歇电子能谱配合离子刻蚀测得晶体表层区的厚度为99nm,晶体过渡区的厚度为198nm,晶体内核区核心氧原子含量为1.6%,晶体过渡区内表面氧原子含量2%,晶体过渡区外表面氧原子含量30%,晶体表层区外表面氧原子含量49%。
实施例3
称取Ca3N246.95g,AlN40.99g,Si3N446.76g,Eu2O38.8g,将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入管式炉中,然后在CO气气氛保护下逐渐升温至1600℃,保温20h;然后10℃/min降至320℃,通入氮气与氧气体积比为95%:5%的混合气体进行焙烧,焙烧时间为1h,将过筛后的荧光粉颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为9.52μs/cm,即可制得氮氧化物荧光粉颗粒成品。X射线衍射图见图2,荧光粉晶体组成为Ca0.95AlSiN2.84O0.24:Eu0.05,经过俄歇电子能谱配合离子刻蚀测得晶体表层区的厚度为9nm,晶体过渡区的厚度为30nm,晶体内核区核心氧原子含量为2.8%,晶体过渡区内表面氧原子含量3.6%,晶体过渡区外表面氧原子含量22%,晶体表层区外表面氧原子含量30%。
实施例4
称取Ca3N29.39g,Sr3N277.57g,AlN40.99g,Si3N446.76g,Eu2O31.76g,将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入碳管炉中,然后在纯氮气气氛保护下逐渐升温至1870℃,保温10h;然后7℃/min降至400℃,通入氮气与氧气体积比为96%:4%的混合气体进行焙烧,焙烧时间为3h,将所得荧光粉颗粒粉碎后过筛,将过筛后的荧光粉颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为9.45μs/cm,即可制得氮氧化物荧光粉颗粒成品。X射线衍射图见图2,荧光粉晶体组成为Sr0.8Ca0.19AlSiN2.86O0.21:Eu0.01,经过俄歇电子能谱配合离子刻蚀测得晶体表层区的厚度为35nm,晶体过渡区的厚度为70nm,晶体内核区核心氧原子含量为2.5%,晶体过渡区内表面氧原子含量3.5%,晶体过渡区外表面氧原子含量30%,晶体表层区外表面氧原子含量35%。
比较例1
称取Ca3N23.95g,Sr3N287.26g,AlN40.99g,Si3N446.76g,Eu2O33.52g,将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入碳管炉中,然后在纯氮气气氛保护下逐渐升温至1800℃,保温12h,将所得荧光粉颗粒粉碎后过筛,将过筛后的荧光粉颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为7.12μs/cm,即可制得荧光粉颗粒成品。荧光粉组成为Sr0.9Ca0.08AlSiN3:Eu0.02
将上述实施例和比较例所述的荧光粉分别制成发光器件,测试结果得到:比较例1的发光强度和老化性能均低于实施例1-4,参见表1。其中老化条件为:SMD-2835型LED灯珠,芯片尺寸10×30mil,芯片波段452.5-455nm,电流150mA,功率0.5W,环境条件:常温常湿。
表1
Figure PCTCN2016075580-appb-000001
实施例5:
称取Ca3N212.85g,Sr3N267.87g,AlN36.89g,Si3N442.08g,Eu2O31.76g,Li2CO31.48g,GaN311.17g,Ge3N427.4g将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入碳管炉中,然后在纯氮气气氛保护下逐渐升温至1690℃,保温19h;然后6℃/min降至200℃,通入氮气与氧气体积比为97%:3%的混合气体进行焙烧,焙烧时间为15h,将所得荧光粉颗粒粉碎后过筛,将过筛后的荧光粉颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为9.5μs/cm,即可制得氮氧化物荧光粉颗粒成品。发射光谱图见图3,激发光谱图见图4,扫描电镜图见图5,荧光粉晶体组成为Li0.06Sr0.08Ca0.89Al0.9Ga0.1Si0.9Ge0.1N2.88O0.15:Eu0.01,经过俄歇电子能谱配合离子刻 蚀测得晶体表层区的厚度为15nm,晶体过渡区的厚度为42nm,晶体内核区核心氧原子含量为1.8%,晶体过渡区内表面氧原子含量2%,晶体过渡区外表面氧原子含量37%,晶体表层区外表面氧原子含量42%。
实施例6:
称取Ca3N224.71g,Sr3N238.78g,AlN40.998g,Si3N446.76g,Eu2O38.8g,BaO7.66g将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1790℃,保温18h;然后7℃/min降至300℃,通入空气进行焙烧,焙烧时间为6h,将所得荧光粉颗粒粉碎后过筛,将过筛后的荧光粉颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为7.5μs/cm,即可制得氮氧化物荧光粉颗粒成品。发射光谱图见图3,激发光谱图见图4,扫描电镜图见图6,荧光粉晶体组成为Ba0.05Sr0.4Ca0.5AlSiN2.76O0.24:Eu0.05,经过俄歇电子能谱配合离子刻蚀测得晶体表层区的厚度为25nm,晶体过渡区的厚度为45nm,晶体内核区核心氧原子含量为3.2%,晶体过渡区内表面氧原子含量3.9%,晶体过渡区外表面氧原子含量29%,晶体表层区外表面氧原子含量33%。
实施例7:
称取Ca3N29.88g,Sr3N258.18g,AlN32.8g,Si3N437.4g,Eu2O33.52g,MgO7.25g,InN331.37g,Sn3N482.43g将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入碳管炉中,然后在纯氮气气氛保护下逐渐升温至1780℃,保温15h;将所得荧光粉颗粒粉碎后过筛,将过筛后的荧光粉颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为6.9μs/cm,然后将其置于450℃的烘箱中进行焙烧,焙烧时间为0.5h,过筛后即可制得氮氧化物荧光粉颗粒成品,发射光谱图见图3,激发光谱图见图4,扫描电镜图见图7,荧光粉组成为Mg0.2Sr0.6Ca0.18Al0.8In0.2Si0.8Sn0.2N2.76O0.18:Eu0.02,经过俄歇电子能谱配合离子刻蚀测得晶体表层区的厚度为23nm,晶体过渡区的厚度为72nm,晶体内核区核心氧原子含量为2.6%,晶体过渡区内表面氧原子含量3.5%,晶体过渡区外表面氧原子含量38%,晶体表层区外表面氧原子含量41%。
实施例8:
称取Ca3N22.22g,Sr3N289.2g,AlN40.998g,Si3N446.76g,Eu2O33.52g, Dy2O33.73g,将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1750℃,保温10h;将所得荧光粉颗粒粉碎后过筛,将过筛后的氮化物荧光粉颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为9.8μs/cm,然后将其置于280℃的烘箱中进行焙烧,焙烧时间为18h,过筛后即可制得氮氧化物荧光粉颗粒成品。发射光谱图见图3,激发光谱图见图4,扫描电镜图见图8,荧光粉晶体结构式为Dy0.01Sr0.92Ca0.45AlSiN2.85O0.21:Eu0.02,经过俄歇电子能谱配合离子刻蚀测得晶体表层区的厚度为87nm,晶体过渡区的厚度为14nm,晶体内核区核心氧原子含量为2.5%,晶体过渡区内表面氧原子含量3.6%,晶体过渡区外表面氧原子含量36%,晶体表层区外表面氧原子含量45%。
比较例2:
称取Ca3N22.22g,Sr3N289.2g,AlN40.998g,Si3N446.76g,Eu2O33.52g,Dy2O33.73g,将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入管式炉中,然后在纯氮气气氛保护下逐渐升温至1750℃,保温15h,将所得荧光粉颗粒粉碎后过筛,将过筛后的荧光粉颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为8.12μs/cm,即可制得荧光粉颗粒成品。发射光谱图见图3,激发光谱图见图4,荧光粉组成为Sr0.92Ca0.045AlSiN3:Eu0.02Dy0.01
将上述实施例和比较例所述的荧光粉分别制成发光器件,测试结果得到:比较例2的发光强度和老化性能均低于实施例5-8,参见表2。其中老化条件为:SMD-2835型LED灯珠,芯片尺寸10×30mil,芯片波段452.5-455nm,电流150mA,功率0.5W,环境条件:常温常湿。
表2
Figure PCTCN2016075580-appb-000002
Figure PCTCN2016075580-appb-000003
实施例9:
称取Ba3N27.1g,Ca3N22.47g,Sr3N277.56g,MgO 2.015g,AlN49.19g,Si3N437.41g,Eu2O33.52g,Lu2O31.99g,Ho2O31.89g,将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入碳管炉中,然后在纯氮气气氛保护下逐渐升温至1870℃,保温10h,将所得荧光粉颗粒粉碎后过筛,将过筛后的荧光粉颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为9.8μs/cm,然后将其置于300℃的烘箱中进行焙烧,焙烧时间为12h,过筛后即可制得氮氧化物荧光粉颗粒成品。发射光谱见图9,荧光粉晶体组成式为Sr0.8Ca0.0.05Ba0.05Mg0.05Al1.2Si0.8N2.71O0.33:Eu0.02Lu0.01Ho0.01,经过俄歇电子能谱配合离子刻蚀测得晶体表层区的厚度为56nm,晶体过渡区的厚度为24nm,晶体内核区核心氧原子含量为4%,晶体过渡区内表面氧原子含量5.6%,晶体过渡区外表面氧原子含量33%,晶体表层区外表面氧原子含量39%。
实施例10:
称取Ca3N24.45g,Sr3N267.87g,Li2CO30.37g,AlN32.79g,Si3N456.11g,Eu2O315.84g,Gd2O31.81g将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入碳管炉中,然后在纯氮气气氛保护下逐渐升温至1780℃,保温8h,将所得荧光粉颗粒粉碎后过筛,将过筛后的荧光粉颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为5.7μs/cm,然后将其置于350℃的烘箱中进行焙烧,焙烧时间为2h,过筛后即可制得氮氧化物荧光粉颗粒成品。发射光谱见图9,荧光粉组成式为Li0.01Ca0.09Sr0.7Al0.8Si1.2N2.68O0.48:Eu0.09Gd0.01,经过俄歇电子能谱配合离子刻蚀测得晶体表层区的厚度为34nm,晶体过渡区的厚度为14nm,晶体内核区核心氧原子含量为6.5%,晶体过渡区内表面氧原子含量8.2%,晶体过渡区外表面氧原子含量25%,晶体表层区外表面氧原子含量35%。
实施例11:
称取Ca3N232.12g,Sr3N238.78g,K2CO30.69g,AlN45.09g,Si3N442.08g,Eu2O35.28g,CeN1.54g将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入碳管炉中,然后在纯氮气气氛保护下逐渐升温至1680℃,保温 19h,将所得荧光粉颗粒粉碎后过筛,将过筛后的荧光粉颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为6.9μs/cm,然后将其置于400℃的烘箱中进行焙烧,焙烧时间为13h,过筛后即可制得氮氧化物荧光粉颗粒成品。发射光谱见图9,荧光粉组成式为K0.01Ca0.65Sr0.4Al0.9Si1.1N2.85O0.27:Eu0.03Ce0.01,经过俄歇电子能谱配合离子刻蚀测得晶体表层区的厚度为102nm,晶体过渡区的厚度为56nm,晶体内核区核心氧原子含量为3.7%,晶体过渡区内表面氧原子含量4.8%,晶体过渡区外表面氧原子含量37%,晶体表层区外表面氧原子含量42%。
实施例12:
称取Ca3N232.12g,Sr3N238.78g,K2CO30.69g,AlN36.89g,BN2.48g,GaN83.73g,Si3N442.08g,Eu2O35.28g,CeN1.54g将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入碳管炉中,然后在纯氮气气氛保护下逐渐升温至1600℃,保温20h,将所得荧光粉颗粒粉碎后过筛,将过筛后的荧光粉颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为6.9μs/cm,然后将其置于200℃的烘箱中进行焙烧,焙烧时间为24h,过筛后即可制得氮氧化物荧光粉颗粒成品。发射光谱见图9,荧光粉组成式为K0.01Ca0.65Sr0.4Al0.9B0.1Ga0.1Si0.9N2.85O0.27:Eu0.03Ce0.01,经过俄歇电子能谱配合离子刻蚀测得晶体表层区的厚度为67nm,晶体过渡区的厚度为56nm,晶体内核区核心氧原子含量为3.6%,晶体过渡区内表面氧原子含量4.2%,晶体过渡区外表面氧原子含量37%,晶体表层区外表面氧原子含量42%。
实施例13:
称取Ca3N25.44g,Sr3N282.41g,AlN36.89g,Ge3N49.13g,Sn3N413.74g,Si3N442.08g,Eu2O37.04g将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入碳管炉中,然后在纯氮气气氛保护下逐渐升温至1680℃,保温19h,将所得荧光粉颗粒粉碎后过筛,将过筛后的荧光粉颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为6.9μs/cm,然后将其置于380℃的烘箱中进行焙烧,焙烧时间为10h,过筛后即可制得氮氧化物荧光粉颗粒成品。发射光谱见图10,荧光粉组成式为Ca0.11Sr0.85Al0.9Ge0.1Sn0.1Si0.9N2.57O0.3:Eu0.04,经过俄歇电子能谱配合离子刻蚀测 得晶体表层区的厚度为87nm,晶体过渡区的厚度为102nm,晶体内核区核心氧原子含量为4.2%,晶体过渡区内表面氧原子含量5.2%,晶体过渡区外表面氧原子含量35%,晶体表层区外表面氧原子含量44%。
实施例14:
称取Ca3N24.89g,Sr3N295.99g,AlN47.5g,Si3N456.1g,EuN0.17g将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入碳管炉中,然后在纯氮气气氛保护下逐渐升温至1730℃,保温19h,将所荧光粉颗粒粉碎后过筛,将过筛后荧光粉颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为8.5μs/cm,然后将其置于250℃的烘箱中进行焙烧,焙烧时间为2h,过筛后即可制得氮氧化物荧光粉颗粒成品。发射光谱见图10,荧光粉组成式为Ca0..099Sr0.99Al1.16Si1.2N3.47O0.03:Eu0.001,经过俄歇电子能谱配合离子刻蚀测得晶体表层区的厚度为25nm,晶体过渡区的厚度为9nm,晶体内核区核心氧原子含量为0.4%,晶体过渡区内表面氧原子含量0.6%,晶体过渡区外表面氧原子含量10%,晶体表层区外表面氧原子含量14%。
实施例15:
称取Ca3N29.88g,Sr3N271.75g,AlN19.68g,Al2O320.39g,Si3N437.4g,EuN10.56g将以上原料在氮气气氛中充分混合3h,装入钼坩埚中,再将其迅速移入碳管炉中,然后在纯氮气气氛保护下逐渐升温至1690℃,保温20h,将所得荧光粉颗粒粉碎后过筛,将过筛后的荧光粉颗粒放入去离子水中搅拌,搅拌30min,然后抽滤,最后洗涤至电导率为8.7μs/cm,然后将其置于290℃的烘箱中进行焙烧,焙烧时间为17h,过筛后即可制得氮氧化物荧光粉颗粒成品。发射光谱见图10,荧光粉组成为Ca0..2Sr0.74Al0.8Si0.8N2.2O0.5:Eu0.06,经过俄歇电子能谱配合离子刻蚀测得晶体表层区的厚度为38nm,晶体过渡区的厚度为125nm,晶体内核区核心氧原子含量为9%,晶体过渡区内表面氧原子含量12.5%,晶体过渡区外表面氧原子含量40%,晶体表层区外表面氧原子含量48%。
将上述实施例和比较例2所述的荧光粉分别制成发光器件,测试结果得到:比较例2的发光强度和老化性能均低于实施例9-15,参见表3。其中老化条件为:SMD-2835型LED灯珠,芯片尺寸10×30mil,芯片波段452.5-455nm,电流150mA,功率0.5W,环境条件:常温常湿。
表3
Figure PCTCN2016075580-appb-000004
本发明的具体实施方式中凡未涉到的说明属于本领域的公知技术,可参考公知技术加以实施。
本发明经反复试验验证,取得了满意的试用效果。
以上具体实施方式及实施例是对本发明提出的一种氮氧化物荧光粉及其制备方法、氮氧化物发光体和发光器件技术思想的具体支持,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在本技术方案基础上所做的任何等同变化或等效的改动,均仍属于本发明技术方案保护的范围。

Claims (18)

  1. 一种氮氧化物荧光粉,包括无机化合物,所述无机化合物包含M、A、B、O、N、R元素,其中:M元素是Ca、Sr、Ba、Mg、Li、Na、K中的至少一种,A元素是B、Al、Ga、In中的至少一种,B元素是C、Si、Ge、Sn中的至少一种,R元素是Ce、Eu、Lu、Dy、Gd、Ho中的至少一种,其特征在于,所述无机化合物形成结晶相晶体,所述结晶相晶体中的氧原子含量自晶体内核至晶体表面的区间内呈逐渐增加的结构分布。
  2. 根据权利要求1所述的一种氮氧化物荧光粉,其特征在于,所述逐渐增加的结构分布是指按照氧原子含量在结晶相晶体中的分布而分别形成结晶相晶体的内核区、过渡区、晶体表层区;所述内核区的氧原子含量由内至外呈平缓增加的结构分布,即:内核区外表面的氧原子含量/内核区核心点的氧原子含量≤1.5;所述过渡区的氧原子含量由内至外呈急剧增加的结构分布,即:过渡区外表面的氧原子含量/过渡区内表面的氧原子含量>1.5;所述表层区的氧原子含量由内至外呈平缓增加的结构分布,即:表层区外表面的氧原子含量/表层区内表面的氧原子含量≤1.5。
  3. 根据权利要求2所述的一种氮氧化物荧光粉,其特征在于,所述过渡区外表面氧原子含量/过渡区内表面氧原子含量>5。
  4. 根据权利要求2所述的一种氮氧化物荧光粉,其特征在于,所述结晶相晶体的表层区的厚度为100nm以内;所述结晶相晶体的过渡区的厚度为200nm以内;所述结晶相晶体的内核区的厚度范围为从过渡区内表面至内核区核心点。
  5. 根据权利要求2所述的一种氮氧化物荧光粉,其特征在于,所述内核区核心点氧原子含量为≤10%;所述表层区外表面氧原子含量为30%-50%。
  6. 根据权利要求1所述的一种氮氧化物荧光粉,其特征在于所述无机化合物形成结晶相晶体的化学通式为Mm-rAaBbNnOc:Rr,其中0.9≤m≤1.1,0.8≤a≤1.2,0.8≤b≤1.2,2.5<n≤3.5,0.001≤c≤1,0.001≤r≤0.1,且满足2m+3a+4b-3n-2c=0。
  7. 根据权利要求1所述的一种氮氧化物荧光粉,其特征在于,所述无机化合物中M为Sr、Ca中的一种或两种组合,A为Al,B为Si,R为Eu。
  8. 根据权利要求1所述的一种氮氧化物荧光粉,所述无机化合物具有与CaAlSiN3结晶相相同的晶体结构。
  9. 一种氮氧化物发光体,其特征在于包括权利要求1-8中任一项所述的氮氧化物荧光粉与其它晶体晶粒或非晶颗粒的混合物,所述混合物中氮氧化物荧光粉的比例不小于50wt%。
  10. 根据权利要求1-8中任一种所述的氮氧化物荧光粉,其特征在于在激发光波长300-500nm范围内激发下,发出峰波长位于600nm-670nm的红光。
  11. 根据权利要求1所述的一种氮氧化物荧光粉的制备方法,其特征在于,包括如下基本步骤:
    步骤1:以M的氮化物、A的氮化物、B的氮化物、R的氮化物或氧化物为原料,按化学通式Mm-rAaBbOcNn:Rr中化学组成中阳离子的化学计量比称取所需原料,混合均匀形成混合料;
    步骤2:将步骤1得到的混合料在焙烧气氛中进行高温焙烧,然后降温至预定温度后通入氮氧混合气或空气进行低温焙烧,得到氮氧化物荧光粉半成品;
    步骤3:将步骤2得到的氮氧化物荧光粉半成品进行后处理,即制得氮氧化物荧光粉成品。
  12. 根据权利要求1所述的一种氮氧化物荧光粉的制备方法,其特征在于,包括如下基本步骤:
    步骤1:以M的氮化物、A的氮化物、B的氮化物、R的氮化物或氧化物为原料,按化学通式Mm-rAaBbOcNn:Rr中化学组成中阳离子的化学计量比称取所需原料,混合均匀形成混合料;
    步骤2:将步骤1得到的混合料在焙烧气氛中进行高温焙烧,得到氮氧化物荧光粉半成品;
    步骤3:将步骤2得到的氮氧化物荧光粉半成品进行后处理;
    步骤4:将步骤3后处理后得到的氮氧化物荧光粉半成品在空气中进行低温焙烧制得氮氧化物荧光粉成品。
  13. 根据权利要求11所述的一种氮氧化物荧光粉的制备方法,其特征在于,步骤2所述高温焙烧温度为1600-2000℃,焙烧时间2-20h,焙烧气氛是纯氮气气氛或还原气氛;所述低温焙烧温度为200-450℃,焙烧时间为0.5-24h;
  14. 根据权利要求11所述的一种氮氧化物荧光粉的制备方法,其特征在于,步骤2中所述氮氧混合气气氛中氧气体积百分含量不大于20%。
  15. 根据权利要求12所述的一种氮氧化物荧光粉的制备方法,其特征在于,步骤2所述高温焙烧温度为1600-2000℃,焙烧时间2-20h,焙烧气氛是纯氮气气氛或还原气氛;步骤4所述低温焙烧温度为200-450℃,焙烧时间为0.5-24h;焙烧气氛为空气。
  16. 根据权利要求11或12所述的一种氮氧化物荧光粉的制备方法,其特征在于,步骤3所述后处理包括一次研磨、过筛、水洗、烘干、二次研磨及过筛,其中水洗至氮氧化物荧光粉的电导率小于10μs/cm。
  17. 一种发光器件,其特征在于,至少含有发紫外光、紫光或蓝光的LED芯片和荧光粉,其中荧光粉至少使用权利要求1-8任一项中的氮氧化物荧光粉。
  18. 根据权利要求17所述的一种发光器件,其特征在于,还包括混合其它类型的荧光粉,以通过发光颜色的互补,满足照明需要或应用于高显色的背光源白光LED中。
PCT/CN2016/075580 2016-01-29 2016-03-04 一种氮氧化物荧光粉及其制备方法、氮氧化物发光体和发光器件 WO2017128492A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016555555A JP6793549B2 (ja) 2016-01-29 2016-03-04 酸窒化物蛍光粉及びその調製方法、酸窒化物発光体並びに発光デバイス
PL16754386T PL3225677T3 (pl) 2016-01-29 2016-03-04 Proszek fluorescencyjny tlenku azotu i jego metoda przygotowywania, ciało emitujące światło tlenku azotu i urządzenie emitujące światło
KR1020167024181A KR101861035B1 (ko) 2016-01-29 2016-03-04 질소산화물 형광분말 및 그 제조방법, 질소산화물 발광체와 발광장치
EP16754386.7A EP3225677B1 (en) 2016-01-29 2016-03-04 Nitrogen oxide fluorescent powder and preparation method therefor, nitrogen oxide light emitting body, and light-emitting device
US15/124,921 US9909061B1 (en) 2016-01-29 2016-03-04 Nitroxide fluorescent powder and method for preparing same, nitroxide illuminant, and luminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610067478.5 2016-01-29
CN201610067478.5A CN105623658B (zh) 2016-01-29 2016-01-29 一种氮氧化物荧光粉及其制备方法、氮氧化物发光体和发光器件

Publications (1)

Publication Number Publication Date
WO2017128492A1 true WO2017128492A1 (zh) 2017-08-03

Family

ID=56039020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075580 WO2017128492A1 (zh) 2016-01-29 2016-03-04 一种氮氧化物荧光粉及其制备方法、氮氧化物发光体和发光器件

Country Status (8)

Country Link
US (1) US9909061B1 (zh)
EP (1) EP3225677B1 (zh)
JP (3) JP6793549B2 (zh)
KR (1) KR101861035B1 (zh)
CN (1) CN105623658B (zh)
PL (1) PL3225677T3 (zh)
TW (1) TWI596190B (zh)
WO (1) WO2017128492A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9909061B1 (en) 2016-01-29 2018-03-06 Jiangsu Bree Optronics Co., Ltd Nitroxide fluorescent powder and method for preparing same, nitroxide illuminant, and luminescent device
WO2019073864A1 (ja) * 2017-10-10 2019-04-18 デンカ株式会社 赤色蛍光体及び発光装置
US10266762B2 (en) 2016-01-29 2019-04-23 Jiangsu Bree Optronics Co., Ltd Nitrogen-containing luminescent particle and method for preparing same, nitrogen-containing illuminant, and luminescent device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106381141A (zh) * 2016-08-31 2017-02-08 广州珠江光电新材料有限公司 一种含硼硅铝酸盐长余辉荧光粉及其制备方法
JP2020109850A (ja) * 2016-10-31 2020-07-16 日亜化学工業株式会社 発光装置の製造方法
CN106566530B (zh) * 2016-11-11 2019-04-05 江苏博睿光电有限公司 一种改性塞隆荧光粉颗粒及其制备方法、塞隆荧光体和发光器件
JP7440778B2 (ja) * 2021-06-11 2024-02-29 日亜化学工業株式会社 窒化物蛍光体、その製造方法及び発光装置
DE102021132004A1 (de) * 2021-12-06 2023-06-07 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Leuchtstoff, leuchtstoffmischung, verfahren zur herstellung eines leuchtstoffs und strahlungsemittierendes bauelement
DE102022118304A1 (de) * 2022-07-21 2024-02-01 Ams-Osram International Gmbh Leuchtstoff, verfahren zu dessen herstellung und strahlungsemittierendes bauelement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1609839A2 (en) * 2004-06-25 2005-12-28 Dowa Mining Co., Ltd. Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and led
CN1918262A (zh) * 2003-11-26 2007-02-21 独立行政法人物质·材料研究机构 荧光体和使用荧光体的发光装置
JP2009132916A (ja) 2007-11-09 2009-06-18 Mitsubishi Chemicals Corp 蛍光体、及びその製造方法
CN103320130A (zh) * 2013-06-21 2013-09-25 北京有色金属研究总院 氮化物荧光粉、其制备方法及包括其的发光装置
WO2015002139A1 (ja) 2013-07-03 2015-01-08 電気化学工業株式会社 蛍光体及び発光装置
WO2015001860A1 (ja) 2013-07-03 2015-01-08 電気化学工業株式会社 蛍光体及び発光装置
EP3225677A1 (en) 2016-01-29 2017-10-04 Jiangsu Bree Optronics Co., Ltd Nitrogen oxide fluorescent powder and preparation method therefor, nitrogen oxide light emitting body, and light-emitting device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725008B2 (ja) 2003-09-11 2011-07-13 日亜化学工業株式会社 発光装置、発光素子用蛍光体および発光素子用蛍光体の製造方法
US7511411B2 (en) * 2002-11-08 2009-03-31 Nichia Corporation Light emitting device, phosphor, and method for preparing phosphor
EP1853681B1 (en) * 2005-02-21 2009-10-14 Philips Intellectual Property & Standards GmbH Illumination system comprising a radiation source and a luminescent material
JP5326182B2 (ja) * 2005-10-07 2013-10-30 日亜化学工業株式会社 発光装置、発光素子用蛍光体及びその製造方法
JP2007324475A (ja) * 2006-06-02 2007-12-13 Sharp Corp 波長変換部材および発光装置
JP5227503B2 (ja) * 2006-09-29 2013-07-03 Dowaエレクトロニクス株式会社 蛍光体、蛍光体シート及び蛍光体の製造方法、並びに当該蛍光体を用いた発光装置
US8287759B2 (en) 2009-05-15 2012-10-16 Cree, Inc. Luminescent particles, methods and light emitting devices including the same
JP2013018661A (ja) * 2011-07-07 2013-01-31 Sharp Corp 複無機化合物系およびその利用、並びに、複無機化合物系の製造方法
JP5634352B2 (ja) * 2011-08-24 2014-12-03 株式会社東芝 蛍光体、発光装置および蛍光体の製造方法
WO2013056408A1 (zh) * 2011-10-17 2013-04-25 北京有色金属研究总院 氮化物红色发光材料、包括其的发光件以及发光器件
JP5912580B2 (ja) * 2012-01-27 2016-04-27 デンカ株式会社 蛍光体、その製造方法及びその用途
AT14124U1 (de) * 2012-02-13 2015-04-15 Tridonic Jennersdorf Gmbh LED-Modul mit Flächenverguß
EP2910620A4 (en) * 2012-10-17 2016-06-08 Ube Industries WAVE LENGTH CONVERTING ELEMENT AND PHOTOEMETER DEVICE EMPLOYING IT
CN102994079A (zh) * 2012-12-21 2013-03-27 北京有色金属研究总院 氮氧化物橙-红色荧光物质,包括其的发光膜或发光片及发光器件
TWI601805B (zh) * 2013-03-08 2017-10-11 宇部興產股份有限公司 Process for producing nitride phosphors, silicon nitride phosphors for nitride phosphors, and nitride phosphors
CN103351863B (zh) * 2013-07-08 2015-10-28 江苏博睿光电有限公司 一种红色荧光粉及其制备方法
JP2015119172A (ja) * 2013-11-13 2015-06-25 株式会社日本セラテック 発光素子、発光装置、及びそれらの製造方法
JP6528418B2 (ja) * 2014-01-29 2019-06-12 日亜化学工業株式会社 蛍光体及びこれを用いた発光装置
JP6291675B2 (ja) * 2015-11-11 2018-03-14 日亜化学工業株式会社 窒化物蛍光体の製造方法、窒化物蛍光体及び発光装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1918262A (zh) * 2003-11-26 2007-02-21 独立行政法人物质·材料研究机构 荧光体和使用荧光体的发光装置
EP1609839A2 (en) * 2004-06-25 2005-12-28 Dowa Mining Co., Ltd. Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and led
JP2009132916A (ja) 2007-11-09 2009-06-18 Mitsubishi Chemicals Corp 蛍光体、及びその製造方法
CN103320130A (zh) * 2013-06-21 2013-09-25 北京有色金属研究总院 氮化物荧光粉、其制备方法及包括其的发光装置
WO2015002139A1 (ja) 2013-07-03 2015-01-08 電気化学工業株式会社 蛍光体及び発光装置
WO2015001860A1 (ja) 2013-07-03 2015-01-08 電気化学工業株式会社 蛍光体及び発光装置
EP3225677A1 (en) 2016-01-29 2017-10-04 Jiangsu Bree Optronics Co., Ltd Nitrogen oxide fluorescent powder and preparation method therefor, nitrogen oxide light emitting body, and light-emitting device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Reduced thermal degradation of the red-emitting Sr Si N :Eu2+ fluorescent powder via thermal treatment in nitrogen", JOURNAL OF MATERIALS CHEMISTRY C, 2015
"Synthetic method and luminescence properties of Sr Ca AlSiN :Eu2++ mixed nitride fluorescent powders", J. ELECTROCHEM. SOC., 2008
See also references of EP3225677A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9909061B1 (en) 2016-01-29 2018-03-06 Jiangsu Bree Optronics Co., Ltd Nitroxide fluorescent powder and method for preparing same, nitroxide illuminant, and luminescent device
US10266762B2 (en) 2016-01-29 2019-04-23 Jiangsu Bree Optronics Co., Ltd Nitrogen-containing luminescent particle and method for preparing same, nitrogen-containing illuminant, and luminescent device
WO2019073864A1 (ja) * 2017-10-10 2019-04-18 デンカ株式会社 赤色蛍光体及び発光装置
US11380822B2 (en) 2017-10-10 2022-07-05 Denka Company Limited Red phosphor and light emission device

Also Published As

Publication number Publication date
EP3225677A4 (en) 2018-01-31
TW201726893A (zh) 2017-08-01
EP3225677B1 (en) 2020-05-13
KR20170100412A (ko) 2017-09-04
CN105623658A (zh) 2016-06-01
US9909061B1 (en) 2018-03-06
PL3225677T3 (pl) 2020-09-21
JP2018513220A (ja) 2018-05-24
JP2019094500A (ja) 2019-06-20
EP3225677A1 (en) 2017-10-04
KR101861035B1 (ko) 2018-05-24
JP6793549B2 (ja) 2020-12-02
US20180051208A1 (en) 2018-02-22
JP2019116618A (ja) 2019-07-18
CN105623658B (zh) 2017-04-12
TWI596190B (zh) 2017-08-21

Similar Documents

Publication Publication Date Title
WO2017128492A1 (zh) 一种氮氧化物荧光粉及其制备方法、氮氧化物发光体和发光器件
TWI646173B (zh) 一種含氮發光顆粒及其製備方法、含氮發光體和發光器件
TW201202396A (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
CN112011332B (zh) 一种远红光荧光粉以及包含该荧光粉的发光装置
TWI538980B (zh) 螢光體及使用其之發光裝置
WO2018086601A1 (zh) 一种改性塞隆荧光粉颗粒及其制备方法、塞隆荧光体和发光器件
WO2017114281A1 (zh) 石榴石型结构的荧光粉及其制成的发光装置
CN111187622A (zh) 白光led用单一基质磷酸盐荧光粉及其制备方法
EP1849192B1 (en) White light emitting device
WO2020015422A1 (zh) 半导体发光用的氮化物荧光粉及其制备方法和发光装置
CN114316960A (zh) 氮氧化物发光颗粒及其制备方法和发光器件
KR101434460B1 (ko) 발광효율 및 열적 안정성이 우수한 알루미늄 실리케이트계 청색 형광체
WO2020015424A1 (zh) 氮化物荧光粉及其制备方法、含氮化物荧光粉的发光装置
KR100950418B1 (ko) 백색 엘이디용 가넷계 결정 형광체 및 이의 제조방법
CN113416543A (zh) 一种由混合态铕激活的单基质白光led荧光粉及其制备方法
JP5676729B2 (ja) 蛍光体及び発光デバイス
JP5676729B6 (ja) 蛍光体及び発光デバイス
CN116622366A (zh) 高效稳定黄色荧光粉、制备方法及应用
CN113620600A (zh) 一种复合玻璃材料的制备方法和应用
CN110791283A (zh) 照明显示用近紫外或蓝光激发的氮氧化物荧光粉及其制备
TWM478246U (zh) 發光裝置
TW201428087A (zh) 發光裝置及其耐溫碳化物螢光材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20167024181

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2016555555

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016754386

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016754386

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15124921

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16754386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE