WO2018086601A1 - 一种改性塞隆荧光粉颗粒及其制备方法、塞隆荧光体和发光器件 - Google Patents

一种改性塞隆荧光粉颗粒及其制备方法、塞隆荧光体和发光器件 Download PDF

Info

Publication number
WO2018086601A1
WO2018086601A1 PCT/CN2017/110515 CN2017110515W WO2018086601A1 WO 2018086601 A1 WO2018086601 A1 WO 2018086601A1 CN 2017110515 W CN2017110515 W CN 2017110515W WO 2018086601 A1 WO2018086601 A1 WO 2018086601A1
Authority
WO
WIPO (PCT)
Prior art keywords
sialon phosphor
core
modified
phosphor particles
temperature
Prior art date
Application number
PCT/CN2017/110515
Other languages
English (en)
French (fr)
Inventor
何锦华
滕晓明
梁超
符义兵
Original Assignee
江苏博睿光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏博睿光电有限公司 filed Critical 江苏博睿光电有限公司
Publication of WO2018086601A1 publication Critical patent/WO2018086601A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • the invention belongs to the technical field of LED phosphors and light-emitting devices, in particular to a modified sialon phosphor particle which can be effectively excited by ultraviolet light, violet light or blue light, a preparation method thereof, a sialon phosphor and a light-emitting device.
  • LCD TV display technology has developed rapidly, and backlight technology, which is one of the core technologies of LCD display, has also been greatly developed.
  • the replacement of CCFLs by LEDs has become a recognized trend in the next generation of LCD backlight technology.
  • LCD backlights will become the largest application market for LEDs, accounting for more than 40% of the total LED market.
  • LEDs as LCD backlights has greatly improved image quality, especially in terms of color saturation.
  • the LED backlight color gamut coverage reaches 90-100% of NTSC, which is significantly improved compared with 70-80% of CCFL backlight, which makes up for the shortcomings of insufficient liquid crystal display color.
  • LED backlights have significant advantages over CCFL in terms of light efficiency, response speed, and light attenuation.
  • the cost advantage of white LED backlight technology is also the best solution for this kind of backlight technology to become the popular LED LCD TV in the future.
  • red LED backlight technology uses a combination of green and red phosphors and a blue chip.
  • red powder is CaAlSiN3:Eu 2+ phosphor, but there is a significant difference in the choice of green powder at home and abroad.
  • ⁇ -Sialon:Eu 2+ as the green powder in the phosphor combination.
  • the above companies have mastered the mass production technology of this kind of phosphor and have started. Bring to market.
  • Chinese Patent Application No. 201010104574.5 discloses a core-shell structured phosphor powder composed of particles coated with different substances, and a preparation method thereof, which is Ln 2-x SiO 5 :xCe from the outside to the inside. , SiO 2 , M metal nanoparticles. Due to the introduction of SiO 2 and metal nanoparticles, the conductivity of the phosphor is improved, resulting in higher luminescence intensity, and because of the approximately spherical morphology, the uniformity of illumination and adhesion to the substrate are obtained. improve.
  • Chinese Patent Application No. 201310179866.9 discloses a broadband gradient LED phosphor and a preparation method thereof, wherein the individual particles of the phosphor are composed of three or more fluorescent substances having the same crystal structure and different chemical components from the inside to the outside.
  • the phosphor dispersion of the solution is good, the crystal lattice is complete, the bulk density is high, and the luminous efficiency is high.
  • the object of the present invention is to provide a modified sialon phosphor particle and a preparation method thereof, a sialon phosphor and a light-emitting device, the modified sialon phosphor particle and the sialon fluorescence of the invention, in order to overcome the deficiencies of the prior art.
  • the body has the advantages of good chemical stability, good anti-aging light decay performance, high luminous efficiency, and the like, and is suitable for various light-emitting devices.
  • the manufacturing method of the invention is simple and reliable, and is beneficial to improving the chemical and physical stability of the modified sialon phosphor particles and the sialon phosphor, and is suitable for industrial mass production.
  • a modified sialon phosphor particle according to the present invention is characterized in that the structure of the modified sialon phosphor particle is a core-shell structure, and the core structure of the modified sialon phosphor particle is self-particle
  • the core to the outer surface is sequentially divided into a nucleation layer, a transition layer and an outer layer of the core by increasing the oxygen content;
  • the main body of the nucleation layer is an oxynitride material, and the main body of the transition layer is an oxynitride material, and the outer layer of the nucleus
  • the main body is an oxide material or an oxynitride material;
  • the chemical formula of the nucleation layer is Si x-z1 Al z1 O z1 N y-z1 : r1Eu, and the chemical formula of the transition layer is Si x-z2 Al z2 O z2 N y -z2: r2Eu, outer nuclear layer of the chemical formula Si k Al m O
  • the transition layer has a thickness of 50-300 nm, and the outer layer of the core has a thickness of 50 nm or less.
  • the inner side of the transition layer to the core of the oxynitride phosphor particles is a nucleation layer, and the thickness of the shell is 1-100 nm.
  • the content of the nitrogen oxide material in the crystal nucleation layer is not less than 90% by weight, and the content of the nitrogen oxide material in the transition layer is not less than 80% by weight, and the oxide material or the oxynitride material in the outer layer of the core The content is not less than 70% by weight.
  • the modified sialon phosphor particles emit light having a peak wavelength of 500-570 nm when excited in a wavelength range of 300-500 nm.
  • a sialon phosphor according to the present invention characterized in that it comprises a mixture of modified sialon phosphor particles proposed by the present invention, wherein the proportion of modified sialon phosphor particles in the mixture is not Less than 50% by weight.
  • the invention provides a preparation method of modified sialon phosphor particles, which comprises the following specific steps:
  • Step 1 Using Si, Al, Eu nitrides, oxides or halides as raw materials, according to the chemical formulas Si x-z1 Al z1 O z1 N y-z1 : r1Eu and Si ac Al c O c N bc : The stoichiometric ratio is used to weigh the required raw materials;
  • Step 2 mixing the raw materials referred to in the step 1 in a nitrogen atmosphere or an air atmosphere to form a mixture of the core of the modified sialon phosphor particles and the shell of the modified sialon phosphor particles, respectively;
  • Step 3 The mixture of the cores of the modified sialon phosphor particles obtained in the step 2 is subjected to high-temperature baking under the condition of a high-temperature baking atmosphere, and then cooled to a low-temperature baking temperature, and subjected to low-temperature baking under the condition of a low-temperature baking atmosphere. Grinding and sieving to obtain a semi-finished product of the core of the modified sialon phosphor particles, and standby;
  • Step 4 The mixture of the shells of the modified sialon phosphor particles obtained in the step 2 is calcined at a high temperature in a roasting atmosphere, and after being ground, sieved, washed with water, and dried to obtain modified sialon phosphor particles.
  • Step 5 spraying or depositing the semi-finished product of the shell of the modified sialon phosphor particles described in step 4 on the surface of the semi-finished product of the core of the modified sialon phosphor particles described in step 3, and then at a baking temperature of 800- The calcination is carried out at 1500 ° C for a calcination time of 1 to 12 h to obtain a finished product of the modified sialon phosphor particles.
  • the step 3 further comprises: crushing the high temperature calcined product, sieving the product, and performing low temperature roasting, and then The semi-finished product of the core of the modified sialon phosphor particles is obtained by grinding and sieving, and is used.
  • the high temperature calcination temperature in step 3 is 1600-2000 ° C
  • the high temperature roasting time is 4-24 h
  • the high temperature roasting pressure is 1-20 MPa
  • the high temperature roasting atmosphere is a nitrogen atmosphere, a nitrogen-argon mixed gas atmosphere, and other inert gas.
  • the atmosphere, the nitrogen-hydrogen mixed gas atmosphere or other reducing gas atmosphere, the nitrogen-hydrogen mixed gas has a volume percentage of hydrogen within 50%.
  • the low temperature baking temperature in the step 3 is 200-700 ° C, and the low temperature baking time is 1-24 h.
  • the low-temperature roasting atmosphere in step 3 refers to a nitrogen-oxygen mixed gas atmosphere or an air atmosphere, the nitrogen-oxygen mixed gas or air is introduced at a rate of 0.1-10 L/min, and the oxygen-oxygen mixed gas has a volume percentage of oxygen. Within 20%.
  • the calcination atmosphere in the step 4 refers to a nitrogen atmosphere, a nitrogen-argon mixed gas atmosphere or other inert gas atmosphere; the high temperature calcination temperature is 1600-2000 ° C, the high-temperature calcination time is 4-24 h, and the calcination pressure is 1 -10 MPa.
  • the calcination temperature in the step 5 is 1000-1200 ° C, and the calcination time is 4-8 h.
  • the spraying or depositing described in step 5 is selected from the group consisting of flame spraying, plasma spraying, vacuum plating, and ion plating.
  • a light-emitting device comprising at least an LED chip emitting ultraviolet light, violet light or blue light and phosphor particles, wherein the phosphor particles use at least the above-mentioned one of the present invention Modified sialon phosphor particles.
  • the present invention provides a light-emitting device comprising at least an LED chip emitting ultraviolet light, violet light or blue light and a phosphor, wherein at least the sialon phosphor of the present invention is used in the phosphor.
  • the modified sialon phosphor particles proposed by the invention highlights the structural design of the core shell thereof, wherein the structure of the core is divided into a nucleation layer, a transition layer and a nuclear outer layer, and layers and layers The synergy between them becomes a whole connected by chemical bonds.
  • Maintaining the original atomic composition of the mixture in the nucleation layer is beneficial to the nucleation of the oxynitride material, thereby ensuring efficient luminescence; oxidation of the oxynitride material and the outer layer of the nucleus of the transition layer in the modified sialon phosphor particles
  • the oxygen content in the material or the oxynitride material is gradually increased, so that the defects formed by the transition layer and the outer layer of the core which are unfavorable for efficient luminescence can be effectively reduced, and the luminous efficiency is significantly improved; compared with the nitrogen ions, the oxygen ions
  • the radius is small, the electronegativity is high, and the binding force between the ions is stronger.
  • the particle size of the modified granule is increased from the particle core to the outer surface of the particle with the increase of the oxygen content.
  • the chemical and thermal stability of the transition layer and the outer layer of the core are gradually improved, so that the nucleation layer of the modified sialon phosphor particles can be effectively protected and shielded.
  • the shell chemical formula of the present invention is between Si ac Al c O c N bc and the core. It has very good compatibility and can significantly improve the light extraction efficiency of the modified sialon phosphor particles.
  • the chemical formula of the shell in the structure is Si ac Al c O c N bc has very good stability, and also protects the core, so that the Eu 2+ ions in the core are not easily oxidized, and the modified sialon phosphor is effectively improved.
  • the stability of the particles At the same time, the thickness of the shell will significantly affect the performance of the sialon phosphor particles. The small thickness of the shell will not provide effective protection. The thickness of the shell will affect the light-emitting efficiency of the phosphor particles. In view of the structural design of the core shell of the present invention, Therefore, the thermal stability and durability of the modified sialon phosphor particles in the LED application environment can be effectively improved.
  • the invention gradually increases the oxygen content in the oxynitride material of the transition layer in the modified sialon phosphor particles, the oxide material of the outer layer of the nucleus or the oxynitride material, and satisfies the matrix crystal of the modified sialon phosphor particles.
  • the nucleation to the growth requirements in the forming and densification process makes the crystal structure more firm and stable, and improves the weather resistance of the modified sialon phosphor particles.
  • the chemical formula of the shell is Si ac Al c O c N bc has very good stability and is not easily oxidized, so that the shell itself has good stability; on the other hand, the presence of the shell in the structure also protects the core so that the Eu 2+ ions are not easily oxidized.
  • the earth improves the stability of the modified sialon phosphor particles.
  • the invention divides the core structure of the modified sialon phosphor particles into a nucleation layer, a transition layer and a nuclear outer layer, and in the structure of the modified sialon phosphor particles, the oxygen content increases from the particle core to the outer surface, so that The oxygen ions with a smaller radius than the nitrogen ions can replace the nitrogen ions more, so as to enhance the binding force between the ions in the modified sialon phosphor particle structure, so that the modified sialon phosphor particles have excellent anti-aging light. High temperature durability of aging.
  • the nucleation layer of the modified sialon phosphor particles is protected by the barrier of the transition layer and the outer layer of the nucleus, the nucleation layer is not easily affected by the external adverse environment; at the same time, the shell itself in the core-shell structure is very Good stability, which has a good protective effect on the core, so that the stability of the luminescent center of the modified sialon phosphor particles is significantly improved.
  • the luminous efficiency is high.
  • the invention maintains the original atomic composition of the mixture in the nucleation layer, which is beneficial to the nucleation of the material of the modified sialon phosphor particles, thereby ensuring efficient luminescence;
  • the structure of the modified sialon phosphor particles is from the particle core to The oxygen content of the outer surface is increased, so that the defects formed by the transition layer and the outer layer of the core which are not conducive to high-efficiency luminescence can be effectively reduced, and the luminous efficiency is obviously improved; and at the same time, the composition of the shell Similar to the composition of the core, the compatibility between the two is better, thus significantly improving the light extraction efficiency of the modified phosphor particles.
  • modified sialon phosphor particles of the present invention are suitable for use in both sialon phosphors and in the manufacture of various light-emitting devices.
  • the manufacturing method is simple and reliable.
  • the manufacturing method of the invention is beneficial to improving the chemical and physical stability of the modified sialon phosphor particles and the sialon phosphor, and is suitable for industrial mass production.
  • FIG. 1 is a schematic cross-sectional structural view of a modified sialon phosphor particle proposed by the present invention.
  • Example 2 is a schematic view showing excitation spectra of Examples 1-3 and Comparative Example 1.
  • Example 3 is a schematic view showing emission spectra of Examples 1-3 and Comparative Example 1.
  • a modified sialon phosphor particle proposed by the present invention wherein the structure of the modified sialon phosphor particle is a core-shell structure, and the core structure of the modified sialon phosphor particle is self-particle
  • the core to the outer surface is sequentially divided into a nucleation layer, a transition layer and an outer layer of the core by increasing the oxygen content;
  • the main body of the nucleation layer is an oxynitride material, and the main body of the transition layer is an oxynitride material, and the outer layer of the nucleus
  • the main body is an oxide material or an oxynitride material;
  • the chemical formula of the nucleation layer is Si x-z1 Al z1 O z1 N y-z1 : r1Eu, and the chemical formula of the transition layer is Si x-z2 Al z2 O z2 N y -z2: r2Eu, outer nuclear layer of the chemical formula Si k Al m O o N
  • modified sialon phosphor particle proposed by the present invention, components and parameters of the modified sialon phosphor particles involved in each embodiment, and preparation of modified sialon phosphor particles.
  • the steps and conditions of the method are all in accordance with the design scheme and the preferred design scheme of the modified sialon phosphor particles proposed by the present invention.
  • the semi-finished product of the shell was formed.
  • the semi-finished product of the obtained shell was pulverized, sieved, and then washed until the electrical conductivity was 5.21 ⁇ s/cm, and dried for use.
  • the shell plasma was sprayed on the surface of the core and then incubated at 1000 ° C for 5 h to prepare the finished modified sialon phosphor particles of the present invention.
  • the chemical composition of the nucleation layer of the core is Si 6.5 Al 0.2 O 0.2 N 8.73 :0.01Eu
  • the chemical composition of the transition layer is Si 6.1 Al 0.6 O 0.6 N 8.33 :0.01Eu, the thickness of which is 200 nm
  • the outer layer of the core The chemical composition is Si 2 Al 4 O 5 N 3.33 : 0.01 Eu, and its thickness is 36 nm
  • the chemical formula of the shell is Si 4.2 Al 0.2 O 0.2 N 5.67 , and its thickness is 50 nm.
  • the excitation and emission spectra of the modified sialon phosphor particles of Example 1 are shown in Figures 2 and 3.
  • the semi-finished product of the shell was formed, and the semi-finished product of the obtained shell was pulverized, sieved, and then washed until the electric conductivity was 4.88 ⁇ s/cm, and dried for use.
  • the shell plasma was sprayed on the surface of the core and then incubated at 1000 ° C for 5 h to prepare the finished modified sialon phosphor particles of the present invention.
  • the chemical composition of the nucleation layer of the core is Si 7.25 Al 0.25 O 0.25 N 9.25 :0.01Eu
  • the chemical composition of the transition layer is Si 6.5 AlON 9
  • the thickness is 120 nm
  • the chemical composition of the outer layer of the core is SiO 2 .
  • the chemical formula of the shell is Si 5.5 Al 0.1 O 0.1 N 7.37 and its thickness is 80 nm.
  • the excitation and emission spectra of the modified sialon phosphor particles of Example 2 are shown in Figures 2 and 3.
  • the chemical composition of the nucleation layer of the core is Si 7 Al 0.15 O 0.15 N 9.38 : 0.01Eu
  • the chemical composition of the transition layer is Si 6.75 Al 0.4 O 0.4 N 9.13
  • the chemical composition of the outer layer of the core is SiO. 2 , the thickness of which is 42 nm
  • the chemical formula of the shell is Si 3.8 Al 0.2 O 0.2 N 5.13
  • its thickness is 85 nm.
  • the modified sialon phosphor particles of 1-3 and the sialon phosphor particles of Comparative Example 1 described above were respectively made into a light-emitting device, and the test results were as follows: the luminescence intensity and the aging property of Comparative Example 1 were obtained. Below Table 1-3, see Table 1.
  • the aging conditions are: SMD-2835 LED lamp bead, chip size 10 ⁇ 30mil, chip band 452.5-455nm, current 150mA, power 0.5W, environmental conditions: normal temperature and humidity.
  • the temperature was gradually raised to 300 ° C in an air atmosphere, and kept for 5 h to form a core semi-finished product; 19.63 g of Si 3 N 4 and 0.397 g of AlN were weighed, and the above raw materials were thoroughly mixed in a nitrogen atmosphere for 2 hours to form a mixture of shells, and charged.
  • the atmosphere pressure is 1 Mpa, the semi-finished product of the shell is formed, the semi-finished product of the shell is pulverized and sieved, then Wash to a conductivity of 6.88 ⁇ s / cm, and then set aside after drying.
  • the shell was vacuum-plated on the surface of the core, and then incubated at 1200 ° C for 7 h to obtain the finished modified sialon phosphor particles of the present invention.
  • the chemical composition of the nucleation layer of the core is Si 6.76 Al 0.24 O 0.24 N 9.09 : 0.03Eu
  • the chemical composition of the transition layer is Si 6.2 Al 0.8 O 0.8 N 8.53 : 0.03Eu, the thickness of which is 90 nm
  • the chemistry of the outer layer of the core The composition is Al 2 O 3 having a thickness of 27 nm
  • the chemical formula of the shell is Si 5.2 Al 0.12 O 0.12 N 6.97 and its thickness is 75 nm.
  • the thermal quenching pattern of the modified sialon phosphor particles of Example 4 is shown in FIG.
  • the temperature was gradually raised to 300 ° C, and kept for 5 h to form a core semi-finished product; Si 3 N 4 18.969 g, AlN 0.718 g, and Al 2 O 3 0.313 g were weighed, and the above raw materials were thoroughly mixed in a nitrogen atmosphere for 2 hours to form a shell mixture.
  • the material is charged into the BN crucible, and then quickly transferred into the carbon tube furnace, and then gradually heated to 1800 ° C under the protection of nitrogen atmosphere, kept for 10 h, and the atmospheric pressure is 1 Mpa to form a semi-finished product of the shell, and the semi-finished product of the obtained shell is crushed. After sieving, it was washed until the conductivity was 6.32 ⁇ s/cm, and it was used after drying.
  • the shell was vacuum-plated on the surface of the core, and then incubated at 1200 ° C for 7 h to obtain the finished modified sialon phosphor particles of the present invention.
  • the chemical composition of the nucleation layer of the core is Si 6.3 Al 0.2 O 0.2 N 8.47 : 0.03Eu
  • the chemical composition of the transition layer is Si 6 Al 0.5 O 0.5 N 8.17
  • the thickness of the core layer is 225 nm
  • the chemical composition of the outer layer of the core is Si. 3 AlO 2 N 3.67 , the thickness of which is 30 nm
  • the chemical formula of the shell is Si 4.63 Al 0.27 O 0.27 N 6.26 : 0.04Eu, and its thickness is 56 nm.
  • the thermal quenching pattern of the modified sialon phosphor particles of Example 5 is shown in Fig. 4.
  • the temperature was gradually raised to 300 ° C in an air atmosphere, and kept for 5 h to form a semi-finished product of the core; 19.73 g of Si 3 N 4 and 0.266 g of AlN were weighed, and the above raw materials were thoroughly mixed in a nitrogen atmosphere for 2 hours to form a mixture of shells, and charged.
  • the atmosphere pressure is 1 Mpa, the semi-finished product of the shell is formed, the semi-finished product of the shell is pulverized and sieved, then The washing was carried out until the conductivity was 5.91 ⁇ s/cm, and it was used after drying.
  • the shell was vacuum-plated on the surface of the core, and then incubated at 1200 ° C for 7 h to obtain the finished modified sialon phosphor particles of the present invention.
  • the chemical composition of the nucleation layer of the core is Si 7.8 Al 0.16 O 0.16 N 10.45 :0.03Eu
  • the chemical composition of the transition layer is Si 7.36 Al 0.6 O 0.6 N 10.01
  • the thickness is 290 nm
  • the chemical composition of the outer layer of the core is Al. 2 O 3 , which has a thickness of 48 nm, has a chemical formula of Si 3.9 Al 0.06 O 0.06 N 5.22 and a thickness of 15 nm.
  • the thermal quenching pattern of the modified sialon phosphor particles of Example 6 is shown in FIG.
  • Comparative Example 2 had low luminescence intensity and aging performance. See Table 2 for Examples 4-6.
  • the aging conditions are: SMD-2835 LED lamp bead, chip size 10 ⁇ 30mil, chip band 452.5-455nm, current 150mA, power 0.5W, environmental conditions: normal temperature and humidity.
  • the atmosphere was gradually heated to 320 ° C, and kept for 8 h to form a core semi-finished product; Si 3 N 4 19.257 g, AlN 0.331 g, and Al 2 O 3 0.412 g were weighed, and the above materials were thoroughly mixed in a nitrogen atmosphere for 2 h to form a shell.
  • the mixture was placed in a BN crucible, and then quickly transferred into a carbon tube furnace, and then gradually heated to 1750 ° C under a nitrogen atmosphere, maintained for 9 h, and the atmosphere pressure was 5 MPa, forming a semi-finished product of the shell, and pulverizing the semi-finished product of the obtained shell.
  • the shell flame was sprayed on the surface of the core, and then kept at 1100 ° C for 6 h to prepare the finished modified sialon phosphor particles of the present invention.
  • the chemical composition of the nucleation layer of the core is Si 6 Al 0.1 O 0.1 N 8.03 : 0.001Eu
  • the chemical composition of the transition layer is Si 5.8 Al 0.3 O 0.3 N 7.83 : 0.001Eu
  • the chemistry of the outer layer of the core The composition is SiO 2 and its thickness is 30 nm
  • the chemical formula of the shell is Si 5.1 Al 0.2 O 0.2 N 6.87 .
  • the temperature was gradually raised to 320 ° C, and kept for 8 h to form a core semi-finished product; Si 3 N 4 19.257 g, AlN 0.331 g, and Al 2 O 3 0.412 g were weighed, and the above materials were thoroughly mixed in a nitrogen atmosphere for 2 h to form a shell mixture.
  • the material is charged into the BN crucible, and then quickly transferred into the carbon tube furnace, and then gradually heated to 1750 ° C under the protection of nitrogen atmosphere, kept for 9 h, and the atmospheric pressure is 5 Mpa, forming a semi-finished product of the shell, and pulverizing the semi-finished product of the obtained shell.
  • the chemical composition of the nucleation layer of the core is Si 6 Al 0.1 O 0.1 N 8.03 : 0.005Eu
  • the chemical composition of the transition layer is Si 5.7 Al 0.4 O 0.4 N 7.73 : 0.005Eu, the thickness of which is 165 nm
  • the chemistry of the outer layer of the core The composition is Si 2.5 Al 1.5 O 4 N 3.47 , the thickness of which is 46 nm
  • the chemical formula of the shell is Si 5.1 Al 0.2 O 0.2 N 6.87 , and its thickness is 58 nm.
  • the temperature was gradually raised to 320 ° C, and kept for 8 h to form a core semi-finished product; Si 3 N 4 19.257 g, AlN 0.331 g, and Al 2 O 3 0.412 g were weighed, and the above materials were thoroughly mixed in a nitrogen atmosphere for 2 h to form a shell mixture.
  • the material is charged into the BN crucible, and then quickly transferred into the carbon tube furnace, and then gradually heated to 1750 ° C under the protection of nitrogen atmosphere, kept for 9 h, and the atmospheric pressure is 5 Mpa, forming a semi-finished product of the shell, and pulverizing the semi-finished product of the obtained shell.
  • the shell flame was sprayed on the surface of the core, and then kept at 1100 ° C for 6 h to prepare the finished modified sialon phosphor particles of the present invention.
  • the chemical composition of the core layer of the core is Si 6 Al 0.1 O 0.1 N 8.03 : 0.015Eu
  • the chemical composition of the transition layer is Si 5.75 Al 0.35 O 0.35 N 7.78
  • the thickness of which is 210 nm
  • the chemical composition of the outer layer of the core is SiO. 2 , its thickness is 33nm
  • the chemical formula of the shell is Si 5.1 Al 0.2 O 0.2 N 6.87 , and its thickness is 75nm.
  • the temperature was gradually raised to 320 ° C, and kept for 8 h to form a core semi-finished product; Si 3 N 4 19.257 g, AlN 0.331 g, and Al 2 O 3 0.412 g were weighed, and the above materials were thoroughly mixed in a nitrogen atmosphere for 2 h to form a shell mixture.
  • the material is charged into the BN crucible, and then quickly transferred into the carbon tube furnace, and then gradually heated to 1750 ° C under the protection of nitrogen atmosphere, kept for 9 h, and the atmospheric pressure is 5 Mpa, forming a semi-finished product of the shell, and pulverizing the semi-finished product of the obtained shell.
  • the chemical composition of the nucleation layer of the core is Si 6 Al 0.1 O 0.1 N 8.03 : 0.04Eu
  • the chemical composition of the transition layer is Si 5.68 Al 0.42 O 0.42 N 7.71 : 0.038Eu, the thickness of which is 267 nm
  • the chemistry of the outer layer of the core The composition was SiO 2 and its thickness was 38 nm
  • the chemical formula of the shell was Si 5.1 Al 0.2 O 0.2 N 6.87 , and its thickness was 64 nm.
  • the temperature was gradually raised to 320 ° C, and kept for 8 h to form a core semi-finished product; Si 3 N 4 19.257 g, AlN 0.331 g, and Al 2 O 3 0.412 g were weighed, and the above materials were thoroughly mixed in a nitrogen atmosphere for 2 h to form a shell mixture.
  • the material is charged into the BN crucible, and then quickly transferred into the carbon tube furnace, and then gradually heated to 1750 ° C under the protection of nitrogen atmosphere, kept for 9 h, and the atmospheric pressure is 5 Mpa, forming a semi-finished product of the shell, and pulverizing the semi-finished product of the obtained shell.
  • the chemical composition of the nucleation layer of the core is Si 6 Al 0.1 O 0.1 N 8.03 :0.07Eu
  • the chemical composition of the transition layer is Si 5.78 Al 0.32 O 0.32 N 7.81 :0.065Eu, the thickness of which is 78 nm
  • the chemistry of the outer layer of the core The composition is Si 1.5 Al 3.2 O 4 N 2.53 : 0.005Eu, and its thickness is 49 nm
  • the chemical formula of the shell is Si 5.1 Al 0.2 O 0.2 N 6.87 , and its thickness is 70 nm.
  • the shell flame was sprayed on the surface of the core, and then kept at 1100 ° C for 6 h to prepare the finished modified sialon phosphor particles of the present invention.
  • the chemical composition of the nucleation layer of the core is Si 6 Al 0.1 O 0.1 N 8.03 : 0.1Eu
  • the chemical composition of the transition layer is Si 5.7 Al 0.4 O 0.4 N 7.73 : 0.1Eu, the thickness of which is 110 nm
  • the chemistry of the outer layer of the core The composition was Si 1.5 Al 2 O 3 N 2 having a thickness of 21 nm
  • the chemical formula of the shell was Si 5.1 Al 0.2 O 0.2 N 6.87 , and its thickness was 62 nm.
  • the finished powder particle has a chemical formula of Si 5.9 Al 0.1 O 0.1 N 8 : 0.1Eu.
  • the modified sialon phosphor particles described in the above embodiments 7-12 and the sialon phosphor particles described in the comparative example 3 were respectively made into a light-emitting device, and the test results showed that the luminescence intensity and the aging performance of the comparative example 3 were both low. See Table 3 for Examples 7-12.
  • the aging conditions are: SMD-2835 LED lamp bead, chip size 10 ⁇ 30mil, chip band 452.5-455nm, current 150mA, power 0.5W, environmental conditions: normal temperature and humidity.
  • the invention has been verified by trial and error and has achieved satisfactory trial results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种改性塞隆荧光粉颗粒及其制备方法、塞隆荧光体和发光器件,本发明所述的改性塞隆荧光粉颗粒的结构为核壳结构,所述改性塞隆荧光粉颗粒的核结构为自颗粒核心至外表面以氧含量的递增而依次分为晶核层、过渡层和核外层;所述晶核层的主体为氮氧化物材料,过渡层的主体为氮氧化物材料,核外层的主体为氧化物材料或氧氮化物材料。本发明的改性塞隆荧光粉颗粒、塞隆荧光体具有化学稳定性好、抗老化光衰性能好、发光效率高等优点,适用于各种发光器件。本发明的制造方法简便可靠,有利于提高改性塞隆荧光粉颗粒、塞隆荧光体的化学及物理稳定性,适用于工业化批量生产制造。

Description

一种改性塞隆荧光粉颗粒及其制备方法、塞隆荧光体和发光器件 技术领域
本发明属于LED荧光粉及发光器件技术领域,特别是涉及一种可被紫外光、紫光或蓝光有效激发的改性塞隆荧光粉颗粒及其制备方法、塞隆荧光体和发光器件。
背景技术
近年来,液晶电视显示技术飞速发展,而作为LCD显示的核心技术之一的背光源技术也得到了很大发展。LED取代CCFL成为下一代LCD背光源技术已经成为公认的发展趋势。液晶显示背光源将成为LED的最大应用市场,占LED市场总额的40%以上。
采用LED作为LCD背光源,对图像画质有大幅提升,特别是在色彩饱和度方面。LED背光色域覆盖率达到NTSC的90~100%,较CCFL背光的70~80%有了显著提升,弥补了液晶显示色彩数量不足的缺陷。此外,LED背光在光效、响应速度、光衰等方面较CCFL具有显著优势。此外,白光LED背光技术在成本方面的优势,也是促使该种背光技术成为未来普及型LED液晶电视的最优方案。
目前,白光LED背光技术是采用绿色和红色荧光粉与蓝光芯片进行组合。其中,红粉的普遍选择都是CaAlSiN3:Eu2+荧光粉,但在绿粉的选择上,国内外的选择存在明显差别。如日本国家材料研究所、三菱化学以及美国Intermatix、等企业均选择β-Sialon:Eu2+作为荧光粉组合中的绿粉,上述企业已经掌握了该种荧光粉的量产技术,并已开始推向市场。又如国内科研机构和荧光粉企业也投入了大量人力和财力进行β-Sialon:Eu2+荧光粉的研究,并取得一定进展,但在一些关键技术上仍处于瓶颈期,离应用还有一段距离。
中国专利申请201010104574.5公开了一种核壳结构荧光粉及其制备方法,该核壳结构荧光粉由不同物质包覆而成的微粒组成,所述微粒由外向内为Ln2-xSiO5:xCe、SiO2、M金属纳米颗粒。该方案由于引入SiO2及金属纳米颗粒,使荧光粉的导电性能得到了提升,从而具有较高的发光强度,同时因为具有近似 球形的形貌,所以发光均匀度和与基板的附着力得到了提高。但该方案还存在明显不足:一是没有涉及荧光粉的抗老化性能等关联的性能参数,因此无法证明在其提高发光强度的同时也提高了抗老化性能;二是制备方法比较复杂,不适合产业化。
中国专利申请201310179866.9公开了一种宽频梯度LED荧光粉及其制备方法,所述荧光粉的单个颗粒由内到外依次由晶体结构相同而化学组分不同的三层以上的荧光物质组成。与现有技术相比,该方案的荧光粉分散性好,晶格完整,堆积密度高,发光效率高。但该方案还存在明显不足:一是因为每层荧光粉的组成元素不同,造成层与层之间的兼容性不好,从而影响荧光粉的稳定性;二是制备方法比较复杂,不适合产业化。
综述所述,如何克服现有技术所存在的不足已成为当今LED荧光粉及发光器件技术领域中亟待解决的重点难题之一。
发明内容
本发明的目的是为克服现有技术的不足而提供一种改性塞隆荧光粉颗粒及其制备方法、塞隆荧光体和发光器件,本发明的改性塞隆荧光粉颗粒、塞隆荧光体具有化学稳定性好、抗老化光衰性能好、发光效率高等优点,适用于各种发光器件。本发明的制造方法简便可靠,有利于提高改性塞隆荧光粉颗粒、塞隆荧光体的化学及物理稳定性,适用于工业化批量生产制造。
根据本发明提出的一种改性塞隆荧光粉颗粒,其特征在于,所述改性塞隆荧光粉颗粒的结构为核壳结构,所述改性塞隆荧光粉颗粒的核结构为自颗粒核心至外表面以氧含量的递增而依次分为晶核层、过渡层和核外层;所述晶核层的主体为氮氧化物材料,过渡层的主体为氮氧化物材料,核外层的主体为氧化物材料或氧氮化物材料;所述晶核层的化学式为Six-z1Alz1Oz1Ny-z1:r1Eu,过渡层的化学式为Six-z2Alz2Oz2Ny-z2:r2Eu,核外层的化学式为SikAlmOoNn:r3Eu;所述改性塞隆荧光粉颗粒的壳的化学式为Sia-cAlcOcNb-c;其中;其中:x、z1、y、r1、z2、r2、k、m、o、n、r3、a、c、b为相应元素的原子百分比,6<x≤8,0.1≤z1≤0.3,y=4x/3,0.001≤r1≤0.1,0.3<z2≤1,0≤r2≤0.1,0≤k≤3,0≤m≤4,1≤o≤6,0≤n≤4,0≤r3≤0.1,3≤a<6,0<c≤0.3,b=4a/3。
本发明提出的一种改性塞隆荧光粉颗粒的进一步优选方案是:
所述过渡层的厚度为50-300nm,核外层的厚度为50nm以内,过渡层内侧至氮氧化物荧光粉颗粒的核心为晶核层,壳的厚度为1-100nm。
所述晶核层中的氮氧化物材料的含量不小于90wt%,所述过渡层中的氮氧化物材料的含量不小于80wt%,所述核外层中氧化物材料或氧氮化物材料的含量不小于70wt%。
所述改性塞隆荧光粉颗粒在波长300-500nm范围内激发下发出峰波长位于500-570nm的光。
本发明提出的一种塞隆荧光体,其特征在于,包含上述任一项本发明提出的一种改性塞隆荧光粉颗粒的混合物,所述混合物中改性塞隆荧光粉颗粒的比例不小于50wt%。
本发明提出一种改性塞隆荧光粉颗粒的制备方法,其特征在于,包括如下具体步骤:
步骤1:以Si、Al、Eu的氮化物、氧化物或卤化物为原料,按化学通式Six-z1Alz1Oz1Ny-z1:r1Eu和Sia-cAlcOcNb-c:组成的化学计量比分别称取所需原料;
步骤2:将步骤1中所称取的原料在氮气气氛或空气气氛中混合均匀,分别形成改性塞隆荧光粉颗粒的核和改性塞隆荧光粉颗粒的壳的混合料;
步骤3:将步骤2得到的改性塞隆荧光粉颗粒的核的混合料在高温焙烧气氛的条件下进行高温焙烧,然后降温至低温焙烧温度,在低温焙烧气氛的条件下进行低温焙烧,经过研磨、过筛,得到改性塞隆荧光粉颗粒的核的半成品,备用;
步骤4:将步骤2得到的改性塞隆荧光粉颗粒的壳的混合料在焙烧气氛的条件下进行高温焙烧,经过研磨、过筛、水洗、烘干,得到改性塞隆荧光粉颗粒的壳的半成品,备用;
步骤5:将步骤4所述的改性塞隆荧光粉颗粒的壳的半成品喷涂或沉积在步骤3所述的改性塞隆荧光粉颗粒的核的半成品的表面,然后在焙烧温度为800-1500℃的条件下进行焙烧,焙烧时间1-12h,即制得改性塞隆荧光粉颗粒的成品。
本发明提出一种改性塞隆荧光粉颗粒的制备方法的进一步优选方案是:
所述步骤3还包括将高温焙烧后的产物经破碎、过筛后进行低温焙烧,再经 研磨、过筛得到改性塞隆荧光粉颗粒的核的半成品,备用。
步骤3所述的高温焙烧的温度为1600-2000℃,高温焙烧的时间为4-24h,高温焙烧的压力为1-20MPa,高温焙烧的气氛是氮气气氛、氮氩混合气气氛、其它惰性气气氛、氮氢混合气气氛或其它还原气气氛,所述氮氢混合气的氢气体积百分含量为50%以内。
步骤3所述的低温焙烧的温度为200-700℃,低温焙烧的时间为1-24h。
步骤3所述低温焙烧气氛是指氮氧混合气气氛或空气气氛,所述氮氧混合气或空气的通入速度为0.1-10L/min,所述氮氧混合气的氧气体积百分含量为20%以内。
步骤4所述焙烧气氛是指氮气气氛、氮氩混合气气氛或其它惰性气气氛;所述高温焙烧的温度为1600-2000℃,所述高温焙烧的时间为4-24h,焙烧的压力为1-10MPa。
步骤5所述的焙烧温度为1000-1200℃,焙烧时间为4-8h。
步骤5所述的喷涂或沉积选自火焰喷涂、等离子喷涂、真空镀和离子镀中的一种。
本发明提出的一种发光器件,所述发光器件至少含有发紫外光、紫光或蓝光的LED芯片和荧光粉颗粒,其特征在于,所述荧光粉颗粒至少使用上述任一项本发明所述的改性塞隆荧光粉颗粒。
本发明提出的一种发光器件,所述发光器件至少含有发紫外光、紫光或蓝光的LED芯片和荧光体,其特征在于,所述荧光体中至少使用本发明所述的塞隆荧光体。
本发明的实现原理是:本发明提出的改性塞隆荧光粉颗粒,突出了对其核壳的结构设计,其中核的结构分设为晶核层、过渡层和核外层,且层与层之间协同成为以化学键连接的整体。在晶核层内保持混合料的原始原子组成,有利于氮氧化物材料的成核,从而保障高效发光;因改性塞隆荧光粉颗粒中过渡层的氮氧化物材料、核外层的氧化物材料或氧氮化物材料中的氧含量逐渐增加,因此能够有效降低过渡层和核外层所形成的不利于高效发光的缺陷,保证了发光效率有明显提高;与氮离子相比,氧离子的半径小电负性高,离子间的结合力更强,在改性塞隆荧光粉颗粒的结构中自颗粒核心至颗粒外表面随着氧含量的递增,其改性塞隆荧光粉颗粒的过渡层和核外层的化学及热稳定性能逐渐提升,以致对改性塞隆 荧光粉颗粒的晶核层起到有效的保护和屏蔽作用。同时,在改性塞隆荧光粉颗粒的制备过程中,在核表面沉积壳后,经过焙烧形成化学键连接的核壳结构,本发明的壳化学式为Sia-cAlcOcNb-c与核之间具有非常好的兼容性,能明显提升了改性塞隆荧光粉颗粒的出光效率。结构中壳的化学式为Sia-cAlcOcNb-c具有非常好的稳定性,同时也对核起到了保护作用,使得核内Eu2+离子不容易被氧化,有效提高改性塞隆荧光粉颗粒的稳定性。同时,壳的厚度将显著影响塞隆荧光粉颗粒的性能,壳的厚度小将无法起到有效的保护作用,壳的厚度大将影响荧光粉颗粒的出光效率,鉴于本发明对核壳的结构设计,因此能够有效地提高改性塞隆荧光粉颗粒在LED应用环境中的热稳定性与耐久性。
本发明与现有技术相比其显著优点在于:
一是化学稳定性好。本发明因改性塞隆荧光粉颗粒中过渡层的氮氧化物材料、核外层的氧化物材料或氧氮化物材料中的氧含量逐渐增加,满足了改性塞隆荧光粉颗粒基质晶体由成核至成型和致密过程中的生长需要,使得晶体结构更加坚实和稳定,提高了改性塞隆荧光粉颗粒的耐候性;同时,核壳结构中,壳的化学式为Sia-cAlcOcNb-c具有非常好的稳定性,不容易被氧化,使得壳本身具有很好的稳定性;另一方面结构中壳的存在也对核起到了保护作用使得Eu2+离子不容易被氧化,极大地提高改性塞隆荧光粉颗粒的稳定性。
二是抗老化光衰性能好。本发明将改性塞隆荧光粉颗粒的核结构分为晶核层、过渡层和核外层,在改性塞隆荧光粉颗粒的结构中自颗粒核心至外表面以氧含量的递增,使得半径比氮离子小的氧离子能够更多的取代氮离子,以增强改性塞隆荧光粉颗粒结构中的离子间的结合力,从而使得改性塞隆荧光粉颗粒具有极其优异的抗老化光衰的高温耐久性。同时,由于改性塞隆荧光粉颗粒的晶核层因受到过渡层和核外层的屏障保护作用,晶核层不易受到外部不利环境的影响;同时,因核壳结构中的壳本身具有很好的稳定性,对核起到了很好的保护作用,使得改性塞隆荧光粉颗粒的发光中心的稳定性显著提高。
三是发光效率高。本发明在晶核层内保持混合料的原始原子组成,有利于改性塞隆荧光粉颗粒的材料的成核,从而可保障高效发光;改性塞隆荧光粉颗粒的结构中自颗粒核心至外表面的氧含量递增,因此能够有效降低过渡层和核外层所形成的不利于高效发光的缺陷,保证了发光效率有明显提高;同时因为壳的成分 与核的成分近似,两者之间的兼容性更好,因而明显提升了改性荧光粉颗粒的出光效率。
四是适用范围广泛。本发明的改性塞隆荧光粉颗粒既适用于塞隆荧光体,也适用于制造各种发光器件。
五是制造方法简便可靠。本发明的制造方法有利于提高改性塞隆荧光粉颗粒、塞隆荧光体的化学及物理稳定性,适用于工业化批量生产制造。
附图说明
图1为本发明提出的一种改性塞隆荧光粉颗粒的剖面结构示意图。
图2为实施例1-3和比较例1的激发光谱示意图。
图3为实施例1-3和比较例1的发射光谱示意图。
图4为实施例4-6和比较例2的热猝灭示意图。
具体实施例
下面结合附图和实施例对本发明的具体实施方式作进一步详细描述。
结合图1,本发明提出的一种改性塞隆荧光粉颗粒,其所述改性塞隆荧光粉颗粒的结构为核壳结构,所述改性塞隆荧光粉颗粒的核结构为自颗粒核心至外表面以氧含量的递增而依次分为晶核层、过渡层和核外层;所述晶核层的主体为氮氧化物材料,过渡层的主体为氮氧化物材料,核外层的主体为氧化物材料或氧氮化物材料;所述晶核层的化学式为Six-z1Alz1Oz1Ny-z1:r1Eu,过渡层的化学式为Six-z2Alz2Oz2Ny-z2:r2Eu,核外层的化学式为SikAlmOoNn:r3Eu;所述改性塞隆荧光粉颗粒的壳的化学式为Sia-cAlcOcNb-c;其中:x、z1、y、r1、z2、r2、k、m、o、n、r3、a、c、b为相应元素的原子百分比,6<x≤8,0.1≤z1≤0.3,y=4x/3,0.001≤r1≤0.1,0.3<z2≤1,0≤r2≤0.1,0≤k≤3,0≤m≤4,1≤o≤6,0≤n≤4,0≤r3≤0.1,3≤a<6,0<c≤0.3,b=4a/3。
下面进一步公开本发明提出的一种改性塞隆荧光粉颗粒的具体实施例,各实施例中所涉及的改性塞隆荧光粉颗粒的组分和参量以及改性塞隆荧光粉颗粒的制备方法的步骤和条件,均符合上述本发明提出的一种改性塞隆荧光粉颗粒的设计方案及优选的设计方案。
实施例1。
称取Si3N419.366g,AlN0.522g,Eu2O30.112g,将以上原料在氮气气氛中充分混合1h,形成核的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1850℃,保温8h,气氛压力为5Mpa,然后降温至350℃,以5L/min速度通入空气进行焙烧,焙烧时间为3h,形成核的半成品;称取Si3N419.199g,AlN0.801g,将以上原料在氮气气氛中充分混合1h,形成壳的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1600℃,保温6h,气氛压力为2Mpa,形成壳的半成品,将所得壳的半成品粉碎后过筛,然后洗涤至电导率为5.21μs/cm,烘干后备用。将壳等离子喷涂在核表面,然后在1000℃保温5h,即制得本发明的改性塞隆荧光粉颗粒成品。其中:核的晶核层的化学组成为Si6.5Al0.2O0.2N8.73:0.01Eu,过渡层的化学组成为Si6.1Al0.6O0.6N8.33:0.01Eu,其厚度为200nm,核外层的化学组成为Si2Al4O5N3.33:0.01Eu,其厚度为36nm;壳的化学式为Si4.2Al0.2O0.2N5.67,其厚度为50nm。实施例1的改性塞隆荧光粉颗粒的激发光谱和发射光谱见图2和图3。
实施例2。
称取Si3N419.32g,AlN0.565g,EuF30.115g,将以上原料在氮气气氛中充分混合1h,形成核的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1850℃,保温8h,气氛压力为5Mpa,然后降温至350℃,以5L/min速度通入空气进行焙烧,焙烧时间为3h,形成核的半成品;称取Si3N419.686g,AlN0.314g,将以上原料在氮气气氛中充分混合1h,形成壳的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1600℃,保温6h,气氛压力为2Mpa,形成壳的半成品,将所得壳的半成品粉碎后过筛,然后洗涤至电导率为4.88μs/cm,烘干后备用。将壳等离子喷涂在核表面,然后在1000℃保温5h,即制得本发明的改性塞隆荧光粉颗粒成品。其中核的晶核层的化学组成为Si7.25Al0.25O0.25N9.25:0.01Eu,过渡层的化学组成为Si6.5AlON9,其厚度为120nm,核外层的化学组成为SiO2,其厚度为25nm,壳的化学式为Si5.5Al0.1O0.1N7.37,其厚度为80nm。实施例2的改性塞隆荧光粉颗粒的激发光谱和发射光谱见图2和图3。
实施例3。
称取Si3N419.491g,AlN0.358g,EuCl30.151g,将以上原料在氮气气氛中充 分混合1h,形成核的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1850℃,保温8h,气氛压力为5Mpa,然后降温至350℃,以5L/min速度通入空气进行焙烧,焙烧时间为3h,形成核的半成品;称取Si3N419.16g,AlN0.84g,将以上原料在氮气气氛中充分混合1h,形成壳的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1600℃,保温6h,气氛压力为2Mpa,形成壳的半成品,将所得壳的半成品粉碎后过筛,然后洗涤至电导率为5.85μs/cm,烘干后备用。将壳等离子喷涂在核表面,然后在1000℃保温5h,即制得本发明的改性塞隆荧光粉颗粒成品。其中核的晶核层的化学组成为Si7Al0.15O0.15N9.38:0.01Eu,过渡层的化学组成为Si6.75Al0.4O0.4N9.13,其厚度为150nm,核外层的化学组成为SiO2,其厚度为42nm,壳的化学式为Si3.8Al0.2O0.2N5.13,其厚度为85nm。实施例3的改性塞隆荧光粉颗粒的激发光谱和发射光谱见图2和图3。
比较例1。
称取Si3N419.292g,AlN0.583g,Eu2O30.125g,将以上原料在氮气气氛中充分混合1h,形成混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1850℃,保温8h,气氛压力为5Mpa,将所得半成品粉碎后过筛,然后洗涤至电导率为4.62μs/cm,烘干后即可制得塞隆荧光粉颗粒成品,其化学式为Si5.8Al0.2O0.2N8:0.01Eu,其激发光谱和发射光谱见图2和图3。
将上述实施例所述的1-3的改性塞隆荧光粉颗粒和比较例1所述的塞隆荧光粉颗粒分别制成发光器件,测试结果得到:比较例1的发光强度和老化性能均低于实施例1-3,参见表1。其中老化条件为:SMD-2835型LED灯珠,芯片尺寸10×30mil,芯片波段452.5-455nm,电流150mA,功率0.5W,环境条件:常温常湿。
表1
Figure PCTCN2017110515-appb-000001
Figure PCTCN2017110515-appb-000002
实施例4。
称取Si3N419.053g,AlN0.445g,Al2O30.184g,Eu2O30.318g,将以上原料在氮气气氛中充分混合2h,形成核的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氢气体积百分含量为10%的氮氢混合气气氛的保护下逐渐升温至1880℃,保温6h,气氛压力为8Mpa,将所得产物粉碎后过筛,然后在空气气氛中逐渐升温至300℃,保温5h,形成核的半成品;称取Si3N419.603g,AlN0.397g,将以上原料在氮气气氛中充分混合2h,形成壳的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1800℃,保温10h,气氛压力为1Mpa,形成壳的半成品,将所得壳的半成品粉碎后过筛,然后洗涤至电导率为6.88μs/cm,烘干后备用。将壳真空镀在核表面,然后在1200℃保温7h,即制得本发明的改性塞隆荧光粉颗粒成品。其中核的晶核层的化学组成为Si6.76Al0.24O0.24N9.09:0.03Eu,过渡层的化学组成为Si6.2Al0.8O0.8N8.53:0.03Eu,其厚度为90nm,核外层的化学组成为Al2O3,其厚度为27nm,壳的化学式为Si5.2Al0.12O0.12N6.97,其厚度为75nm。实施例4的改性塞隆荧光粉颗粒的热猝灭图见图4。
实施例5。
称取Si3N419.011g,AlN0.397g,AlF30.271g,EuN0.321g,将以上原料在氮气气氛中充分混合2h,形成核的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氢气体积百分含量为10%的氮氢混合气气氛的保护下逐渐升温至1880℃,保温6h,气氛压力为8Mpa,将所得产物粉碎后过筛,然后在空气气氛中逐渐升温至300℃,保温5h,形成核的半成品;称取Si3N418.969g,AlN0.718g,Al2O30.313g,将以上原料在氮气气氛中充分混合2h,形成壳的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1800℃,保温10h,气氛压力为1Mpa,形成壳的半成品,将所得壳的半成品粉碎后过筛,然后洗涤至电导率为6.32μs/cm,烘干后备用。将壳真空镀在核表面,然后在1200℃保温7h,即制得本发明的改性塞隆荧光粉颗粒成品。其中核的晶核层的化学组成为Si6.3Al0.2O0.2N8.47:0.03Eu,过渡层的化学组成为Si6Al0.5O0.5N8.17,其厚度为225nm,核外层的化学组成为Si3AlO2N3.67,其厚度为30nm,壳的化学式为Si4.63Al0.27O0.27N6.26:0.04Eu,其厚度为56nm。实施例5的 改性塞隆荧光粉颗粒的热猝灭图见图4。
实施例6。
称取Si3N419.056g,SiO20.318g,AlN0.347g,Eu2O30.279g,将以上原料在氮气气氛中充分混合2h,形成核的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氢气体积百分含量为10%的氮氢混合气气氛的保护下逐渐升温至1880℃,保温6h,气氛压力为8Mpa,将所得产物粉碎后过筛,然后在空气气氛中逐渐升温至300℃,保温5h,形成核的半成品;称取Si3N419.734g,AlN0.266g,将以上原料在氮气气氛中充分混合2h,形成壳的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1800℃,保温10h,气氛压力为1Mpa,形成壳的半成品,将所得壳的半成品粉碎后过筛,然后洗涤至电导率为5.91μs/cm,烘干后备用。将壳真空镀在核表面,然后在1200℃保温7h,即制得本发明的改性塞隆荧光粉颗粒成品。其中核的晶核层的化学组成为Si7.8Al0.16O0.16N10.45:0.03Eu,过渡层的化学组成为Si7.36Al0.6O0.6N10.01,其厚度为290nm,核外层的化学组成为Al2O3,其厚度为48nm,壳的化学式为Si3.9Al0.06O0.06N5.22,其厚度为15nm。实施例6的改性塞隆荧光粉颗粒的热猝灭图见图4。
比较例2。
称取Si3N418.954,AlN0.43g,Al2O30.178g,EuF30.438g,将以上原料在氮气气氛中充分混合2h,形成混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1880℃,保温6h,气氛压力为8Mpa,将所得半成品粉碎后过筛,然后洗涤至电导率为4.12μs/cm,烘干后即可制得塞隆荧光粉颗粒成品,其化学式为Si5.8Al0.2O0.2N8:0.03Eu,其热猝灭图见图4。
将上述实施例4-6所述的改性塞隆荧光粉颗粒和比较例2所述的塞隆荧光粉颗粒分别制成发光器件,测试结果得到:比较例2的发光强度和老化性能均低于实施例4-6,参见表2。其中老化条件为:SMD-2835型LED灯珠,芯片尺寸10×30mil,芯片波段452.5-455nm,电流150mA,功率0.5W,环境条件:常温常湿。
表2
Figure PCTCN2017110515-appb-000003
Figure PCTCN2017110515-appb-000004
实施例7。
称取Si3N419.643g,Al2O30.345g,Eu2O30.012g,将以上原料在氮气气氛中充分混合2h,形成核的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮氩混合气气氛保护下逐渐升温至1900℃,保温12h,气氛压力为15Mpa,将所得产物粉碎后过筛,然后在氧气体积百分含量为10%的氮氧混合气气氛中逐渐升温至320℃,保温8h,形成核的半成品;称取Si3N419.257g,AlN0.331g,Al2O30.412g,将以上原料在氮气气氛中充分混合2h,形成壳的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1750℃,保温9h,气氛压力为5Mpa,形成壳的半成品,将所得壳的半成品粉碎后过筛,然后洗涤至电导率为6.25μs/cm,烘干后备用。将壳火焰喷涂在核表面,然后在1100℃保温6h,即制得本发明的改性塞隆荧光粉颗粒成品。其中核的晶核层的化学组成为Si6Al0.1O0.1N8.03:0.001Eu,过渡层的化学组成为Si5.8Al0.3O0.3N7.83:0.001Eu,其厚度为110nm,核外层的化学组成为SiO2,其厚度为30nm,壳的化学式为Si5.1Al0.2O0.2N6.87
实施例8。
称取Si3N419.651g,AlN0.287g,Eu2O30.062g,将以上原料在氮气气氛中充分混合2h,形成核的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮氩混合气气氛保护下逐渐升温至1900℃,保温12h,气氛压力为15Mpa,将所得产物粉碎后过筛,然后在氧气体积百分含量为10%的氮氧混合气气氛中逐渐升温至320℃,保温8h,形成核的半成品;称取Si3N419.257g,AlN0.331g,Al2O30.412g,将以上原料在氮气气氛中充分混合2h,形成壳的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1750℃,保温9h,气氛压力为5Mpa,形成壳的半成品,将所得壳的半成品粉碎后过筛,然后洗涤至电导率为3.88μs/cm,烘干后备用。将壳火焰喷涂在核表面,然后在1100℃保温6h,即制得本发明的改性塞隆荧光粉颗粒成品。其中核的晶核层的化学组成为Si6Al0.1O0.1N8.03:0.005Eu,过渡层的化学组成为 Si5.7Al0.4O0.4N7.73:0.005Eu,其厚度为165nm,核外层的化学组成为Si2.5Al1.5O4N3.47,其厚度为46nm,壳的化学式为Si5.1Al0.2O0.2N6.87,其厚度为58nm。
实施例9。
称取Si3N419.531g,AlN0.285g,Eu2O30.184g,将以上原料在氮气气氛中充分混合2h,形成核的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮氩混合气气氛保护下逐渐升温至1900℃,保温12h,气氛压力为15Mpa,将所得产物粉碎后过筛,然后在氧气体积百分含量为10%的氮氧混合气气氛中逐渐升温至320℃,保温8h,形成核的半成品;称取Si3N419.257g,AlN0.331g,Al2O30.412g,将以上原料在氮气气氛中充分混合2h,形成壳的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1750℃,保温9h,气氛压力为5Mpa,形成壳的半成品,将所得壳的半成品粉碎后过筛,然后洗涤至电导率为3.88μs/cm,烘干后备用。将壳火焰喷涂在核表面,然后在1100℃保温6h,即制得本发明的改性塞隆荧光粉颗粒成品。其中核的晶核层的化学组成为Si6Al0.1O0.1N8.03:0.015Eu,过渡层的化学组成为Si5.75Al0.35O0.35N7.78,其厚度为210nm,核外层的化学组成为SiO2,其厚度为33nm,壳的化学式为Si5.1Al0.2O0.2N6.87,其厚度为75nm。
实施例10。
称取Si3N419.236g,AlN0.281g,Eu2O30.483g,将以上原料在氮气气氛中充分混合2h,形成核的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮氩混合气气氛保护下逐渐升温至1900℃,保温12h,气氛压力为15Mpa,将所得产物粉碎后过筛,然后在氧气体积百分含量为10%的氮氧混合气气氛中逐渐升温至320℃,保温8h,形成核的半成品;称取Si3N419.257g,AlN0.331g,Al2O30.412g,将以上原料在氮气气氛中充分混合2h,形成壳的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1750℃,保温9h,气氛压力为5Mpa,形成壳的半成品,将所得壳的半成品粉碎后过筛,然后洗涤至电导率为4.68μs/cm,烘干后备用。将壳火焰喷涂在核表面,然后在1100℃保温6h,即制得本发明的改性塞隆荧光粉颗粒成品。其中核的晶核层的化学组成为Si6Al0.1O0.1N8.03:0.04Eu,过渡层的化学组成为Si5.68Al0.42O0.42N7.71:0.038Eu,其厚度为267nm,核外层的化学组成为SiO2,其厚 度为38nm,壳的化学式为Si5.1Al0.2O0.2N6.87,其厚度为64nm。
实施例11。
称取Si3N418.894g,AlN0.276g,Eu2O30.83g,将以上原料在氮气气氛中充分混合2h,形成核的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮氩混合气气氛保护下逐渐升温至1900℃,保温12h,气氛压力为15Mpa,将所得产物粉碎后过筛,然后在氧气体积百分含量为10%的氮氧混合气气氛中逐渐升温至320℃,保温8h,形成核的半成品;称取Si3N419.257g,AlN0.331g,Al2O30.412g,将以上原料在氮气气氛中充分混合2h,形成壳的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1750℃,保温9h,气氛压力为5Mpa,形成壳的半成品,将所得壳的半成品粉碎后过筛,然后洗涤至电导率为4.96μs/cm,烘干后备用。将壳火焰喷涂在核表面,然后在1100℃保温6h,即制得本发明的改性塞隆荧光粉颗粒成品。其中核的晶核层的化学组成为Si6Al0.1O0.1N8.03:0.07Eu,过渡层的化学组成为Si5.78Al0.32O0.32N7.81:0.065Eu,其厚度为78nm,核外层的化学组成为Si1.5Al3.2O4N2.53:0.005Eu,其厚度为49nm,壳的化学式为Si5.1Al0.2O0.2N6.87,其厚度为70nm。
实施例12。
称取Si3N418.564g,AlN0.271g,Eu2O31.164g,将以上原料在氮气气氛中充分混合2h,形成核的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮氩混合气气氛保护下逐渐升温至1900℃,保温12h,气氛压力为15Mpa,将所得产物粉碎后过筛,然后在氧气体积百分含量为10%氮氧混合气气氛中逐渐升温至320℃,保温8h,形成核的半成品;称取Si3N419.257g,AlN0.331g,Al2O30.412g,将以上原料在氮气气氛中充分混合2h,形成壳的混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1750℃,保温9h,气氛压力为5Mpa,形成壳的半成品,将所得壳的半成品粉碎后过筛,然后洗涤至电导率为5.06μs/cm,烘干后备用。将壳火焰喷涂在核表面,然后在1100℃保温6h,即制得本发明的改性塞隆荧光粉颗粒成品。其中核的晶核层的化学组成为Si6Al0.1O0.1N8.03:0.1Eu,过渡层的化学组成为Si5.7Al0.4O0.4N7.73:0.1Eu,其厚度为110nm,核外层的化学组成为Si1.5Al2O3N2,其 厚度为21nm,壳的化学式为Si5.1Al0.2O0.2N6.87,其厚度为62nm。
比较例3。
称取Si3N418.542g,AlN0.275g,Eu2O31.183g,将以上原料在氮气气氛中充分混合2h,形成混合料,装入BN坩埚中,再将其迅速移入碳管炉中,然后在氮气气氛保护下逐渐升温至1900℃,保温12h,气氛压力为15Mpa,将所得半成品粉碎后过筛,然后洗涤至电导率为5.26μs/cm,烘干后即可制得塞隆荧光粉颗粒成品,其化学式为Si5.9Al0.1O0.1N8:0.1Eu。
将上述实施例7-12所述的改性塞隆荧光粉颗粒和比较例3所述的塞隆荧光粉颗粒分别制成发光器件,测试结果得到:比较例3的发光强度和老化性能均低于实施例7-12,参见表3。其中老化条件为:SMD-2835型LED灯珠,芯片尺寸10×30mil,芯片波段452.5-455nm,电流150mA,功率0.5W,环境条件:常温常湿。
表3
Figure PCTCN2017110515-appb-000005
本发明的具体实施方式中未涉及的说明属于本领域公知的技术,可参考公知技术加以实施。
本发明经反复试验验证,取得了满意的试用效果。
以上具体实施方式及实施例是对本发明提出的一种改性塞隆荧光粉颗粒及其制备方法、塞隆荧光体和发光器件技术思想的具体支持,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在本技术方案基础上所做的任何等同变化或等效的改动,均仍属于本发明技术方案保护的范围。

Claims (15)

  1. 一种改性塞隆荧光粉颗粒,其特征在于,所述改性塞隆荧光粉颗粒的结构为核壳结构,所述改性塞隆荧光粉颗粒的核结构为自颗粒核心至外表面以氧含量的递增而依次分为晶核层、过渡层和核外层;所述晶核层的主体为氮氧化物材料,过渡层的主体为氮氧化物材料,核外层的主体为氧化物材料或氧氮化物材料;所述晶核层的化学式为Six-z1Alz1Oz1Ny-z1:r1Eu,过渡层的化学式为Six-z2Alz2Oz2Ny-z2:r2Eu,核外层的化学式为SikAlmOoNn:r3Eu;所述改性塞隆荧光粉颗粒的壳的化学式为Sia-cAlcOcNb-c;其中:x、z1、y、r1、z2、r2、k、m、o、n、r3、a、c、b为相应元素的原子百分比,6<x≤8,0.1≤z1≤0.3,y=4x/3,0.001≤r1≤0.1,0.3<z2≤1,0≤r2≤0.1,0≤k≤3,0≤m≤4,1≤o≤6,0≤n≤4,0≤r3≤0.1,3≤a<6,0<c≤0.3,b=4a/3。
  2. 根据权利要求1所述的一种改性塞隆荧光粉颗粒,其特征在于,所述过渡层的厚度为50-300nm,核外层的厚度为50nm以内,过渡层内侧至氮氧化物荧光粉颗粒的核心为晶核层,壳的厚度为1-100nm。
  3. 根据权利要求1所述的一种改性塞隆荧光粉颗粒,其特征在于,所述晶核层中的氮氧化物材料的含量不小于90wt%,所述过渡层中的氮氧化物材料的含量不小于80wt%,所述核外层中氧化物材料或氧氮化物材料的含量不小于70wt%。
  4. 根据权利要求1中所述的一种改性塞隆荧光粉颗粒,其特征在于,所述改性塞隆荧光粉颗粒在波长300-500nm范围内激发下发出峰波长位于500-570nm的光。
  5. 一种塞隆荧光体,其特征在于,包含权利要求1-4中任一项所述的改性塞隆荧光粉颗粒的混合物,所述混合物中改性塞隆荧光粉颗粒的比例不小于50wt%。
  6. 根据权利要求1所述的一种改性塞隆荧光粉颗粒的制备方法,其特征在于,包括如下具体步骤:
    步骤1:以Si、Al、Eu的氮化物、氧化物或卤化物为原料,按化学通式Six-z1Alz1Oz1Ny-z1:r1Eu和Sia-cAlcOcNb-c:组成的化学计量比分别称取所需原料;
    步骤2:将步骤1中所称取的原料在氮气气氛或空气气氛中混合均匀,分别形成改性塞隆荧光粉颗粒的核和改性塞隆荧光粉颗粒的壳的混合料;
    步骤3:将步骤2得到的改性塞隆荧光粉颗粒的核的混合料在高温焙烧气氛的条件下进行高温焙烧,然后降温至低温焙烧温度,在低温焙烧气氛的条件下进行低温焙烧,经过研磨、过筛,得到改性塞隆荧光粉颗粒的核的半成品,备用;
    步骤4:将步骤2得到的改性塞隆荧光粉颗粒的壳的混合料在焙烧气氛的条件下进行高温焙烧,经过研磨、过筛、水洗、烘干,得到改性塞隆荧光粉颗粒的壳的半成品,备用;
    步骤5:将步骤4所述的改性塞隆荧光粉颗粒的壳的半成品喷涂或沉积在步骤3所述的改性塞隆荧光粉颗粒的核的半成品的表面,然后在焙烧温度为800-1500℃的条件下进行焙烧,焙烧时间为1-12h,即制得改性塞隆荧光粉颗粒的成品。
  7. 根据权利要求6所述的一种改性塞隆荧光粉颗粒的制备方法,其特征在于,所述步骤3还包括将高温焙烧后的产物经破碎、过筛后进行低温焙烧,再经研磨、过筛,得到改性塞隆荧光粉颗粒的核的半成品,备用。
  8. 根据权利要求6所述的一种改性塞隆荧光粉颗粒的制备方法,其特征在于,步骤3所述高温焙烧的温度为1600-2000℃,高温焙烧的时间为4-24h,高温焙烧的压力为1-20MPa,高温焙烧的气氛是氮气气氛、氮氩混合气气氛、其它惰性气气氛、氮氢混合气气氛或其它还原气气氛,所述氮氢混合气的氢气体积百分含量为50%以内。
  9. 根据权利要求6所述的一种改性塞隆荧光粉颗粒的制备方法,其特征在于,步骤3所述低温焙烧的温度为200-700℃,低温焙烧的时间为1-24h。
  10. 根据权利要求6所述的一种改性塞隆荧光粉颗粒的制备方法,其特征在于,步骤3所述低温焙烧气氛是指氮氧混合气气氛或空气气氛,所述氮氧混合气或空气的通入速度为0.1-10L/min,所述氮氧混合气的氧气体积百分含量为20%以内。
  11. 根据权利要求6所述的一种改性塞隆荧光粉颗粒的制备方法,其特征在于,步骤4所述焙烧气氛是指氮气气氛、氮氩混合气气氛或其它惰性气气氛;所述高温焙烧的温度为1600-2000℃,所述高温焙烧的时间为4-24h,焙烧的压力为1-10MPa。
  12. 根据权利要求6所述的一种改性塞隆荧光粉颗粒的制备方法,其特征在于,步骤5所述焙烧温度为1000-1200℃,焙烧时间为4-8h。
  13. 根据权利要求6所述的一种改性塞隆荧光粉颗粒的制备方法,其特征在于,步骤5所述的喷涂或沉积选自火焰喷涂、等离子喷涂、真空镀和离子镀中的一种。
  14. 一种发光器件,所述发光器件至少含有发紫外光、紫光或蓝光的LED芯片和荧光粉颗粒,其特征在于,所述荧光粉颗粒至少使用权利要求1-4任一项中所述的改性塞隆荧光粉颗粒。
  15. 一种发光器件,所述发光器件至少含有发紫外光、紫光或蓝光的LED芯片和荧光体,其特征在于,所述荧光体至少使用权利要求5中所述的塞隆荧光体。
PCT/CN2017/110515 2016-11-11 2017-11-10 一种改性塞隆荧光粉颗粒及其制备方法、塞隆荧光体和发光器件 WO2018086601A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610997570.1 2016-11-11
CN201610997570.1A CN106566530B (zh) 2016-11-11 2016-11-11 一种改性塞隆荧光粉颗粒及其制备方法、塞隆荧光体和发光器件

Publications (1)

Publication Number Publication Date
WO2018086601A1 true WO2018086601A1 (zh) 2018-05-17

Family

ID=58542608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110515 WO2018086601A1 (zh) 2016-11-11 2017-11-10 一种改性塞隆荧光粉颗粒及其制备方法、塞隆荧光体和发光器件

Country Status (2)

Country Link
CN (1) CN106566530B (zh)
WO (1) WO2018086601A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112897934A (zh) * 2019-11-19 2021-06-04 吉林建筑大学 一种无机真空球及其制备方法和应用
CN115490508A (zh) * 2022-10-12 2022-12-20 中国科学院上海光学精密机械研究所 一种用于白光ld照明的复合荧光陶瓷及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072927B (zh) * 2017-11-22 2020-09-25 南通纳科达聚氨酯科技有限公司 一种防蓝光膜的制备方法及其应用
CN108227055B (zh) * 2018-03-14 2020-09-25 纳琳威纳米科技南通有限公司 一种可见光反射膜的制备方法及其用途
CN113698927B (zh) * 2021-09-22 2023-07-11 烟台布莱特光电材料有限公司 一种α型塞隆橙色荧光粉的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102559173A (zh) * 2011-12-27 2012-07-11 江苏博睿光电有限公司 核-表层梯度式氮氧化物荧光粉及制造方法和采用该荧光粉的发光器件
CN105623657A (zh) * 2016-01-29 2016-06-01 江苏博睿光电有限公司 一种含氮发光颗粒及其制备方法、含氮发光体和发光器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353192B2 (ja) * 2007-11-09 2013-11-27 三菱化学株式会社 蛍光体、及びその製造方法
CN105733571A (zh) * 2016-01-29 2016-07-06 江苏博睿光电有限公司 一种氮氧化物发光颗粒及其制备方法、氮氧化物发光体和发光器件
CN105623658B (zh) * 2016-01-29 2017-04-12 江苏博睿光电有限公司 一种氮氧化物荧光粉及其制备方法、氮氧化物发光体和发光器件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102559173A (zh) * 2011-12-27 2012-07-11 江苏博睿光电有限公司 核-表层梯度式氮氧化物荧光粉及制造方法和采用该荧光粉的发光器件
CN105623657A (zh) * 2016-01-29 2016-06-01 江苏博睿光电有限公司 一种含氮发光颗粒及其制备方法、含氮发光体和发光器件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112897934A (zh) * 2019-11-19 2021-06-04 吉林建筑大学 一种无机真空球及其制备方法和应用
CN115490508A (zh) * 2022-10-12 2022-12-20 中国科学院上海光学精密机械研究所 一种用于白光ld照明的复合荧光陶瓷及其制备方法
CN115490508B (zh) * 2022-10-12 2023-11-03 中国科学院上海光学精密机械研究所 一种用于白光ld照明的复合荧光陶瓷及其制备方法

Also Published As

Publication number Publication date
CN106566530A (zh) 2017-04-19
CN106566530B (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2018086601A1 (zh) 一种改性塞隆荧光粉颗粒及其制备方法、塞隆荧光体和发光器件
CN105623658B (zh) 一种氮氧化物荧光粉及其制备方法、氮氧化物发光体和发光器件
JP5529296B2 (ja) 白光led光源に用いられる発光ナノ微結晶ガラス及びその製造方法
CN106518037B (zh) 一种全光谱发射的硅酸盐荧光陶瓷及其制备方法
CN112011332B (zh) 一种远红光荧光粉以及包含该荧光粉的发光装置
CN102134488B (zh) 一种真空紫外激发的高色纯度红色荧光粉及其制造方法
CN101928562A (zh) 一种可同时被近紫外和蓝色led光有效激发的红色荧光粉
CN102766457A (zh) 一种3d pdp用氧化钇钆铕红色荧光粉的制备方法
CN102925146B (zh) 一种氮化物荧光粉的制造方法
KR20120112691A (ko) 일종 백광 엘이디 적색 인광체 및 그 제조 방법
CN101307228B (zh) 氯铝硅酸盐荧光粉及其制备方法
JP2014534298A (ja) 窒化物赤色発光材料、それを含む発光素子及び発光デバイス
CN110028964B (zh) 一种镝-硅增效的白光led用磷灰石结构蓝光荧光粉及制备方法
CN113582679B (zh) 一种白光照明用高显色指数高热稳定性荧光陶瓷及其制备方法
WO2012000179A1 (zh) 含有金属颗粒的硅酸锌锰发光材料及其制备方法
CN113292997B (zh) 一种双有序复合钙钛矿红色荧光粉及其制备方法
WO2016127843A1 (zh) 固体光源用荧光材料、其制造方法及包含该荧光材料的组合物
CN101586026A (zh) 一种pdp用bam蓝色荧光粉的制造方法
CN102453484B (zh) 荧光体及发光装置
CN115340869B (zh) 橙色发光材料及其制备方法、白光led
CN106634972B (zh) 一种白光led用的单一相荧光粉及其制备方法
CN105295916B (zh) 一种硅酸盐绿色荧光粉及其制备方法和应用
CN101270285A (zh) 一种冷阴极荧光灯用绿色荧光粉的制备方法
WO2018001368A1 (zh) 氮化物荧光体及包含其的发光装置
CN101696356B (zh) 一种硼酸盐绿色荧光粉的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870392

Country of ref document: EP

Kind code of ref document: A1