CN110028964B - 一种镝-硅增效的白光led用磷灰石结构蓝光荧光粉及制备方法 - Google Patents

一种镝-硅增效的白光led用磷灰石结构蓝光荧光粉及制备方法 Download PDF

Info

Publication number
CN110028964B
CN110028964B CN201910297158.2A CN201910297158A CN110028964B CN 110028964 B CN110028964 B CN 110028964B CN 201910297158 A CN201910297158 A CN 201910297158A CN 110028964 B CN110028964 B CN 110028964B
Authority
CN
China
Prior art keywords
purity
fluorescent powder
washing
powder
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910297158.2A
Other languages
English (en)
Other versions
CN110028964A (zh
Inventor
钱浩军
宋开新
徐明学
范晨利
刘兵
徐军明
高慧芳
武军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201910297158.2A priority Critical patent/CN110028964B/zh
Publication of CN110028964A publication Critical patent/CN110028964A/zh
Application granted granted Critical
Publication of CN110028964B publication Critical patent/CN110028964B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7795Phosphates
    • C09K11/7796Phosphates with alkaline earth metals

Abstract

本发明公开了一种镝‑硅增效的白光LED用磷灰石结构蓝光荧光粉及制备方法,该荧光粉化学通式可以写成Sr5.98Ca4‑x(PO4)6‑y(SiO4)yF2:0.02Eu2+,xDy3+,其中0≤x≤0.03,0≤y≤0.03。该方法是将碳酸钙、碳酸锶、氟化钙、磷酸二氢铵、二氧化钙、氧化铕、氧化镝以一定的化学计量比称量,球磨均匀,常温干燥得到原料混合物;将原料混合物加入到坩埚中,置于高温管式炉中,在还原气氛(95%N2+5%H2)下煅烧6h,得到共混物;将共混物研磨、过筛,得到粉体;将过筛后的粉体依次酸洗、碱洗、水洗,直至粉体洗至中性;离心分层、过滤、烘干,得到白光LED灯用蓝色荧光粉。本发明白光LED用的蓝色荧光粉,具有发光亮度高、色纯度好、发光效率高、激发波长范围广、可被紫外芯片良好激发等特点。

Description

一种镝-硅增效的白光LED用磷灰石结构蓝光荧光粉及制备 方法
技术领域
本发明涉及稀土发光材料及节能减排技术领域,具体是提供一种白光LED用高光效蓝光荧光粉及制备方法。
背景技术
近年来,白光LED作为一种新型的固态照明光源,由于其节能、环保、寿命长、可靠性高等优点受到人们的关注。LED作为继白炽灯、荧光灯、高强度放电灯之后的第四代照明光源,发光效率是白炽灯的10倍,寿命是白炽灯的100倍,它以节能低耗、长寿命、无汞和可平面安装等优势被誉为21世纪的绿色光源。随着今后工艺技术的提高和产量的增大以及LED芯片价格大幅度降低,它将广泛地使用在公共广场、家庭、马路、景观、电子背投等照明领域,成为照明的主流。
荧光粉材料技术是白光LED制备中的关键性技术之一,直接决定着白光LED照明器件的发光效率、发光亮度、显色指数、相关色温等性能指标。目前优选的白光LED实现方案是紫外芯片泵浦红、绿、蓝三基色荧光粉发射白光。这一方案优点主要表现在紫光能量比蓝光要高,获得的白光全部来自于荧光粉,具有高显色指数、高光效和色温可调性的特点。问题是目前紫光芯片成本比蓝光芯片较高,并且三基色荧光粉混合后往往还存在相互间颜色再吸收和配比调控问题,使流明效率和色彩还原性收到很大影响。要解决以上的问题就很有必要开发出一种能被紫光高效激发宽吸收的高光效、光谱分布宽的高显色性荧光粉。Sr5.98Ca4(PO4)6F2:0.02Eu2+磷灰石型蓝光荧光粉存在发光效率低、热稳定性差等不足。
故,针对现有技术存在的技术问题,实有必要提出一种技术方案克服现有技术存在的缺陷。
发明内容
本发明的目的是针对现有的三基色荧光粉混合制成白光LED灯所存在发光效率低、色纯度不高的特点,以及匹配紫外芯片的紫光激发芯片需求,提供一种白光LED用蓝色荧光粉及其制备方法,通过设计Dy3+增效Eu2+与PO4 3--SiO4 4-阴离子团电荷补偿办法研制出新的Sr5.98Ca4-x(PO4)6-y(SiO4)yF2:0.02Eu2+,xDy3+,其中0≤x≤0.03,0≤y≤0.03荧光粉,有效地增加Sr5.98Ca4(PO4)6F2:0.02Eu2+磷灰石型荧光粉的发光效率和热稳定性。同时,该荧光粉可以被近紫外光有效激发,并且覆盖了250nm~400nm的紫外激发区域,有良好的覆盖面,发射峰位于蓝色区域。该蓝色荧光粉物理化学性质稳定,其制作过程简单、易于操作、制备过程无污染无毒害,可以满足白光LED提高发光效率、发光亮度、色纯度等要求。
为实现上述目的,本发明采用的技术方案是:
一种Dy3+-Si4+增效的白光LED用磷灰石结构蓝光荧光粉,其化学组成可以用以下通式表示:Sr5.98Ca4-x(PO4)6-y(SiO4)yF2:0.02Eu2+,xDy3+,其中0≤x≤0.03,0≤y≤0.03。该荧光粉在近紫外的激发下可以有效地发出亮度强、色纯度高的蓝色光。
基于同一个发明构想,本发明还提供了其制备方法,包括以下步骤:
(1)配料:按化学通式Sr5.98Ca4-x(PO4)6-y(SiO4)yF2:0.02Eu2+,xDy3+中的化学计量比,称取以下各原料:SrCO3(纯度99.5%)、CaCO3(纯度99%)、CaF2(纯度99.99%)、(NH4)H2PO4(纯度99%)、Eu2O3(纯度99.99%)、Dy2O3(纯度99.9%)、SiO2(纯度99%);
(2)将上述原料置于球磨机中进行球磨,球磨均匀后常温干燥得到原料混合物;
(3)将成分不同的原料混合物装填到化学性质稳定不会与原料反应的耐高温刚玉坩埚中,置于高温管式炉中,维持炉内加热速率为3℃/min,升至1350℃,然后维持该温度煅烧6h,随后同样以3℃/min的速率自然冷却至室温。煅烧全程炉内通以还原气氛(95%N2+5%H2);
(4)将冷却好的混合物使用行星球磨机破碎、球磨,并用325目的筛网过滤;
(5)将过筛的样本依次进行酸洗、碱洗、水洗三个步骤,其中酸洗使用HNO3溶液的浓度当量范围为3N~5N;碱洗用NH3·H2O溶液的浓度当量范围为3N~5N;水洗用蒸馏水或去离子水,将粉体洗至电中性,达到除去残留在粉体中杂质的目的;
(6)将上述洗涤完成的样本离心分层、过滤,随后置于75℃干燥箱中烘干至恒重,得到样本成品。随后进行成品检测、锡纸密封包装。
本发明的有益效果为:
(1)化学稳定性好。经高温烧结的蓝色荧光粉无污染、无毒害、粒径细小且均匀分布及离子形态规则的特点。
(2)性能好。本发明的蓝色荧光粉激发波长范围广,与紫外芯片的发射峰重叠很好,能够有效激发;发光效果好,Dy3+的掺杂使得Sr5.98Ca4-x(PO4)6F2:0.02Eu2+,xDy3+在455nm出发出宽带的蓝色光,其最优选样本发光强度高于没有掺杂Dy3+的Sr5.98Ca4(PO4)6F2:0.02Eu2+荧光粉发光强度1.8倍左右;共掺杂SiO4 4-、Dy3+的Sr5.98Ca4-x(PO4)6-y(SiO4)yF2:0.02Eu2+,xDy3+最优选样本发光强度高于没有掺杂SiO4 4-的Sr5.98Ca4-x(PO4)6F2:0.02Eu2+,xDy3+样本1.3倍左右,热稳定性提升12%左右。
(3)制备工艺简单。本发明采用传统高温固相法烧结,流程短、设备少、工艺简单、易于操作,制备过程中无需添加助熔剂,单次制备样本产量高。
附图说明
图1为本发明实例1~7制备得到的荧光粉XRD图谱;
图2为本发明实例1~4制备得到的Sr5.98Ca4-x(PO4)6F2:0.02Eu2+,xDy3+荧光粉荧光光谱图;
图3为本发明实例3与实例5~7制备得到的Sr5.98Ca4-x(PO4)6-y(SiO4)yF2:0.02Eu2+,xDy3+荧光粉荧光光谱图;
图4为本发明实例1、实例3、实例6制备得到的荧光粉热稳定图。
具体实施方式
下面对本发明的具体的实施例进行详细阐述,以使本发明的优点和特征被本领域的技术人才理解。
实例1:制备Sr5.98Ca4(PO4)6F2:0.02Eu2+
依次称取CaCO3(纯度99%)0.9298g、SrCO3(纯度99.5%)2.7474g、CaF2(纯度99.99%)0.2410g、(NH4)H2PO4(纯度99%)2.1514g、Eu2O3(纯度99.99%)0.0109g。将上述物料置于球磨机中球磨至4μm,充分混合均匀后置于高纯刚玉坩埚中,并将其放入高温管式炉中,维持炉内的加热速率为3℃/min,在1350℃下保温6小时,随后以3℃/min的速率降至室温。全程炉内维持体积分数为95%N2与5%H2的混合还原气氛。将冷却至室温的产物破碎、球磨,并用325目的筛网过筛。再依次使用浓度当量为4N的HNO3溶液酸洗,4N的NH3·H2O溶液碱洗,去离子水水洗至中性。最后将上述洗涤的样品离心分层、过滤,置于75℃干燥箱中烘干至恒重,得到成品荧光粉。随之进行成品检测、锡纸密封包装。对实例1制备得到的产物进行XRD分析,如图1所示,实例1制备得到的产物为纯六方相的Sr6Ca4(PO4)6F2磷灰石结构,化学式为Sr5.98Ca4(PO4)6F2:0.02Eu2+。对实例1制备得到的产物进行荧光光谱检测,如图2可知该荧光粉可在340nm近紫外光激发下,发射出波峰为455nm的蓝色光。对实例1制备的产物进行温度猝灭测试,如图4所示,结果显示当温度升高到150℃时,发光强度为常温下的55.3%,热稳定性较好。
实例2:制备Sr5.98Ca3.99(PO4)6F2:0.02Eu2+,0.01Dy3+
依次称取CaCO3(纯度99%)0.9258g、SrCO3(纯度99.5%)2.7448g、CaF2(纯度99.99%)0.2408g、(NH4)H2PO4(纯度99%)2.1484g、Eu2O3(纯度99.99%)0.0109g、Dy2O3(纯度99.9%)0.0058g。将上述物料置于球磨机中球磨至4μm,充分混合均匀后置于高纯刚玉坩埚中,并将其放入高温管式炉中,维持炉内的加热速率为3℃/min,在1350℃下保温6小时,随后以3℃/min的速率降至室温。全程炉内维持体积分数为95%N2与5%H2的混合还原气氛。将冷却至室温的产物破碎、球磨,并用325目的筛网过筛。再依次使用浓度当量为4N的HNO3溶液酸洗,4N的NH3·H2O溶液碱洗,去离子水水洗至中性。最后将上述洗涤的样品离心分层、过滤,置于75℃干燥箱中烘干至恒重,得到成品荧光粉。随之进行成品检测、锡纸密封包装。对实例2制备得到的产物进行XRD分析,实例2制备得到的产物为纯六方相的Sr6Ca4(PO4)6F2磷灰石结构,化学式为Sr5.98Ca3.99(PO4)6F2:0.02Eu2+,0.01Dy3+。对实例2制备得到的产物进行荧光光谱检测,如图2可知该荧光粉可在340nm近紫外光激发下,发射出波峰为455nm的蓝色光,发光强度是实例1制备得到的产物的1.2倍左右。
实例3:制备Sr5.98Ca3.98(PO4)6F2:0.02Eu2+,0.02Dy3+
依次称取CaCO3(纯度99%)0.9218g、SrCO3(纯度99.5%)2.7422g、CaF2(纯度99.99%)0.2405g、(NH4)H2PO4(纯度99%)2.1474、Eu2O3(纯度99.99%)0.0108g、Dy2O3(纯度99.9%)0.0115g。将上述物料置于球磨机中球磨至4μm,充分混合均匀后置于高纯刚玉坩埚中,并将其放入高温管式炉中,维持炉内的加热速率为3℃/min,在1350℃下保温6小时,随后以3℃/min的速率降至室温。全程炉内维持体积分数为95%N2与5%H2的混合还原气氛。将冷却至室温的产物破碎、球磨,并用325目的筛网过筛。再依次使用浓度当量为4N的HNO3溶液酸洗,4N的NH3·H2O溶液碱洗,去离子水水洗至中性。最后将上述洗涤的样品离心分层、过滤,置于75℃干燥箱中烘干至恒重,得到成品荧光粉。随之进行成品检测、锡纸密封包装。对实例3制备得到的产物进行XRD分析,如图1所示,实例3制备得到的产物为纯六方相的Sr6Ca4(PO4)6F2磷灰石结构,化学式为Sr5.98Ca3.98(PO4)6F2:0.02Eu2+,0.02Dy3+。对实例3制备得到的产物进行荧光光谱检测,如图2可知该荧光粉可在340nm近紫外光激发下,发射出波峰为455nm的蓝色光,发光强度是实例1制备得到的产物的1.8倍左右。对实例3制备的产物进行温度猝灭测试,如图4所示,结果显示当温度升高到150℃时,发光强度为常温下的50.4%,热稳定性相较于实例1下降了5%左右,这是由于三价Dy3+的掺杂,造成产物电荷的不平衡,影响性能。
实例4:制备Sr5.98Ca3.97(PO4)6F2:0.02Eu2+,0.03Dy3+
依次称取CaCO3(纯度99%)0.9178g、SrCO3(纯度99.5%)2.7396g、CaF2(纯度99.99%)0.2403g、(NH4)H2PO4(纯度99%)2.1454、Eu2O3(纯度99.99%)0.0108g、Dy2O3(纯度99.9%)0.01724g。将上述物料置于球磨机中球磨至4μm,充分混合均匀后置于高纯刚玉坩埚中,并将其放入高温管式炉中,维持炉内的加热速率为3℃/min,在1350℃下保温6小时,随后以3℃/min的速率降至室温。全程炉内维持体积分数为95%N2与5%H2的混合还原气氛。将冷却至室温的产物破碎、球磨,并用325目的筛网过筛。再依次使用浓度当量为4N的HNO3溶液酸洗,4N的NH3·H2O溶液碱洗,去离子水水洗至中性。最后将上述洗涤的样品离心分层、过滤,置于75℃干燥箱中烘干至恒重,得到成品荧光粉。随之进行成品检测、锡纸密封包装。对实例4制备得到的产物进行XRD分析,实例4制备得到的产物为纯六方相的Sr6Ca4(PO4)6F2磷灰石结构,化学式为Sr5.98Ca3.97(PO4)6F2:0.02Eu2+,0.03Dy3+。对实例4制备得到的产物进行荧光光谱检测,如图2可知该荧光粉可在340nm近紫外光激发下,发射出波峰为455nm的蓝色光,发光强度是实例1制备得到的产物的1.4倍左右。相比较于实例3,发光强度降低了26.3%,这是由于荧光粉浓度淬灭产生的影响。
实例5:制备Sr5.98Ca3.99(PO4)5.99(SiO4)0.01:0.02Eu2+,0.01Dy3+
依次称取CaCO3(纯度99%)0.9362g、SrCO3(纯度99.5%)2.7341g、CaF2(纯度99.99%)0.2410g、(NH4)H2PO4(纯度99%)2.1482、Eu2O3(纯度99.99%)0.0109g、Dy2O3(纯度99.9%)0.0058g、SiO2(纯度99%)0.0019g。将上述物料置于球磨机中球磨至4μm,充分混合均匀后置于高纯刚玉坩埚中,并将其放入高温管式炉中,维持炉内的加热速率为3℃/min,在1350℃下保温6小时,随后以3℃/min的速率降至室温。全程炉内维持体积分数为95%N2与5%H2的混合还原气氛。将冷却至室温的产物破碎、球磨,并用325目的筛网过筛。再依次使用浓度当量为4N的HNO3溶液酸洗,4N的NH3·H2O溶液碱洗,去离子水水洗至中性。最后将上述洗涤的样品离心分层、过滤,置于75℃干燥箱中烘干至恒重,得到成品荧光粉。随之进行成品检测、锡纸密封包装。对实例5制备得到的产物进行XRD分析,如图1所示,实例5制备得到的产物为纯六方相的Sr6Ca4(PO4)6F2磷灰石结构,化学式为Sr5.98Ca3.99(PO4)5.99(SiO4)0.01:0.02Eu2+,0.01Dy3+。对实例5制备得到的产物进行荧光光谱检测,如图3可知该荧光粉可在340nm近紫外光激发下,发射出波峰为455nm的蓝色光,发光强度是实例2制备得到的产物的1.25倍左右。
实例6:制备Sr5.98Ca3.98(PO4)5.98(SiO4)0.02:0.02Eu2+,0.02Dy3+
依次称取CaCO3(纯度99%)0.9356g、SrCO3(纯度99.5%)2.7280g、CaF2(纯度99.99%)0.2408g、(NH4)H2PO4(纯度99%)2.1435、Eu2O3(纯度99.99%)0.0109g、Dy2O3(纯度99.9%)0.0115g、SiO2(纯度99%)0.0037g。将上述物料置于球磨机中球磨至4μm,充分混合均匀后置于高纯刚玉坩埚中,并将其放入高温管式炉中,维持炉内的加热速率为3℃/min,在1350℃下保温6小时,随后以3℃/min的速率降至室温。全程炉内维持体积分数为95%N2与5%H2的混合还原气氛。将冷却至室温的产物破碎、球磨,并用325目的筛网过筛。再依次使用浓度当量为4N的HNO3溶液酸洗,4N的NH3·H2O溶液碱洗,去离子水水洗至中性。最后将上述洗涤的样品离心分层、过滤,置于75℃干燥箱中烘干至恒重,得到成品荧光粉。随之进行成品检测、锡纸密封包装。对实例5制备得到的产物进行XRD分析,如图1所示,实例5制备得到的产物为纯六方相的Sr6Ca4(PO4)6F2磷灰石结构,化学式为Sr5.98Ca3.98(PO4)5.98(SiO4)0.02:0.02Eu2+,0.02Dy3+。对实例6制备得到的产物进行荧光光谱检测,如图3可知该荧光粉可在340nm近紫外光激发下,发射出波峰为455nm的蓝色光,发光强度是实例3制备得到的产物的1.3倍左右。对实例6制备的产物进行温度猝灭测试,如图4所示,结果显示当温度升高到150℃时,发光强度为常温下的62.4%,相较于未掺杂SiO4 4-的实例3制备的产物热稳定性能提升12%左右。这是由于SiO4 4-解决了Dy3+掺杂带来的电荷不平衡问题。
实例7:制备Sr5.98Ca3.97(PO4)5.97(SiO4)0.03:0.02Eu2+,0.03Dy3+
依次称取CaCO3(纯度99%)0.9351g、SrCO3(纯度99.5%)2.7220g、CaF2(纯度99.99%)0.2407g、(NH4)H2PO4(纯度99%)2.1387、Eu2O3(纯度99.99%)0.0108g、Dy2O3(纯度99.9%)0.01723g、SiO2(纯度99%)0.0056g。将上述物料置于球磨机中球磨至4μm,充分混合均匀后置于高纯刚玉坩埚中,并将其放入高温管式炉中,维持炉内的加热速率为3℃/min,在1350℃下保温6小时,随后以3℃/min的速率降至室温。全程炉内维持体积分数为95%N2与5%H2的混合还原气氛。将冷却至室温的产物破碎、球磨,并用325目的筛网过筛。再依次使用浓度当量为4N的HNO3溶液酸洗,4N的NH3·H2O溶液碱洗,去离子水水洗至中性。最后将上述洗涤的样品离心分层、过滤,置于75℃干燥箱中烘干至恒重,得到成品荧光粉。随之进行成品检测、锡纸密封包装。对实例5制备得到的产物进行XRD分析,如图1所示,实例5制备得到的产物为纯六方相的Sr6Ca4(PO4)6F2磷灰石结构,化学式为Sr5.98Ca3.97(PO4)5.97(SiO4)0.03:0.02Eu2+,0.03Dy3+。对实例7制备得到的产物进行荧光光谱检测,如图3可知该荧光粉可在340nm近紫外光激发下,发射出波峰为455nm的蓝色光,发光强度是实例4制备得到的产物的1.27倍左右。相较于实例6制备得到的产物,发光强度由于浓度猝灭有所下降。
通过实例1、2、3、4中的荧光粉进行对比,表明掺杂Dy3+可以有效的提高该荧光粉的发光强度,本发明荧光粉确实可以作为紫外芯片激发的白光用LED蓝色荧光粉。通过实例2~4与实例5~7制备得到的荧光粉进行对比,表明SiO4 4-的掺杂可以进一步的提高该荧光粉的发光强度。通过实例1、实例3与实例6制备得到的荧光粉热稳定性能的对比,表明Dy3+掺杂造成的电荷不平衡问题降低了产物的热稳定性,SiO4 4-的掺杂可以解决Dy3+掺杂产生的问题,有效地提高产物的热稳定性。
上述的7个实例皆为本发明的优选实施方式,并非是对于本发明的限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,只要符合本发明要求,均属于本发明的保护范围。

Claims (2)

1.一种镝-硅增效的白光LED用磷灰石结构蓝光荧光粉,其特征在于,所述荧光粉化学组成用以下通式表示:Sr5.98Ca4-x(PO4)6-y(SiO4)yF2:0.02Eu2+,xDy3+,其中0<x≤0.03,0<y≤0.03。
2.制备如权利要求1所述的镝-硅增效的白光LED用磷灰石结构蓝光荧光粉的制备方法,其特征在于,该方法包括以下步骤:
(1)配料:按化学通式Sr5.98Ca4-x(PO4)6-y(SiO4)yF2:0.02Eu2+,xDy3+中的化学计量比,称取以下各原料:纯度99.5%的SrCO3、纯度99%的CaCO3、纯度99.99%的CaF2、纯度99% 的(NH4)H2PO4、纯度99.99%的Eu2O3、纯度99.9%的Dy2O3、纯度99%的SiO2
(2)将上述原料置于球磨机中进行球磨,球磨均匀后常温干燥得到原料混合物;
(3)将成分不同的原料混合物装填到化学性质稳定不会与原料反应的耐高温刚玉坩埚中,置于高温管式炉中,维持炉内加热速率为3℃/min,升至1350℃,然后维持该温度煅烧6h,随后同样以3℃/min的速率自然冷却至室温;煅烧全程炉内通以还原气氛,所述还原气氛为95%N2+5%H2
(4)将冷却好的混合物使用行星球磨机破碎、球磨,并用325目的筛网过滤;
(5)将过筛的样本依次进行酸洗、碱洗、水洗三个步骤,其中酸洗使用HNO3溶液的浓度当量范围为3N~5N;碱洗用NH3·H2O溶液的浓度当量范围为3N~5N;水洗用蒸馏水或去离子水,将粉体洗至电中性,达到除去残留在粉体中杂质的目的;
(6)将上述洗涤完成的样本离心分层、过滤,随后置于75℃恒温箱中烘干至恒重,得到样本成品。
CN201910297158.2A 2019-04-15 2019-04-15 一种镝-硅增效的白光led用磷灰石结构蓝光荧光粉及制备方法 Active CN110028964B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910297158.2A CN110028964B (zh) 2019-04-15 2019-04-15 一种镝-硅增效的白光led用磷灰石结构蓝光荧光粉及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910297158.2A CN110028964B (zh) 2019-04-15 2019-04-15 一种镝-硅增效的白光led用磷灰石结构蓝光荧光粉及制备方法

Publications (2)

Publication Number Publication Date
CN110028964A CN110028964A (zh) 2019-07-19
CN110028964B true CN110028964B (zh) 2022-01-11

Family

ID=67238308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910297158.2A Active CN110028964B (zh) 2019-04-15 2019-04-15 一种镝-硅增效的白光led用磷灰石结构蓝光荧光粉及制备方法

Country Status (1)

Country Link
CN (1) CN110028964B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363547A (zh) * 2020-02-15 2020-07-03 杭州电子科技大学 一种白光led用的磷灰石结构宽发射带绿光荧光粉及其制备方法
CN112210375A (zh) * 2020-09-24 2021-01-12 东台市天源光电科技有限公司 一种稀土掺杂硅酸盐荧光粉及其制备方法
CN112812773A (zh) * 2021-01-06 2021-05-18 成都理工大学 一种发光增强的稀土掺杂磷酸盐全白光荧光粉及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A novel blue luminescent material Sr6Ca4(PO4)6F2:Eu2+;Peican Chen;《Materials Research Bulletin》;20150726;第72卷;图5(a),第191-192页"Experimental"部分 *
Structure and luminescence properties of Sr9La(PO4)5(SiO4)F2:Dy3+ single component white-emitting phosphor for n-UV w-LEDs;Zhang Yuanyuan;《Optical Materials》;20180806;第84卷;全文 *

Also Published As

Publication number Publication date
CN110028964A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
WO2008022552A1 (fr) Matériau luminescent à base de silicate avec pic multi-émission, son procédé de fabrication et son utilisation dans un dispositif d&#39;éclairage
CN110028964B (zh) 一种镝-硅增效的白光led用磷灰石结构蓝光荧光粉及制备方法
CN101134895A (zh) 一种宽谱激发荧光材料及其合成方法以及使用其的发光装置
CN108570323B (zh) 一种磷铝酸锶锂荧光粉及其制备方法
Yang et al. Tunable blue-green color emission and energy transfer of Sr3NaSc (PO4) 3F: Eu2+, Tb3+ phosphors with near-UV broad band excited for white LEDs
CN102559179B (zh) 一种白光led用单基质白光荧光粉及其制备方法
CN103980900B (zh) 一种硅酸盐蓝光荧光粉及其制备方法
CN104927865A (zh) 一种白光led用卤磷酸盐蓝色荧光粉及其制备方法
Xiao et al. Y4MgSi3O13: RE3+ (RE= Ce, Tb and Eu) nanophosphors for a full-color display
CN101307228B (zh) 氯铝硅酸盐荧光粉及其制备方法
CN101250407A (zh) 硼硅酸盐荧光粉及其制备方法
CN109370580B (zh) 一种铋离子激活的钛铝酸盐荧光粉及其制备方法与应用
CN101486910B (zh) 一种白光led用绿色荧光粉及其制备方法
CN103146381B (zh) 一种锰离子激活的铝酸盐红色荧光粉及其制备方法
CN101760191B (zh) Led用高亮度硅酸钡基蓝绿色荧光粉及其高温还原制备方法
CN112625683A (zh) 一种锗酸盐型红色荧光粉及制备方法
CN105331363B (zh) 一种磷铝酸盐荧光粉及其制备方法
CN101885966A (zh) 一种掺铕的锶铝硅系复合荧光粉及其制备方法
CN108728088B (zh) 一种铕离子激励的硅酸盐白光荧光粉及其制备方法
CN112592711B (zh) 一种远红光荧光粉及其制备和改性方法
CN111363547A (zh) 一种白光led用的磷灰石结构宽发射带绿光荧光粉及其制备方法
CN107474841A (zh) 一种红色铋磷酸盐荧光材料及其制备方法和应用
CN106085421A (zh) 一种Eu3+激活的正硅酸镁钾荧光粉及其制备方法和应用
CN105885834A (zh) 一种白光led用磷酸盐蓝色荧光粉及其制备方法
CN102899042A (zh) 一种Pr,Eu/Tb共掺杂的钨/钼酸盐荧光粉及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant