WO2017121204A1 - 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法 - Google Patents

一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法 Download PDF

Info

Publication number
WO2017121204A1
WO2017121204A1 PCT/CN2016/107799 CN2016107799W WO2017121204A1 WO 2017121204 A1 WO2017121204 A1 WO 2017121204A1 CN 2016107799 W CN2016107799 W CN 2016107799W WO 2017121204 A1 WO2017121204 A1 WO 2017121204A1
Authority
WO
WIPO (PCT)
Prior art keywords
barium titanate
foam ceramic
titanate foam
solution
slurry
Prior art date
Application number
PCT/CN2016/107799
Other languages
English (en)
French (fr)
Inventor
梁国正
郑龙辉
顾嫒娟
彭碧寰
袁莉
Original Assignee
苏州大学张家港工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院 filed Critical 苏州大学张家港工业技术研究院
Priority to US16/069,163 priority Critical patent/US10807916B2/en
Publication of WO2017121204A1 publication Critical patent/WO2017121204A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4523Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the molten state ; Thermal spraying, e.g. plasma spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0093Other features
    • C04B38/0096Pores with coated inner walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4853Epoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a composite material and a preparation method thereof, and particularly to a modified barium titanate foam ceramic/thermosetting resin composite material and a preparation method thereof.
  • Ceramic dielectric materials have a high dielectric constant and excellent ferroelectric, piezoelectric and insulating properties making them an important grade of high dielectric materials.
  • ferroelectric, piezoelectric and insulating properties making them an important grade of high dielectric materials.
  • Polymers have excellent process and mechanical properties, but their dielectric constants are low ( ⁇ 10) and cannot be directly used as high dielectric materials.
  • researchers improve the dielectric properties of polymer matrices by adding functionalities. , making it a high dielectric constant material.
  • the ceramic/polymer composite material can combine the excellent dielectric properties of the ceramic with the excellent adhesion, toughness and easy processing of the polymer. It has good storage energy and uniform electric field performance, and the dielectric constant is affected by temperature. It has little effect on frequency and is an ideal material for applications in the cutting-edge field.
  • the volume content of ceramic particles in the composite material needs to be greater than 50 vol ⁇ 3 ⁇ 4, which makes the molding of the composite material more difficult, the dielectric loss becomes larger, the weight increases, and the toughness of the composite material. And the adhesion is also reduced.
  • the dispersion of ceramic particles in the polymer matrix is not uniform, especially when the volume fraction of the dispersed phase is high, and agglomeration occurs locally, which does not form a perfect interfacial bond, resulting in a decrease in dielectric constant.
  • the present invention provides a modified barium titanate ceramic/thermosetting resin having a simple preparation method, controllable performance, high dielectric constant and low dielectric loss, and a preparation method thereof.
  • a method for preparing a modified barium titanate foam ceramic/thermosetting resin composite material comprising the following steps:
  • the polymer sponge having a specification of 15 to 35 PPI is immersed in a sodium hydroxide aqueous solution having a concentration of 5 to 20% by weight, heated to 50 to 75 ° C and kept for 2 to 6 hours, and then the polymer sponge is used. Take out, wash with deionized water and dry to obtain polymer sponge D; at room temperature, immerse polymer sponge D in a surfactant aqueous solution with a concentration of 0.5 ⁇ 3wt%, remove it after 2 ⁇ 6h, remove excess The surfactant is dried at a temperature of 40 to 80 ° C to obtain a pretreated polymer sponge E; the polymer material of the polymer sponge is polyurethane, polystyrene or polyvinyl chloride. Any one of the surfactants; one of carboxymethyl cellulose, polyethyleneimine, or any combination thereof;
  • the barium titanate foam ceramic green body prepared in the step (3) is heated from room temperature to 100 to 300 ° C at a rate of 0.5 to 5 ° C / min, and then 0.5 to 5 ° C / After the temperature of min is raised to 500 ⁇ 700 ° C and kept for 0.5 ⁇ 2 h, the temperature is raised to 1000 ⁇ 1500 ° C at a rate of 2 ⁇ 10 ° C / min and kept for 1 ⁇ 5 h, and then cooled to room temperature with the furnace. Obtaining a barium titanate foam ceramic;
  • step (5) using a buffer reagent or buffer, water and dopamine hydrochloride, a concentration of 0.5 ⁇ 10g / L of dopamine solution; with a base to adjust the pH to 8.3 ⁇ 8.8, to obtain a solution F; step (4) The obtained barium titanate foam ceramic is immersed in the solution F, and left at room temperature for 1 to 24 hours, and then washed with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic;
  • a stabilizer aqueous solution having a concentration of 0.1 to 1% by volume is added to 100 parts of a freshly prepared silver ammonia solution having a concentration of 0.03 to 0.3 mol/L, and uniformly mixed to obtain a solution G;
  • the dopamine-modified barium titanate foam ceramic prepared in the step (5) is immersed in the solution G, and is placed at a normal temperature for 0.5 to 24 hours to obtain a nano-silver-loaded barium titanate foam ceramic, and then added in a concentration of 50 to 300 parts of l 30 g.
  • modified barium titanate foam ceramic the stabilizer is one of polyvinylpyrrolidone and sodium alginate, Or any combination thereof;
  • the reducing agent is one of hydrazine hydrate, sodium citrate, sodium borohydride, glucose, ascorbic acid, or any combination thereof;
  • the nanometer barium titanate according to the invention has an average particle diameter of ⁇ 1001 ⁇ 1.
  • the buffer reagent or buffer is one of Tris-HCl, disodium hydrogen phosphate-sodium dihydrogen phosphate buffer
  • the base is one of sodium hydroxide and ammonia water.
  • the process conditions of the heat curing and the post-treatment are consistent with the heat curing and post-treatment process conditions of the heat curable resin used.
  • the thermosetting resin is a resin which is itself heat curable, or a resin which is not thermally curable by itself and a curing agent.
  • the self-curable resin is a bismaleimide resin, a cyanate ester, and combinations thereof.
  • the resin which is not thermally curable by itself is an epoxy resin.
  • the technical solution of the present invention further includes a modified barium titanate foam ceramic/thermosetting resin composite material obtained by the above preparation method. [0019] The volume percentage of the resin in the composite material is 60 to 90%.
  • the present invention uses a modified barium titanate foam ceramic as a functional body, which is prepared by micro/nano silver loading on a chemical composition of a single pure barium titanate foam ceramic.
  • barium titanate foam ceramic is a pure chemical composition of pure barium titanate, which has excellent dielectric properties; and the foamed ceramic is sintered at a high temperature to obtain further ceramics, thereby having a higher dielectric constant.
  • silver is supported on the entire network of the ceramic foam, which facilitates the construction of a conductor network in the composite material, so that the composite material has a high dielectric constant.
  • the present invention uses a barium titanate foam ceramic having a high dielectric constant and a three-dimensional network as a skeleton, and uses the strong adhesion and self-reducibility of dopamine to directly load nano silver in the foam ceramic skeleton. Further reduced by reducing agent, it has the characteristics of green, simple and controllable.
  • the modified barium titanate foam ceramic/thermosetting resin composite provided by the invention uniformly deposits micro/nano silver in situ on the barium titanate foam ceramic skeleton, and the nano silver particles (non-conductive) hinder
  • the formation of the conductive network reduces the mutual contact between the conductive particles and causes the conductance loss, thereby obtaining a composite material with low dielectric loss.
  • micro/nano-silver deposits on the surface of the ceramic foam improve the interface between the ceramic and the resin.
  • the preparation method of the modified barium titanate foam ceramic/thermosetting resin composite provided by the invention has the characteristics of simple process, controllability, environmental protection, wide applicability, and the like, and is suitable for industrial production.
  • Example 1 is a barium titanate foam ceramic prepared in Example 1 of the present invention, a nano-silver supported barium titanate foam ceramic prepared in Example 2, and a micro/nano-silver supported barium titanate foam ceramic prepared in Example 3. Ray diffraction pattern.
  • Example 2 is a barium titanate foam ceramic, a dopamine-modified barium titanate ceramic, a nano-silver-loaded barium titanate foam ceramic prepared in Example 1 of the present invention, and a nano-silver-loaded barium titanate foam ceramic prepared in Example 2;
  • Example 3 prepared by scanning electron micrographs of micro/nano-silver-loaded barium titanate foam ceramics (magnified 50,000 times).
  • FIG. 3 is a dielectric of a modified barium titanate foam ceramic/cyanate resin composite material prepared in Examples 3 and 4 of the present invention and a barium titanate foam ceramic/cyanate resin composite material prepared in Comparative Example 1 [0028]
  • FIG. The constant varies with frequency.
  • FIG. 5 is an alternating current conductivity of a modified barium titanate foam ceramic/cyanate resin composite material prepared in Examples 3 and 4 of the present invention and a barium titanate foam ceramic/cyanate resin composite material prepared in Comparative Example 1.
  • FIG. Change the graph with frequency.
  • a dopamine solution having a concentration of 2 g/L is prepared, and the pH is adjusted to 8.5 with sodium hydroxide to obtain a solution F; and then the barium titanate foam ceramic prepared in the step 4) is immersed in the solution F. After standing at room temperature for 24 hours; after the reaction is completed, it is washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic. See Figure 2 for a scanning electron micrograph.
  • the solution G is obtained; the dopamine-modified barium titanate foam ceramic prepared in the step 5) is immersed in the solution G, and left at room temperature for 2 hours to obtain a nano-silver-loaded barium titanate foam ceramic, the scanning electron micrograph of which is shown in the drawing 2; Further, 100 mL of an aqueous solution of sodium borohydride having a concentration of lg/L was added to the above solution G, and left at room temperature for 2 hours; after the reaction was completed, it was washed several times with deionized water, and dried to obtain a micro/nano silver-loaded barium titanate foam. Ceramic, that is, modified barium titanate foam ceramic.
  • modified barium titanate foam ceramic / cyanate resin composite material Preparation of modified barium titanate foam ceramic / cyanate resin composite material:
  • the modified barium titanate foam ceramic prepared in step 6) is placed in a mold, preheated in an oven at 160 ° C; , 2-bis(4-cyanoylphenyl)propane (bisphenol A type cyanate) melted at 160 ° C for 1 h, the resulting solution was poured into the preheated modified barium titanate foam ceramic, at 160 Vacuuming at °C for 0.5h; then curing and post-treatment according to 160°C/2h+180°C/2h+200°C/2h+2 20°C/2h and 240°C/4h respectively The mixture was slowly cooled to room temperature to obtain a modified barium titanate foam ceramic/cyanate resin composite.
  • Figure and scanning electron micrographs are respectively shown in Figures 1 and 2; further, 100 mL of a glucose aqueous solution having a concentration of 20 g/L is added to the solution G, and O.lh is placed at normal temperature; After the reaction, the number of deionized water is washed. Next, drying to obtain a micro/nano-silver supported barium titanate foam ceramic, that is, a modified barium titanate foam ceramic.
  • modified barium titanate foam ceramic / cyanate resin composite material preparation of modified barium titanate foam ceramic / cyanate resin composite material: the modified barium titanate foam ceramic prepared in step 1) is placed in a mold, preheated in an oven at 160 ° C; Phenol A type cyanate melts at 160 ° C Lh, the obtained solution is poured into the preheated modified barium titanate foam ceramic, and vacuum is removed at 160 ° C for 0.5 h; then according to 160 ° C / 2 h + 180 ° C / 2 h + 200 ° C / The processes of 2h+220°C/2h and 240°C/4h were separately cured and post-treated; slowly cooled to room temperature to obtain a modified barium titanate foam ceramic/cyanate resin composite.
  • modified barium titanate foam ceramic / cyanate resin composite material preparation of modified barium titanate foam ceramic / cyanate resin composite material: the modified barium titanate foam ceramic prepared in step 1) is placed in a mold, preheated in an oven at 160 ° C; The phenolic A type cyanate was melted at 160 ° C for 1 h, and the obtained solution was poured into the preheated modified barium titanate foam ceramic, and the bubble was removed at 160 ° C for 0.5 h; then, according to 160 ° C / 2h+180°C/2h+200°C/2h+220°C/2h and 240°C/4h processes are separately cured and post-treated; slowly cooled to room temperature to obtain modified barium titanate foam ceramic/cyanate Resin composite.
  • the dielectric constant versus frequency, the dielectric loss versus frequency, and the AC conductivity versus frequency are shown in Figures 3, 4, and 5, respectively.
  • Example 1 is a barium titanate foam ceramic prepared in Example 1 of the present invention, a nano-silver supported barium titanate foam ceramic prepared in Example 2, and a micro/nano-silver supported barium titanate foam prepared in Example 3.
  • X-ray diffraction pattern of ceramics It can be seen that the barium titanate foam ceramics prepared in Example 1 were at 22.1°, 31.6°, 38.9°, 45.2°, 50.8. And significant diffraction peaks appear at 56.1°, which correspond to (100), (110), (111), (002) I (200), (210), and (211) crystal planes, respectively (JCPDS ⁇ .5-0626 ).
  • Example 1 5 mL of a 0.2 wt ⁇ 7 vinylpyrrolidone aqueous solution was added to 50 mL of a freshly prepared silver ammonia solution having a concentration of 0.06 mol/L, and after mixing uniformly, a solution G was obtained; and Step 5) of Example 1 was obtained.
  • the dopamine-modified barium titanate foam ceramic was immersed in solution G, and left at room temperature for 1 h to obtain a nano-silver-loaded barium titanate foam ceramic; and then 100 mL of a glucose aqueous solution having a concentration of 20 g/L was added to the solution G at room temperature.
  • the modified barium titanate foam ceramic prepared in step 1) is placed in a mold, preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the resulting solution is poured into In the preheated modified barium titanate foam ceramic, the bubble is removed by vacuum at 160 ° C for 0.5 h; then, according to 160 ° C / 2 h + 180 ° C / 2 h + 200 ° C / 2 h + 220 ° C / 2 h Curing and post-treatment were respectively carried out in a process of 240 ° C / 4 h; slowly cooling to room temperature to obtain a modified barium titanate foam ceramic / cyanate resin composite material.
  • the dielectric constant versus frequency, the dielectric loss versus frequency, and the AC conductivity versus frequency are shown in Figures 3, 4, and 5, respectively.
  • FIG. 2 it is a barium titanate foam ceramic prepared according to Embodiment 1 of the present invention, a dopamine-modified barium titanate ceramic, a nano-silver supported barium titanate foam ceramic, and a nano-silver-loaded titanic acid prepared in Example 2.
  • Example 3 After the dopamine-modified barium titanate foam ceramic reacts with the silver ammonia solution, fine particles appear on the surface, and as the reaction time increases, the particle size of the surface particles becomes larger and the number increases, that is, the quality of deposited silver. The score is increased (Example 1 and Example 2). Continued addition of glucose for further reduction allows the particle size fraction of the Ag particles to be converted from nanometers to micrometers, and the packing between the silver particles is more tight with the extension of the reduction enthalpy (Example 3 and Example 4). After careful observation, it can be found that the wrapped silver contains two sizes of nanometers and micrometers, and the two sizes of silver particles are inlaid and stacked with each other. (Example 3
  • the barium titanate foam ceramic prepared by the present invention is a pure barium titanate foam ceramic of a single chemical composition, containing no other impurities; after depositing micro/nano silver, barium titanate The foam ceramic skeleton is coated with Ag particles, which changes the skeleton structure of the original barium titanate foam ceramic.
  • FIG. 3 it is a modified barium titanate foam ceramic/cyanate resin composite material prepared in Examples 3 and 4 of the present invention and a barium titanate foam ceramic/cyanate resin composite prepared in Comparative Example 1.
  • the dielectric constant of the material varies with frequency. It can be seen that after the barium titanate foam ceramic is loaded with micro/nano silver, the dielectric constant of the composite increases from 83.3 (Comparative Example 1) to 162.4 (Example 3) at 100 Hz, and as the frequency changes, The dielectric constant of the composite exhibits good stability; the dielectric constant of the silver is reduced to 9618.1 (Example 4).
  • FIG. 4 it is a modified barium titanate foam ceramic/cyanate resin composite material prepared in Examples 3 and 4 of the present invention and a barium titanate foam ceramic/cyanate resin composite prepared in Comparative Example 1.
  • the dielectric loss of the material as a function of frequency. It can be seen that after the barium titanate ceramics were loaded with micro/nano silver (Example 3), the dielectric loss was significantly reduced. For example, at 100 Hz, the dielectric loss of the barium titanate foam ceramic/cyanate resin composite is 0.21 (Example 3), while the dielectric loss of the modified barium titanate foam ceramic/cyanate resin composite is only It is 0.01 (Comparative Example 1). However, when the silver reduction is continued, the dielectric loss reaches 5400 (Example 4).
  • FIG. 5 it is a modified barium titanate foam ceramic/cyanate resin composite material prepared in Examples 3 and 4 of the present invention and a barium titanate foam ceramic/cyanate resin composite prepared in Comparative Example 1.
  • the conductivity of the material varies with frequency.
  • the modified barium titanate foam ceramic/cyanate resin composite material (Example 3 and Example 4) has higher AC conductivity than barium titanate foam ceramic/cyanate resin composite material (Comparative Example 1).
  • Communication Conductivity which should be attributed to the result of loading micro/nano silver.
  • the long conductivity of the composite prepared in Example 4 is a typical conductor characteristic, which is mainly attributed to the change in the size and number of supported Ag. Therefore, compared with the barium titanate foam ceramic/cyanate resin composite material, the modified dielectric energy of the modified barium titanate foam ceramic/cyanate resin composite material after loading Ag, the structure of the composite material change.
  • the results show that, compared to the barium titanate foam ceramic/cyanate resin composite, the barium titanate foam ceramics are loaded with micro/nano at the same barium titanate ceramic content. After silver (before the percolation threshold), it exhibits a dielectric constant with a high frequency stability and a higher absolute value, and a lower dielectric loss.
  • micro/nano-silver coated barium titanate foam ceramic skeleton improves the interface between the ceramic and the resin; and since the encapsulated silver contains nanometer (non-conductive) and micron sizes, the two sizes The silver particles are inlaid and stacked on each other, which helps to reduce the mutual contact between the conductive particles and cause the conductance loss, thereby obtaining a composite material with low dielectric loss.
  • the dopamine-modified barium titanate foam ceramic was immersed in the solution G, and left at room temperature for 0.5 h to obtain a nano-silver-loaded barium titanate foam ceramic; and then 100 mL of a glucose aqueous solution having a concentration of 20 g/L was added to the solution G, After standing at room temperature for lh; after the reaction is completed, it is washed several times with deionized water and dried to obtain a micro/nano-silver supported barium titanate foam ceramic, that is, a modified barium titanate foam ceramic.
  • the modified barium titanate foam ceramic prepared in step 1) is placed in a mold and preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the resulting solution is poured into In the preheated modified barium titanate foam ceramic, the bubble is removed by vacuum at 160 ° C for 0.5 h; then, according to 160 ° C / 2 h + 180 ° C / 2 h + 200 ° C / 2 h + 220 ° C / 2 h Curing and post-treatment were respectively carried out in a process of 240 ° C / 4 h; slowly cooling to room temperature to obtain a modified barium titanate foam ceramic / cyanate resin composite material.
  • a nano-silver-loaded barium titanate foam ceramic is obtained; and 150 ml of a 5 g/L sodium citrate aqueous solution is added to the solution G, and left at room temperature for 1 hour; Washing with ionized water several times, drying to obtain micro/nano-silver supported barium titanate foam ceramic, ie modified barium titanate foam ceramic
  • the modified barium titanate foam ceramic prepared in step 1) is placed in a mold, preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the resulting solution is poured into In the preheated modified barium titanate foam ceramic, the bubble is removed by vacuum at 160 ° C for 0.5 h; then, according to 160 ° C / 2 h + 180 ° C / 2 h + 200 ° C / 2 h + 220 ° C / 2 h Curing and post-treatment were carried out separately from the 240 ° C / 4 h process; slowly cooling to room temperature to obtain a barium titanate foam ceramic / cyanate resin composite.
  • Example 1 5 mL of a 0.2 wt ⁇ 3 ⁇ 4 aqueous solution of sodium alginate was added to 50 mL of a freshly prepared silver ammonia solution having a concentration of 0.06 mol/L, and after mixing uniformly, a solution G was obtained; Step 5) of Example 1 was obtained.
  • the dopamine-modified barium titanate foam ceramic is immersed in the solution G, and left at room temperature for 24 hours to obtain a nano-silver-loaded barium titanate foam ceramic; and then 100 mL of a sodium borohydride aqueous solution having a concentration of 20 g/L is added to the solution G.
  • micro/nano-silver supported barium titanate foam ceramic that is, a modified barium titanate foam ceramic.
  • the modified barium titanate foam ceramic prepared in step 1) is placed in a mold and preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the resulting solution is poured into In the preheated modified barium titanate foam ceramic, the bubble is removed by vacuum at 160 ° C for 0.5 h; then, according to 160 ° C / 2 h + 180 ° C / 2 h + 200 ° C / 2 h + 220 ° C / 2 h Curing and post-treatment were carried out separately from the 240 ° C / 4 h process; slowly cooling to room temperature to obtain a barium titanate foam ceramic / cyanate resin composite.
  • Dopamine hydrochloride was dissolved in 10 mmol / L of Tris-HCl buffer solution, prepared into a concentration of 0.5 g / L of dopamine solution, adjusted to pH 8.5 with sodium hydroxide to obtain a solution F; and then step 1) The obtained barium titanate foam ceramic was immersed in the solution F and left at room temperature for 24 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • the modified barium titanate foam ceramic prepared in step 3) is placed in a mold and preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the resulting solution is poured into In the preheated modified barium titanate foam ceramic, the bubble is removed by vacuum at 160 ° C for 0.5 h; then, according to 160 ° C / 2 h + 180 ° C / 2 h + 200 ° C / 2 h + 220 ° C / 2 h Curing and post-treatment respectively with 240 ° C / 4 h process; slowly cooling to room temperature, to obtain modified barium titanate foam ceramic / cyanate resin composite
  • Example 1 The polyurethane sponge E pretreated in Example 1 was immersed in the slurry C (Example 1), and allowed to stand at room temperature for 5 minutes; then the excess slurry was squeezed out and dried at a temperature of 40 ° C; The slurry was dried and dried three times in this order to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 1) is heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then The temperature is raised to 600 ° C at a rate of 1 ° C / min; then held at 600 ° C for 1 h; then heated to 1200 ° C at a rate of 5 ° C / min, held for 2 h; after the end, with the furnace cooled to room temperature, Barium titanate foam ceramics.
  • step 2 Dopamine hydrochloride was dissolved in 10 mmol / L of Tris-HCl buffer solution, prepared into a concentration of 2g / L of dopamine solution, adjusted to pH 8.5 with sodium hydroxide to obtain a solution F; then step 2) The obtained barium titanate foam ceramic was immersed in the solution F and left at room temperature for 24 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • the modified barium titanate foam ceramic prepared in step 4) is placed in a mold, preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the resulting solution is poured into In the preheated modified barium titanate foam ceramic, the bubble is removed by vacuum at 160 ° C for 0.5 h; then, according to 160 ° C / 2 h + 180 ° C / 2 h + 200 ° C / 2 h + 220 ° C / 2 h Curing and post-treatment respectively with 240 ° C / 4 h process; slowly cooling to room temperature, to obtain modified barium titanate foam ceramic / cyanate resin composite
  • Example 1 The polyurethane sponge E pretreated in Example 1 was immersed in the slurry C (Example 1), and allowed to stand at room temperature for 5 minutes; then the excess slurry was squeezed out and dried at a temperature of 40 ° C; The slurry was dried and dried 5 times in sequence to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 1) is heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then heated to 600 ° C at a rate of 1 ° C / min; Incubate at 600 ° C for 1 h; then heat up at 5 ° C / min After heating to 1200 ° C for 2 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • Dopamine hydrochloride was dissolved in 10 mmol/L of Tris-HCl buffer solution to prepare a dopamine solution having a concentration of 2 g/L, and the pH was adjusted to 8.5 with sodium hydroxide to obtain a solution F; then the step 2) was prepared.
  • the obtained barium titanate foam ceramic was immersed in the solution F and left at room temperature for 24 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • the modified barium titanate foam ceramic prepared in step 4) is placed in a mold and preheated in an oven at 140 ° C; 2,2'-diallyl bisphenol quinone, hydrazine, hydrazine-4, 4 '-Diphenylmethane bismaleimide and bisphenol A type cyanate (mass ratio 18: 27:5) were stirred and mixed at 140 ° C for 1 h, and the obtained solution was poured into the preheated modified titanic acid.
  • the bubbles are removed by vacuum at 140 ° C for 0.5 h; then the curing and post-treatment are carried out according to the processes of 150 ° C / 2 h + 180 ° C / 2 h + 200 ° C / 2 h and 220 ° C / 8 h respectively. Slowly cooled to room temperature to obtain a modified barium titanate foam ceramic/bismaleimide/cyanate composite.
  • the barium titanate foam ceramic green body prepared in Example 1 was heated from room temperature to 200 ° C at a rate of 0.5 ° C/min.
  • Dopamine hydrochloride was dissolved in 10 mmol/L of Tris-HCl buffer solution to prepare a dopamine solution having a concentration of 2 g/L, and the pH was adjusted to 8.5 with ammonia water to obtain a solution F; and then the step 1) was obtained.
  • Barium titanate foam The ceramic was immersed in the solution F and allowed to stand at room temperature for 24 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • the barium titanate foam ceramic is immersed in the solution G, and left at room temperature for 0.5 h to obtain a nano-silver supported barium titanate foam ceramic; and then 100 mL of a sodium borohydride aqueous solution having a concentration of 20 g/L is added to the solution G, Placed at room temperature for 2 h; placed at room temperature for 2 h; after the reaction is completed, it is washed several times with deionized water and dried to obtain a micro/nano-silver-loaded barium titanate foam ceramic, that is, a modified barium titanate foam ceramic.
  • the modified barium titanate foam ceramic prepared in step 3) is placed in a mold and preheated in an oven at 130 ° C; 2,2'-diallyl bisphenol A and hydrazine, ⁇ -4, 4 '-Diphenylmethane bismaleimide (mass ratio 3:7) was stirred and mixed at 130 ° C for 1 h, and the obtained solution was poured into the preheated modified barium titanate foam ceramic at 130 ° C Vacuuming and removing the bubbles for 0.5 h; then curing and post-treatment according to the processes of 150 ° C / 2 h + 180 ° C / 2 h + 200 ° C / 2 h and 220 ° C / 8 h respectively; slowly cooling to room temperature to obtain modified titanium Acid strontium foam ceramic / bismaleimide resin composite.
  • the polyurethane sponge of the specification of 25 PPI was immersed in a sodium hydroxide aqueous solution having a concentration of 10% by weight, heated to 60 ° C and kept for 3.5 hours; then, the polyurethane sponge was taken out and washed several times with deionized water. After drying, the polyurethane sponge D is obtained; at room temperature, the polyurethane sponge D is immersed in a 0.5% by weight aqueous solution of polyethyleneimine and left for 3 hours; then, the excess polyethyleneimine aqueous solution is removed and removed at a temperature of 40 . Drying under C conditions gave a pretreated polyurethane sponge E. 3) Preparation of Barium Titanate Foam Ceramic Green Body
  • the pretreated polyurethane sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 5 minutes; then the excess slurry is squeezed out and dried at a temperature of 80 ° C; The slurry was dried and treated 4 times to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 5 ° C / min, and then heated to 600 ° C at a rate of 5 ° C / min; The temperature was raised at 600 ° C for 0.5 h; then the temperature was raised to 1000 ° C at a rate of 10 ° C / min, and kept for 2 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic, that is, a modified barium titanate foam ceramic.
  • Dopamine hydrochloride was dissolved in 10 mmol/L of Tris-HCl buffer solution to prepare a dopamine solution having a concentration of 5 g/L, and the pH was adjusted to 8.5 with sodium hydroxide to obtain a solution F; then, step 4) was prepared.
  • the obtained barium titanate foam ceramic was immersed in the solution F and left at room temperature for 24 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • the barium titanate foam ceramic is immersed in the solution G, and left at room temperature for 2 hours to obtain a nano-silver-loaded barium titanate foam ceramic; and 50 mL of a sodium citrate aqueous solution having a concentration of 10 g/L is added to the solution G, After standing at room temperature for 2 hours; after the reaction is completed, it is washed several times with deionized water and dried to obtain a micro/nano-silver supported barium titanate foam ceramic, that is, a modified barium titanate foam ceramic.
  • the modified barium titanate foam ceramic prepared in step 6) is placed in a mold and preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the obtained solution is poured into In the preheated modified barium titanate foam ceramic, the bubble is removed by vacuum at 160 ° C for 0.5 h; then, according to 160 ° C / 2 h + 180 ° C / 2 h + 200 ° C / 2 h + 220 ° C / 2 h Curing and post-treatment were respectively carried out in a process of 240 ° C / 4 h; slowly cooling to room temperature to obtain a modified barium titanate foam ceramic / cyanate resin composite material.
  • Barium titanate (average particle diameter: 30 nm) and 10 g of a carboxymethylcellulose aqueous solution having a concentration of 1 wt% and 10 g of a methylcellulose aqueous solution having a concentration of 1 wt% are sufficiently ground to obtain a slurry A; 2 g of a concentration is added to the slurry A. It is a 2wt ⁇ 3 ⁇ 4 aqueous solution of carboxymethyl cellulose, and is sufficiently ground to obtain a slurry B; 10 parts of a polyacrylamide aqueous solution having a concentration of 1% by weight and 6 g of a polyethyleneimine aqueous solution having a concentration of 1% by weight are added to the slurry B. The mixed solution was sufficiently ground to obtain a slurry C.
  • the polyurethane sponge having a specification of 35 PPI was immersed in a sodium hydroxide aqueous solution having a concentration of 15% by weight, heated to 60 ° C and kept for 3.5 hours; then, the polyurethane sponge was taken out and washed with deionized water several times.
  • the polyurethane sponge D After drying, the polyurethane sponge D is obtained; at room temperature, the polyurethane sponge D is immersed in a mixture of an equal volume of an aqueous solution of 1 wt 9 carboxymethylcellulose and a polyethylenimine aqueous solution having a concentration of 1 wt% and left for 3 h; The mixture of excess carboxymethylcellulose and polyethyleneimine was removed and dried at a temperature of 60 ° C to obtain a pretreated polyurethane sponge E.
  • the pretreated polyurethane sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 10 minutes; then the excess slurry is squeezed out and dried at a temperature of 50 ° C; The slurry was dried and treated 4 times to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then heated to 600 ° C at a rate of 1 ° C / min; The temperature was maintained at 600 ° C for 1 h; then the temperature was raised to 1000 ° C at a rate of 2 ° C / min, and kept for 1 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • Dopamine hydrochloride was dissolved in 10 mmol/L of Tris-HCl buffer solution to prepare a dopamine solution having a concentration of 2 g/L, and the pH was adjusted to 8.5 with sodium hydroxide to obtain a solution F; then, step 4) was prepared.
  • the obtained barium titanate foam ceramic was immersed in the solution F and left at room temperature for 24 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • the barium titanate foam ceramic is immersed in the solution G, and left at room temperature for 2 hours to obtain a nano-silver-loaded barium titanate foam ceramic; and 50 mL of a sodium citrate aqueous solution having a concentration of 10 g/L is added to the solution G, After standing at room temperature for 2 hours; after the reaction is completed, it is washed several times with deionized water and dried to obtain a micro/nano-silver supported barium titanate foam ceramic, that is, a modified barium titanate foam ceramic.
  • the modified barium titanate foam ceramic prepared in step 6) is placed in a mold and preheated in an oven at 130 ° C; 2,2'-diallyl bisphenol A and hydrazine, ⁇ -4, 4 '-Diphenylmethane bismaleimide (mass ratio 3:7) was stirred and mixed at 130 ° C for 1 h, and the obtained solution was poured into the preheated modified barium titanate foam ceramic at 130 ° C Vacuuming and removing the bubbles for 0.5 h; then curing and post-treatment according to the processes of 150 ° C / 2 h + 180 ° C / 2 h + 200 ° C / 2 h and 220 ° C / 8 h respectively; slowly cooling to room temperature to obtain modified titanium Acid strontium foam ceramic / bismaleimide resin composite.
  • a mixture of 20 g of barium titanate (average particle diameter: 50 nm) and 6 g of a polyvinyl alcohol aqueous solution having a concentration of 10 wt ⁇ 3 ⁇ 4 and 10 g of a carboxymethylcellulose aqueous solution having a concentration of 1% was sufficiently ground to obtain a slurry.
  • a mixture of a 1 wt% aqueous solution of polyethyleneimine was sufficiently ground to obtain a slurry C.
  • the polyvinyl chloride sponge having a specification of 15 PPI was immersed in a sodium hydroxide aqueous solution having a concentration of 20% by weight, heated to 60 ° C and kept for 2 hours; then, the polyvinyl chloride sponge was taken out and washed with deionized water. Several times, after drying, the polyvinyl chloride sponge D is obtained; at room temperature, the polyvinyl chloride sponge D is immersed in a 0.5% by weight aqueous solution of carboxymethylcellulose and left for 3 hours; then, the excess carboxy is removed. The methyl cellulose aqueous solution was dried at a temperature of 60 ° C to obtain a pretreated polyvinyl chloride sponge E.
  • the pretreated polyvinyl chloride sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 5 minutes. Then, the excess slurry is squeezed out and dried at a temperature of 40 ° C; the slurry is repeatedly dried and dried 4 times to obtain a barium titanate ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 0.5 ° C / min, and then raised to 600 ° C at a rate of 5 ° C / min; The temperature was raised at 600 ° C for 2 h; then the temperature was raised to 1200 ° C at a rate of 5 ° C / min, and kept for 2 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • Dopamine hydrochloride was dissolved in 10 mmol/L of Tris-HCl buffer solution to prepare a dopamine solution having a concentration of 0.5 g/L, and the pH was adjusted to 8.5 with ammonia water to obtain a solution F; then, step 4) was prepared.
  • the barium titanate foam ceramic was immersed in the solution F and allowed to stand at room temperature for 12 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • the modified barium titanate foam ceramic prepared in step 6) is placed in a mold and preheated in an oven at 140 ° C; 2,2'-diallyl bisphenol quinone, hydrazine, hydrazine-4, 4 '-Diphenylmethane bismaleimide and bisphenol A type cyanate (mass ratio 18: 27:5) were stirred and mixed at 140 ° C for 1 h, and the obtained solution was poured into the preheated modified titanic acid.
  • the bubbles are removed by vacuum at 140 ° C for 0.5 h; then the curing and post-treatment are carried out according to the processes of 150 ° C / 2 h + 180 ° C / 2 h + 200 ° C / 2 h and 220 ° C / 8 h respectively. Slowly cooled to room temperature to obtain a modified barium titanate foam ceramic/bismaleimide/cyanate composite.
  • the polystyrene sponge having a size of 25 PPI was immersed in an aqueous solution of sodium hydroxide having a concentration of 5 wt%, heated to 75 ° C and kept for 6 h; then, the polystyrene sponge was taken out and washed several times with deionized water. After drying, the polystyrene sponge D is obtained; at room temperature, the polystyrene sponge D is immersed in a polyethylene glycol aqueous solution having a concentration of 3 wt% and left for 2 hours; then, the excess polyethyleneimine aqueous solution is removed and removed. It was dried at a temperature of 60 ° C to obtain a pretreated polystyrene sponge E.
  • the pretreated polystyrene sponge E is immersed in the slurry C prepared in the step 1), and placed at a normal temperature for 10 mM; then the excess slurry is squeezed out and dried at a temperature of 50 ° C; The slurry was dried and dried 7 times in sequence to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 0.5 ° C / min, and then raised to 600 ° C at a rate of 5 ° C / min; The temperature was raised at 600 ° C for 2 h; then the temperature was raised to 1000 ° C at a rate of 10 ° C / min, and kept for 5 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • step 4 Dopamine hydrochloride was dissolved in 10 mmol/L of Tris-HCl buffer solution to prepare a dopamine solution having a concentration of 2 g/L, and the pH was adjusted to 8.5 with sodium hydroxide to obtain a solution F; then step 4) was prepared.
  • the obtained barium titanate foam ceramic was immersed in the solution F and left at room temperature for 12 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • the modified barium titanate foam ceramic prepared in step 6) is placed in a mold and preheated in an oven at 150 ° C; epoxy resin (grade E-51) and bisphenol A type cyanate (mass ratio) 1:9) Stirring at 150 ° C for 1 h, pouring the solution into the preheated modified barium titanate foam ceramic, vacuuming at 150 ° C for 0.5 h; then following 160 ° C / 2 h + 180 ° C / 2 h + 200 ° C / 2 h and 220 ° C / 4 h process respectively curing and post-treatment; slowly cooled to room temperature, to obtain modified barium titanate foam ceramic / epoxy / cyanate resin composite .
  • the 25 PPI-sized polyvinyl chloride sponge was immersed in a 20 wt% aqueous solution of sodium hydroxide, heated to 50 ° C and held for 2 h; then, the polyvinyl chloride sponge was taken out and washed several times with deionized water. After drying, the polyvinyl chloride sponge D is obtained; at room temperature, the polyvinyl chloride sponge D is immersed in a 0.5% by weight aqueous solution of polyethyleneimine and left for 2 hours; then, the excess polyethyleneimine is removed and removed. The aqueous solution was dried at a temperature of 70 ° C to obtain a pretreated polyvinyl chloride sponge E.
  • the pretreated polyvinyl chloride sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 1 min; then the excess slurry is squeezed out and dried at a temperature of 70 ° C; The pulping and drying treatment were repeated once to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 5 ° C / min, and then heated to 600 ° C at a rate of 0.5 ° C / min; The temperature was raised at 600 ° C for 0.5 h; then the temperature was raised to 1500 ° C at a rate of 10 ° C / min, and kept for 3 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the modified barium titanate foam ceramic prepared in step 6) was placed in a mold and preheated in an oven at 60 ° C; epoxy resin (grade E-51) and 2-ethyl-4-methylimidazole (mass ratio: 25:1), stirring and mixing at 60 ° C for 0.5 h, pouring the obtained solution into the preheated modified barium titanate foam ceramic, vacuuming at 60 ° C for 0.5 h; then according to 80
  • the process of °C/2h + 100°C/2h + 120°C/2h and 140°C/4h is separately cured and post-treated; slowly cooled to room temperature to obtain modified barium titanate foam ceramic/epoxy composite .
  • the polyurethane sponge of the specification of 25 PPI was immersed in a sodium hydroxide aqueous solution having a concentration of 15% by weight, heated to 65 ° C and kept for 3 hours; then, the polyurethane sponge was taken out and washed several times with deionized water, ⁇ After drying, the polyurethane sponge D is obtained; at room temperature, the polyurethane sponge D is immersed in a polyethyleneimine aqueous solution having a concentration of 0.5% by weight and left for 6 hours; then, the excess polyethyleneimine aqueous solution is removed and removed at a temperature of 60 . Under C conditions Drying to obtain a pretreated polyurethane sponge E.
  • the pretreated polyurethane sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 3 minutes; then the excess slurry is squeezed out and dried at a temperature of 40 ° C; The slurry was dried and treated 7 times to obtain a barium titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 100 ° C at a rate of 2 ° C / min, and then heated to 500 ° C at a rate of 2 ° C / min; The temperature was raised at 500 ° C for 2 h; then the temperature was raised to 1200 ° C at a rate of 8 ° C / min, and kept for 3 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • Dopamine hydrochloride was dissolved in 12.5 mmol/L sodium phosphate dibasic-sodium dihydrogen phosphate buffer solution to prepare a dopamine solution having a concentration of 2 g/L, and the pH was adjusted to 8.3 with sodium hydroxide to obtain a solution F. Then, the barium titanate foam ceramic prepared in the step 4) is immersed in the solution F and left at room temperature for 24 hours; after the reaction is completed, it is washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • a 10 g/L aqueous solution of sodium citrate was allowed to stand at room temperature for 2 hours. After the reaction was completed, it was washed several times with deionized water and dried to obtain a micro/nano-silver supported barium titanate foam ceramic, that is, a modified barium titanate foam ceramic.
  • the modified barium titanate foam ceramic prepared in step 6) is placed in a mold and preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the resulting solution is poured into In the preheated modified barium titanate foam ceramic, the bubble is removed by vacuum at 160 ° C for 0.5 h; then, according to 160 ° C / 2 h + 180 ° C / 2 h + 200 ° C / 2 h + 220 ° C / 2 h Curing and post-treatment were respectively carried out in a process of 240 ° C / 4 h; slowly cooling to room temperature to obtain a modified barium titanate foam ceramic / cyanate resin composite material.
  • a mixture of an aqueous solution of an aqueous solution and 5 g of a hydroxyhexylcellulose aqueous solution having a concentration of 1% by weight is sufficiently ground to obtain a slurry B; 10 g of a polyacrylamide aqueous solution having a concentration of 1% by weight is added to the slurry B, and the slurry is sufficiently ground to obtain a slurry.
  • Material C a mixture of an aqueous solution of an aqueous solution and 5 g of a hydroxyhexylcellulose aqueous solution having a concentration of 1% by weight is sufficiently ground to obtain a slurry B; 10 g of a polyacrylamide aqueous solution having a concentration of 1% by weight is added to the slurry B, and the slurry is sufficiently ground to obtain a slurry.
  • the polyurethane sponge of the specification of 25 PPI was immersed in a 20% by weight aqueous solution of sodium hydroxide, heated to 60 ° C and kept for 3.5 h; then, the polyurethane sponge was taken out, washed several times with deionized water, dried After obtaining polyurethane sponge D; at room temperature, the polyurethane sponge D was immersed in a concentration of lwt9 ⁇ carboxymethylcellulose aqueous solution and stayed for 2 h; then, the excess carboxymethylcellulose aqueous solution was removed and removed at a temperature of 60 ° C. Drying under conditions gave a pretreated polyurethane sponge E.
  • the pretreated polyurethane sponge E is immersed in the C prepared in the slurry step 1), and left at room temperature for 5 minutes; then the excess slurry is squeezed out and dried at a temperature of 50 ° C; The slurry was dried and treated 4 times to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 300 ° C at a rate of 2 ° C / min, and then heated to 700 ° C at a rate of 1 ° C / min; The temperature was raised at 700 ° C for 0.5 h; then the temperature was raised to 1300 ° C at a rate of 5 ° C / min, and kept for 2 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • Doxamine hydrochloride was dissolved in 15mmol / L sodium phosphate dibasic sodium phosphate monobasic buffer solution, formulated into a concentration of 5g / L of dopamine solution, adjusted to pH 8.8 with sodium hydroxide, to obtain a solution F; Then, the barium titanate foam ceramic prepared in the step 4) is immersed in the solution F and left at room temperature for 24 hours; after the reaction is completed, it is washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • a ceramic foam further, 50 mL of a 10 g/L sodium citrate aqueous solution, 50 mL of a lg/L aqueous solution of ascorbic acid, and 50 mL of a 10 g/L aqueous glucose solution are sequentially added to the solution G, and left at room temperature for 2 hours; After completion, it was washed several times with deionized water and dried to obtain a micro/nano-silver supported barium titanate foam ceramic, that is, a modified barium titanate foam ceramic.
  • the modified barium titanate foam ceramic prepared in step 6) was placed in a mold and preheated in an oven at 60 ° C; epoxy resin (grade E-51) and 2-ethyl-4-methylimidazole (mass ratio: 25:1), stirring and mixing at 60 ° C for 0.5 h, pouring the obtained solution into the preheated modified barium titanate foam ceramic, vacuuming at 60 ° C for 0.5 h; then according to 80
  • the process of °C/2h + 100°C/2h + 120°C/2h and 140°C/4h is separately cured and post-treated; slowly cooled to room temperature to obtain modified barium titanate foam ceramic/epoxy composite .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)

Abstract

一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法,以有机添加剂为助剂,去离子水为溶剂,纳米钛酸钡为陶瓷原料,混合研磨后形成浆料;将预处理的聚合物海绵浸渍于浆料中进行挂浆处理,干燥、烧结后得到钛酸钡泡沫陶瓷, 再经多巴胺改性,在骨架表面原位沉积微/纳米银;将熔融态可热固化的树脂浸没于改性的钛酸钡泡沫陶瓷孔隙,热固化处理后即得到一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料。本发明提供的复合材料具有高介电常数、低介电损耗,且可通过调节陶瓷与微/纳米银的含量实现对复合材料介电性能的控制;复合材料的制备方法具有工艺简单、可控,绿色环保,适用性广等特点,适合于工业化生产。

Description

发明名称:一种改性钛酸钡泡沫陶瓷 /热固性树脂复合材料及其制备 方法
技术领域
[0001] 本发明涉及一种复合材料及其制备方法, 特别涉及一种改性钛酸钡泡沫陶瓷 / 热固性树脂复合材料及其制备方法。
背景技术
[0002] 伴随着电气、 电子行业的快速发展, 人们对具有高介电常数的材料需求量越来 越多。 陶瓷电介质材料具有高的介电常数以及优良的铁电、 压电和绝缘性能使 其成为高介电材料的重要品种。 但由于其存在比重大、 粘结性性差、 脆性大、 成型工艺条件苛刻等缺点, 在实际应用中受到了一定限制。
[0003] 聚合物具有优良的工艺性能和力学性能, 但是它们的介电常数较低 (<10) , 不能直接用做高介电材料, 研究者通过加入功能体改善聚合物基体的介电性能 , 使之成为高介电常数材料。 陶瓷 /聚合物复合材料可以将陶瓷优良的介电性能 和聚合物优良的粘结性、 韧性和易加工性等优点融合在一起, 具有良好的储存 电能和均匀电场的性能, 介电常数受温度和频率的影响不大, 是一种应用在尖 端领域的理想材料。 然而, 为了达到理想的介电性能, 复合材料中陶瓷粒子的 体积含量需要大于 50 vol<¾, 这就使复合材料的成型变得更加困难, 介电损耗变 大、 重量增加, 复合材料的韧性和粘结性也随之下降。 此外, 陶瓷粒子在聚合 物基体中的分散不均匀, 尤其是分散相的体积分数较高吋, 局部会出现团聚, 不能形成完好的界面结合, 导致介电常数下降。
[0004] 目前, 利用渗流理论, 在陶瓷 /聚合物复合材料中引入导电粒子作为第三组分 可以较为显著地降低陶瓷的含量。 但是, 导电粒子在体系中的分布不均匀, 又 往往导致复合材料具有较大的介电损耗。 总结现有技术, 可以发现, 如何充分 利用逾渗现象, 集成聚合物的优良成型工艺性、 韧性以及陶瓷电介质材料的高 介电性能依然是一个有意义且富有挑战性的课题。
技术问题 问题的解决方案
技术解决方案
[0005] 本发明针对现有技术存在的不足, 提供一种制备方法简单、 性能可控, 并具有 高介电常数、 低介电损耗的改性钛酸钡陶瓷 /热固性树脂及其制备方法。
[0006] 为达到上述目的, 本发明所采用的技术方案是: 一种改性钛酸钡泡沫陶瓷 /热 固性树脂复合材料的制备方法, 包含如下步骤:
[0007] (1) 按质量计, 将 100份纳米钛酸钡与 30〜120份浓度为 l〜15wt%的有机粘结 剂水溶液充分研磨, 得到浆料 A; 在浆料 A中加入 10〜80份浓度为 0.5〜3\^%的 有机流变剂水溶液, 充分研磨后得到浆料 B ; 在浆料 B中加入 20〜80份浓度为 0.5 〜3\^%的有机分散剂水溶液, 充分研磨后得到浆料 C; 所述的有机粘结剂为聚 乙烯醇、 羧甲基纤维素、 甲基纤维素中的一种, 或它们的任意组合; 所述的有 机流变剂为羧甲基纤维素、 羟己基纤维素中的一种, 或它们的任意组合; 所述 的有机分散剂为聚丙烯酰胺、 聚乙烯亚胺、 聚丙烯酸胺中的一种, 或它们的任 意组合
[0008] (2) 将规格为 15〜35 PPI的聚合物海绵浸渍在浓度为 5〜20wt%的氢氧化钠水 溶液中, 升温至 50〜75°C并保温 2〜6h后, 将聚合物海绵取出, 用去离子水洗涤 并甩干后得到聚合物海绵 D; 在常温下, 将聚合物海绵 D浸渍在浓度为 0.5〜3wt %的表面活性剂水溶液中 ,2〜6h后取出,甩去多余的表面活性剂, 在温度为 40〜80 °C的条件下干燥处理, 得到预处理的聚合物海绵 E; 所述的聚合物海绵的聚合物 材质为聚氨酯、 聚苯乙烯、 聚氯乙烯中的任意一种; 所述的表面活性剂为羧甲 基纤维素、 聚乙烯亚胺中的一种, 或它们的任意组合;
[0009] (3) 将预处理的聚合物海绵 E浸渍在步骤 (1) 制得的浆料 C中, 在常温下放 置 l〜10min进行挂浆处理后,挤压排除多余的浆料, 再在温度为 40〜80°C的条件 下进行干燥处理; 依次重复挂浆、 干燥处理 1〜7次, 得到钛酸钡泡沫陶瓷生坯
[0010] (4) 将步骤 (3) 制得的钛酸钡泡沫陶瓷生坯, 以 0.5〜5°C/min的速率由室温 升温至 100〜300°C, 再以 0.5〜5°C/min的速率升温至 500〜700°C并保温 0.5〜2h后 , 以 2〜10°C/min的速率升温至 1000〜1500°C并保温 l〜5h后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷;
[0011] (5) 用缓冲试剂或缓冲液、 水和盐酸多巴胺, 配制浓度为 0.5〜10g/L的多巴胺 溶液; 用碱调节 pH值至 8.3〜8.8, 得到溶液 F; 将步骤 (4) 制得的钛酸钡泡沫 陶瓷浸渍在溶液 F中, 常温下放置 l〜24h, 再经去离子水洗涤、 干燥后, 得到多 巴胺改性的钛酸钡泡沫陶瓷;
[0012] (6)
按体积计, 将 4〜20份浓度为 0.1〜1^%的稳定剂水溶液加入到 100份浓度为 0.03 〜0.3mol/L的新配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 (5) 制得 的多巴胺改性的钛酸钡泡沫陶瓷浸渍在溶液 G中, 常温下放置 0.5〜24h, 得到纳 米银负载钛酸钡泡沫陶瓷, 再加入 50〜300份浓度为 l〜30g/L的还原剂水溶液, 常温下放置 0.1〜5h, 经去离子水洗涤、 干燥后, 得到改性钛酸钡泡沫陶瓷; 所 述的稳定剂为聚乙烯吡咯烷酮、 海藻酸钠中的一种, 或它们的任意组合; 所述 的还原剂为水合肼、 柠檬酸钠、 硼氢化钠、 葡萄糖、 抗坏血酸中的一种, 或它 们的任意组合;
[0013] (7) 将熔融态可热固化的树脂浇注于步骤 (6) 制备的改性钛酸钡泡沫陶瓷中 , 待树脂完全渗透泡沫陶瓷孔隙后, 进行热固化与后处理, 得到一种改性钛酸 钡泡沫陶瓷 /热固性树脂复合材料。
[0014] 本发明所述的纳米钛酸钡的平均粒径≤1001^1。
[0015] 所述的缓冲试剂或缓冲液为 Tris-HCl、 磷酸氢二钠-磷酸二氢钠缓冲液中的一种 [0016] 所述的碱为氢氧化钠、 氨水中的一种。
[0017] 本发明技术方案中, 热固化和后处理的工艺条件, 与所使用的可热固化树脂的 热固化和后处理工艺条件一致。 所述的热固性树脂为自身可热固化的树脂, 或 由自身不能热固化的树脂与固化剂共同组成的树脂体系。 所述的自身可热固化 树脂为双马来酰亚胺树脂、 氰酸酯, 及其组合。 所述自身不能热固化的树脂为 环氧树脂。
[0018] 本发明技术方案还包括按上述制备方法得到的一种改性钛酸钡泡沫陶瓷 /热固 性树脂复合材料。 [0019] 所述的复合材料中树脂的体积百分数为 60〜90%。
发明的有益效果
有益效果
[0020] 与现有技术相比, 本发明取得的有益效果是:
[0021] 1、 本发明以改性钛酸钡泡沫陶瓷为功能体, 它是通过微 /纳米银负载于化学组 成单一的纯净钛酸钡泡沫陶瓷制得。 其中, 钛酸钡泡沫陶瓷为化学组成单一的 纯净钛酸钡, 具有优异的介电性能; 而且该泡沫陶瓷经过高温烧结, 得到进一 步瓷化, 从而具备了更高的介电常数。 另一方面, 银负载于泡沫陶瓷的整个网 络, 有利于在复合材料中构筑导体网络, 从而使得复合材料具有高介电常数。
[0022] 2、 在改性钛酸钡泡沫陶瓷的制备过程中, 所使用的多巴胺及负载后 Ag颗粒的 存在均改变了钛酸钡泡沫骨架的形貌与化学结构, 使得该泡沫陶瓷与树脂之间 具备了良好的相互作用力, 从而获得综合性能突出的复合材料。
[0023] 3、 本发明以具有高介电常数、 三维立体网络的钛酸钡泡沫陶瓷作为骨架, 利 用多巴胺强的粘附性及自身还原性, 直接在泡沫陶瓷骨架原位负载纳米银, 再 进一步通过还原剂还原, 具有绿色、 简单可控的特点。
[0024] 4、 本发明提供的改性钛酸钡泡沫陶瓷 /热固性树脂复合材料是将微 /纳米银均匀 地原位沉积在钛酸钡泡沫陶瓷骨架上, 纳米银颗粒 (不导电) 阻碍了导电网络 的形成, 减少了导电粒子之间的相互接触而造成电导损耗, 从而得到一种低介 电损耗的复合材料。 同吋, 微 /纳米银沉积在泡沫陶瓷表面, 改善了陶瓷与树脂 之间的界面。
[0025] 5、 本发明提供的改性钛酸钡泡沫陶瓷 /热固性树脂复合材料的制备方法具有工 艺简单、 可控, 绿色环保, 适用性广等特点, 适合于工业化生产。
对附图的简要说明
附图说明
[0026] 图 1是本发明实施例 1制备的钛酸钡泡沫陶瓷、 实施例 2制备的纳米银负载钛酸 钡泡沫陶瓷和实施例 3制备的微 /纳米银负载钛酸钡泡沫陶瓷的 X射线衍射图。
[0027] 图 2是本发明实施例 1制备的钛酸钡泡沫陶瓷、 多巴胺改性钛酸钡陶瓷、 纳米银 负载钛酸钡泡沫陶瓷以及实施例 2制备的纳米银负载钛酸钡泡沫陶瓷和实施例 3 、 4制备的微 /纳米银负载钛酸钡泡沫陶瓷的扫描电镜照片 (放大 5万倍) 。
[0028] 图 3是本发明实施例 3、 4制备的改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料和比 较例 1制备的钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的介电常数随频率变化图。
[0029] 图 4是本发明实施例 3、 4制备的改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料和比 较例 1制备的钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的介电损耗随频率变化图。
[0030] 图 5本发明实施例 3、 4制备的改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料和比较 例 1制备的钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的交流电导率随频率变化图。
本发明的实施方式
[0031] 下面结合附图、 实施例和比较例, 对本发明技术方案作进一步的描述。
[0032] 实施例 1
[0033] 1) 浆料的配制: 将 20g钛酸钡 (平均粒径 lOOnm) 与 10g浓度为 10wt<¾的聚乙 烯醇水溶液充分研磨, 得到浆料 A; 在浆料 A中加入 5g浓度为 2wt%的羧甲基纤 维素水溶液, 充分研磨后得到浆料 B ; 在浆料 B中加入 10g浓度为 lwt9^ 聚丙烯 酰胺水溶液, 充分研磨后得到浆料 C。
[0034] 2) 聚氨酯海绵的处理: 将规格为 25PPI的聚氨酯海绵浸渍在浓度为 15wt%的氢 氧化钠水溶液中, 升温至 60°C并保温 3.5h; 而后, 将聚氨酯海绵取出, 用去离子 水洗涤数次, 甩干后得到聚氨酯海绵 D; 在常温下, 将聚氨酯海绵 D浸渍在浓度 为 lwt%的羧甲基纤维素水溶液中并停留 3h; 而后, 取出甩去多余的羧甲基纤维 素水溶液, 在温度 60°C条件下干燥, 得到预处理的聚氨酯海绵 E。
[0035] 3) 钛酸钡泡沫陶瓷生坯的制备: 将预处理的聚氨酯海绵 E浸渍在步骤 1) 制得 的浆料 C中, 在常温下放置 5min进行挂浆处理; 随后挤压排除多余的浆料, 于温 度 40°C条件下进行干燥处理; 依次重复挂浆、 干燥处理 4次, 得到挂浆均匀且无 堵孔的钛酸钡泡沫陶瓷生坯。
4) 钛酸钡泡沫陶瓷的制备: 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min 的速率由室温升温至 200°C, 再以 rC/min的速率升温至 600°C; 而后在 600°C保温 lh; 然后以 5°C/min的速率升温至 1200°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。 其 X射线衍射图和扫描电镜照片分别参见附图 1和 2。 [0037] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备: 将盐酸多巴胺溶入 lOmmol/L的
Tris-HCl缓冲溶液中, 配制成浓度为 2g/L的多巴胺溶液, 用氢氧化钠调节 pH值 至 8.5, 得到溶液 F; 而后将步骤 4) 制得的钛酸钡泡沫陶瓷浸渍在溶液 F中, 在常 温下放置 24h; 反应结束后, 经去离子水洗涤数次, 干燥得到多巴胺改性的钛酸 钡泡沫陶瓷。 其扫描电镜照片参见附图 2。
[0038] 6) 微 /纳米银负载钛酸钡泡沫陶瓷的制备: 将 5mL浓度为 0.2wt%聚乙烯吡咯烷 酮水溶液加入到 50mL浓度为 0.06mol/L的新配制的银氨溶液中, 混合均匀后, 得 到溶液 G; 将步骤 5) 制得的多巴胺改性的钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常 温下放置 2h, 得到纳米银负载钛酸钡泡沫陶瓷, 其扫描电镜照片参见附图 2; 再 向上述溶液 G中加入 lOOmL浓度为 lg/L的硼氢化钠水溶液, 在常温下放置 2h; 反 应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载钛酸钡泡沫陶瓷, 即 改性钛酸钡泡沫陶瓷。
[0039] 7) 改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备: 将步骤 6) 制备的改性 钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将 2,2-二 (4-氰酰苯基)丙烷 (双 酚 A型氰酸酯) 在 160°C熔化 lh, 将得到的溶液浇注到已预热的改性钛酸钡泡沫 陶瓷中, 于 160°C下抽真空除气泡 0.5h; 而后按照 160°C/2h+180°C/2h+200°C/2h+2 20°C/2h和 240°C/4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到改性钛 酸钡泡沫陶瓷 /氰酸酯树脂复合材料。
[0040] 实施例 2
[0041] 1) 微 /纳米银负载钛酸钡泡沫陶瓷的制备: 将 5mL浓度为 0.2wt%聚乙烯吡咯烷 酮水溶液加入到 50mL浓度为 0.06mol/L的新配制的银氨溶液中, 混合均匀后, 得 到溶液 G; 将实施例 1步骤 5) 制得的多巴胺改性的钛酸钡泡沫陶瓷浸渍在溶液 G 中, 在常温下放置 24h, 得到纳米银负载钛酸钡泡沫陶瓷, 其 X射线衍射图和扫 描电镜照片分别参见附图 1和 2; 再向上述溶液 G中加入 lOOmL浓度为 20 g/L的葡 萄糖水溶液, 在常温下放置 O.lh; ; 反应结束后, 经去离子水洗涤数次, 干燥得 到微 /纳米银负载钛酸钡泡沫陶瓷, 即改性钛酸钡泡沫陶瓷。
[0042] 2) 改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备: 将步骤 1) 制备的改性 钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷中, 于 160°C下抽真空除 气泡 0.5h; 而后按照 160°C/2h+ 180°C/2h+200°C/2h+220°C/2h和 240°C/4h的工艺分 别进行固化和后处理; 缓慢冷却至室温, 得到改性钛酸钡泡沫陶瓷 /氰酸酯树脂 复合材料。
[0043] 实施例 3
[0044] 1) 微 /纳米银负载钛酸钡泡沫陶瓷的制备: 将 5mL浓度为 0.2wt%聚乙烯吡咯烷 酮水溶液加入到 50mL浓度为 0.06mol/L的新配制的银氨溶液中, 混合均匀后, 得 到溶液 G; 将实施例 1步骤 5) 制得的多巴胺改性的钛酸钡泡沫陶瓷浸渍在溶液 G 中, 在常温下放置 lh, 得到纳米银负载钛酸钡泡沫陶瓷; 再向上述溶液 G中加入 lOOmL浓度为 20g/L的葡萄糖水溶液, 在常温下放置 1.5h; 反应结束后, 经去离 子水洗涤数次, 干燥得到微 /纳米银负载钛酸钡泡沫陶瓷, 即改性钛酸钡泡沫陶 瓷。 其 X射线衍射图和扫描电镜照片分别参见附图 1和 2。
[0045] 2) 改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备: 将步骤 1) 制备的改性 钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷中, 于 160°C下抽真空除 气泡 0.5h; 而后按照 160°C/2h+ 180°C/2h+200°C/2h+220°C/2h和 240°C/4h的工艺分 别进行固化和后处理; 缓慢冷却至室温, 得到改性钛酸钡泡沫陶瓷 /氰酸酯树脂 复合材料。 其介电常数随频率变化图、 介电损耗随频率变化图以及交流电导率 随频率变化图分别参见附图 3、 4和 5。
[0046] 参见附图 1, 是本发明实施例 1制备的钛酸钡泡沫陶瓷、 实施例 2制备的纳米银 负载钛酸钡泡沫陶瓷和实施例 3制备的微 /纳米银负载钛酸钡泡沫陶瓷的 X射线衍 射图。 可见, 实施例 1制备的钛酸钡泡沫陶瓷在 22.1°、 31.6°、 38.9°、 45.2°、 50.8 。以及 56.1°处出现明显的衍射峰, 它们分别对应于 (100) 、 ( 110) 、 ( 111) 、 (002) I (200) 、 (210) 和 (211) 晶面 (JCPDS Νο.5-0626) 。 2Θ在 45.2°是 否分裂成两个衍射峰是判断钛酸钡晶型的有效依据。 由于实施例 1中制备的钛酸 钡泡沫陶瓷在 45.2°处出现分裂峰, 因此可判断实施例 1所制备的钛酸钡泡沫陶瓷 含有立方相和四方相。 此外, 未发现其他杂质峰。 相比钛酸钡泡沫陶瓷 (实施 例 1) , 负载微 /纳米银之后, 在 38.1°、 44.3°、 64.5°以及 77.4°处出现 4个明显的衍 射峰, 它们分别对应于 (111) 、 (200) 、 (220) 和 (311) 晶面 (JCPDS No. 04-0783) 。 由此可判断实施例 2和 3所负载的颗粒为面心立方银。 同吋, 经葡萄 糖溶液进一步还原, 微 /纳米银负载钛酸钡泡沫陶瓷的衍射峰增强。
[0047] 实施例 4
[0048] 1) 微 /纳米银负载钛酸钡泡沫陶瓷的制备
[0049] 将 5mL浓度为 0.2wt<7 乙烯吡咯烷酮水溶液加入到 50mL浓度为 0.06mol/L的新 配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将实施例 1步骤 5) 制得的多巴胺 改性的钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 lh, 得到纳米银负载钛酸 钡泡沫陶瓷; 再向上述溶液 G中加入 lOOmL浓度为 20g/L的葡萄糖水溶液, 在常 温下放置 2h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载钛酸 钡泡沫陶瓷, 即改性钛酸钡泡沫陶瓷。 其扫描电镜照片参见附图 2。
[0050] 2) 改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0051] 将步骤 1) 制备的改性钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷 中, 于 160°C下抽真空除气泡 0.5h; 而后按照 160°C/2h+180°C/2h+200°C/2h+220°C/ 2h和 240°C/4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到改性钛酸钡 泡沫陶瓷 /氰酸酯树脂复合材料。 其介电常数随频率变化图、 介电损耗随频率变 化图以及交流电导率随频率变化图分别参见附图 3、 4和 5。
[0052] 参见附图 2, 它是本发明实施例 1制备的钛酸钡泡沫陶瓷、 多巴胺改性钛酸钡陶 瓷、 纳米银负载钛酸钡泡沫陶瓷以及实施例 2制备的纳米银负载钛酸钡泡沫陶瓷 和实施例 3、 4制备的微 /纳米银负载钛酸钡泡沫陶瓷的扫描电镜照片。 可以看到 , 钛酸钡泡沫陶瓷 (实施例 1)经多巴胺处理后, 在钛酸钡泡沫陶瓷表面出现了一 层包裹层 (实施例 1) 。 多巴胺改性钛酸钡泡沫陶瓷与银氨溶液反应后, 在其表 面出现了细小的颗粒, 且随着反应吋间的延长, 其表面颗粒的粒径变大, 数量 增多, 即沉积银的质量分数增加 (实施例 1和实施例 2) 。 继续加入葡萄糖进一 步还原, 可使 Ag颗粒的粒径部分由纳米向微米转变, 且随着还原吋间的延长, 银颗粒之间的堆积越紧密 (实施例 3和实施例 4) 。 此吋, 仔细观察, 可以发现 , 所包裹的银包含纳米和微米两种尺寸, 这两种尺寸的银颗粒相互镶嵌、 堆积 (实施例 3
综上附图 1和 2所述, 本发明所制得的钛酸钡泡沫陶瓷是一种单一化学组成的纯 净钛酸钡泡沫陶瓷, 不含其它杂质; 沉积微 /纳米银之后, 钛酸钡泡沫陶瓷骨架 被 Ag颗粒包覆, 改变了原有钛酸钡泡沫陶瓷的骨架结构。
[0054] 比较例 1, 钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备: 将实施例 1的步骤 4) 所制备的钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型氰酸酯在 1 60°C熔化 lh, 将得到的溶液浇注到已预热的钛酸钡泡沫陶瓷中, 于 160°C下抽真 空除气泡 0.5h; 而后按照 160°C/2h+ 180°C/2h+200°C/2h+220°C/2h和 240°C/4h的工 艺分别进行固化和后处理; 缓慢冷却至室温, 得到钛酸钡泡沫陶瓷 /氰酸酯树脂 复合材料。 该复合材料的介电常数随频率变化图、 介电损耗随频率变化图以及 交流电导率随频率变化图分别参见附图 3、 4和 5。
[0055] 参见附图 3, 它是本发明实施例 3、 4制备的改性钛酸钡泡沫陶瓷 /氰酸酯树脂复 合材料和比较例 1制备的钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的介电常数随频率 变化图。 从中可以看到, 钛酸钡泡沫陶瓷负载微 /纳米银之后, 在 100Hz吋, 复合 材料的介电常数由 83.3 (比较例 1) 增加到 162.4 (实施例 3) , 且随着频率的变 化, 复合材料的介电常数表现出很好的稳定性; 继续延长银的还原吋间, 其介 电常数达到 9618.1 (实施例 4) 。
[0056] 参见附图 4, 它是本发明实施例 3、 4制备的改性钛酸钡泡沫陶瓷 /氰酸酯树脂复 合材料和比较例 1制备的钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的介电损耗随频率 变化图。 从中可以看到, 钛酸钡泡沫陶瓷负载微 /纳米银之后 (实施例 3) , 其介 电损耗有了明显的下降。 例如, 在 100Hz吋, 钛酸钡泡沫陶瓷 /氰酸酯树脂复合材 料的介电损耗为 0.21 (实施例 3) , 而改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料 的介电损耗仅为 0.01 (比较例 1) 。 但是, 当继续延长银的还原吋间, 其介电损 耗达到 5400 (实施例 4) 。
[0057] 参见附图 5, 它是本发明实施例 3、 4制备的改性钛酸钡泡沫陶瓷 /氰酸酯树脂复 合材料和比较例 1制备的钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的电导率随频率变 化图。 由图可见, 改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料 (实施例 3和实施例 4) 的交流电导率高于钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料 (比较例 1) 的交流 电导率, 这应归结为负载微 /纳米银的结果。 而实施例 4制备的复合材料的电导率 长线是典型的导体特征, 这主要归结为负载 Ag的尺寸和数量的变化。 因此, 与 钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料相比, 改性钛酸钡泡沫陶瓷 /氰酸酯树脂复 合材料所具有的突出介电性能源于负载 Ag后, 对复合材料结构的改变。
[0058] 综合附图 3、 4和 5, 结果表明, 相比于钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料, 在相同的钛酸钡陶瓷含量下, 钛酸钡泡沫陶瓷负载微 /纳米银之后 (渗流阈值之 前) , 表现出频率稳定性优异且绝对值更高的介电常数、 更低的介电损耗。 这 是因为利用微 /纳米银包覆钛酸钡泡沫陶瓷骨架, 改善了陶瓷与树脂之间的界面 ; 且由于所包裹的银包含纳米 (不导电) 和微米两种尺寸, 这两种尺寸的银颗 粒相互镶嵌、 堆积, 有助于减少了导电粒子之间的相互接触而造成电导损耗, 从而得到一种低介电损耗的复合材料。
[0059] 实施例 5
[0060] 1) 微 /纳米银负载钛酸钡泡沫陶瓷的制备
[0061] 将 5mL浓度为 0.2wt<7 乙烯吡咯烷酮水溶液加入到 50mL浓度为 0.06mol/L的新 配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将实施例 1步骤 5) 制得的多巴胺 改性的钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 0.5h, 得到纳米银负载钛 酸钡泡沫陶瓷; 再向上述溶液 G中加入 lOOmL浓度为 20g/L的葡萄糖水溶液, 在 常温下放置 lh; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载钛 酸钡泡沫陶瓷, 即改性钛酸钡泡沫陶瓷。
[0062] 2) 改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0063] 将步骤 1) 制备的改性钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷 中, 于 160°C下抽真空除气泡 0.5h; 而后按照 160°C/2h+180°C/2h+200°C/2h+220°C/ 2h和 240°C/4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到改性钛酸钡 泡沫陶瓷 /氰酸酯树脂复合材料。
[0064] 实施例 6
[0065] 1) 微 /纳米银负载钛酸钡泡沫陶瓷的制备
[0066] 将 2mL浓度为 0.2wt%的聚乙烯吡咯烷酮水溶液和 3mL浓度为 0.2wt%的海藻酸钠 水溶液加入到 50mL浓度为 0.03mol/L的新配制的银氨溶液中, 混合均匀后, 得到 溶液 G; 将实施例 1步骤 5) 制得的多巴胺改性的钛酸钡泡沫陶瓷浸渍在溶液 G中 , 在常温下放置 24h, 得到纳米银负载钛酸钡泡沫陶瓷; 再向上述溶液 G中加入 1 50mL浓度为 5g/L的柠檬酸钠水溶液, 在常温下放置 lh; 反应结束后, 经去离子 水洗涤数次, 干燥得到微 /纳米银负载钛酸钡泡沫陶瓷, 即改性钛酸钡泡沫陶瓷
[0067] 2) 改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0068] 将步骤 1) 制备的改性钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷 中, 于 160°C下抽真空除气泡 0.5h; 而后按照 160°C/2h+180°C/2h+200°C/2h+220°C/ 2h和 240°C/4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到钛酸钡泡沫 陶瓷 /氰酸酯树脂复合材料。
[0069] 实施例 7
[0070] 1) 微 /纳米银负载钛酸钡泡沫陶瓷的制备
[0071] 将 5mL浓度为 0.2wt<¾海藻酸钠水溶液加入到 50mL浓度为 0.06mol/L的新配制的 银氨溶液中, 混合均匀后, 得到溶液 G; 将实施例 1步骤 5) 制得的多巴胺改性的 钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 24h, 得到纳米银负载钛酸钡泡 沫陶瓷; 再向上述溶液 G中加入 lOOmL浓度为 20g/L的硼氢化钠水溶液, 在常温 下放置 2h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载钛酸钡 泡沫陶瓷, 即改性钛酸钡泡沫陶瓷。
[0072] 2) 改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0073] 将步骤 1) 制备的改性钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷 中, 于 160°C下抽真空除气泡 0.5h; 而后按照 160°C/2h+180°C/2h+200°C/2h+220°C/ 2h和 240°C/4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到钛酸钡泡沫 陶瓷 /氰酸酯树脂复合材料。
[0074] 实施例 8
[0075] 1) 钛酸钡泡沫陶瓷的制备 [0076] 将实施例 1中制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再以 l°C/min的速率升温至 600°C; 而后在 600°C保温 lh; 然后以 5°C/min的速率升 温至 1300°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0077] 2) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0078] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 0.5g/L的多 巴胺溶液, 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 1) 制得的钛酸 钡泡沫陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经去离子水洗涤 数次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0079] 3) 微 /纳米银负载钛酸钡泡沫陶瓷的制备
[0080] 将 10mL浓度为 0.1 \¥1%海藻酸钠水溶液加入到 50mL浓度为 0.12mol/L的新配制的 银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 2) 制得的多巴胺改性的钛酸钡 泡沫陶瓷浸渍在溶液 G中, 在常温下放置 24h, 得到纳米银负载钛酸钡泡沫陶瓷 ; 再向上述溶液 G中加入 lOOmL浓度为 lg/L的抗坏血酸水溶液, 在常温下放置 2h ; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载钛酸钡泡沫陶瓷 , 即改性钛酸钡泡沫陶瓷。
[0081] 4) 改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0082] 将步骤 3) 制备的改性钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷 中, 于 160°C下抽真空除气泡 0.5h; 而后按照 160°C/2h+180°C/2h+200°C/2h+220°C/ 2h和 240°C/4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到改性钛酸钡 泡沫陶瓷 /氰酸酯树脂复合材料
[0083] 实施例 9
[0084] 1) 钛酸钡泡沫陶瓷生坯的制备
[0085] 将实施例 1中预处理的聚氨酯海绵 E浸渍在浆料 C (实施例 1) 中, 在常温下放 置 5min; 随后挤压排除多余的浆料, 于温度 40°C条件下干燥; 依次重复挂浆、 干燥处理 3次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0086] 2) 钛酸钡泡沫陶瓷的制备
[0087] 将步骤 1) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再 以 l°C/min的速率升温至 600°C; 而后在 600°C保温 lh; 然后以 5°C/min的速率升温 至 1200°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0088] 3) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0089] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 2g/L的多巴 胺溶液, 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 2) 制得的钛酸钡 泡沫陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经去离子水洗涤数 次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0090] 4) 微 /纳米银负载钛酸钡泡沫陶瓷的制备
[0091] 将 10mL浓度为 0.1wt%的聚乙烯吡咯烷酮水溶液加入到 50mL浓度为 0.3mol/L的 新配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 3) 制得的多巴胺改性 的钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 0.5h, 得到纳米银负载钛酸钡 泡沫陶瓷; 再向上述溶液 G中加入 25mL浓度为 30g/L的水合肼水溶液, 在常温下 放置 5h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载钛酸钡泡 沫陶瓷, 即改性钛酸钡泡沫陶瓷。
[0092] 5) 改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0093] 将步骤 4) 制备的改性钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷 中, 于 160°C下抽真空除气泡 0.5h; 而后按照 160°C/2h+180°C/2h+200°C/2h+220°C/ 2h和 240°C/4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到改性钛酸钡 泡沫陶瓷 /氰酸酯树脂复合材料
[0094] 实施例 10
[0095] 1) 钛酸钡泡沫陶瓷生坯的制备
[0096] 将实施例 1中预处理的聚氨酯海绵 E浸渍在浆料 C (实施例 1) 中, 在常温下放 置 5min; 随后挤压排除多余的浆料, 于温度 40°C条件下干燥; 依次重复挂浆、 干燥处理 5次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0097] 2) 钛酸钡泡沫陶瓷的制备
[0098] 将步骤 1) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再 以 l°C/min的速率升温至 600°C; 而后在 600°C保温 lh; 然后以 5°C/min的速率升温 至 1200°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0099] 3) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0100] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 2g/L的多巴 胺溶液, 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 2) 制得的钛酸钡 泡沫陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经去离子水洗涤数 次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0101] 4) 微 /纳米银负载钛酸钡泡沫陶瓷的制备
[0102] 将 5mL浓度为 0.2wt<7 乙烯吡咯烷酮水溶液加入到 50mL浓度为 0.06mol/L的新 配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 3) 制得的多巴胺改性的 钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 12h, 得到纳米银负载钛酸钡泡 沫陶瓷; 再向上述溶液 G中加入 lOOmL浓度为 20 g/L的葡萄糖水溶液, 在常温下 放置 1.5h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载钛酸钡 泡沫陶瓷, 即改性钛酸钡泡沫陶瓷。
[0103] 5) 改性钛酸钡泡沫陶瓷 /双马来酰亚胺 /氰酸酯复合材料的制备
[0104] 将步骤 4) 制备的改性钛酸钡泡沫陶瓷置于模具中, 于 140°C烘箱预热; 将 2,2'- 二烯丙基双酚 Α、 Ν,Ν-4,4'-二苯甲烷双马来酰亚胺和双酚 A型氰酸酯 (质量比 18: 27:5) 在 140°C搅拌混合 lh, 将得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷 中, 于 140°C下抽真空除气泡 0.5h; 而后按照 150°C/2h + 180°C/2h + 200°C/2h和 220°C/8h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到改性钛酸钡泡沫 陶瓷 /双马来酰亚胺 /氰酸酯复合材料。
[0105] 实施例 11
[0106] 1) 钛酸钡泡沫陶瓷的制备
[0107] 将实施例 1中制得的钛酸钡泡沫陶瓷生坯以 0.5°C/min的速率由室温升温至 200°C
, 再以 l°C/min的速率升温至 600°C; 而后在 600°C保温 2h; 然后以 5°C/min的速率 升温至 1200°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0108] 2) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0109] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 2g/L的多巴 胺溶液, 用氨水调节 pH值至 8.5, 得到溶液 F; 而后将步骤 1) 制得的钛酸钡泡沫 陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经去离子水洗涤数次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0110] 3) 微 /纳米银负载钛酸钡泡沫陶瓷的制备
[0111] 将 5mL浓度为 0.2wt<¾海藻酸钠水溶液加入到 50mL浓度为 0.12mol/L的新配制的 银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 2) 制得的多巴胺改性的钛酸钡 泡沫陶瓷浸渍在溶液 G中, 在常温下放置 0.5h, 得到纳米银负载钛酸钡泡沫陶瓷 ; 再向上述溶液 G中加入 lOOmL浓度为 20g/L的硼氢化钠水溶液, 在常温下放置 2 h; 在常温下放置 2h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负 载钛酸钡泡沫陶瓷, 即改性钛酸钡泡沫陶瓷。
[0112] 4) 改性钛酸钡泡沫陶瓷 /双马来酰亚胺树脂复合材料的制备
[0113] 将步骤 3) 制备的改性钛酸钡泡沫陶瓷置于模具中, 于 130°C烘箱预热; 将 2,2'- 二烯丙基双酚 A和 Ν,Ν-4,4'-二苯甲烷双马来酰亚胺 (质量比 3:7) 在 130°C搅拌混 合 lh, 将得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷中, 于 130°C下抽真空 除气泡 0.5h; 而后按照 150°C/2h + 180°C/2h + 200°C/2h和 220°C/8h的工艺分别进 行固化和后处理; 缓慢冷却至室温, 得到改性钛酸钡泡沫陶瓷 /双马来酰亚胺树 脂复合材料。
[0114] 实施例 12
[0115] 1) 浆料的配制
[0116] 将 20g钛酸钡 (平均粒径 lOOnm) 与 6g浓度为 15wt<¾的甲基纤维素水溶液充分研 磨, 得到浆料 A; 在浆料 A中加入 16g浓度为 0.5wt%的羧甲基纤维素水溶液, 充 分研磨后得到浆料 B ; 在浆料 B中加入 10g浓度为 0.5wt9^聚丙烯酰胺水溶液和 6g 浓度为 0.5wt%的聚丙烯酸胺水溶液的混合液, 充分研磨后得到浆料 C。
[0117] 2) 聚氨酯海绵的处理
[0118] 将规格为 25PPI的聚氨酯海绵浸渍在浓度为 10\^%的氢氧化钠水溶液中, 升温 至 60°C并保温 3.5h; 而后, 将聚氨酯海绵取出, 用去离子水洗涤数次, 甩干后得 到聚氨酯海绵 D; 在常温下, 将聚氨酯海绵 D浸渍在浓度为 0.5wt%的聚乙烯亚胺 水溶液中并停留 3h; 而后, 取出甩去多余的聚乙烯亚胺水溶液, 在温度 40。C条件 下干燥, 得到预处理的聚氨酯海绵 E。 [0119] 3) 钛酸钡泡沫陶瓷生坯的制备
[0120] 将预处理的聚氨酯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 5min; 随后挤压排除多余的浆料, 于温度 80°C条件下干燥; 依次重复挂浆、 干燥处理 4 次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0121] 4) 钛酸钡泡沫陶瓷的制备
[0122] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 5°C/min的速率由室温升温至 200°C, 再 以 5°C/min的速率升温至 600°C; 而后在 600°C保温 0.5h; 然后以 10°C/min的速率升 温至 1000°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷, 即改性 钛酸钡泡沫陶瓷。
[0123] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0124] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 5g/L的多巴 胺溶液, 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 4) 制得的钛酸钡 泡沫陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经去离子水洗涤数 次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0125] 6) 微 /纳米银负载钛酸钡泡沫陶瓷的制备
[0126] 将 5mL浓度为 0.2wt%的聚乙烯吡咯烷酮水溶液加入到 50mL浓度为 0.06mol/L的 新配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 5) 制得的多巴胺改性 的钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 2h, 得到纳米银负载钛酸钡泡 沫陶瓷; 再向上述溶液 G中加入 50mL浓度为 10 g/L的柠檬酸钠水溶液, 在常温下 放置 2h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载钛酸钡泡 沫陶瓷, 即改性钛酸钡泡沫陶瓷。
[0127] 7) 改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0128] 将步骤 6) 制备的改性钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷 中, 于 160°C下抽真空除气泡 0.5h; 而后按照 160°C/2h+180°C/2h+200°C/2h+220°C/ 2h和 240°C/4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到改性钛酸钡 泡沫陶瓷 /氰酸酯树脂复合材料。
[0129] 实施例 13 [0130] 1) 浆料的配制
[0131] 将 20g
钛酸钡 (平均粒径 30nm) 与 10g浓度为 lwt%的羧甲基纤维素水溶液和 10g浓度为 lwt%的甲基纤维素水溶液充分研磨, 得到浆料 A; 在浆料 A中加入 2g浓度为 2wt <¾的羧甲基纤维素水溶液, 充分研磨后得到浆料 B; 在浆料 B中加入 10g浓度为 lw t%的聚丙烯酰胺水溶液和 6g浓度为 lwt%的聚乙烯亚胺水溶液的混合液, 充分研 磨后得到浆料 C。
[0132] 2) 聚氨酯海绵的处理
[0133] 将规格为 35PPI的聚氨酯海绵浸渍在浓度为 15\^%的氢氧化钠水溶液中, 升温 至 60°C并保温 3.5h; 而后, 将聚氨酯海绵取出, 用去离子水洗涤数次, 甩干后得 到聚氨酯海绵 D; 在常温下, 将聚氨酯海绵 D浸渍在等体积浓度为 lwt9^ 羧甲基 纤维素水溶液和浓度为 lwt%的聚乙烯亚胺水溶液的混合液中并停留 3h; 而后, 取出甩去多余的羧甲基纤维素和聚乙烯亚胺的混合液, 在温度 60°C条件下干燥, 得到预处理的聚氨酯海绵 E。
[0134] 3) 钛酸钡泡沫陶瓷生坯的制备
[0135] 将预处理的聚氨酯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 lOmin ; 随后挤压排除多余的浆料, 于温度 50°C条件下干燥; 依次重复挂浆、 干燥处理 4次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0136] 4) 钛酸钡泡沫陶瓷的制备
[0137] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再 以 l°C/min的速率升温至 600°C; 而后在 600°C保温 lh; 然后以 2°C/min的速率升温 至 1000°C, 保温 lh; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0138] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0139] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 2g/L的多巴 胺溶液, 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 4) 制得的钛酸钡 泡沫陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经去离子水洗涤数 次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0140] 6) 微 /纳米银负载钛酸钡泡沫陶瓷的制备 [0141] 将 5mL浓度为 0.2wt<¾海藻酸钠水溶液加入到 50mL浓度为 0.12mol/L的新配制的 银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 5) 制得的多巴胺改性的钛酸钡 泡沫陶瓷浸渍在溶液 G中, 在常温下放置 2h, 得到纳米银负载钛酸钡泡沫陶瓷; 再向上述溶液 G中加入 50mL浓度为 10 g/L的柠檬酸钠水溶液, 在常温下放置 2h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载钛酸钡泡沫陶瓷, 即改性钛酸钡泡沫陶瓷。
[0142] 7) 改性钛酸钡泡沫陶瓷 /双马来酰亚胺树脂复合材料的制备
[0143] 将步骤 6) 制备的改性钛酸钡泡沫陶瓷置于模具中, 于 130°C烘箱预热; 将 2,2'- 二烯丙基双酚 A和 Ν,Ν-4,4'-二苯甲烷双马来酰亚胺 (质量比 3:7) 在 130°C搅拌混 合 lh, 将得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷中, 于 130°C下抽真空 除气泡 0.5h; 而后按照 150°C/2h + 180°C/2h + 200°C/2h和 220°C/8h的工艺分别进 行固化和后处理; 缓慢冷却至室温, 得到改性钛酸钡泡沫陶瓷 /双马来酰亚胺树 脂复合材料。
[0144] 实施例 14
[0145] 1) 浆料的配制
[0146] 将 20g钛酸钡 (平均粒径 50nm) 与 6g浓度为 10wt<¾的聚乙烯醇水溶液和 10g浓度 为 1\^%的羧甲基纤维素水溶液的混合液充分研磨, 得到浆料 A; 在浆料 A中加入 5g浓度为 2wt%的羧甲基纤维素水溶液, 充分研磨后得到浆料 B; 在浆料 B中加入 5g浓度为 1\^%的聚丙烯酰胺水溶液和 5g浓度为 lwt%的聚乙烯亚胺水溶液的混合 液, 充分研磨后得到浆料 C。
[0147] 2) 聚氯乙烯海绵的处理
[0148] 将规格为 15PPI的聚氯乙烯海绵浸渍在浓度为 20\^%的氢氧化钠水溶液中, 升 温至 60°C并保温 2h; 而后, 将聚氯乙烯海绵取出, 用去离子水洗涤数次, 甩干后 得到聚氯乙烯海绵 D; 在常温下, 将聚氯乙烯海绵 D浸渍在浓度为 0.5wt%的羧甲 基纤维素水溶液中并停留 3h; 而后, 取出甩去多余的羧甲基纤维素水溶液, 在 温度 60°C条件下干燥, 得到预处理的聚氯乙烯海绵 E。
[0149] 3) 钛酸钡泡沫陶瓷生坯的制备
[0150] 将预处理的聚氯乙烯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 5min ; 随后挤压排除多余的浆料, 于温度 40°C条件下干燥; 依次重复挂浆、 干燥处理 4次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0151] 4) 钛酸钡泡沫陶瓷的制备
[0152] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 0.5°C/min的速率由室温升温至 200°C, 再以 5°C/min的速率升温至 600°C; 而后在 600°C保温 2h; 然后以 5°C/min的速率升 温至 1200°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0153] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0154] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 0.5g/L的多 巴胺溶液, 用氨水调节 pH值至 8.5, 得到溶液 F; 而后将步骤 4) 制得的钛酸钡泡 沫陶瓷浸渍在溶液 F中, 在常温下放置 12h; 反应结束后, 经去离子水洗涤数次 , 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0155] 6) 微 /纳米银负载钛酸钡泡沫陶瓷的制备
[0156] 将 10mL浓度为 0.1wt%的聚乙烯吡咯烷酮水溶液加入到 50mL浓度为 0.3mol/L的 新配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 5) 制得的多巴胺改性 的钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 0.5h, 得到纳米银负载钛酸钡 泡沫陶瓷; 再向上述溶液 G中加入 25mL浓度为 30g/L的水合肼水溶液, 在常温下 放置 5h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载钛酸钡泡 沫陶瓷, 即改性钛酸钡泡沫陶瓷。
[0157] 7) 改性钛酸钡泡沫陶瓷 /双马来酰亚胺 /氰酸酯复合材料的制备
[0158] 将步骤 6) 制备的改性钛酸钡泡沫陶瓷置于模具中, 于 140°C烘箱预热; 将 2,2'- 二烯丙基双酚 Α、 Ν,Ν-4,4'-二苯甲烷双马来酰亚胺和双酚 A型氰酸酯 (质量比 18: 27:5) 在 140°C搅拌混合 lh, 将得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷 中, 于 140°C下抽真空除气泡 0.5h; 而后按照 150°C/2h + 180°C/2h + 200°C/2h和 220°C/8h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到改性钛酸钡泡沫 陶瓷 /双马来酰亚胺 /氰酸酯复合材料。
[0159] 实施例 15
[0160] 1) 浆料的配制
[0161] 将 20g钛酸钡 (平均粒径 30nm) 与 24g浓度为 lwt<¾的甲基纤维素水溶液充分研 磨, 得到浆料 A; 在浆料 A中加入 4g浓度为 3wt%的羟己基纤维素水溶液, 充分研 磨后得到浆料 B ; 在浆料 B中加入 16g浓度为 0.5wt9^聚乙烯亚胺水溶液, 充分研 磨后得到浆料 C。
[0162] 2) 聚苯乙烯海绵的处理
[0163] 将规格为 25PPI的聚苯乙烯海绵浸渍在浓度为 5wt%的氢氧化钠水溶液中, 升温 至 75°C并保温 6h; 而后, 将聚苯乙烯海绵取出, 用去离子水洗涤数次, 甩干后得 到聚苯乙烯海绵 D; 在常温下, 将聚苯乙烯海绵 D浸渍在浓度为 3wt%的聚乙烯亚 胺水溶液中并停留 2h; 而后, 取出甩去多余的聚乙烯亚胺水溶液, 在温度 60°C条 件下干燥, 得到预处理的聚苯乙烯海绵 E。
[0164] 3) 钛酸钡泡沫陶瓷生坯的制备
[0165] 将预处理的聚苯乙烯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 10mi n; 随后挤压排除多余的浆料, 于温度 50°C条件下干燥; 依次重复挂浆、 干燥处 理 7次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0166] 4) 钛酸钡泡沫陶瓷的制备
[0167] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 0.5°C/min的速率由室温升温至 200°C, 再以 5°C/min的速率升温至 600°C; 而后在 600°C保温 2h; 然后以 10°C/min的速率 升温至 1000°C, 保温 5h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0168] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0169] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 2g/L的多巴 胺溶液, 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 4) 制得的钛酸钡 泡沫陶瓷浸渍在溶液 F中, 在常温下放置 12h; 反应结束后, 经去离子水洗涤数 次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0170] 6) 微 /纳米银负载钛酸钡泡沫陶瓷的制备
[0171] 将 5mL浓度为 0.2wt<¾海藻酸钠水溶液加入到 50mL浓度为 0.06mol/L的新配制的 银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 5) 制得的多巴胺改性的钛酸钡 泡沫陶瓷浸渍在溶液 G中, 在常温下放置 24h, 得到纳米银负载钛酸钡泡沫陶瓷 ; 再向上述溶液 G中加入 lOOmL浓度为 20g/L的硼氢化钠水溶液, 在常温下放置 2 h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载钛酸钡泡沫陶瓷 , 即改性钛酸钡泡沫陶瓷。
[0172] 7) 改性钛酸钡泡沫陶瓷 /环氧 /氰酸酯树脂复合材料的制备
[0173] 将步骤 6) 制备的改性钛酸钡泡沫陶瓷置于模具中, 于 150°C烘箱预热; 将环氧 树脂 (牌号 E-51) 和双酚 A型氰酸酯 (质量比 1:9) 在 150°C搅拌混合 lh, 将得到 的溶液浇注到已预热的改性钛酸钡泡沫陶瓷中, 于 150°C下抽真空除气泡 0.5h; 而后按照 160°C/2h + 180°C/2h + 200°C/2h和 220°C/4h的工艺分别进行固化和后处 理; 缓慢冷却至室温, 得到改性钛酸钡泡沫陶瓷 /环氧 /氰酸酯树脂复合材料。
[0174] 实施例 16
[0175] 1) 浆料的配制
[0176] 将 20g钛酸钡 (平均粒径 50nm) 与 6g浓度为 15wt<¾的聚乙烯醇水溶液充分研磨 , 得到浆料 A; 在浆料 A中加入 16g浓度为 0.5wt%的羟己基纤维素水溶液, 充分 研磨后得到浆料 B ; 在浆料 B中加入 8g浓度为 3\^%的聚丙烯酸胺水溶液, 充分研 磨后得到浆料 C。
[0177] 2) 聚氯乙烯海绵的处理
[0178] 将规格为 25PPI的聚氯乙烯海绵浸渍在浓度为 20wt%的氢氧化钠水溶液中, 升 温至 50°C并保温 2h; 而后, 将聚氯乙烯海绵取出, 用去离子水洗涤数次, 甩干后 得到聚氯乙烯海绵 D; 在常温下, 将聚氯乙烯海绵 D浸渍在浓度为 0.5wt%的聚乙 烯亚胺水溶液中并停留 2h; 而后, 取出甩去多余的聚乙烯亚胺水溶液, 在温度 7 0°C条件下干燥, 得到预处理的聚氯乙烯海绵 E。
[0179] 3) 钛酸钡泡沫陶瓷生坯的制备
[0180] 将预处理的聚氯乙烯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 lmin ; 随后挤压排除多余的浆料, 于温度 70°C条件下干燥; 依次重复挂浆、 干燥处理 1次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0181] 4) 钛酸钡泡沫陶瓷的制备
[0182] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 5°C/min的速率由室温升温至 200°C, 再 以 0.5°C/min的速率升温至 600°C; 而后在 600°C保温 0.5h; 然后以 10°C/min的速率 升温至 1500°C, 保温 3h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0183] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备 [0184] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 2g/L的多巴 胺溶液, 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 4) 制得的钛酸钡 泡沫陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经去离子水洗涤数 次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0185] 6) 微 /纳米银负载钛酸钡泡沫陶瓷的制备
[0186] 将 5mL浓度为 0.2wt<¾海藻酸钠水溶液加入到 50mL浓度为 0.06mol/L的新配制的 银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 5) 制得的多巴胺改性的钛酸钡 泡沫陶瓷浸渍在溶液 G中, 在常温下放置 12h, 得到纳米银负载钛酸钡泡沫陶瓷 ; 再向上述溶液 G中加入 50mL浓度为 30g/L的水合肼水溶液和 50mL浓度为 10g/L 的硼氢化钠水溶液, 在常温下放置 lh; 反应结束后, 经去离子水洗涤数次, 干 燥得到微 /纳米银负载钛酸钡泡沫陶瓷, 即改性钛酸钡泡沫陶瓷。
[0187] 7) 改性钛酸钡泡沫陶瓷 /环氧树脂复合材料的制备
[0188] 将步骤 6) 制备的改性钛酸钡泡沫陶瓷置于模具中, 于 60°C烘箱预热; 将环氧 树脂 (牌号 E-51) 和 2-乙基 -4-甲基咪唑 (质量比 25:1) 在 60°C搅拌混合 0.5h, 将 得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷中, 于 60°C下抽真空除气泡 0.5h ; 而后按照 80°C/2h + 100°C/2h + 120°C/2h和 140°C/4h的工艺分别进行固化和后 处理; 缓慢冷却至室温, 得到改性钛酸钡泡沫陶瓷 /环氧树脂复合材料。
[0189] 实施例 17
[0190] 1) 浆料的配制
[0191] 将 20g钛酸钡 (平均粒径 lOOnm) 与 15g浓度为 10wt<¾的聚乙烯醇水溶液充分研 磨, 得到浆料 A; 在浆料 A中加入 10g浓度为 lwt%的羧甲基纤维素水溶液, 充分 研磨后得到浆料 B ; 在浆料 B中加入 5g浓度为 2^%的聚丙烯酸胺水溶液, 充分研 磨后得到浆料 C。
[0192] 2) 聚氨酯海绵的处理
[0193] 将规格为 25PPI的聚氨酯海绵浸渍在浓度为 15\^%的氢氧化钠水溶液中, 升温 至 65°C并保温 3h; 而后, 将聚氨酯海绵取出, 用去离子水洗涤数次, 甩干后得到 聚氨酯海绵 D; 在常温下, 将聚氨酯海绵 D浸渍在浓度为 0.5\^%的聚乙烯亚胺水 溶液中并停留 6h; 而后, 取出甩去多余的聚乙烯亚胺水溶液, 在温度 60。C条件下 干燥, 得到预处理的聚氨酯海绵 E。
[0194] 3) 钛酸钡泡沫陶瓷生坯的制备
[0195] 将预处理的聚氨酯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 3min; 随后挤压排除多余的浆料, 于温度 40°C条件下干燥; 依次重复挂浆、 干燥处理 7 次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0196] 4) 钛酸钡泡沫陶瓷的制备
[0197] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 100°C, 再 以 2°C/min的速率升温至 500°C; 而后在 500°C保温 2h; 然后以 8°C/min的速率升温 至 1200°C, 保温 3h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0198] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0199] 将盐酸多巴胺溶入 12.5mmol/L的磷酸氢二钠-磷酸二氢钠缓冲溶液中, 配制成 浓度为 2g/L的多巴胺溶液, 用氢氧化钠调节 pH值至 8.3, 得到溶液 F; 而后将步 骤 4) 制得的钛酸钡泡沫陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经去离子水洗涤数次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0200] 6) 微 /纳米银负载钛酸钡泡沫陶瓷的制备
[0201] 将 5mL浓度为 0.2wt<¾海藻酸钠水溶液加入到 50mL浓度为 0.12mol/L的新配制的 银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 5) 制得的多巴胺改性的钛酸钡 泡沫陶瓷浸渍在溶液 G中, 在常温下放置 0.5h, 得到纳米银负载钛酸钡泡沫陶瓷 ; 再向上述溶液 G中加入 50mL浓度为 lg/L的抗坏血酸水溶液和 50mL浓度为 10g/L 的柠檬酸钠水溶液, 在常温下放置 2h; 反应结束后, 经去离子水洗涤数次, 干 燥得到微 /纳米银负载钛酸钡泡沫陶瓷, 即改性钛酸钡泡沫陶瓷。
[0202] 7) 改性钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0203] 将步骤 6) 制备的改性钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷 中, 于 160°C下抽真空除气泡 0.5h; 而后按照 160°C/2h+180°C/2h+200°C/2h+220°C/ 2h和 240°C/4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到改性钛酸钡 泡沫陶瓷 /氰酸酯树脂复合材料。
[0204] 实施例 18 [0205] 1) 浆料的配制
[0206] 将 20g钛酸钡 (平均粒径 lOOnm) 与 10g浓度为 10wt<¾的聚乙烯醇水溶液充分研 磨, 得到浆料 A; 在浆料 A中加入 5g浓度为 lwt%的羧甲基纤维素水溶液和 5g浓度 为 lwt%的羟己基纤维素水溶液的混合液, 充分研磨后得到浆料 B; 在浆料 B中加 入 10g浓度为 1\^%的聚丙烯酰胺水溶液, 充分研磨后得到浆料 C。
[0207] 2) 聚氨酯海绵的处理
[0208] 将规格为 25PPI的聚氨酯海绵浸渍在浓度为 20wt%的氢氧化钠水溶液中, 升温 至 60°C并保温 3.5h; 而后, 将聚氨酯海绵取出, 用去离子水洗涤数次, 甩干后得 到聚氨酯海绵 D; 在常温下, 将聚氨酯海绵 D浸渍在浓度为 lwt9^ 羧甲基纤维素 水溶液中并停留 2h; 而后, 取出甩去多余的羧甲基纤维素水溶液, 在温度 60°C条 件下干燥, 得到预处理的聚氨酯海绵 E。
[0209] 3) 钛酸钡泡沫陶瓷生坯的制备
[0210] 将预处理的聚氨酯海绵 E浸渍在浆料步骤 1) 制得的 C中, 在常温下放置 5min; 随后挤压排除多余的浆料, 于温度 50°C条件下干燥; 依次重复挂浆、 干燥处理 4 次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0211] 4) 钛酸钡泡沫陶瓷的制备
[0212] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 300°C, 再 以 l°C/min的速率升温至 700°C; 而后在 700°C保温 0.5h; 然后以 5°C/min的速率升 温至 1300°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0213] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0214] 将盐酸多巴胺溶入 15mmol/L的磷酸氢二钠-磷酸二氢钠缓冲溶液中, 配制成浓 度为 5g/L的多巴胺溶液, 用氢氧化钠调节 pH值至 8.8, 得到溶液 F; 而后将步骤 4 ) 制得的钛酸钡泡沫陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经 去离子水洗涤数次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0215] 6) 微 /纳米银负载钛酸钡泡沫陶瓷的制备
[0216] 将 5mL浓度为 0.2wt<7 乙烯吡咯烷酮水溶液加入到 50mL浓度为 0.06mol/L的新 配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 5) 制得的多巴胺改性的 钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 0.5h, 得到纳米银负载钛酸钡泡 沫陶瓷; 再向上述溶液 G中依次加入 50mL浓度为 10g/L的柠檬酸钠水溶液、 50mL 浓度为 lg/L的抗坏血酸水溶液和 50mL浓度为 10g/L的葡萄糖水溶液, 在常温下放 置 2h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载钛酸钡泡沫 陶瓷, 即改性钛酸钡泡沫陶瓷。
[0217] 7) 改性钛酸钡泡沫陶瓷 /环氧树脂复合材料的制备
[0218] 将步骤 6) 制备的改性钛酸钡泡沫陶瓷置于模具中, 于 60°C烘箱预热; 将环氧 树脂 (牌号 E-51) 和 2-乙基 -4-甲基咪唑 (质量比 25:1) 在 60°C搅拌混合 0.5h, 将 得到的溶液浇注到已预热的改性钛酸钡泡沫陶瓷中, 于 60°C下抽真空除气泡 0.5h ; 而后按照 80°C/2h + 100°C/2h + 120°C/2h和 140°C/4h的工艺分别进行固化和后 处理; 缓慢冷却至室温, 得到改性钛酸钡泡沫陶瓷 /环氧树脂复合材料。

Claims

权利要求书
[权利要求 1] 一种改性钛酸钡泡沫陶瓷 /热固性树脂复合材料的制备方法, 其特征 在于包含如下步骤:
(1) 按质量计, 将 100份纳米钛酸钡与 30〜120份浓度为 1〜15^%的 有机粘结剂水溶液充分研磨, 得到浆料 A; 在浆料 A中加入 10〜80份 浓度为 0.5〜3wt9^ 有机流变剂水溶液, 充分研磨后得到浆料 B; 在 浆料 B中加入 20〜80份浓度为 0.5〜3\^%的有机分散剂水溶液, 充分 研磨后得到浆料 C; 所述的有机粘结剂为聚乙烯醇、 羧甲基纤维素、 甲基纤维素中的一种, 或它们的任意组合; 所述的有机流变剂为羧甲 基纤维素、 羟己基纤维素中的一种, 或它们的任意组合; 所述的有机 分散剂为聚丙烯酰胺、 聚乙烯亚胺、 聚丙烯酸胺中的一种, 或它们的 任意组合
(2) 将规格为 15〜35 PPI的聚合物海绵浸渍在浓度为 5〜20wt%的氢 氧化钠水溶液中, 升温至 50〜75°C并保温 2〜6h后, 将聚合物海绵取 出, 用去离子水洗涤并甩干后得到聚合物海绵 D; 在常温下, 将聚合 物海绵 D浸渍在浓度为 0.5〜3^%的表面活性剂水溶液中 ,2〜6h后取出 ,甩去多余的表面活性剂, 在温度为 40〜80°C的条件下干燥处理, 得 到预处理的聚合物海绵 E; 所述的聚合物海绵的聚合物材质为聚氨酯
、 聚苯乙烯、 聚氯乙烯中的任意一种; 所述的表面活性剂为羧甲基纤 维素、 聚乙烯亚胺中的一种, 或它们的任意组合;
(3) 将预处理的聚合物海绵 E浸渍在步骤 (1) 制得的浆料 C中, 在 常温下放置 l〜10min进行挂浆处理后,挤压排除多余的浆料, 再在温 度为 40〜80°C的条件下进行干燥处理; 依次重复挂浆、 干燥处理 1〜7 次, 得到钛酸钡泡沫陶瓷生坯;
(4) 将步骤 (3) 制得的钛酸钡泡沫陶瓷生坯, 以 0.5〜5°C/min的速 率由室温升温至 100〜300°C, 再以 0.5〜5°C/min的速率升温至 500〜70 0°C并保温 0.5〜2h后, 以 2〜10°C/min的速率升温至 1000〜1500°C并保 温 l〜5h后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷; (5) 用缓冲试剂或缓冲液、 水和盐酸多巴胺, 配制浓度为 0.5〜10g/ L的多巴胺溶液; 用碱调节 pH值至 8.3〜8.8, 得到溶液 F; 将步骤 (4 ) 制得的钛酸钡泡沫陶瓷浸渍在溶液 F中, 常温下放置 l〜24h, 再经 去离子水洗涤、 干燥后, 得到多巴胺改性的钛酸钡泡沫陶瓷; (6)按体积计, 将 4〜20份浓度为 0.1〜 1 wt%的稳定剂水溶液加入到 100 份浓度为 0.03〜0.3mol/L的新配制的银氨溶液中, 混合均匀后, 得到 溶液 G; 将步骤 (5) 制得的多巴胺改性的钛酸钡泡沫陶瓷浸渍在溶 液 G中, 常温下放置 0.5〜24h, 得到纳米银负载钛酸钡泡沫陶瓷, 再 加入 50〜300份浓度为 l〜30g/L的还原剂水溶液, 常温下放置 0.1〜5h , 经去离子水洗涤、 干燥后, 得到改性钛酸钡泡沫陶瓷; 所述的稳定 剂为聚乙烯吡咯烷酮、 海藻酸钠中的一种, 或它们的任意组合; 所述 的还原剂为水合肼、 柠檬酸钠、 硼氢化钠、 葡萄糖、 抗坏血酸中的一 种, 或它们的任意组合;
(7) 将熔融态可热固化的树脂浇注于步骤 (6) 制备的改性钛酸钡泡 沫陶瓷中, 待树脂完全渗透泡沫陶瓷孔隙后, 进行热固化与后处理, 得到一种改性钛酸钡泡沫陶瓷 /热固性树脂复合材料。
[权利要求 2] 根据权利要求 1所述的一种改性钛酸钡泡沫陶瓷 /热固性树脂复合材料 的制备方法, 其特征在于: 所述的纳米钛酸钡的平均粒径≤100!^1。
[权利要求 3] 根据权利要求 1所述的一种改性钛酸钡泡沫陶瓷 /热固性树脂复合材料 的制备方法, 其特征在于: 所述的缓冲试剂或缓冲液为 Tris-HCl、 磷 酸氢二钠-磷酸二氢钠缓冲液中的一种。
[权利要求 4] 根据权利要求 1所述的一种改性钛酸钡泡沫陶瓷 /热固性树脂复合材料 的制备方法, 其特征在于: 所述的碱为氢氧化钠、 氨水中的一种。
[权利要求 5] 根据权利要求 1所述的一种改性钛酸钡泡沫陶瓷 /热固性树脂复合材料 的制备方法, 其特征在于: 热固化和后处理的工艺条件, 与所使用的 可热固化树脂的热固化和后处理工艺条件一致。
[权利要求 6] 根据权利要求 1所述的一种改性钛酸钡泡沫陶瓷 /热固性树脂复合材料 的制备方法, 其特征在于: 所述的热固性树脂为自身可热固化的树脂 , 或由自身不能热固化的树脂与固化剂共同组成的树脂体系。
[权利要求 7] 根据权利要求 6所述的一种改性钛酸钡泡沫陶瓷 /热固性树脂复合材料 的制备方法, 其特征在于: 所述的自身可热固化树脂为双马来酰亚胺 树脂、 氰酸酯, 或其组合。
[权利要求 8] 根据权利要求 6所述的一种改性钛酸钡泡沫陶瓷 /热固性树脂复合材料 的制备方法, 其特征在于: 所述自身不能热固化的树脂为环氧树脂。
[权利要求 9] 按权利要求 1所述的制备方法得到的一种改性钛酸钡泡沫陶瓷 /热固性 树脂复合材料。
[权利要求 10] 根据权利要求 9所述的一种改性钛酸钡泡沫陶瓷 /热固性树脂复合材料 , 其特征在于: 所述的复合材料中树脂的体积百分数为 60〜90%。
PCT/CN2016/107799 2016-01-11 2016-11-29 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法 WO2017121204A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/069,163 US10807916B2 (en) 2016-01-11 2016-11-29 Modified barium titanate foam ceramic/thermosetting resin composites and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610014634.1A CN105419328B (zh) 2016-01-11 2016-01-11 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN201610014634.1 2016-01-11

Publications (1)

Publication Number Publication Date
WO2017121204A1 true WO2017121204A1 (zh) 2017-07-20

Family

ID=55497890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107799 WO2017121204A1 (zh) 2016-01-11 2016-11-29 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法

Country Status (3)

Country Link
US (1) US10807916B2 (zh)
CN (1) CN105419328B (zh)
WO (1) WO2017121204A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147020A1 (zh) * 2019-01-15 2020-07-23 苏州大学 三层结构树脂基复合材料及其应用
CN117567018A (zh) * 2024-01-16 2024-02-20 山东民烨耐火纤维有限公司 陶瓷纤维防静电隔热板的制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105503254B (zh) * 2016-01-11 2018-06-29 苏州大学 一种钛酸钡泡沫陶瓷及其制备方法
CN105541389B (zh) 2016-01-11 2018-03-30 苏州大学 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN105419328B (zh) * 2016-01-11 2018-01-16 苏州大学 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN106566010A (zh) * 2016-10-25 2017-04-19 东莞市联洲知识产权运营管理有限公司 一种含银的壳核石墨烯基介电弹性复合材料及其制备方法
CN107586060B (zh) * 2017-10-31 2019-11-08 福州大学 一种高储能密度介质材料及其制备方法
CN107814551B (zh) * 2017-10-31 2019-11-05 福州大学 一种高储能和功率密度介质材料及其制备方法
CN110499001B (zh) * 2018-05-17 2021-03-26 北京化工大学 一种压电环氧阻尼材料的制备方法及压电环氧阻尼材料
CN109776832B (zh) * 2019-01-15 2021-03-02 苏州大学 三层结构树脂基复合材料及其应用
CN109848439B (zh) * 2019-04-09 2022-03-15 苏州大学 一种银纳米片的制备方法
CN110233047A (zh) * 2019-07-03 2019-09-13 华中科技大学 一种高储能密度电介质材料的制备方法
CN110815971B (zh) * 2019-11-08 2022-04-15 南京赛诺特斯材料科技有限公司 一种氧化锆陶瓷背板及其加工方法
CN113444319B (zh) * 2020-03-24 2022-11-29 滁州杰事杰新材料有限公司 一种抗静电聚丙烯复合材料及其制备方法
CN115315470A (zh) * 2020-03-31 2022-11-08 电化株式会社 半固化物复合体及其制造方法、固化物复合体及其制造方法、以及含浸于多孔质体来进行使用的热固性组合物
CN112094482B (zh) * 2020-09-22 2021-11-23 浙江大学 用于x波段的高介电低损耗树脂基纳米复合材料及其方法
CN112280297B (zh) * 2020-10-26 2021-12-28 中国海洋大学 一种钛酸钡/聚醚酰亚胺介电复合材料及其制备方法
CN113249087B (zh) * 2021-05-24 2022-05-27 南京林业大学 一种高导电抗菌的无醛胶黏剂及其制备方法及应用
CN113201195B (zh) * 2021-06-15 2022-08-02 西北工业大学 一种钛酸锶钡多孔陶瓷/聚偏氟乙烯复合材料及制备方法
CN113683423B (zh) * 2021-08-19 2022-06-07 西安超码科技有限公司 一种网状玻璃态多孔碳薄壁异形件及其制备方法
CN113603479A (zh) * 2021-09-18 2021-11-05 安徽马钢矿业资源集团南山矿业有限公司 一种改性钛酸钡泡沫陶瓷材料的制备方法及其所得材料
CN114315409A (zh) * 2021-12-24 2022-04-12 江苏材睿科技有限公司 一种改性钛酸钡泡沫陶瓷材料的制备方法及其所得材料
CN115418028A (zh) * 2022-10-09 2022-12-02 上海第二工业大学 一种改性钛酸钡纳米线及其高介电复合材料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707311A (en) * 1979-12-26 1987-11-17 Mitsubishi Mining & Cement Co., Ltd. Method of manufacturing silica-free interconnected porous ceramics
EP0667324A1 (en) * 1994-02-14 1995-08-16 Hughes Aircraft Company Ferroelectric aerogel composites for voltage-variable dielectric tuning, and method for making the same
CN1556781A (zh) * 2002-04-28 2004-12-22 小出正文 多孔陶瓷及其制造方法
CN102372499A (zh) * 2010-08-20 2012-03-14 湖北工业大学 有机泡沫浸渍工艺制备多孔Ti2AlN陶瓷的方法
CN102952368A (zh) * 2011-08-31 2013-03-06 深圳光启高等理工研究院 一种超材料介质基板的制备方法
CN104530616A (zh) * 2015-01-05 2015-04-22 内蒙古科技大学 一种高介电性能低损耗片状钛酸钡基/聚合物复合材料及其制备方法
CN105419328A (zh) * 2016-01-11 2016-03-23 苏州大学 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3090094A (en) * 1961-02-21 1963-05-21 Gen Motors Corp Method of making porous ceramic articles
US4024212A (en) * 1975-03-28 1977-05-17 Swiss Aluminium Ltd. Ceramic foam and method of preparation
JPS5832637A (ja) * 1981-08-19 1983-02-25 Showa Electric Wire & Cable Co Ltd 水中吸音材
WO1992018213A1 (en) * 1991-04-12 1992-10-29 E.I. Du Pont De Nemours And Company High dielectric constant flexible ceramic composite
CN102941024A (zh) * 2012-11-26 2013-02-27 上海师范大学 具有指状孔结构的聚偏氟乙烯/钛酸钡/聚乙烯吡咯烷酮三元复合超滤膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707311A (en) * 1979-12-26 1987-11-17 Mitsubishi Mining & Cement Co., Ltd. Method of manufacturing silica-free interconnected porous ceramics
EP0667324A1 (en) * 1994-02-14 1995-08-16 Hughes Aircraft Company Ferroelectric aerogel composites for voltage-variable dielectric tuning, and method for making the same
CN1556781A (zh) * 2002-04-28 2004-12-22 小出正文 多孔陶瓷及其制造方法
CN102372499A (zh) * 2010-08-20 2012-03-14 湖北工业大学 有机泡沫浸渍工艺制备多孔Ti2AlN陶瓷的方法
CN102952368A (zh) * 2011-08-31 2013-03-06 深圳光启高等理工研究院 一种超材料介质基板的制备方法
CN104530616A (zh) * 2015-01-05 2015-04-22 内蒙古科技大学 一种高介电性能低损耗片状钛酸钡基/聚合物复合材料及其制备方法
CN105419328A (zh) * 2016-01-11 2016-03-23 苏州大学 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147020A1 (zh) * 2019-01-15 2020-07-23 苏州大学 三层结构树脂基复合材料及其应用
US11987014B2 (en) 2019-01-15 2024-05-21 Soochow University Resin-based composite material of three-layer structure and use thereof
CN117567018A (zh) * 2024-01-16 2024-02-20 山东民烨耐火纤维有限公司 陶瓷纤维防静电隔热板的制备方法
CN117567018B (zh) * 2024-01-16 2024-03-15 山东民烨耐火纤维有限公司 陶瓷纤维防静电隔热板的制备方法

Also Published As

Publication number Publication date
CN105419328B (zh) 2018-01-16
US20190016644A1 (en) 2019-01-17
US10807916B2 (en) 2020-10-20
CN105419328A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2017121204A1 (zh) 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
WO2017121202A1 (zh) 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
WO2017121203A1 (zh) 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法
CN105624445B (zh) 一种石墨烯增强铜基复合材料的制备方法
CN105503254B (zh) 一种钛酸钡泡沫陶瓷及其制备方法
WO2021227603A1 (zh) 一种微波陶瓷介质滤波器及其加工成型方法
CN105506345A (zh) 高导热金刚石/铜复合封装材料及其制备方法
CN107500769B (zh) 一种C/TiB2复合材料的表面处理方法
CN104846228A (zh) 一种石墨烯增强金属材料的方法
CN107325787A (zh) 一种中空碳纳米颗粒及由其制备得到的吸波材料
CN111996432B (zh) 超粗硬质合金材料制备方法
CN109894610B (zh) 一种金属包覆球形铸造碳化钨粉末及其制备方法
CN107828979A (zh) 镀铜膨胀石墨增强金属基复合材料的制备方法
CN113277859A (zh) 一种纳米包覆氧化铝颗粒及用其制备的高纯抗热震氧化铝陶瓷材料
WO2016107058A1 (zh) 碳纳米管 / 聚醚酰亚胺 / 热固性树脂介电复合材料及制备方法
CN103302294A (zh) 一种粉末冶金法制备纳米Cu@SiC/Cu基复合材料的方法
CN115074566B (zh) 通过含氧石墨烯改性分散提高钛基复合材料性能的方法
CN113185762A (zh) 一种膨胀石墨热界面材料及其制备方法
CN110064762B (zh) 一种银碳化钨触头材料及其制备方法
CN111155039A (zh) 一种碳纳米管增强钛基复合材料制备工艺
CN113909484A (zh) 高导热率、低热膨胀系数W-Cu复合粉体及其制备方法
CN106995897B (zh) Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法
CN105439635A (zh) 一种新型高介电复合材料的低温制备方法
CN115229189B (zh) 一种均匀多孔钨制品的制备方法
CN114807682B (zh) 一种稀土掺杂石墨烯-铝基复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884756

Country of ref document: EP

Kind code of ref document: A1