CN107814551B - 一种高储能和功率密度介质材料及其制备方法 - Google Patents

一种高储能和功率密度介质材料及其制备方法 Download PDF

Info

Publication number
CN107814551B
CN107814551B CN201711050201.2A CN201711050201A CN107814551B CN 107814551 B CN107814551 B CN 107814551B CN 201711050201 A CN201711050201 A CN 201711050201A CN 107814551 B CN107814551 B CN 107814551B
Authority
CN
China
Prior art keywords
energy storage
preparation
bst
dielectric material
power density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711050201.2A
Other languages
English (en)
Other versions
CN107814551A (zh
Inventor
郑兴华
肖腾
任治兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201711050201.2A priority Critical patent/CN107814551B/zh
Publication of CN107814551A publication Critical patent/CN107814551A/zh
Application granted granted Critical
Publication of CN107814551B publication Critical patent/CN107814551B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/18Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/488Other macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/62Coating or impregnation with organic materials
    • C04B41/63Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/92Electrically insulating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高储能和功率密度介质材料及其制备方法,该材料组成体系为Ba1‑ xSrxTiO3陶瓷与热固性高分子的复合材料,其制备方法为1.先合成Ba1‑xSrxTiO3(x=0.1‑0.5)陶瓷粉体;2.将合成的BST粉体按摩尔比为1:1压制成圆形或者方形坯体;3.将BST陶瓷坯体与热固性聚合物复合,获得致密的储能材料,与现有技术相比,本发明制备的储能介质材料制备工艺简单、节能减排而且成本低廉,具有介电常数高(>100)、介电损耗低(<0.02)、击穿电场强度高(>150.0kV/mm)、储能密度高(>16.00J/cm3)和‑55~125oC范围内介电常数变化率‑15.0%~2.0%优势,在脉冲功率储能系统中具有广泛的应用前景。

Description

一种高储能和功率密度介质材料及其制备方法
技术领域
本发明涉及电介质储能材料领域,尤其是一种高储能和功率密度介质材料及其制备方法。
背景技术
近年来在电子工业领域,高储能密度器件越来越受到人们的关注,研究新的高储能器件迫在眉睫。相比较于传统的储能器件,电介质电容器利用极化电荷来存储电能,其充放电速率以及放电功率密度比传统储能器件高几个数量级。另外,其具有更好的稳定性,在脉冲功率技术领域,混合动力汽车方面需求较大,具有很高的应用前景。但是目前的电介质储能电容器的储能密度还远远达不到应用的需求,因此在保持其高功能密度的前提下如何提高电介质材料的储能密度成为研究重点。
在电介质储能材料中,其储能密度用来表示,其中ε0为真空介电常数,εr为相对介电常数,E为电场强度。可以看出电介质储能材料的储能密度由两个因素决定:介电常数和击穿电场强度。目前电容器储能器件的电介质材料主要有TiO2、BaTiO3、Ba1- xSrxTiO3等,都具有较高的介电常数,尤其是Ba1-xSrxTiO3(BST)因其具备高的介电常数和低介电损耗,得到了广泛的研究。但是,Ba1-xSrxTiO3陶瓷的介电强度一般低于8kV/mm,不利于获得较高的储能密度。另外,单一成分Ba1-xSrxTiO3陶瓷介电常数随温度变化较大,不利于器件工作的稳定性。
专利(201510243383)通过用Ca、Sn对BaTiO3的A位和B位同时进行置换改性,获得了高介电常数和较低的介电损耗。专利(201410606390)用环氧树脂改性的BaTiO3陶瓷粉料与PVDF复合,大大提高了其击穿电场强度。专利(201210150158.8)通过在SrTiO3中添加MgO,将击穿电场强度提高到17.4kV/mm,获得了0.36J/cm3的储能密度。专利(201610540311.6)通过引入堇青石玻璃,提高了储能性能,获得了高介电常数(>1600)、高击穿电场强度(>18.0kV/mm)和高储能密度(>2.50J/cm3)。
当时上述研究获得了材料虽然介电常数较高,但击穿电场强度较低(<20kV/mm),因此储能密度相对较低,难以满足相应应用要求。而且相应陶瓷材料需要高温烧结,不利于节能减排的发展趋势。而聚合物材料虽然介电常数较低(<5),但是其击穿电场强度高达300kv/mm以上,从而能够获得较高的储能密度。根据储能密度公式可知,储能密度的提高必须具备两个因素,高的介电常数和高的介电强度。因此,陶瓷/聚合物复合材料在电介质储能领域具有重要的研究意义。氰酸酯树脂(CE,Cyanate Easter)具有优异的力学性能、介电性能、耐热性能(Tg>200℃)和良好工艺性能,被广泛的应用在高频高速通讯电子设备的印刷电路板、先进雷达罩和航空航天领域等。
故本专利将氰酸酯与BST陶瓷复合,提高材料的击穿电场强度,同时通过氰酸酯树脂的自固化为坯体提供一定的机械强度,获得高储能密度、功率密度的免烧BST陶瓷基复合材料。
发明内容
针对现有技术的情况,本发明的目的在于提供一种储能和功率密度介质材料及其制备方案,其通过在BST粉体中引入了氰酸酯,以此来显著提高击穿电场强度和改善BST陶瓷的储能密度较低的缺点,并且还免去了高温烧结的环节,使得所制得的介质材料具有高介电常数、高击穿电场强度和高储能密度及功率密度。
为了实现上述的技术目的,本发明采用的技术方案为:
一种高储能和功率密度介质材料,其由BST陶瓷混合粉体和热固性聚合物复合而成,所述的BST陶瓷混合粉体由化学组成为Ba1-xSrxTiO3,其中x=0.1~0.5中任一值的至少两种单相粉体等摩尔球磨混合而成,所述的热固性聚合物为氰酸酯。
进一步,所述介质材料的介电常数>100,介电损耗<0.02,击穿电场强度>150.0kV/mm,储能密度>15.0J/cm3,-55~125℃范围内介电常数变化率-15.0%~2.0%。
一种高储能和功率密度介质材料的制备方法,其包括如下步骤:
(1)BST陶瓷混合粉体的制备:按照化学组成为Ba1-xSrxTiO3,其中x=0.1~0.5中至少两个不同x取值的化学计量比进行分别对应称量BaCO3、SrCO3和TiO2粉末进行球磨混合,然后将混合物置于1100~1250℃的温度条件下进行处理得到对应x取值的Ba1-xSrxTiO3单相粉体,再将其等摩尔混合制得BST陶瓷混合粉体;
(2)BST陶瓷坯体的制备:将上述制得的BST陶瓷混合粉体进行造粒,然后在50~200MPa的压力下进行压制成BST陶瓷坯体;
(3)介质材料的制备:将上述制得的BST陶瓷坯体置于真空烘箱中烘干,同时,将氰酸酯加热融化呈淡黄色液态后,将BST陶瓷坯体浸泡在氰酸酯液体中,然后再进行抽真空处理后,将BST陶瓷坯体和氰酸酯液体一并升温至180~240℃,并在该温度下进行固化处理,即可制得所需的具有高储能和功率密度的介质材料。
进一步,步骤(1)中所述的球磨为加入有去离子水作为球磨介质的湿球磨,其中,球磨时间为16~24h。
进一步,所述步骤(2)中的BST陶瓷混合粉体的造粒方式为喷雾造粒。
进一步,所述步骤(2)中压制成的BST陶瓷坯体为圆形或方形结构。
进一步,步骤(3)中的氰酸酯在150℃温度下进行加热融化呈淡黄色液态。
进一步,步骤(3)中抽真空处理的时间为0.5h。
进一步,步骤(3)中进行固化处理的时间为4~6h。
采用上述的技术方案,相较于现有技术,本发明具有的有益效果为:利用BST陶瓷粉体和热固性聚合物氰酸酯所复合而成的介质材料不仅具有高储能密度、功率密度,还免去了煅烧烧结的处理工序,起到节能的效果;并且制得的材料中不含对环境有害的Pb、Bi、Cd等成分,对环境友好;而且工艺简单,便于规模化生产;另外,所制得的介质材料具有比现有陶瓷-聚合物复合材料优异的性能,其介电常数>100,介电损耗<0.02,击穿电场强度>150.0kV/mm,储能密度>15.0J/cm3,介电常数变化率-15.0%~2.0%。
附图说明
图1为本发明高储能和功率密度介质材料的SEM图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
一种高储能和功率密度介质材料,其由BST陶瓷混合粉体和热固性聚合物复合而成,所述的BST陶瓷混合粉体由化学组成为Ba1-xSrxTiO3,其中x=0.1~0.5中任一值的至少两种单相粉体等摩尔球磨混合而成,所述的热固性聚合物为氰酸酯。
进一步,所述介质材料的介电常数>100,介电损耗<0.02,击穿电场强度>150.0kV/mm,储能密度>15.0J/cm3,-55~125℃范围内介电常数变化率-15.0%~2.0%。
一种高储能和功率密度介质材料的制备方法,其包括如下步骤:
(1)BST陶瓷混合粉体的制备:按照化学组成为Ba1-xSrxTiO3,其中x=0.1~0.5中至少两个不同x取值的化学计量比进行分别对应称量BaCO3、SrCO3和TiO2粉末进行球磨混合,然后将混合物置于1100~1250℃的温度条件下进行处理得到对应x取值的Ba1-xSrxTiO3单相粉体,再将其等摩尔混合制得BST陶瓷混合粉体;
(2)BST陶瓷坯体的制备:将上述制得的BST陶瓷混合粉体进行造粒,然后在50~200MPa的压力下进行压制成BST陶瓷坯体;
(3)介质材料的制备:将上述制得的BST陶瓷坯体置于真空烘箱中烘干,同时,将氰酸酯加热融化呈淡黄色液态后,将BST陶瓷坯体浸泡在氰酸酯液体中,然后再进行抽真空处理后,将BST陶瓷坯体和氰酸酯液体一并升温至180~240℃,并在该温度下进行固化处理,即可制得所需的具有高储能和功率密度的介质材料。
进一步,步骤(1)中所述的球磨为加入有去离子水作为球磨介质的湿球磨,其中,球磨时间为16~24h。
进一步,所述步骤(2)中的BST陶瓷混合粉体的造粒方式为喷雾造粒。
进一步,所述步骤(2)中压制成的BST陶瓷坯体为圆形或方形结构。
进一步,步骤(3)中的氰酸酯在150℃温度下进行加热融化呈淡黄色液态。
进一步,步骤(3)中抽真空处理的时间为0.5h。
进一步,步骤(3)中进行固化处理的时间为4~6h。
实施例1
一种高储能和功率密度介质材料的制备方法,其包括如下步骤:
(1)BST陶瓷混合粉体的制备:按照化学组成为Ba1-xSrxTiO3,其中x=0.1、0.2、0.3、0.4、0.5取值的化学计量比进行分别对应称量BaCO3、SrCO3和TiO2粉末在去离子水中进行球磨混合16h,然后将混合物烘干后置于氧化铝坩埚中于1150℃的温度条件下进行预烧2h处理制得化学组成分别为Ba0.9Sr0.1TiO3、Ba0.8Sr0.2TiO3、Ba0.7Sr0.3TiO3、Ba0.6Sr0.4TiO3、Ba0.5Sr0.5TiO3的单相粉体,然后将其等摩尔混合制得BST陶瓷混合粉体;
(2)BST陶瓷坯体的制备:将上述制得的BST陶瓷混合粉体进行喷雾造粒,然后在100MPa的压力下进行压制成BST陶瓷坯体;
(3)介质材料的制备:将上述制得的BST陶瓷坯体置于真空烘箱中烘干,同时,将氰酸酯加热到150℃使其融化呈淡黄色液态后,将BST陶瓷坯体浸泡在氰酸酯液体中,然后再进行抽真空处理0.5h后,将BST陶瓷坯体和氰酸酯液体一并升温至180℃进行保温2h,然后再将温度升温至240℃,并在该温度下进行固化处理2h,即可制得所需的具有高储能和功率密度的介质材料。
性能测试
对本实施例所制得的介质材料进行性能测试,所得结果为:介电常数为150,介电损耗为0.015,击穿电场强度为180kV/mm,储能密度为21.5J/cm3,功率密度为12.5MW/cm3,-55~125℃范围内的介电常数变化率为-12.8%~0.8%。
实施例2
一种高储能和功率密度介质材料的制备方法,其包括如下步骤:
(1)BST陶瓷混合粉体的制备:按照化学组成为Ba1-xSrxTiO3,其中x=0.1、0.2、0.3、0.4、0.5取值的化学计量比进行分别对应称量BaCO3、SrCO3和TiO2粉末在去离子水中进行球磨混合16h,然后将混合物烘干后置于氧化铝坩埚中于1200℃的温度条件下进行预烧2h处理制得化学组成分别为Ba0.9Sr0.1TiO3、Ba0.8Sr0.2TiO3、Ba0.7Sr0.3TiO3、Ba0.6Sr0.4TiO3、Ba0.5Sr0.5TiO3的单相粉体,然后将其等摩尔混合制得BST陶瓷混合粉体;
(2)BST陶瓷坯体的制备:将上述制得的BST陶瓷混合粉体进行喷雾造粒,然后在150MPa的压力下进行压制成BST陶瓷坯体;
(3)介质材料的制备:将上述制得的BST陶瓷坯体置于真空烘箱中烘干,同时,将氰酸酯加热到150℃使其融化呈淡黄色液态后,将BST陶瓷坯体浸泡在氰酸酯液体中,然后再进行抽真空处理0.5h后,将BST陶瓷坯体和氰酸酯液体一并升温至180℃进行保温2h,然后再将温度升温至240℃,并在该温度下进行固化处理2h,即可制得所需的具有高储能和功率密度的介质材料。
性能测试
对本实施例所制得的介质材料进行性能测试,所得结果为:介电常数为160,介电损耗为0.015,击穿电场强度为182kV/mm,储能密度为23.0J/cm3,功率密度为12.0MW/cm3,-55~125℃范围内的介电常数变化率为-13.0%~0.8%。
实施例3
一种高储能和功率密度介质材料的制备方法,其包括如下步骤:
(1)BST陶瓷混合粉体的制备:按照化学组成为Ba1-xSrxTiO3,其中x=0.2、0.3、0.5取值的化学计量比进行分别对应称量BaCO3、SrCO3和TiO2粉末在去离子水中进行球磨混合16h,然后将混合物烘干后置于氧化铝坩埚中于1250℃的温度条件下进行预烧2h处理制得化学组成分别为Ba0.8Sr0.2TiO3、Ba0.7Sr0.3TiO3和Ba0.5Sr0.5TiO3的单相粉体,然后将其等摩尔混合制得BST陶瓷混合粉体;
(2)BST陶瓷坯体的制备:将上述制得的BST陶瓷混合粉体进行喷雾造粒,然后在200MPa的压力下进行压制成BST陶瓷坯体;
(3)介质材料的制备:将上述制得的BST陶瓷坯体置于真空烘箱中烘干,同时,将氰酸酯加热到150℃使其融化呈淡黄色液态后,将BST陶瓷坯体浸泡在氰酸酯液体中,然后再进行抽真空处理0.5h后,将BST陶瓷坯体和氰酸酯液体一并升温至170℃进行保温2h后,再升温至180℃继续保温2h,然后再将温度升温至240℃,并在该温度下进行固化处理2h,即可制得所需的具有高储能和功率密度的介质材料。
性能测试
对本实施例所制得的介质材料进行性能测试,所得结果为:介电常数为180,介电损耗为0.016,击穿电场强度为170kV/mm,储能密度为23.0J/cm3,功率密度为11.2MW/cm3,-55~125℃范围内的介电常数变化率为-13.5%~0.5%。
实施例4
一种高储能和功率密度介质材料的制备方法,其包括如下步骤:
(1)BST陶瓷混合粉体的制备:按照化学组成为Ba1-xSrxTiO3,其中x=0.1、0.2、0.4、0.5取值的化学计量比进行分别对应称量BaCO3、SrCO3和TiO2粉末在去离子水中进行球磨混合16h,然后将混合物烘干后置于氧化铝坩埚中于1200℃的温度条件下进行预烧2h处理制得化学组成分别为Ba0.9Sr0.1TiO3、Ba0.8Sr0.2TiO3、Ba0.6Sr0.4TiO3和Ba0.5Sr0.5TiO3的单相粉体,然后将其等摩尔混合制得BST陶瓷混合粉体;
(2)BST陶瓷坯体的制备:将上述制得的BST陶瓷混合粉体进行喷雾造粒,然后在50MPa的压力下进行压制成BST陶瓷坯体;
(3)介质材料的制备:将上述制得的BST陶瓷坯体置于真空烘箱中烘干,同时,将氰酸酯加热到150℃使其融化呈淡黄色液态后,将BST陶瓷坯体浸泡在氰酸酯液体中,然后再进行抽真空处理0.5h后,将BST陶瓷坯体和氰酸酯液体一并升温至180℃进行保温2h后,再将温度升温至210℃保温2h,然后再将温度升温至240℃,并在该温度下进行固化处理2h,即可制得所需的具有高储能和功率密度的介质材料。
性能测试
对本实施例所制得的介质材料进行性能测试,所得结果为:介电常数为120,介电损耗为0.012,击穿电场强度为200kV/mm,储能密度为21.2J/cm3,功率密度为13.6MW/cm3,-55~125℃范围内的介电常数变化率为-10.5%~1.5%。
实施例5
一种高储能和功率密度介质材料的制备方法,其包括如下步骤:
(1)BST陶瓷混合粉体的制备:按照化学组成为Ba1-xSrxTiO3,其中x=0.2、0.3取值的化学计量比进行分别对应称量BaCO3、SrCO3和TiO2粉末在去离子水中进行球磨混合16h,然后将混合物烘干后置于氧化铝坩埚中于1200℃的温度条件下进行预烧2h处理制得化学组成分别为Ba0.8Sr0.2TiO3、Ba0.7Sr0.3TiO3的单相粉体,然后将其等摩尔混合制得BST陶瓷混合粉体;(2)BST陶瓷坯体的制备:将上述制得的BST陶瓷混合粉体进行喷雾造粒,然后在150MPa的压力下进行压制成BST陶瓷坯体;
(3)介质材料的制备:将上述制得的BST陶瓷坯体置于真空烘箱中烘干,同时,将氰酸酯加热到150℃使其融化呈淡黄色液态后,将BST陶瓷坯体浸泡在氰酸酯液体中,然后再进行抽真空处理0.5h后,将BST陶瓷坯体和氰酸酯液体一并升温至210℃进行保温2h,然后再将温度升温至240℃,并在该温度下进行固化处理2h,即可制得所需的具有高储能和功率密度的介质材料。
性能测试
对本实施例所制得的介质材料进行性能测试,所得结果为:介电常数为188,介电损耗为0.017,击穿电场强度为156kV/mm,储能密度为20.2J/cm3,功率密度为11.0MW/cm3,-55~125℃范围内的介电常数变化率为-12.6%~2.1%。
其中,实施例1至5所述步骤(2)中压制成的BST陶瓷坯体可以为圆形或方形坯体。实施例1至5所制得的介质材料性能汇总如下表所示:
通过本发明获得的介质材料具有致密的显微结构,其SEM图如图1所示;另外,结合上表的对比结果可以表明本发明介质材料具有高介电常数、低介电损耗、良好的介电常数温度稳定性和优异的储能特性,从而确保了本发明的介质材料具有广阔的应用前景。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (8)

1. 一种高储能和功率密度介质材料的制备方法,其特征在于:其由BST陶瓷混合粉体和热固性聚合物复合而成,所述的BST陶瓷混合粉体由化学组成为Ba1-xSrxTiO3,其中 x=0.1~0.5中任一值的至少两种单相粉体等摩尔球磨混合而成,所述的热固性聚合物为氰酸酯;其包括如下步骤:
(1)BST陶瓷混合粉体的制备:按照化学组成为Ba1-xSrxTiO3,其中x=0.1~0.5中至少两个不同x取值的化学计量比进行分别对应称量BaCO3、SrCO3和TiO2粉末进行球磨混合,然后将混合物置于1100~1250℃的温度条件下进行处理得到对应x取值的Ba1-xSrxTiO3单相粉体,再将其等摩尔混合制得BST陶瓷混合粉体;
(2)BST陶瓷坯体的制备:将上述制得的BST陶瓷混合粉体进行造粒,然后在50~200MPa的压力下进行压制成BST陶瓷坯体;
(3)介质材料的制备:将上述制得的BST陶瓷坯体置于真空烘箱中烘干,同时,将氰酸酯加热融化呈淡黄色液态后,将BST陶瓷坯体浸泡在氰酸酯液体中,然后再进行抽真空处理后,将BST陶瓷坯体和氰酸酯液体一并升温至180~240℃,并在该温度下进行固化处理,即可制得所需的具有高储能和功率密度的介质材料。
2.根据权利要求1所述的一种高储能和功率密度介质材料的制备方法,其特征在于:所述介质材料的介电常数>100,介电损耗<0.02,击穿电场强度>150.0kV/mm,储能密度>15.0J/cm3,-55~125℃范围内介电常数变化率-15.0%~2.0%。
3.根据权利要求1所述的一种高储能和功率密度介质材料的制备方法,其特征在于:步骤(1)中所述的球磨为加入有去离子水作为球磨介质的湿球磨,其中,球磨时间为16~24h。
4.根据权利要求1所述的一种高储能和功率密度介质材料的制备方法,其特征在于:所述步骤(2)中的BST陶瓷混合粉体的造粒方式为喷雾造粒。
5.根据权利要求1所述的一种高储能和功率密度介质材料的制备方法,其特征在于:所述步骤(2)中压制成的BST陶瓷坯体为圆形或方形结构。
6.根据权利要求1所述的一种高储能和功率密度介质材料的制备方法,其特征在于:步骤(3)中的氰酸酯在150℃温度下进行加热融化呈淡黄色液态。
7.根据权利要求1所述的一种高储能和功率密度介质材料的制备方法,其特征在于:步骤(3)中抽真空处理的时间为0.5h。
8.根据权利要求1所述的一种高储能和功率密度介质材料的制备方法,其特征在于:步骤(3)中进行固化处理的时间为4~6h。
CN201711050201.2A 2017-10-31 2017-10-31 一种高储能和功率密度介质材料及其制备方法 Active CN107814551B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711050201.2A CN107814551B (zh) 2017-10-31 2017-10-31 一种高储能和功率密度介质材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711050201.2A CN107814551B (zh) 2017-10-31 2017-10-31 一种高储能和功率密度介质材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107814551A CN107814551A (zh) 2018-03-20
CN107814551B true CN107814551B (zh) 2019-11-05

Family

ID=61603063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711050201.2A Active CN107814551B (zh) 2017-10-31 2017-10-31 一种高储能和功率密度介质材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107814551B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040109298A1 (en) * 1998-05-04 2004-06-10 Hartman William F. Dielectric material including particulate filler
CN100489033C (zh) * 2006-12-01 2009-05-20 苏州大学 一种低介电损耗的耐热组合物及其制备方法
CN105541389B (zh) * 2016-01-11 2018-03-30 苏州大学 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN105419328B (zh) * 2016-01-11 2018-01-16 苏州大学 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法

Also Published As

Publication number Publication date
CN107814551A (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
CN1117707C (zh) 可低温烧结的低损耗介质陶瓷组合物及其制备方法
CN101781115B (zh) X8r型多层陶瓷电容器介质材料及制备方法
CN108439981B (zh) 一种宽温区介电稳定性和高储能密度的铌酸银基反铁电材料及其制备方法
CN106631001A (zh) Mg‑Ca‑Ti基微波多层陶瓷电容器用介质材料及其制备方法
CN103130499A (zh) 一种微波介质陶瓷材料的制备方法
CN106587986B (zh) 具备储能、应变与宽介电温区的多功能无铅陶瓷及制备方法
CN103172367A (zh) 一种微波介质陶瓷材料的制备方法
CN114394827B (zh) 一种低介电常数硅酸盐微波介质陶瓷及其制备方法
CN105130421A (zh) 一种Ti位高价取代SrTiO3基巨介电陶瓷及其制备方法
CN101805185A (zh) 一种制备铌镁酸铅钛酸铅弛豫铁电陶瓷的方法
CN113248253A (zh) 一种巨介电常数钛酸锶介质陶瓷及其制备方法
CN109553411B (zh) 一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法
CN1294103C (zh) 一种可低温度烧结的钛酸锌高频介质陶瓷及其制备方法
CN103011805B (zh) 一种BaTiO3 基无铅X8R 型陶瓷电容器介质材料及其制备方法
Infantiya et al. Calcium copper titanate a perovskite oxide structure: effect of fabrication techniques and doping on electrical properties—a review
CN106187165B (zh) 一种高储能密度介质陶瓷材料及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN103524127B (zh) 一种高频晶界层陶瓷电容器介质及其制备方法
CN108439974A (zh) 脉冲储能介质陶瓷材料及其制备方法
CN106673644B (zh) 一种用于中温烧结的钛酸锶基储能介质材料
CN107746206B (zh) 一种高储能密度介质材料及其制备方法
CN107586060B (zh) 一种高储能密度介质材料及其制备方法
CN107814551B (zh) 一种高储能和功率密度介质材料及其制备方法
CN109320236B (zh) 一种高储能密度和充放电性能的复合材料及其制备方法
CN103172365B (zh) 一种微波介质陶瓷材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant