CN106995897B - Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法 - Google Patents

Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法 Download PDF

Info

Publication number
CN106995897B
CN106995897B CN201710300222.9A CN201710300222A CN106995897B CN 106995897 B CN106995897 B CN 106995897B CN 201710300222 A CN201710300222 A CN 201710300222A CN 106995897 B CN106995897 B CN 106995897B
Authority
CN
China
Prior art keywords
green compact
metal case
carburizing medium
based ceramic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710300222.9A
Other languages
English (en)
Other versions
CN106995897A (zh
Inventor
郭智兴
熊计
叶俊镠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201710300222.9A priority Critical patent/CN106995897B/zh
Publication of CN106995897A publication Critical patent/CN106995897A/zh
Application granted granted Critical
Publication of CN106995897B publication Critical patent/CN106995897B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1035Liquid phase sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0089Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/64Carburising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

本发明公开了一种Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法,其特征是先在500~700℃保温1~2h,形成含碳化物形成元素的金属陶瓷坯体;然后将无定形Si‑C‑O包覆TiH2的核/壳结构粉末,粒度30~50nm的纳米石墨两种物质按重量百分比3:2混合配制出含氢渗碳介质;再将生坯埋入含氢渗碳介质中的并在5~15MPa压力下紧实;最后进行液相烧结,原位形成Ti(C,N)基金属陶瓷表面渗碳层。本发明克服了现有工艺存在的晶粒长大严重、渗碳时间长、效率低的问题,在烧结过程中实现Ti(C,N)基金属陶瓷表面渗碳层的原位制备。

Description

Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法
技术领域
本发明涉及一种渗碳层的制备方法,特别涉及Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法,属于复合材料领域。
背景技术
将至少一种陶瓷相和金属相并采取粉末冶金法制备的复合材料称为金属陶瓷。通常我们所说的硬质合金、钢结硬质合金等应该都属于这一类。但在工程领域,为了与普通的硬质合金等区分,仅将用Ni和/或 Co 粘结的 Ti(C,N)(添加其它碳化物)材料称为金属陶瓷。为改善金属陶瓷的综合性能,通常在其表面进行渗碳处理。
CN200910032962.4公开了一种梯度结构纳米碳管增强的Ti(C,N)基金属陶瓷及其制备方法。该金属陶瓷成分质量分数为:C为6.5~8.0,其中0.5-1.0的碳由纳米碳管引入,N为1.5~2.5,Ti为36~45,Ni为20~32,Mo为10~18,W为6~10。该发明将原料配制成符合上述成份的混合料,然后经混料、添加成型剂、压制成型、脱脂、真空烧结得到烧结体。再将该烧结体置于双层辉光等离子渗碳炉进行渗碳处理。源极材料为纯度高于96%的高纯石墨,所用氩气纯度≥99.0%,充入炉内氩气压力为20-40Pa,处理温度为1100-1200℃,处理时间为90-180min。CN104493161A公开了一种硬质合金在真空烧结炉中渗碳的方法,包括以下步骤:a.将每件硬质合金脱碳制品单件放入存有渗碳混合料的包套中,硬质合金脱碳制品被渗碳混合料包覆,系紧包套袋口后,放入冷等静压机中通过压制工艺进行压制,形成压坯块;b.去除压坯块表面的包套,再将压坯块放入真空烧结炉中进行渗碳烧结;c.渗碳烧结完成后,去除包覆在硬质合金脱碳制品表面的渗碳混合料包覆物;d.在去除硬质合金脱碳制品表面的渗碳混合料包覆物后,对硬质合金脱碳制品进行喷砂处理,去除的渗碳混合料作均匀化处理后另存保管。
但是,上述方法是在材料烧结完成后再进行渗碳处理,渗碳时间长,效率不高;而且高温下金属陶瓷材料容易出现晶粒长大,导致材料性能下降。因此,寻找制备Ti(C,N)基金属陶瓷表面渗碳层的新方法十分必要。
发明内容
本发明针对目前制备Ti(C,N)基金属陶瓷表面渗碳层时,“烧结+渗碳”工艺存在的晶粒长大严重、渗碳时间长、效率低的问题,提出先将金属陶瓷压坯脱除成型剂使其形成多孔生坯,再将无定形Si-C-O包覆TiH2的核/壳结构粉末、纳米石墨混合行星球磨时均匀混合形成含氢渗碳介质,然后将多孔生坯放入渗碳介质中并进行紧实,最后进行液相烧结时原位形成Ti(C,N)基金属陶瓷表面渗碳层。
本发明的Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法,其特征在于依次包含以下步骤:
(1)含碳化物形成元素的金属陶瓷坯体制备:称取各种原料粉末配料,按重量百分比Ni占5~20wt%,Co占0~20wt%,Mo占2~10wt%, W占2~10wt%,TiC0.7N0.3为余量;将称取的粉末混合并经过球磨、过滤、干燥、掺成型剂、压制成型得到金属陶瓷生坯;金属陶瓷生坯在真空烧结炉中升温到500~700℃,升温速度为1~5℃/min,真空度为5~15Pa, 并保温1~2h,形成含碳化物形成元素的金属陶瓷坯体;
(2)含氢渗碳介质配制:先称取粒度为0.5~1.5μm的TiH2粉末加入到无水乙醇中形成TiH2占35wt%的混合液,然后进行20~40min的超声分散处理,并在80~100℃和真空度为10~20Pa条件下真空干燥1h;再以去离子水和无水乙醇混合液为溶剂配制溶液,按浓度为0.1~0.8mol/L加入聚碳硅烷,按聚碳硅烷浓度的9倍加入经过超声分散的TiH2 粉末,并用CH3COOH调节pH值到3~6, 然后在磁力搅拌器中60~80℃下搅拌8~24h,并在120~150℃下干燥1~3h,得到无定形Si-C-O包覆TiH2的核/壳结构粉末;再将无定形Si-C-O包覆TiH2的核/壳结构粉末,粒度30~50nm的纳米石墨混合,两种物质按重量百分比3:2混合,并在行星球磨机中球磨1~2h,制成含氢渗碳介质;
(3)生坯在含氢渗碳介质中的装填:先将含氢渗碳介质装入石墨坩埚中,再将脱除成型剂的金属陶瓷生坯埋入;含氢渗碳介质与脱成型剂金属陶瓷生坯的重量比为5:1,并确保脱成型剂金属陶瓷生坯周围的含氢渗碳介质厚度大于5mm;然后在5~15MPa压力下紧实含氢渗碳介质,使其体积缩小到松装状态的40~60%;用带螺纹的盖子密封石墨坩埚,防止渗碳介质逸出;
(4)Ti(C,N)基金属陶瓷表面渗碳层的原位制备:在真空烧结炉中1350~1500℃保温1~3h,碳元素由含氢渗碳介质向金属陶瓷表面扩散,形成300~750μm厚的渗碳层,最终实现Ti(C,N)基金属陶瓷表面渗碳层的原位制备。
本发明的Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法,其进一步的特征在于:
(1)金属陶瓷生坯制备时球磨时间为24~72h,过滤采用400目筛网,干燥在85~100
℃进行,按金属陶瓷粉末重量的50~120%掺入丁钠橡胶成型剂,在300~400MPa压力下压制成型;
(2)含氢渗碳介质配制时,超声处理时超声波的频率为4×104Hz,功率为100W,配制溶液使用的溶剂中去离子水与无水乙醇的体积比为1:10,制备无定形Si-C-O包覆TiH2的核/壳结构粉末时,磁力搅拌的速度为20~50r/min,核/壳结构粉末、纳米石墨混合行星球磨时,转速为300r/min;
(3)生坯在渗碳介质中装填时所用的石墨坩埚的石墨材质抗折强度大于20MPa;
(4)Ti(C,N)基金属陶瓷表面渗碳层的原位制备时,先以5~10℃/min升温到500~700℃并保温1~2h;然后以5~10℃/min升温到1100~1250℃并保温1~3h;再以5~10℃/min升温到1350~1500℃并保温1~3h,烧结真空度为1~5Pa;烧结结束后的降温速度为1~8
℃/min。
本发明的优点在于:(1)以含碳化物形成元素的金属陶瓷坯体作渗碳基体,在烧结过程中原位实现表面渗碳,这与传统的先烧结再渗碳相比工艺更简洁,且不会存在晶粒二次长大的问题;(2)渗碳剂中引入金属氢化物TiH2,在烧结过程中分解出H2并与纳米石墨发生C+2H2=CH4,CH4=[C]+H2,形成的活性碳原子进入金属中实现渗碳;无定形Si-C-O包覆在TiH2表面可控制H2释放速率,避免快速耗尽;(3)渗碳基体中的碳化物形成元素在烧结过程中与碳元素反应形成碳化物,能够促使活性碳原子从渗碳介质向金属陶瓷基体表面扩散,有利于活性碳原子的吸附和渗碳效率的提高;(4)提出通过控制渗碳介质的紧实度来确保渗碳介质与金属陶瓷之间的接触,提高渗碳效率;(5)采用纳米石墨为碳源,其粒度小反应活性更大,渗碳效率高。
附图说明
图1本发明的Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法的工艺示意图。
具体实施方式
实例1: 按以下步骤原位制备Ti(C,N)基金属陶瓷表面渗碳层:
(1)含碳化物形成元素的金属陶瓷坯体制备:称取各种原料粉末配料,按重量百分比Ni占5wt%,Co占10wt%,Mo占2wt%, W占2wt%,TiC0.7N0.3为余量;将称取的粉末混合并经过35h球磨时间,400目筛网过滤,87℃干燥,按金属陶瓷粉末重量的70%掺入丁钠橡胶成型剂,在310MPa压力下压制成型得到金属陶瓷生坯;金属陶瓷生坯在真空烧结炉中升温到500℃,升温速度为2℃/min,真空度为6Pa, 并保温1h,形成含碳化物形成元素的金属陶瓷坯体;
(2)含氢渗碳介质配制:先称取粒度为0.5μm的TiH2粉末加入到无水乙醇中形成TiH2占35wt%的混合液,然后进行25min的超声分散处理,超声波的频率为4×104Hz,功率为100W,并在85℃和真空度为10Pa条件下真空干燥1h;再以体积比为1:10的去离子水与无水乙醇的混合液为溶剂配制溶液,按浓度为0.2mol/L加入聚碳硅烷,按浓度为1.8mol/L加入经过超声分散的TiH2 粉末,并用CH3COOH调节pH值到4, 然后在磁力搅拌器中70℃下搅拌14h,磁力搅拌的速度为25r/min,并在128℃下干燥1h,得到无定形Si-C-O包覆TiH2的核/壳结构粉末;再将无定形Si-C-O包覆TiH2的核/壳结构粉末,粒度30nm的纳米石墨混合,两种物质按重量百分比3:2混合,并在行星球磨机中球磨1h,转速为300r/min,制成含氢渗碳介质;
(3)生坯在含氢渗碳介质中的装填:先将含氢渗碳介质装入石墨坩埚中,石墨坩埚的石墨材质抗折强度大于20MPa,再将脱除成型剂的金属陶瓷生坯埋入;含氢渗碳介质与脱成型剂金属陶瓷生坯的重量比为5:1,并确保脱成型剂金属陶瓷生坯周围的含氢渗碳介质厚度大于5mm;然后在5MPa压力下紧实含氢渗碳介质,使其紧实度为42%;用带螺纹的盖子密封石墨坩埚,防止渗碳介质逸出;
(4)Ti(C,N)基金属陶瓷表面渗碳层的原位制备:先以5℃/min升温到600℃并保温1h;然后以7℃/min升温到1100~1250℃并保温2h;再以6℃/min升温到1400℃并保温2h,烧结真空度为2Pa;烧结结束后的降温速度为3℃/min,碳元素由含氢渗碳介质向金属陶瓷表面扩散,形成650μm厚的渗碳层,最终实现Ti(C,N)基金属陶瓷表面渗碳层的原位制备。
实例2:按以下步骤原位制备Ti(C,N)基金属陶瓷表面渗碳层:
(1)含碳化物形成元素的金属陶瓷坯体制备:称取各种原料粉末配料,按重量百分比Ni占15wt%,Co占5wt%,Mo占2wt%, W占3wt%,TiC0.7N0.3为余量;将称取的粉末混合并经过70h球磨时间,400目筛网过滤,100℃干燥,按金属陶瓷粉末重量的120%掺入丁钠橡胶成型剂,在380MPa压力下压制成型得到金属陶瓷生坯;金属陶瓷生坯在真空烧结炉中升温到700℃,升温速度为5℃/min,真空度为11Pa, 并保温2h,形成含碳化物形成元素的金属陶瓷坯体;
(2)含氢渗碳介质配制:先称取粒度为0.7μm的TiH2粉末加入到无水乙醇中形成TiH2占35wt%的混合液,然后进行30min的超声分散处理,超声波的频率为4×104Hz,功率为100W,并在90℃和真空度为20Pa条件下真空干燥1h;再以体积比为1:10的去离子水与无水乙醇的混合液为溶剂配制溶液,按浓度为0.4mol/L加入聚碳硅烷,按浓度为3.6mol/L加入经过超声分散的TiH2 粉末,并用CH3COOH调节pH值到5, 然后在磁力搅拌器中60℃下搅拌9h,磁力搅拌的速度为40r/min,并在120℃下干燥2h,得到无定形Si-C-O包覆TiH2的核/壳结构粉末;再将无定形Si-C-O包覆TiH2的核/壳结构粉末,粒度40nm的纳米石墨混合,两种物质按重量百分比3:2混合,并在行星球磨机中球磨2h,转速为300r/min,制成含氢渗碳介质;
(3)生坯在含氢渗碳介质中的装填:先将含氢渗碳介质装入石墨坩埚中,石墨坩埚的石墨材质抗折强度大于20MPa,再将脱除成型剂的金属陶瓷生坯埋入;含氢渗碳介质与脱成型剂金属陶瓷生坯的重量比为5:1,并确保脱成型剂金属陶瓷生坯周围的含氢渗碳介质厚度大于5mm;然后在11MPa压力下紧实含氢渗碳介质,使其体积缩小到松装状态的50%;用带螺纹的盖子密封石墨坩埚,防止渗碳介质逸出;
(4)Ti(C,N)基金属陶瓷表面渗碳层的原位制备:先以10℃/min升温到500℃并保温1h;然后以8℃/min升温到1250℃并保温2h;再以5℃/min升温到1410℃并保温1h,烧结真空度为4Pa;烧结结束后的降温速度为3℃/min,碳元素由含氢渗碳介质向金属陶瓷表面扩散,形成450μm厚的渗碳层,最终实现Ti(C,N)基金属陶瓷表面渗碳层的原位制备。

Claims (2)

1.一种Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法,其特征在于依次包含以下步骤:
(1)含碳化物形成元素的金属陶瓷坯体制备:称取各种原料粉末配料,按重量百分比Ni占5~20wt%,Co占0~20wt%,Mo占2~10wt%, W占2~10wt%,TiC0.7N0.3为余量;将称取的粉末混合并经过球磨、过滤、干燥、掺成型剂、压制成型得到金属陶瓷生坯;金属陶瓷生坯在真空烧结炉中升温到500~700℃,升温速度为1~5℃/min,真空度为5~15Pa, 并保温1~2h,形成含碳化物形成元素的金属陶瓷坯体;
(2)含氢渗碳介质配制:先称取粒度为0.5~1.5μm的TiH2粉末加入到无水乙醇中形成TiH2占35wt%的混合液,然后进行20~40min的超声分散处理,并在80~100℃和真空度为10~20Pa条件下真空干燥1h;再以去离子水和无水乙醇混合液为溶剂配制溶液,按浓度为0.1~0.8mol/L加入聚碳硅烷,按聚碳硅烷浓度的9倍加入经过超声分散的TiH2 粉末,并用CH3COOH调节pH值到3~6, 然后在磁力搅拌器中60~80℃下搅拌8~24h,并在120~150
℃下干燥1~3h,得到无定形Si-C-O包覆TiH2的核/壳结构粉末;再将无定形Si-C-O包覆TiH2的核/壳结构粉末,粒度30~50nm的纳米石墨混合,两种物质按重量百分比3:2混合,并在行星球磨机中球磨1~2h,制成含氢渗碳介质;
(3)生坯在含氢渗碳介质中的装填:先将含氢渗碳介质装入石墨坩埚中,再将脱除成型剂的金属陶瓷生坯埋入;含氢渗碳介质与脱成型剂金属陶瓷生坯的重量比为5:1,并确保脱成型剂金属陶瓷生坯周围的含氢渗碳介质厚度大于5mm;然后在5~15MPa压力下紧实含氢渗碳介质,使其体积缩小到松装状态的40~60%;用带螺纹的盖子密封石墨坩埚,防止渗碳介质逸出;
(4)Ti(C,N)基金属陶瓷表面渗碳层的原位制备:在真空烧结炉中1350~1500℃保温1~3h,碳元素由含氢渗碳介质向金属陶瓷表面扩散,形成300~750μm厚的渗碳层,最终实现Ti(C,N)基金属陶瓷表面渗碳层的原位制备。
2.根据权利要求1所述的Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法,其进一步的特征在于:
(1)金属陶瓷生坯制备时球磨时间为24~72h,过滤采用400目筛网,干燥在85~100
℃进行,按金属陶瓷粉末重量的50~120%掺入丁钠橡胶成型剂,在300~400MPa压力下压制成型;
(2)含氢渗碳介质配制时,超声处理时超声波的频率为4×104Hz,功率为100W,配制溶液使用的溶剂中去离子水与无水乙醇的体积比为1:10,制备无定形Si-C-O包覆TiH2的核/壳结构粉末时,磁力搅拌的速度为20~50r/min,核/壳结构粉末、纳米石墨混合行星球磨时,转速为300r/min;
(3)生坯在渗碳介质中装填时所用的石墨坩埚的石墨材质抗折强度大于20MPa;
(4)Ti(C,N)基金属陶瓷表面渗碳层的原位制备时,先以5~10℃/min升温到500~700℃并保温1~2h;然后以5~10℃/min升温到1100~1250℃并保温1~3h;再以5~10℃/ min升温到1350~1500℃并保温1~3h,烧结真空度为1~5Pa;烧结结束后的降温速度为1~8
℃/min。
CN201710300222.9A 2017-05-02 2017-05-02 Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法 Active CN106995897B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710300222.9A CN106995897B (zh) 2017-05-02 2017-05-02 Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710300222.9A CN106995897B (zh) 2017-05-02 2017-05-02 Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法

Publications (2)

Publication Number Publication Date
CN106995897A CN106995897A (zh) 2017-08-01
CN106995897B true CN106995897B (zh) 2018-09-28

Family

ID=59435501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710300222.9A Active CN106995897B (zh) 2017-05-02 2017-05-02 Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法

Country Status (1)

Country Link
CN (1) CN106995897B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112941390B (zh) * 2021-01-29 2021-09-21 嘉兴鸷锐新材料科技有限公司 一种碳氮化钛基金属陶瓷及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565790A (zh) * 2009-06-03 2009-10-28 南京航空航天大学 梯度结构纳米碳管增强的Ti(C,N)基金属陶瓷及其制备方法
CN104493161A (zh) * 2015-01-19 2015-04-08 四川科力特硬质合金股份有限公司 一种硬质合金在真空烧结炉中渗碳的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436885B2 (zh) * 1974-01-16 1979-11-12
JPS569342A (en) * 1979-07-04 1981-01-30 Mitsubishi Metal Corp Preparation of titanium nitride base hard sintered alloy for decorative parts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565790A (zh) * 2009-06-03 2009-10-28 南京航空航天大学 梯度结构纳米碳管增强的Ti(C,N)基金属陶瓷及其制备方法
CN104493161A (zh) * 2015-01-19 2015-04-08 四川科力特硬质合金股份有限公司 一种硬质合金在真空烧结炉中渗碳的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TiC、TiN、Ti (C、N)粉末制备技术的现状及发展;李奎 等;《重庆大学学报(自然科学版)》;20020630;第25卷(第6期);第135页 *

Also Published As

Publication number Publication date
CN106995897A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
CN107099723B (zh) 基于金属氢化物的表面自润滑Ti(C,N)基金属陶瓷制备方法
CN106987752B (zh) 一种表面渗碳的梯度硬质合金制备方法
CN106521219B (zh) 一种TiC颗粒增强钛基多孔材料的制备方法
CN107142407B (zh) 一种表面自润滑Ti(C,N)基金属陶瓷耐磨材料的制备方法
CN105734387A (zh) 一种TiB2基金属陶瓷及其制备方法
CN110735064A (zh) 固相原位反应生成耐高温高强度TiC增强钛基复合材料及其制备方法
CN107697916B (zh) 一种金属-硅-碳化合物纳米粉体的制备方法
CN105350294B (zh) 一种镀碳化硅层的短切碳纤维及其制备方法
CN107142445B (zh) 一种硬质合金表面渗碳方法
CN107043883B (zh) 一种表面自润滑硬质合金的原位制备方法
CN106995897B (zh) Ti(C,N)基金属陶瓷表面渗碳层的原位制备方法
CN107142404B (zh) 表面自润滑Ti(C,N)基金属陶瓷的原位制备方法
CN106987751B (zh) 一种表面渗碳硬质合金的原位制备方法
CN107099722B (zh) 基于碳迁移的表面自润滑Ti(C,N)基金属陶瓷制备方法
CN110564989B (zh) 一种高性能Ti-555型钛合金基复合材料的制备方法
CN107099721B (zh) 基于碳化物形成元素促进碳迁移的金属陶瓷耐磨材料制备方法
CN107142408B (zh) 一种具有表面渗碳层的硬质合金制备方法
CN107142406B (zh) 碳梯度原位形成的表面自润滑Ti(C,N)基金属陶瓷制备方法
CN107058842B (zh) 一种表面富石墨相的硬质合金制备方法
CN107142409B (zh) 一种自润滑硬质合金制备方法
CN101381233B (zh) 超细晶粒碳氮化钛基金属陶瓷的微波烧结
CN107142405B (zh) 基于碳扩散的表面自润滑Ti(C,N)基金属陶瓷原位制备方法
CN107058843B (zh) 一种表面富石墨相的梯度硬质合金制备方法
CN107686352B (zh) 一种高纯度Ti2SnC陶瓷材料的制备方法
CN114457251B (zh) GNPs和TiBw协同增强钛基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant