CN107686352B - 一种高纯度Ti2SnC陶瓷材料的制备方法 - Google Patents
一种高纯度Ti2SnC陶瓷材料的制备方法 Download PDFInfo
- Publication number
- CN107686352B CN107686352B CN201710694483.3A CN201710694483A CN107686352B CN 107686352 B CN107686352 B CN 107686352B CN 201710694483 A CN201710694483 A CN 201710694483A CN 107686352 B CN107686352 B CN 107686352B
- Authority
- CN
- China
- Prior art keywords
- powder
- preparation
- ceramic material
- snc
- steps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/404—Refractory metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种功能化三元层状材料的制备方法,具体涉及一种高纯度Ti2SnC陶瓷材料的制备方法,包括以下步骤:以Ti∶Sn∶Al∶C=2∶1∶0.05~0.2∶1比例置于有机溶液中在玛瑙研钵中混合;将混合粉体置于干燥箱干燥并预先压实;将混合粉体置于无压烧结石墨模具中于1300~1450℃、无压条件下放电等离子体烧结10~60min,气氛为氩气;四、反应结束后,关闭电源,冷却至室温,取出石墨模具中的烧结材料。本发明制备的Ti2SnC陶瓷材料纯度高,制备过程简单可控,生产成本低,制备周期短;且多孔疏松,便于粉碎成粉体材料,具有良好的应用前景。
Description
技术领域
本发明属于陶瓷材料的制备技术领域,涉及一种三元层状材料的制备方法,具体涉及一种高纯度Ti2SnC陶瓷材料的方法。
背景技术
Ti2SnC是三元层状陶瓷材料MAX相的一种,这种三元层状陶瓷结构使其集结构和功能一体化,陶瓷和金属优良性能于一身,具有高断裂韧性、高弹性模量、高强度以及高抗热震性能。此外,Ti2SnC也具有良好的导电性、导热性、自润滑性、和切削加工性能。因此,Ti2SnC可广泛应用于电极材料、减磨构件、易加工陶瓷材料以及第二相增强剂等材料领域。对Ti2SnC的制备和研究是材料科学领域的重要研究课题之一。
目前制备Ti2SnC主要是以Ti-Sn-C为原料,采用无压、自蔓延、放电等离子体等技术制备合成。J.Ding等人通过无压烧结Sn-Ti-C粉末,以2Ti/1Sn/1C比例在1330℃、无压条件下烧结2h得到了纯度较高的Ti2SnC。(J.Ding etal.,Journal of Alloys&Compounds,2017.695:p.2850-2856),但该实验中升温、保温速率慢,制备周期长。Li等人发现自蔓延烧结Sn-Ti-C粉末的混合物可以在1000℃的条件下得到Ti2SnC,但是这种方法制得的Ti2SnC中含有较多的Ti6Sn5、Sn以及TiC 杂质(Li et al.,International Journal of RefractoryMetals&Hard Materials,2011. 29(6):p.751-754)。Sun等人的研究表明额外加入Sn可提高高温自蔓延烧结得到的产品纯度和产量(Sunet al.,Materials Science-Poland,2016.32(4):p.696-701),但仍然难以完全避免,且Sn的量过多以后反而会出现Sn的杂质。Li等人调整 C/Ti比例利用自蔓延烧结制得三元层状Ti2SnC(Li et al.,Journal ofAlloys& Compounds,2011.509(35):p.328-330),但在高温自蔓延反应过程中易形成TiC,导致生成的Ti2SnC纯度较低。T.Lapauw等人在1325℃高温下利用放电等离子烧结Sn-Ti-C粉末得到混有少量Sn和TiCx的Ti2SnC陶瓷块体材料,这些少量杂质的存在对获得的Ti2SnC陶瓷材料的硬度、强度等性能影响较大(T.Lapauw et al., Journal of Alloys&Compounds,2015.613:p.72-76)。
由上可知,制备Ti2SnC工艺技术尚不成熟,制得的纯度低,寻找一种新工艺提高纯度、缩短时间、降低能耗显得尤为重要。因Ti3SiC2和Ti3AlC2的晶型结构相似,Zhang等人在制备Ti3SiC2过程中掺入一定量的Al最终得到了纯度高达 99%的Ti3SiC(J.Zhang etal.Journal of Alloys&Compounds,2007.437:p. 203-207),史晓亮等人利用Al作为合成促进剂,降低合成温度,加快Ti3SiC2的形成,真空烧结获得Ti3SiC2高纯粉体f中国发明专利,史晓亮,彭美超等,申请号:CN201110136554.0,申请日:2011.05.24)。但以Al作为添加助剂,消除杂质而获得高纯度Ti2SnC的工作并未见报道。
放电等离子烧结是生产新型陶瓷材料的一种新方法,有着高纯度、节约能源和时间的明显优势。Ti2AlC和Ti2SnC同属于MAX相材料,有着相似的晶型, Al可以进入Ti2SnC的晶格,掺入一定量的Al可以促进Ti-Sn形成金属间化合物,试样中Ti和C反应生成的[Ti6C]八面体将同时与Sn和Al反应,避免形成Sn、 TiCx、Ti6Sn5、Ti5Sn3等杂质,且铝的热导率高有利于放电等离子烧结的进行,降低反应温度,促进Ti2SnC结构的快速形成,降低能耗和反应时间。基于此,本发明采用放电等离子无压烧结方法,掺入一定量的Al,最终获得的材料多孔疏松,易于破碎,利于后期加工,应用领域广阔。
发明内容
针对Ti2SnC制备工艺技术尚不成熟,所得粉体纯度低,能源和时间成本消耗大,以及随着MXene材料的出现,为MAX粉体原料提供了应用市场,本发明提供了一种高纯度Ti2SnC陶瓷材料的制备方法。以Ti粉、Sn粉、Al粉和C 粉为原料,通过控制Al含量、反应时间和反应温度等参数,在无压条件下烧结制得高纯度Ti2SnC陶瓷材料。本发明制备的Ti2SnC陶瓷材料纯度较高,结构多孔疏松,易于破碎,过程简单可控、生产成本低、制备周期短,是一种相当有潜力的陶瓷材料制备方法。
技术方案:本发明的目的通过如下技术方案实现:
一种高纯度Ti2SnC陶瓷材料的制备方法,它包括以下步骤:
(1)将Ti粉、Sn粉、Al粉和C粉按照摩尔比为2∶1∶0.05~0.2∶1的比例置于有机溶液中在研钵中研磨混合,得到混合粉体;
(2)将步骤(1)得到的混合粉体置于干燥箱中干燥并预先压实,预压压力为30~50MPa;
(3)将步骤(2)得到的混合粉体置于无压烧结石墨磨具中无压烧结;
(4)反应结束后,关闭电源,冷却至室温,取出石墨模具中的粉末。
优选地,所述步骤1中,反应原料为Ti粉、Sn粉、Al粉和C粉,纯度均大于98%,所述Ti粉的平均粒径为10~50μm,所述Sn粉的平均粒径为1~5μm,所述Al粉的平均粒径为10~50μm,所述C粉的平均粒径为10~20μm。
优选地,所述步骤1中,所述有机溶液为乙醇、丙酮等。
优选地,所述步骤1中,粉体于玛瑙研钵中混合,混合时间为4~8小时。
优选地,所述步骤(2)中,混合粉体于干燥箱中干燥,干燥温度为60~80℃,干燥时间为10~12h。
所述步骤(3)中,无压烧结的条件为:烧结温度为1300-1450℃,烧结时间为10~60min,气氛为氩气。
所述步骤(3)中,在混合粉体和无压烧结石墨模具之间设置一层碳纸,避免混合粉体与石墨模具之间进行反应而难以脱模。
所述步骤(3)中,烧结过程中加热速率是50-100℃/min。
本发明的有益效果为:本发明提供的高纯度Ti2SnC陶瓷材料的制备方法,制备的Ti2SnC陶瓷材料纯度较高,多孔疏松,易于破碎,具有良好的可加工性、自润滑性,制备过程简单可控,生产成本低,制备周期短,制备方法和材料均具有良好的应用前景。
附图说明
图1为本发明实施例1得到的Ti2SnC的X射线衍射图谱;
图2为本发明实施例1得到的Ti2SnC的扫描电镜图片;
图3为本发明实施例2得到的Ti2SnC的X射线衍射图谱;
图4为本发明实施例3得到的Ti2SnC的X射线衍射图谱;
图5为本发明实施例4得到的Ti2SnC的X射线衍射图谱;
图6为本发明实施例5得到的Ti2SnC的X射线衍射图谱。
具体实施方式
以下为本发明的优选实施方式,仅用于解释本发明,而非用于限制本发明,且由该说明所作出的相关改进都属于本发明所附权利要求所保护的范围。
实施例1
本实施例提供了一种高纯度Ti2SnC陶瓷材料的制备方法,制备步骤如下:
(1)以Ti∶Sn∶Al∶C=2∶1∶0.2∶1比例置于乙醇溶液中在玛瑙研钵中混合8h;
(2)将混合粉体置于60℃干燥箱中干燥并预先压实,预压压力为30-50MPa;
(3)将混合粉体置于无压烧结石墨中于1400℃(加热速率75℃/min)、无压条件下烧结10min,气氛为氩气;
(4)反应结束后,关闭电源,冷却至室温,取出石墨模具中的粉末。
将取出的Ti2SnC复合材料通过X射线衍射、扫描电镜等手段进行分析观察。附图1为所述实验参数下获得的Ti2SnC陶瓷材料的X射线衍射图谱,结果表明此时获得的Ti2SnC陶瓷材料只含有较少Ti5Sn3,纯度较高。附图2为所述实验参数下获得的Ti2SnC陶瓷材料的扫描电镜图,可以看出获得的Ti2SnC陶瓷材料结构疏松,有利于后期破碎加工。
实施例2
本实施例提供了一种高纯度Ti2SnC陶瓷材料的制备方法,制备步骤如下:
(1)以Ti∶Sn∶Al∶C=2∶1∶0.2∶1比例置于丙酮溶液中在玛瑙研钵中混合8h;
(2)将混合粉体置于80℃干燥箱中干燥并预先压实,预压压力为30-50MPa;
(3)将混合粉体置于无压烧结石墨中于1300℃(加热速率50℃/min)、无压条件下烧结60min,气氛为氩气;
(4)反应结束后,关闭电源,冷却至室温,取出石墨模具中的粉末。
将取出的Ti2SnC复合材料通过X射线衍射、扫描电镜等手段进行分析观察。附图3为所述实验参数下所述实验参数下获得的Ti2SnC陶瓷材料的X射线衍射图谱,结果表明此时获得的Ti2SnC陶瓷材料只含有较少Ti5Sn3。
实施例3
本发明提供了一种Ti2SnC陶瓷材料的制备方法,制备步骤如下:
(1)以Ti∶Sn∶Al∶C=2∶1∶0∶1比例置于乙醇溶液中在玛瑙研钵中混合8h;
(2)将混合粉体置于60℃干燥箱中干燥并预先压实,预压压力为30-50MPa;
(3)将混合粉体置于无压烧结石墨中于1400℃(加热速率75℃/min)、无压条件下烧结30min,气氛为氩气;
(4)反应结束后,关闭电源,冷却至室温,取出石墨模具中的粉末。
将取出的Ti2SnC复合材料通过X射线衍射、扫描电镜等手段进行分析观察。附图4为所述实验参数下所述实验参数下获得的Ti2SnC陶瓷材料的X射线衍射图谱,获得的Ti2SnC陶瓷材料含有较多Ti5Sn3。
实施例4
本发明提供了一种Ti2SnC陶瓷材料的制备方法,制备步骤如下:
(1)以Ti∶Sn∶Al∶C=2∶1∶0.05∶1比例置于乙醇溶液中在玛瑙研钵中混合6h;
(2)将混合粉体置于70℃干燥箱中干燥并预先压实,预压压力为30-50MPa;
(3)将混合粉体置于无压烧结石墨中于1450℃(加热速率100℃/min)、无压条件下烧结40min,气氛为氩气;
(4)反应结束后,关闭电源,冷却至室温,取出石墨模具中的粉末。
将取出的Ti2SnC复合材料通过X射线衍射、扫描电镜等手段进行分析观察。附图5为所述实验参数下所述实验参数下获得的Ti2SnC陶瓷材料的X射线衍射图谱,结果表明此时获得的Ti2SnC陶瓷材料获得的Ti2SnC陶瓷材料含有杂质 Al4C3、Ti5Sn3、Ti6Sn5。
实施例5
本发明提供了一种Ti2SnC陶瓷材料的制备方法,制备步骤如下:
(1)以Ti∶Sn∶Al∶C=2∶1∶0.2∶1比例置于乙醇溶液中在玛瑙研钵中混合6h;
(2)将混合粉体置于70℃干燥箱中干燥并预先压实,预压压力为30-50MPa;
(3)设定将混合粉体置于无压烧结石墨中于1400℃(加热速率100℃/min)、100MPa条件下烧结10min,气氛为氩气,但石墨模具在1350℃左右爆裂;
(4)关闭电源,冷却至室温,取出石墨模具中的粉末。
将取出的Ti2SnC复合材料通过X射线衍射、扫描电镜等手段进行分析观察。附图6为所述实验参数下所述实验参数下获得的Ti2SnC陶瓷材料的X射线衍射图谱,结果表明此时获得的Ti2SnC陶瓷材料中主要相为Ti3Sn和TiC。
Claims (8)
1.一种高纯度Ti2SnC陶瓷材料的制备方法,其特征在于:它包括以下步骤:
(1)将Ti粉、Sn粉、Al粉和C粉按照摩尔比为2:1:0.05~0.2:1的比例置于有机溶液中在研钵中研磨混合,得到混合粉体;
(2)将步骤(1)得的混合粉体置于干燥箱中干燥并预先压实,预压压力为30-50MPa;
(3)将步骤(2)得到的混合粉体置于石墨磨具中在无压条件下进行放电等离子体烧结;
(4)反应结束后,关闭电源,冷却至室温,取出石墨模具中的粉末。
2.根据权利要求1所述的高纯度Ti2SnC陶瓷材料的的制备方法,其特征在于:所述步骤1中,反应原料为Ti粉、Sn粉、Al粉和C粉,纯度均大于98%,所述Ti粉的平均粒径为10-50μm,所述Sn粉的平均粒径为1-5μm,所述Al粉的平均粒径为10-50μm,所述C粉的平均粒径为10-20μm。
3.根据权利要求1所述的高纯度Ti2SnC陶瓷材料的的制备方法,其特征在于:所述步骤(1)中,所述有机溶液为乙醇或丙酮。
4.根据权利要求1所述的高纯度Ti2SnC陶瓷材料的的制备方法,其特征在于:所述步骤1中,粉体于玛瑙研钵中混合,混合时间为4~8小时。
5.根据权利要求1所述的高纯度Ti2SnC陶瓷材料的的制备方法,其特征在于:所述步骤(2)中,混合粉体于干燥箱中干燥,干燥温度为60~80℃,干燥时间为10~12h。
6.根据权利要求1所述的高纯度Ti2SnC陶瓷材料的制备方法,其特征在于:所述步骤(3)中,无压烧结的条件为:烧结温度为1300~1450℃,烧结时间为10~60min,气氛为氩气。
7.根据权利要求1所述的高纯度Ti2SnC陶瓷材料的的制备方法,其特征在于:所述步骤(3)中,在混合粉体和无压烧结石墨模具之间设置一层碳纸,避免混合粉体与石墨模具之间进行反应而难以脱模。
8.根据权利要求1或7所述的高纯度Ti2SnC陶瓷材料的的制备方法,其特征在于:所述步骤(3)中,烧结过程中加热速率是50-100℃/min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710694483.3A CN107686352B (zh) | 2017-08-14 | 2017-08-14 | 一种高纯度Ti2SnC陶瓷材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710694483.3A CN107686352B (zh) | 2017-08-14 | 2017-08-14 | 一种高纯度Ti2SnC陶瓷材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107686352A CN107686352A (zh) | 2018-02-13 |
CN107686352B true CN107686352B (zh) | 2020-10-16 |
Family
ID=61153384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710694483.3A Active CN107686352B (zh) | 2017-08-14 | 2017-08-14 | 一种高纯度Ti2SnC陶瓷材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107686352B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110668821B (zh) * | 2019-11-12 | 2021-11-12 | 中国工程物理研究院核物理与化学研究所 | 一种无压制备max相陶瓷的方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2901721B1 (fr) * | 2006-05-30 | 2008-08-22 | Commissariat Energie Atomique | Poudres de phase max et procede de fabrication des dites poudres |
CN106699184A (zh) * | 2017-01-12 | 2017-05-24 | 盐城工学院 | 一种Ti3SnC2陶瓷粉末的制备方法及其制得的陶瓷粉末 |
CN106830971A (zh) * | 2017-04-05 | 2017-06-13 | 河海大学 | 一种max相多孔陶瓷的制备方法 |
-
2017
- 2017-08-14 CN CN201710694483.3A patent/CN107686352B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN107686352A (zh) | 2018-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103130506B (zh) | 一种制备超细碳氮化钛的方法 | |
CN110257684B (zh) | 一种FeCrCoMnNi高熵合金基复合材料的制备工艺 | |
CN109252081A (zh) | 一种高熵合金粘结相超细碳化钨硬质合金及其制备方法 | |
CN109851367B (zh) | 一种棒状(Zr,Hf,Ta,Nb)B2高熵纳米粉体及其制备方法 | |
CN107473237B (zh) | 一种二元钨硼化物超硬材料的制备方法 | |
CN107099723B (zh) | 基于金属氢化物的表面自润滑Ti(C,N)基金属陶瓷制备方法 | |
CN109576545B (zh) | 一种具有混晶结构的Ti(C,N)基金属陶瓷及其制备方法 | |
CN104894641B (zh) | 一种高致密(LaxCa1‑x)B6多晶阴极材料及其制备方法 | |
CN108193064B (zh) | 一种低成本工业化生产TiC颗粒增强钛基复合材料的方法 | |
CN112830789B (zh) | 一种高熵硼化物粉末及其制备方法 | |
CN110408833A (zh) | 一种NbTaTiZr高熵合金及其粉末的制备方法 | |
CN110436928A (zh) | 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法 | |
Zhang et al. | Fabrication and microstructure characterization of Ti3SiC2 synthesized from Ti/Si/2TiC powders using the pulse discharge sintering (PDS) technique | |
CN1699168A (zh) | 二硼化锆微粉的燃烧合成方法 | |
CN107285329B (zh) | 一种二硼化钨硬质材料及其制备方法和应用 | |
CN106636738B (zh) | 钛硅合金材料及其制备方法 | |
CN106588018A (zh) | 一种超高温碳化铪陶瓷纳米粉体的制备方法 | |
CN103979973B (zh) | 一种以TiH2为烧结助剂的B4C基陶瓷材料及其制备方法 | |
CN100432255C (zh) | 高分散AL2O3颗粒增强Ti-Al基复合材料的制备方法 | |
CN107686352B (zh) | 一种高纯度Ti2SnC陶瓷材料的制备方法 | |
CN109665848B (zh) | 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用 | |
EP3029009A1 (en) | Method for producing ingot and powder of zirconium carbide | |
CN102864343B (zh) | 一种原位铝基复合材料孕育剂的制备方法 | |
CN109694979B (zh) | 真空感应熔炼制备高熵合金基复合材料及其方法 | |
CN109095469A (zh) | 一种等离子球磨制备碳化铝粉末的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230412 Address after: North side of Workshop 1 #, No. 2527 Lingang Road, Huangdao District, Qingdao City, Shandong Province, 266000 Patentee after: Qingdao Ruixiang New Material Technology Co.,Ltd. Address before: No. 1 Gulou Xikang Road, Nanjing City, Jiangsu Province, 211106 Patentee before: HOHAI University |
|
TR01 | Transfer of patent right |