CN106830971A - 一种max相多孔陶瓷的制备方法 - Google Patents

一种max相多孔陶瓷的制备方法 Download PDF

Info

Publication number
CN106830971A
CN106830971A CN201611181763.6A CN201611181763A CN106830971A CN 106830971 A CN106830971 A CN 106830971A CN 201611181763 A CN201611181763 A CN 201611181763A CN 106830971 A CN106830971 A CN 106830971A
Authority
CN
China
Prior art keywords
preparation
sintering
max
powder
mould
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611181763.6A
Other languages
English (en)
Inventor
张建峰
王晓帆
李改叶
吴玉萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201611181763.6A priority Critical patent/CN106830971A/zh
Publication of CN106830971A publication Critical patent/CN106830971A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明公开了一种MAX相多孔陶瓷的制备方法,包括准备三相材料,包括过渡金属原料、主族元素、以及含碳或氮的化合物,按比例混合后,在无水乙醇介质中湿磨制得浆料,将浆料干燥后装入制定的模具进行预压。然后,将模具放入SPS烧结炉中,通氩气保护,进行无压烧结,保温后取出。将烧结后的块状材料进行打磨、抛光、超声波清洗、干燥,得到MAX相多孔陶瓷。本发明制备过程操作简单、再现性高、安全可靠,在制备时升温速度快、烧结温度低、晶粒均匀、程序简便,制备的MAX相材料纯度高、孔隙率大,大大提高了制备MAX相多孔陶瓷的效率。

Description

一种MAX相多孔陶瓷的制备方法
技术领域
本发明属于多孔陶瓷制备领域,具体地涉及一种MAX相多孔陶瓷的制备方法。
背景技术
MAX相多孔陶瓷,已在储能、吸附、传感器、导电填充剂等领域展现出巨大的潜力。MAX相是一类新型的具有微观层状结构的三元化合物的统称,化学式可表示为Mn+1AXn,M代表过渡金属元素;A代表主族元素;X代表碳或氮。由于它独特的晶体结构和键合方式使其同时具备金属和陶瓷的优良性能。既像陶瓷,有高弹性模量、低密度、良好的热稳定性、抗氧化和耐腐蚀性能;又像金属,备优良的导热和导电性能,以及较低的硬度,可以进行机械加工,并在高温下有良好的塑性、自润滑机械性能。Ti2AlN(Ti2AlC、Ti2SnC)作为MAX相的211体系,具有一定的结构。其中Ti-N(C)键主要以强共价键和离子键结合,使得材料具有高熔点、高模量、高强度等性能;而Ti-Al(Sn)键具有非常明显的金属键特征,使得材料具有了良好的导电性、导热性;又由于Ti原子和Al原子平面层之间以类似于石墨层间的范德华弱键结合,使得材料具有层状结构和自润滑性能。这些性能使其在恶劣的环境(腐蚀或高温)中,在汽车尾气净化用催化剂载体材料、电极材料、微生物燃料电池、太阳能体积收集器(B Velascoet al.,MAX phase Ti2AlC foams using a leachable space-holder material,Journalof Alloys and Compounds 646(2015)1036-1042)等方面具有极大应用价值。
然而当前对MAX相的制备主要利用热压、热等静压、微波合成和先用机械合金化方法制备相应三元层状陶瓷粉体,再进行热压烧结获得块体材料等方法(一种高纯度MAX相陶瓷粉体的制备方法,CN201210067153.9)。同时已有的制备MAX相多孔陶瓷的方法不但需要先制备出Ti2AlN(Ti2AlC、Ti2SnC)陶瓷,再利用制备出的Ti2AlN(Ti2AlC、Ti2SnC)陶瓷为原料掺杂造孔剂来制备多孔陶瓷(专利:多孔导电MAX相陶瓷及其制备方法和用途,CN200810229513.4。文献:C.R.Bowen et al.,Macro-porous Ti2AlC MAX-phase ceramicsby the foam replication method,Ceramics Internnational 41(2015)12178-12185),制备程序复杂、条件苛刻、长时间的高温、高压,且存在制备设备庞大、成本高、浪费能源等问题。而我们采用的方法可以一步制成MAX相多孔陶瓷且制备出的Ti2AlN(Ti2AlC、Ti2SnC)纯度高,孔隙率大。
因此,发展一种制备MAX相多孔陶瓷的方法非常必要,对于进一步推动MAX相多孔陶瓷的应用有重要意义。
发明内容
发明目的:针对现有技术中存在的问题,本发明要解决的技术问题在于提供一种纯度高、晶粒均匀、成本低、制备方法简单易行的MAX相多孔陶瓷材料的制备方法。
为解决上述技术问题,本发明采取如下技术方案:一种MAX相多孔陶瓷的制备方法,包括如下步骤:
(1)准备三相材料,包括过渡金属原料、主族元素、以及含碳或氮的化合物,其中,所述过渡金属原料为钛粉、铬粉、钽粉、钒粉或锆粉中的任意一种,主族元素为铝粉或锡粉,所述含碳或氮的化合物为碳粉或氮化钛,将上述三相材料按照2∶1-1.5∶0.7-1混合,湿磨6~8小时,充分研磨后得到浆料;
(2)将步骤(1)得到的浆料进行干燥后得到粉体,之后装入模具内,以5~15MPa的压力进行预压;
(3)将模具放入烧结炉中在充氩气保护条件下进行高温无压烧结,保温后取出,得到MAX块体;
(4)对得到的MAX块体进行抛光处理,得到MAX相多孔陶瓷,孔隙率为20.7%~35.3%。
优选地,步骤(1)中,所述三相材料的平均粒度为200~400目。
步骤(1)中,所述的湿磨在有机溶剂介质中进的,所述有机溶剂介质为无水乙醇。
具体地,步骤(2)中,所述的模具为石墨模具,所述模具内直径为15~20mm,为保证无压烧结,采用带有卡槽的冲头,使得上下冲头被卡在套筒上,在烧结过程中不会对粉体施加压力,这样确保烧结出的MAX相块体较为疏松多孔。
优选地,步骤(2)中,所述混合粉体在装入模具之前在模具内套一层碳纸。
进一步优选地,步骤(2)得到的MAX块体在进行抛光处理之前,用砂轮机将MAX相块体周围包裹的碳纸打磨掉,然后用抛光机对去除碳纸后的块体进行抛光处理。
更进一步优选地,在将MAX相块体周围包裹的碳纸打磨掉后,将得到的MAX材料用超声波清洗机对其进行清洗,然后,用鼓风干燥箱干燥。
优选地,步骤(2)中,在预压操作中,为保证预压效果,在装料过程中分层装入粉体,每加入3~5mm厚的浆料后就进行一次预压。
步骤(3)中,所述的烧结炉为SPS烧结炉,烧结时的升温速度为90~120℃/min,烧结温度为1100~1500℃,压力为30~60MPa,烧结后保温10~15min。
步骤(4)中抛光时,在抛光盘上铺硼砂后,抛光的转速为100~120rad/min。
有益效果:与现有技术相比,本发明提供了一种操作简单、再现性高、安全可靠、节省空间、能源及成本低的制备MAX相多孔陶瓷的方法。本发明在制备时升温速度快、烧结温度低,程序简单,制备的MAX材料纯度高、孔隙率大,大大提高了制备MAX相多孔陶瓷的效率。
附图说明
图1为实施例2在1150℃烧结温度下Ti2AlC多孔陶瓷的SEM表面形貌图;
图2为实施例3中烧结温度为1300℃下的Ti2AlN粉体的XRD图谱;
图3为实施例3在1300℃烧结温度下Ti2AlN多孔陶瓷的SEM表面形貌图;
图4为实施例4在1400℃烧结温度下Ti2SnC多孔陶瓷的SEM断口形貌图。
具体实施方式
实施例1
取平均粒度200目的钛粉、铝粉、碳粉,按照2∶1∶0.7混合。用研钵在无水乙醇中湿磨6小时,充分研磨后干燥。在石墨模具内套一层碳纸后,取适量的混合,分批加入到石墨模具内,每加入3~5mm厚的浆料后就进行一次预压,在装入石墨模具的过程中以5MPa的压力分层依次预压。所用的模具为石墨模具,模具内直径为15~20mm,为保证无压烧结,采用带有卡槽的冲头,使得上下冲头被卡在套筒上,在烧结过程中不会对粉体施加压力,将模具放入SPS烧结炉中,施加30MPa的压力,在1100℃下进行无压烧结,升温速度为100℃/min,充氩气保护,保温10min后取出,得到Ti2AlC块体。在抛光盘上铺硼砂后,用砂轮机将MAX相块体周围包裹的碳纸打磨掉,然后用抛光机对去除碳纸后的块体进行抛光处理,抛光的转速为100rad/min,继续抛光至块体表面平整。然后,用超声波清洗机对其进行清洗,再用鼓风干燥箱对其干燥,制得MAX相多孔陶瓷材料,孔隙率为24.5%。
实施例2
取平均粒度250目的钛粉、铝粉、碳粉,按照2∶1.2∶0.75混合。用研钵在无水乙醇中湿磨6.5小时,充分研磨后干燥。在石墨模具内套一层碳纸后,取适量的混合,分批加入到石墨模具内,每加入3~5mm厚的浆料后就进行一次预压,在装入石墨模具的过程中以10MPa的压力分层依次预压。所用的模具为石墨模具,模具内直径为15~20mm,为保证无压烧结,采用带有卡槽的冲头,使得上下冲头被卡在套筒上,在烧结过程中不会对粉体施加压力,将模具放入SPS烧结炉中,施加40MPa的压力,在1150℃下进行无压烧结,升温速度为100℃/min,充氩气保护,保温10min后取出,得到Ti2AlC块体;在抛光盘上铺硼砂后,用砂轮机将MAX相块体周围包裹的碳纸打磨掉,然后用抛光机对去除碳纸后的块体进行抛光处理,抛光的转速为150rad/min,抛光至块体表面平整。然后,用超声波清洗机对其进行清洗,再用鼓风干燥箱对其干燥,制得MAX相多孔陶瓷材料,孔隙率为28.2%。图1为实施例2在1150℃烧结温度下Ti2AlC多孔陶瓷的SEM表面形貌图。
实施例3
取粒度300目的钛粉、铝粉、氮化钛粉,按照1∶1.1∶1混合。用研钵在无水乙醇中湿磨7小时,充分研磨后干燥。在石墨模具内套一层碳纸后,取适量的混合,分批加入到石墨模具内,每加入3~5mm厚的浆料后就进行一次预压,在装入石墨模具的过程中以15MPa的压力分层依次预压。所用的模具为石墨模具,模具内直径为15~20mm,为保证无压烧结,采用带有卡槽的冲头,使得上下冲头被卡在套筒上,在烧结过程中不会对粉体施加压力。将模具放入SPS烧结炉中,施加45MPa的压力,在1300℃下进行无压烧结,升温速度为100℃/min,充氩气保护,保温10min后取出,得到Ti2AlN块体。用砂轮机将MAX相块体周围包裹的碳纸打磨掉,然后用抛光机对去除碳纸后的块体进行抛光处理,抛光的转速为120rad/min,继续抛光至块体表面平整。然后,用超声波清洗机对其进行清洗,再用鼓风干燥箱对其干燥,制得MAX相多孔陶瓷材料,孔隙率为21.3%。对Ti2AlN进行XRD表征,如图2和图3所示,图2为烧结温度为1300℃下的Ti2AlN的XRD谱,图。从图中可以看出制备Ti2AlN纯度很高,仅含极少量TiN杂质。图3为在1300℃烧结温度下Ti2AlN多孔陶瓷的SEM表面形貌图。
实施例4
取粒度350目的钛粉、锡粉、碳粉,按照2∶1.4∶0.9混合。用研钵在无水乙醇中湿磨7.5小时,充分研磨后干燥。在石墨模具内套一层碳纸后,取适量的混合,分批加入到石墨模具内,在装入石墨模具的过程中以10MPa的压力分层依次预压。将模具放入SPS烧结炉中,施加50MPa的压力,在1400℃下进行无压烧结,升温速度为100℃/min,充氩气保护,保温10min后取出,得到Ti2SnC块体;在抛光盘上铺硼砂后,将Ti2SnC块体打磨抛光,将包裹在块体上的碳纸去除后,继续抛光至块体表面平整。然后,用超声波清洗机对其进行清洗,再用鼓风干燥箱对其干燥,制得MAX相多孔陶瓷材料,孔隙率为33.7%。图4为实施例4在1400℃烧结温度下Ti2SnC多孔陶瓷的断口形貌图。
实施例5
取粒度400目的钛粉、锡粉、碳粉,按照2∶1.5∶1混合。用研钵在无水乙醇中湿磨8小时,充分研磨后干燥。在石墨模具内套一层碳纸后,取适量的混合,分批加入到石墨模具内,每加入3~5mm厚的浆料后就进行一次预压,在装入石墨模具的过程中以15MPa的压力分层依次预压。所用的模具为石墨模具,模具内直径为15~20mm,为保证无压烧结,采用带有卡槽的冲头,使得上下冲头被卡在套筒上,在烧结过程中不会对粉体施加压力,将模具放入SPS烧结炉中,施加60MPa的压力,在1500℃下进行无压烧结,升温速度为100℃/min,充氩气保护,保温10min后取出,得到Ti2SnC块体;在抛光盘上铺硼砂后,用砂轮机将MAX相块体周围包裹的碳纸打磨掉,然后用抛光机对去除碳纸后的块体进行抛光处理,抛光的转速为150rad/min,继续抛光至块体表面平整。然后,用超声波清洗机对其进行清洗,再用鼓风干燥箱对其干燥,制得MAX相多孔陶瓷材料,孔隙率为30.1%。

Claims (10)

1.一种MAX相多孔陶瓷的制备方法,其特征在于,包括如下步骤:
(1)准备三相材料,包括过渡金属原料、主族元素、以及含碳或氮的化合物,其中,所述过渡金属原料为钛粉、铬粉、钽粉、钒粉或锆粉中的任意一种,主族元素为铝粉或锡粉,所述含碳或氮的化合物为碳粉或氮化钛,将上述三相材料按照2∶1-1.5∶0.7-1混合,湿磨6~8小时,充分研磨后得到浆料;
(2)将步骤(1)得到的浆料进行干燥后得到粉体,之后装入模具内,以5~15MPa的压力进行预压;
(3)将模具放入烧结炉中在充氩气保护条件下进行高温无压烧结,保温后取出,得到MAX块体;
(4)对得到的MAX块体进行抛光处理,得到MAX相多孔陶瓷,孔隙率为20.7%~35.3%。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述三相材料的平均粒度为200~400目。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述的湿磨在有机溶剂介质中进的,所述有机溶剂介质为无水乙醇。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述的模具为石墨模具,所述模具内直径为15~20mm,为保证无压烧结,采用带有卡槽的冲头,使得上下冲头被卡在套筒上,在烧结过程中不会对粉体施加压力。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述混合粉体在装入模具之前在模具内套一层碳纸。
6.根据权利要求5所述的制备方法,其特征在于,步骤(2得到的MAX块体在进行抛光处理之前,用砂轮机将MAX相块体周围包裹的碳纸打磨掉,然后用抛光机对去除碳纸后的块体进行抛光处理。
7.根据权利要求6所述的制备方法,其特征在于,在将MAX相块体周围包裹的碳纸打磨掉后,将得到的MAX材料用超声波清洗机对其进行清洗,然后,用鼓风干燥箱干燥。
8.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,在预压操作中,为保证预压效果,在装料过程中分层装入粉体,每加入3~5mm厚的浆料后就进行一次预压。
9.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述的烧结炉为SPS烧结炉,烧结时的升温速度为90~120℃/min,烧结温度为1100~1500℃,压力为30~60MPa,烧结后保温10~15min。
10.根据权利要求1或6所述的制备方法,其特征在于,步骤(4)中抛光时,在抛光盘上铺硼砂后,抛光的转速为100~120rad/min。
CN201611181763.6A 2017-04-05 2017-04-05 一种max相多孔陶瓷的制备方法 Pending CN106830971A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611181763.6A CN106830971A (zh) 2017-04-05 2017-04-05 一种max相多孔陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611181763.6A CN106830971A (zh) 2017-04-05 2017-04-05 一种max相多孔陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN106830971A true CN106830971A (zh) 2017-06-13

Family

ID=59139472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611181763.6A Pending CN106830971A (zh) 2017-04-05 2017-04-05 一种max相多孔陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN106830971A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686352A (zh) * 2017-08-14 2018-02-13 河海大学 一种高纯度Ti2SnC陶瓷材料的制备方法
CN109553418A (zh) * 2018-12-05 2019-04-02 武汉轻工大学 一种Ti2AlC多孔材料及其制备方法
CN109880290A (zh) * 2019-01-17 2019-06-14 河海大学 一种环氧树脂/MXene复合材料的制备方法
CN110105069A (zh) * 2019-04-25 2019-08-09 西南交通大学 一种新的max相层状化合物及其制备方法
CN110256083A (zh) * 2019-07-29 2019-09-20 河南理工大学 一种以TiH2为钛源的Ti2AlN陶瓷粉体及其制备方法
CN110590366A (zh) * 2019-10-14 2019-12-20 陕西科技大学 一种多孔MXene材料的制备方法
CN112789128A (zh) * 2018-10-02 2021-05-11 诺里马特公司 从预制件开始通过加压烧结制造复杂形状的部件的方法
CN115491563A (zh) * 2022-09-19 2022-12-20 中南大学 一种耐强酸腐蚀的新型max相多孔材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289222A (zh) * 2008-06-06 2008-10-22 清华大学 一种高纯超细钛铝氮粉料的制备方法
KR20130070433A (ko) * 2011-12-19 2013-06-27 부산대학교 산학협력단 Max 상 박막의 제조방법
CN104557044A (zh) * 2015-02-05 2015-04-29 安徽工程大学 一种碳化锡钛的制备方法
CN105669204A (zh) * 2016-01-28 2016-06-15 河海大学 一种钛二铝碳陶瓷粉体材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289222A (zh) * 2008-06-06 2008-10-22 清华大学 一种高纯超细钛铝氮粉料的制备方法
KR20130070433A (ko) * 2011-12-19 2013-06-27 부산대학교 산학협력단 Max 상 박막의 제조방법
CN104557044A (zh) * 2015-02-05 2015-04-29 安徽工程大学 一种碳化锡钛的制备方法
CN105669204A (zh) * 2016-01-28 2016-06-15 河海大学 一种钛二铝碳陶瓷粉体材料的制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686352A (zh) * 2017-08-14 2018-02-13 河海大学 一种高纯度Ti2SnC陶瓷材料的制备方法
CN112789128B (zh) * 2018-10-02 2023-05-23 诺里马特公司 从预制件开始通过加压烧结制造复杂形状的部件的方法
CN112789128A (zh) * 2018-10-02 2021-05-11 诺里马特公司 从预制件开始通过加压烧结制造复杂形状的部件的方法
CN109553418B (zh) * 2018-12-05 2021-08-13 武汉轻工大学 一种Ti2AlC多孔材料及其制备方法
CN109553418A (zh) * 2018-12-05 2019-04-02 武汉轻工大学 一种Ti2AlC多孔材料及其制备方法
CN109880290A (zh) * 2019-01-17 2019-06-14 河海大学 一种环氧树脂/MXene复合材料的制备方法
CN109880290B (zh) * 2019-01-17 2022-05-20 河海大学 一种环氧树脂/MXene复合材料的制备方法
CN110105069A (zh) * 2019-04-25 2019-08-09 西南交通大学 一种新的max相层状化合物及其制备方法
CN110105069B (zh) * 2019-04-25 2021-07-27 西南交通大学 一种max相层状化合物
CN110256083A (zh) * 2019-07-29 2019-09-20 河南理工大学 一种以TiH2为钛源的Ti2AlN陶瓷粉体及其制备方法
CN110590366B (zh) * 2019-10-14 2022-03-25 陕西科技大学 一种多孔MXene材料的制备方法
CN110590366A (zh) * 2019-10-14 2019-12-20 陕西科技大学 一种多孔MXene材料的制备方法
CN115491563A (zh) * 2022-09-19 2022-12-20 中南大学 一种耐强酸腐蚀的新型max相多孔材料及其制备方法

Similar Documents

Publication Publication Date Title
CN106830971A (zh) 一种max相多孔陶瓷的制备方法
CN109053206B (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
JPS6117406A (ja) 触媒の不存在下に粉末六方晶窒化硼素から立方晶窒化硼素を製造する方法
CN107399988A (zh) 一种利用铝硅系工业废渣制备氧化铝‑碳化硅复合多孔陶瓷的方法
CN103596905A (zh) 金属材料与陶瓷-碳复合材料的接合体、其制造方法、碳材料接合体、碳材料接合体用接合材料和碳材料接合体的制造方法
CN110125385A (zh) 一种基于原位合成的石墨烯铜基复合材料的制备方法
CN104073665B (zh) 一种WC-Co-cBN复合材料的制备方法
CN102176436B (zh) 高性能Diamond/SiC电子封装材料的制备工艺
Zhang et al. Improvement of thermal stability of diamond by adding Ti powder during sintering of diamond/borosilicate glass composites
CN105669204A (zh) 一种钛二铝碳陶瓷粉体材料的制备方法
CN106747446A (zh) 一种微波混合加热合成Al4SiC4粉体的新方法
CN110436928A (zh) 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法
CN110436930A (zh) 一种高性能纳米SiC陶瓷及其制备方法和应用
CN107937792A (zh) 一种梯度复合陶瓷刀具材料及其制备方法
CN111320476A (zh) 金刚石-碳化硅复合材料及其制备方法、电子设备
JP2012066979A (ja) 高硬度導電性ダイヤモンド多結晶体およびその製造方法
CN104131208A (zh) 一种氧化铝-碳化钛微米复合陶瓷刀具材料及其微波烧结方法
CN106747447A (zh) 一种合成Al4SiC4粉体材料的新方法
CN105924176A (zh) 碳化硼基复相陶瓷及其放电等离子烧结制备方法
CN104045349A (zh) 一种纳米氧化铝增强氮氧化铝陶瓷及其制备方法
CN109160814A (zh) 一种原位碳化硅-铁硅复合材料及其制备方法
JP2010030888A (ja) 炭化ケイ素系セラミックス多孔質材およびその製造方法
CN106431417B (zh) 一种高硬度高韧性b4c-w2b5-c复合陶瓷及其制备方法
CN104402450A (zh) 一种基于热爆反应低温快速制备Ti2AlN陶瓷粉体的方法
CN108276001A (zh) 一种超耐磨碳化钨硬质合金放电等离子体烧结方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170613

RJ01 Rejection of invention patent application after publication