WO2017121202A1 - 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法 - Google Patents

一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法 Download PDF

Info

Publication number
WO2017121202A1
WO2017121202A1 PCT/CN2016/107794 CN2016107794W WO2017121202A1 WO 2017121202 A1 WO2017121202 A1 WO 2017121202A1 CN 2016107794 W CN2016107794 W CN 2016107794W WO 2017121202 A1 WO2017121202 A1 WO 2017121202A1
Authority
WO
WIPO (PCT)
Prior art keywords
barium titanate
foam ceramic
slurry
titanate foam
ceramic
Prior art date
Application number
PCT/CN2016/107794
Other languages
English (en)
French (fr)
Inventor
梁国正
郑龙辉
顾嫒娟
张鹏飞
袁莉
Original Assignee
苏州大学张家港工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院 filed Critical 苏州大学张家港工业技术研究院
Priority to US16/068,848 priority Critical patent/US10822278B2/en
Publication of WO2017121202A1 publication Critical patent/WO2017121202A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • C04B38/062Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles the burned-out substance being formed in situ, e.g. by polymerisation of a prepolymer composition containing ceramic powder
    • C04B38/0625Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles the burned-out substance being formed in situ, e.g. by polymerisation of a prepolymer composition containing ceramic powder involving a foaming step of the burnable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4853Epoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/488Other macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a composite material and a preparation method thereof, and particularly to a barium titanate foam ceramic/thermosetting resin composite material and a preparation method thereof.
  • Ceramic dielectric materials are important varieties of high dielectric constant materials, and as an electronic ceramic material with high dielectric constant and excellent ferroelectric, piezoelectric and insulating properties, it plays an important role in the electronic ceramic industry.
  • the traditional ceramic dielectric materials have the disadvantages of large specific gravity, high brittleness, and severe molding process conditions, which limits their application in high-power capacitors. Therefore, ceramic / polymer composite materials came into being.
  • barium titanate is compounded with different polymers to produce a variety of high dielectric constant barium titanate/polymer composites. .
  • the ceramic particles content in the composite needs to be greater than 50 vol ⁇ 3 ⁇ 4. This often results in poor forming processability of the composite material, making it difficult to produce high quality composite materials.
  • the more serious situation is that the ceramic particles are not uniformly dispersed in the polymer matrix, and more ceramic agglomerates appear, which not only causes the high dielectric properties of the ceramic to be exerted in the composite material, but also the mechanical properties of the composite material. Poor.
  • the present invention is directed to the deficiencies of the prior art, and provides a simple preparation method, controllable performance, and Barium titanate foam ceramic/thermosetting resin with high dielectric constant and low dielectric loss and preparation method thereof.
  • a method for preparing a barium titanate foam ceramic/thermosetting resin composite material comprising the following steps:
  • the polymer sponge having a specification of 15 to 35 PPI is immersed in an aqueous solution of sodium hydroxide having a concentration of 5 to 20% by weight, heated to 50 to 75 ° C and kept for 2 to 6 hours, and then the polymer sponge is taken out. Washing with deionized water and drying to obtain polymer sponge D; at room temperature, the polymer sponge D is immersed in a surfactant aqueous solution having a concentration of 0.5 to 3 wt%, and after staying for 2 to 6 hours, the dried solution is taken out.
  • the polymer material of the polymer sponge is any one of polyurethane, polystyrene, and polyvinyl chloride;
  • the active agent is one of carboxymethyl cellulose, polyethyleneimine, or any combination thereof;
  • the pretreated polymer sponge E is immersed in the slurry C prepared in the step (1), and left at room temperature for 1 to 10 minutes for slurry treatment, and after extruding to remove excess slurry, Drying treatment under the condition of temperature of 40 ⁇ 80 ° C; repeating the hanging slurry and drying treatment 1 to 7 times in order to obtain a barium titanate foam ceramic green body with uniform slurry and no plugging;
  • the barium titanate foam ceramic green body prepared in the step (3) is heated from room temperature to 100 to 300 ° C at a rate of 0.5 to 5 ° C / min, and then 0.5 to 5 ° C / min After the temperature is raised to 500 ⁇ 700 ° C and kept for 0.5 ⁇ 2 h, the temperature is raised to 1000 ⁇ 1500 ° C at a rate of 2 ⁇ 10 ° C / min and kept for 1 ⁇ 5 h, and then cooled to room temperature with the furnace to obtain barium titanate.
  • the nano-barium titanate has an average particle diameter of ⁇ 100 nm.
  • thermal curing and post-treatment process conditions are consistent with the thermal curing and post-treatment process conditions of the heat curable resin used.
  • thermosetting resin of the present invention is a resin which is itself heat curable, or a resin which is not thermally curable by itself and a curing agent.
  • the self-curable resin is a bismaleimide resin, a cyanate ester, and combinations thereof.
  • the resin which is not thermally curable by itself is an epoxy resin.
  • the technical solution of the present invention further includes a barium titanate foam ceramic/thermosetting resin compound obtained by the above preparation method.
  • the volume percentage of the resin is 60 to 90%.
  • the powder ceramic is directly added to the polymer to prepare the composite material.
  • the present invention uses a barium titanate foam ceramic having a three-dimensional network skeleton structure and through-holes as a functional body, and then injecting the resin into the composite body.
  • the foam ceramic skeleton directly realizes the uniform distribution of ceramics in the polymer, and the same skill overcomes the problem of deterioration of the process in the prior art.
  • the present invention does not add or "in situ" other inorganic materials during the preparation process, but uses an organic auxiliaries, and the prepared barium titanate foam ceramic is a
  • the foam ceramic with a pure chemical composition of barium titanate skeleton inherits the excellent dielectric properties of barium titanate; in addition, the dielectric properties of the barium titanate foam ceramic used in the high temperature sintering process are further improved. After compounding it with a thermosetting resin, a composite material having a higher dielectric constant can be obtained at a lower ceramic content.
  • the barium titanate foam ceramic used in the present invention is a three-dimensional continuous whole, so that the composite material exhibits superior dielectric properties.
  • the preparation method of the barium titanate foam ceramic/thermosetting resin provided by the invention has the characteristics of simple process, wide applicability, and the like, and is suitable for industrial production.
  • Example 1 is a stereoscopic micrograph of a polyurethane sponge E, a barium titanate foam ceramic green body, and a barium titanate foam ceramic prepared in Example 1 of the present invention.
  • Example 3 is a scanning electron micrograph (magnification 1000 times) of a barium titanate foam ceramic prepared in Example 4 of the present invention.
  • Example 4 is a stereoscopic micrograph of a barium titanate foam ceramic/cyanate resin composite prepared in Example 4 of the present invention.
  • Example 5 is a barium titanate foam ceramic/cyanate resin composite material prepared in Examples 1, 2, 5, and 6 of the present invention, a cyanate-curable resin provided in Comparative Example 1, and a titanic acid provided in Comparative Example 2.
  • the dielectric constant of the ruthenium/cyanate resin composite as a function of frequency.
  • Example 7 is a stereoscopic micrograph of a barium titanate foam ceramic prepared in Example 7 of the present invention.
  • the polyurethane sponge of the specification of 25 PPI was immersed in a sodium hydroxide aqueous solution having a concentration of 15% by weight, heated to 60 ° C and kept for 3.5 hours; then, the polyurethane sponge was taken out and washed several times with deionized water. After drying, the polyurethane sponge D is obtained; at room temperature, the polyurethane sponge D is immersed in an aqueous solution of carboxymethylcellulose having a concentration of 1 wt% and left for 3 hours; then, the excess aqueous solution of carboxymethylcellulose is removed and removed. Temperature 60 ° C Drying under conditions gave a pretreated polyurethane sponge E. See Figure 1 for a stereomicroscope photograph.
  • the pretreated polyurethane sponge E is immersed in the slurry C prepared in the step 1), placed at room temperature for 5 min, and then hanged; then squeezed to remove excess slurry at a temperature of 40 ° C Drying treatment is carried out; the slurry is dried and dried four times in order to obtain a green titanate foam ceramic green body with uniform slurry and no plugging. See Figure 1 for a stereo microscope photograph.
  • the barium titanate foam ceramic green body prepared in step 3) is heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then raised to 600 ° C at a rate of l ° C / min; The temperature was kept at °C for 1 hour; then, the temperature was raised to 1,200 ° C at a rate of 5 ° C / min, and the temperature was kept for 2 hours; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the stereo microscope photograph and the X-ray diffraction pattern are shown in Figures 1 and 2, respectively.
  • the barium titanate foam ceramic prepared in step 4) is placed in a mold and preheated in an oven at 160 ° C; 2,2-bis(4-cyanophenyl)propane (bisphenol A type cyanate) Melting at 160 ° C for 1 h, pouring the solution into the preheated barium titanate foam ceramic, vacuuming at 160 ° C for 0.5 h; then following 160 ° C / 2 h + 180 ° C / 2
  • the processes of h+200°C/2h+220°C/2h and 240°C/4h are separately cured and post-treated; slowly cooled to room temperature to obtain barium titanate foam ceramic/cyanate resin composite, wherein cyanate
  • the content of the ester resin was 69.2 vol%.
  • the dielectric constant of the composite material as a function of frequency, and the dielectric loss versus frequency are shown in Figures 3 and 4, respectively.
  • FIG. 1 there is a stereomicrograph of a polyurethane sponge E, a barium titanate foam ceramic green body and a barium titanate foam ceramic prepared in Example 1 of the present invention. It can be seen from the above that after the polyurethane sponge E pretreated in Example 1 was pulverized by the slurry, barium titanate was uniformly coated on the skeleton of the sponge. After sintering, the polyurethane sponge is decomposed at a high temperature to obtain a barium titanate foam ceramic having a uniform pore distribution and no plugging.
  • the barium titanate foam ceramic green body prepared in Example 1 was heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then heated to 600 ° C at a rate of 1 ° C / min; The temperature was kept at 600 ° C for 1 h; then the temperature was raised to 1000 ° C at a rate of 5 ° C / min, and kept for 2 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the barium titanate foam ceramic prepared in step 1) is placed in a mold and preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the obtained solution is poured into the pre-prepared In hot barium titanate foam ceramics, vacuum is removed at 160 °C for 0.5 h; then followed by 160 °C / 2h + l 80 °C / 2h + 200 °C / 2h + 220 °C / 2h and 240 ° The C / 4h process was separately cured and post-treated; slowly cooled to room temperature to obtain a barium titanate foam ceramic / cyanate resin composite, wherein the cyanate resin content was 79.3 vol ⁇ 3 ⁇ 4.
  • the barium titanate foam ceramic green body prepared in Example 1 was heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then heated to 600 ° C at a rate of 1 ° C / min; The temperature was maintained at 600 ° C for 1 h; then the temperature was raised to 1100 ° C at a rate of 5 ° C / min, and kept for 2 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic. See Figure 2 for its X-ray diffraction pattern.
  • the barium titanate foam ceramic prepared in step 1) is placed in a mold and preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the obtained solution is poured into the pre-prepared In hot barium titanate foam ceramics, vacuum is removed at 160 °C for 0.5 h; then followed by 160 °C / 2h + l 80 °C / 2h + 200 °C / 2h + 220 °C / 2h and 240 ° The C / 4h process was separately cured and post-treated; slowly cooled to room temperature to obtain a barium titanate foam ceramic / cyanate resin composite, wherein the content of the cyanate resin was 74.2 vol%.
  • the barium titanate foam ceramic green body prepared in Example 1 was heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then heated to 600 ° C at a rate of 1 ° C / min; The temperature was maintained at 600 ° C for 1 h; then the temperature was raised to 1300 ° C at a rate of 5 ° C / min, and kept for 2 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the X-ray diffraction pattern and the scanning electron micrograph are shown in Figures 2 and 3, respectively.
  • the barium titanate foam ceramic prepared in step 1) is placed in a mold and preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the obtained solution is poured into the pre-prepared Hot barium titanate foam ceramic, at 160 Vacuuming at °C for 0.5h; followed by 160°C/2h+l 80°C/2h+200°C/2h+220°C/2h and 240°C
  • the /4h process was separately cured and post-treated; slowly cooled to room temperature to obtain a barium titanate foam ceramic/cyanate resin composite in which the content of the cyanate resin was 72.0 vol ⁇ 3 ⁇ 4. See Figure 4 for a photo of the stereo microscope.
  • FIG. 2 it is an X-ray diffraction pattern of barium titanate foam ceramics prepared in Examples 1, 2, 3 and 4 of the present invention. It can be seen that the nano-barium titanate is at 22.1°, 31.6. 38.9. 45.2°, 50.8. , 56.1. Significant diffraction peaks appear at 65.8°, 70.2°, 74.6°, and 78.9°, which correspond to (100), (110), (111), (002) / (200), (210), (211) , (220), (221), (310), and (113) crystal faces (JCPDS ⁇ .5-0626). 2 ⁇ Whether it splits into two diffraction peaks at 45.2° is an effective basis for judging the crystal form of barium titanate.
  • the barium titanate foam ceramic prepared in Example 2 did not show a split peak at 45.2, it was judged that the barium titanate foam ceramic prepared in Example 2 was a cubic crystal form.
  • the spectra of the barium titanate foam ceramics prepared in Examples 1, 3 and 4 showed two split peaks at 45.2°, indicating that the crystal form of the barium titanate foam ceramic changed to a tetragonal phase, and The peak intensity of the splitting is obvious with the increase of sintering temperature, indicating that the content of tetragonal phase in barium titanate foam ceramics increases.
  • the results show that changing the sintering temperature can adjust the crystal form of barium titanate foam ceramics and the content of different crystal phases. It is particularly noteworthy that all the X-ray diffraction patterns have no other peaks, indicating that the organic auxiliaries are decomposed during the sintering process to obtain a pure barium titanate foam ceramic with a single chemical composition.
  • FIG. 3 it is a scanning electron micrograph of a barium titanate foam ceramic prepared in Example 4 of the present invention. It can be seen that after the foam ceramic green body is sintered at a high temperature, the organic auxiliary agent is decomposed, and the barium titanate grain grows and becomes large, and a barium titanate foam ceramic skeleton with better compactness is obtained.
  • FIG. 4 it is a stereoscopic microscope photograph of a barium titanate foam ceramic/cyanate resin composite prepared in Example 4 of the present invention. It can be seen that the barium titanate ceramic is uniformly distributed in the cyanate resin, and the resin has a good interface with the ceramic. The results show that the barium titanate foam ceramic with three-dimensional network skeleton structure and through-holes is used as the functional body, and then the resin is poured into the foam ceramic skeleton to directly realize the uniform distribution of the ceramic in the polymer. The problem of poor processability that occurs in technology.
  • Example 5 Example 5
  • Example 1 The polyurethane sponge E pretreated in Example 1 was immersed in the slurry C (Example 1), and allowed to stand at room temperature for 5 minutes; then the excess slurry was squeezed out and dried at a temperature of 40 ° C; The slurry was dried and dried three times in this order to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 1) is heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then raised to 600 ° C at a rate of 1 ° C / min; The temperature was kept at °C for 1 hour; then, the temperature was raised to 1,200 ° C at a rate of 5 ° C / min, and the temperature was kept for 2 hours; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the barium titanate foam ceramic prepared in step 2) is placed in a mold and preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the obtained solution is poured into the pre-prepared In hot barium titanate foam ceramics, vacuum is removed at 160 °C for 0.5 h; then followed by 160 °C / 2h + l 80 °C / 2h + 200 °C / 2h + 220 °C / 2h and 240 ° The C / 4h process was separately cured and post-treated; slowly cooled to room temperature to obtain a barium titanate foam ceramic/cyanate resin composite in which the content of the cyanate resin was 76.6 vol%.
  • the dielectric constant of the composite material as a function of frequency, and the dielectric loss versus frequency are shown in Figures 5 and 6, respectively.
  • Example 1 The polyurethane sponge E pretreated in Example 1 was immersed in the slurry C (Example 1), and allowed to stand at room temperature for 5 minutes; then the excess slurry was squeezed out and dried at a temperature of 40 ° C; The slurry was dried and dried 5 times in sequence to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 1) is heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then heated to 600 ° C at a rate of 1 ° C / min; The temperature was kept at °C for 1 hour; then, the temperature was raised to 1,200 ° C at a rate of 5 ° C / min, and the temperature was kept for 2 hours; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the barium titanate foam ceramic prepared in the step 2) is placed in a mold and preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the obtained solution is poured into the preheated Hot barium titanate foam ceramic, at 160 Vacuuming at °C for 0.5h; followed by 160°C/2h+l 80°C/2h+200°C/2h+220°C/2h and 240°C
  • the /4h process was separately cured and post-treated; slowly cooled to room temperature to obtain a barium titanate foam ceramic/cyanate resin composite in which the content of the cyanate resin was 66.5 vol%.
  • the dielectric constant of the composite material as a function of frequency, and the dielectric loss versus frequency are shown in Figures 5 and 6, respectively.
  • Example 1 The polyurethane sponge E pretreated in Example 1 was immersed in the slurry C (Example 1), and allowed to stand at room temperature for 5 minutes; then the excess slurry was squeezed out and dried at a temperature of 40 ° C; The slurry was dried and dried twice in this order to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 1) is heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then heated to 600 ° C at a rate of 1 ° C / min; The temperature was kept at °C for 1 hour; then, the temperature was raised to 1,200 ° C at a rate of 5 ° C / min, and the temperature was kept for 2 hours; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic. See Figure 7 for a stereo microscope photo.
  • the barium titanate foam ceramic prepared in step 2) is placed in a mold and preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the obtained solution is poured into the pre-prepared In hot barium titanate foam ceramics, vacuum is removed at 160 °C for 0.5 h; then followed by 160 °C / 2h + l 80 °C / 2h + 200 °C / 2h + 220 °C / 2h and 240 ° The C / 4h process was separately cured and post-treated; slowly cooled to room temperature to obtain a barium titanate foam ceramic / cyanate resin composite, wherein the cyanate resin content was 83.5 vol%.
  • the dielectric constant of the composite material as a function of frequency, and the dielectric loss versus frequency are shown in Figures 5 and 6, respectively.
  • FIG. 5 it is a cyanate-curable resin provided in Comparative Example 1 of the present invention, a barium titanate ceramic/cyanate resin composite material prepared in Comparative Example 2, and Preparations of Examples 1, 2, 5, and 6.
  • the dielectric constant of the barium titanate foam ceramic/cyanate resin composite as a function of frequency.
  • the dielectric constant of the barium titanate ceramic/cyanate resin composite has a higher dielectric constant over the entire frequency range than the cyanate cured resin and the barium titanate/cyanate resin composite, as implemented.
  • Example 6 has a dielectric constant of 141.3 at 100 Hz, which is 37 times that of cyanate cured resin (3.8).
  • barium titanate foam ceramic/cyanate resin composite ratio The barium titanate/cyanate resin composite has a higher dielectric constant, as in Example 1, at 100 Hz, its dielectric constant can reach 83.3, and its value is the barium titanate/cyanate prepared in Comparative Example 2.
  • the resin composite (9.9) was 8.4 times. This is because the barium titanate foam ceramic having a three-dimensional network skeleton is used as a functional body to uniformly distribute barium titanate in the composite material, thereby greatly increasing the dielectric constant of the composite material. In addition, as the number of times of the barium titanate ceramic foam is increased, the dielectric constant of the composite material is continuously increased. The results show that the dielectric properties of the composite can be controlled by adjusting the content of the barium titanate foam ceramic skeleton; barium titanate is a three-dimensional continuous whole, which makes the composite exhibit superior dielectric properties.
  • FIG. 5 it is a cyanate-curable resin provided in Comparative Example 1 of the present invention, a barium titanate ceramic/cyanate resin composite material prepared in Comparative Example 2, and Preparations of Examples 1, 2, 5, and 6.
  • the dielectric loss of the barium titanate foam ceramic/cyanate resin composite as a function of frequency. It can be seen from the figure that the dielectric loss of the composite material increases with the increase of the number of times of the barium titanate ceramic foam, but it has a lower dielectric within a certain frequency range (10 2 -10 ⁇ ). Electrical loss, between 0.010 and 0.276.
  • barium titanate foam ceramics having a single chemical composition and a high dielectric constant skeleton have a significant application prospect in the preparation of high dielectric constant composite materials.
  • FIG. 7 it is a stereomicrograph of a barium titanate foam ceramic prepared in Example 7. Comparing the stereomicroscope of the barium titanate foam ceramic prepared in Example 1 (Fig. 1), it was found that the preparation of Example 1 was Barium titanate foam ceramics have a thicker skeleton because the amount of pulp on the sponge skeleton increases as the number of times of slurrying increases.
  • the barium titanate foam ceramic green body prepared in Example 1 was heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then heated to 600 ° C at a rate of 1 ° C / min; The temperature was raised at 600 ° C for 2 h; then the temperature was raised to 1400 ° C at a rate of 5 ° C / min, and kept for 2 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the barium titanate foam ceramic prepared in the step 1) is placed in a mold and preheated in an oven at 130 ° C; 2,2'-diallyl bisphenol A and hydrazine, ⁇ -4, 4'- Diphenylmethane bismaleimide (mass ratio 3:7) was stirred and mixed at 130 ° C for 1 h, and the obtained solution was poured into preheated barium titanate foam ceramic, and vacuum was removed at 130 ° C.
  • the barium titanate foam ceramic green body prepared in Example 1 was heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then heated to 600 ° C at a rate of l ° C / min; The temperature was maintained at 600 ° C for 1 h; then the temperature was raised to 1500 ° C at a rate of 5 ° C / min, and kept for 1 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the barium titanate foam ceramic prepared in step 1) is placed in a mold and preheated in an oven at 140 ° C; 2,2'-diallyl bisphenol octagonal, hydrazine, ⁇ -4, 4'- Diphenylmethane bismaleimide and bisphenol A type cyanate (mass ratio 18:27:5) were stirred and mixed at 140 ° C for 1 h, and the obtained solution was poured into preheated barium titanate foam ceramics. , at 140.
  • the polystyrene sponge of the specification of 25 PPI was immersed in an aqueous solution of sodium hydroxide having a concentration of 5 wt%, and the temperature was raised to 75 ° C for 6 hours; then, the polystyrene sponge was taken out and washed with deionized water. Then, after drying, polystyrene sponge D is obtained; at room temperature, polystyrene sponge D is immersed in a concentration of lwt9 ⁇ carboxymethylcellulose aqueous solution and left for 6 hours; then, excess carboxymethyl fiber is removed and removed. The aqueous solution of the solution was dried at a temperature of 60 ° C to obtain a pretreated polyurethane sponge E.
  • the pretreated polystyrene sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 1 min; then the excess slurry is squeezed out and dried at a temperature of 50 ° C; The pulping and drying treatment were repeated once to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 0.5 ° C / min, and then heated to 600 ° C at a rate of 1 ° C / min; The temperature was maintained at °C for 1 hour; then, the temperature was raised to 1200 ° C at a rate of 5 ° C / min, and kept for 5 hours; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the barium titanate foam ceramic prepared in the step 4) is placed in a mold and preheated in an oven at 150 ° C;
  • a mixture of 20 g of barium titanate (average particle diameter: 50 nm) and 6 g of a polyvinyl alcohol aqueous solution having a concentration of 10 wt ⁇ 3 ⁇ 4 and 18 g of a carboxymethylcellulose aqueous solution having a concentration of 1% was sufficiently ground to obtain a slurry.
  • A; 5 g of an aqueous solution of carboxymethylcellulose having a concentration of 0.5 wt ⁇ 3 ⁇ 4 and 5 g of hydroxyhexylcellulose having a concentration of 3 wt% were added to the slurry A.
  • the liquid mixture was sufficiently ground to obtain a slurry B.
  • 10 g of a polyacrylamide aqueous solution having a concentration of 1% was added to the slurry B, and sufficiently polished to obtain a slurry C.
  • the polyurethane sponge of the specification of 25 PPI was immersed in a sodium hydroxide aqueous solution having a concentration of 20% by weight, heated to 50 ° C and kept for 2 hours; then, the polyurethane sponge was taken out and washed several times with deionized water. After drying, the polyurethane sponge D is obtained; at room temperature, the polyurethane sponge D is immersed in a 3 wt 9 ⁇ polyethyleneimine aqueous solution and left for 2 h; then, the excess polyethyleneimine aqueous solution is removed and removed at a temperature of 80 ° C. Drying under conditions gave a pretreated polyurethane sponge E.
  • the pretreated polyurethane sponge E is immersed in the slurry C prepared in the slurry step 1), and left at room temperature for 10 min; then the excess slurry is squeezed out and dried at a temperature of 50 ° C; The slurry was dried and dried four times in sequence to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 0.5 ° C / min, and then raised to 600 ° C at a rate of 5 ° C / min; The temperature was raised to 0.5 h at ° C; then the temperature was raised to 1300 ° C at a rate of 2 ° C / min, and kept for 2 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the barium titanate foam ceramic prepared in step 4) is placed in a mold and preheated in an oven at 60 ° C;
  • the polyurethane sponge of the specification of 25 PPI was immersed in a sodium hydroxide aqueous solution having a concentration of 10% by weight, heated to 60 ° C and kept for 3.5 hours; then, the polyurethane sponge was taken out and washed several times with deionized water. After drying, the polyurethane sponge D is obtained; at room temperature, the polyurethane sponge D is immersed in a 0.5% by weight aqueous solution of polyethyleneimine and left for 3 hours; then, the excess polyethyleneimine aqueous solution is removed and removed at a temperature. 40. Drying under C conditions gave a pretreated polyurethane sponge E.
  • the pretreated polyurethane sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 5 minutes; then the excess slurry is squeezed out and dried at a temperature of 80 ° C; The slurry was dried and treated 4 times to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 5 ° C / min, and then raised to 600 ° C at a rate of 5 ° C / min; The temperature was raised to 0.5 h at ° C; then the temperature was raised to 1000 ° C at a rate of 10 ° C / min, and kept for 2 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the barium titanate foam ceramic prepared in the step 4) is placed in a mold and preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the obtained solution is poured into the pre-prepared In hot barium titanate foam ceramics, vacuum is removed at 160 °C for 0.5 h; then followed by 160 °C / 2h + l 80 °C / 2h + 200 °C / 2h + 220 °C / 2h and 240 ° The C / 4h process was separately cured and post-treated; slowly cooled to room temperature to obtain a barium titanate foam ceramic / cyanate resin composite.
  • Barium titanate (average particle diameter: 30 nm) and 10 g of a carboxymethylcellulose aqueous solution having a concentration of 1 wt% and 10 g of a methylcellulose aqueous solution having a concentration of 1 wt% are sufficiently ground to obtain a slurry A; 2 g of a concentration is added to the slurry A. It is a 2wt ⁇ 3 ⁇ 4 aqueous solution of carboxymethyl cellulose, and is sufficiently ground to obtain a slurry B; 10 parts of a polyacrylamide aqueous solution having a concentration of 1% by weight and 6 g of a polyethyleneimine aqueous solution having a concentration of 1% by weight are added to the slurry B. The mixed solution was sufficiently ground to obtain a slurry C. 2) Treatment of polyurethane sponge
  • the polyurethane sponge of the specification of 35 PPI was immersed in a sodium hydroxide aqueous solution having a concentration of 15% by weight, heated to 60 ° C and kept for 3.5 hours; then, the polyurethane sponge was taken out and washed several times with deionized water. After drying, the polyurethane sponge D is obtained; at room temperature, the polyurethane sponge D is immersed in a mixture of an equal volume of a 1% by weight aqueous solution of carboxymethylcellulose and a polyethylenimine aqueous solution having a concentration of 1% by weight and left for 3 hours. Then, a mixture of excess carboxymethylcellulose and polyethyleneimine was taken out and dried at a temperature of 60 ° C to obtain a pretreated polyurethane sponge E.
  • the pretreated polyurethane sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 10 minutes; then the excess slurry is squeezed out and dried at a temperature of 50 ° C; The slurry was dried and treated 4 times to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then heated to 600 ° C at a rate of 1 ° C / min; °C is kept for 1h; then it is heated to 100 °C at a rate of 2 °C / min, and kept for 1 hour; after completion, it is cooled to room temperature with the furnace to obtain barium titanate foam ceramic.
  • the barium titanate foam ceramic prepared in the step 4) is placed in a mold and preheated in an oven at 130 ° C; 2,2'-diallyl bisphenol A and hydrazine, ⁇ -4, 4'- Diphenylmethane bismaleimide (mass ratio 3:7) was stirred and mixed at 130 ° C for 1 h, and the obtained solution was poured into preheated barium titanate foam ceramic, and vacuum was removed at 130 ° C.
  • a mixture of 20 g of barium titanate (average particle diameter: 50 nm) and 6 g of a polyvinyl alcohol aqueous solution having a concentration of 10 wt ⁇ 3 ⁇ 4 and 10 g of a carboxymethylcellulose aqueous solution having a concentration of 1% was sufficiently ground to obtain a slurry.
  • a mixture of a 1 wt% aqueous solution of polyethyleneimine was sufficiently ground to obtain a slurry C.
  • the polyvinyl chloride sponge of 15 PPI was immersed in a 20% aqueous solution of sodium hydroxide, heated to 60 ° C and kept for 2 h; then, the polyvinyl chloride sponge was taken out and washed with deionized water. Several times, after drying, the polyvinyl chloride sponge D is obtained; at room temperature, the polyvinyl chloride sponge D is immersed in a 0.5% by weight aqueous solution of carboxymethylcellulose and left for 3 hours; then, the excess carboxy is removed. The methyl cellulose aqueous solution was dried at a temperature of 60 ° C to obtain a pretreated polyvinyl chloride sponge E.
  • the pretreated polyvinyl chloride sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 5 minutes; then the excess slurry is squeezed out and dried at a temperature of 80 ° C; The slurry was dried and dried four times to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 0.5 ° C / min, and then raised to 600 ° C at a rate of 5 ° C / min; After incubating for 2 h at ° C; then raising the temperature to 1200 ° C at a rate of 5 ° C / min for 2 h; after completion, cooling to room temperature with the furnace to obtain barium titanate foam ceramic.
  • the barium titanate foam ceramic prepared in the step 4) is placed in a mold and preheated in an oven at 140 ° C; 2,2'-diallyl bisphenol octagonal, hydrazine, ⁇ -4, 4'- Diphenylmethane bismaleimide and bisphenol A type cyanate (mass ratio 18:27:5) were stirred and mixed at 140 ° C for 1 h, and the obtained solution was poured into preheated barium titanate foam ceramics. , at 140.
  • the polystyrene sponge having a size of 25 PPI was immersed in an aqueous solution of sodium hydroxide having a concentration of 5 wt%, and the temperature was raised to 75 ° C for 6 hours; then, the polystyrene sponge was taken out and washed with deionized water. Then, after drying, the polystyrene sponge D is obtained; at room temperature, the polystyrene sponge D is immersed in an aqueous solution of 3 wt 9 ⁇ polyethyleneimine and left for 2 h; then, the excess polyethyleneimine aqueous solution is removed and removed. It was dried at a temperature of 60 ° C to obtain a pretreated polystyrene sponge E.
  • the pretreated polystyrene sponge E is immersed in the slurry C prepared in the step 1), and placed at a normal temperature for 10 mM; then the excess slurry is squeezed out and dried at a temperature of 50 ° C; The slurry was dried and dried 7 times in sequence to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 0.5 ° C / min, and then raised to 600 ° C at a rate of 5 ° C / min; The temperature was kept at °C for 2 hours; then, the temperature was raised to 1000 ° C at a rate of 10 ° C / min, and the temperature was kept for 5 hours; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the barium titanate foam ceramic prepared in the step 4) is placed in a mold and preheated in an oven at 150 ° C;
  • the polyvinyl chloride sponge of the specification of 25 PPI was immersed in a 20% aqueous solution of sodium hydroxide, heated to 50 ° C and kept for 2 hours; then, the polyvinyl chloride sponge was taken out and washed with deionized water. Several times Then, a polyvinyl chloride sponge D is obtained; at room temperature, the polyvinyl chloride sponge D is immersed in a 0.5% by weight aqueous solution of polyethyleneimine and left for 2 hours; then, the excess polyethyleneimine aqueous solution is removed and removed. The temperature was dried at 80 ° C to obtain a pretreated polyvinyl chloride sponge E.
  • the pretreated polyvinyl chloride sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 1 min; then the excess slurry is squeezed out and dried at a temperature of 80 ° C; The pulping and drying treatment were repeated once to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 100 ° C at a rate of 5 ° C / min, and then heated to 500 ° C at a rate of 0.5 ° C / min; The temperature was raised to 0.5 h at ° C; then the temperature was raised to 1500 ° C at a rate of 10 ° C / min, and kept for 2 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the barium titanate foam ceramic prepared in the step 4) is placed in a mold and preheated in an oven at 60 ° C;
  • the polyurethane sponge of the specification of 25 PPI was immersed in a sodium hydroxide aqueous solution having a concentration of 15% by weight, heated to 60 ° C and kept for 3.5 hours; then, the polyurethane sponge was taken out and washed several times with deionized water. After drying, the polyurethane sponge D is obtained; at room temperature, the polyurethane sponge D is immersed in a 0.5% by weight aqueous solution of polyethyleneimine and left for 6 hours; then, the excess polyethyleneimine aqueous solution is removed and removed at a temperature. 60. C The parts were dried to obtain a pretreated polyurethane sponge sponge E.
  • the pretreated polyurethane sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 5 minutes;
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 300 ° C at a rate of 2 ° C / min, and then heated to 700 ° C at a rate of 2 ° C / min; The temperature was maintained at °C for 2 h; then the temperature was raised to 12 00 ° C at a rate of 8 ° C/min for 3 h; at the end, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the barium titanate foam ceramic prepared in step 4) is placed in a mold and preheated in an oven at 160 ° C; the bisphenol A type cyanate is melted at 160 ° C for 1 h, and the obtained solution is poured into the pre-prepared In hot barium titanate foam ceramics, vacuum is removed at 160 °C for 0.5 h; then followed by 160 °C / 2h + l 80 °C / 2h + 200 °C / 2h + 220 °C / 2h and 240 ° C
  • the /4h process was separately cured and post-treated; slowly cooled to room temperature to obtain a barium titanate foam ceramic/cyanate resin composite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法,以有机添加剂为助剂,去离子水为溶剂,纳米钛酸钡为陶瓷原料,混合研磨后形成一定固含量的浆料;将预处理的聚合物海绵浸渍于浆料中进行挂浆处理后,排除多余的浆料并干燥,得到钛酸钡泡沫陶瓷生坯,经烧结,得到一种钛酸钡泡沫陶瓷;将熔融态可热固化的树脂浸没钛酸钡泡沫陶瓷孔隙,再经热固化处理即得到一种钛酸钡泡沫陶瓷/热固性树脂复合材料。所制备的钛酸钡泡沫陶瓷/热固性树脂复合材料兼具高介电常数和低介电损耗的优点,通过调节泡沫陶瓷骨架的含量可实现陶瓷在树脂中的分散及复合材料介电性能的控制;同时,制备方法简单易行,适合于工业化生产。

Description

发明名称:一种钛酸钡泡沫陶瓷 /热固性树脂复合材料及其制备方法 技术领域
[0001] 本发明涉及一种复合材料及其制备方法, 特别涉及一种钛酸钡泡沫陶瓷 /热固 性树脂复合材料及其制备方法。
背景技术
[0002] 陶瓷电介质材料是高介电常数材料的重要品种, 作为一种具有高介电常数以及 优良的铁电、 压电和绝缘性能的电子陶瓷材料在电子陶瓷工业领域扮演重要角 色。 但是, 传统的陶瓷电介质材料存在比重大、 脆性大、 成型工艺条件苛刻等 缺点, 限制了其在大功率电容器中的应用。 因此陶瓷 /聚合物复合材料应运而生 。 鉴于钛酸钡高机械强度、 高介电常数、 低介电损耗等优异的综合性能, 人们 将钛酸钡与不同聚合物复合, 制得了多种高介电常数钛酸钡 /聚合物复合材料。
[0003] 然而, 大量研究发现, 陶瓷与聚合物复合后, 介电常数显著降低。 因此, 为了 达到预期的介电性能, 复合材料中陶瓷粒子含量需要大于 50vol<¾。 而这常常使 得复合材料的成型工艺性很差, 难以制得高质量的复合材料。 此外, 更严重的 情况是陶瓷粒子在聚合物基体中的分散不均匀, 出现较多陶瓷团聚体, 不仅导 致陶瓷的高介电性能不能在复合材料中得到发挥, 而且使得复合材料的机械力 学性能较差。
[0004] 目前, 克服上述问题的方法主要有两种。 其一, 对陶瓷粒子进行表面处理以解 决其分散性, 但是对减少陶瓷的高添加量的效果不明显。 其二, 引入导体作为 第三组分可以较为显著地降低陶瓷的含量, 但是导体的存在又往往导致复合材 料具有较大的介电损耗。 因此, 如何克服上述问题, 研发一种兼具优良制备工 艺与优异介电性能的陶瓷 /聚合物复合材料是一个具有重大应用价值的课题。 技术问题
问题的解决方案
技术解决方案
[0005] 本发明针对现有技术存在的不足, 提供一种制备方法简单、 性能可控, 并具有 高介电常数、 低介电损耗的钛酸钡泡沫陶瓷 /热固性树脂及其制备方法。
[0006] 为达到上述目的, 本发明所采用的技术方案是: 一种钛酸钡泡沫陶瓷 /热固性 树脂复合材料的制备方法, 包含如下步骤:
[0007] (1) 按质量计, 将 100份纳米钛酸钡与 30〜120份浓度为 l〜15wt%的有机粘结 剂水溶液充分研磨, 得到浆料 A; 在浆料 A中加入 10〜80份浓度为 0.5〜3\^%的 有机流变剂水溶液, 充分研磨后得到浆料 B ; 在浆料 B中加入 20〜80份浓度为 0.5 〜3\^%的有机分散剂水溶液, 充分研磨后得到浆料 C; 所述的有机粘结剂为聚 乙烯醇、 羧甲基纤维素、 甲基纤维素的一种, 或它们的任意组合; 所述的有机 流变剂为羧甲基纤维素、 羟己基纤维素的一种, 或它们的任意组合; 所述的有 机分散剂为聚乙烯亚胺、 聚丙烯酰胺、 聚丙烯酸胺的一种, 或它们的任意组合
[0008] (2) 将规格为 15〜35PPI的聚合物海绵浸渍在浓度为 5〜20wt%的氢氧化钠水 溶液中, 升温至 50〜75°C并保温 2〜6h后, 取出聚合物海绵, 用去离子水洗涤、 甩干, 得到聚合物海绵 D; 在常温下, 将聚合物海绵 D浸渍在浓度为 0.5〜3wt% 的表面活性剂水溶液中, 停留 2〜6h后, 取出甩干, 在温度 40〜80°C的条件下干 燥, 得到预处理的聚合物海绵 E; 所述的聚合物海绵的聚合物材质为聚氨酯、 聚 苯乙烯、 聚氯乙烯中的任意一种; 所述的表面活性剂为羧甲基纤维素、 聚乙烯 亚胺的一种, 或它们的任意组合;
[0009] (3) 将预处理的聚合物海绵 E浸渍在步骤 (1) 制得的浆料 C中, 在常温下放 置 l〜10min进行挂浆处理, 挤压排除多余的浆料后, 在温度为 40〜80°C的条件 下进行干燥处理; 依次重复挂浆、 干燥处理 1〜7次, 得到挂浆均匀且无堵孔的 钛酸钡泡沫陶瓷生坯;
[0010] (4) 将步骤 (3) 制得的钛酸钡泡沫陶瓷生坯以 0.5〜5°C/min的速率由室温升 温至 100〜300°C, 再以 0.5〜5°C/min的速率升温至 500〜700°C并保温 0.5〜2h后,以 2〜10°C/min的速率升温至 1000〜1500°C并保温 l〜5h后, 随炉冷却至室温, 得到 钛酸钡泡沫陶瓷;
[0011] (5) 将熔融态可热固化的树脂浇注于步骤 (4) 制备的钛酸钡泡沫陶瓷中, 待 树脂完全渗透泡沫陶瓷孔隙后, 进行热固化与后处理, 即得到一种钛酸钡泡沫 陶瓷 /热固性树脂复合材料。
[0012] 所述的纳米钛酸钡的平均粒径≤ 100nm。
[0013] 所述的热固化和后处理的工艺条件, 与所使用的可热固化树脂的热固化和后处 理工艺条件一致。
[0014] 本发明所述的热固性树脂为自身可热固化的树脂, 或由自身不能热固化的树脂 与固化剂共同组成的树脂体系。 自身可热固化树脂为双马来酰亚胺树脂、 氰酸 酯, 及其组合。 所述自身不能热固化的树脂为环氧树脂。
[0015] 本发明技术方案还包括按上述制备方法得到的钛酸钡泡沫陶瓷 /热固性树脂复
[0016] 所述的复合材料中, 树脂的体积百分数为 60〜90%。
发明的有益效果
有益效果
[0017] 与现有技术相比, 本发明取得的有益效果是:
[0018] 1、 与现有技术中将粉体陶瓷直接加入聚合物制备复合材料不同, 本发明以具 有三维立体网络骨架结构和贯通气孔的钛酸钡泡沫陶瓷作为功能体, 而后将树 脂浇注入泡沫陶瓷骨架, 直接实现了陶瓷在聚合物中的均匀分布, 同吋巧妙克 服了现有技术中出现的工艺性变差的问题。
[0019] 2、 与制备泡沫陶瓷的现有技术不同, 本发明在制备过程中没有添加或者 "就地 "生成其他无机材料, 而是采用有机助剂, 所制备的钛酸钡泡沫陶瓷是一种具有 化学组成单一的纯净钛酸钡骨架的泡沫陶瓷, 继承了钛酸钡优异的介电性能; 此外, 所使用的钛酸钡泡沫陶瓷经高温烧结处理, 介电性能得到进一步提高。 将其与热固性树脂复合后, 在较低陶瓷含量吋即可得到较高介电常数的复合材 料。
[0020] 3、 本发明所使用的钛酸钡泡沫陶瓷是三维连续的整体, 使复合材料表现出更 优异的介电性能。
[0021] 4、 本发明提供的钛酸钡泡沫陶瓷 /热固性树脂的制备方法具有工艺简单、 适用 性广等特点, 适合于工业化生产。
对附图的简要说明 附图说明
[0022] 图 1是本发明实施例 1制备的聚氨酯海绵 E、 钛酸钡泡沫陶瓷生坯及钛酸钡泡沫 陶瓷的体视显微镜照片。
[0023] 图 2是本发明实施例 1、 2、 3和 4制备的钛酸钡泡沫陶瓷的 X射线衍射图。
[0024] 图 3是本发明实施例 4制备的钛酸钡泡沫陶瓷的扫描电镜照片 (放大 1千倍) 。
[0025] 图 4是本发明实施例 4制备的钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的体视显微 镜照片。
[0026] 图 5是本发明实施例 1、 2、 5、 6制备的钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料、 比较例 1提供的氰酸酯固化树脂和比较例 2提供的钛酸钡 /氰酸酯树脂复合材料的 介电常数随频率变化图。
[0027] 图 6是本发明实施例 1、 2、 5、 6制备的钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料、 比较例 1提供的氰酸酯固化树脂和比较例 2提供的钛酸钡 /氰酸酯树脂复合材料的 介电损耗随频率变化图。
[0028] 图 7是本发明实施例 7制备的钛酸钡泡沫陶瓷的体视显微镜照片。
本发明的实施方式
[0029] [0008]下面结合附图、 实施例和比较例, 对本发明技术方案作进一步的描述。
[0030] 实施例 1
[0031] 1) 浆料的配制
[0032] 将 20g钛酸钡 (平均粒径 lOOnm) 与 10g浓度为 10wt<¾的聚乙烯醇水溶液充分研 磨, 得到浆料 A; 在浆料 A中加入 5g浓度为 2wt%的羧甲基纤维素水溶液, 充分 研磨后得到浆料 B ; 在浆料 B中加入 10g浓度为 1^%的聚丙烯酰胺水溶液, 充分 研磨后得到浆料^
[0033] 2) 聚氨酯海绵的处理
[0034] 将规格为 25PPI的的聚氨酯海绵浸渍在浓度为 15\^%的氢氧化钠水溶液中, 升 温至 60°C并保温 3.5h; 而后, 将聚氨酯海绵取出, 用去离子水洗涤数次, 甩干后 得到聚氨酯海绵 D; 在常温下, 将聚氨酯海绵 D浸渍在浓度为 lwt%的羧甲基纤维 素水溶液中并停留 3h; 而后, 取出甩去多余的羧甲基纤维素水溶液, 在温度 60°C 条件下干燥, 得到预处理的聚氨酯海绵 E。 其体视显微镜照片参见附图 1。
[0035] 3) 钛酸钡泡沫陶瓷生坯的制备
[0036] 将预处理的聚氨酯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 5min, 进行挂浆处理; 随后挤压排除多余的浆料, 于温度 40°C条件下进行干燥处理; 依 次重复挂浆、 干燥处理 4次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。 其 体视显微镜照片参见附图 1。
[0037] 4) 钛酸钡泡沫陶瓷的制备
[0038] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再 以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 5°C/min的速率升温至 12 00°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。 其体视显微镜 照片和 X射线衍射图分别参见附图 1和 2。
[0039] 5)钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0040] 将步骤 4) 制备的钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将 2,2-二 (4- 氰酰苯基)丙烷 (双酚 A型氰酸酯) 在 160°C熔化 lh, 将得到的溶液浇注到已预热 的钛酸钡泡沫陶瓷中, 于 160°C下抽真空除气泡 0.5h; 而后按照 160°C/2h+180°C/2 h+200°C/2h+220°C/2h和 240°C/4h的工艺分别进行固化和后处理; 缓慢冷却至室温 , 得到钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料, 其中氰酸酯树脂的含量为 69.2vol %。 该复合材料的介电常数随频率变化图、 介电损耗随频率变化图分别参见附图 3和 4。
[0041] 参见附图 1, 它是本发明实施例 1制备的聚氨酯海绵 E、 钛酸钡泡沫陶瓷生坯及 钛酸钡泡沫陶瓷的体视显微镜照片。 从中可知, 实施例 1中预处理的聚氨酯海绵 E经浆料挂浆后, 钛酸钡均匀地涂覆在海绵的骨架上。 经烧结后, 聚氨酯海绵高 温分解, 得到孔分布均匀且无堵孔的钛酸钡泡沫陶瓷。
[0042] 实施例 2
[0043] 1) 钛酸钡泡沫陶瓷的制备
[0044] 将实施例 1中制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再以 l°C/min的速率升温至 600°C; 而后在 600°C保温 lh; 然后以 5°C/min的速率升 温至 1000°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。 其 X射 线衍射图参见附图 2。
[0045] 2) 钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0046] 将步骤 1) 制备的钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型 氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的钛酸钡泡沫陶瓷中, 于 160 °C下抽真空除气泡 0.5h; 而后按照 160°C/2h+l 80°C/2h+200°C/2h+220°C/2h和 240°C /4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到钛酸钡泡沫陶瓷 /氰酸 酯树脂复合材料, 其中氰酸酯树脂的含量为 79.3vol<¾。
[0047] 实施例 3
[0048] 1) 钛酸钡泡沫陶瓷的制备
[0049] 将实施例 1中制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 5°C/min的速率升温至 1100°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。 其 X射线衍 射图参见附图 2。
[0050] 2) 钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0051] 将步骤 1) 制备的钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型 氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的钛酸钡泡沫陶瓷中, 于 160 °C下抽真空除气泡 0.5h; 而后按照 160°C/2h+l 80°C/2h+200°C/2h+220°C/2h和 240°C /4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到钛酸钡泡沫陶瓷 /氰酸 酯树脂复合材料, 其中氰酸酯树脂的含量为 74.2vol%。
[0052] 实施例 4
[0053] 1) 钛酸钡泡沫陶瓷的制备
[0054] 将实施例 1中制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 5°C/min的速率升温至 1300°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。 其 X射线衍 射图和扫描电镜照片分别参见附图 2和 3。
[0055] 2) 钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0056] 将步骤 1) 制备的钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型 氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的钛酸钡泡沫陶瓷中, 于 160 °C下抽真空除气泡 0.5h; 而后按照 160°C/2h+l 80°C/2h+200°C/2h+220°C/2h和 240°C
/4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到钛酸钡泡沫陶瓷 /氰酸 酯树脂复合材料, 其中氰酸酯树脂的含量为 72.0 vol<¾。 其体视显微镜照片参见 附图 4。
[0057] 参见附图 2, 它是本发明实施例 1、 2、 3和 4制备的钛酸钡泡沫陶瓷的 X射线衍射 图。 可以看到, 纳米钛酸钡在 22.1°、 31.6。、 38.9。、 45.2°、 50.8。、 56.1。、 65.8° 、 70.2°、 74.6°及 78.9°处出现明显的衍射峰, 它们分别对应于 (100) 、 (110) 、 (111) 、 (002) / (200) 、 (210) 、 (211) 、 (220) 、 (221) 、 (310 ) 和 (113) 晶面 (JCPDS Νο.5-0626) 。 2Θ在 45.2°是否分裂成两个衍射峰是判 断钛酸钡晶型的有效依据。 由于实施例 2中制备的钛酸钡泡沫陶瓷在 45.2°处未出 现分裂峰, 因此可判断实施例 2所制备的钛酸钡泡沫陶瓷为立方晶型。 与实施例 2不同, 实施例 1、 3和 4所制备的钛酸钡泡沫陶瓷的谱图在 45.2°处出现两个分裂 峰, 表明钛酸钡泡沫陶瓷的晶型向四方相转变, 且其分裂峰强随烧结温度的升 高而明显, 说明钛酸钡泡沫陶瓷中四方相的含量增多。 结果表明改变烧结温度 可以调节钛酸钡泡沫陶瓷的晶型及不同晶相的含量。 特别值得注意的是, 所有 的 X射线衍射图均未出现其他杂峰, 表明有机助剂在烧结过程中分解, 得到化学 组成单一的纯净钛酸钡泡沫陶瓷。
[0058] 参见附图 3, 它是本发明实施例 4制备的钛酸钡泡沫陶瓷的扫描电镜照片。 从中 可以看出, 泡沫陶瓷生坯经高温烧结之后, 有机助剂分解, 钛酸钡晶粒生长、 变大, 得到致密性较好的钛酸钡泡沫陶瓷骨架。
[0059] 综合附图 2和 3, 结果表明已经成功地制备了化学组成单一且致密性较好的钛酸 钡泡沫陶瓷。
[0060] 参见附图 4, 它是本发明实施例 4制备的钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料 的体视显微镜照片。 可以看出, 钛酸钡陶瓷均匀地分布在氰酸酯树脂中, 树脂 与陶瓷之间具有较好的界面。 结果表明以具有三维立体网络骨架结构和贯通气 孔的钛酸钡泡沫陶瓷作为功能体, 而后将树脂浇注入泡沫陶瓷骨架, 直接实现 了陶瓷在聚合物中的均匀分布, 同吋巧妙摆脱了现有技术中出现的工艺性变差 的问题。 [0061] 实施例 5
[0062] 1) 钛酸钡泡沫陶瓷生坯的制备
[0063] 将实施例 1中预处理的聚氨酯海绵 E浸渍在浆料 C (实施例 1) 中, 在常温下放 置 5min; 随后挤压排除多余的浆料, 于温度 40°C条件下干燥; 依次重复挂浆、 干燥处理 3次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0064] 2) 钛酸钡泡沫陶瓷的制备
[0065] 将步骤 1) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再 以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 5°C/min的速率升温至 12 00°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0066] 3) 钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0067] 将步骤 2) 制备的钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型 氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的钛酸钡泡沫陶瓷中, 于 160 °C下抽真空除气泡 0.5h; 而后按照 160°C/2h+l 80°C/2h+200°C/2h+220°C/2h和 240°C /4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到钛酸钡泡沫陶瓷 /氰酸 酯树脂复合材料, 其中氰酸酯树脂的含量为 76.6vol%。 该复合材料的介电常数随 频率变化图、 介电损耗随频率变化图分别参见附图 5和 6。
[0068] 实施例 6
[0069] 1) 钛酸钡泡沫陶瓷生坯的制备
[0070] 将实施例 1中预处理的聚氨酯海绵 E浸渍在浆料 C (实施例 1) 中, 在常温下放 置 5min; 随后挤压排除多余的浆料, 于温度 40°C条件下干燥; 依次重复挂浆、 干燥处理 5次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0071] 2) 钛酸钡泡沫陶瓷的制备
[0072] 将步骤 1) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再 以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 5°C/min的速率升温至 12 00°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0073] 3) 钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0074] 将步骤 2) 制备的钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型 氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的钛酸钡泡沫陶瓷中, 于 160 °C下抽真空除气泡 0.5h; 而后按照 160°C/2h+l 80°C/2h+200°C/2h+220°C/2h和 240°C
/4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到钛酸钡泡沫陶瓷 /氰酸 酯树脂复合材料, 其中氰酸酯树脂的含量为 66.5 vol%。 该复合材料的介电常数 随频率变化图、 介电损耗随频率变化图分别参见附图 5和 6。
[0075] 实施例 7
[0076] 1) 钛酸钡泡沫陶瓷生坯的制备
[0077] 将实施例 1中预处理的聚氨酯海绵 E浸渍在浆料 C (实施例 1) 中, 在常温下放 置 5min; 随后挤压排除多余的浆料, 于温度 40°C条件下干燥; 依次重复挂浆、 干燥处理 2次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0078] 2) 钛酸钡泡沫陶瓷的制备
[0079] 将步骤 1) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再 以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 5°C/min的速率升温至 12 00°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。 其体视显微镜 照片参见附图 7。
[0080] 3) 钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0081] 将步骤 2) 制备的钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型 氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的钛酸钡泡沫陶瓷中, 于 160 °C下抽真空除气泡 0.5h; 而后按照 160°C/2h+l 80°C/2h+200°C/2h+220°C/2h和 240°C /4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到钛酸钡泡沫陶瓷 /氰酸 酯树脂复合材料, 其中氰酸酯树脂的含量为 83.5 vol%。 该复合材料的介电常数 随频率变化图、 介电损耗随频率变化图分别参见附图 5和 6。
[0082] 比较例 1, 氰酸酯固化树脂的制备: 将模具于 160°C烘箱预热; 将双酚 A型氰酸 酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的模具中, 于 160°C下抽真空除气 泡 0.5h; 而后按照 160°C/2h+ 180°C/2h+200°C/2h+220°C/2h和 240°C/4h的工艺分别 进行固化和后处理; 缓慢冷却至室温, 得到氰酸酯固化树脂。 该固化树脂的介 电常数随频率变化图、 介电损耗随频率变化图分别参见附图 5和 6。
[0083] 比较例 2, 钛酸钡 /氰酸酯树脂复合材料的制备: 在搅拌条件下, 将 21.3g的钛酸 钡 (平均粒径 lOOnm) 与 10g双酚 A型氰酸酯于 150°C混合, 于 90°C超声分散 lOmin 后, 在 150°C预聚 0.5h, 得到预聚体; 将预聚体浇入模具中, 在 160°C真空条件下 脱气泡 0.5h, 按照工艺 160°C/2h+ 180°C/2h+200°C/2h+220°C/2h和 240°C/4h工艺进 行固化和后处理, 即得到钛酸钡 /氰酸酯树脂复合材料, 其中氰酸酯树脂的含量 为 69.2 vol%。 该复合材料的介电常数随频率变化图、 介电损耗随频率变化图分 别参见附图 5和 6。
[0084] 参见附图 5, 它是本发明比较例 1提供的氰酸酯固化树脂、 比较例 2制备的钛酸 钡陶瓷 /氰酸酯树脂复合材料和实施例 1、 2、 5、 6制备的钛酸钡泡沫陶瓷 /氰酸酯 树脂复合材料的介电常数随频率变化图。 由图可知, 钛酸钡泡沫陶瓷 /氰酸酯树 脂复合材料的介电常数在整个频率范围内的介电常数高于氰酸酯固化树脂和钛 酸钡 /氰酸酯树脂复合材料, 如实施例 6在 100Hz下, 其介电常数可达 141.3, 其值 是氰酸酯固化树脂 (3.8) 的 37倍; 在相同的功能体含量下, 钛酸钡泡沫陶瓷 /氰 酸酯树脂复合材料比钛酸钡 /氰酸酯树脂复合材料具有更高的介电常数, 如实施 例 1在 100Hz下, 其介电常数可达 83.3, 其值是比较例 2制得的钛酸钡 /氰酸酯树脂 复合材料 (9.9) 的 8.4倍。 这是因为以具有三维立体网络骨架的钛酸钡泡沫陶瓷 作为功能体, 使得钛酸钡均匀分布在复合材料中, 从而大大地提高了复合材料 的介电常数。 此外, 随着钛酸钡泡沫陶瓷生坯挂浆次数的增加, 复合材料的介 电常数不断变大。 结果表明, 通过调节钛酸钡泡沫陶瓷骨架的含量可实现对复 合材料介电性能的控制; 钛酸钡是三维连续的整体, 使复合材料表现出更优异 的介电性能。
[0085] 参见附图 5, 它是本发明比较例 1提供的氰酸酯固化树脂、 比较例 2制备的钛酸 钡陶瓷 /氰酸酯树脂复合材料和实施例 1、 2、 5、 6制备的钛酸钡泡沫陶瓷 /氰酸酯 树脂复合材料的介电损耗随频率变化图。 由图可知, 随着钛酸钡泡沫陶瓷生坯 挂浆次数的增加, 复合材料的介电损耗呈上升的趋势, 但在一定频率范围 (10 2 -10 Ήζ) 之内, 具有较低的介电损耗, 介于 0.010和 0.276之间。
[0086] 综合附图 5和 6, 化学组成单一且具有高介电常数骨架的钛酸钡泡沫陶瓷在制备 高介电常数复合材料方面具有显著的应用前景。
[0087] 参见附图 7, 它是实施例 7制备的钛酸钡泡沫陶瓷的体式显微镜照片。 对比实施 例 1制备的钛酸钡泡沫陶瓷的体式显微镜 (附图 1) , 可以发现, 实施例 1制备的 钛酸钡泡沫陶瓷具有更粗壮的骨架, 这是因为随着挂浆次数的增加, 在海绵骨 架上的挂浆量增加。
[0088] 实施例 8
[0089] 1) 钛酸钡泡沫陶瓷的制备
[0090] 将实施例 1中制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再以 l°C/min的速率升温至 600°C; 在 600°C保温 2h; 然后以 5°C/min的速率升温至 1400°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0091] 2) 钛酸钡泡沫陶瓷 /双马来酰亚胺树脂复合材料的制备
[0092] 将步骤 1) 制备的钛酸钡泡沫陶瓷置于模具中, 于 130°C烘箱预热; 将 2,2'-二烯 丙基双酚 A和 Ν,Ν-4,4'-二苯甲烷双马来酰亚胺 (质量比 3:7) 在 130°C搅拌混合 lh , 将得到的溶液浇注到已预热的钛酸钡泡沫陶瓷中, 于 130°C下抽真空除气泡 0.5 h; 而后按照 150°C/2h + 180°C/2h + 200°C/2h和 220°C/8h的工艺分别进行固化和 后处理; 缓慢冷却至室温, 得到钛酸钡泡沫陶瓷 /双马来酰亚胺树脂复合材料。
[0093] 实施例 9
[0094] 1) 钛酸钡泡沫陶瓷的制备
[0095] 将实施例 1中制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 5°C/min的速率升温至 1500°C, 保温 lh; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0096] 2) 钛酸钡泡沫陶瓷 /双马来酰亚胺 /氰酸酯复合材料的制备
[0097] 将步骤 1) 制备的钛酸钡泡沫陶瓷置于模具中, 于 140°C烘箱预热; 将 2,2'-二烯 丙基双酚八、 Ν,Ν-4,4'-二苯甲烷双马来酰亚胺和双酚 A型氰酸酯 (质量比 18:27:5 ) 在 140°C搅拌混合 lh, 将得到的溶液浇注到已预热的钛酸钡泡沫陶瓷中, 于 140 。(:下抽真空除气泡 0.5h; 而后按照 150°C/2h + 180°C/2h + 200°C/2h和 220°C/8h的 工艺分别进行固化和后处理; 缓慢冷却至室温, 得到钛酸钡泡沫陶瓷 /双马来酰 亚胺 /氰酸酯复合材料。
[0098] 实施例 10
[0099] 1) 浆料的配制
[0100] 将 20g钛酸钡 (平均粒径 30nm) 与 24g浓度为 lwt<¾的羧甲基纤维素水溶液充分 研磨, 得到浆料 A; 在浆料 A中加入 5g浓度为 2wt%的羧甲基纤维素水溶液, 充分 研磨后得到浆料 B ; 在浆料 B中加入 16g浓度为 0.5wt9^ 聚丙烯酰胺水溶液, 充分 研磨后得到浆料^
[0101] 2) 聚苯乙烯海绵的处理
[0102] 将规格为 25PPI的的聚苯乙烯海绵浸渍在浓度为 5wt%的氢氧化钠水溶液中, 升 温至 75°C并保温 6h; 而后, 将聚苯乙烯海绵取出, 用去离子水洗涤数次, 甩干后 得到聚苯乙烯海绵 D; 在常温下, 将聚苯乙烯海绵 D浸渍在浓度为 lwt9^ 羧甲基 纤维素水溶液中并停留 6h; 而后, 取出甩去多余的羧甲基纤维素水溶液, 在温 度 60°C条件下干燥, 得到预处理的聚氨酯海绵 E。
[0103] 3) 钛酸钡泡沫陶瓷生坯的制备
[0104] 将预处理的聚苯乙烯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 lmin ; 随后挤压排除多余的浆料, 于温度 50°C条件下干燥; 依次重复挂浆、 干燥处理 1次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0105] 4) 钛酸钡泡沫陶瓷的制备
[0106] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 0.5°C/min的速率由室温升温至 200°C, 再以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 5°C/min的速率升温至 1200°C, 保温 5h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0107] 5) 钛酸钡泡沫陶瓷 /环氧 /氰酸酯树脂复合材料的制备
[0108] 将步骤 4) 制备的钛酸钡泡沫陶瓷置于模具中, 于 150°C烘箱预热; 将环氧树脂
(牌号 E-51) 和双酚 A型氰酸酯 (质量比 1:9) 在 150°C搅拌混合 lh, 将得到的溶 液浇注到已预热的钛酸钡泡沫陶瓷中, 于 150°C下抽真空除气泡 0.5h; 而后按照 1 60°C/2h + 180°C/2h + 200°C/2h和 220°C/4h的工艺分别进行固化和后处理; 缓慢 冷却至室温, 得到钛酸钡泡沫陶瓷 /环氧 /氰酸酯树脂复合材料。
[0109] 实施例 11
[0110] 1) 浆料的配制
[0111] 将 20g钛酸钡 (平均粒径 50nm) 与 6g浓度为 10wt<¾的聚乙烯醇水溶液和 18g浓 度为 1\^%的羧甲基纤维素水溶液的混合液充分研磨, 得到浆料 A; 在浆料 A中加 入 5g浓度为 0.5wt<¾的羧甲基纤维素水溶液和 5g浓度为 3wt%的羟己基纤维素水溶 液的混合液, 充分研磨后得到浆料 B ; 在浆料 B中加入 10g浓度为 1\^%的聚丙烯 酰胺水溶液, 充分研磨后得到浆料 C。
[0112] 2) 聚氨酯海绵的处理
[0113] 将规格为 25PPI的的聚氨酯海绵浸渍在浓度为 20\^%的氢氧化钠水溶液中, 升 温至 50°C并保温 2h; 而后, 将聚氨酯海绵取出, 用去离子水洗涤数次, 甩干后得 到聚氨酯海绵 D; 在常温下, 将聚氨酯海绵 D浸渍在浓度为 3wt9^ 聚乙烯亚胺水 溶液中并停留 2h; 而后, 取出甩去多余的聚乙烯亚胺水溶液, 在温度 80°C条件下 干燥, 得到预处理的聚氨酯海绵 E。
[0114] 3) 钛酸钡泡沫陶瓷生坯的制备
[0115] 将预处理的聚氨酯海绵 E浸渍在浆料步骤 1) 制得的浆料 C中, 在常温下放置 10 min; 随后挤压排除多余的浆料, 于温度 50°C条件下干燥; 依次重复挂浆、 干燥 处理 4次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0116] 4) 钛酸钡泡沫陶瓷的制备
[0117] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 0.5°C/min的速率由室温升温至 200°C, 再以 5°C/min的速率升温至 600°C; 在 600°C保温 0.5h; 然后以 2°C/min的速率升温 至 1300°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0118] 5) 钛酸钡泡沫陶瓷 /环氧树脂复合材料的制备
[0119] 将步骤 4) 制备的钛酸钡泡沫陶瓷置于模具中, 于 60°C烘箱预热; 将环氧树脂
(牌号 E-51) 和 2-乙基 -4-甲基咪唑 (质量比 25:1) 在 60°C搅拌混合 0.5h, 将得到 的溶液浇注到已预热的钛酸钡泡沫陶瓷中, 于 60°C下抽真空除气泡 0.5h; 而后按 照 80°C/2h + 100°C/2h + 120°C/2h和 140°C/4h的工艺分别进行固化和后处理; 缓 慢冷却至室温, 得到钛酸钡泡沫陶瓷 /环氧树脂复合材料。
[0120] 实施例 12
[0121] 1) 浆料的配制
[0122] 将 20g钛酸钡 (平均粒径 lOOnm) 与 6g浓度为 15wt<¾的甲基纤维素水溶液充分研 磨, 得到浆料 A; 在浆料 A中加入 16g浓度为 0.5wt%的羧甲基纤维素水溶液, 充 分研磨后得到浆料 B ; 在浆料 B中加入 10g浓度为 0.5wt9^ 聚丙烯酰胺水溶液和 6g 浓度为 0.5wt%的聚丙烯酸胺水溶液的混合液, 充分研磨后得到浆料 C。 [0123] 2) 聚氨酯海绵的处理
[0124] 将规格为 25PPI的的聚氨酯海绵浸渍在浓度为 10\^%的氢氧化钠水溶液中, 升 温至 60°C并保温 3.5h; 而后, 将聚氨酯海绵取出, 用去离子水洗涤数次, 甩干后 得到聚氨酯海绵 D; 在常温下, 将聚氨酯海绵 D浸渍在浓度为 0.5wt%的聚乙烯亚 胺水溶液中并停留 3h; 而后, 取出甩去多余的聚乙烯亚胺水溶液, 在温度 40。C条 件下干燥, 得到预处理的聚氨酯海绵 E。
[0125] 3) 钛酸钡泡沫陶瓷生坯的制备
[0126] 将预处理的聚氨酯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 5min; 随后挤压排除多余的浆料, 于温度 80°C条件下干燥; 依次重复挂浆、 干燥处理 4 次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0127] 4) 钛酸钡泡沫陶瓷的制备
[0128] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 5°C/min的速率由室温升温至 200°C, 再 以 5°C/min的速率升温至 600°C; 在 600°C保温 0.5h; 然后以 10°C/min的速率升温至 1000°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0129] 5) 钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0130] 将步骤 4) 制备的钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型 氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的钛酸钡泡沫陶瓷中, 于 160 °C下抽真空除气泡 0.5h; 而后按照 160°C/2h+l 80°C/2h+200°C/2h+220°C/2h和 240°C /4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到钛酸钡泡沫陶瓷 /氰酸 酯树脂复合材料。
[0131] 实施例 13
[0132] 1) 浆料的配制
[0133] 将 20g
钛酸钡 (平均粒径 30nm) 与 10g浓度为 lwt%的羧甲基纤维素水溶液和 10g浓度为 lwt%的甲基纤维素水溶液充分研磨, 得到浆料 A; 在浆料 A中加入 2g浓度为 2wt <¾的羧甲基纤维素水溶液, 充分研磨后得到浆料 B; 在浆料 B中加入 10g浓度为 lw t%的聚丙烯酰胺水溶液和 6g浓度为 lwt%的聚乙烯亚胺水溶液的混合液, 充分研 磨后得到浆料 C。 [0134] 2) 聚氨酯海绵的处理
[0135] 将规格为 35PPI的的聚氨酯海绵浸渍在浓度为 15\^%的氢氧化钠水溶液中, 升 温至 60°C并保温 3.5h; 而后, 将聚氨酯海绵取出, 用去离子水洗涤数次, 甩干后 得到聚氨酯海绵 D; 在常温下, 将聚氨酯海绵 D浸渍在等体积浓度为 lwt%的羧甲 基纤维素水溶液和浓度为 lwt%的聚乙烯亚胺水溶液的混合液中并停留 3h; 而后 , 取出甩去多余的羧甲基纤维素和聚乙烯亚胺的混合液, 在温度 60°C条件下干燥 , 得到预处理的聚氨酯海绵 E。
[0136] 3) 钛酸钡泡沫陶瓷生坯的制备
[0137] 将预处理的聚氨酯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 lOmin ; 随后挤压排除多余的浆料, 于温度 50°C条件下干燥; 依次重复挂浆、 干燥处理 4次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0138] 4) 钛酸钡泡沫陶瓷的制备
[0139] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再 以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 2°C/min的速率升温至 10 00°C, 保温 lh; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0140] 5) 钛酸钡泡沫陶瓷 /双马来酰亚胺树脂复合材料的制备
[0141] 将步骤 4) 制备的钛酸钡泡沫陶瓷置于模具中, 于 130°C烘箱预热; 将 2,2'-二烯 丙基双酚 A和 Ν,Ν-4,4'-二苯甲烷双马来酰亚胺 (质量比 3:7) 在 130°C搅拌混合 lh , 将得到的溶液浇注到已预热的钛酸钡泡沫陶瓷中, 于 130°C下抽真空除气泡 0.5 h; 而后按照 150°C/2h + 180°C/2h + 200°C/2h和 220°C/8h的工艺分别进行固化和 后处理; 缓慢冷却至室温, 得到钛酸钡泡沫陶瓷 /双马来酰亚胺树脂复合材料。
[0142] 实施例 14
[0143] 1) 浆料的配制
[0144] 将 20g钛酸钡 (平均粒径 50nm) 与 6g浓度为 10wt<¾的聚乙烯醇水溶液和 10g浓度 为 1\^%的羧甲基纤维素水溶液的混合液充分研磨, 得到浆料 A; 在浆料 A中加入 5g浓度为 2wt%的羧甲基纤维素水溶液, 充分研磨后得到浆料 B; 在浆料 B中加入 5g浓度为 1\^%的聚丙烯酰胺水溶液和 5g浓度为 lwt%的聚乙烯亚胺水溶液的混合 液, 充分研磨后得到浆料 C。 [0145] 2) 聚氯乙烯海绵的处理
[0146] 将规格为 15PPI的的聚氯乙烯海绵浸渍在浓度为 20^%的氢氧化钠水溶液中, 升温至 60°C并保温 2h; 而后, 将聚氯乙烯海绵取出, 用去离子水洗涤数次, 甩干 后得到聚氯乙烯海绵 D; 在常温下, 将聚氯乙烯海绵 D浸渍在浓度为 0.5wt%的羧 甲基纤维素水溶液中并停留 3h; 而后, 取出甩去多余的羧甲基纤维素水溶液, 在温度 60°C条件下干燥, 得到预处理的聚氯乙烯海绵 E。
[0147] 3) 钛酸钡泡沫陶瓷生坯的制备
[0148] 将预处理的聚氯乙烯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 5min ; 随后挤压排除多余的浆料, 于温度 80°C条件下干燥; 依次重复挂浆、 干燥处理 4次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0149] 4) 钛酸钡泡沫陶瓷的制备
[0150] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 0.5°C/min的速率由室温升温至 200°C, 再以 5°C/min的速率升温至 600°C; 在 600°C保温 2h; 然后以 5°C/min的速率升温至 1200°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0151] 5) 钛酸钡泡沫陶瓷 /双马来酰亚胺 /氰酸酯复合材料的制备
[0152] 将步骤 4) 制备的钛酸钡泡沫陶瓷置于模具中, 于 140°C烘箱预热; 将 2,2'-二烯 丙基双酚八、 Ν,Ν-4,4'-二苯甲烷双马来酰亚胺和双酚 A型氰酸酯 (质量比 18:27:5 ) 在 140°C搅拌混合 lh, 将得到的溶液浇注到已预热的钛酸钡泡沫陶瓷中, 于 140 。(:下抽真空除气泡 0.5h; 而后按照 150°C/2h + 180°C/2h + 200°C/2h和 220°C/8h的 工艺分别进行固化和后处理; 缓慢冷却至室温, 得到钛酸钡泡沫陶瓷 /双马来酰 亚胺 /氰酸酯复合材料。
[0153] 实施例 15
[0154] 1) 浆料的配制
[0155] 将 20g钛酸钡 (平均粒径 30nm) 与 24g浓度为 lwt<¾的甲基纤维素水溶液充分研 磨, 得到浆料 A; 在浆料 A中加入 2g浓度为 3wt%的羟己基纤维素水溶液, 充分研 磨后得到浆料 B ; 在浆料 B中加入 16g浓度为 0.5wt9^ 聚乙烯亚胺水溶液, 充分研 磨后得到浆料 C。
[0156] 2) 聚苯乙烯海绵的处理 [0157] 将规格为 25PPI的的聚苯乙烯海绵浸渍在浓度为 5wt%的氢氧化钠水溶液中, 升 温至 75°C并保温 6h; 而后, 将聚苯乙烯海绵取出, 用去离子水洗涤数次, 甩干后 得到聚苯乙烯海绵 D; 在常温下, 将聚苯乙烯海绵 D浸渍在浓度为 3wt9^ 聚乙烯 亚胺水溶液中并停留 2h; 而后, 取出甩去多余的聚乙烯亚胺水溶液, 在温度 60°C 条件下干燥, 得到预处理的聚苯乙烯海绵 E。
[0158] 3) 钛酸钡泡沫陶瓷生坯的制备
[0159] 将预处理的聚苯乙烯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 10mi n; 随后挤压排除多余的浆料, 于温度 50°C条件下干燥; 依次重复挂浆、 干燥处 理 7次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0160] 4) 钛酸钡泡沫陶瓷的制备
[0161] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 0.5°C/min的速率由室温升温至 200°C, 再以 5°C/min的速率升温至 600°C; 在 600°C保温 2h; 然后以 10°C/min的速率升温 至 1000°C, 保温 5h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0162] 5) 钛酸钡泡沫陶瓷 /环氧 /氰酸酯树脂复合材料的制备
[0163] 将步骤 4) 制备的钛酸钡泡沫陶瓷置于模具中, 于 150°C烘箱预热; 将环氧树脂
(牌号 E-51) 和双酚 A型氰酸酯 (质量比 1:9) 在 150°C搅拌混合 lh, 将得到的溶 液浇注到已预热的钛酸钡泡沫陶瓷中, 于 150°C下抽真空除气泡 0.5h; 而后按照 1 60°C/2h + 180°C/2h + 200°C/2h和 220°C/4h的工艺分别进行固化和后处理; 缓慢 冷却至室温, 得到钛酸钡泡沫陶瓷 /环氧 /氰酸酯树脂复合材料。
[0164] 实施例 16
[0165] 1) 浆料的配制
[0166] 将 20g钛酸钡 (平均粒径 50nm) 与 6g浓度为 15wt<¾的聚乙烯醇水溶液充分研磨 , 得到浆料 A; 在浆料 A中加入 16g浓度为 0.5wt%的羟己基纤维素水溶液, 充分 研磨后得到浆料 B ; 在浆料 B中加入 4g浓度为 3\^%的聚丙烯酸胺水溶液, 充分研 磨后得到浆料 C。
[0167] 2) 聚氯乙烯海绵的处理
[0168] 将规格为 25PPI的的聚氯乙烯海绵浸渍在浓度为 20^%的氢氧化钠水溶液中, 升温至 50°C并保温 2h; 而后, 将聚氯乙烯海绵取出, 用去离子水洗涤数次, 甩干 后得到聚氯乙烯海绵 D; 在常温下, 将聚氯乙烯海绵 D浸渍在浓度为 0.5wt%的聚 乙烯亚胺水溶液中并停留 2h; 而后, 取出甩去多余的聚乙烯亚胺水溶液, 在温 度 80°C条件下干燥, 得到预处理的聚氯乙烯海绵 E。
[0169] 3) 钛酸钡泡沫陶瓷生坯的制备
[0170] 将预处理的聚氯乙烯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 lmin ; 随后挤压排除多余的浆料, 于温度 80°C条件下干燥; 依次重复挂浆、 干燥处理 1次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0171] 4) 钛酸钡泡沫陶瓷的制备
[0172] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 5°C/min的速率由室温升温至 100°C, 再 以 0.5°C/min的速率升温至 500°C; 在 500°C保温 0.5h; 然后以 10°C/min的速率升温 至 1500°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0173] 5) 钛酸钡泡沫陶瓷 /环氧树脂复合材料的制备
[0174] 将步骤 4) 制备的钛酸钡泡沫陶瓷置于模具中, 于 60°C烘箱预热; 将环氧树脂
(牌号 E-51) 和 2-乙基 -4-甲基咪唑 (质量比 25:1) 在 60°C搅拌混合 0.5h, 将得到 的溶液浇注到已预热的钛酸钡泡沫陶瓷中, 于 60°C下抽真空除气泡 0.5h; 而后按 照 80°C/2h + 100°C/2h + 120°C/2h和 140°C/4h的工艺分别进行固化和后处理; 缓 慢冷却至室温, 得到钛酸钡泡沫陶瓷 /环氧树脂复合材料。
[0175] 实施例 17
[0176] 1) 浆料的配制
[0177] 将 20g钛酸钡 (平均粒径 lOOnm) 与 15g浓度为 10wt<¾的聚乙烯醇水溶液充分研 磨, 得到浆料 A; 在浆料 A中加入 10g浓度为 lwt%的羧甲基纤维素水溶液, 充分 研磨后得到浆料 B ; 在浆料 B中加入 5g浓度为 2^%的聚丙烯酸胺水溶液, 充分研 磨后得到浆料 C。
[0178] 2) 聚氨酯海绵的处理
[0179] 将规格为 25PPI的的聚氨酯海绵浸渍在浓度为 15\^%的氢氧化钠水溶液中, 升 温至 60°C并保温 3.5h; 而后, 将聚氨酯海绵取出, 用去离子水洗涤数次, 甩干后 得到聚氨酯海绵 D; 在常温下, 将聚氨酯海绵 D浸渍在浓度为 0.5wt%的聚乙烯亚 胺水溶液中并停留 6h; 而后, 取出甩去多余的聚乙烯亚胺水溶液, 在温度 60。C条 件下干燥, 得到预处理的聚氨酯海绵海绵E。
[0180] 3) 钛酸钡泡沫陶瓷生坯的制备
[0181] 将预处理的聚氨酯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 5min;
随后挤压排除多余的浆料, 于温度 40°C条件下干燥; 依次重复挂浆、 干燥处理 7 次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0182] 4) 钛酸钡泡沫陶瓷的制备
[0183] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 300°C, 再 以 2°C/min的速率升温至 700°C; 在 700°C保温 2h; 然后以 8°C/min的速率升温至 12 00°C, 保温 3h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0184] 5) 钛酸钡泡沫陶瓷 /氰酸酯树脂复合材料的制备
[0185] 将步骤 4) 制备的钛酸钡泡沫陶瓷置于模具中, 于 160°C烘箱预热; 将双酚 A型 氰酸酯在 160°C熔化 lh, 将得到的溶液浇注到已预热的钛酸钡泡沫陶瓷中, 于 160 °C下抽真空除气泡 0.5h; 而后按照 160°C/2h+l 80°C/2h+200°C/2h+220°C/2h和 240°C
/4h的工艺分别进行固化和后处理; 缓慢冷却至室温, 得到钛酸钡泡沫陶瓷 /氰酸 酯树脂复合材料。

Claims

权利要求书
[权利要求 1] 一种钛酸钡泡沫陶瓷 /热固性树脂复合材料的制备方法, 其特征在于 包含如下步骤:
(1) 按质量计, 将 100份纳米钛酸钡与 30〜120份浓度为 1〜15^%的 有机粘结剂水溶液充分研磨, 得到浆料 A; 在浆料 A中加入 10〜80份 浓度为 0.5〜3wt9^ 有机流变剂水溶液, 充分研磨后得到浆料 B; 在 浆料 B中加入 20〜80份浓度为 0.5〜3\^%的有机分散剂水溶液, 充分 研磨后得到浆料 C; 所述的有机粘结剂为聚乙烯醇、 羧甲基纤维素、 甲基纤维素中的一种, 或它们的任意组合; 所述的有机流变剂为羧甲 基纤维素、 羟己基纤维素中的一种, 或它们的任意组合; 所述的有机 分散剂为聚乙烯亚胺、 聚丙烯酰胺、 聚丙烯酸胺中的一种, 或它们的 任意组合;
(2) 将规格为 15〜35 PPI的聚合物海绵浸渍在浓度为 5〜20wt%的氢 氧化钠水溶液中, 升温至 50〜75°C并保温 2〜6h后, 取出聚合物海绵
, 用去离子水洗涤、 甩干, 得到聚合物海绵 D; 在常温下, 将聚合物 海绵 D浸渍在浓度为 0.5〜3\^%的表面活性剂水溶液中, 停留 2〜6h后 , 取出甩干, 在温度 40〜80°C的条件下干燥, 得到预处理的聚合物海 绵 E; 所述的聚合物海绵的聚合物材质为聚氨酯、 聚苯乙烯、 聚氯乙 烯中的任意一种; 所述的表面活性剂为羧甲基纤维素、 聚乙烯亚胺中 的一种, 或它们的任意组合;
(3) 将预处理的聚合物海绵 E浸渍在步骤 (1) 制得的浆料 C中, 在 常温下放置 l〜10min进行挂浆处理, 挤压排除多余的浆料后, 在温度 为 40〜80°C的条件下进行干燥处理; 依次重复挂浆、 干燥处理 1〜7次 , 得到钛酸钡泡沫陶瓷生坯;
(4) 将步骤 (3) 制得的钛酸钡泡沫陶瓷生坯以 0.5〜5°C/min的速率 由室温升温至 100〜300°C, 再以 0.5〜5°C/min的速率升温至 500〜700 。C,在
500〜700°C条件下保温 0.5〜2h后,以 2〜10°C/min的速率升温至 1000〜 1500°C, 在 1000〜1500°C条件下保温 l〜5h后, 随炉冷却至室温, 得 到钛酸钡泡沫陶瓷;
(5) 将熔融态可热固化的树脂浇注于步骤 (4) 制备的钛酸钡泡沫陶 瓷中, 待树脂完全渗透泡沫陶瓷孔隙后, 进行热固化与后处理, 即得 到一种钛酸钡泡沫陶瓷 /热固性树脂复合材料。
[权利要求 2] 根据权利要求 1所述的一种钛酸钡泡沫陶瓷 /热固性树脂复合材料的制 备方法, 其特征在于: 所述的纳米钛酸钡的平均粒径≤100!^1。
[权利要求 3] 根据权利要求 1所述的一种钛酸钡泡沫陶瓷 /热固性树脂复合材料的制 备方法, 其特征在于: 热固化和后处理的工艺条件, 与所使用的可热 固化树脂的热固化和后处理工艺条件一致。
[权利要求 4] 根据权利要求 1所述的一种钛酸钡泡沫陶瓷 /热固性树脂复合材料的制 备方法, 其特征在于: 所述的热固性树脂为自身可热固化的树脂, 或 由自身不能热固化的树脂与固化剂共同组成的树脂体系。
[权利要求 5] 根据权利要求 4所述的一种钛酸钡泡沫陶瓷 /热固性树脂复合材料的制 备方法, 其特征在于: 所述的自身可热固化树脂为双马来酰亚胺树脂
、 氰酸酯, 或其组合。
[权利要求 6] 根据权利要求 4所述的一种钛酸钡泡沫陶瓷 /热固性树脂复合材料的制 备方法, 其特征在于: 所述自身不能热固化的树脂为环氧树脂。
[权利要求 7] 按权利要求 1所述的制备方法得到的一种钛酸钡泡沫陶瓷 /热固性树脂 复合材料。
[权利要求 8] 根据权利要求 7所述的一种钛酸钡泡沫陶瓷 /热固性树脂复合材料, 其 特征在于: 所述的复合材料中树脂的体积百分数为 60〜90%。
PCT/CN2016/107794 2016-01-11 2016-11-29 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法 WO2017121202A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/068,848 US10822278B2 (en) 2016-01-11 2016-11-29 Barium titanate foam ceramic/thermosetting resin composites and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610014636.0A CN105541389B (zh) 2016-01-11 2016-01-11 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN201610014636.0 2016-01-11

Publications (1)

Publication Number Publication Date
WO2017121202A1 true WO2017121202A1 (zh) 2017-07-20

Family

ID=55821011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107794 WO2017121202A1 (zh) 2016-01-11 2016-11-29 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法

Country Status (3)

Country Link
US (1) US10822278B2 (zh)
CN (1) CN105541389B (zh)
WO (1) WO2017121202A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105541389B (zh) 2016-01-11 2018-03-30 苏州大学 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN105503254B (zh) * 2016-01-11 2018-06-29 苏州大学 一种钛酸钡泡沫陶瓷及其制备方法
CN107586060B (zh) * 2017-10-31 2019-11-08 福州大学 一种高储能密度介质材料及其制备方法
CN107814551B (zh) * 2017-10-31 2019-11-05 福州大学 一种高储能和功率密度介质材料及其制备方法
CN109206854A (zh) * 2018-08-30 2019-01-15 桂林电子科技大学 一种具有三维结构的氮化硼/环氧树脂复合材料的制备方法
CN109776832B (zh) * 2019-01-15 2021-03-02 苏州大学 三层结构树脂基复合材料及其应用
CN110964294A (zh) * 2019-12-02 2020-04-07 江苏科技大学 一种环氧树脂基高介电复合材料、制备方法及应用
CN112280297B (zh) * 2020-10-26 2021-12-28 中国海洋大学 一种钛酸钡/聚醚酰亚胺介电复合材料及其制备方法
CN112552062A (zh) * 2020-12-24 2021-03-26 南京海通电子材料科技有限公司 一种复合材料的制造方法
CN113603479A (zh) * 2021-09-18 2021-11-05 安徽马钢矿业资源集团南山矿业有限公司 一种改性钛酸钡泡沫陶瓷材料的制备方法及其所得材料
CN114292126A (zh) * 2022-01-25 2022-04-08 哈尔滨工业大学 一种多孔陶瓷局部增强复合材料汽车刹车片的制备方法
CN114409943A (zh) * 2022-02-15 2022-04-29 北京石油化工学院 一种聚氨酯介电弹性体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250423A (ja) * 2000-03-03 2001-09-14 Achilles Corp 耐熱性誘電発泡体
CN104693688A (zh) * 2015-03-26 2015-06-10 哈尔滨工业大学 Pcb基板用微波介质陶瓷/树脂双连续复合材料的制备方法
CN105419328A (zh) * 2016-01-11 2016-03-23 苏州大学 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN105541389A (zh) * 2016-01-11 2016-05-04 苏州大学 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN105622162A (zh) * 2016-01-11 2016-06-01 苏州大学 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024212A (en) * 1975-03-28 1977-05-17 Swiss Aluminium Ltd. Ceramic foam and method of preparation
WO1992018213A1 (en) * 1991-04-12 1992-10-29 E.I. Du Pont De Nemours And Company High dielectric constant flexible ceramic composite
JP2001237140A (ja) * 1999-12-13 2001-08-31 Murata Mfg Co Ltd 積層型セラミック電子部品およびその製造方法ならびにセラミックペーストおよびその製造方法
JP5464639B2 (ja) * 2008-03-14 2014-04-09 パウダーテック株式会社 電子写真現像剤用樹脂充填型キャリア及び該樹脂充填型キャリアを用いた電子写真現像剤
CN102372499A (zh) * 2010-08-20 2012-03-14 湖北工业大学 有机泡沫浸渍工艺制备多孔Ti2AlN陶瓷的方法
CN102898147A (zh) * 2012-11-05 2013-01-30 西华师范大学 一种制备钛酸盐压电陶瓷粉体的环境协调型方法
CN103864416A (zh) * 2014-02-27 2014-06-18 天津大学 一种低烧结温度钛酸钡基陶瓷电容器介质的制备方法
CN104193219B (zh) * 2014-05-20 2017-02-15 湖北国瓷科技有限公司 一种陶瓷高分子复合材料及其制备方法
CN104193396A (zh) * 2014-08-21 2014-12-10 江苏南瓷绝缘子股份有限公司 一种泡沫陶瓷的制备方法
CN104693798B (zh) * 2015-03-26 2017-03-01 哈尔滨工业大学 一种高介电常数、超低介电损耗陶瓷/树脂复合材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250423A (ja) * 2000-03-03 2001-09-14 Achilles Corp 耐熱性誘電発泡体
CN104693688A (zh) * 2015-03-26 2015-06-10 哈尔滨工业大学 Pcb基板用微波介质陶瓷/树脂双连续复合材料的制备方法
CN105419328A (zh) * 2016-01-11 2016-03-23 苏州大学 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN105541389A (zh) * 2016-01-11 2016-05-04 苏州大学 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN105622162A (zh) * 2016-01-11 2016-06-01 苏州大学 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG, LONGHUI ET AL.: "Unique Pure Barium Titanate Foams with Three-Dimensional Interconnecting Pore Channels and Their High-K Cyanate Ester Resin Composites at very Low Barium Titanate Loading", JOURNAL OF MATERIALS CHEMISTRY C, vol. 4, no. 45, 18 October 2016 (2016-10-18), pages 10655 - 10656, XP055398421, ISSN: 2050-7526 *

Also Published As

Publication number Publication date
CN105541389A (zh) 2016-05-04
US20190016639A1 (en) 2019-01-17
CN105541389B (zh) 2018-03-30
US10822278B2 (en) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2017121202A1 (zh) 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
WO2017121204A1 (zh) 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
WO2017121201A1 (zh) 一种钛酸钡泡沫陶瓷及其制备方法
WO2017121203A1 (zh) 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法
CN105624445A (zh) 一种石墨烯增强铜基复合材料的制备方法
CN106854750B (zh) 一种金刚石-铜复合材料及制备方法
CN106589821B (zh) 一种多孔莫来石陶瓷/环氧树脂复合材料的制备方法
CN110093588B (zh) 一种细晶粒铝钪合金靶材及其制备方法和应用
CN108314078B (zh) 一种空心球状钛酸锶钡粉体材料的制备方法
CN112876270A (zh) 一种微波介质陶瓷注射喂料、微波介质陶瓷及其制备方法
CN104650509A (zh) 一种高储能密度的聚偏氟乙烯复合薄膜的制备方法
JP2001048672A (ja) 低密度及び高強度を有する断熱材及びその製造方法
WO2019126969A1 (zh) 一种介质陶瓷材料及其制备方法
CN103864435A (zh) 宽温耐高压高储能密度陶瓷介质材料的制备方法
CN106893303A (zh) 一种高介电常数轻质介质基材及其制备方法
CN105884372B (zh) 有机网络法合成AlN陶瓷粉体方法
CN104451222B (zh) 一种纳米W-Cu复合块体材料的制备方法
CN113488330B (zh) 一种功能性磁浆料的制备方法及磁性器件
CN108707291B (zh) 一种陶瓷呈连续网状分布的树脂基介质复合材料及其制备方法
TWI747694B (zh) 以水系膠鑄成型製作氧化鋯陶瓷之方法
CN115611641B (zh) 一种氧化镁氧化钇粉体及其制备方法与应用
JPH11171671A (ja) 板状SiC−Si系複合セラミックスの製造方法
CN109628068B (zh) 一种相变储热材料
KR20240077615A (ko) 구상 질화 붕소 입자의 제조방법, 이에 따라 제조된 구상 질화 붕소, 이를 포함하는 열전도성 복합체, 및 이의 제조방법
CN115504799A (zh) 一种结合剂、C/SiC高温吸波材料及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884754

Country of ref document: EP

Kind code of ref document: A1