WO2017121203A1 - 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法 - Google Patents

一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法 Download PDF

Info

Publication number
WO2017121203A1
WO2017121203A1 PCT/CN2016/107796 CN2016107796W WO2017121203A1 WO 2017121203 A1 WO2017121203 A1 WO 2017121203A1 CN 2016107796 W CN2016107796 W CN 2016107796W WO 2017121203 A1 WO2017121203 A1 WO 2017121203A1
Authority
WO
WIPO (PCT)
Prior art keywords
barium titanate
foam ceramic
titanate foam
solution
nano
Prior art date
Application number
PCT/CN2016/107796
Other languages
English (en)
French (fr)
Inventor
梁国正
郑龙辉
顾嫒娟
丁铁矿
袁莉
Original Assignee
苏州大学张家港工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院 filed Critical 苏州大学张家港工业技术研究院
Priority to US16/069,160 priority Critical patent/US10882797B2/en
Publication of WO2017121203A1 publication Critical patent/WO2017121203A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • C04B38/106Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam by adding preformed foams
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63468Polyamides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2092Resistance against biological degradation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride

Definitions

  • the present invention relates to a micro/nano-silver supported barium titanate foam ceramic and a preparation method thereof, and belongs to the technical field of foam ceramics.
  • FC Foam Ceramic
  • relatively mature foam ceramic preparation processes include a foaming process, a pore-forming agent addition process, and an organic foam impregnation method.
  • the organic foam impregnation method has the advantages of simple process and mass production.
  • most of the process uses ceramic materials of micron or larger size and inorganic auxiliaries to prepare ceramic slabs. It is often necessary to carry out long-running grinding to obtain a slurry with uniform dispersion and good fluidity, which is not suitable for mass production.
  • Barium titanate ceramics are a class of materials with excellent mechanical strength, high dielectric constant, low dielectric loss and outstanding effects of ferroelectric, piezoelectric and positive temperature coefficient. They are high dielectric, ferroelectric and piezoelectric. The ideal material for materials. However, hitherto, the barium titanate foam ceramic and its preparation method have not been reported.
  • the present invention is directed to the deficiencies of the prior art, and provides a micro/nano-silver supported barium titanate foam ceramic having antibacterial properties and a preparation method thereof.
  • a method for preparing a micro/nano-silver supported barium titanate foam ceramic comprising the following steps:
  • the polymer sponge of the specification of 15 ⁇ 35 PPI is immersed in a sodium hydroxide aqueous solution having a concentration of 5 to 20% by weight, heated to 50 to 75 ° C and kept for 2 to 6 hours, and then the polymer sponge is used. Take out, wash with deionized water and dry to obtain polymer sponge D; at room temperature, immerse polymer sponge D in a surfactant aqueous solution with a concentration of 0.5 ⁇ 3wt%, remove it after 2 ⁇ 6h, remove excess The surfactant is dried at a temperature of 40 to 80 ° C to obtain a pretreated polymer sponge E;
  • the pretreated polymer sponge E is immersed in the slurry C prepared in the step (1), placed at room temperature for 1 to 10 minutes to be hanged, and then squeezed to remove excess slurry, and then Drying treatment is carried out at a temperature of 40 to 80 ° C; the slurry is repeatedly dried and dried for 1 to 7 times to obtain a barium titanate foam ceramic green body.
  • the barium titanate foam ceramic green body prepared in the step (3) is heated from room temperature to 100 to 300 ° C at a rate of 0.5 to 5 ° C / min, and then 0.5 to 5 ° C / After the temperature of min is raised to 500 ⁇ 700 °C and kept for 0.5 ⁇ 2h, the temperature is raised to 1000 ⁇ 1500 °C at a rate of 2 ⁇ 10 °C/min and kept for l ⁇ 5h, then cooled to room temperature with the furnace to obtain titanic acid. ⁇ foam ceramics;
  • a stabilizer aqueous solution having a concentration of 0.1 to 1% by volume is added to 100 parts of a freshly prepared silver ammonia solution having a concentration of 0.03 to 0.3 mol/L, and uniformly mixed to obtain a solution G;
  • the dopamine-modified barium titanate foam ceramic prepared in the step (5) is immersed in the solution G, and is placed at a normal temperature for 0.5 to 24 hours to obtain a nano-silver-loaded barium titanate foam ceramic, and then added in a concentration of 50 to 300 parts of l 30 g. /L aqueous reducing agent solution, placed at room temperature for 0.1 to 5 h, washed with deionized water, dried to obtain a micro/nano silver supported barium titanate foam ceramic.
  • the polymer material of the polymer sponge according to the present invention is any one of polyurethane, polystyrene, and polyvinyl chloride.
  • the nano-barium titanate has an average particle diameter of ⁇ 100 nm.
  • the organic binder is one of polyvinyl alcohol, carboxymethyl cellulose, methyl cellulose, or any combination thereof;
  • the organic rheological agent is carboxymethyl cellulose, One of hydroxyhexyl cellulose, or any combination thereof;
  • the organic dispersant is one of polyacrylamide, polyethyleneimine, polyacrylamide, or any combination thereof.
  • the surfactant is one of carboxymethyl cellulose, polyethyleneimine, or any combination thereof
  • the stabilizer is one of polyvinylpyrrolidone, sodium alginate, or any combination thereof.
  • the reducing agent is one of hydrazine hydrate, sodium citrate, sodium borohydride, glucose, ascorbic acid, or any combination thereof.
  • the buffer reagent or buffer is one of Tris-HCl, disodium hydrogen phosphate-sodium dihydrogen phosphate buffer
  • the base is one of sodium hydroxide and ammonia water.
  • the technical solution of the present invention further comprises a micro/nano-silver supported barium titanate foam ceramic obtained by the above preparation method.
  • the barium titanate foam ceramic prepared by the invention is a foam ceramic having a pure chemical composition of barium titanate skeleton, because no other inorganic materials are added or "in situ" during the preparation process. , Instead, an organic auxiliaries are used which decompose during high-temperature sintering to obtain a pure barium titanate foam ceramic having a single chemical composition, which is advantageous for retaining the original excellent properties of barium titanate.
  • the barium titanate foam ceramic prepared by the present invention is a skeleton having a high dielectric constant. This is because nano-barium titanate with a high dielectric constant is used as a raw material, and other organic additives are decomposed during the sintering process. In addition, barium titanate is further porcelainized during high-temperature sintering to exhibit a higher dielectric constant.
  • the present invention uses a barium titanate foam ceramic having a high dielectric constant and a three-dimensional network as a skeleton, and uses the strong adhesion and self-reducibility of dopamine to directly load nano silver in the foam ceramic skeleton. Further reduced by reducing agent, it has the characteristics of green, simple and controllable.
  • micro/nano-silver supported barium titanate foam ceramic prepared by the invention integrates the excellent dielectric properties of barium titanate and the good conductivity and antibacterial property of silver, and is multifunctional and high performance. Foam.
  • the presence of dopamine and the post-load Ag particles in the preparation process changed the morphology and chemical structure of the barium titanate foam skeleton, which laid the foundation for the modification, application and high performance of the foam ceramic.
  • the preparation method of the micro/nano-silver supported barium titanate foam ceramic provided by the invention has the characteristics of simple process, controllability, environmental protection, wide applicability, and the like, and is suitable for industrial production.
  • FIG. 1 is a stereomicrograph of a polyurethane sponge E, a barium titanate foam ceramic green body, and a barium titanate foam ceramic prepared in Example 1 of the present invention and a barium titanate foam ceramic prepared in Example 2.
  • Example 3 is a scanning electron micrograph (magnification 1 thousand times) of barium titanate foam ceramics obtained in Example 5 of the present invention.
  • Example 4 is a barium titanate foam ceramic prepared according to Example 6 of the present invention, a dopamine-modified barium titanate ceramic, and a nano-silver-loaded barium titanate foam ceramic prepared in Examples 6, 7, and 8 and prepared in Example 9. Scanning electron micrograph of micro/nano-silver-loaded barium titanate foam ceramics (magnification 50,000 times).
  • Example 5 is a barium titanate foam ceramic prepared in Example 6 of the present invention, and a nano-silver supported barium titanate foam ceramic prepared in Example 8 and a micro/nano-silver supported barium titanate foam ceramic prepared in Example 9. Ray diffraction pattern.
  • the polyurethane sponge of the specification of 25 PPI was immersed in an aqueous solution of 15 wt ⁇ 7 sodium hydroxide, heated to 60 ° C and kept for 3.5 h; then, the polyurethane sponge was taken out and washed several times with deionized water, ⁇ After drying, the polyurethane sponge D is obtained; at room temperature, the polyurethane sponge D is immersed in a concentration of lwt9 ⁇ carboxymethylcellulose aqueous solution and left for 3 hours; then, the excess carboxymethylcellulose aqueous solution is removed and removed at a temperature of 60°. Drying under C conditions gave a pretreated polyurethane sponge E. See Figure 1 for a stereo microscope photograph.
  • the pretreated polyurethane sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 5 minutes to carry out the slurry treatment; then the excess slurry is removed by extrusion, and the temperature is 40 ° C. Drying treatment; repeating the slurrying and drying treatment four times in order to obtain a barium titanate foam ceramic green body with uniform slurry and no plugging. See Figure 1 for a photo of the stereo microscope.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then heated to 600 ° C at a rate of 1 ° C / min; The temperature was kept at °C for 1 hour; then, the temperature was raised to 1,200 ° C at a rate of 5 ° C / min, and the temperature was kept for 2 hours; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the stereo microscope photograph and the X-ray diffraction pattern are shown in Figures 1 and 2, respectively.
  • Dopamine hydrochloride was dissolved in 10 mmol / L of Tris-HCl buffer solution to prepare a dopamine solution with a concentration of 0.5 g / L; pH was adjusted to 8.5 with sodium hydroxide to obtain a solution F; and then step 4) The obtained barium titanate foam ceramic was immersed in the solution F and left at room temperature for 24 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • a g/L aqueous solution of sodium borohydride was allowed to stand at room temperature for 2 hours; after completion of the reaction, it was washed several times with deionized water and dried to obtain a micro/nano-silver supported barium titanate foam ceramic.
  • Example 1 The polyurethane sponge E pretreated in Example 1 was immersed in the slurry C (Example 1), and allowed to stand at room temperature for 5 minutes; then the excess slurry was squeezed out and dried at a temperature of 40 ° C; The slurry was dried and dried twice in this order to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 1) is heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then raised to 600 ° C at a rate of 1 ° C / min; The temperature was kept at °C for 1 hour; then, the temperature was raised to 1,200 ° C at a rate of 5 ° C / min, and the temperature was kept for 2 hours; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the stereo microscope photo is shown in Figure 1.
  • Dopamine hydrochloride was dissolved in 10 mmol / L of Tris-HCl buffer solution, prepared into a concentration of 0.5 g / L of dopamine solution, adjusted to pH 8.5 with sodium hydroxide to obtain a solution F; then step 2) The obtained barium titanate foam ceramic was immersed in the solution F and allowed to stand at normal temperature for 12 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • FIG. 1 is a stereomicrograph of a polyurethane sponge E, a barium titanate foam ceramic green body, and a barium titanate foam ceramic prepared in Example 1 of the present invention and a barium titanate foam ceramic prepared in Example 2.
  • FIG. It can be seen from the above that after the polyurethane sponge E pretreated in Example 1 was pulverized by slurry, barium titanate was uniformly coated on the skeleton of the sponge (Example 1).
  • the polyurethane sponge was pyrolyzed to obtain a barium titanate foam ceramic having uniform pore distribution and no plugging (Examples 1 and 2).
  • the barium titanate foam ceramic prepared in Example 1 has a thicker skeleton, because the pulp on the sponge skeleton is increased with the number of times of hanging the pulp. The amount increases.
  • the barium titanate foam ceramic green body prepared in Example 1 was heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then heated to 600 ° C at a rate of 1 ° C / min; The temperature was maintained at 600 ° C for 1 h; then the temperature was raised to 1000 ° C at a rate of 5 ° C / min, and kept for 2 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic. See Figure 2 for its X-ray diffraction pattern.
  • Dopamine hydrochloride was dissolved in 10 mmol/L of Tris-HCl buffer solution to prepare a dopamine solution having a concentration of 10 g/L, and the pH was adjusted to 8.5 with sodium hydroxide to obtain a solution F; then the step 1) was prepared.
  • the obtained barium titanate foam ceramic was immersed in the solution F and left at room temperature for 1 hour; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • the barium titanate foam ceramic green body prepared in Example 1 was heated from room temperature to 200 ° C at a rate of 2 ° C / min, Then, the temperature is raised to 600 ° C at a rate of 1 ° C / min; the temperature is kept at 600 ° C for 1 h; then the temperature is raised to 1100 ° C at a rate of 5 ° C / min, and kept for 2 h; after completion, the furnace is cooled to room temperature to obtain Barium titanate foam ceramics. See Figure 2 for its X-ray diffraction pattern.
  • Dopamine hydrochloride was dissolved in 10 mmol / L of Tris-HCl buffer solution, prepared into a concentration of 2g / L of dopamine solution, adjusted to pH 8.5 with sodium hydroxide to obtain a solution F; then step 1) The obtained barium titanate foam ceramic was immersed in the solution F and left at room temperature for 12 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • a g/L aqueous solution of sodium borohydride was allowed to stand at room temperature for 2 hours; after completion of the reaction, it was washed several times with deionized water and dried to obtain a micro/nano-silver supported barium titanate foam ceramic.
  • the barium titanate foam ceramic green body prepared in Example 1 was heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then heated to 600 ° C at a rate of 1 ° C / min; The temperature was maintained at 600 ° C for 1 h; then the temperature was raised to 1300 ° C at a rate of 5 ° C / min, and kept for 2 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • the X-ray diffraction pattern and the scanning electron micrograph are shown in Figures 2 and 3, respectively.
  • Dopamine hydrochloride was dissolved in 10 mmol / L of Tris-HCl buffer solution, formulated into a concentration of 0.5 g / L of dopamine solution, adjusted to pH 8.5 with sodium hydroxide to obtain a solution F; and then step 1) The obtained barium titanate foam ceramic was immersed in the solution F and left at room temperature for 24 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • FIG. 2 it is an X-ray diffraction pattern of barium titanate foam ceramics prepared in Examples 1, 3, 4 and 5 of the present invention. It can be seen that the nano-barium titanate is at 22.1°, 31.6. 38.9. 45.2°, 50.8. , 56.1. Significant diffraction peaks appear at 65.8°, 70.2°, 74.6°, and 78.9°, which correspond to (100), (110), (111), (002) / (200), (210), (211) , (220), (221), (31 0) and (113) crystal faces (JCPDS ⁇ .5-0626).
  • FIG. 3 it is a scanning electron micrograph of a barium titanate foam ceramic prepared in Example 5 of the present invention. It can be seen that after the foam ceramic green body is sintered at a high temperature, the organic auxiliary agent is decomposed, and the barium titanate grain grows and becomes large, and a barium titanate foam ceramic skeleton with better compactness is obtained.
  • Example 2 The polyurethane sponge E pretreated in Example 1 was immersed in the slurry C (Example 1), and allowed to stand at room temperature for 5 minutes; then the excess slurry was squeezed out and dried at a temperature of 50 ° C; The slurry was dried and dried four times in sequence to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 1) is heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then heated to 600 ° C at a rate of 1 ° C / min; The temperature was kept at °C for 1 hour; then, the temperature was raised to 1,200 ° C at a rate of 5 ° C / min, and the temperature was kept for 2 hours; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic. See Figures 4 and 5 for their scanning electron micrographs and X-ray diffraction patterns.
  • Dopamine hydrochloride was dissolved in 10 mmol / L of Tris-HCl buffer solution, prepared into a concentration of 2g / L of dopamine solution, adjusted to pH 8.5 with sodium hydroxide to obtain a solution F; then step 2) The obtained barium titanate foam ceramic was immersed in the solution F and left at room temperature for 24 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic. See Figure 4 for a scanning electron micrograph.
  • the scanning electron micrograph and X-ray diffraction pattern are shown in Figures 4 and 5; 10 mL of a 20 g/L aqueous glucose solution is added to the solution G, and left at room temperature for 2 hours; after the reaction, deionized The water was washed several times and dried to obtain a micro/nano silver supported barium titanate foam ceramic.
  • FIG. 4 it is a barium titanate foam ceramic prepared according to Embodiment 6 of the present invention, a dopamine-modified barium titanate ceramic, and a nano-silver-loaded barium titanate foam ceramic prepared in Examples 6, 7, and The micro/nano silver supported barium titanate foam ceramic prepared in Example 9. It can be seen that after the dopamine treatment of the barium titanate foam ceramic (Example 6), a coating layer appeared on the surface of the barium titanate foam ceramic (Example 6).
  • Example 6 After the dopamine-modified barium titanate foam ceramic reacts with the silver ammonia solution, fine particles appear on the surface thereof, and as the reaction time increases, the particles on the surface increase and the particle size becomes larger (Example 6, implementation) Example 7 and Example 8).
  • the addition of glucose to further reduction allows the particle size of the Ag particles to be converted from nanometers to micrometers (Example 9).
  • Example 5 is a barium titanate foam ceramic prepared in Example 6 of the present invention, and a nano-silver supported barium titanate foam ceramic prepared in Example 8 and a micro/nano-silver supported barium titanate prepared in Example 9.
  • X-ray diffraction pattern of foam ceramics It can be seen that, compared to the barium titanate foam ceramic (Example 6), after loading the micro/nano silver, four distinct diffraction peaks appear at 38.1°, 44.3°, 64.5°, and 77.4°, which correspond to ( Ill ), (200), (220) and (311) crystal faces (JCPDS No. 04-0783). From this, it can be judged that the particles supported in Examples 8 and 9 are face-centered cubic silver. At the same time, the diffraction peak of the micro/nano-silver supported barium titanate foam ceramic was further reduced by the glucose solution (Example 9).
  • the g/L aqueous glucose solution was allowed to stand at room temperature for 1.5 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a micro/nano-silver supported barium titanate foam ceramic.
  • a slurry of 5 g of an aqueous solution of carboxymethylcellulose having a concentration of 0.5 wt ⁇ 3 ⁇ 4 and 5 g of an aqueous solution of hydroxyhexylcellulose having a concentration of 3 wt% was added to the slurry A, and sufficiently ground to obtain a slurry B; 10 g of a polyacrylamide aqueous solution having a concentration of 1% by weight was added thereto, and the mixture was sufficiently ground to obtain a slurry C.
  • the polyurethane sponge of the specification of 25 PPI was immersed in an aqueous solution of sodium hydroxide having a concentration of 20% by weight, heated to 50 ° C and kept for 2 hours; then, the polyurethane sponge was taken out, washed several times with deionized water, and dried. Polyurethane sponge D was obtained; at room temperature, the polyurethane sponge D was immersed in a 3 wt% aqueous solution of polyethyleneimine and left for 2 h; then, the excess polyethyleneimine aqueous solution was removed and removed at a temperature of 80 ° C. Drying to obtain a pretreated polyurethane sponge E.
  • the pretreated polyurethane sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 10 minutes; then the excess slurry is squeezed out and dried at a temperature of 50 ° C; The slurry was dried and treated 5 times to obtain a barium titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 0.5 ° C / min, and then raised to 600 ° C at a rate of 5 ° C / min; The temperature was raised to 0.5 h at ° C; then the temperature was raised to 1300 ° C at a rate of 2 ° C / min, and kept for 2 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • Dopamine hydrochloride was dissolved in 10 mmol/L of Tris-HCl buffer solution to prepare a dopamine solution having a concentration of 5 g/L, and the pH was adjusted to 8.5 with ammonia water to obtain a solution F; and then the step 4) was obtained.
  • the barium titanate foam ceramic is immersed in the solution F and left at room temperature for 24 hours; after the reaction is finished, it is washed several times with deionized water. Drying gives a dopamine-modified barium titanate foam ceramic.
  • the polyurethane sponge of the specification of 25 PPI was immersed in an aqueous solution of sodium hydroxide having a concentration of 10% by weight, heated to 60 ° C and kept for 3.5 hours; then, the polyurethane sponge was taken out, washed several times with deionized water, dried Thereafter, a polyurethane sponge D was obtained; at room temperature, the polyurethane sponge D was immersed in an aqueous solution of polyethyleneimine at a concentration of 0.5% by weight and left for 3 hours; and then, the excess aqueous solution of polyethyleneimine was removed and removed at a temperature of 40 liters. Drying under C conditions gave a pretreated polyurethane sponge E.
  • the pretreated polyurethane sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 5 minutes; then the excess slurry is squeezed out and dried at a temperature of 80 ° C; The slurry was dried and treated 4 times to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 5 ° C / min, and then raised to 600 ° C at a rate of 5 ° C / min; Incubate at °C for 0.5h; then ramp up to 10°C/min 1000 ° C, heat preservation 2h; After the end, with the furnace cooled to room temperature, get barium titanate foam ceramics.
  • Dopamine hydrochloride was dissolved in 10 mmol/L of Tris-HCl buffer solution to prepare a dopamine solution having a concentration of 2 g/L, and the pH was adjusted to 8.5 with sodium hydroxide to obtain a solution F; then, step 4) was prepared.
  • the obtained barium titanate foam ceramic was immersed in the solution F and left at room temperature for 24 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • aqueous sodium citrate solution 50 mL aqueous glucose solution with a concentration of 10 g/L were placed at room temperature for 2 h; after the reaction was completed, it was washed several times with deionized water and dried to obtain a micro/nano-silver supported barium titanate foam ceramic.
  • Barium titanate (average particle diameter: 30 nm) and 10 g of a carboxymethylcellulose aqueous solution having a concentration of 1 wt% and 10 g of a methylcellulose aqueous solution having a concentration of 1 wt% are sufficiently ground to obtain a slurry A; 2 g of a concentration is added to the slurry A. It is a 2wt ⁇ 3 ⁇ 4 aqueous solution of carboxymethyl cellulose, and is sufficiently ground to obtain a slurry B; 10 parts of a polyacrylamide aqueous solution having a concentration of 1% by weight and 6 g of a polyethyleneimine aqueous solution having a concentration of 1% by weight are added to the slurry B. The mixed solution was sufficiently ground to obtain a slurry C.
  • the polyurethane sponge of the specification of 35 PPI was immersed in a sodium hydroxide aqueous solution having a concentration of 15% by weight, heated to 60 ° C and kept for 3.5 hours; then, the polyurethane sponge was taken out and washed several times with deionized water.
  • the polyurethane sponge D After drying, the polyurethane sponge D is obtained; at room temperature, the polyurethane sponge D is immersed in a mixture of an equal volume of an aqueous solution of 1 wt 9 carboxymethylcellulose and a polyethylenimine aqueous solution having a concentration of 1 wt% and left for 3 h; , remove the excess carboxymethyl cellulose and polyethyleneimine mixture, and dry at 60 ° C, A pretreated polyurethane sponge E was obtained.
  • the pretreated polyurethane sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 10 minutes; then the excess slurry is squeezed out and dried at a temperature of 50 ° C; The slurry was dried and treated 4 times to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 2 ° C / min, and then heated to 600 ° C at a rate of 1 ° C / min; °C is kept for 1h; then it is heated to 100 °C at a rate of 2 °C / min, and kept for 1 hour; after completion, it is cooled to room temperature with the furnace to obtain barium titanate foam ceramic.
  • step 4) Dopamine hydrochloride was dissolved in 10 mmol/L of Tris-HCl buffer solution to prepare a dopamine solution having a concentration of 2 g/L, and the pH was adjusted to 8.5 with sodium hydroxide to obtain a solution F; and then step 4) was prepared.
  • the obtained barium titanate foam ceramic was immersed in the solution F and left at room temperature for 24 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • the barium titanate foam ceramic is immersed in the solution G, and left at room temperature for 2 hours to obtain a nano-silver-loaded barium titanate foam ceramic; and 50 mL of a sodium citrate aqueous solution having a concentration of 10 g/L is added to the solution G, After standing at room temperature for 2 h; after completion of the reaction, it was washed several times with deionized water and dried to obtain a micro/nano-silver supported barium titanate foam ceramic.
  • a mixture of 20 g of barium titanate (average particle diameter: 50 nm) and 6 g of a polyvinyl alcohol aqueous solution having a concentration of 10 wt ⁇ 3 ⁇ 4 and 10 g of a carboxymethylcellulose aqueous solution having a concentration of 1% was sufficiently ground to obtain a slurry.
  • A; 5 g of a 2% by weight aqueous solution of carboxymethylcellulose was added to the slurry A, and the slurry B was sufficiently ground to obtain a slurry B; 5 g of a polyacrylamide aqueous solution having a concentration of 1% by weight and a concentration of 5 g were added to the slurry B.
  • a mixture of a 1 wt% aqueous solution of polyethyleneimine was sufficiently ground to obtain a slurry C.
  • the polyvinyl chloride sponge having a specification of 15 PPI was immersed in a sodium hydroxide aqueous solution having a concentration of 20% by weight, heated to 60 ° C and kept for 2 hours; then, the polyvinyl chloride sponge was taken out and washed with deionized water. Several times, after drying, the polyvinyl chloride sponge D is obtained; at room temperature, the polyvinyl chloride sponge D is immersed in a 0.5% by weight aqueous solution of carboxymethylcellulose and left for 3 hours; then, the excess carboxy is removed. The methyl cellulose aqueous solution was dried at a temperature of 60 ° C to obtain a pretreated polyvinyl chloride sponge E.
  • the pretreated polyvinyl chloride sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 5 minutes; then the excess slurry is squeezed out and dried at a temperature of 40 ° C; The slurry was dried and dried four times to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 0.5 ° C / min, and then raised to 600 ° C at a rate of 5 ° C / min; After incubating for 2 h at ° C; then raising the temperature to 1200 ° C at a rate of 5 ° C / min for 2 h; after completion, cooling to room temperature with the furnace to obtain barium titanate foam ceramic.
  • Dopamine hydrochloride was dissolved in 10 mmol/L of Tris-HCl buffer solution to prepare a dopamine solution having a concentration of 0.5 g/L, and the pH was adjusted to 8.5 with ammonia water to obtain a solution F; and then step 4) was obtained.
  • the barium titanate foam ceramic was immersed in the solution F and allowed to stand at room temperature for 12 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • the polystyrene sponge of the specification of 25 PPI was immersed in a 5 wt% aqueous solution of sodium hydroxide, heated to 75 ° C and kept for 6 h; then, the polystyrene sponge was taken out and washed several times with deionized water. After drying, the polystyrene sponge D is obtained; at room temperature, the polystyrene sponge D is immersed in a polyethylene glycol aqueous solution having a concentration of 3 wt% and left for 2 hours; then, the excess polyethyleneimine aqueous solution is removed and removed. It was dried at a temperature of 60 ° C to obtain a pretreated polystyrene sponge E.
  • the pretreated polystyrene sponge E is immersed in the slurry C prepared in the step 1), and placed at a normal temperature for 10 mM; then the excess slurry is squeezed out and dried at a temperature of 50 ° C; The slurry was dried and dried 7 times in sequence to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 200 ° C at a rate of 0.5 ° C / min, and then raised to 600 ° C at a rate of 5 ° C / min; The temperature was kept at °C for 2 hours; then, the temperature was raised to 1000 ° C at a rate of 10 ° C / min, and the temperature was kept for 5 hours; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • Dopamine hydrochloride was dissolved in 10 mmol/L of Tris-HCl buffer solution to prepare a dopamine solution having a concentration of 2 g/L, and the pH was adjusted to 8.5 with sodium hydroxide to obtain a solution F; and then step 4) was prepared.
  • the obtained barium titanate foam ceramic was immersed in the solution F and left at room temperature for 12 hours; after the reaction was completed, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • the 25 PPI-sized polyvinyl chloride sponge was immersed in a 20 wt% aqueous solution of sodium hydroxide, heated to 50 ° C and held for 2 h; then, the polyvinyl chloride sponge was taken out and washed several times with deionized water. After drying, the polyvinyl chloride sponge D is obtained; at room temperature, the polyvinyl chloride sponge D is immersed in a 0.5% by weight aqueous solution of polyethyleneimine and left for 2 hours; then, the excess polyethyleneimine is removed and removed. The aqueous solution was dried at a temperature of 70 ° C to obtain a pretreated polyvinyl chloride sponge E.
  • the pretreated polyvinyl chloride sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 1 min; then the excess slurry is squeezed out and dried at a temperature of 70 ° C; The pulping and drying treatment were repeated once to obtain a green titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 100 ° C at a rate of 5 ° C / min, and then heated to 500 ° C at a rate of 0.5 ° C / min; The temperature was raised to 0.5 h at ° C; then the temperature was raised to 1500 ° C at a rate of 10 ° C / min, and kept for 3 h; after completion, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • Dopamine hydrochloride was dissolved in a buffer solution of 12.5 mmol/L of disodium hydrogen phosphate-sodium dihydrogen phosphate to prepare a dopamine solution having a concentration of 2 g/L, and the pH was adjusted to 8.3 with sodium hydroxide to obtain a solution F. Then, the barium titanate foam ceramic prepared in the step 4) is immersed in the solution F and left at room temperature for 24 hours; after the reaction is completed, it is washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.
  • the polyurethane sponge of the specification of 25 PPI was immersed in a sodium hydroxide aqueous solution having a concentration of 15% by weight, heated to 65 ° C and kept for 3 hours; then, the polyurethane sponge was taken out and washed several times with deionized water, ⁇ After drying, the polyurethane sponge D is obtained; at room temperature, the polyurethane sponge D is immersed in a polyethyleneimine aqueous solution having a concentration of 0.5% by weight and left for 6 hours; then, the excess polyethyleneimine aqueous solution is removed and removed at a temperature of 60 . Drying under C conditions gave a pretreated polyurethane sponge E.
  • the pretreated polyurethane sponge E is immersed in the slurry C prepared in the step 1), and left at room temperature for 3 minutes; then the excess slurry is squeezed out and dried at a temperature of 40 ° C; The slurry was dried and treated 7 times to obtain a barium titanate foam ceramic green body with uniform slurry and no plugging.
  • the barium titanate foam ceramic green body prepared in the step 3) is heated from room temperature to 300 ° C at a rate of 2 ° C / min, and then heated to 700 ° C at a rate of 2 ° C / min; The temperature was maintained at °C for 2 h; then the temperature was raised to 12 00 ° C at a rate of 8 ° C/min for 3 h; at the end, the furnace was cooled to room temperature to obtain a barium titanate foam ceramic.
  • Dopamine hydrochloride was dissolved in 15 mmol/L sodium hydrogen phosphate-sodium dihydrogen phosphate buffer solution to prepare a concentrated solution.
  • a 2 g/L dopamine solution adjusted to a pH of 8.8 with sodium hydroxide to obtain a solution F; and then the barium titanate foam ceramic prepared in the step 4) is immersed in the solution F, and left at room temperature for 24 hours; Thereafter, it was washed several times with deionized water and dried to obtain a dopamine-modified barium titanate foam ceramic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法,以有机添加剂为助剂,去离子水为溶剂,纳米钛酸钡为陶瓷原料,混合研磨后形成浆料;将预处理的聚合物海绵浸渍于浆料中挂浆处理,干燥后得到钛酸钡泡沫陶瓷生坯,经烧结得到钛酸钡泡沫陶瓷,经多巴胺改性,在骨架表面原位沉积微/纳米银,得到改性的微/纳米银负载的钛酸钡泡沫陶瓷,再将其置于新配制的银氨溶液中进一步还原,得到一种微/纳米银负载的钛酸钡泡沫陶瓷,它具有三维立体网络骨架结构,通过调节反应条件,可实现微/纳米银负载量、粒径等的调控。

Description

发明名称:一种微 /纳米银负载的钛酸钡泡沫陶瓷及其制备方法 技术领域
[0001] 本发明涉及一种微 /纳米银负载的钛酸钡泡沫陶瓷及其制备方法, 属于泡沫陶 瓷技术领域。
背景技术
[0002] 泡沫陶瓷 (Foam Ceramic, FC) 是一种新型多孔材料, 具有高化学稳定性、 高 强度、 耐高温、 抗热震、 低密度、 高气孔率、 大比表面积等优点, 因此在汽车 尾气处理、 污水处理、 节能隔热、 化学催化及生物材料等领域显示出巨大的应 用前景。
[0003] 但是, 现有的泡沫陶瓷种类很少, 根据其主要组成, 分为碳化硅 (SiC) 、 氧 化铝 (A1 20 3) 和氮化硅 (Si 3N 4) 等三类。 显然, 这些材料只能适用于特定的 场合, 如果要将泡沫陶瓷的优势在更多领域得到发挥, 需要研发更多种类的泡 沫陶瓷。
[0004] 目前, 比较成熟的泡沫陶瓷制备工艺有发泡工艺、 添加造孔剂工艺及有机泡沫 浸渍法等。 其中, 有机泡沫浸渍法具有工艺简单、 可批量生产等优点。 然而, 该工艺大部分采用微米或是更大尺寸的陶瓷原料以及无机助剂制备陶瓷浆料, 常常需要进行长吋间的研磨以得到分散均匀、 流动性良好的浆料, 不利于规模 生产。
[0005] 钛酸钡陶瓷是一类具有优异机械强度、 高介电常数、 低介电损耗及突出铁电、 压电及正温度系数效应等性能, 是制备高介电、 铁电、 压电等材料的理想材料 。 但是, 迄今, 关于钛酸钡泡沫陶瓷及其制备方法尚未见诸报道。
[0006] 值得注意, 现有的泡沫陶瓷材料基本上为终端产品, 直接应用。 而多功能化、 高性能化一直是材料领域的发展方向。 环境污染对人类生命健康的威胁已经达 到从未有过的高度, 抗菌性也成为人们在研发新材料吋高度关注的性能指标。 兼具抗菌性的钛酸钡泡沫陶瓷及其制备方法尚未见诸报道。
技术问题 问题的解决方案
技术解决方案
[0007] 本发明针对现有技术存在的不足, 提供一种具有抗菌性能的微 /纳米银负载的 钛酸钡泡沫陶瓷及其制备方法。
[0008] 为达到上述目的, 本发明所采用的技术方案是: 一种微 /纳米银负载的钛酸钡 泡沫陶瓷的制备方法, 包含如下步骤:
[0009] (1) 按质量计, 将 100份纳米钛酸钡与 30〜120份浓度为 l〜15wt%的有机粘结 剂水溶液充分研磨, 得到浆料 A; 在浆料 A中加入 10〜80份浓度为 0.5〜3\^%的 有机流变剂水溶液, 充分研磨后得到浆料 B ; 在浆料 B中加入 20〜80份浓度为 0.5 〜3\^%的有机分散剂水溶液, 充分研磨后得到浆料 C;
[0010] (2) 将规格为 15〜35 PPI的聚合物海绵浸渍在浓度为 5〜20wt%的氢氧化钠水 溶液中, 升温至 50〜75°C并保温 2〜6h后, 将聚合物海绵取出, 用去离子水洗涤 并甩干后得到聚合物海绵 D; 在常温下, 将聚合物海绵 D浸渍在浓度为 0.5〜3wt %的表面活性剂水溶液中 ,2〜6h后取出,甩去多余的表面活性剂, 在温度为 40〜80 °C的条件下干燥处理, 得到预处理的聚合物海绵 E;
[0011] (3) 将预处理的聚合物海绵 E浸渍在步骤 (1) 制得的浆料 C中, 在常温下放 置 l〜10min进行挂浆处理后,挤压排除多余的浆料, 再在温度为 40〜80°C的条件 下进行干燥处理; 依次重复挂浆、 干燥处理 1〜7次, 得到钛酸钡泡沫陶瓷生坯
[0012] (4) 将步骤 (3) 制得的钛酸钡泡沫陶瓷生坯, 以 0.5〜5°C/min的速率由室温 升温至 100〜300°C, 再以 0.5〜5°C/min的速率升温至 500〜700°C并保温 0.5〜2h后 , 以 2〜10°C/min的速率升温至 1000〜1500°C并保温 l〜5h后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷;
[0013] (5) 用缓冲试剂或缓冲液、 水和盐酸多巴胺, 配制浓度为 0.5〜10g/L的多巴胺 溶液; 用碱调节 pH值至 8.3〜8.8, 得到溶液 F; 将步骤 (4) 制得的钛酸钡泡沫 陶瓷浸渍在溶液 F中, 常温下放置 l〜24h, 再经去离子水洗涤、 干燥后, 得到多 巴胺改性的钛酸钡泡沫陶瓷;
[0014] (6) 按体积计, 将 4〜20份浓度为 0.1〜1^%的稳定剂水溶液加入到 100份浓度为 0.03 〜0.3mol/L的新配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 (5) 制得 的多巴胺改性的钛酸钡泡沫陶瓷浸渍在溶液 G中, 常温下放置 0.5〜24h, 得到纳 米银负载钛酸钡泡沫陶瓷, 再加入 50〜300份浓度为 l〜30g/L的还原剂水溶液, 常温下放置 0.1〜5h, 经去离子水洗涤、 干燥后, 得到微 /纳米银负载的钛酸钡泡 沫陶瓷。
[0015] 本发明所述的聚合物海绵的聚合物材质为聚氨酯、 聚苯乙烯、 聚氯乙烯中的任 意一种。
[0016] 所述的纳米钛酸钡的平均粒径≤ 100nm。
[0017] 所述的有机粘结剂为聚乙烯醇、 羧甲基纤维素、 甲基纤维素中的一种, 或它们 的任意组合; 所述的有机流变剂为羧甲基纤维素、 羟己基纤维素中的一种, 或 它们的任意组合; 所述的有机分散剂为聚丙烯酰胺、 聚乙烯亚胺、 聚丙烯酸胺 中的一种, 或它们的任意组合。
[0018] 所述的表面活性剂为羧甲基纤维素、 聚乙烯亚胺中的一种, 或它们的任意组合
[0019] 所述的稳定剂为聚乙烯吡咯烷酮、 海藻酸钠中的一种, 或它们的任意组合。
[0020] 所述的还原剂为水合肼、 柠檬酸钠、 硼氢化钠、 葡萄糖、 抗坏血酸中的一种, 或它们的任意组合。
[0021] 所述的缓冲试剂或缓冲液为 Tris-HCl、 磷酸氢二钠-磷酸二氢钠缓冲液中的一种 [0022] 所述的碱为氢氧化钠、 氨水中的一种。
[0023] 本发明技术方案还包括按上述制备方法得到的一种微 /纳米银负载的钛酸钡泡 沫陶瓷。
发明的有益效果
有益效果
[0024] 与现有技术相比, 本发明取得的有益效果是:
[0025] 1、 本发明所制备的钛酸钡泡沫陶瓷是一种具有化学组成单一的纯净钛酸钡骨 架的泡沫陶瓷, 这是因为在制备过程中没有添加或者"就地"生成其他无机材料, 而是采用有机助剂, 其在高温烧结过程中分解, 从而得到一种具有化学组成单 一的纯净钛酸钡泡沫陶瓷, 有利于保留钛酸钡原有的优异性能。
[0026] 2、 本发明所制得的钛酸钡泡沫陶瓷是一种具有高介电常数的骨架。 这是因为 选用具有高介电常数的纳米钛酸钡作为原料, 其他有机助剂在烧结过程中分解 。 此外, 在高温烧结过程中, 钛酸钡进一步瓷化, 表现出更高的介电常数。
[0027] 3、 本发明以具有高介电常数、 三维立体网络的钛酸钡泡沫陶瓷作为骨架, 利 用多巴胺强的粘附性及自身还原性, 直接在泡沫陶瓷骨架原位负载纳米银, 再 进一步通过还原剂还原, 具有绿色、 简单可控的特点。
[0028] 4、 本发明所制备的微 /纳米银负载的钛酸钡泡沫陶瓷集成了钛酸钡优异的介电 性能及银的良好导电性与抗菌性, 是一种多功能化和高性能化的泡沫材料。 此 夕卜, 制备过程中使用的多巴胺及负载后 Ag颗粒的存在均改变了钛酸钡泡沫骨架 的形貌与化学结构, 为该泡沫陶瓷的改性、 应用与高性能化奠定了基础。
[0029] 5、 本发明提供的微 /纳米银负载的钛酸钡泡沫陶瓷的制备方法具有工艺简单、 可控, 绿色环保, 适用性广等特点, 适合于工业化生产。
对附图的简要说明
附图说明
[0030] 图 1是本发明实施例 1制备的聚氨酯海绵 E、 钛酸钡泡沫陶瓷生坯及钛酸钡泡沫 陶瓷和实施例 2制备的钛酸钡泡沫陶瓷的体视显微镜照片。
[0031] 图 2是本发明实施例 1、 3、 4和 5中制备的钛酸钡泡沫陶瓷的 X射线衍射图。
[0032] 图 3是本发明实施例 5制得的钛酸钡泡沫陶瓷的扫描电镜照片 (放大 1千倍) 。
[0033] 图 4是本发明实施例 6制备的钛酸钡泡沫陶瓷、 多巴胺改性钛酸钡陶瓷以及实施 例 6、 7、 8制备的纳米银负载钛酸钡泡沫陶瓷和实施例 9制备的微 /纳米银负载钛 酸钡泡沫陶瓷的扫描电镜照片 (放大 5万倍) 。
[0034] 图 5是本发明实施例 6制备的钛酸钡泡沫陶瓷以及实施例 8制备的纳米银负载钛 酸钡泡沫陶瓷和实施例 9制备的微 /纳米银负载钛酸钡泡沫陶瓷的 X射线衍射图。
本发明的实施方式
[0035] [0008]下面结合附图、 实施例和比较例, 对本发明技术方案作进一步的描述。 [0036] 实施例 1
[0037] 1) 浆料的配制
[0038] 将 20g钛酸钡 (平均粒径 lOOnm) 与 10g浓度为 10wt<¾的聚乙烯醇水溶液充分研 磨, 得到浆料 A; 在浆料 A中加入 5g浓度为 2wt%的羧甲基纤维素水溶液, 充分 研磨后得到浆料 B ; 在浆料 B中加入 10g浓度为 1^%的聚丙烯酰胺水溶液, 充分 研磨后得到浆料^
[0039] 2) 聚氨酯海绵的处理
[0040] 将规格为 25 PPI的聚氨酯海绵浸渍在浓度为 15wt<7 氢氧化钠水溶液中, 升温 至 60°C并保温 3.5h; 而后, 将聚氨酯海绵取出, 用去离子水洗涤数次, 甩干后得 到聚氨酯海绵 D; 在常温下, 将聚氨酯海绵 D浸渍在浓度为 lwt9^ 羧甲基纤维素 水溶液中并停留 3h; 而后, 取出甩去多余的羧甲基纤维素水溶液, 在温度 60°C条 件下干燥, 得到预处理的聚氨酯海绵 E。 其体视显微镜照片参见附图 1。
[0041] 3) 钛酸钡泡沫陶瓷生坯的制备
[0042] 将预处理的聚氨酯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 5min进 行挂浆处理; 随后挤压排除多余的浆料, 于温度 40°C条件下进行干燥处理; 依次 重复挂浆、 干燥处理 4次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。 其体 视显微镜照片参见附图 1。
[0043] 4) 钛酸钡泡沫陶瓷的制备
[0044] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再 以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 5°C/min的速率升温至 12 00°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。 其体视显微镜 照片和 X射线衍射图分别参见附图 1和 2。
[0045] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0046] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 0.5g/L的多 巴胺溶液; 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 4) 制得的钛酸 钡泡沫陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经去离子水洗涤 数次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0047] 6) 微 /纳米银负载的钛酸钡泡沫陶瓷的制备 [0048] 将 5mL浓度为 0.2 \¥1<¾海藻酸钠水溶液加入到 50mL浓度为 0.12mol/L的新配制的 银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 5) 制得的多巴胺改性的钛酸钡 泡沫陶瓷浸渍在溶液 G中, 在常温下放置 0.5h, 得到纳米银负载钛酸钡泡沫陶瓷 ; 再向上述溶液 G中加入 lOOmL浓度为 20
g/L的硼氢化钠水溶液, 在常温下放置 2h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载的钛酸钡泡沫陶瓷。
[0049] 实施例 2
[0050] 1) 钛酸钡泡沫陶瓷生坯的制备
[0051] 将实施例 1中预处理的聚氨酯海绵 E浸渍在浆料 C (实施例 1) 中, 在常温下放 置 5min; 随后挤压排除多余的浆料, 于温度 40°C条件下干燥; 依次重复挂浆、 干燥处理 2次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0052] 2) 钛酸钡泡沫陶瓷的制备
[0053] 将步骤 1) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再 以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 5°C/min的速率升温至 12 00°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。 其体视显微镜 照片参见附图 1。
[0054] 3) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0055] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 0.5g/L的多 巴胺溶液, 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 2) 制得的钛酸 钡泡沫陶瓷浸渍在溶液 F中, 在常温下放置 12h; 反应结束后, 经去离子水洗涤 数次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0056] 4) 微 /纳米银负载的钛酸钡泡沫陶瓷的制备
[0057] 将 10mL浓度为 0.1 wt<¾的聚乙烯吡咯烷酮水溶液加入到 50mL浓度为 O.3mol/L的 新配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 3) 制得的多巴胺改性 的钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 0.5h, 得到纳米银负载钛酸钡 泡沫陶瓷; 再向上述溶液 G中加入 25mL浓度为 30 g/L的水合肼水溶液, 在常温下 放置 5h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载的钛酸钡 泡沫陶瓷。 [0058] 参见附图 1, 它是本发明实施例 1制备的聚氨酯海绵 E、 钛酸钡泡沫陶瓷生坯及 钛酸钡泡沫陶瓷和实施例 2制备的钛酸钡泡沫陶瓷的体视显微镜照片。 从中可知 , 实施例 1中预处理的聚氨酯海绵 E经浆料挂浆后, 钛酸钡均匀地涂覆在海绵的 骨架上 (实施例 1) 。 经烧结后, 聚氨酯海绵高温分解, 得到孔分布均匀且无堵 孔的钛酸钡泡沫陶瓷 (实施例 1和 2) 。 与实施例 2制备的钛酸钡泡沫陶瓷相比, 实施例 1制备的钛酸钡泡沫陶瓷具有更粗壮的骨架, 那是因为随着挂浆次数的增 力口, 在海绵骨架上的挂浆量增加。
[0059] 实施例 3
[0060] 1) 钛酸钡泡沫陶瓷的制备
[0061] 将实施例 1中制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 5°C/min的速率升温至 1000°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。 其 X射线衍 射图参见附图 2。
[0062] 2) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0063] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 10g/L的多 巴胺溶液, 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 1) 制得的钛酸 钡泡沫陶瓷浸渍在溶液 F中, 在常温下放置 lh; 反应结束后, 经去离子水洗涤数 次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0064] 3) 微 /纳米银负载的钛酸钡泡沫陶瓷的制备
[0065] 将 2mL浓度为 0.2 wt<¾的聚乙烯吡咯烷酮水溶液和 3mL浓度为 0.2 wt<7 海藻酸 钠水溶液加入到 50mL浓度为 0.03mol/L的新配制的银氨溶液中, 混合均匀后, 得 到溶液 G; 将步骤 2) 制得的多巴胺改性的钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常 温下放置 24h, 得到纳米银负载钛酸钡泡沫陶瓷; 再向上述溶液 G中加入 150mL 浓度为 5 g/L的柠檬酸钠水溶液, 在常温下放置 lh; 反应结束后, 经去离子水洗 涤数次, 干燥得到微 /纳米银负载的钛酸钡泡沫陶瓷。
[0066] 实施例 4
[0067] 1) 钛酸钡泡沫陶瓷的制备
[0068] 将实施例 1中制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 5°C/min的速率升温至 1100°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。 其 X射线衍 射图参见附图 2。
[0069] 2) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0070] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 2g/L的多巴 胺溶液, 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 1) 制得的钛酸钡 泡沫陶瓷浸渍在溶液 F中, 在常温下放置 12h; 反应结束后, 经去离子水洗涤数 次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0071] 3) 微 /纳米银负载的钛酸钡泡沫陶瓷的制备
[0072] 将 5mL浓度为 0.2 wt<¾海藻酸钠水溶液加入到 50mL浓度为 0.06mol/L的新配制的 银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 2) 制得的多巴胺改性的钛酸钡 泡沫陶瓷浸渍在溶液 G中, 在常温下放置 24h, 得到纳米银负载钛酸钡泡沫陶瓷 ; 再向上述溶液 G中加入 lOOmL浓度为 20
g/L的硼氢化钠水溶液, 在常温下放置 2h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载的钛酸钡泡沫陶瓷。
[0073] 实施例 5
[0074] 1) 钛酸钡泡沫陶瓷的制备
[0075] 将实施例 1中制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 5°C/min的速率升温至 1300°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。 其 X射线衍 射图和扫描电镜照片分别参见附图 2和 3。
[0076] 2) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0077] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 0.5g/L的多 巴胺溶液, 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 1) 制得的钛酸 钡泡沫陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经去离子水洗涤 数次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0078] 3) 微 /纳米银负载的钛酸钡泡沫陶瓷的制备
[0079] 将 10mL浓度为 0.1 \¥1<¾海藻酸钠水溶液加入到 50mL浓度为 0.12mol/L的新配制 的银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 2) 制得的多巴胺改性的钛酸 钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 24h, 得到纳米银负载钛酸钡泡沫陶 瓷; 再向上述溶液 G中加入 lOOmL浓度为 lg/L的抗坏血酸水溶液, 在常温下放置 2h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载的钛酸钡泡沫 陶瓷。
[0080] 参见附图 2, 它是本发明实施例 1、 3、 4和 5制备的钛酸钡泡沫陶瓷的 X射线衍射 图。 可以看到, 纳米钛酸钡在 22.1°、 31.6。、 38.9。、 45.2°、 50.8。、 56.1。、 65.8° 、 70.2°、 74.6°以及 78.9°处出现明显的衍射峰, 它们分别对应于 (100) 、 (110 ) 、 (111) 、 (002) / (200) 、 (210) 、 (211) 、 (220) 、 (221) 、 (31 0) 和 (113) 晶面 (JCPDS Νο.5-0626) 。 2Θ在 45.2°是否分裂成两个衍射峰是判 断钛酸钡晶型的有效依据。 由于实施例 3中制备的钛酸钡泡沫陶瓷在 45.2°处未出 现分裂峰, 因此可判断实施例 3所制备的钛酸钡泡沫陶瓷为立方晶型。 与实施例 3不同, 实施例 1、 4和 5所制备的钛酸钡泡沫陶瓷的谱图在 45.2°处出现两个分裂 峰, 表明钛酸钡泡沫陶瓷的晶型向四方相转变, 且其分裂峰强随烧结温度的升 高而明显, 说明钛酸钡泡沫陶瓷中四方相的含量增多。 结果表明改变烧结温度 可以调节钛酸钡泡沫陶瓷的晶型及不同晶相的含量。 特别值得注意的是, 所有 的 X射线衍射图均未出现其他杂峰, 表明有机助剂在烧结过程中分解, 得到化学 组成单一的纯净钛酸钡泡沫陶瓷。
[0081] 参见附图 3, 它是本发明实施例 5制备的钛酸钡泡沫陶瓷的扫描电镜照片。 从中 可以看出, 泡沫陶瓷生坯经高温烧结之后, 有机助剂分解, 钛酸钡晶粒生长、 变大, 得到致密性较好的钛酸钡泡沫陶瓷骨架。
[0082] 以上结果表明已经成功地制备了化学组成单一且致密性较好的钛酸钡泡沫陶瓷
[0083] 实施例 6
[0084] 1) 钛酸钡泡沫陶瓷生坯的制备
[0085] 将实施例 1中预处理的聚氨酯海绵 E浸渍在浆料 C (实施例 1) 中, 在常温下放 置 5min; 随后挤压排除多余的浆料, 于温度 50°C条件下干燥; 依次重复挂浆、 干燥处理 4次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。 [0086] 2) 钛酸钡泡沫陶瓷的制备
[0087] 将步骤 1) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再 以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 5°C/min的速率升温至 12 00°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。 其扫描电镜照 片和 X射线衍射图参见附图 4和 5。
[0088] 3) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0089] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 2g/L的多巴 胺溶液, 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 2) 制得的钛酸钡 泡沫陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经去离子水洗涤数 次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。 其扫描电镜照片参见附图 4。
[0090] 4) 微 /纳米银负载的钛酸钡泡沫陶瓷的制备
[0091] 将 5mL浓度为 0.2 wt<7^乙烯吡咯烷酮水溶液加入到 50mL浓度为 0.06mol/L的新 配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 3) 制得的多巴胺改性的 钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 2h, 得到纳米银负载钛酸钡泡沫 陶瓷,其扫描电镜照片参见附图 4; 再向上述溶液 G中加入 lOOmL浓度为 lg/L的葡 萄糖水溶液, 在常温下放置 2h; 反应结束后, 经去离子水洗涤数次, 干燥得到 微 /纳米银负载的钛酸钡泡沫陶瓷。
[0092] 实施例 7
[0093] 将 5mL浓度为 0.2 wt<7^乙烯吡咯烷酮水溶液加入到 50mL浓度为 0.06mol/L的新 配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将实施例 6制得的多巴胺改性的 钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 12h, 得到纳米银负载钛酸钡泡 沫陶瓷,其扫描电镜照片参见附图 4; 再向上述溶液 G中加入 lOOmL浓度为 20g/L的 葡萄糖水溶液, 在常温下放置 O.lh; 反应结束后, 经去离子水洗涤数次, 干燥得 到微 /纳米银负载的钛酸钡泡沫陶瓷。
[0094] 实施例 8
[0095] 将 5mL浓度为 0.2 wt<7^乙烯吡咯烷酮水溶液加入到 50mL浓度为 0.06mol/L的新 配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将实施例 6制得的多巴胺改性的 钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 24h, 得到纳米银负载钛酸钡泡 沫陶瓷,其扫描电镜照片和 X射线衍射图参见附图 4和 5; 再向上述溶液 G中加入 10 OmL浓度为 20g/L的葡萄糖水溶液, 在常温下放置 2h; 反应结束后, 经去离子水 洗涤数次, 干燥得到微 /纳米银负载的钛酸钡泡沫陶瓷。
[0096] 实施例 9
[0097] 将 5mL浓度为 0.2 wt%聚乙烯吡咯酮水溶液加入到 50mL浓度为 0.06mol/L的新配 制的银氨溶液中, 混合均匀后, 得到溶液 G; 将实施例 6制得的多巴胺改性的钛 酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 0.5h, 得到纳米银负载钛酸钡泡沫 陶瓷; 再向上述溶液 G中加入 lOOmL浓度为 20g/L的葡萄糖水溶液, 在常温下放 置 lh; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载的钛酸钡泡 沫陶瓷。 其扫描电镜照片和 X射线衍射图参见附图 4和 5。
[0098] 参见附图 4, 它是本发明实施例 6制备的钛酸钡泡沫陶瓷、 多巴胺改性钛酸钡陶 瓷以及实施例 6、 7、 8制备的纳米银负载钛酸钡泡沫陶瓷和实施例 9制备的微 /纳 米银负载钛酸钡泡沫陶瓷。 可以看到, 钛酸钡泡沫陶瓷 (实施例 6)经多巴胺处理 后, 在钛酸钡泡沫陶瓷表面出现了一层包裹层 (实施例 6) 。 多巴胺改性钛酸钡 泡沫陶瓷与银氨溶液反应后, 在其表面出现了细小的颗粒, 且随着反应吋间的 延长, 其表面的颗粒增大, 粒径变大 (实施例 6、 实施例 7和实施例 8) 。 其加入 葡萄糖进一步还原, 可使 Ag颗粒的粒径由纳米向微米转变 (实施例 9) 。
[0099] 参加附图 5, 它是本发明实施例 6制备的钛酸钡泡沫陶瓷以及实施例 8制备的纳 米银负载钛酸钡泡沫陶瓷和实施例 9制备的微 /纳米银负载钛酸钡泡沫陶瓷的 X射 线衍射图。 可以看到, 相比钛酸钡泡沫陶瓷 (实施例 6) , 负载微 /纳米银之后, 在 38.1°、 44.3°、 64.5°以及 77.4°处出现 4个明显的衍射峰, 它们分别对应于 (i l l ) 、 (200) 、 (220) 和 (311) 晶面 (JCPDS No. 04-0783) 。 由此可判断实施 例 8和 9所负载的颗粒为面心立方银。 同吋, 经葡萄糖溶液进一步还原, 微 /纳米 银负载的钛酸钡泡沫陶瓷的衍射峰增强 (实施例 9) 。
[0100] 实施例 10
[0101] 将 5mL浓度为 0.2 wt%聚乙烯吡咯酮水溶液加入到 50mL浓度为 0.06mol/L的新配 制的银氨溶液中, 混合均匀后, 得到溶液 G; 将实施例 6制得的多巴胺改性的钛 酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 lh, 得到纳米银负载钛酸钡泡沫陶 瓷; 再向上述溶液 G中加入 lOOmL浓度为 20
g/L的葡萄糖水溶液, 在常温下放置 1.5h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载的钛酸钡泡沫陶瓷。
[0102] 实施例 11
[0103] 1) 浆料的配制
[0104] 将 20g钛酸钡 (平均粒径 50nm) 与 6g浓度为 10wt<¾的聚乙烯醇水溶液和 18g浓 度为 1\^%的羧甲基纤维素水溶液的混合液充分研磨, 得到浆料 A; 在浆料 A中加 入 5g浓度为 0.5wt<¾的羧甲基纤维素水溶液和 5g浓度为 3wt%的羟己基纤维素水溶 液的混合液, 充分研磨后得到浆料 B ; 在浆料 B中加入 10g浓度为 1\^%的聚丙烯 酰胺水溶液, 充分研磨后得到浆料 C。
[0105] 2) 聚氨酯海绵的处理
[0106] 将规格为 25PPI的聚氨酯海绵浸渍在浓度为 20wt%的氢氧化钠水溶液中, 升温 至 50°C并保温 2h; 而后, 将聚氨酯海绵取出, 用去离子水洗涤数次, 甩干后得到 聚氨酯海绵 D; 在常温下, 将聚氨酯海绵 D浸渍在浓度为 3wt%的聚乙烯亚胺水溶 液中并停留 2h; 而后, 取出甩去多余的聚乙烯亚胺水溶液, 在温度 80°C条件下干 燥, 得到预处理的聚氨酯海绵 E。
[0107] 3) 钛酸钡泡沫陶瓷生坯的制备
[0108] 将预处理的聚氨酯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 lOmin ; 随后挤压排除多余的浆料, 于温度 50°C条件下干燥; 依次重复挂浆、 干燥处理 5次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0109] 4) 钛酸钡泡沫陶瓷的制备
[0110] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 0.5°C/min的速率由室温升温至 200°C, 再以 5°C/min的速率升温至 600°C; 在 600°C保温 0.5h; 然后以 2°C/min的速率升温 至 1300°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0111] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0112] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 5g/L的多巴 胺溶液, 用氨水调节 pH值至 8.5, 得到溶液 F; 而后将步骤 4) 制得的钛酸钡泡沫 陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经去离子水洗涤数次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0113] 6) 微 /纳米银负载的钛酸钡泡沫陶瓷的制备
[0114] 将 5mL浓度为 0.2 wt<¾聚乙烯吡咯烷酮水溶液和 5mL浓度为 0.2 wt<¾海藻酸钠水 溶液加入到 50mL浓度为 0.06mol/L的新配制的银氨溶液中, 混合均匀后, 得到溶 液 G; 将步骤 5) 制得的多巴胺改性的钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下 放置 0.5h, 得到纳米银负载钛酸钡泡沫陶瓷; 再向上述溶液 G中依次加入 50mL浓 度为 10 g/L的柠檬酸钠水溶液、 50mL浓度为 lg/L的抗坏血酸水溶液和 50mL浓度 为 10g/L的葡萄糖水溶液, 在常温下放置 2h; 反应结束后, 经去离子水洗涤数次 , 干燥得到微 /纳米银负载的钛酸钡泡沫陶瓷。
[0115] 实施例 12
[0116] 1) 浆料的配制
[0117] 将 20g钛酸钡 (平均粒径 lOOnm) 与 6g浓度为 15wt<¾的甲基纤维素水溶液充分研 磨, 得到浆料 A; 在浆料 A中加入 16g浓度为 0.5wt%的羧甲基纤维素水溶液, 充 分研磨后得到浆料 B ; 在浆料 B中加入 10g浓度为 0.5wt9^ 聚丙烯酰胺水溶液和 6g 浓度为 0.5wt%的聚丙烯酸胺水溶液的混合液, 充分研磨后得到浆料 C。
[0118] 2) 聚氨酯海绵的处理
[0119] 将规格为 25PPI的聚氨酯海绵浸渍在浓度为 10wt%的氢氧化钠水溶液中, 升温 至 60°C并保温 3.5h; 而后, 将聚氨酯海绵取出, 用去离子水洗涤数次, 甩干后得 到聚氨酯海绵 D; 在常温下, 将聚氨酯海绵 D浸渍在浓度为 0.5wt%的聚乙烯亚胺 水溶液中并停留 3h; 而后, 取出甩去多余的聚乙烯亚胺水溶液, 在温度 40。C条件 下干燥, 得到预处理的聚氨酯海绵 E。
[0120] 3) 钛酸钡泡沫陶瓷生坯的制备
[0121] 将预处理的聚氨酯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 5min; 随后挤压排除多余的浆料, 于温度 80°C条件下干燥; 依次重复挂浆、 干燥处理 4 次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0122] 4) 钛酸钡泡沫陶瓷的制备
[0123] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 5°C/min的速率由室温升温至 200°C, 再 以 5°C/min的速率升温至 600°C; 在 600°C保温 0.5h; 然后以 10°C/min的速率升温至 1000°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0124] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0125] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 2g/L的多巴 胺溶液, 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 4) 制得的钛酸钡 泡沫陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经去离子水洗涤数 次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0126] 6) 微 /纳米银负载的钛酸钡泡沫陶瓷的制备
[0127] 将 5mL浓度为 0.2 \¥1<¾海藻酸钠水溶液加入到 50mL浓度为 0.12mol/L的新配制的 银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 5) 制得的多巴胺改性的钛酸钡 泡沫陶瓷浸渍在溶液 G中, 在常温下放置 0.5h, 得到纳米银负载钛酸钡泡沫陶瓷 ; 再向上述溶液 G中加入 50mL浓度为 10
g/L的柠檬酸钠水溶液和 50mL浓度为 10g/L的葡萄糖水溶液, 在常温下放置 2h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载的钛酸钡泡沫陶瓷
[0128] 实施例 13
[0129] 1) 浆料的配制
[0130] 将 20g
钛酸钡 (平均粒径 30nm) 与 10g浓度为 lwt%的羧甲基纤维素水溶液和 10g浓度为 lwt%的甲基纤维素水溶液充分研磨, 得到浆料 A; 在浆料 A中加入 2g浓度为 2wt <¾的羧甲基纤维素水溶液, 充分研磨后得到浆料 B; 在浆料 B中加入 10g浓度为 lw t%的聚丙烯酰胺水溶液和 6g浓度为 lwt%的聚乙烯亚胺水溶液的混合液, 充分研 磨后得到浆料 C。
[0131] 2) 聚氨酯海绵的处理
[0132] 将规格为 35PPI的聚氨酯海绵浸渍在浓度为 15\^%的氢氧化钠水溶液中, 升温 至 60°C并保温 3.5h; 而后, 将聚氨酯海绵取出, 用去离子水洗涤数次, 甩干后得 到聚氨酯海绵 D; 在常温下, 将聚氨酯海绵 D浸渍在等体积浓度为 lwt9^ 羧甲基 纤维素水溶液和浓度为 lwt%的聚乙烯亚胺水溶液的混合液中并停留 3h; 而后, 取出甩去多余的羧甲基纤维素和聚乙烯亚胺的混合液, 在温度 60°C条件下干燥, 得到预处理的聚氨酯海绵 E。
[0133] 3) 钛酸钡泡沫陶瓷生坯的制备
[0134] 将预处理的聚氨酯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 lOmin ; 随后挤压排除多余的浆料, 于温度 50°C条件下干燥; 依次重复挂浆、 干燥处理 4次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0135] 4) 钛酸钡泡沫陶瓷的制备
[0136] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 200°C, 再 以 l°C/min的速率升温至 600°C; 在 600°C保温 lh; 然后以 2°C/min的速率升温至 10 00°C, 保温 lh; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0137] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0138] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 2g/L的多巴 胺溶液, 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 4) 制得的钛酸钡 泡沫陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经去离子水洗涤数 次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0139] 6) 微 /纳米银负载的钛酸钡泡沫陶瓷的制备
[0140] 将 5mL浓度为 0.2 wt%的聚乙烯吡咯烷酮水溶液加入到 50mL浓度为 0.06mol/L的 新配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 5) 制得的多巴胺改性 的钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 2h, 得到纳米银负载钛酸钡泡 沫陶瓷; 再向上述溶液 G中加入 50mL浓度为 10 g/L的柠檬酸钠水溶液, 在常温下 放置 2h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载的钛酸钡 泡沫陶瓷。
[0141] 实施例 14
[0142] 1) 浆料的配制
[0143] 将 20g钛酸钡 (平均粒径 50nm) 与 6g浓度为 10wt<¾的聚乙烯醇水溶液和 10g浓度 为 1\^%的羧甲基纤维素水溶液的混合液充分研磨, 得到浆料 A; 在浆料 A中加入 5g浓度为 2wt%的羧甲基纤维素水溶液, 充分研磨后得到浆料 B; 在浆料 B中加入 5g浓度为 1\^%的聚丙烯酰胺水溶液和 5g浓度为 lwt%的聚乙烯亚胺水溶液的混合 液, 充分研磨后得到浆料 C。 [0144] 2) 聚氯乙烯海绵的处理
[0145] 将规格为 15PPI的聚氯乙烯海绵浸渍在浓度为 20\^%的氢氧化钠水溶液中, 升 温至 60°C并保温 2h; 而后, 将聚氯乙烯海绵取出, 用去离子水洗涤数次, 甩干后 得到聚氯乙烯海绵 D; 在常温下, 将聚氯乙烯海绵 D浸渍在浓度为 0.5wt%的羧甲 基纤维素水溶液中并停留 3h; 而后, 取出甩去多余的羧甲基纤维素水溶液, 在 温度 60°C条件下干燥, 得到预处理的聚氯乙烯海绵 E。
[0146] 3) 钛酸钡泡沫陶瓷生坯的制备
[0147] 将预处理的聚氯乙烯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 5min ; 随后挤压排除多余的浆料, 于温度 40°C条件下干燥; 依次重复挂浆、 干燥处理 4次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0148] 4) 钛酸钡泡沫陶瓷的制备
[0149] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 0.5°C/min的速率由室温升温至 200°C, 再以 5°C/min的速率升温至 600°C; 在 600°C保温 2h; 然后以 5°C/min的速率升温至 1200°C, 保温 2h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0150] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0151] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 0.5g/L的多 巴胺溶液, 用氨水调节 pH值至 8.5, 得到溶液 F; 而后将步骤 4) 制得的钛酸钡泡 沫陶瓷浸渍在溶液 F中, 在常温下放置 12h; 反应结束后, 经去离子水洗涤数次 , 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0152] 6) 微 /纳米银负载的钛酸钡泡沫陶瓷的制备
[0153] 将 10mL浓度为 0.1 wt<¾的聚乙烯吡咯烷酮水溶液加入到 50mL浓度为 O.3mol/L的 新配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 5) 制得的多巴胺改性 的钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 0.5h, 得到纳米银负载钛酸钡 泡沫陶瓷; 再向上述溶液 G中加入 25mL浓度为 30 g/L的水合肼水溶液, 在常温下 放置 5h; 反应结束后, 经去离子水洗涤数次, 干燥得到微 /纳米银负载的钛酸钡 泡沫陶瓷。
[0154] 实施例 15
[0155] 1) 浆料的配制 [0156] 将 20g钛酸钡 (平均粒径 30nm) 与 24g浓度为 lwt<¾的甲基纤维素水溶液充分研 磨, 得到浆料 A; 在浆料 A中加入 4g浓度为 3wt%的羟己基纤维素水溶液, 充分研 磨后得到浆料 B ; 在浆料 B中加入 16g浓度为 0.5wt9^ 聚乙烯亚胺水溶液, 充分研 磨后得到浆料 C。
[0157] 2) 聚苯乙烯海绵的处理
[0158] 将规格为 25PPI的聚苯乙烯海绵浸渍在浓度为 5wt%的氢氧化钠水溶液中, 升温 至 75°C并保温 6h; 而后, 将聚苯乙烯海绵取出, 用去离子水洗涤数次, 甩干后得 到聚苯乙烯海绵 D; 在常温下, 将聚苯乙烯海绵 D浸渍在浓度为 3wt%的聚乙烯亚 胺水溶液中并停留 2h; 而后, 取出甩去多余的聚乙烯亚胺水溶液, 在温度 60°C条 件下干燥, 得到预处理的聚苯乙烯海绵 E。
[0159] 3) 钛酸钡泡沫陶瓷生坯的制备
[0160] 将预处理的聚苯乙烯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 10mi n; 随后挤压排除多余的浆料, 于温度 50°C条件下干燥; 依次重复挂浆、 干燥处 理 7次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0161] 4) 钛酸钡泡沫陶瓷的制备
[0162] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 0.5°C/min的速率由室温升温至 200°C, 再以 5°C/min的速率升温至 600°C; 在 600°C保温 2h; 然后以 10°C/min的速率升温 至 1000°C, 保温 5h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0163] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0164] 将盐酸多巴胺溶入 lOmmol/L的 Tris-HCl缓冲溶液中, 配制成浓度为 2g/L的多巴 胺溶液, 用氢氧化钠调节 pH值至 8.5, 得到溶液 F; 而后将步骤 4) 制得的钛酸钡 泡沫陶瓷浸渍在溶液 F中, 在常温下放置 12h; 反应结束后, 经去离子水洗涤数 次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0165] 6) 微 /纳米银负载的钛酸钡泡沫陶瓷的制备
[0166] 将 5mL浓度为 0.2wt<¾海藻酸钠水溶液加入到 50mL浓度为 0.06mol/L的新配制的 银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 5) 制得的多巴胺改性的钛酸钡 泡沫陶瓷浸渍在溶液 G中, 在常温下放置 24h, 得到纳米银负载钛酸钡泡沫陶瓷 ; 再向上述溶液 G中加入 50mL浓度为 10g/L的柠檬酸钠水溶液和 50mL浓度为 10g/ L的葡萄糖水溶液, 在常温下放置 2h; 反应结束后, 经去离子水洗涤数次, 干燥 得到微 /纳米银负载的钛酸钡泡沫陶瓷。
[0167] 实施例 16
[0168] 1) 浆料的配制
[0169] 将 20g钛酸钡 (平均粒径 50nm) 与 6g浓度为 15wt<¾的聚乙烯醇水溶液充分研磨 , 得到浆料 A; 在浆料 A中加入 16g浓度为 0.5wt%的羟己基纤维素水溶液, 充分 研磨后得到浆料 B ; 在浆料 B中加入 8g浓度为 3\^%的聚丙烯酸胺水溶液, 充分研 磨后得到浆料 C。
[0170] 2) 聚氯乙烯海绵的处理
[0171] 将规格为 25PPI的聚氯乙烯海绵浸渍在浓度为 20wt%的氢氧化钠水溶液中, 升 温至 50°C并保温 2h; 而后, 将聚氯乙烯海绵取出, 用去离子水洗涤数次, 甩干后 得到聚氯乙烯海绵 D; 在常温下, 将聚氯乙烯海绵 D浸渍在浓度为 0.5wt%的聚乙 烯亚胺水溶液中并停留 2h; 而后, 取出甩去多余的聚乙烯亚胺水溶液, 在温度 7 0°C条件下干燥, 得到预处理的聚氯乙烯海绵 E。
[0172] 3) 钛酸钡泡沫陶瓷生坯的制备
[0173] 将预处理的聚氯乙烯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 lmin ; 随后挤压排除多余的浆料, 于温度 70°C条件下干燥; 依次重复挂浆、 干燥处理 1次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0174] 4) 钛酸钡泡沫陶瓷的制备
[0175] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 5°C/min的速率由室温升温至 100°C, 再 以 0.5°C/min的速率升温至 500°C; 在 500°C保温 0.5h; 然后以 10°C/min的速率升温 至 1500°C, 保温 3h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0176] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0177] 将盐酸多巴胺溶入 12.5mmol/L的磷酸氢二钠-磷酸二氢钠缓冲溶液中, 配制成 浓度为 2g/L的多巴胺溶液, 用氢氧化钠调节 pH值至 8.3, 得到溶液 F; 而后将步 骤 4) 制得的钛酸钡泡沫陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经去离子水洗涤数次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0178] 6) 微 /纳米银负载的钛酸钡泡沫陶瓷的制备 [0179] 将 5mL浓度为 0.2 wt<7^乙烯吡咯烷酮水溶液加入到 50mL浓度为 0.06mol/L的新 配制的银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 5) 制得的多巴胺改性的 钛酸钡泡沫陶瓷浸渍在溶液 G中, 在常温下放置 12h, 得到纳米银负载钛酸钡泡 沫陶瓷; 再向上述溶液 G中加入 50mL浓度为 30 g/L的水合肼水溶液和 50mL浓度 为 10g/L的硼氢化钠水溶液, 在常温下放置 lh; 反应结束后, 经去离子水洗涤数 次, 干燥得到微 /纳米银负载的钛酸钡泡沫陶瓷。
[0180] 实施例 17
[0181] 1) 浆料的配制
[0182] 将 20g钛酸钡 (平均粒径 lOOnm) 与 15g浓度为 10wt<¾的聚乙烯醇水溶液充分研 磨, 得到浆料 A; 在浆料 A中加入 10g浓度为 lwt%的羧甲基纤维素水溶液, 充分 研磨后得到浆料 B ; 在浆料 B中加入 5g浓度为 2^%的聚丙烯酸胺水溶液, 充分研 磨后得到浆料 C。
[0183] 2) 聚氨酯海绵的处理
[0184] 将规格为 25PPI的聚氨酯海绵浸渍在浓度为 15\^%的氢氧化钠水溶液中, 升温 至 65°C并保温 3h; 而后, 将聚氨酯海绵取出, 用去离子水洗涤数次, 甩干后得到 聚氨酯海绵 D; 在常温下, 将聚氨酯海绵 D浸渍在浓度为 0.5\^%的聚乙烯亚胺水 溶液中并停留 6h; 而后, 取出甩去多余的聚乙烯亚胺水溶液, 在温度 60。C条件下 干燥, 得到预处理的聚氨酯海绵海绵E。
[0185] 3) 钛酸钡泡沫陶瓷生坯的制备
[0186] 将预处理的聚氨酯海绵 E浸渍在步骤 1) 制得的浆料 C中, 在常温下放置 3min; 随后挤压排除多余的浆料, 于温度 40°C条件下干燥; 依次重复挂浆、 干燥处理 7 次, 得到挂浆均匀且无堵孔的钛酸钡泡沫陶瓷生坯。
[0187] 4) 钛酸钡泡沫陶瓷的制备
[0188] 将步骤 3) 制得的钛酸钡泡沫陶瓷生坯以 2°C/min的速率由室温升温至 300°C, 再 以 2°C/min的速率升温至 700°C; 在 700°C保温 2h; 然后以 8°C/min的速率升温至 12 00°C, 保温 3h; 结束后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷。
[0189] 5) 多巴胺改性钛酸钡泡沫陶瓷的制备
[0190] 将盐酸多巴胺溶入 15mmol/L的磷酸氢二钠-磷酸二氢钠缓冲溶液中, 配制成浓 度为 2g/L的多巴胺溶液, 用氢氧化钠调节 pH值至 8.8, 得到溶液 F; 而后将步骤 4 ) 制得的钛酸钡泡沫陶瓷浸渍在溶液 F中, 在常温下放置 24h; 反应结束后, 经 去离子水洗涤数次, 干燥得到多巴胺改性的钛酸钡泡沫陶瓷。
[0191] 6) 微 /纳米银负载的钛酸钡泡沫陶瓷的制备
[0192] 将 5mL浓度为 0.2 \¥1<¾海藻酸钠水溶液加入到 50mL浓度为 0.12mol/L的新配制的 银氨溶液中, 混合均匀后, 得到溶液 G; 将步骤 5) 制得的多巴胺改性的钛酸钡 泡沫陶瓷浸渍在溶液 G中, 在常温下放置 0.5h, 得到纳米银负载钛酸钡泡沫陶瓷 ; 再向上述溶液 G中加入 50mL浓度为 lg/L的抗坏血酸水溶液和 50mL浓度为 10g/L 的柠檬酸钠水溶液, 在常温下放置 2h; 反应结束后, 经去离子水洗涤数次, 干 燥得到微 /纳米银负载的钛酸钡泡沫陶瓷。

Claims

权利要求书
[权利要求 1] 一种微 /纳米银负载的钛酸钡泡沫陶瓷的制备方法, 其特征在于包含 如下步骤:
(1) 按质量计, 将 100份纳米钛酸钡与 30〜120份浓度为 1〜15^%的 有机粘结剂水溶液充分研磨, 得到浆料 A; 在浆料 A中加入 10〜80份 浓度为 0.5〜3wt9^ 有机流变剂水溶液, 充分研磨后得到浆料 B; 在 浆料 B中加入 20〜80份浓度为 0.5〜3\^%的有机分散剂水溶液, 充分 研磨后得到浆料 C;
(2) 将规格为 15〜35 PPI的聚合物海绵浸渍在浓度为 5〜20wt%的氢 氧化钠水溶液中, 升温至 50〜75°C并保温 2〜6h后, 将聚合物海绵取 出, 用去离子水洗涤并甩干后得到聚合物海绵 D; 在常温下, 将聚合 物海绵 D浸渍在浓度为 0.5〜3^%的表面活性剂水溶液中 ,2〜6h后取出 ,甩去多余的表面活性剂, 在温度为 40〜80°C的条件下干燥处理, 得 到预处理的聚合物海绵 E;
(3) 将预处理的聚合物海绵 E浸渍在步骤 (1) 制得的浆料 C中, 在 常温下放置 l〜10min进行挂浆处理后,挤压排除多余的浆料, 再在温 度为 40〜80°C的条件下进行干燥处理; 依次重复挂浆、 干燥处理 1〜7 次, 得到钛酸钡泡沫陶瓷生坯;
(4) 将步骤 (3) 制得的钛酸钡泡沫陶瓷生坯, 以 0.5〜5°C/min的速 率由室温升温至 100〜300°C, 再以 0.5〜5°C/min的速率升温至 500〜70 0°C并保温 0.5〜2h后, 以 2〜10°C/min的速率升温至 1000〜1500°C并保 温 l〜5h后, 随炉冷却至室温, 得到钛酸钡泡沫陶瓷;
(5) 用缓冲试剂或缓冲液、 水和盐酸多巴胺, 配制浓度为 0.5〜10g/ L的多巴胺溶液; 用碱调节 pH值至 8.3〜8.8, 得到溶液 F; 将步骤 (4 ) 制得的钛酸钡泡沫陶瓷浸渍在溶液 F中, 常温下放置 l〜24h, 再经 去离子水洗涤、 干燥后, 得到多巴胺改性的钛酸钡泡沫陶瓷;
(6)按体积计, 将 4〜20份浓度为 0.1〜 1 wt%的稳定剂水溶液加入到 100 份浓度为 0.03〜0.3mol/L的新配制的银氨溶液中, 混合均匀后, 得到 溶液 G; 将步骤 (5) 制得的多巴胺改性的钛酸钡泡沫陶瓷浸渍在溶 液 G中, 常温下放置 0.5〜24h, 得到纳米银负载钛酸钡泡沫陶瓷, 再 加入 50〜300份浓度为 l〜30g/L的还原剂水溶液, 常温下放置 0.1〜5h , 经去离子水洗涤、 干燥后, 得到微 /纳米银负载的钛酸钡泡沫陶瓷
[权利要求 2] 根据权利要求 1所述的一种微 /纳米银负载的钛酸钡泡沫陶瓷的制备方 法, 其特征在于: 所述的聚合物海绵的聚合物材质为聚氨酯、 聚苯乙 烯、 聚氯乙烯中的任意一种。
[权利要求 3] 根据权利要求 1所述的一种微 /纳米银钛酸钡泡沫陶瓷的制备方法, 其 特征在于: 所述的纳米钛酸钡的平均粒径≤ 100nm。
[权利要求 4] 根据权利要求 1所述的一种微 /纳米银负载的钛酸钡泡沫陶瓷的制备方 法, 其特征在于: 所述的有机粘结剂为聚乙烯醇、 羧甲基纤维素、 甲 基纤维素中的一种, 或它们的任意组合; 所述的有机流变剂为羧甲基 纤维素、 羟己基纤维素中的一种, 或它们的任意组合; 所述的有机分 散剂为聚丙烯酰胺、 聚乙烯亚胺、 聚丙烯酸胺中的一种, 或它们的任 意组合。
[权利要求 5] 根据权利要求 1所述的一种微 /纳米银负载的钛酸钡泡沫陶瓷的制备方 法, 其特征在于: 所述的表面活性剂为羧甲基纤维素、 聚乙烯亚胺中 的一种, 或它们的任意组合。
[权利要求 6] 根据权利要求 1所述的一种微 /纳米银负载的钛酸钡泡沫陶瓷的制备方 法, 其特征在于: 所述的稳定剂为聚乙烯吡咯烷酮、 海藻酸钠中的一 种, 或它们的任意组合。
[权利要求 7] 根据权利要求 1所述的一种微 /纳米银负载的钛酸钡泡沫陶瓷的制备方 法, 其特征在于: 所述的还原剂为水合肼、 柠檬酸钠、 硼氢化钠、 葡 萄糖、 抗坏血酸中的一种, 或它们的任意组合。
[权利要求 8] 根据权利要求 1所述的一种微 /纳米银负载的钛酸钡泡沫陶瓷的制备方 法, 其特征在于: 所述的缓冲试剂或缓冲液为 Tris-HCl、 磷酸氢二钠- 磷酸二氢钠缓冲液中的一种。
[权利要求 9] 根据权利要求 1所述的一种微 /纳米银负载的钛酸钡泡沫陶瓷的制备方 法, 其特征在于: 所述的碱为氢氧化钠、 氨水中的一种。
[权利要求 10] 按权利要求 1所述的制备方法得到的一种微 /纳米银负载的钛酸钡泡沫 陶瓷。
PCT/CN2016/107796 2016-01-11 2016-11-29 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法 WO2017121203A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/069,160 US10882797B2 (en) 2016-01-11 2016-11-29 Barium titanate foam ceramics loaded with micro/nano silver and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610014635.6A CN105622162B (zh) 2016-01-11 2016-01-11 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法
CN201610014635.6 2016-01-11

Publications (1)

Publication Number Publication Date
WO2017121203A1 true WO2017121203A1 (zh) 2017-07-20

Family

ID=56037559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107796 WO2017121203A1 (zh) 2016-01-11 2016-11-29 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法

Country Status (3)

Country Link
US (1) US10882797B2 (zh)
CN (1) CN105622162B (zh)
WO (1) WO2017121203A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115869967A (zh) * 2022-11-21 2023-03-31 昆明理工大学 一种具有跨尺度孔径结构的泡沫铜催化剂及其制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105622162B (zh) * 2016-01-11 2018-03-23 苏州大学 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法
CN105503254B (zh) * 2016-01-11 2018-06-29 苏州大学 一种钛酸钡泡沫陶瓷及其制备方法
CN105541389B (zh) * 2016-01-11 2018-03-30 苏州大学 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN106116672A (zh) * 2016-06-29 2016-11-16 梅庆波 一种室内空气净化用泡沫陶瓷制备方法
CN106566010A (zh) * 2016-10-25 2017-04-19 东莞市联洲知识产权运营管理有限公司 一种含银的壳核石墨烯基介电弹性复合材料及其制备方法
CN107088821B (zh) * 2017-06-05 2019-04-02 安徽省亚欧陶瓷有限责任公司 一种陶瓷表面抛光修复工艺
CN107376018B (zh) * 2017-07-28 2021-04-23 深圳先进技术研究院 一种含锶生物材料及其制备方法和应用
CN110302429B (zh) * 2019-07-15 2021-11-26 江西理工大学 一种Ag-DBT/PVDF复合骨支架及其制备方法
CN110963784A (zh) * 2019-12-31 2020-04-07 郑州登电科诚新材料有限公司 一种发泡陶瓷保温板切割废料再利用的生产工艺
CN111187098A (zh) * 2020-02-20 2020-05-22 郑州普利飞尔环保科技有限公司 一种抗菌型载银陶瓷及其制备方法
CN111333901B (zh) * 2020-03-04 2022-09-20 上海海事大学 一种柔性复合材料及其制备与调控负介电性能的方法
CN112371122B (zh) * 2020-10-26 2021-11-30 山东大学 一种表面负载金属的压电材料及其制备方法与应用
CN113979526A (zh) * 2021-09-09 2022-01-28 盐城工学院 一种负载纳米金属可循环使用材料的制备方法与应用
CN114573354B (zh) * 2022-03-02 2022-12-02 哈尔滨工业大学(威海) 一种低温制备陶瓷膜的方法
CN115366512A (zh) * 2022-08-08 2022-11-22 浙江亚厦装饰股份有限公司 一种高硬度抗菌木塑的制备方法
CN115893482B (zh) * 2022-12-21 2023-10-10 湖北亚星电子材料有限公司 一种高稳定钡钛复合料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102951922A (zh) * 2012-11-27 2013-03-06 陕西科技大学 一种冷冻浇注法制备钛酸钡多孔陶瓷的方法
CN104193396A (zh) * 2014-08-21 2014-12-10 江苏南瓷绝缘子股份有限公司 一种泡沫陶瓷的制备方法
CN105622162A (zh) * 2016-01-11 2016-06-01 苏州大学 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024212A (en) * 1975-03-28 1977-05-17 Swiss Aluminium Ltd. Ceramic foam and method of preparation
CN102898147A (zh) * 2012-11-05 2013-01-30 西华师范大学 一种制备钛酸盐压电陶瓷粉体的环境协调型方法
CN103864416A (zh) * 2014-02-27 2014-06-18 天津大学 一种低烧结温度钛酸钡基陶瓷电容器介质的制备方法
CN107778026A (zh) * 2016-08-26 2018-03-09 青岛天地铸造有限公司 一种微/纳米银负载的钛酸钡泡沫陶瓷燃气灶面板制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102951922A (zh) * 2012-11-27 2013-03-06 陕西科技大学 一种冷冻浇注法制备钛酸钡多孔陶瓷的方法
CN104193396A (zh) * 2014-08-21 2014-12-10 江苏南瓷绝缘子股份有限公司 一种泡沫陶瓷的制备方法
CN105622162A (zh) * 2016-01-11 2016-06-01 苏州大学 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W UCHERER ET AL.: "Synthesis and Characterization of BaTi03-Based Foams with a Controlled Microstructure", INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, vol. 6, no. 6, 31 December 2009 (2009-12-31), pages 651 - 660, XP055398739, ISSN: 1744-7402 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115869967A (zh) * 2022-11-21 2023-03-31 昆明理工大学 一种具有跨尺度孔径结构的泡沫铜催化剂及其制备方法
CN115869967B (zh) * 2022-11-21 2023-09-08 昆明理工大学 一种具有跨尺度孔径结构的泡沫铜催化剂及其制备方法

Also Published As

Publication number Publication date
US10882797B2 (en) 2021-01-05
US20190031572A1 (en) 2019-01-31
CN105622162A (zh) 2016-06-01
CN105622162B (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
WO2017121203A1 (zh) 一种微/纳米银负载的钛酸钡泡沫陶瓷及其制备方法
WO2017121201A1 (zh) 一种钛酸钡泡沫陶瓷及其制备方法
WO2017121204A1 (zh) 一种改性钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN103011817B (zh) 一种钇硅氧多孔高温陶瓷材料的制备方法
CN111533572B (zh) 一种多孔碳化硅陶瓷支撑体的制备方法
CN103071396B (zh) 一种制备有序多孔炭膜的基质诱导法
WO2017121202A1 (zh) 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN107098352A (zh) 一种耐高温气凝胶及气凝胶型多孔陶瓷的制备方法
CN102757224A (zh) 烧结制备致密碳化硼基陶瓷材料的方法
CN112759423B (zh) 一种涂层炭炭复合材料坩埚及制备方法
CN103253981B (zh) 一种莫来石/碳化硅复相泡沫陶瓷的制备方法
CN113663611B (zh) 一种耐高温复合纳米纤维气凝胶材料及其制备方法
CN107602127B (zh) SiC空心球及其制备方法
CN101117295A (zh) 一种制备泡沫陶瓷过滤器的方法及用该方法制备的过滤器
CN114956828B (zh) 碳化硅陶瓷及其制备方法和应用
CN113201195B (zh) 一种钛酸锶钡多孔陶瓷/聚偏氟乙烯复合材料及制备方法
CN113443901A (zh) 高强度氧化铝泡沫陶瓷及其制备方法
CN110002863B (zh) 一种钇铝石榴石多孔陶瓷的制备方法
CN110304931A (zh) 一种高体积分数碳化硅纳米线增强陶瓷基复合材料及其制备方法
KR20090097443A (ko) 구형실리카-탄소전구체 나노복합체를 이용한 메조포러스탄소 및 메조포러스 실리카의 제조방법
CN110845241A (zh) 一种多孔氮化铝陶瓷材料的制备方法
KR100982640B1 (ko) 구형실리카-탄소전구체 나노복합체를 이용한 메조포러스 탄소 및 메조포러스 실리카의 제조방법
CN110845242A (zh) 一种多孔氮化硅陶瓷材料的制备方法
CN117945775B (zh) 一种Cf/ZrC陶瓷复合材料的制备方法
CN116639998B (zh) 一种多孔碳化硅陶瓷材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884755

Country of ref document: EP

Kind code of ref document: A1